Catalogue Data in Autumn Semester 2021

Agricultural Sciences Bachelor

1. Semester

First Year Examinations

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-2001-02L</td>
<td>Chemistry I</td>
<td>O</td>
<td>4 credits</td>
<td>2V+2U</td>
<td>J. Cvengros, J. E. E. Buschmann, P. Funck, E. C. Meister, R. Verel</td>
</tr>
</tbody>
</table>

Abstract

General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium.

Objective

Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.

Content

1. Stoichiometry
 - Amount of substance and mass. Composition of chemical compounds. Reaction equation. Ideal gas law.
2. Atoms
4. Basics of chemical thermodynamics
 - System and surroundings. Description of state and change of state of chemical systems.
5. First law of thermodynamics
 - Internal energy, Heat and Work. Enthalpy and reaction enthalpy.
6. Second law of thermodynamics
 - Entropy. Change of entropy in chemical systems and universe. Reaction entropy.
7. Gibbs energy and chemical potential.
8. Chemical equilibrium
9. Acids and bases
10. Dissolution and precipitation.
 - Heterogeneous equilibrium. Dissolution and solubility product. Carbon dioxide-carbonic acid-carbonate equilibrium.

Lecture notes

Online-Skript mit durchgerechneten Beispielen.

Literature

Weiterführende Literatur:

Catherine Housecroft, Edwin Constable, CHEMISTRY: AN INTRODUCTION TO ORGANIC, INORGANIC AND PHYSICAL CHEMISTRY, 3. Auflage, Prentice Hall, 2005 (englisch)

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies

- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies

- Adaptability and Flexibility: not assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: assessed

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0251-00L</td>
<td>Mathematics I</td>
<td>O</td>
<td>6 credits</td>
<td>4V+2U</td>
<td>F. Da Lio</td>
</tr>
</tbody>
</table>

Abstract

This course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.

Objective

Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Einfluss von Umweltfaktoren (Temperatur, Strahlung, Wasser, Nährstoffe etc.) auf Organismen; Anpassung an bestimmte

The first semester focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34.

Biology III: Essentials of Ecology

O. Y. Martin, A. Widmer

The understanding of some basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.

General Biology I

C. Schär

The lecture provides a science-based exploration of environmental aspects from three research fields: earth, climate, and health sciences.

Lecture notes

Lecture notes

Lecture notes

Lecture notes

Literature

Prerequisites / notice

Prerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

551-0001-00L

General Biology I

Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny. First in a series of two lectures given over two semesters for students of agricultural and food sciences, as well as of environmental sciences.

Objective

The understanding of some basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.

Content

Week 1-7 by Alex Widmer, Chapters 12-25

Week 8-14 by Oliver Martin, Chapters 26-34

Biology III: Essentials of Ecology

C. Buser Moser

This introductory lecture in ecology covers basic ecological concepts and the most important levels of complexity in ecological research. Ecological concepts are exemplified by using aquatic and terrestrial systems; corresponding methodological approaches are demonstrated.

Objective

The objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research.

Content

- Einfluss von Umweltfaktoren (Temperatur, Strahlung, Wasser, Nährstoffe etc.) auf Organismen; Anpassung an bestimmte Umweltbedingungen
- Populationsdynamik: Ursachen, Beschreibung, Vorhersage und Regulation
- Interaktionen zwischen Arten (Konkurrenz, Koexistenz, Prädation, Parasitismus, Nahrungsnetze)
- Lebensgemeinschaften: Struktur, Stabilität, Sukzession
- Ökosysteme: Kompartimente, Stoff- und Energiefluss
- Biodiversität: Variation, Ursachen, Gefährdung und Erhaltung
- Aktuelle Naturschutzprobleme und -massnahmen
- Evolutionäre Ökologie: Methodik, Spezialisierung, Koexistenz

Literature

Generelle Ökologie:

Aquatische Ökologie:

Lampert & Sommer 1999. Limnökologie. Thieme, 2. Aufl., ca. Fr. 55.-

Bohle 1995. Limnische Systeme. Springer, ca. Fr. 50.-

Naturschutzbiologie:

Environmental Systems I

C. Schär, N. Dubois, G. Velicer

The lecture provides a science-based exploration of environmental aspects from three research fields: earth, climate, and health sciences. The students are able to explain important properties of the three environmental systems, to discuss critical drivers, trends and conflicts of their use, and to compare potential solutions.
The lecture discusses the role of the environmental systems based on selected environmental problems, among these the exploration of raw materials and fossil fuels, climate change and its impacts on man and environment, and the spread and control of infectious diseases in the human population and agricultural systems.

Lecture notes
Slides are provided by instructors and are accessible via moodle.

751-0013-00L World Food System O 4 credits 4V A. K. Gilgen, J. Baumgartner, E. B. Truernit, R. Mezzenga, B. Studer

Abstract
Knowledge about the World Food System will be provided, based on case studies along food value chains in countries with various development stages and dependent on multiple boundary conditions. This shall generate profound understanding of the associated global challenges especially food scarcity, suboptimal diet and nutrition, food quality and safety as well as effects on the environment.

Objective
Attending this course, the students will recognize the elements of the World Food System (WFS) approach and the problems it this supposed to treat. They will especially comprehend the four pillars of global food security, namely (I) food availability (including sustainable production and processing), (II) access to food (physical and monetary), (III) food use (including quality and safety as well as the impact on human health and well being) and (IV) resilience to the boundary conditions (environmental, economic and political). This insight will make them aware of the global driving forces behind our ETH research on food security and is expected to alleviate motivation and understanding for the association of subsequent specific courses within a general context. The course equivalently implements agricultural and food sciences, thus supporting the interdisciplinary view on the WFS scope.

Content
Case studies on certain foods of plant and animal origin serve to demonstrate the entire food value chain from the production of raw material to processed food and its consumer relevant property functions. In doing so, important corresponding aspects for developed, emerging and developing countries are demonstrated, by use of engineering as well as natural and social science approaches.

Lecture notes
Handouts and links are provided online.

Literature
Information on books and other literature references is communicated during the course.

Prerequisites / notice
This course introduces basic economic concepts and theories. Beginning with microeconomics, the course starts with the topics of supply and demand, markets, and behavioral economics before moving on to the key macroeconomic concepts of national accounts, the labor market, trade, and monetary policy.

Objective
After successful completion of the course you will be able to:
- Describe the basic micro- and macroeconomic problems and theories.
- Introduce economic reasoning appropriately to a given topic.
- Evaluate economic measures.

Content
Households, firms, supply and demand: How are household preferences and consumption patterns formed? How does a household react to price changes? How are goods prices formed? At what prices are companies willing to offer goods? How do we make economic decisions?

Markets: What is “perfect competition” and how does a competitive market work? Are monopolies always a bad thing? How can the state influence the market?

Market failure: What happens when prices give wrong signals?

Labour market: How do supply and demand work in the labour market? What influences unemployment?

National accounts: How big is the Swiss economy?

Foreign trade: Why do countries trade with each other? What are the consequences for the domestic market?

Money and inflation: What exactly is money? How does money creation work and what happens when there is too much (or too little) money on the market?

Students will be asked to apply these concepts to issues in their own field of study and to current issues in society. This goal will be achieved through participation in exercises, class discussions and reading material from current media. By the end of the course, students should be able to apply economic analysis confidently and independently.

Lecture notes
no script available

Literature

Prerequisites / notice
Sie brauchen keine Vorkenntnisse, um dem Kurs zu folgen.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>Analytical Competencies</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>Problem-solving</td>
<td>Self-direction and Self-management</td>
</tr>
<tr>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Additional First Year Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-0801-00L</td>
<td>Fundamentals of Microscopy and Plant Biology</td>
<td>O</td>
<td>1 credit</td>
<td>1V+2G</td>
</tr>
</tbody>
</table>

Abstract

Objective
Capability of preparing biological specimen, microscopy and documentation. Understanding the correlation between plant structure and function at the level of organs, tissues and cells. Awareness of the link between plant anatomy, systematics, physiology, ecology, and development.

Lecture notes Handouts

Literature For further reading (not obligatory):
Gerhard Wanner: Mikroskopisch-Botanisches Praktikum, Georg Thieme Verlag, Stuttgart.

Prerequisites / notice Groups of a maximum of 30 students.

529-0030-00L Laboratory Course: Elementary Chemical Techniques O 3 credits 6P A. de Mello, F. Jenny, M. H. Schrott

Abstract This practical course provides an introduction to elementary laboratory techniques. The experiments cover a wide range of techniques, including analytical and synthetic techniques (e.g. investigation of soil and water samples or the preparation of simple compounds). Furthermore, the handling of gaseous substances is practised.

Objective This course is intended to provide an overview of experimental chemical methods. The handling of chemicals and proper laboratory techniques represent the main learning targets. Furthermore, the description and recording of laboratory processes is an essential part of this course.

Content The classification and analysis of natural and artificial compounds is a key subject of this course. It provides an introduction to elementary laboratory techniques, and the experiments cover a wide range of analytic and synthetic tasks:
- Selected samples (e.g. soil and water) will be analysed with various methods, such as titrations, spectroscopy or ion chromatography. The chemistry of aqueous solutions (acid-base equilibria and solvation or precipitation processes) is studied.
- The synthesis of simple inorganic complexes or organic molecules is practised.
- Furthermore, the preparation and handling of environmentally relevant gaseous species like carbon dioxide or nitrogen oxides is a central subject of the Praktikum.

Lecture notes The script will be published on the web. Details will be provided on the first day of the semester.

Literature A thorough study of all script materials is requested before the course starts.

Prerequisites / notice Safety conceptt: https://chab.ethz.ch/studium/bachelor1.html

252-0839-00L Informatics O 2 credits 2G L. E. Fässler, M. Dahinden

Abstract Students learn to apply selected concepts and tools from computer science for working on interdisciplinary projects. The following topics are covered: modeling and simulations, managing data with lists and tables and with relational databases, introduction to programming.

Objective The students learn to
- choose and apply appropriate tools from computer science,
- process and analyze real-world data from their subject of study,
- handle the complexity of real-world data.

Content
1. Modeling and simulations
2. Data management with lists and tables
3. Data management with a relational database
4. Introduction to macro programming
5. Introduction to programming with Python

Lecture notes All materials for the lecture are available at www.evim.ethz.ch

Prerequisites / notice This course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available.

Basic Courses (Second Year)

 Examination Block

Number Title Type ECTS Hours Lecturers
402-0063-00L Physics II O 5 credits 3V+1U A. Vaterlaus

Abstract Introduction to the concepts and tools in Physics, with the help of demonstration experiments. The Chapters treated are Electromagnetism, Refraction and Diffraction of Waves, Elements of Quantum Mechanics with applications to Spectroscopy, Thermodynamics, Phase Transitions, Transport Phenomena. Whenever possible, examples relevant to the students' main field of study are given.

Objective Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve them.

Lecture notes A script will be distributed
Literatur

Friedhelm Kuypers
Physik für Ingenieure und Naturwissenschaftler
Band 2 Elektrizität, Optik, Wellen
Wiley-VCH, 2012
ISBN 3527411445, 9783527411443

Douglas C. Giancoli
Physik
3. erweiterte Auflage
Pearson Studium

Hans J. Paus
Physik in Experimenten und Beispielen
Carl Hanser Verlag, München, 2002, 1068 S.

Paul A. Tipler
Physik
Spektrum Akademischer Verlag, 1998, 1522 S., ca Fr. 120.-

David Halliday, Robert Resnick, Jearl Walker
Physik
Wiley-VCH, 2003, 1388 S., Fr. 87.- (bis 31.12.03)

dazu gratis Online Ressourcen (z.B. Simulationen): www.halliday.de

701-0071-00L Mathematics III: Systems Analysis

Abstract

The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.

Objective

Learning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance.

Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.

Content

https://iac.ethz.ch/edu/courses/bachelor/vorbereitung/systemanalyse.html

Lecture notes

Overhead slides will be made available through the course website.

Literature

401-0624-00L Mathematics IV: Statistics

Abstract

Introduction to basic methods and fundamental concepts of statistics and probability theory for practitioners in natural sciences. The concepts will be illustrated with some real data examples and applied using the statistical software R.

Objective

Capacity to learn from data; good practice when dealing with data and recognizing possible fraud in statistics; basic knowledge about the laws of randomness and stochastic thinking (thinking in probabilities); application of simple methods in inferential statistics (e.g., several hypothesis tests will be introduced), i.a. also using the statistical software R. The lecture will be held in German.

Content

Einführung in die Wahrscheinlichkeitsrechnung (Grundregeln, Zufällige Variable, diskrete und stetige Verteilungen, Ausblick auf Grenzwertsätze). Beschreibende Statistik (einschließlich graphische Methoden), Methoden der Analytischen Statistik: Schätzungen, Tests (einschließlich Binomialtest, t-Test, Vorzeichen test, F-Test, Wilcoxon-Test), Vertrauensintervalle, Vorhersageintervalle, Korrelation, einfache und multiple lineare Regression. Einführung in die statistische Programmiersprache R.

Lecture notes

Auszuführlisches Skript zur Vorlesung ist erhältlich.

Literature

Prerequisites / notice

Die Übungen (ca. die Hälfte der Kontaktstunden; einschließlich Computerübungen) sind ein wichtiger Bestandteil der Lehrveranstaltung.

Voraussetzungen: Mathematik I, II

752-4001-00L Microbiology

Abstract

Teaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.

Objective

Teaching of basic knowledge in microbiology.

Content

Lecture notes

Wird von den jeweiligen Dozenten ausgegeben.

Literature

Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms.

701-0501-00L Pedosphere

Abstract

Introduction to the formation and properties of soils as a function of parent rock, landscape position, climate, and soil organisms. Complex relationships between soil forming processes, physical and chemical soil properties, soil biota, and ecological soil properties are explained and illustrated by numerous examples.

Objective

Understanding of soils as integral parts of ecosystems, development and distribution of soils as a function of environmental factors, and processes leading to soil degradation.

Content

Definition of the pedosphere, soil functions, rocks as parent materials, minerals and weathering, soil organisms, soil organic matter, soil formation, principles of soil classification, global soil regions, physical soil properties and functions, chemical soil properties and functions, soil fertility, land use and soil degradation.

Lecture notes

Polybook

Prerequisites / notice

Prerequisites: Basic knowledge in chemistry, biology and geology.

751-1311-00L Introduction to Agricultural Management

Abstract

Vermittlung von betriebswirtschaftlichen Grundlagenwissen und Analyse- und Planungsinstrumenten mit Anwendung auf Unternehmen der Agrar- und Ernährungswirtschaft.
Objective

Teilnehmer des Kurses sollen am Ende der Vorlesung i) grundlegende Unternehmensentscheide strukturieren und analysieren können, ii) verschiedene Analyse- und Planungsinstrumente auf Fragestellungen der Produktionsplanung, Investition und Finanzierung an Beispielen anwenden zu können, iii) verschiedene Werkzeuge zur unternehmerischen Entscheidungsunterstützung anwenden können und iv) die Spezifika von Unternehmen in der Agrar- und Ernährungswirtschaft kennen.

Content

Die Vorlesung geht auf folgende Inhalte, mit spezifischen Anwendungen im Agrar- und Ernährungssektors ein:

- Grundlagen und Ziele unternehmerischen Entscheids
- Kosten und Leistungsrechnung
- Produktionstheorie
- Produktionsprogrammplanung
- Investitionsplanung und Finanzierung
- Entscheidungen unter Unsicherheit und Risikomanagement

Lecture notes

Vorlesungsunterlagen werden im Laufe des Semesters zur Verfügung gestellt

Literature

752-6003-00L Introduction to Nutritional Science O 2 credits 1.5V M. B. Zimmermann, C. Wolfrum Only for Agricultural Science BSc.

Abstract

This course introduces basic concepts of micro- and macronutrient nutrition. Micronutrients studied include fat-soluble and water-soluble vitamins, minerals and trace elements. Macronutrients include proteins, fat and carbohydrates.

Objective

To introduce the students to the both the macro- and the micronutrients.

Content

The lectures on micronutrients are given by Prof. Zimmermann and the lectures on macronutrients are given by Prof. Wolfrum. Prof. Zimmermann discusses the micronutrients, including fat-soluble vitamins, water-soluble vitamins, minerals and trace elements. Prof. Wolfrum introduces basic nutritional aspects of proteins, fats, carbohydrates and energy metabolism.

Lecture notes

There is no script. Powerpoint presentations will be made available.

Literature

Agricultural Sciences Basic Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-8003-00L</td>
<td>Genetics in Agricultural Sciences</td>
<td>O</td>
<td>2</td>
<td>2G</td>
<td>H. Pausch, B. Studer</td>
</tr>
</tbody>
</table>

Abstract

Important concepts from population, quantitative and molecular genetics are introduced and applied to plant and animal populations.

Objective

After the course, the students will be able to

- work with genetic polymorphisms and explain mechanisms underlying allele frequency changes in natural and experimental populations;
- determine factors affecting the selection intensity
- explain the difference between genotypic and phenotypic values
- quantify the expected genetic gain per time unit
- explain important molecular methods to determine genetic polymorphisms;
- map traits in plant and animal populations using molecular marker information;
- integrate different concepts from population, molecular and quantitative genetics and explain their importance for applications in genetics in agricultural sciences.

Content

Molecular genetics (15%)

- DNA sequence variation
- Marker & genotyping technologies (SSRs, AFLPs, SNPs, KASP, GBS, RADseq, AmpSeq, Chip Technologies)

Population genetics (30%)

- Allele- and genotype frequencies in populations
- Hardy-Weinberg equilibrium
- Genetic drift, differentiation of populations
- Fitness, selection
- Inbreeding, relationship, effective population size

Quantitative genetics (40%)

- Recombination, crossing over, linkage analysis, genetic mapping
- QTL mapping
- Forms of selection and selection differential
- Heritability
- Quantification of expected genetic gain
- genotypic value, allele substitution effect, breeding value

Integrative genetics (15%)

- Genome-wide association mapping
- Estimation of genomic breeding values

Lecture notes

Slides and exercises will be provided in advance of each class via Moodle

Literature

Further reading:

Falconer & Mackay: Introduction to Quantitative Genetics
Lübbertstedt & Varshney: Diagnostics in Plant Breeding

Agricultural Sciences Disciplines

Agricultural Economics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1109-00L</td>
<td>Introduction to Microeconomics</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>M. Wörter, M. Beck</td>
</tr>
</tbody>
</table>

This course is only for students enrolled in a Bachelor’s degree programme.

Students enrolled in a Master’s degree programme may
attend "Principles of Microeconomics" (LE 363-0503-00L) instead.

Note for D-MAVT students: If you have already successfully completed "Principles of Microeconomics" (LE 363-0503-00L), then you will not be permitted to attend it again.

Abstract
The course introduces basic principles, problems and approaches of microeconomics. It describes economic decisions of households and firms, and their coordination through perfectly competitive markets.

Objective
Students acquire a deeper understanding of basic microeconomic models.

They acquire the ability to apply these models in the interpretation of real world economic contexts.

Students acquire a reflective and contextual knowledge on how societies use scarce resources to produce goods and services and distribute them among themselves.

Content
Market, budget constraint, preferences, utility function, utility maximisation, demand, technology, profit function, cost minimisation, cost functions, perfect competition, information and communication technologies

Lecture notes
Course material in e-learning environment https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php

Literature

Prerequisites / notice
This course "Einführung in die Mikroökonomie" (363-1109-00L) is intended for Bachelor students and LE 363-0503-00 "Principles of Microeconomics" for Master students.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making assessed
Media and Digital Technologies not assessed
Problem-solving not assessed
Project Management not assessed

Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking not assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

751-0903-00L Microeconomics of the Agriculture and Food Sector W+ 3 credits 2V S. Wimmer

Abstract
In dieser Vorlesung sollen Mikroökonomische Zusammenhänge am Fallbeispiel des Agrar- und Ernährungssektors vermittelt werden. Ziel ist das Verständnis theoretischer mikroökonomischer Methoden und deren Anwendbarkeit auf den Ernährungssektor

Objective
Zunächst sollen ökonomische Charakteristika des Lebensmittelsektors herausgearbeitet und gegenüber anderen Industriesektoren differenziert werden. Daraufhin sollen theoretische mikroökonomische Modelle und Indikatoren erlernt werden. Insbesondere soll deren Anwendung auf reale Fälle der Schweizer und EU Lebensmittelindustrie vermittelt werden.

Content
- Der EU Lebensmittelsektor
- Preiselastizitäten von Angebot und Nachfrage im Ernährungssektor
- (Marktmacht, Lancaster Modell)
- Gewinnmaximierung
- Wettbewerbsangebot
- Monopol / Monopolistischer Wettbewerb / Monopson
- Oligopol / Stackelberg, Cournot, Bertrand
- Preisbildung / Preisdiskriminierung
- Kartelle
- Dominante Firma

Literature

Prerequisites / notice
- Grundkenntnisse der Ökonomie/Agrarökonomie
- Vorlesung Einführung in die Mikroökonomie

751-0401-00L Optimization of Agricultural Production Systems W+ 3 credits 2G R. Huber

Abstract
Introduction in to optimization of agricultural production systems with linear and non-linear programming models.

Objective
Students will be able to a) solve linear and non-linear optimization problems in the context of agricultural production; b) properly interpret the results; and c) critically discuss the economic implications.

Content
The course is an application of Operations Research (OR). First, the theory and application of linear programming (LP) is presented. Students will learn the underlying principles (Optimization, Duality, Simplex) and solve exercises in the context of agricultural production. In the second part of the course, the foundation of non-linear programming (NLP) is introduced (Lagrange, Kuhn-Tucker) and illustrated with various examples.

Literature

363-0537-00L Resource and Environmental Economics W+ 3 credits 2G L. Bretschger

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 7 of 2152
Abstract
Relationship between economy and environment, market failures, external effects and public goods, contingent valuation, internalisation of externalities, economics of non-renewable resources, economics of renewable resources, environmental cost-benefit analysis, sustainability economics, and international resource and environmental problems.

Objective
A successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and environmental economics and the ability to solve typical problems using appropriate tools consisting of concise verbal explanations, diagrams or mathematical expressions. Concrete goals are first of all the acquisition of knowledge about the main questions of resource and environmental economics and about the foundation of the theory with different normative concepts in terms of efficiency and fairness. Secondly, students should be able to deal with environmental externalities and internalisation through appropriate policies or private negotiations, including knowledge of the available policy instruments and their relative strengths and weaknesses. Thirdly, the course will allow for in-depth economic analyses of renewable and non-renewable resources, including the role of stock constraints, regeneration functions, market power, property rights and the impact of technology. A fourth objective is to successfully use the well-known tool of cost-benefit analysis for environmental policy problems, which requires knowledge of the benefits of an improved natural environment. The last two objectives of the course are the acquisition of sufficient knowledge about the economics of sustainability and the application of environmental economic theory and policy at international level, e.g. the problem of climate change.

Content
The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overdue of non-accessible resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

Literature

752-2120-00L Consumer Behaviour I

Objective
Introduction in consumer research. The following aspects will be emphasized in the course: Consumer decision making, individual determinants of consumer behavior, environmental influences on consumer behavior, influencing consumer behavior.

Abstract
The general theme of this course is the effect of environmental factors (such as light, temperature, relative humidity, CO2 concentrations, etc.) on plant physiology: water uptake and transport, transpiration, CO2 gas exchange of plants (photosynthesis, respiration), growth and C allocation, yield and production, stress physiology. Lab and field measurements are included.

Objective
The students will understand the impact of environmental factors on plant physiology and will learn the theoretical basis and terminology of plant ecophysiology that is necessary to analyze yield potentials in agriculture. The students will learn about classical and latest studies in plant ecophysiology and will have hands-on experiences with equipment used in plant ecophysiology.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 8 of 2152

Lecture notes
Handouts stehen online.

Literature

Prerequisites / notice
Dieser Kurs basiert auf Grundlagen der Pflanzenbestimmung und der Pflanzenphysiologie. Er ist Basis für die Veranstaltungen Pflanzenbau, Teil Futterbau und Graslandsysteme.

751-3401-00L Plant Nutrition I
O 2 credits 2V E. Frossard

Abstract
The aim of these lecture is to present the processes controlling the uptake and transport of nutrients by the plant, the assimilation of nutrients in the plant, the effect of nutrients on crop yield and quality, the role of the soil as a source of nutrients for crops, and the basic principles of fertilization of different crop types using mineral and organic fertilizers.

Objective
At the end of the lecture, students know how mineral nutrients are taken up through roots and circulate in the plants and what their roles in plants are. They understand the importance of nutrients for yield formation and for crop product quality. They are able to propose fertilization plans adapted for field crops growing under Swiss conditions.

Content
A general introduction explains the appropriately managing nutrients in plant production. Afterwards, we will study the physiology of plant nutrition (nutrient uptake by roots; nutrient transports in the plant; physiological roles of nutrients in the plant). Then the role of nutrients for yield formation and their effects on crop quality is dealt with. Finally, the bases of crop fertilization are taught (availability of nutrient in soil; N, P and K fertilization; different types of fertilizers).

Lecture notes
The slides will be distributed online.

Literature
Schubert S 2006 Pflanzenernährung Grundwissen Bachelor Ulmer UTB
Bergmann, W. 1988, Ernährungsstörungen bei Kulturpflanzen.
http://www.tll.de/visuplant/vp_idx.htm

751-4108-00L Innovation in Smart Farming
W+ 3 credits 2G A. Walter

Abstract
A motivation letter must be submitted after the first lecture Monday 27.9. (maximum 100 words) until 29.9. to Achim Walter (Achim.Walter@usys.ethz.ch). A confirmation of the definitive participation in the course will be communicated on 1.10. The definitive registration for the course will be undertaken by the study secretariat.

Objective
During the course, the students generate their own ideas on 'Smart Farming'. They explore, which technologies provide possibilities for a more sustainable agriculture. They evaluate trade-offs between economic and technological possibilities.

Content

751-4504-00L Plant Pathology I
W+ 2 credits 2G B. McDonald

Abstract
Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems.

Objective
Students will understand: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems as a basis for implementing disease management strategies in agroecosystems.
Course description: Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. Topics under the first theme will include pathogen life cycles, disease cycles, and an overview of plant pathogenic nematodes, viruses, bacteria, and fungi. Topics under the second theme will include plant defense strategies, host range, passive and active defenses, and chemical and structural defenses. Topics under the third theme will include the disease triangle and cultural control strategies.

Lecture Topics and Tentative Schedule

Week 1 The nature of plant diseases, symbiosis, parasites, mutualism, biotrophs and necrotrrophs, disease cycles and pathogen life cycles.

Week 2 Nematode attack strategies and types of damage. Viral pathogens, classification, reproduction and transmission, attack strategies and types of damage. Examples TMV, BYDV. Bacterial pathogens and phytoplasmas, classification, reproduction and transmission.

Week 3 Bacterial attack strategies and symptoms. Example bacterial diseases: fire blight, Agrobacterium crown gall, soft rots. Fungal and oomycete pathogens, classification, growth and reproduction, sexual and asexual spores, transmission.

Week 4 Fungal and oomycete life cycles, disease cycles, infection processes, colonization, phytopoxins and mycotoxins. Attack strategies of fungal necrotrrophs and biotrophs. Symptoms and signs of fungal infection. Example fungal diseases: potato late blight.

Week 5 Example fungal diseases: wheat stem rust, grape powdery mildew, wheat septoria tritici blotch. Plant defense mechanisms, host range and non-host resistance. Passive structural and chemical defenses, preformed chemical defenses. Active structural defense, histological and cellular (papillae).

Week 6 Active chemical defense, hypersensitive response, pathogenesis-related (PR) proteins, phytoalexins and disease resistance. Pisatin and pisatin demethylase. Local and systemic acquired resistance (LAR, SAR), induced systemic resistance (ISR), signal molecules, defense activators (Bion). Pathogen effects on food quality. Positive and negative transformations.

Week 8 Epidemiology: Disease pyramid, environmental effects on epidemic development, plant effects on development of epidemics, including resistance, physiology, density, uniformity.

Week 9 Disease assessment: incidence and severity measures, keys, diagrams, scales, measurement errors. Correlations between incidence and severity. Molecular detection and diagnosis of pathogens. Host indexing, serology, monoclonal and polyclonal antibodies, ELISA.

Week 10 Molecular detection and diagnosis of pathogens: PCR, rDNA and loop-mediated isothermal amplification. Strategies for minimizing disease risks: calculating disease thresholds, disease forecasting systems.

Week 12 Physical control methods. Cultural control methods: avoidance, tillage practices, crop sanitation.

Week 13 Cultural control methods: fertilizers, crop rotations.

Week 14 Open lecture.

Lecture notes
Detailed lecture notes (~160 pages) will be available for purchase at the cost of reproduction at the start of the semester.

751-4801-00L System-Oriented Management of Herbivore Insects W+ 2 credits 2G to be announced

Abstract
Does not take place this semester.

Objective
The focus is on the potential to assess strategies and tactics of pest management, in view of the demands from the economy, environment and society. Significant management measures will be explained using practical examples, such as surveillance and forecasting, resistance management, biological control as well as the use of plant protection products, incl. regulatory aspects and ecotoxicology.

751-5003-00L Sustainable Agroecosystems II W+ 2 credits 2V K. Benabderrazik, M. Hartmann

Abstract
This class conveys current topics and methods of agroecological and food systems research through selected case studies from ongoing research of the Sustainable Agroecosystems group. Students will be encouraged to develop critical thinking competencies, through individual and group work, on major agricultural and food system challenges and paths towards agricultural and food system transformation

Objective
(1) Systematically analyse and discuss case studies from ongoing agroecological and food system research.
(2) Learn and experiment on methods for field and laboratory investigations in agroecology.
(3) Engage with positive and empowering frameworks that motivate critical reflection and action on the types of transformative responses needed to adapt and thrive within agricultural and food systems.
(4) Reflect critically on agricultural and food system transformation tools and methods from the perspective a food system stakeholder.
(5) Identify and describe institutions in the context of sustainable agricultural development (for Bachelor and Master theses and internships).

Content
The course will address a wide range of agricultural and food system challenges (e.g. food security, climate change, soil degradation, etc.) in both temperate and tropical contexts, from building food system resilience through innovative measures, to addressing soil fertility and GHG emissions. A wide variety of case studies will be presented, covering different scales (e.g. value-chains, farm and soil management). The class is complemented by a role-playing exercise on food system transformation. Students will gain an overview on institutions and actors’ roles in the field of sustainable agricultural development. Throughout the exercise, students will learn to cooperate through a teamwork exercise and understand what is the role of each stakeholders in the food system in order to support a sustainable transformation.

Literature

Prerequisites / notice
Prior participation in the lecture Nachhaltige Agrarökosysteme I (Sustainable Agroecosystems I) 751-5000-00G (spring term) recommended.
The importance and specificities of the different horticultural crops are shown in this course in the autumn semester. It deals with fruit growing (8 h), berry production (4 h), vegetables (6 h) and viticulture (6 h).

Objective
Insight into the topic of horticulture in general.

Content
The importance and specificities of the different horticultural crops are shown in this course in the autumn semester. It deals with fruit growing (8 h), berry production (4 h), vegetable growing (6 h) and viticulture (6 h).

Language and script: German or French, maybe selected parts in English.

Prerequisites / notice
Not needed, maybe specific literature is specified by the different teachers.

On the Moodle-page you can find some pre-readings for the course.

Lecturers
C. Carlen, A. Bühmann, A. Guyer, A. Nät, T. Verdenal

751-5005-00L
Agroecology and the Transition to Sustainable Food Systems

Abstract
The aim of this lecture series is to offer students and the interested public a deeper insight into the fundamentals of agroecology and its potential role in transforming food systems. For more information on the public lecture part of this course, please visit: https://worldfoodsystem.ethz.ch/outreach-and-events/past-events/agroecology-lectures-2021.html

Objective
Students know the elements of agroecology and are able to critically reflect on the important properties as well as benefits and trade-offs of agroecological systems and approaches.

Content
Organization of the lecture:
The lecture series will take place in the fall semester of ETH Zurich, starting in the week of September 20, 2021 and lasting until December 17, 2021. During this period, the lecture will take place once a week, on Tuesdays from 18:00-20:00 (CEST/CET).

Student’s lecture part (exchange with course instructors online via zoom):
The student’s lecture (19:15-20:00h CEST/CET) will take place online via a normal Zoom call: https://ethz.zoom.us/j/61315399346.

For further details, please refer to the Moodle-page of this course: https://moodle-app2.let.ethz.ch/course/view.php?id=15210

Lecture notes
On the Moodle-page you can find some pre-readings for the course.

Literature

The course is designed as a public lecture on “Agroecology in the transition to sustainable food systems” to allow for different perspectives to be represented, heard and discussed.

Animal Sciences

Number
Title
Type
ECTS
Hours
Lecturers

751-6101-00L
Anatomy and Physiology of Man and Animals I
O
2 credits
2V
S. E. Ulbrich, T. Fleischmann, J. Müller

Abstract
Imparts a basic understanding of physiology as anatomy in man and domestic animals, focusing on the interrelations between morphology and function of the organism, in particular of domestic animals. This is fostered by discussing all subjects from a functional point of view.

Objective
The overall goal of this course is to enable students to understand basic functions of the vertebrate organism and to comprehend pathophysiological coherences.

Lecture notes
Unterlagen werden individuell von den Dozierenden abgegeben.

Literature
Empfohlene Lehrbücher werden zu Beginn der Lehrveranstaltung bekannt gegeben.

Prerequisites / notice
Diese Vorlesung ist Teil der BSc Agrarwissenschaften (3. Semester)

751-7501-00L
Animal Housing and Behaviour
O
1 credit
1V
J. Müller, S. Guomon

Abstract
The overall goal of this course is to provide general knowledge about the behaviour, housing and welfare of domestic animals. Students will:
- Understand the basis of animal behaviour and how it is measured
- Acquire knowledge of housing systems and management of domestic animals
- Get a concept of animal needs and welfare
CONTENTS

BEHAVIOR
- Fundamentals of animal behavior: mechanisms, development, function and evolution
- Overview of the natural behavioural repertoire of various livestock species and the resulting needs
- Insights in behavioural studies

ANIMAL HUSBANDRY
- Fundamentals of animal husbandry
- Insight in animal transportation and slaughter

BEHAVIOR vs. ANIMAL HUSBANDRY
- Adapt the husbandry practices to livestock-specific needs
- Recurrent problems in livestock management
- Concept of animal welfare

CONTENT

The knowledge of the nutrition of ruminants and of the feeds used is deepened. Particular emphasis is put on the variety of home-grown feeds, their production and conservation and their application in the nutrition of dairy cows, cattle and small ruminants. Finally, information on specific problems of animal nutrition is communicated.

Objective

The students are able, based on the knowledge they obtain in this course, to deal with problems in the nutrition of ruminants, pigs and poultry on farm.

Content

- Programmteil Wiederkäuer: Einführung in die Winterfütterungsplanung für Milchkuhle, Betriebsbesuch (Erfassung aller notwendigen Daten inkl. Futterprobenentnahme für eine konkrete Planung auf einem Praxistrieb), Besonderheiten der Milchviehfütterung (Laktationsverlauf, Jahreszeit, etc.), Einführung in den LBL-Fütterungsplan, Möglichkeiten der Futterbeurteilung und -bewertung mit praktischer Beurteilung der gesammelten Proben, Berechnungen und Besprechung Fütterungsplan, Aufstellung der Mineralstoffbilanz, Vorführung von PC-Software zur Fütterungsplanung Vorstellen und diskutieren des Fütterungsplanes auf dem Praxistrieb durch die Gruppe.
- Programmteil Nicht-Wiederkäuer: Der Energie- und spezifische Nährstoffbedarf beim Schwein und Geflügel; Besonderheiten der Fütterung in den verschiedenen Produktionsphasen; Fütterungsempfehlungen und -hinweise. Rationengestaltung und Rezeptoptimierung für Mischfuttermittel anhand verschiedener Beispiele; Einsatzgrenzen von Futtermittel; technologische Futterbearbeitung.

Lecture notes

Handouts in German language will be provided by each lecturer when starting his part of the lecture.

Specific literature recommendations will be provided by the lecturers as appropriate.

This lecture is part of the Agricultural Sciences Bachelor (3rd Semester)

751-7101-00L Applied Animal Nutrition W+ 2 credits 2G

S. Müller, G. Bee, M. A. Boessinger, F. Leiber, F. Sutter

Abstract

The basics of planning of feeding and formulation of diets incl. the implications on nutrient cycles and balances are taught. In the part dealing with ruminants, forage-based diets and the application of feed formulation programs are central and exercised on-farm. With pigs and poultry, the basics of energy and nutrient requirements are deepened through practical examples.

Objective

The students are able, based on the knowledge they obtain in this course, to deal with problems in the nutrition of ruminants, pigs and poultry on farm.

Content

- Programmteil Wiederkäuer: Einführung in die Winterfütterungsplanung für Milchkuhle, Betriebsbesuch (Erfassung aller notwendigen Daten inkl. Futterprobenentnahme für eine konkrete Planung auf einem Praxistrieb), Besonderheiten der Milchviehfütterung (Laktationsverlauf, Jahreszeit, etc.), Einführung in den LBL-Fütterungsplan, Möglichkeiten der Futterbeurteilung und -bewertung mit praktischer Beurteilung der gesammelten Proben, Berechnungen und Besprechung Fütterungsplan, Aufstellung der Mineralstoffbilanz, Vorführung von PC-Software zur Fütterungsplanung Vorstellen und diskutieren des Fütterungsplanes auf dem Praxistrieb durch die Gruppe.
- Programmteil Nicht-Wiederkäuer: Der Energie- und spezifische Nährstoffbedarf beim Schwein und Geflügel; Besonderheiten der Fütterung in den verschiedenen Produktionsphasen; Fütterungsempfehlungen und -hinweise. Rationengestaltung und Rezeptoptimierung für Mischfuttermittel anhand verschiedener Beispiele; Einsatzgrenzen von Futtermittel; technologische Futterbearbeitung.

Lecture notes

Handouts in German language will be provided by each lecturer when starting his part of the lecture.

Eine Literaturliste ist im Skript enthalten.

This lecture is part of the Agricultural Sciences Bachelor (3rd Semester)

751-7103-00L Animal Feed and Feeding of Ruminants W+ 2 credits 2V

M. A. Boessinger

Abstract

The knowledge of the nutrition of ruminants and of the feeds used is deepened. Particular emphasis is put on the variety of home-grown feeds, their production and conservation and their application in the nutrition of dairy cows, cattle and small ruminants. Finally, information on specific problems of animal nutrition is communicated.

Objective

Purchase basic skills in agricultural livestock nutrition.

Content

Lecture notes

Script is available in German language and will be provided by each lecturer when starting his part the lecture.

Eine Literaturliste ist im Skript enthalten.

This lecture is part of the Agricultural Sciences Bachelor (3rd Semester)

751-6121-00L Regulatory Physiology W+ 2 credits 2V

S. E. Ulbrich, J. Müller, M. Saenz de Juan lobes Ribes

Abstract

Zusammen mit nervaler Kontrolle, spielen Hormone und Zytokin als Signalmediatoren eine besondere Rolle bei der Regulation der Homöostase von Körperfunktionen (Flüssigkeits-, Temperatur-, Energie-Homöostase). Insbesondere im Zusammenhang mit pathologischen Konstellationen (Fieber, Stress, metabolische Imbalance, Schmerzen) wird diese komplexe Funktion verständlich.

Objective

Content

Thermoregulation (Fieber)
- Flüssigkeitshomöostase (Durchfall)
- Calciumregulation (Milchfieber)
- Energiehomöostase (Ketose)
- Schmerz (zootechnische Eingriffe)
- Stress (allostatische Last, Epigenetik)

Lecture notes

Unterlagen werden individuell von den Dozierenden abgegeben.

Spezifische Literatur wird individuell von den Dozierenden angegeben.

Diese Vorlesung ist Teil der BSc Agrarwissenschaften (5. Semester)

751-5005-00L Agroecology and the Transition to Sustainable Food Systems W 2 credits 2G

M. Sonnevelt, M. Grant, S. E. Ulbrich, B. Wehrli

Abstract

The aim of this lecture series is to offer students and the interested public a deeper insight into the fundamentals of agroecology and its potential role in transforming food systems. For more information on the public lecture part of this course, please visit: https://worldfoodsystem.ethz.ch/outreach-and-events/past-events/agroecology-lectures-2021.html
Students know the elements of agroecology and are able to critically reflect on the important properties as well as benefits and trade-offs of agroecological systems and approaches. Students are able to understand and explain how the 10 elements could be implemented as guiding principles for policymakers, practitioners and other stakeholders across the food system in planning, managing and evaluating agroecological transitions.

This course enables students and an interested public to engage in a lively and critical debate and to learn about scientific contributions to agroecology. Based on the knowledge gained, students are able to form a personal opinion on the role of agroecology and to reflect on the different facets and real-world applications supporting a transition towards sustainable food systems.

Organization of the lecture:
The lecture series will take place in the fall semester of ETH Zurich, starting in the week of September 20, 2021 and lasting until December 17, 2021. During this period, the lecture will take place once a week, on Tuesdays from 18:00-20:00 (CEST/CET). Each lecture will be organized in an online format and will be set up in two parts consisting of a public and a student lecture: At the end of the lecture series, the course will be evaluated with the students.

Public lecture part (virtually via Zoom webinar):
The public lecture (18:00-19:00 CEST/CET) will take place virtually via this Zoom webinar: https://ethz.zoom.us/j/64352765873.

While most public lectures will take one hour, the last public lecture on “Agroecology, The Way Forward”, on Tuesday, 7th December 2021, will last 90 minutes.

Student’s lecture part (exchange with course instructors online via zoom):
The student’s lecture (19:15-20:00h CEST/CET) will take place online via a normal Zoom call: https://ethz.zoom.us/j/61315399346.

For further details, please refer to the Moodle-page of this course: https://moodle-app2.let.ethz.ch/course/view.php?id=15210

Lecture notes
On the Moodle-page you can find some pre-readings for the course.

Prerequisites / notice
The course is designed as a public lecture on “Agroecology in the transition to sustainable food systems” to allow for different perspectives to be represented, heard and discussed.

Methods

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-0441-00L</td>
<td>Scientific Analysis and Presentation of Data</td>
<td>O</td>
<td>2 credits</td>
<td>2G</td>
<td>W. Eugster</td>
</tr>
<tr>
<td>751-1010-00L</td>
<td>Introduction to Scientific Methods Part II: Scientific Writing</td>
<td>Only for Agricultural Sciences BSc.</td>
<td>2 credits</td>
<td>4G</td>
<td>R. Kölliker, J. Anderegg, A. Feurtey, A. K. Gilgen, M. Laub, A. Oberson Dräger, B. Studer, F. Tamburi, D. J. Wüpper</td>
</tr>
<tr>
<td>751-0206-00L</td>
<td>Applied Laboratory Techniques in Agricultural Sciences</td>
<td>The course is compulsory for students in 5th semester BSc Agricultural Sciences.</td>
<td>4 credits</td>
<td>4P</td>
<td>G. BrogGINI, M. Gharun, M. Hartmann, S. Neuenschwander, L. P. Schönholzer, B. Studer, S. Yates</td>
</tr>
</tbody>
</table>

Content

Tentative Programme:
- Introduction
- Introduction to 'R'
- Data import and graphical presentation
- Preparation of own data from field course with Prof. E. Frossard / from 4th semester
- Correct and problematic graphical data displays
- Statistical distribution and confidence intervals
- Statistical tests - Repetition and hands-on applications
- Correlation analysis
- Linear regressions
- Analysis of Variance
- Discussion of ANOVA results with Prof. E. Frossard

Last week of semester: examination (Leistungskontrolle)

Abstract

Students will get an introduction to the scientific work with data covering all steps from data import from Excel via statistical analyses to producing correct scientific graphical output. Exercises with the software R/RStudio will provide hands-on opportunities to get acquainted with data analysis and presentation in adequate graphs. Field data gathered with Prof. E. Frossard will be used.

This lecture with exercises gives an introduction to the scientific work with data, starting with data acquisition and ending with statistical analyses as they are often required for a bachelor thesis (descriptive statistics, linear regression, simple analyses of variance etc.). Using open-source R/RStudio software will be the primary focus via a hands-on approach. An important aspect will be to learn which graphical representation of data are best suited for the task (how can data be presented clearly and still scientifically correct?)

Student’s lecture part (exchange with course instructors online via zoom):

The course is designed as a public lecture on “Agroecology in the transition to sustainable food systems” to allow for different perspectives to be represented, heard and discussed.

Methods

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-0441-00L</td>
<td>Scientific Analysis and Presentation of Data</td>
<td>O</td>
<td>2 credits</td>
<td>2G</td>
<td>W. Eugster</td>
</tr>
<tr>
<td>751-1010-00L</td>
<td>Introduction to Scientific Methods Part II: Scientific Writing</td>
<td>Only for Agricultural Sciences BSc.</td>
<td>2 credits</td>
<td>4G</td>
<td>R. Kölliker, J. Anderegg, A. Feurtey, A. K. Gilgen, M. Laub, A. Oberson Dräger, B. Studer, F. Tamburi, D. J. Wüpper</td>
</tr>
<tr>
<td>751-0206-00L</td>
<td>Applied Laboratory Techniques in Agricultural Sciences</td>
<td>The course is compulsory for students in 5th semester BSc Agricultural Sciences.</td>
<td>4 credits</td>
<td>4P</td>
<td>G. BrogGINI, M. Gharun, M. Hartmann, S. Neuenschwander, L. P. Schönholzer, B. Studer, S. Yates</td>
</tr>
</tbody>
</table>

Prerequisites / notice
- Grundkenntnisse der Ökonomie/Agrarökonomie
- Vorlesung Einführung in die Mikroökonomie

Lecture notes
Wird einsprechend den Kursinhalten abgegeben.

Literature

Electives
The electives are recommended.

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
751-0903-00L | Microeconomics of the Agriculture and Food Sector | W | 3 credits | 2V | S. Wimmer
751-0401-00L | Optimization of Agricultural Production Systems | W | 3 credits | 2G | R. Huber
363-0537-00L | Resource and Environmental Economics | W | 3 credits | 2G | L. Bretschger

Objective
- Aneignung von guter Laborpraxis (Sicherheit, Effizienz, Qualität und Dokumentation)
- Erlernen der wichtigsten Labor- und Feldmethoden in den Agrarwissenschaften sowie deren korrekte und sichere Anwendung
- Vertieftes Verständnis von molekularen, physiologischen und biochemischen Prozessen in aktuellen agrarwissenschaftlichen Themenbereichen
- Aneignung von Kompetenzen für zukünftige Bachelor-, Master- und Doktorarbeiten
- Kritische Beurteilung der angewandten Methoden für verantwortungsvolle Forschung

Content
Molekularbiologisches Laborpraktikum: DNA Extraktion, DNA Quantifizierung, PCR, Molekulare Marker, Gelelektrophorese, DNA Sequenzierung, Bioinformatik, qPCR

Angewandtes Methodentraining: Inhalte definiert durch die jeweiligen Arbeitsgruppen

Domain A - Subject-specific Competencies
- Gewinnmaximierung
- Wettbewerbsangebot
- Monopol/ Monopolistischer Wettbewerb/ Monopson
- Oligopol (Stackelberg, Cournot, Bertrand)
- Preisbildung/ Preisdiskriminierung
- Kartelle
- Dominante Firma

Domain B - Method-specific Competencies
- Krankheitserkennung
- Sequenzierung, Bioinformatik, qPCR

Literature
Content
The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimisation, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

Literature

752-2120-00L Consumer Behaviour I W 2 credits 2V M. Siegrist, A. Bearth, A. Berthold
Abstract
Introduction in consumer research. The following aspects will be emphasized in the course: Consumer decision making, individual determinants of consumer behavior, environmental influences on consumer behavior, influencing consumer behavior
Objective
Introduction in consumer research. The following aspects will be emphasized in the course: Consumer decision making, individual determinants of consumer behavior, environmental influences on consumer behavior, influencing consumer behavior

751-4108-00L Innovation in Smart Farming W 3 credits 2G A. Walter
Abstract
A motivation letter must be submitted after the first lecture Monday 27.9. (maximum 100 words) until 29.9. to Achim Walter (Achim.Walter@usys.ethz.ch). A confirmation of the definitive participation in the course will be communicated on 1.10. The definitive registration for the course will be undertaken by the study secretariat.
Objective
Agriculture needs to become more sustainable via innovative approaches. This course allows students to explore in group work, how this could be realized. There are short impulse talks on 'Smart Farming' given by experts on technology and entrepreneurship. Most importantly, students elaborate the first steps to create a startup company in this field.
Content

751-4504-00L Plant Pathology I W 2 credits 2G B. McDonald
Abstract
Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems.
Objective
Students will understand: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems as a basis for implementing disease management strategies in agroecosystems.
Content
Course description: Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. Topics under the first theme will include pathogen life cycles, disease cycles, and an overview of plant pathogenic nematodes, viruses, bacteria, and fungi. Topics under the second theme will include plant defense strategies, host range, passive and active defenses, and chemical and structural defenses. Topics under the third theme will include the disease triangle and cultural control strategies.

Lecture Topics and Tentative Schedule

Week 1 The nature of plant diseases, symbiosis, parasites, mutualism, biotrophs and necrotrophs, disease cycles and pathogen life cycles.

Week 2 Nematode attack strategies and types of damage. Viral pathogens, classification, reproduction and transmission, attack strategies and types of damage. Examples TMV, BYDV. Bacterial pathogens and phytoplasmas, classification, reproduction and transmission.

Week 3 Bacterial attack strategies and symptoms. Example bacterial diseases: fire blight, Agrobacterium crown gall, soft rots. Fungal and oomycete pathogens, classification, growth and reproduction, sexual and asexual spores, transmission.

Week 4 Fungal and oomycete life cycles, disease cycles, infection processes, colonization, phytotoxins and mycotoxins. Attack strategies of fungal necrotrophs and biotrophs. Symptoms and signs of fungal infection. Example fungal diseases: potato leaf blight.

Week 5 Example fungal diseases: wheat stem rust, grape powdery mildew, wheat septoria tritici blotch. Plant defense mechanisms, host range and non-host resistance. Passive structural and chemical defenses, preformed chemical defenses. Active structural defense, histological and cellular (papillae).

Week 6 Active chemical defense, hypersensitive response, pathogenesis-related (PR) proteins, phytoalexins and disease resistance. Pisatin and pisatin dimethylxil. Local and systemic acquired resistance (LAR, SAR), induced systemic resistance (ISR), signal molecules, defense activators (Bion). Pathogen effects on food quality. Positive and negative transformations.

Week 8 Epidemiology: Disease pyramid, environmental effects on epidemic development, plant effects on development of epidemics, including resistance, physiology, density, uniformity.

Week 9 Disease assessment: incidence and severity measures, keys, diagrams, scales, measurement errors. Correlations between incidence and severity. Molecular detection and diagnosis of pathogens. Host indexing, serology, monoclonal and polyclonal antibodies, ELISA.

Week 10 Molecular detection and diagnosis of pathogens: PCR, rDNA and loop-mediated isothermal amplification. Strategies for minimizing disease risks: calculating disease thresholds, disease forecasting systems.

Week 12 Physical control methods. Cultural control methods: avoidance, tillage practices, crop sanitation.

Week 13 Cultural control methods: fertilizers, crop rotations.

Week 14 Open lecture.

Lecture notes
Detailed lecture notes (~160 pages) will be available for purchase at the cost of reproduction at the start of the semester.

751-4801-00L System-Oriented Management of Herbivore Insects W 2 credits 2G to be announced

Abstract
Does not take place this semester.

Objective
The focus is on the potential to assess strategies and tactics of pest management, in view of the demands from the economy, environment and society. Significant management measures will be explained using practical examples, such as surveillance and forecasting, resistance management, biological control as well as the use of plant protection products, incl. regulatory aspects and ecotoxicology.

751-5003-00L Sustainable Agroecosystems II W 2 credits 2V K. Benabderrazik, M. Hartmann

Abstract
This class conveys current topics and methods of agroecological and food systems research through selected case studies from ongoing research of the Sustainable Agroecosystems group. Students will be encouraged to develop critical thinking competencies, through individual and group work, on major agricultural and food system challenges and paths towards agricultural and food system transformation.

Objective
(1) Systematically analyse and discuss case studies from ongoing agroecological and food system research.
(2) Learn and experiment on methods for field and laboratory investigations in agroecology.
(3) Engage with positive and empowering frameworks that motivate critical reflection and action on the types of transformative responses needed to adapt and thrive within agricultural and food systems.
(4) Reflect critically on agricultural and food system transformation tools and methods from the perspective a food system stakeholder.
(5) Identify and describe institutions in the context of sustainable agricultural development (for Bachelor and Master thesis and internships).

Content
The course will address a wide range of agricultural and food system challenges (e.g. food security, climate change, soil degradation, etc.) in both temperate and tropical contexts, from building food system resilience through innovative measures, to addressing soil fertility and GHG emissions. A wide variety of case studies will be presented, covering different scales (e.g. value-chains, farm and soil management). The class is complemented by a role-playing exercise on food system transformation. Students will gain an overview on institutions and actors' roles in the field of sustainable agricultural development. Throughout the exercise, students will learn to cooperate through a teamwork exercise and understand what is the role of each stakeholder in the food system in order to support a sustainable transformation.

Literature

Prerequisites / notice
Prior participation in the lecture Nachhaltige Agrarökosysteme I (Sustainable Agroecosystems I) 751-5000-00G (spring term) recommended.
Domain A - Subject-specific Competencies
- Concepts and Theories
- Taught assessed

Domain B - Method-specific Competencies
- Analytical Competencies
- Taught assessed

Domain C - Social Competencies
- Cooperation and Teamwork
- Taught assessed

Domain D - Personal Competencies
- Critical Thinking
- Taught assessed

Cooperation and Teamwork
- Self-awareness and Self-reflection
- Taught assessed

751-7101-00L Applied Animal Nutrition

Objective
The students are able, based on the knowledge they obtain in this course, to deal with problems in the nutrition of ruminants, pigs and poultry on farm.

Content
- Programmtitel Wiederkäuer: Einführung in die Winterfütterungsplanung für Milchkühe, Betriebsbesuch (Erfassung aller notwendigen Daten inkl. Futterprobenentnahme für eine konkrete Planung auf einem Praxisbetrieb), Besonderheiten der Milchviehfütterung (Laktationsverlauf, Jahreszeit, etc.); Einführung in den LBL-Fütterungsplan, Möglichkeiten der Futterbeurteilung und -bewertung mit praktischer Beurteilung der gesammelten Proben, Berechnungen und Besprechung Fütterungsplan, Aufstellung der Mineralstoffbilanz, Vorführung von PC-Software zur Fütterungsplanung Vorstellen und diskutieren des Fütterungplanes auf dem Praxisbetrieb durch die Gruppe.

- Programmtitel Nicht-Wiederkäuer: Der Energie- und spezifische Nährstoffbedarf beim Schwein und Geflügel; Besonderheiten der Fütterung in den verschiedenen Produktionsphasen; Fütterungsempfehlungen und -hinweise. Rationengestaltung und Rezeptoptimierung für Mischfutter mit anhand verschiedener Beispiele; Einsatzgrenzen von Futtermitteln; technologische Futterbearbeitung.

Handouts in German language will be provided by each lecturer when starting his part of the lecture.

Lecture notes

Die Dozierenden geben in der Lehrveranstaltung die relevante Literatur bekannt.

Lecture notes

Prerequisites / notice
Blockkurs in Halbtagesform; eingeschlossen sind Betriebsbesuche. Fach mit benoteter Semesterleistung.

751-7103-00L Animal Feed and Feeding of Ruminants

Objective
The knowledge of the nutrition of ruminants and of the feeds used is deepened. Particular emphasis is put on the variety of home-grown feeds, their production and conservation and their application in the nutrition of dairy cows, cattle and small ruminants. Finally, information on specific problems of animal nutrition is communicated.

Content
- Purchase of basic skills in agricultural livestock nutrition.

Lecture notes

Script is available in German language and will be provided by each lecturer when starting his part of the lecture.

Lecture notes

Prerequisites / notice

751-6121-00L Regulatory Physiology

Objective

Content
- Thermoregulation (Fieber)
- Flüssigkeits- Homöostase (Durchfall)
- Calciumregulation (Milchfieber)
- Energiehomöostase (Ketose)
- Schmerz (zooetotechnische Eingriffe)
- Stress (allostatische Last, Epigenetik)

Lecture notes

Unterlagen werden individuell von den Dozierenden abgegeben.

Prerequisites / notice
Spezifische Literatur wird individuell von den Dozierenden angegeben.

751-5005-00L Agroecology and the Transition to Sustainable Food

Objective
The aim of this lecture series is to offer students and the interested public a deeper insight into the fundamentals of agroecology and its potential role in transforming food systems. For more information on the public lecture part of this course, please visit: https://worldfoodsystem.ethz.ch/outreach-and-events/past-events/agroecology-lectures-2021.html

Students are able to understand and explain how the 10 elements could be implemented as guiding principles for policymakers, practitioners and other stakeholders across the food system in planning, managing and evaluating agroecological transitions. This course enables students and an interested public to engage in a lively and critical debate and to learn about scientific contributions to agroecology. Based on the knowledge gained, students are able to form a personal opinion on the role of agroecology and to reflect on the different facets and real-world applications supporting a transition towards sustainable food systems.

Prerequisites / notice

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 17 of 2152
Organization of the lecture:
The lecture series will take place in the fall semester of ETH Zurich, starting in the week of September 20, 2021 and lasting until December 17, 2021. During this period, the lecture will take place once a week, on Tuesdays from 18:00-20:00 (CEST/CET).

Each lecture will be organized in an online format and will be set up in two parts consisting of a public and a student lecture:

At the end of the lecture series, the course will be evaluated with the students.

Public lecture part (virtually via Zoom webinar):
The public lecture (18:00-19:00 CEST/CET) will take place virtually via this Zoom webinar: https://ethz.zoom.us/j/64352765873.

While most public lectures will take one hour, the last public lecture on “Agroecology, The Way Forward”, on Tuesday, 7th December 2021, will last 90 minutes.

Student's lecture part (exchange with course instructors online via zoom):
The student’s lecture (19:15-20:00h CEST/CET) will take place online via a normal Zoom call: https://ethz.zoom.us/j/6135399346.

For further details, please refer to the Moodle-page of this course: https://moodle-app2.let.ethz.ch/course/view.php?id=15210

Lecture notes
On the Moodle-page you can find some pre-readings for the course.

Literature
Prerequisites / notice
The course is designed as a public lecture on “Agroecology in the transition to sustainable food systems” to allow for different perspectives to be represented, heard and discussed.

701-0903-00L The Sustainable Development Goals Book Club W+ 2 credits B. B. Pearce, J. Ghazoul

Abstract
The ETH Sustainable Development Goals Book Club is a colloquium for Bachelor students within and outside of Department of Environmental Systems Science centered around the discussion of themes from a single book, with the aim of fostering interdisciplinary, intellectual and critical exploration of the scientific and societal complexities related to the Sustainable Development Goals.

Objective
The aims of this course are to:
- Create an interdisciplinary approach to understanding key concepts of sustainable development and the SDGs
- Create solidarity through a cultural of intellectual exchange at ETH Zurich
- Create a common object of intellectual reference for students with different disciplinary interests to enable diverse ways and modes of thinking

Content
The course is similar to 701-0019-00L Readings in Environmental Thinking with the following differences:
- Targeted at Bachelor’s students (especially first and second year, but open to all) within and outside of the department.
- All participating students will read one book whose themes will be the basis for discussions.
- These discussions, taking place both online and in-person, will be moderated by the main lecturers of the course and discussed by additional professors from within and outside of D-USYS.
- Each discussion will be based on a chapter of a book, always linked to a particular aspect of the SDGs.
- The modes of discussion will vary in length and form, ranging from the traditional, sit-down meeting, to a Twitter book club format (as already pioneered and popularized by author Robert MacFarlane),
- Both students and professors will lead the discussions alternatively.
- Each discussion session will result in a visual output or another shareable output that will be developed by a student or group of students.

Literature
TBD

Other possibilities:
- Thinking in systems
- Limits to Growth
- Operating Manual for Spaceship Earth
- Small is Beautiful
- For the Common Good
- Factfulness
- The Prize: The Epic Quest for Oil, Money and Power (history of the global petroleum industry from 1850s-1990)

Prerequisites / notice
none

Bachelor’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-1020-10L</td>
<td>Bachelor’s Thesis</td>
<td>O</td>
<td>14</td>
<td>30D</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Agricultural Sciences Bachelor - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

- V lecture
- G lecture with exercise
- U exercise
- S seminar
- K colloquium

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Educational Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>This lecture is only apt for students who intend to enrol in the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>programs "Teaching Diploma" or "Teaching Certificate". It is about</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course looks into scientific theories and also empirical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>studies on human learning and relates them to the school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Anyone wishing to be a successful teacher must first of all understand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the learning process. Against this background, theories and findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on the way humans process information and on human behaviour are</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>prepared in such a manner that they can be used for planning and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conducting lessons. Students additionally gain an understanding of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>what is going on in learning and behavioural research so that</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>teachers are put in a position where they can further educate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Themenische Schwerpunkte: Lernen als Verhaltensänderung und als</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Informationsverarbeitung: Das menschliche Gedächtnis unter besonderer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berücksichtigung der Verarbeitung symbolischer Information; Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>als Wissenskonstruktion und Kompetenzentwickl, unter besonderer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erklärungen; Die Rolle von Emotion und Motivation beim Lernen;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Individuelle Unterschiede in der Lernfähigkeit und ihre Ursachen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intelligenztheorien, Geschlechtsunterschiede beim Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Lernformen: Theorien und wissenschaftliche Konstrukte werden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zusammen mit ausgewählten wissenschaftlichen Untersuchungen in Form</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>einer Vorlesung präsentiert. Die Studierenden vertiefen nach jeder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stunde die Inhalte durch die Bearbeitung von Aufträgen in einem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>elektronischen Lernstagebuch. Über die Bedeutung des Gelernten für</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>den Schulalltag soll reflektiert werden. Ausgewählte Tagebuch-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>erläuterungen werden zu Beginn jeder Vorlesung thematisiert.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Folien werden zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Folien werden zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>: Erfolgreiches Lernen und Lehren. Stuttgart: Kohlhammer. 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prentice Hall.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This lecture is only apt for students who intend to enrol in the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>programs "Lehrdiplom" or "Didaktisches Zertifikat". It is about</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-06L</td>
<td>Human Intelligence</td>
<td>W</td>
<td>1</td>
<td>1S</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course can only be enrolled after successful participation in,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or during enrollment in the course "Human Learning (EW 1)".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Get to know cognitively activating instructions in MINT subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Get information about recent literature on learning and instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Für eine reibungslose Semesterplanung wird um frühe Anmeldung und</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>persönliches Erscheinen zum ersten Lehrveranstaltungstermin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ersucht.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-07L</td>
<td>Research Methods in Educational Science</td>
<td>W</td>
<td>1</td>
<td>1S</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of participants limited to 30.</td>
<td>This course can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The focus will be on the book "Intelligenz: Grosse Unterschiede und ihr Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Understanding of research methods used in the empirical human sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Getting to know intelligence tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Understanding findings relevant for education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-08L</td>
<td>Coping with Psychosocial Demands of Teaching (EW4 W DZ)</td>
<td>W</td>
<td>2</td>
<td>3S</td>
<td>U. Markwalder, S. Maurer, S. Peteranderl-Rüschhoff</td>
</tr>
<tr>
<td>Number of participants limited to 20.</td>
<td>The successful participation in EW1 ("Human Learning") and EW2 ("Designing Learning Environments for School") is recommended, but not a mandatory prerequisite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In this class, students will learn concepts and skills for coping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with psychosocial demands of teaching.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The aim is for the students to possess theoretical knowledge and practical competences to be able to cope with the psychosocial demands of teaching.

Prerequisites / notice
Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

Subject Didactics and Professional Training
Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-9020-00L</td>
<td>Teaching Internship Including Examination Lessons</td>
<td>W</td>
<td>6</td>
<td>13P</td>
<td>G. Kaufmann</td>
</tr>
<tr>
<td></td>
<td>Agricultural Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The teaching internship can just be visited if all other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>courses of TC are completed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repetition of the teaching internship is excluded even if</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the examination lessons are to be repeated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students apply the insights, abilities and skills they</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>have acquired within the context of an educational</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>institution. They observe 10 lessons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and teach 20 lessons independently. Two of them are as</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>assessed as Examination Lessons.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Students use their specialist-subject, educational-science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and subject didactics training to draw up concepts for</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>teaching.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They are able to assess the significance of tuition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>topics for their subject from different angles (including</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>interdisciplinary angles) and impart these to their pupils.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They learn the skills of the teaching trade.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They practise finding the balance between instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and openness so that pupils can and, indeed, must make their</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>own cognitive contribution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They learn to assess pupils’ work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Together with the teacher in charge of their teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>training, the students constantly evaluate their own</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>performance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Studierenden sammeln Erfahrungen in der Unterrichtsführung,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>der Auseinandersetzung mit Lernenden, der Klassenbetreuung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>und der Leistungsbewertung. Zu Beginn des Praktikums plant die</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praktikumslerners gemeinsam mit dem/der Studierenden das</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praktikum und die Arbeitsaufträge. Die schriftlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dokumentierten Ergebnisse der Arbeitsaufträge sind Bestandteil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>des Portfolios der Studierenden. Anlässlich der</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hospitationen erläutert die Praktikumslerners ihre fachlichen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fachdidaktischen und pädagogischen Überlegungen, auf deren</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basis sie den Unterricht geplant hat und tauscht sich mit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dem/der Studierenden aus. Die von dem/der Studierenden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gehaltenen Lektionen werden vor- und nachbesprochen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Themen für die beiden Prüfungslektionen am Schluss des</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praktikums erfahren die Studierenden in der Regel eine Woche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vor dem Prüfungstermin. Sie erstellen eine Vorbereitung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gemäss Anleitung und reichen sie bis am Vortrag um 1 Uhr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>den beiden Prüfungsexperten (Fachdidaktiker/-in,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Departementsvertreter/-in) ein. Die gehaltenen Lektionen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>werden kriteriemsbasiert beurteilt. Die Beurteilung umfasst</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>auch die schriftliche Vorbereitung und eine mündliche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflexion der Kandidaten. Die Kandidaten über die gehaltenen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lektionen im Rahmen eines kurzen Kolloquiums.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wird von der Praktikumslerners bestimmt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further Subject Didactics
For students enrolled from HS 2019: The courses offered here are credited under the category «Subject Didactics and Professional Training».

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-9005-00L</td>
<td>Mentored Work Specialised Courses in the Respective O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subject with an Educational Focus Agricul. Sc A</td>
<td></td>
<td>2</td>
<td>4A</td>
<td>G. Kaufmann, K. Koch, U. Lerch</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In the mentored work on their subject specialisation, student</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high-school and university aspects of the subject, thus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>strengthening their teaching competence with regard to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>curriculum decisions and the future development of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuition. They compile texts under supervision that are</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>directly comprehensible to the targeted readers -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>generally specialist-subject teachers at high-school level.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The aim is for the students to familiarise themselves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with a new topic by obtaining material and studying the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sources, so that they can selectively extend their</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>specialist competence in this way.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- to independently develop a text on the topic, with</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>special focus on its mathematical comprehensibility in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>respect of the level of knowledge of the targeted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>readership.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To try out different options for specialist further</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>training in their profession.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thematische Schwerpunkte:

Lernformen:

Lecture notes
Eine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt.

Literature
Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.

Prerequisites / notice
Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

Agricultural Sciences TC - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Agroecosystem Sciences Master
► Major in Animal Sciences
►► Disciplinary Competences
►►► Livestock Systems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
The course provides the scientific basis of the central aspects of reproduction and nutrition physiology of ruminants, and of the implications for animal health, product quality, and breeding programs. Means of knowledge transfer include interdisciplinary approaches, disciplinary parts, web-based learning and self-study.

Objective
At the end of the course the students are able to apply, by a comprehensive understanding of the underlying mechanisms, their knowledge in various fields of ruminant science. They will be able to develop and recommend best strategies for breeding programs, feed formulation, improving forage quality, and increasing animal health. They will be trained to carry out interdisciplinary and disciplinary research at the highest level. The course Ruminant Science (FS) offered in spring has a similar structure but is complementary to this course.

Content
Fields (contact hours)
- Introduction: 2 h
- Special topics: 20 h
 - Rumen Anatomy
 - Hohenheim Gas Test
 - Calf health
 - Reproduction Techniques
 - Fertility in Cows
- Disciplinary topics: 32 h
 - Ruminal Digestion: 8 h
 - Ruminant Nutrition Physiology: 12 h
 - Reproduction in Ruminants: 8 h
- Lectures held by the students: 4 h

In summary
- Contact hours: 58 h
- Self-study within semester: 30 h (especially preparation for the interdisciplinary courses and the own lecture)
- Self-study in semester break: 32 h
Total: 120 h

Lecture notes
Documents, links and other materials will be provided at the start of the course

Literature
Information on books and other references will be communicated during the course

Prerequisites / notice
The specialty of this course is that for the first time the animal science disciplines are unified. This is realised with a particular emphasis on interdisciplinary special topics and new forms of teaching. At the same time the essential basics in the central fields are communicated.

Conditions for successful participation
The field of Ruminant Science will also be a part of the spring semester (special topics: Organic Ruminant Systems, Tropical Ruminant Systems, Mastitis; disciplinary courses: Cattle, Sheep and Goat Breeding, Ruminant Diseases and Prophylaxis, Ruminant Nutrition and the Environment). However both courses are organized independently.

The control of performance will consist of:
- an own short lecture
- a final oral examination with focus on comprehension of the fundamental linkages rather than of specific details

751-6601-00L Pig Science (HS) Does not take place this semester.

W+ 2 credits 2V to be announced

Abstract
The overall goal of the course is to provide the essential scientific knowledge of pig animal health and behaviour and of the implications for husbandry and animal welfare.

Objective
Students will
- understand the complex interactions of health management, behaviour and husbandry.
- be trained to understand interdisciplinary and disciplinary research.
- be able to critically analyze published research data.
- be able to present precise scientific reports in oral and written form.

Content
Topics:
- Understanding natural behaviour of pigs to improve their management
- Welfare challenges in pig production
- On-farm and post-mortem health assessment
- Farrowing and lactation
- Pig reproduction and associated problems
- Piglet mortality and morbidity
- Emotions
- Cognition
- Pain

There will be 1 excursion to the pig stable of AgroVet Strickhof.

The final grade will be based on a poster presentation (30%, mid-semester) and a final written exam (70%, end of semester)

Lecture notes
Handouts/scripts are distributed by the lecturers.

Literature
Specific literature is indicated by the lecturers.

Prerequisites / notice
Knowledge in animal health, animal welfare and ethology is recommended but not required.

The lectures will be in English and German (depending on the lecturers)

751-6001-00L Forum: Livestock in the World Food System

W+ 2 credits 1S S. Meese

Number of participants limited to 20.
This forum is a platform for the critical reflection of relevant topics of livestock in the frame of the world food system comprising issues from basic knowledge to acceptance in society. The exchange is operated by scientific writing and presentation.

In the Forum “Livestock in the World Food System”, a topic of significance for livestock agriculture is selected by the students and subsequently dealt with from various angles (from scientific basis to production systems, environmental aspects and to the acceptance by society). The students learn to present a scientific subject in writing and orally to an audience and to defend the presentation in a discussion.

The Forum “Livestock in the World Food System” will take place in blocks of 2 hours each. Once the general topic has been selected, it comprises two elements:

Element 1. Oral presentation: The students form small groups and are lecturers. There are chair persons (moderators) from outside of these small groups and they also head the discussion. The remaining students and lecturer are the audience.

Element 2. Scientific writing:
1. preparation of a short scientific type of paper from a result table offered by the lecturers
2. writing of a critical review of a chosen topic.

There will be a discussion in small groups at several choosable dates.

Introductions to both forms of presentation will be offered by the lecturer.

The preparation of the oral and written presentations takes place to a small part during the 2-h blocks and mainly outside of this time.

Requirements for allocation of the two credit points:
- Theatre presentation (with handout) at the forum
- Delivery of written documents of sufficient quality
- Active participation during the presentations by the other participants

The course is a balanced mixture of blackboard exercise, laboratory exercise, group exercise, lecture and student seminar presentation.

The non-contact hour part is to comprehend the information given and to prepare either the written report or the oral presentation (cf. "Besonderes")

Lecture notes are provided via Moodle.
Will be communicated at the start of the course.

The course is a balanced mixture of blackboard exercise, laboratory exercise, group exercise, lecture and student seminar presentation.

Credit point associated with grade of either a written report or an oral presentation in the final seminar (both on a self-chosen related topic)

Livestock Biology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-7211-00L</td>
<td>Ruminal Digestion</td>
<td>W+</td>
<td>1</td>
<td>1G</td>
<td>not available</td>
</tr>
</tbody>
</table>

Abstract: This course broadens the knowledge in one of the most important aspects of ruminant nutrition: the microbial digestion in the rumen (and in the hindgut). For a comprehensive understanding of the rumen microbial ecosystem, the mechanisms of nutrient fermentation and the synthesis of microbial protein, thorough basics are provided. Apart from lectures, group and laboratory exercises are included.

Objective: The course enables students to understand in detail how ruminal digestion works and how this knowledge can be applied to design optimal feeding diets using highly fibrous forages and a variety of other feeds. The students also are able to show how to modify the most important rumen microbes beneficially by nutritional means.

Content: Structure of the contact hour part of the course (16 h):

2 h Introduction and blackboard exercise

8 h Basic topics in ruminal digestion, lectures and group exercises:
- Systematics of the microbes involved in microbial digestion
- Measurement of microbial digestion
- Interactions of microbes and epithelium of the digestive tract
- Differences between ruminal and hindgut microbial digestion
- Microbial nutrient degradation and its modification
- Efficiency of microbial protein synthesis
- Manipulation of the ruminal digestion

4 h exercise at AgroVet-Strickhof:
- Measurements of microbial digestion
- Laboratory exercise with a rumen fistulated cow and a Rumen Simulation Technique

2 h Final seminar

The course provides students with the basic knowledge to understand the connection between the structure of nutritive and non-nutritive bioactive food and feed components and their effects on the nutrient supply and health of humans and livestock as well as on the quality of animal-derived foods.

Objective: At the end of this course, the students are aware of food and feed as sources of different bioactive compounds. By a comprehensive understanding of the connection between bioavailability, molecular mechanisms and biological effects, they are able to apply their knowledge on beneficial and detrimental effects of bioactive food and feed components in the fields of human and animal nutrition.
The course gives an introduction into different classes of bioactive components present in food and feed including fatty acids and secondary plant compounds such as carotenoids, polyphenols, phytoestrogens, glucosinolates, protease inhibitors and monoterpenes.

Topics include:
- sources of bioactive food and feed components
- bioavailability and modification in the gastrointestinal tract
- beneficial and detrimental effects
- molecular mechanisms of biological effects
- species differences concerning metabolism and biological effects

Literature
The teaching slides and other materials will be provided during the course.

Lecture notes
Information about books and other references will be communicated during the course.

701-0263-01L Seminar in Evolutionary Ecology of Infectious Diseases

Type 3 credits 2G

Abstract
Students of this course will discuss current topics from the field of infectious disease biology. From a list of publications, each student chooses some themes that he/she is going to explain and discuss with all other participants and under supervision. The actual topics will change from year to year corresponding to the progress and new results occurring in the field.

Objective
This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific literature and trace the development of ideas related to understanding the ecology and evolutionary biology of infectious diseases.

Content
A core set of ~10 classic publications encompassing unifying themes in infectious disease ecology and evolution, such as virulence, resistance, metapopulations, networks, and competition will be presented and discussed. Pathogens will include bacteria, viruses and fungi. Hosts will include animals, plants and humans.

Lecture notes
Publications and class notes can be downloaded from a web page announced during the lecture.

Literature
Papers will be assigned and downloaded from a web page announced during the lecture.

Livestock Genetics

751-6243-00L Breeding and conservation of Animal Genetic Resources

Number 751-6243-00L

Type W+ 2 credits 2V

Abstract
Animal genetic resources refer to the genetic and species diversity of livestock. Only a few production breeds have been further developed through breeding, while local breeds have no longer been able to survive in this competition. Without the support of endangered breeds and the sustainable breeding of productive breeds, many regionally typical breeds are threatened with extinction.

Objective
Learning Objectives: Part 1:
- At the end of the course, students are able to assess the importance and problems of small ruminant breeding and husbandry in Switzerland and neighbouring countries. They know the most important breeding objectives and are able to assess them in terms of production and sustainable development in small ruminants and cattle.

Learning objectives part 2:
- The second part gives an overview of the distribution, endangerment and conservation of breed diversity of farm animals in Switzerland and internationally. The theory is illustrated with numerous examples and the knowledge is deepened in exercises.

The students:
- have an overview of the national and international distribution of animal genetic resources and are familiar with the database DAD-IS (Domestic Animal Diversity Information System).
- can name the national and international efforts to conserve agricultural livestock breeds.
- know how to describe genetic diversity.
- can point out what is important in the management of small populations.
- can describe different conservation measures, especially in situ and ex situ conservation.
- can describe current national and international conservation programmes for different livestock breeds.

Prerequisites / notice
Examination:
- Examination Part 1: Graded written examination (1 hour) on the material covered.
- Examination Part 2: Graded seminar performance completed during the block course.

Parts 1 and 2 contribute equally to the final grade.

751-6305-00L Livestock Breeding and Genomics

Number 751-6305-00L

Type W 3 credits 3G

Abstract
Swiss routine breeding value estimation/genetic evaluation systems of cattle, pig, sheep and goats are presented with methods and evaluated traits. Examples will be demonstrated using the statistical software R.

Objective
The students know the theoretical and practical application of breeding value estimation in Switzerland for cattle, pig, sheep and goats. The students are able to interpret estimated breeding values.

Content
- basic principles of genetic evaluations
- Applied genetic evaluation in cattle (data, methods, traits, national and international genetic evaluations)
- Applied genetic evaluation in pigs (data, methods, traits)
- Applied genetic evaluation in sheep and goats (data, methods, traits)

Lecture notes
Course notes in the form of a monograph, copies of the slides and solutions to the exercise questions are available on the net.

Literature
To be announced in the lectures.

Methodology Competences

Methods for Scientific Research

751-3801-00L Experimental Design and Applied Statistics in Agroecosystem Science

Number 751-3801-00L

Type W 3 credits 2G

Abstract
Different experimental designs will be discussed and various statistical tools will be applied to research questions in agroecosystem sciences. Statistical methods range from simple analysis of variance to mixed-models and multivariate statistics. Surveys and manipulative field and laboratory experiments are addressed and students learn to analyse data using a hands-on approach.

Objective
Students will know various statistical analyses and their application to science problems in their study area as well as a wide range of experimental design options used in environmental and agricultural sciences. They will practice to use statistical software packages (R), understand pros and cons of various designs and statistics, and be able to statistically evaluate their own results as well as those of published studies.
Content
The course program uses a learning-by-doing approach ("hands-on minds-on"). The topics are introduced as short lectures, but most of the work is done on the computer using different packages of R – a software for statistical computing and graphics. In addition to contact hours exercises must be finalized and handed in for grading. The credit points will be given based on successful assessments of selected exercises.

The tentative schedule contains the following topics:
- Introduction to experimental design and applied statistics in R
- Data handling and data exploration with tidyverse
- Designs of field and growth chamber experiments theory
- Design creation with DiGGer
- Fitting linear mixed-effects models with lme4
- Marginal means estimation and post-hoc tests with emmeans
- Non-linear regression
- Statistical learning techniques
- Principle component analysis, canonical correspondence analysis (CCA), cluster analysis
- Random forest

This course does not provide the mathematical background that students are expected to bring along when signing up to this course. Alternatively, students can consider some aspects of this course as a first exposure to solutions in experimental design and applied statistics and then deepen their understanding in follow-up statistical courses.

Lecture notes
Handouts will be available (in English).

Literature
A selection of suggested additional literature, especially for German speaking students will be presented in the introductory lecture.

Prerequisites / notice
This course is based on the course Mathematik IV: Statistik, passed in the 2nd year and the Bachelor’s course “Wissenschaftliche Datenauswertung und Datenpräsentation” (751-0441-00L).

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
	Media and Digital Technologies	assessed
	Problem-solving	assessed

751-6127-00L Practical Course in Microscopy of Functional Histology
Does not take place this semester.

Abstract
Die "Funktionelle Histologie" beschreibt die histologischen und zytologischen Strukturen mit ihren jeweiligen Aufgaben und Wechselwirkungen innerhalb ausgewählter Organsysteme. Die endokrinologisch relevanten Organe und deren Präparation werden am Beispiel des Rindes kennengelernt.

Objective
Grundlagen der Histologie; Gewebedünnschnitte (Gefrier- und Paraffinpräparate) und deren Übersichtsfärbungen und Immunhistochemie; Fortgeschrittene Mikroskopie von Gewebedünnschnitten; Kritische Bewertung von Physiologie/Pathologie aufgrund morphologischer Kriterien

Content
Jeder/m Studierenden wird ein Organ zugeteilt, mit welchem sie/er sich intensiv theoretisch und praktisch auseinandersetzt. Anhand dieses Organes als rotem Faden, welches vom Schlachthof bereitgestellt und von den Studierenden selber seziert, eingebettet, geschnitten, gefärbt und mikroskopiert wird, werden die Lernziele erreicht.

Prerequisites / notice
In Form eines Vortrags werden den anderen TeilnehmerInnen das zugeteilte Organ bzw Gewebe bezüglich der Morphologie, Histologie und funktioneller Gesichtspunkte vorgestellt.

In der Nachbereitung zum Praktikum wird ein Bericht angefertigt, in dem die Vorgehensweise (Verfahrensprotokoll), die Befunde (Ergebnisprotokoll) und die kritische Auseinandersetzung mit den Inhalten des Praktikums (kritische Beurteilung) dokumentiert werden.

751-6129-00L Practical Course Epigenetics
Does not take place this semester.

Abstract
The practical course will comprise of lecture elements introducing the topic of epigenetics and a large amount of practical work where you will be able to perform DNA methylation analyses on your own. In particular, we will focus on DNA extraction and the estimation of global and local DNA methylation.

Objective
The competencies and aims for the course are:
- Get first hands-on experience with the experimental techniques.
- Answer a scientific question by conducting experiments.
- Obtain results of an experiment and get insight into what affects technical variation and thus influences reproducibility.
- Interpret results in an adequate manner to solve a scientific question.
- Combine results to draw an adequate conclusion.
- Present a research paper on epigenetics.

Lecture notes
You will receive in advance a selection of research papers, a document with the theoretical background of the techniques included in the course, the slides of the lessons in pdf and a detailed protocol of the work we will do.

Prerequisites / notice
For receiving a total of 3 Credit Points for this practical course we kindly ask you to actively take part in the practical performance. In addition, you will have to present an original research publication, address questions from your colleagues and actively participate in the discussion. The last day, you will need to pass a short written examination about the theoretical background of the techniques and results interpretation. Finally, after the course, you will have to write a lab report to be handed in at the beginning of the spring semester.
This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field research and further learn the conceptual and methodological background of research in the animal science groups of the Institute of Plant, Animal and Agroecosystem Science. In addition to teaching the theoretical background, the major aim of the course is to integrate the students into the research groups (on job training) and, hence, to focus on the practical application of the knowledge.

Abstract

The students will be integrated into the research groups day-to-day work and will thus deal with all aspects of scientific work. This comprises the planning (conceptually and logistically), execution (data collection, laboratory analyses) and evaluation (statistics, data presentation) of experiments as well as the basics of scientific writing (aim: later publication, Master thesis). The research topics and the range of methodologies vary between the animal science research groups in the Institute of Plant, Animal and Agroecosystem Sciences.

Objective

- Introduction into the conceptual and methodological basis of research
- Integration of the students into the research groups (on job training)
- Application of the gained knowledge

Content

The students will be integrated into the research groups day-to-day work and will thus deal with all aspects of scientific work. This comprises the planning (conceptually and logistically), execution (data collection, laboratory analyses) and evaluation (statistics, data presentation) of experiments as well as the basics of scientific writing (aim: later publication, Master thesis). The research topics and the range of methodologies vary between the animal science research groups in the Institute of Plant, Animal and Agroecosystem Sciences.

Lecture notes

None

Literature

Specific readings after enlisting in a particular research group.

Prerequisites / notice

The number of training slots in the various groups is limited. It is therefore highly recommended to contact the group leaders early enough (first come first serve).

The full integration in a research group often means to work on weekends.

The total time budget is equivalent to about 180 hours. Active participation in group meetings (discussion, presentation) and short written reports about the work conducted are required for the 6 credit points. There are no grades, it is only pass or fail.

Project Management for Scientific Research

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-6001-00L</td>
<td>Forum: Livestock in the World Food System</td>
<td>W+</td>
<td>2</td>
<td>1S</td>
<td>S. Meese</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 20.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This forum is a platform for the critical reflection of relevant topics of livestock in the frame of the world food system comprising issues from basic knowledge to acceptance in society. The exchange is operated by scientific writing and presentation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In the Forum "Livestock in the World Food System", a topic of significance for livestock agriculture is selected by the students and subsequently dealt with from various angles (from scientific basis to production systems, environmental aspects and to the acceptance by society). The students learn to present a scientific subject in writing and orally to an audience and to defend the presentation in a discussion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Forum “Livestock in the World Food System” will take place in blocks of 2 hours each. Once the general topic has been selected, it comprises two elements:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Element 1. Oral presentation: The students form small groups and are lecturers. There are chair persons (moderators) from outside of these small groups and they also head the discussion. The remaining students and lecturer are the audience.

Element 2. Scientific writing:
1. preparation of a short scientific type of paper from a result table offered by the lecturers
2. writing of a critical review of a chosen topic.

There will be a discussion in small groups at several choosable dates.

Lecture notes

Introductions to both forms of presentation will be offered by the lecturer.

The preparation of the oral and written presentations takes place to a small part during the 2-h blocks and mainly outside of this time.

no scriptum

Prerequisites / notice

Requirements for allocation of the two credit points:
- Theatre presentation (with handout) at the forum
- Delivery of written documents of sufficient quality
- Active participation during the presentations by the other participants

Tropical Cropping Systems, Soils and Livelihoods

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-5201-10L</td>
<td>Tropical Cropping Systems, Soils and Livelihoods</td>
<td>W+</td>
<td>2</td>
<td>2G</td>
<td>J. Six, K. Benabderrazzik</td>
</tr>
<tr>
<td></td>
<td>This course has been restructured due to Covid-19 restrictions, part I (2 CP) takes place in Autumn 2021, part II (3 CP) in Spring 2022, with an excursion/fieldwork. For more information, please contact the lecturer: kenza.benabderrazzik@usys.ethz.ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, Resilience to Soil physics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Major in Plant Sciences

Disciplinary Competences

Agronomy and Plant Breeding

<table>
<thead>
<tr>
<th>Objective</th>
<th>Part 1</th>
<th>Part 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of the major land use systems in Tropical agroecosystems in several contexts Africa</td>
<td>Hands-on training on the use of field methods, diagnostic tools and survey methods.</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary analysis of agricultural production systems</td>
<td>Gain practical knowledge on how to assess Food and Energy Security</td>
<td></td>
</tr>
<tr>
<td>Knowledge on methods to assess Food and energy security in tropical agroecosystems</td>
<td>Collaboration in international students and stakeholders</td>
<td></td>
</tr>
</tbody>
</table>

Content

Part 1 (Fall semester 2021)
This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, resilience to soil physics or agricultural economics. Students will engage in readings, discussions and exchanges on the specificities of tropical agriculture.

Part 2 (Spring 2022)
On the second module, students gain practical knowledge on field - An integral part of the course is the two-week field project in a Tropical region, meeting several stakeholders of the agricultural and food systems and conducting various assessments related to Food and Energy Security.

Prerequisites / notice
Students can only join Part 2 if Part 1 was taken and validated first.

A selection of 20 students for the Part 2 will be done on the basis of several elements. We would require the students enrolled to the class to send a short cover letter (1-page max.) by September 28th 2021, justifying your motivation to enroll to this class.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed Technique and Technologies</td>
<td>Assessed Communication</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Cooperation and Teamwork</td>
</tr>
<tr>
<td>Assessed Self-presentation and Social Influence</td>
<td>Assessed Sensitivity to Diversity</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td>Assessed Critical Thinking</td>
<td>Assessed Self-awareness and Self-reflection</td>
</tr>
<tr>
<td>Assessed Self-direction and Self-management</td>
<td>Assessed</td>
</tr>
</tbody>
</table>

Number of participants limited to 15.

Gain practical knowledge on how to assess Food and energy security in tropical agroecosystems

Interdisciplinary analysis of agricultural production systems

Overview of the major land use systems in Tropical agroecosystems in several contexts Africa

Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops.

At the end of the course the students are qualified to develop sustainable solutions for weed problems in agricultural and natural habitats.

Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.

Crop Health

Insect Ecology

Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-3603-00L</td>
<td>Current Challenges in Plant Breeding</td>
<td>W+</td>
<td>2 credits</td>
<td>2G</td>
<td>B. Studer, A. Hund</td>
</tr>
<tr>
<td>751-4104-00L</td>
<td>Alternative Crops</td>
<td>W+</td>
<td>2 credits</td>
<td>2V</td>
<td>A. Walter, K. Berger Büter</td>
</tr>
<tr>
<td>751-4704-00L</td>
<td>Weed Science</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>B. Streit, U. J. Haas</td>
</tr>
<tr>
<td>751-5121-00L</td>
<td>Insect Ecology</td>
<td>W+</td>
<td>2 credits</td>
<td>2V</td>
<td>C. De Moraes, M. Mescher,</td>
</tr>
</tbody>
</table>
This is an introductory class on insect ecology. During the course you will learn about insect interactions with, and adaptations to, their environment and other organisms, and the importance of insect roles in our ecosystems. This course includes lectures, small group discussions and outside readings.

Objective
The aim of the course is to gain an understanding of how insects have specialised and adapted to occupy diverse environmental niches and become vital to ecosystem processes. Important topics include: insect-plant interactions, chemical ecology, predator-prey interactions, vectors of disease, social insects, mutual and parasitic interactions and examining insect ecology in an evolutionary context.

Lecture notes
Provided to students through Moodle. Optional recommended readings with additional information.

Literature
Selected required readings (peer reviewed literature). Optional recommended readings with additional information.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-4811-00L</td>
<td>Alien Organisms in Agriculture</td>
<td>W+</td>
<td>2 credits</td>
<td>2G</td>
</tr>
<tr>
<td>701-0263-01L</td>
<td>Seminar in Evolutionary Ecology of Infectious Diseases</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
</tr>
<tr>
<td>751-4506-00L</td>
<td>Plant Pathology III</td>
<td>W+</td>
<td>2 credits</td>
<td>2G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Critical Thinking</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Notes:
- The number of participants is limited to 30.
- Lecture notes: Material will be distributed during the course.
- Prerequisites / notice: A part of the course will take place in flipped classroom mode, i.e. the lectures on 28.9., 5.10., 19.10., 16.11. and 23.11. will be available as podcasts.
- Prerequisites / notice: Material will be distributed during the course.
- Prerequisites / notice: A script will be used on annual and perennial crops and their most important diseases. It will be updated stepwise.
- Lecture notes: Papers will be assigned and downloaded from a web page announced during the lecture.
- Lecture notes: Publications and class notes can be downloaded from a web page announced during the lecture.
- Literature: Lecture notes

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 28 of 2152
The seminar concerns current aspects and research related to nutrient cycles in agro-ecosystems. The theme of the next seminar is

Course discusses the mechanistic relationships between nutrient speciation in fertilizer and nutrient uptake by plants using phosphorus as an example. The course involves theoretical aspects of nutrient cycling, laboratory work, data analysis and presentation, and the use of advanced methods in plant nutrition studies.

The course will provide an introduction to the applicability of stable isotopes to ecological research questions. Topics will focus on carbon (13C), nitrogen (15N), oxygen (18O) and hydrogen (2H) at natural isotope abundance and tracer levels. Lectures will be supplemented by intensive laboratory sessions, short presentations by students and computer exercises.

Analyse publications on long-term field experiments regarding their content on integrated nutrient management; link this information, write it up in a report and present the results in an oral presentation: work in a group; ask questions and contribute to the discussion following the oral presentations; link the information to answer overarching questions and recommendations; expand the knowledge on nutrient cycles and nutrient management in the agro-ecosystem; learn about the importance of long-term field experiment to answer questions on the sustainability of agricultural systems.

The seminar concerns current aspects and research related to nutrient cycles in agro-ecosystems. The theme of the next seminar is “Integrated Nutrient Management to maximize nutrient use efficiency in productive agricultural systems: Insights from long-term field experiments”.

The seminar concerns current aspects and research related to nutrient cycles in agro-ecosystems. The theme of the next seminar is “Integrated Nutrient Management to maximize nutrient use efficiency in productive agricultural systems: Insights from long-term field experiments”. The students will analyze and connect the results published for selected field experiments in a group work. They will present their analysis in a report and in an oral presentation. The seminar is composed by presentations of experts and of the students. The presentations will be synthesized during a final discussion.

Research results in agro- and forest ecosystem sciences will be presented by experienced researchers as well as Ph.D. and graduate students. Citation classics as well as recent research results will be discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemistry to management aspects in agro- and forest ecosystems.

Research will be presented by experienced researchers as well as Ph.D. and graduate students. Citation classics as well as recent research results will be discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemistry to management aspects in agro- and forest ecosystems.

Basic knowledge of plant ecophysiology, terrestrial ecology and management of agro- and forest ecosystems. Course will be taught in English.
Experimental Design and Applied Statistics in Agricosemyst Science

Abstract
Different experimental designs will be discussed and various statistical tools will be applied to research questions in agricosemyst sciences. Statistical methods range from simple analysis of variance to mixed-models and multivariate statistics. Surveys and manipulative field and laboratory experiments are addressed and students learn to analyse data using a hands-on approach.

Objective
Students will know various statistical analyses and their application to science problems in their study area as well as a wide range of experimental design options used in environmental and agricultural sciences. They will practice to use statistical software packages (R), understand pros and cons of various designs and statistics, and be able to statistically evaluate their own results as well as those of published studies.

Content
The course program uses a learning-by-doing approach ("hands-on minds-on"). The topics are introduced as short lectures, but most of the work is done on the computer using different packages of R – a software for statistical computing and graphics. In addition to contact hours exercises must be finalized and handed in for grading. The credit points will be given based on successful assessments of selected exercises.

The tentative schedule contains the following topics:
- Introduction to experimental design and applied statistics in R
- Data handling and data exploration with tidyverse
- Designs of field and growth chamber experiments theory
- Design creation with DiGGer
- Fitting linear mixed-effects models with lme4
- Marginal means estimation and post-hoc tests with emmeans
- Nonlinear regression fits
- Statistical learning techniques
- Principle component analysis, canonical correspondence analysis (CCA), cluster analysis
- Random forest

This course does not provide the mathematical background that students are expected to bring along when signing up to this course. Alternatively, students can consider some aspects of this course as a first exposure to solutions in experimental design and applied statistics and then deepen their understanding in follow-up statistical courses.

Lecture notes
Handouts will be available (in English)

Literature
A selection of suggested additional literature, especially for German speaking students will be presented in the introductory lecture.

Prerequisites / notice
This course is based on the course Mathematik IV: Statistik, passed in the 2nd year and the Bachelor's course "Wissenschaftliche Datenanalyse und Datenpräsentation" (751-0441-00L)

Taught competencies

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Tropical Cropping Systems, Soils and Livelihoods

Abstract
This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, Resilience to Soil physics.

Objective

- Part 1
 1. Overview of the major land use systems in Tropical agroecosystems in several contexts Africa
 2. Interdisciplinary analysis of agricultural production systems
 3. Knowledge on methods to assess Food and energy security in tropical agroecosystems

- Part 2
 4. Hands-on training on the use of field methods, diagnostic tools and survey methods.
 5. Gain practical knowledge on how to assess Food and Energy Security
 6. Collaboration in international students and stakeholders

Content

- Part 1 (Fall semester 2021)
 - This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, resilience to soil physics or agricultural economics. Students will engage in readings, discussions and exchanges on the specifics of tropical agriculture.

- Part 2 (Spring 2022)
 - On the second module, students gain practical knowledge on field - An integral part of the course is the two-week field project in a Tropical region, meeting several stakeholders of the agricultural and food systems and conducting various assessments related to Food and Energy Security.

Prerequisites / notice
Students can only join Part 2 if Part 1 was taken and validated first.

Taught competencies

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>assessed</td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Major in Agriculture Economics

Disciplinary Competences
Decision Making and Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0403-00L</td>
<td>Introduction to Marketing</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Brüggemann, F. von Wangenheim</td>
</tr>
</tbody>
</table>

Abstract

Students who take this course will increase their knowledge of marketing, its effect on consumer behavior and its role in creating long-term value. The course will introduce important concepts, frameworks and methods for marketing decision-making. A focus will be on managing customer relationships with the help of targeted promotions and data collected through digital technologies.

Objective

After taking the class, students will be able to:

1. Define what marketing is and describe its role at different stages of the value chain
2. Apply psychological theories to analyze behavior (e.g., purchase behavior) and identify the needs of (prospective) customers in consumer and business markets
3. Design elements of the marketing mix—e.g., develop new products and set prices—in a way that creates long-term value
4. Create an effective and efficient marketing mix that attracts and engages customers, e.g., by running targeted promotions
5. Use quantitative methods and customer data to manage relationships with customers

Content

The course will center on the importance of marketing as an activity that creates long-term value for the benefit of organizations and their customers. It will teach concepts, frameworks and methods for marketing decision making.

The structure of the course will roughly follow the different steps of the value chain, i.e., the set of activities necessary for offering valuable products to customers. First, it will introduce students to psychological theories that help explain behavior, e.g., purchase behavior. It will also familiarize students with different methods from marketing research, which can be used to identify the needs of customers. Next, the course will look at the role of the marketing mix in satisfying customer needs. For example, the class will cover new product development and pricing. A focus will be on managing profitable, long-term relationships with customers. To this end, students will gain in-depth knowledge on the use of targeted promotions and marketing data to (1) attract, (2) convert and engage and (3) retain customers.

The course is designed to be “hands-on”, with opportunities to apply skills on business cases involving real-world marketing data. It will feature guest lectures from industry experts.

The class might be taught in an in-person, remote or in a hybrid format.

Literature

The course might comprise mandatory and supplemental reading material. Other literature may be assigned in class.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Techniques and Technologies	assessed
Domain C - Social Competencies	Communication	not assessed
Domain D - Personal Competencies	Creative Thinking	not assessed

Resource Economics and Agricultural Policy

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-2903-00L</td>
<td>Evaluation of Agricultural Policies</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>R. Huber, R. Finger, C. Schader</td>
</tr>
</tbody>
</table>

Abstract

In this course, students get an overview of agricultural policy evaluations and their societal and political relevance. They learn to understand and apply the principles of scientific based evaluations of agricultural policies.
Objective
The course has four major learning objectives: 1) Students know the conceptual background of evaluations and can relate concepts in agricultural economics to the evaluation of policies. 2) They know the basics of how to design and implement a policy evaluation study. 3) Students can transfer their methodological knowledge from other agricultural economics courses to the context of agricultural policy evaluations (econometrics, modelling etc.). They make hands-on experiences of methodological challenges. 4) They can critically assess the science-policy interface of policy evaluations.

Content
The course consists of two blocks: First, students will learn the basics of how to design, implement and interpret agricultural policy evaluations. In this block, the conceptual embedding, the design and methodological tools as well as case studies are presented. Secondly, the students make hands-on experience using econometric and modelling tools in the context of agricultural policy evaluations. They apply their theoretical and empirical knowledge to Swiss case studies.

Lecture notes
Handouts and reading assignments

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed
Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making assessed
Problem-solving assessed
Project Management assessed
Domain C - Social Competencies
Cooperation and Teamwork assessed
Self-presentation and Social Influence assessed
Negotiation assessed
Domain D - Personal Competencies
Adaptability and Flexibility assessed
Critical Thinking assessed
Integrity and Work Ethics assessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed

701-1651-00L Environmental Governance

| W | 6 credits | 3G | E. Lieberherr |

Objective
To understand how an environmental problem may (not) become a policy and explain political processes, using basic concepts and techniques from political science.

Content
To analyze the evolution as well as the key elements of environmental governance.

To be able to identify the main challenges and opportunities for environmental governance and to critically discuss them with reference to various practical policy examples.

Key questions that this course seeks to answer: What are the core characteristics of environmental challenges from a policy perspective? What are key elements of 'environmental governance' and how legitimate and effective are these approaches in addressing persistent environmental challenges?

We recommend that students have (a) three-years BSc education of a (technical) university; (b) successfully completed Bachelor introductory course to environmental policy (Entwicklungen nationaler Umweltpolitik (or equivalent)) and (c) familiarity with key issues in environmental policy and some fundamental knowledge of one social science or humanities discipline (political science, economics, sociology, history, psychology, philosophy).

Prerequisites / notice
A detailed course schedule will be made available at the beginning of the semester.

During the lecture we will work with Moodle. We ask that all students register themselves on this platform before the lecture.

Development and International Policy

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-2103-00L</td>
<td>Socioeconomics of Agriculture</td>
<td>W+</td>
<td>2 credits</td>
<td>2V</td>
<td>S. Mann</td>
</tr>
</tbody>
</table>

Abstract
The main part of this lecture will examine constellations where hierarchies, markets or cooperation have been observed and described in the agricultural sector. On a more aggregated level, different agricultural systems will be evaluated in terms of main socioeconomic parameters like social capital or perceptions.

Objective
Students should be able to describe the dynamics of hierarchies, markets and cooperation in an agricultural context.
International Aid and Development

851-0626-01L

Content
- Introduction to Sociology
- Introduction to Socioeconomics
- Agricultural Administration: Path dependencies and efficiency issues
- Power in the Chain
- The farming family
- Occupational Choices
- Consumption Choices
- Locational Choices
- Common Resource Management in Alpine Farming
- Agricultural Cooperatives
- Societal perceptions of agriculture
- Perceptions of farming from within
- Varieties of agricultural systems and policies

Lecture notes

Assigned reading materials and slides
- Available via Moodle.

Literature
- see script

Objective
- Students have a theoretically and empirically sound understanding of the prospects and limitations of international development aid.

Abstract
- The course gives economic and empirical foundations for a sound understanding of the instruments, prospects and limitations of international development aid.

Prerequisites
- Basic economic knowledge is expected.

Number of participants limited to 60

Literature
- Articles and book abstracts will be uploaded to a course website.

Content
- Introduction to the Determinants of Underdevelopment; History of Aid; Aid and Development: Theories and Empirics; Political Economy of Aid; Experience and Impact of Aid; New Instruments of Aid: e.g., Micro-Finance, Budget-Support, Fair-Trade.

Literature
- Particularly suitable for students of D-ITET, D-USYS.

International Environmental Politics

860-0023-00L

Content
- This course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

Abstract
- The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.

Objective
- Students are able to critically discuss the various aid instruments of bi- and multilateral donors and NGOs.

Literature
- To facilitate your planning, the course is organized in terms of weekly units.

Number of participants limited to 60

Objective
- Particularly suitable for students of D-ITET, D-USYS.

Abstract
- This course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units.
2. Reading assignments, available via Moodle, for a few selected course units.
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

Lecture notes
- To facilitate your planning, the course is organized in terms of weekly units.

Prerequisites / notice
- Basic economic knowledge is expected.

Methodology Competences

Methods in Agricultural Economics

Data: 11.11.2021 12:40

Autumn Semester 2021
The general objective of the course is to enable students to understand the basic principles of empirical studies. After successfully passing the class, they will be able to formulate research questions, design empirical studies, and analyze data by using basic statistical approaches.

Therefore, this class introduces problems and key concepts of empirical research, which might be qualitative or quantitative in its nature. Concerning qualitative research, students learn how to conduct and evaluate interviews. In the area of quantitative research, they learn how to apply measurement and scaling methods and conduct experiments. In addition, basic statistical analyses like a variance analysis and how to conduct it in a standard statistical software package like SPSS are also part of the lecture. The lessons learned from the lecture will empower students to critically assess the quality and outcomes of studies published in the media and scientific journals, which might form a basis for their decision-making. We recommend the lecture also to students without basic statistical skill, who plan to attend more advanced lectures in the field of artificial intelligence such as Marketing Analytics.

The lecture will be taught online this fall semester. Therefore, it involves group work, where students form groups in order to create small learning videos, which cover small parts of the lecture. These videos will be shown and discussed in the online lecture and will make up 30% of the final grade. Part of this assignment will be the evaluation of videos from other students. The preparation of the videos will also prepare students for the final exam. In addition to that, there will be some non-mandatory online exercises as an additional opportunity to prepare for the exam.

Literature

- Angrist, J.D. and Jörn-Steffen Pischke. Mostly Harmless Econometrics.

The course will tentatively cover the following subjects:
- review of ordinary least squares (OLS) estimation
- instrumental variable estimation and two-stage least squares estimation
- seemingly unrelated regression models
- simultaneous equation models
- maximum likelihood estimation
- binary response models
- count data models
- censored and truncated regression models
- sample selection models
- treatment effect models
- static linear panel data models (random effects and fixed effects estimation)

For the theoretical portions of the lectures, we will prepare slides for in-class discussion. Slides will be distributed electronically before each lecture.

For the applied portion of the lectures, we will provide STATA do files, log files, and data sets.

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:
- Angrist, J.D. and Jörn-Steffen Pischke. Mostly Harmless Econometrics.

Problem sets will also be made available after every lecture. These problem sets will not be collected or graded, but students can use them in order to prepare for the final exam. Solutions will be made available in the following lecture.

Concerning quantitative research, students learn how to conduct and evaluate interviews. In the area of qualitative research, they learn how to apply measurement and scaling methods and conduct experiments. In addition, basic statistical analyses like a variance analysis and how to conduct it in a standard statistical software package like SPSS are also part of the lecture. The lessons learned from the lecture will empower students to critically assess the quality and outcomes of studies published in the media and scientific journals, which might form a basis for their decision-making. We recommend the lecture also to students without basic statistical skill, who plan to attend more advanced lectures in the field of artificial intelligence such as Marketing Analytics.

The lecture will be taught online this fall semester. Therefore, it involves group work, where students form groups in order to create small learning videos, which cover small parts of the lecture. These videos will be shown and discussed in the online lecture and will make up 30% of the final grade. Part of this assignment will be the evaluation of videos from other students. The preparation of the videos will also prepare students for the final exam. In addition to that, there will be some non-mandatory online exercises as an additional opportunity to prepare for the exam.

Literature

- Angrist, J.D. and Jörn-Steffen Pischke. Mostly Harmless Econometrics.

Introduction to Mathematical Optimization

- Quantification and measurement of risk
- Risk preferences, Expected Utility Theory, Cumulative Prospect Theory
- Production and input use decisions under risk
- Portfolio Theory and Farm Diversification
- Forwards, Futures, Crop Insurance
- Weather Index Insurance and Satellite Imagery
- Empirical Applications using R

Dynamic Simulation in Agricultural and Regional Economics

Abstract
In this class, students learn the basics of system dynamics and its application to agricultural and regional economic questions. In the second half of the class, students develop their own simulation model, which they evaluate potential interventions for improving the economic as well as the ecological sustainability of food systems.

Objective
- Students learn the basic theory and practice of dynamic simulation
- Students can develop, analyze and extend a dynamic simulation model and interpret its results.
- By applying the developed simulation model, students gain insights into food system issues. They also learn to recognize the benefits and pitfalls of dynamic simulation, both from a theoretical and an applied perspective.

Systems Dynamics and Complexity

Abstract
Finding solutions: what is complexity, problem solving cycle.

Objective
A successful participant of the course is able to:
- understand why most real problems are not simple, but require solution methods that go beyond algorithmic and mathematical approaches
- apply the problem solving cycle as a systematic approach to identify problems and their solutions
- calculate project schedules according to the critical path method
- setup and run systems dynamics models by means of the Vensim software
- identify feedback cycles and reasons for unintended systems behavior
- analyse the stability of nonlinear dynamical systems and apply this to macroeconomic dynamics

Content
Why are problems not simple? Why do some systems behave in an unintended way? How can we model and control their dynamics? The course provides answers to these questions by using a broad range of methods encompassing systems oriented management, classical systems dynamics, nonlinear dynamics and macroeconomic modeling.

The course is structured along three main tasks:
1. Finding solutions
2. Implementing solutions
3. Controlling solutions

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions.

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed.

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles.

Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM. Another objective of the self-study tasks is to practice efficient communication of such concepts. These are provided as home work and two of these will be graded (see "Prerequisites")

Principles of Macroeconomics

Abstract
This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective
This lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems.
This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.

Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.

The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15062) contains announcements, course information and lecture slides.

This book can also be used for the course ‘363-0503-00L Principles of Microeconomics’ (Filippini).

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Project Management and Communication of Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

This course has been restructured due to Covid-19 restrictions, part I (2 CP) takes place in Autumn 2021, part II (3 CP) in Spring 2022, with an excursion/fieldwork. For more information, please contact the lecturer: kenza.benabderrazik@usys.ethz.ch

Abstract

This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, Resilience to Soil physics.

Objective

Part 1

1. Overview of the major land use systems in Tropical agroecosystems in several contexts Africa
2. Interdisciplinary analysis of agricultural production systems
3. Knowledge on methods to assess Food and energy security in tropical agroecosystems

Part 2

1. Hands-on training on the use of field methods, diagnostic tools and survey methods.
2. Gain practical knowledge on how to assess Food and Energy Security
3. Collaboration in international students and stakeholders

Content

Part 1 (Fall semester 2021)

This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, resilience to soil physics or agricultural economics.

Part 2 (Spring 2022)

On the second module, students gain practical knowledge on field - An integral part of the course is the two-week field project in a Tropical region, meeting several stakeholders of the agricultural and food systems and conducting various assessments related to Food and Energy Security.

Prerequisites / notice

Students can only join Part 2 if Part 1 was taken and validated first.

A selection of 20 students for the Part 2 will be done on the basis of several elements. We would require the students enrolled to the class to send a short cover letter (1-page max.) by September 28th 2021, justifying your motivation to enroll to this class.
Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
assessed

Domain C - Social Competencies
Communication
assessed

Domain D - Personal Competencies
Adaptability and Flexibility
assessed

Professional Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-0210-00L</td>
<td>Professional Internship</td>
<td>O</td>
<td>30 credits</td>
<td></td>
<td>B. Dorn</td>
</tr>
</tbody>
</table>

Abstract

Objective
Im Berufspraktikum führen die Studierenden eine angemessene, anspruchsvolle Aufgabe im beruflichen Umfeld durch. Sie bearbeiten eine definierte Aufgabenstellung oder ein (Teil-) Projekt im Bereich der Agrarwissenschaften. Dabei wenden sie im Studium erworbene fachliche, überfachliche und methodische Kompetenzen im Arbeitsalltag an und erweitern und vertiefen diese. Zudem reflektieren und präsentieren sie die geleistete Praktikumsarbeit.

Prerequisites / notice
Der Praktikumsaufenthalt wird in der Regel im dritten Master-Semester, in jedem Fall vor Beginn der Master-Arbeit absolviert. Er kann erst absolviert werden, wenn:
• die Bachelor-Arbeit im Studiensekretariat abgegeben wurde;
• eine Einschreibung ins Master-Studium Agrarwissenschaften erfolgt ist;
• allfällige Zulassungsauffälligkeiten erfüllt sind.

Minors

Agricultural Economics and Policy

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-2903-00L</td>
<td>Evaluation of Agricultural Policies</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>R. Huber, R. Finger, C. Schader</td>
</tr>
</tbody>
</table>

Abstract
In this course, students get an overview of agricultural policy evaluations and their societal and political relevance. They learn to understand and apply the principles of scientific based evaluations of agricultural policies.

Objective
The course has four major learning objectives: 1) Students know the conceptual background of evaluations and can relate concepts in agricultural economics to the evaluation of policies. 2) They know the basics of how to design and implement a policy evaluation study. 3) Students can transfer their methodological knowledge from other agricultural economics courses to the context of agricultural policy evaluations (econometrics, modelling etc.). They make hands-on experiences of methodological challenges. 4) They can critically assess the science-policy interface of policy evaluations.

Content
The course consists of two blocks: First, students will learn the basics of how to design, implement and interpret agricultural policy evaluations. In this block, the conceptual embedding, the design and methodological tools as well as case studies are presented. Secondly, the students make hands-on experience using econometric and modelling tools in the context of agricultural policy evaluations. They apply their theoretical and empirical knowledge to Swiss case studies.

Lecture notes
Handouts and reading assignments

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
assessed
Techniques and Technologies
assessed

Domain B - Method-specific Competencies
Analytical Competencies
assessed
Decision-making
assessed

Domain C - Social Competencies
Communication
assessed
Problem-solving
assessed

Domain D - Personal Competencies
Cooperation and Teamwork
assessed
Critical Thinking
assessed

Management for Enterprises in the Agri-Food-Chain II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-2205-00L</td>
<td>Management for Enterprises in the Agri-Food-Chain II</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>M. Weber</td>
</tr>
</tbody>
</table>

Abstract
Advanced Management in the Agri-Food Chain: Framework and models for management of organizations in the Agri-Food Chain in a complex environment

Objective
After the lecture the students ...

Content
In the lecture the following contents will be treated:
- State, reasons and effects of complexity in the organizational world.
- A basic framework for shaping and governing intelligent organizations.
- Selected contemporary models for managing in the complex organizational world.
- Transfer and adaption of the models to organizations in the Agri-Food Chain.

Lecture notes
Reader with selected contents.

Prerequisites / notice
- Vorlesung “Management für Unternehmen der Agrar- & Ernährungswirtschaft I” in D-USYS

Taught competencies
Domain A - Subject-specific Competencies
Techniques and Technologies
assessed
Analytical Competencies
assessed
Decision-making
assessed

Domain B - Method-specific Competencies
Problem-solving
assessed
Communication
assessed

Domain C - Social Competencies
Cooperation and Teamwork
assessed
Critical Thinking
assessed

Socioeconomics of Agriculture

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-2103-00L</td>
<td>Socioeconomics of Agriculture</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>S. Mann</td>
</tr>
</tbody>
</table>

Abstract
The main part of this lecture will examine constellations where hierarchies, markets or cooperation have been observed and described in the agricultural sector. On a more aggregated level, different agricultural systems will be evaluated in terms of main socioeconomic parameters like social capital or perceptions.
Objective: Students should be able to describe the dynamics of hierarchies, markets and cooperation in an agricultural context.

Content:
- Introduction to Sociology
- Introduction to Socioeconomics
- Agricultural Administration: Path dependencies and efficiency issues
- Power in the Chain
- The farming family
- Occupational Choices
- Consumption Choices
- Locational Choices
- Common Resource Management in Alpine Farming
- Agricultural Cooperatives
- Societal perceptions of agriculture
- Perceptions of farming from within
- Varieties of agricultural systems and policies

Lecture notes:

Prerequisites / notice:
Basic economic knowledge is expected.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lectures</th>
<th>View</th>
<th>Prerequisites / Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-1573-00L</td>
<td>Dynamic Simulation in Agricultural and Regional</td>
<td>W 2</td>
<td>2V</td>
<td>B. Kopainsky</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Introduction to Sociology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Introduction to Socioeconomics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Agricultural Administration: Path dependencies and efficiency issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Power in the Chain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The farming family</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Occupational Choices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consumption Choices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Locational Choices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Common Resource Management in Alpine Farming</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Agricultural Cooperatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Societal perceptions of agriculture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perceptions of farming from within</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Varieties of agricultural systems and policies</td>
</tr>
</tbody>
</table>

751-0423-00L	Risk Analysis and Risk Management in Agriculture	W 3	2G	R. Finger	Risk Analysis and Risk Management in Agriculture
	Objective				Creating and analyzing a simulation model
					Advanced simulation models for risk analysis
					Quantification and measurement of risk
					Risk preferences, Expected Utility Theory, Cumulative Prospect Theory
					Production and input use decisions under risk
					Portfolio Theory and Farm Diversification
					Forward, Futures, Crop Insurance
					Weather Index Insurance and Satellite Imagery
					Empirical Applications using R

	Objective				Understanding and conducting empirical research
					Conducting research projects and analyzing data
					Evidence-based decision-making for statistical approaches

851-0626-01L	International Aid and Development	W+ 2	2V	K. Harttgen, I. Günther	International Aid and Development
	Objective				Basic knowledge of economics
					Number of participants limited to 60
					Preparatory assignments and projects for students

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 38 of 2152
The course gives economic and empirical foundations for a sound understanding of the instruments, prospects and limitations of international development aid.

Students have a theoretically and empirically sound understanding of the prospects and limitations of international development aid.

Introduction to the Determinants of Underdevelopment; History of Aid; Aid and Development: Theories and Empirics; Political Economy of Aid; Experience and Impact of Aid; New Instruments of Aid; e.g. Micro-Finance, Budget-Support; Fair-Trade.

Articles and book abstracts will be uploaded to a course website.

Agriculture and Environment

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-5100-00L</td>
<td>Biogeochemistry and Sustainable Management</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>W. Eugster, V. Klaus</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course focuses on the interactions between ecology, biogeochemistry and management of agro- and forest ecosystems, thus, coupled human-environmental systems. Students learn how human impacts on ecosystems via management or global change are mainly driven by effects on biogeochemical cycles and thus ecosystem functioning, but also about feedback mechanisms of terrestrial ecosystems. Students will analyse and understand the complex and interacting processes of ecology, biogeochemistry and management of agroecosystems, be able to analyze large meteorological and flux data sets, and evaluate the impacts of weather events and management practices, based on real-life data. Moreover, students will be able to coordinate and work successfully in small (interdisciplinary) teams. Agroecosystems play a major role in all landscapes, either for production purposes, ecological areas or for recreation. The human impact of any management on the environment is mainly driven by effects on biogeochemical cycles. Effects of global change impacts will also act via biogeochemistry at the soil-biosphere-atmosphere-interface. Thus, ecosystem functioning, i.e., the interactions between ecology, biogeochemistry and management of terrestrial systems, is the science topic for this course. Students will gain profound knowledge about biogeochemical cycles and greenhouse gas fluxes in managed grassland and/or cropland ecosystems. Responses of agroecosystems to the environment, e.g., to climate and weather events, but also to management will be studied. Different meteorological and greenhouse gas flux data will be analysed (using R) and assessed in terms of production, greenhouse gas budgets and carbon sequestration. Thus, students will learn about the complex interactions of a coupled human-environmental system. Students will work with real-life data from the long-term measurement network Swiss FluxNet. Data from the intensively managed grassland site Chamau will be used to investigate the biosphere-atmosphere exchange of CO₂, H₂O, N₂O and CH₄. Functional relationships will be identified, greenhouse gas budgets will be calculated for different time periods and in relation to management over the course of a year.</td>
<td>Handouts will be available on the webpage of the course.</td>
<td>Will be discussed in class.</td>
<td>Prerequisites / notice: Prequisites: Attendance of introductory courses in plant ecophysiology, ecology, and grassland or forest sciences. Knowledge of data analyses in R and statistics. Course will be taught in English.</td>
<td></td>
</tr>
<tr>
<td>751-3405-00L</td>
<td>Chemical Nature of Nutrients and their Availability to Plants: The Case of Phosphorus</td>
<td>W</td>
<td>4 credits</td>
<td>4G</td>
<td>E. Frossard, L. P. Schönholzer, M. Wiggenhauser</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course discusses the mechanistic relationships between nutrient speciation in fertilizer and nutrient uptake by plants using phosphorus as an example. The course involves theoretical aspects of nutrient cycling, laboratory work, data analysis and presentation, and the use of advanced methods in plant nutrition studies. Students will gain profound knowledge about biogeochemical cycles and greenhouse gas fluxes in managed grassland and/or cropland ecosystems. Responses of agroecosystems to the environment, e.g., to climate and weather events, but also to management will be studied. Different meteorological and greenhouse gas flux data will be analysed (using R) and assessed in terms of production, greenhouse gas budgets and carbon sequestration. Thus, students will learn about the complex interactions of a coupled human-environmental system. Students will work with real-life data from the long-term measurement network Swiss FluxNet. Data from the intensively managed grassland site Chamau will be used to investigate the biosphere-atmosphere exchange of CO₂, H₂O, N₂O and CH₄. Functional relationships will be identified, greenhouse gas budgets will be calculated for different time periods and in relation to management over the course of a year.</td>
<td>Documents will be distributed during the lecture.</td>
<td>Documents will be distributed during the lecture.</td>
<td>Prerequisites / notice: Priority will be given to students in Agricultural Sciences</td>
<td></td>
</tr>
<tr>
<td>751-5125-00L</td>
<td>Stable Isotope Ecology of Terrestrial Ecosystems</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>R. A. Werner, N. Buchmann, A. Gessler, M. Lehmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course provides an overview of the applicability of stable isotopes (carbon 13C, nitrogen 15N, oxygen 18O and hydrogen 2H) to process-oriented ecological research. Topics focus on stable isotopes as indicators for the origin of pools and fluxes, partitioning of composite fluxes as well as to trace and integrate processes. In addition, students carry out a small project during lab sessions. Students will become familiar with the use of radioisotopes and nuclear magnetic resonance as approaches to measure nutrient availability and forms, respectively and they will know the limits of these techniques. Students will also have the opportunity to improve their laboratory and communication skills. The analyses of stable isotopes often provide insights into ecophysiological and ecological processes that otherwise would not be available with classical methods only. Stable isotopes proved useful to determine origin of pools and fluxes in ecosystems, to partition composite fluxes and to integrate processes spatially and temporally.</td>
<td>Lecture notes</td>
<td>Literature</td>
<td>Prerequisites / notice: The course will take place at the ETH experimental station in Eschikon Lindau. See the location of the station at: http://www.plantnutrition.ethz.ch/the-group/how-to-find-us.html</td>
<td>This course is based on fundamental knowledge about plant ecophysiology, soil science, and ecology in general. Course will be taught in English.</td>
</tr>
</tbody>
</table>

Agronomy and Plant Breeding

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-4104-00L</td>
<td>Alternative Crops</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>A. Walter, K. Berger Büter</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course provides an introduction to the applicability of stable isotopes to ecological research questions. Topics will focus on carbon (13C), nitrogen (15N), oxygen (18O) and hydrogen (2H) at natural isotope abundance and tracer levels. Lectures will be supplemented by intensive laboratory sessions, short presentations by students and computer exercises. This course will provide an introduction to the applicability of stable isotopes to ecological research questions. Topics will focus on carbon (13C), nitrogen (15N), oxygen (18O) and hydrogen (2H) at natural isotope abundance and tracer levels. Lectures will be supplemented by intensive laboratory sessions, short presentations by students and computer exercises.</td>
<td>Handouts will be available on the webpage of the course.</td>
<td>Will be discussed in class.</td>
<td>Prerequisites / notice: This course is based on the fundamental knowledge about plant ecophysiology, soil science, and ecology in general. Course will be taught in English.</td>
<td></td>
</tr>
</tbody>
</table>
Alien Organisms in Agriculture

The educational objectives cover both thematic competences and soft skills:

Thematic competences:
- Deepening of scientific knowledge in plant breeding
- Critical evaluation of current challenges and new concepts in plant breeding
- Promotion of collaboration and Master thesis projects with practical plant breeders
Soft skills:
- Independent literature research to get familiar with the selected topic
- Critical evaluation and consolidation of the acquired knowledge in an interdisciplinary team
- Establishment of a scientific presentation in an interdisciplinary team
- Representation and discussion of the teamwork outcome
- Establishing contacts and strengthening the network to national and international plant breeders and scientist

Content

Interesting topics related to plant breeding will be selected in close collaboration with the working group for plant breeding of the Swiss Society of Agronomy (SSA).

Lecturers

M. Maurhofer Bringolf, B. Studer, A. Hund

Prerequisites / notice

Peer-reviewed research articles, selected according to the topic.

Crop Health

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-5121-00L</td>
<td>Insect Ecology</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>C. De Moraes, M. Mescher, N. Stanczyk</td>
</tr>
<tr>
<td>751-4811-00L</td>
<td>Alien Organisms in Agriculture</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>J. Collatz, M. Meissle</td>
</tr>
<tr>
<td>701-0263-01L</td>
<td>Seminar in Evolutionary Ecology of Infectious Diseases</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>R. R. Regös, S. Bonhoeffer</td>
</tr>
<tr>
<td>751-4506-00L</td>
<td>Plant Pathology III</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>M. Maurhofer Bringolf</td>
</tr>
</tbody>
</table>

Abstract

Few crops dominate the crop rotations worldwide. Following the goal of an increased agricultural biodiversity, species such as buckwheat but also medicinal plants might become more important in future. The biology, physiology, stress tolerance and central aspects of the value-added chain of the above-mentioned and of other alternative crops will be depicted.

Objective

During this course, students learn to assess the potential of different minor or alternative crops compared to the dominant major crops based on their biological and agronomical features. Each student will assess and present a specific alternative crop of his or her choice based on information from scientific articles and Wikipedia. Wikipedia-entries will be generated.

Content

This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific papers. The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.

Content

2 credits

Material will be distributed during the course

Prerequisites / notice

A part of the course will take place in flipped classroom mode, i.e. the lectures on 28.9., 5.10., 19.10., 16.11. and 23.11. will be available as podcasts.

Abstract

This is an introductory class on insect ecology. During the course you will learn about insect interactions with, and adaptations to, their environment and other organisms, and the importance of insect roles in our ecosystems. This course includes lectures, small group discussions and outside readings.

Objective

The aim of the course is to gain an understanding of how insects have specialised and adapted to occupy diverse environmental niches and become vital to ecosystem processes. Important topics include: insect-plant interactions, chemical ecology, predator-prey interactions, vectors of disease, social insects, mutual and parasitic interactions and examining insect ecology in an evolutionary context.

Content

This part of the course will take place in flipped classroom mode, i.e. the lectures on 28.9., 5.10., 19.10., 16.11. and 23.11. will be available as podcasts.

Abstract

The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.

Content

This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific papers. The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.

Content

This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific papers. The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.

Content

This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific papers. The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.

Abstract

The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.

Content

This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific papers. The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.

Abstract

The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.

Content

This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific papers. The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.

Abstract

The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.

Content

This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific papers. The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.

Objective

Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.
Data Science and Technology for Agricultural Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-3001-00L</td>
<td>Environmental Systems Data Science</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>L. Pellissier, J. Payne, B. Stocker</td>
</tr>
<tr>
<td>401-6215-00L</td>
<td>Using R for Data Analysis and Graphics (Part I)</td>
<td>W+</td>
<td>1.5 credits</td>
<td>1G</td>
<td>M. Mächler</td>
</tr>
<tr>
<td>401-6217-00L</td>
<td>Using R for Data Analysis and Graphics (Part II)</td>
<td>W+</td>
<td>1.5 credits</td>
<td>1G</td>
<td>M. Mächler</td>
</tr>
</tbody>
</table>

Abstract

- Students are able to
- Use R for simple data analysis and graphics.
- They have knowledge of the software R, its graphical functions, important statistical functions, types of objects, models, and common programming language R.
- They are able to use R for plotting and creating graphics.
- They are able to use R for simple programming.
- They can use R for creating simple functions, basic types of objects.
- They are able to use R to perform basic statistical tests.
- They are able to use R to perform basic arithmetics.
- They can use R to read and write data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetic;
- They are able to use R for data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.
- They are able to use R for simple data analysis and graphics.
- They can use R for creating simple functions, basic types of objects.

Objective

- Describe steps of a typical data science project workflow.
- Conduct selected steps of a workflow on specifically prepared datasets, with a focus on choosing, fitting and evaluating appropriate algorithms and models.
- Critically think about the limits and implications of a method.
- Visualise data and results throughout the workflow.
- Access online resources to keep up with the latest data science methodology and deepen their understanding.

Content

- The data science workflow.
- Access and handle (large) datasets.
- Prepare and clean data.
- Analysis: data exploratory steps.
- Analysis: machine learning and computational methods.
- Evaluate results and analyse uncertainty.
- Visualisation and communication.

Prerequisites / notice

- The course resources will be provided via the Moodle web learning platform.
- As from FS 2019, subscribing via Mystudies should "automatically" make you a student participant of the Moodle course of this lecture, which is at:

Domain A - Subject-specific Competencies

<table>
<thead>
<tr>
<th>Competencies</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>not assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>not assessed</td>
</tr>
</tbody>
</table>
Copies of the slides and exercises will be provided on the course web page.

The course resources will be provided via the Moodle web learning platform. As from FS 2019, subscribing via Mystudies should "automatically" make you a student participant of the Moodle course of this lecture, which is at:

https://moodle-app2.let.ethz.ch/course/view.php?id=15522

751-5510-00L Introduction to Agricultural Robotics W+ 3 credits 2G S. Mintchev

Abstract
In this course, students will learn theoretical and practical aspects of robotics. Lectures will give an introduction to how robots operate in the real world. Students will apply the concepts learned in class on educational robots to simulate a weeding task.

Objective
After the course, students will be able to critically examine and select appropriate robotic solutions for agricultural applications. The learning objectives of the course are: (i) illustrate the principle of operation of the main components of a robotic system, (ii) analyse how the different robotic components are integrated and contribute to the functioning of a robotic system, and (iii) solve problems in the field of agriculture using robotic principles.

Content
Robots are becoming a key technology in the transition to smart farming and in supporting the agricultural needs of the 21st century. For example, robots enable site-specific fertilization, automated weeding, or livestock herding. The course gives an overview of robotic systems, beginning with their fundamental components (e.g., sensors, actuators, locomotion strategies) and gradually scaling up to the system level, illustrating the concepts of perception, robot control, obstacle avoidance and navigation. Exercises performed with an educational robot (Thymio) will complement the theoretical lectures providing a hands-on practical experience of the challenges of using these machines. During the course, students will gradually apply the theoretical and practical knowledge they are learning. To this end, students will work in small teams (2 to 3 members) to develop a robotic solution for an agricultural task of their choice. Students will learn to translate the task into meaningful requirements for a robotic system and critically select the most appropriate components to achieve the required robotic functions. Students will periodically present and discuss the development of this "robot design" exercise during presentations and in a journal report.

Lecture notes
Copies of the slides and exercises will be provided on the course web page.

Literature

Prerequisites / notice
No mandatory prerequisites, but it is preferable that students have a basic knowledge of computer programming.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Analytical Competencies</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Adaptability and Flexibility</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td></td>
<td>not assessed</td>
</tr>
</tbody>
</table>

701-0951-00L GIS - Introduction into Geoinformation Science and Technology W+ 5 credits 2V+3P M. A. M. Niederhuber

Abstract
Theoretical basics and fundamental concepts of Geographic Information Science (GIS) are imparted and subsequently further elaborated with the software ArcGIS.

Objective
Students are able to:
- elucidate the theoretical and conceptional foundations of geographic information systems (GIS)
- independently perform normal GIS work using commercial software and practical examples

Content
The course covers the following topics:
- What is GIS? What are spatial data?
- The representation of reality by means of spatial data models: vector, raster, TIN
- The four phases of data modelling: Spatial, conceptual, logical and physical model
- Possibilities of data collection
- Transition of reference frame
- Spatial Analysis I: query and manipulation of vector data
- Spatial Analysis II: operators and functions with raster data
- Digital elevation models and derived products
- Process modelling with vector and raster data
- Presentation possibilities of spatial data

One Friday is reserved for a field trip or guest speaker;
Functioning of Soil Systems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-5101-00L</td>
<td>Biogeochemistry and Sustainable Management</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>W. Eugster, V. Klaus</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course focuses on the interactions between ecology, biogeochemistry and management of agro- and forest ecosystems, thus, coupled human-environmental systems. Students learn how human impacts on ecosystems via management or global change are mainly driven by effects on biogeochemical mechanisms and thus ecosystem functioning, and also about feedback mechanisms of terrestrial ecosystems. Agroecosystems play a major role in all landscapes, either for production purposes, ecological areas or for recreation. The human impact of any management on the environment is mainly driven by effects on biogeochemical cycles. Effects of global change impacts will also act via biogeochemistry at the soil-biosphere-atmosphere-interface. Thus, ecosystem functioning, i.e., the interactions between ecology, biogeochemistry and management of terrestrial systems, is the science topic for this course. Students will gain profound knowledge about biogeochemical cycles and greenhouse gas fluxes in managed grassland and/or cropland ecosystems. Responses of agroecosystems to the environment, i.e., to climate and weather events, but also to management will be studied. Different meteorological and greenhouse gas flux data will be analyzed (using R) and assessed in terms of production, greenhouse gas budgets and carbon sequestration. Thus, students will learn about the complex interactions of a coupled human-environmental system. Students will work with real-life data from the long-term measurement network Swiss FluxNet. Data from the intensively managed grassland site Chamau will be used to investigate the biosphere-atmosphere exchange of CO2, H2O, N2O and CH4. Functional relationships will be identified, greenhouse gas budgets will be calculated for different time periods and in relation to management over the course of a year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will understand and analyse the complex and interacting processes of ecology, biogeochemistry and management of agroecosystems, be able to analyze large meteorological and flux data sets, and evaluate the impacts of weather events and management practices, based on real-life data. Moreover, students will be able to coordinate and work successfully in small (interdisciplinary) teams.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Agroecosystems play a major role in all landscapes, either for production purposes, ecological areas or for recreation. The human impact of any management on the environment is mainly driven by effects on biogeochemical cycles. Effects of global change impacts will also act via biogeochemistry at the soil-biosphere-atmosphere-interface. Thus, ecosystem functioning, i.e., the interactions between ecology, biogeochemistry and management of terrestrial systems, is the science topic for this course. Students will gain profound knowledge about biogeochemical cycles and greenhouse gas fluxes in managed grassland and/or cropland ecosystems. Responses of agroecosystems to the environment, i.e., to climate and weather events, but also to management will be studied. Different meteorological and greenhouse gas flux data will be analysed (using R) and assessed in terms of production, greenhouse gas budgets and carbon sequestration. Thus, students will learn about the complex interactions of a coupled human-environmental system. Students will work with real-life data from the long-term measurement network Swiss FluxNet. Data from the intensively managed grassland site Chamau will be used to investigate the biosphere-atmosphere exchange of CO2, H2O, N2O and CH4. Functional relationships will be identified, greenhouse gas budgets will be calculated for different time periods and in relation to management over the course of a year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Handouts will be available on the webpage of the course. Will be discussed in class.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: Attendance of introductory courses in plant ecophysiology, ecology, and grassland or forest sciences. Knowledge of data analyses in R and statistics. Course will be taught in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>751-5115-00L</td>
<td>Current Aspects of Nutrient Cycle in Agro-Ecosystems</td>
<td>W</td>
<td>2</td>
<td>1S</td>
<td>E. Frossard</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The seminar concerns current aspects and research related to nutrient cycles in agro-ecosystems. The theme of the next seminar is “Integrated Nutrient Management to maximize nutrient use efficiency in productive agricultural systems: Insights from long-term field experiments”. The seminar concerns current aspects and research related to nutrient cycles in agro-ecosystems. The theme of the next seminar is “Integrated Nutrient Management to maximize nutrient use efficiency in productive agricultural systems: Insights from long-term field experiments”. The students will analyze and connect the results published for selected field experiments in a group work. They will present their analysis in a report and in an oral presentation. The seminar is composed by presentations of experts and of the students. The presentations will be synthesized during a final discussion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Analyze publications on long-term field experiments regarding their content on integrated nutrient management; link this information, write it up in a report and present the results in an oral presentation; work in a group; link questions and contribute to the discussion following the oral presentations; link the information to answer overarching questions and recommendations; expand the knowledge on nutrient cycles and nutrient management in the agro-ecosystem; learn about the importance of long-term field experiment to answer questions on the sustainability of agricultural systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The seminar concerns current aspects and research related to nutrient cycles in agro-ecosystems. The theme of the next seminar is “Integrated Nutrient Management to maximize nutrient use efficiency in productive agricultural systems: Insights from long-term field experiments”. The students will analyze and connect the results published for selected field experiments in a group work. They will present their analysis in a report and in an oral presentation. The seminar is composed by presentations of experts and of the students. The presentations will be synthesized during a final discussion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Will be discussed in class.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: Attendance of introductory courses in plant ecophysiology, ecology, and grassland or forest sciences. Knowledge of data analyses in R and statistics. Course will be taught in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>751-3405-00L</td>
<td>Chemical Nature of Nutrients and their Availability to Plants: The Case of Phosphorus</td>
<td>W</td>
<td>4</td>
<td>4G</td>
<td>E. Frossard, L. P. Schönholzer, M. Wiggenhauser</td>
</tr>
<tr>
<td></td>
<td>Priority will be given to students in Agricultural Sciences.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The course discusses the mechanistic relationships between nutrient speciation in fertilizer and nutrient uptake by plants using phosphorus as an example. The course involves theoretical aspects of nutrient cycling, laboratory work, data analysis and presentation, and the use of advanced methods in plant nutrition studies. At the end of this course, participants will obtain a mechanistic understanding of why and how the speciation of phosphorus in fertilizer can affect its release to the soil solution and subsequent uptake by plants. Students will be able to use this information for the development of fertilization schemes that maximize the nutrient uptake and fertilizer efficiency of crops or pastures. During the course, participants will become familiar with the use of radioisotopes and nuclear magnetic resonance as approaches to measure nutrient availability and forms, respectively and they will know the limits of these techniques. Students will also have the opportunity to improve their laboratory and communication skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course discusses the mechanistic relationships between nutrient speciation in fertilizer and nutrient uptake by plants using phosphorus as an example. The course involves theoretical aspects of nutrient cycling, laboratory work, data analysis and presentation, and the use of advanced methods in plant nutrition studies. At the end of this course, participants will obtain a mechanistic understanding of why and how the speciation of phosphorus in fertilizer can affect its release to the soil solution and subsequent uptake by plants. Students will be able to use this information for the development of fertilization schemes that maximize the nutrient uptake and fertilizer efficiency of crops or pastures. During the course, participants will become familiar with the use of radioisotopes and nuclear magnetic resonance as approaches to measure nutrient availability and forms, respectively and they will know the limits of these techniques. Students will also have the opportunity to improve their laboratory and communication skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lecture notes
Documents will be distributed during the lecture.

Literature
Documents will be distributed during the lecture.

Prerequisites / notice
The lecture will take place at the ETH experimental station in Eschikon Lindau. See the location of the station at:
http://www.plantnutrition.ethz.ch/the-group/how-to-find-us.html

We strongly advise students who are planning to be absent for more than one week during the semester NOT to visit this course.

Students must have visited the plant nutrition lectures in the 3rd and 6th semesters and the lecture pedosphere in the 3rd semester of the agricultural study program of the ETH (or bring an equivalent knowledge). This knowledge is indispensable for this 7th semester.

751-5125-00L Stable Isotope Ecology of Terrestrial Ecosystems
W 2 credits 2G R. A. Werner, N. Buchmann, A. Gessler, M. Lehmann

Number of participants limited to 20.

Abstract
This course provides an overview about the applicability of stable isotopes (carbon 13C, nitrogen 15N, oxygen 18O and hydrogen 2H) to process-oriented ecological research. Topics focus on stable isotopes as indicators for the origin of pools and fluxes, partitioning of composite fluxes as well as to trace and integrate processes. In addition, students carry out a small project during lab sessions.

Objective
Students will be familiar with basic and advanced applications of stable isotopes in studies on plants, soils, water and trace gases, know the relevant approaches, concepts and recent results in stable isotope ecology, know how to combine classical and modern techniques to solve ecophysiological or ecological problems, learn to design, carry out and interpret a small IsoProject, practice to search and analyze literature as well as to give an oral presentation.

Content
The analyses of stable isotopes often provide insights into ecophysiological and ecological processes that otherwise would not be available with classical methods only. Stable isotopes proved useful to determine origin of pools and fluxes in ecosystems, to partition composite fluxes and to integrate processes spatially and temporally.

This course will provide an introduction to the applicability of stable isotopes to ecological research questions. Topics will focus on carbon (13C), nitrogen (15N), oxygen (18O) and hydrogen (2H) at natural isotope abundance and tracer levels. Lectures will be supplemented by intensive laboratory sessions, short presentations by students and computer exercises.

Lecture notes
Handouts will be available on the webpage of the course.

Literature
Will be discussed in class.

Prerequisites / notice
This course is based on fundamental knowledge about plant ecophysiology, soil science, and ecology in general. Course will be taught in English.

701-0533-00L Soil and Water Chemistry
W 3 credits 2G R. Kretzschmar, D. I. Christl, L. Winkel

Abstract
This course covers chemical and biogeochemical processes in soils and water and their influence on the behavior and cycling of nutrients and pollutants in terrestrial and aquatic systems. Approaches for quantitative modeling of the processes are introduced and applied in selected examples.

Objective
1. Understanding of important chemical properties and processes of soils and water and their influence on the behavior (e.g., chemical speciation, bioavailability, mobility) of nutrients and pollutants.
2. Quantitative applications of chemical equilibria to processes in natural systems.

Content
Chemical equilibria in aqueous solutions, gas equilibria, precipitation and dissolution of mineral phases, silicate weathering, weathering kinetics, formation of secondary minerals (clay minerals, oxides, sulfides), redox processes in natural systems, pH buffering and acidification, salinity and salinization, environmental behavior of selected essential and toxic trace elements.

Lecture notes
Lecture slides on Moodle

Literature
– Chapters 1, 3, 4, 6, 7 and 11 in Sigg/Stumm – Aquatische Chemie, 6. Auflage, vdf, 2016.

Prerequisites / notice
The lecture courses Pedosphere and Hydrosphere are highly recommended.

701-0535-00L Environmental Soil Physics/Vadose Zone Hydrology
W 3 credits 2V+1U A. Carminati, P. U. Lehmann Grunder

Abstract
The course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/ near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales.

Objective
Students are able to
- characterize porous media at different scales
- parameterize structural, flow and transport properties of partially-saturated porous media
- quantify driving forces and resulting fluxes of water, solute, and heat in soils
Water limitation is a primary constraint on plant growth and terrestrial fluxes worldwide. In this course, the principles of water flow in soil are discussed, with particular attention on the effect of drought on root water uptake, transpiration and plant growth. Strategies of plants to tolerate drought are discussed.

The students are able to:
- explain and compare systematically the drivers of water stress to plants;
- solve the equations of water flow in soil and plants and to calculate plant water status for varying pedoclimatic conditions and plant traits;
- to critically review and present one of plants to tolerate drought are discussed.

Week 1: Introduction, soil and vadose zone, units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil water content; soil texture; particle size distributions;

Week 2: Pore scale consideration, pore sizes, shapes and connectivity, coordination number, continuity and percolation, surface area, soil structure

Week 3: Capillarity – capillary rise, surface tension, Young-Laplace equation; Washburn equation; numerical lab

Week 4: Soil Water Potential - the energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); units and calculations and measurement of equilibrium soil water potential components

Week 5: Soil water characteristics - definitions and measurements; parametric models, fitting and interpretation, hysteresis; demo lab

Week 6: Saturated water flow in soils - laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; permeability and hydraulic conductivity, measurement and theoretical concepts (Kozeny-Carman)

Week 7: Unsaturated water flow in soils - unsaturated hydraulic conductivity models and applications; Richards equation, approximations of Richards equation for steady state; approximate solutions to infiltration (Green-Ampt, Philip); outlook on unstable and preferential flow

Week 8: Numerical solution of Richards equation – using Hydrus1D for simulation of unsaturated flow; choosing class project

Week 9: Energy balance and land atmosphere interactions - radiation and energy balance; evapotranspiration, definitions and estimation; evaporation stages and characteristic length; soil thermal properties; steady state heat flow; non-steady heat flow

Week 10: Root water uptake and transpiration

Week 11: Solute and gas transport in soils; transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion equation; solutions for pulse and step solute application; parameter estimation; salt balance.

Week 12: Summary of lectures; solution of old exam

Week 13: Written semester-end exam

Week 14: Short presentations of Hydrus class projects; discussion of written exam

Supplemental textbook (not mandatory) - Introduction to Environmental Soil Physics, by: D. Hillel

Collaboration in international students and stakeholders

Gain practical knowledge on how to assess Food and Energy Security

Hands-on training on the use of field methods, diagnostic tools and survey methods.

Interdisciplinary analysis of agricultural production systems

Overview of the major land use systems in Tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, Resilience to Soil physics.

Tropical Cropping Systems, Soils and Livelihoods

This course has been restructured due to Covid-19 restrictions, part I (2 CP) takes place in Autumn 2021, part II (3 CP) in Spring 2022, with an excursion/fieldwork. For more information, please contact the lecturer: kenza.benabderrazik@usys.ethz.ch

This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, Resilience to Soil physics.

Part 1

(1) Overview of the major land use systems in Tropical agroecosystems in several contexts Africa
(2) Interdisciplinary analysis of agricultural production systems
(3) Knowledge on methods to assess Food and energy security in tropical agroecosystems

Part 2

(4) Hands-on training on the use of field methods, diagnostic tools and survey methods.
(5) Gain practical knowledge on how to assess Food and Energy Security
(6) Collaboration in international students and stakeholders
Content

Part 1 (Fall semester 2021)
This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, resilience to soil physics or agricultural economics. Students will engage in readings, discussions and exchanges on the specificities of tropical agriculture.

Part 2 (Spring 2022)
On the second module, students gain practical knowledge on field. - An integral part of the course is the two-week field project in a Tropical region, meeting several stakeholders of the agricultural and food systems and conducting various assessments related to Food and Energy Security.

Prerequisites / notice
Students can only join Part 2 if Part 1 was taken and validated first. A selection of 20 students for the Part 2 will be done on the basis of several elements. We would require the students enrolled to the class to send a short cover letter (1-page max.) by September 28th 2021, justifying your motivation to enroll to this class.

Taught competencies
Domain A - Subject-specific Competencies
- Techniques and Technologies assessed

Domain C - Social Competencies
- Communication assessed
- Cooperation and Teamwork assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity assessed

Domain D - Personal Competencies
- Adaptability and Flexibility assessed
- Critical Thinking assessed
- Self-awareness and Self-reflection assessed
- Self-direction and Self-management assessed

★★ General Crop Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-4104-00L</td>
<td>Alternative Crops</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>A. Walter, K. Berger Bütler</td>
</tr>
<tr>
<td>Abstract</td>
<td>Few crops dominate the crop rotations worldwide. Following the goal of an increased agricultural biodiversity, species such as buckwheat but also medicinal plants might become more important in future. The biology, physiology, stress tolerance and central aspects of the value-added chain of the above-mentioned and of other alternative crops will be depicted.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>During this course, students learn to assess the potential of different minor or alternative crops compared to the dominant major crops based on their biological and agronomical features. Each student will assess and present a specific alternative crop of his or her choice based on information from scientific articles and Wikipedia. Wikipedia-entries will be generated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>751-3603-00L</td>
<td>Current Challenges in Plant Breeding</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>B. Studer, A. Hund</td>
</tr>
<tr>
<td>Abstract</td>
<td>The seminar 'Current challenges in plant breeding' aims to bring together national and international experts in plant breeding to discuss current activities, latest achievements and future prospective of a selected topic/area in plant breeding. The topic this year will be: 'Plant Breeding a(nd) Data Science'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The educational objectives cover both thematic competences and soft skills: Thematic competences: - Deepening of scientific knowledge in plant breeding - Critical evaluation of current challenges and new concepts in plant breeding - Promotion of collaboration and Maxter thesis projects with practical plant breeders Soft skills: - Independent literature research to get familiar with the selected topic - Critical evaluation and consolidation of the acquired knowledge in an interdisciplinary team - Establishment of a scientific presentation in an interdisciplinary team - Presentation and discussion of the teamwork outcome - Establishing contacts and strengthening the network to national and international plant breeders and scientist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Interesting topics related to plant breeding will be selected in close collaboration with the working group for plant breeding of the Swiss Society of Agronomy (SSA).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Peer-reviewed research articles, selected according to the topic.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Participation in the BSc course 'Pflanzenzüchtung' is strongly recommended, a completed course in 'Molecular Plant Breeding' is highly advantageous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

751-5121-00L	Insect Ecology	W	2	2V	C. De Moraes, M. Mescher, N. Stanczyk
Abstract	This is an introductory class on insect ecology. During the course you will learn about insect interactions with, and adaptations to, their environment and other organisms, and the importance of insect roles in our ecosystems. This course includes lectures, small group discussions and outside readings.				
Objective	The aim of the course is to gain an understanding of how insects have specialised and adapted to occupy diverse environmental niches and become vital to ecosystem processes. Important topics include: insect-plant interactions, chemical ecology, predator-prey interactions, vectors of disease, social insects, mutual and parasitic interactions and examining insect ecology in an evolutionary context.				
Lecture notes	Provided to students through Moodle				
Literature	Selected required readings (peer reviewed literature). Optional recommended readings with additional information.				

751-4811-00L	Alien Organisms in Agriculture	W	2	2G	J. Collatz, M. Meissle
Abstract	The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production.				
Objective	Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options.				
Content	Alien organisms in agriculture is a topic that receives an increasing awareness among farmers, agricultural scientists, regulators and the general public. Students of this course will learn about the nature of alien organisms such as invasive species, biocontrol organisms and genetically modified organisms. With a particular focus on arthropods, plants and their interactions we will look at the potential threats the novel organisms pose, the benefits they provide and how both of these effects can be scientifically assessed. Students will learn how the topic of alien organisms in agriculture is intrinsically tied to policy making and regulation and get to know current examples and future challenges in research. In the last part of the course students will be able to apply the acquired knowledge in a practical exercise (case study).				
Lecture notes	Material will be distributed during the course				
701-0263-01L Seminar in Evolutionary Ecology of Infectious Diseases

Objective: This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific literature and trace the development of ideas related to understanding the ecology and evolutionary biology of infectious diseases.

Content: A core set of ~10 classic publications encompassing unifying themes in infectious disease ecology and evolution, such as virulence, resistance, metapopulations, networks, and competition will be presented and discussed. Pathogens will include bacteria, viruses and fungi. Hosts will include animals, plants and humans.

Lecture notes / Literature: Publications and class notes can be downloaded from a web page announced during the lecture.

751-3405-00L Biogeochemistry and Sustainable Management

Abstract: This course focuses on the interactions between ecology, biogeochemistry and management of agro- and forest ecosystems, thus, coupled human-environmental systems. Students learn how human impacts on ecosystems via management or global change are mainly driven by effects on biogeochemical cycles and thus ecosystem functioning, but also about feedback mechanisms of terrestrial ecosystems.

Objective: Students will analyse and understand the complex and interacting processes of ecology, biogeochemistry and management of agroecosystems, be able to analyze large meteorological and flux data sets, and evaluate the impacts of weather events and management practices, based on real-life data. Moreover, students will be able to coordinate and work successfully in small (interdisciplinary) teams.

Content: Agroecosystems play a major role in all landscapes, either for production purposes, ecological areas or for recreation. The human impact of any management on the environment is mainly driven by effects on biogeochemical cycles. Effects of global change impacts will also act via biogeochemistry at the soil-biosphere-atmosphere-interface. Thus, ecosystem functioning, i.e., the interactions between ecology, biogeochemistry and management of terrestrial systems, is the science topic for this course.

Lecture notes / Literature: Handouts will be available on the webpage of the course. Will be discussed in class.

Prerequisites / notice: Prerequisites: Attendance of introductory courses in plant ecophysiology, ecology, and grassland or forest sciences. Knowledge of data analyses in R and statistics. Course will be taught in English.

751-5101-00L Biochemistry and Sustainable Management

Abstract: This course will provide an introduction to the applicability of stable isotopes to ecological research questions. Topics will focus on carbon (13C), nitrogen (15N), oxygen (18O) and hydrogen (2H) at natural isotope abundance and tracer levels. Lectures will be supplemented by discussion of the applicability of stable isotopes in studies on plants, soils, water and trace gases, know the relevant approaches, concepts and recent results in stable isotope ecology, know classical and modern techniques to solve ecophysiological or ecological problems, learn to design, carry out and interpret a small IsoProject, practice to search and analyze literature as well as to give an oral presentation.

Objective: The analyses of stable isotopes often provide insights into ecophysiological and ecological processes that otherwise would not be available with classical methods only. Stable isotopes proved useful to determine origin of pools and fluxes in ecosystems, to partition composite fluxes and to integrate processes spatially and temporally.

Content: This course will provide an introduction to the applicability of stable isotopes to ecological research questions. Topics will focus on carbon (13C), nitrogen (15N), oxygen (18O) and hydrogen (2H) at natural isotope abundance and tracer levels. Lectures will be supplemented by discussion of the applicability of stable isotopes in studies on plants, soils, water and trace gases, know the relevant approaches, concepts and recent results in stable isotope ecology, know classical and modern techniques to solve ecophysiological or ecological problems, learn to design, carry out and interpret a small IsoProject, practice to search and analyze literature as well as to give an oral presentation.

Lecture notes / Literature: Handouts will be available on the webpage of the course. Will be discussed in class.

Prerequisites / notice: This course is based on fundamental knowledge about plant ecophysiology, soil science, and ecology in general. Course will be taught in English.
The seminar concerns current aspects and research related to nutrient cycles in agro-ecosystems. The theme of the next seminar is “Integrated Nutrient Management to maximize nutrient use efficiency in productive agricultural systems: Insights from long-term field experiments”. Students will analyze and connect the results published for selected field experiments in a group work. They will present their analysis in a report and in an oral presentation. The seminar is composed by presentations of experts and of the students. The presentations will be synthesized during a final discussion.

751-4003-01L Current Topics in Grassland Sciences (HS)
Abstract
Research results in agro- and forest ecosystem sciences will be presented by experienced researchers as well as Ph.D. and graduate students. Citation classics as well as recent research results will be discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemistry to management aspects in agro- and forest ecosystems.

Objective
Students will be able to understand and evaluate experimental design and data interpretation of on-going studies, be able to critically analyze published research results, practice to present and discuss results in the public, and gain a broad knowledge of recent research and current topics in agro- and forest ecosystem sciences.

Content
Research results in agro- and forest ecosystem sciences will be presented by experienced researchers as well as Ph.D. and graduate students. Citation classics as well as recent research results will be discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemistry to management aspects in agro- and forest ecosystems.

751-4056-00L Plant Pathology III
W+

Abstract
Identification based on host, symptoms and micro-morphology, completed with life cycles and related control measures of the most important fungal diseases and their causal pathogens of annual and perennial crops with agricultural significance.

Objective
The students will learn and train preparation skills for microscopy, acquire knowledge of selected diseases (identification, biology of pathogen, epidemiology and systematics) and understand the corresponding integrated control measures practiced in Swiss agriculture.

Content
One exercise will be on an e-learning base (with computers) also to prepare the students for the final e-exam.

Lecture notes / notice
A script will be used on annual and perennial crops and their most important diseases. It will be updated stepwise.

Taught competencies
Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies
Domain B - Method-specific Competencies
- Analytical Competences
- Problem-solving
Domain D - Personal Competencies
- Critical Thinking

751-5510-00L Introduction to Agricultural Robotics
W

Abstract
In this course, students will learn theoretical and practical aspects of robotics. Lectures will give an introduction to how robots operate in the real world. Students will apply the concepts learned in class on educational robots to simulate a weeding task.

Objective
After the course, students will be able to critically examine and select appropriate robotic solutions for agricultural applications. The learning objectives of the course are: (i) illustrate the principle of operation of the main components of a robotic system, (ii) analyse how the different robotic components are integrated and contribute to the functioning of a robotic system, and (iii) solve problems in the field of agriculture using robotic principles.

Content
Robots are becoming a key technology in the transition to smart farming and in supporting the agricultural needs of the 21st century. For example, robots enable site-specific fertilization, automated weeding, or livestock herding. The course gives an overview of robotic systems, beginning with their fundamental components (e.g., sensors, actuators, locomotion strategies) and gradually scaling up to the system level, illustrating the concepts of perception, robot control, obstacle avoidance and navigation. Exercises performed with an educational robot (Thymio) will complement the theoretical lectures providing a hands-on practical experience of the challenges of using these machines.

During the course, students will gradually apply the theoretical and practical knowledge they are learning. To this end, students will work in small teams (2 to 3 members) to develop a robotic solution for an agricultural task of their choice. Students will learn to translate the task into meaningful requirements for a robotic system and select the most appropriate components to achieve the required robotic functions. Students will periodically present and discuss the development of this "robot design" exercise during presentations and in a journal report.

Lecture notes / notice
Copies of the slides and exercises will be provided on the course web page.

Prerequisites / notice
No mandatory prerequisites, but it is preferable that students have a basic knowledge of computer programming.

Class size limitation to 20 students.
Domain A - Subject-specific Competencies

- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies

- Analytical Competencies assessed
- Decision-making assessed
- Media and Digital Technologies not assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies

- Communication assessed
- Cooperation and Teamwork assessed
- Customer Orientation not assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence not assessed
- Sensitivity to Diversity not assessed
- Negotiation not assessed

Domain D - Personal Competencies

- Adaptability and Flexibility assessed
- Creative Thinking assessed
- Critical Thinking assessed
- Integrity and Work Ethics not assessed
- Self-awareness and Self-reflection not assessed
- Self-direction and Self-management not assessed

Non-Ruminant Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-6601-00L</td>
<td>Pig Science (HS)</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>to be announced</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The overall goal of the course is to provide the essential scientific knowledge of pig animal health and behaviour and of the implications for husbandry and animal welfare.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- understand the complex interactions of health management, behaviour and husbandry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- be trained to understand interdisciplinary and disciplinary research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- be able to critically analyze published research data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- be able to present precise scientific reports in oral and written form.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Topics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Understanding natural behaviour of pigs to improve their management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Welfare challenges in pig production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- On-farm and post-mortem health assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Farrowing and lactation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pig reproduction and associated problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Piglet mortality and morbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Emotions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Cognition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>There will be 1 excursion to the pig stable of AgroVet Strickhof.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The final grade will be based on a poster presentation (30%, mid-semester) and a final written exam (70%, end of semester)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Handouts/scripts are distributed by the the lecturers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Specific literature is indicated by the lecturers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Knowledge in animal health, animal welfare and ethology is recommended but not required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The lectures will be in English and German (depending on the lecturers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>751-6243-00L</td>
<td>Breeding and conservation of Animal Genetic Resources</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>H. Signer-Hasler, C. Flury, S. Neuenschwander</td>
</tr>
<tr>
<td>Abstract</td>
<td>Animal genetic resources refer to the genetic and species diversity of livestock. Only a few production breeds have been further developed through breeding, while local breeds have no longer been able to survive in this competition. Without the support of endangered breeds and the sustainable breeding of productive breeds, many regionally typical breeds are threatened with extinction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Learning Objectives: Part 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>At the end of the course, students are able to assess the importance and problems of small ruminant breeding and husbandry in Switzerland and neighbouring countries. They know the most important breeding objectives and are able to assess them in terms of production and sustainable development in small ruminants and cattle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning objectives part 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The second part gives an overview of the distribution, endangerment and conservation of breed diversity of farm animals in Switzerland and internationally. The theory is illustrated with numerous examples and the knowledge is deepened in exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The students:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- have an overview of the national and international distribution of animal genetic resources and are familiar with the database DAD-IS (Domestic Animal Diversity Information System).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- can name the national and international efforts to conserve agricultural livestock breeds.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- know how to describe genetic diversity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- can point out what is important in the management of small populations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- can describe different conservation measures, especially in situ and ex situ conservation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- can describe current national and international conservation programmes for different livestock breeds.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Examination:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examination Part 1: Graded written examination (1 hour) on the material covered.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examination Part 2: Graded semester performance completed during the block course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parts 1 and 2 contribute equally to the final grade.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forum: Livestock in the World Food System

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-6001-00L</td>
<td>Forum: Livestock in the World Food System</td>
<td>W</td>
<td>2</td>
<td>1S</td>
<td>S. Meese</td>
</tr>
</tbody>
</table>
Number of participants limited to 20.

Abstract
This forum is a platform for the critical reflection of relevant topics of livestock in the frame of the world food system comprising issues from basic knowledge to acceptance in society. The exchange is operated by scientific writing and presentation.

Objective
In the Forum "Livestock in the World Food System", a topic of significance for livestock agriculture is selected by the students and subsequently dealt with from various angles (from scientific basis to production systems, environmental aspects and to the acceptance by society). The students learn to present a scientific subject in writing and orally to an audience and to defend the presentation in a discussion.

Content
The Forum "Livestock in the World Food System" will take place in blocks of 2 hours each. Once the general topic has been selected, it comprises two elements:

Element 1. Oral presentation: The students form small groups and are lecturers. There are chair persons (moderators) from outside of these small groups and they also head the discussion. The remaining students and lecturer are the audience.

Element 2. Scientific writing:
1. preparation of a short scientific type of paper from a result table offered by the lecturers
2. writing of a critical review of a chosen topic.

There will be a discussion in small groups at several choosable dates.

Introductions to both forms of presentation will be offered by the lecturer. The preparation of the oral and written presentations takes place to a small part during the 2-h blocks and mainly outside of this time.

Prerequisites / notice
Requirements for allocation of the two credit points:
- Theatre presentation (with handout) at the forum
- Delivery of written documents of sufficient quality
- Active participation during the presentations by the other participants

751-6127-00L Practical Course in Microscopy of Functional Histology
W 3 credits 6P not available

Abstract
Die "Funktionelle Histologie" beschreibt die histologischen und zytologischen Strukturen mit ihren jeweiligen Aufgaben und Wechselwirkungen innerhalb ausgewählter Organsysteme. Die endokrinologisch relevanten Organe und deren Präparation werden am Beispiel des Rindes kennengelernt.

Objective
Grundlagen der Histologie; Gewebediagramme (Gefrier- und Paraffinschnitte) und deren Übersichtsfärbungen und Immunhistochemie; Fortgeschrittene Mikroskopie von Gewebediagramm; Kritische Bewertung von Physiologie/Pathologie aufgrund morphologisch/histologischer Kriterien.

Content
Jeder/m Studierenden wird ein Organ zugeteilt, mit welchem sie/ein sich intensiv theoretisch und praktisch auseinandersetzt. Anhand dieses Organes als rotem Faden, welches vom Schlachthof bereitgestellt und von den Studierenden selber seziiert, eingebettet, geschnitten, gefärbt und mikroskopiert wird, werden die Lernziele erreicht.

Element 1. Oral presentation: The students form small groups and are lecturers. There are chair persons (moderators) from outside of these small groups and they also head the discussion. The remaining students and lecturer are the audience.

Element 2. Scientific writing:
1. preparation of a short scientific type of paper from a result table offered by the lecturers
2. writing of a critical review of a chosen topic.

There will be a discussion in small groups at several choosable dates.

Introductions to both forms of presentation will be offered by the lecturer. The preparation of the oral and written presentations takes place to a small part during the 2-h blocks and mainly outside of this time.

Prerequisites / notice
Requirements for allocation of the two credit points:
- Theatre presentation (with handout) at the forum
- Delivery of written documents of sufficient quality
- Active participation during the presentations by the other participants

751-6243-00L Breeding and conservation of Animal Genetic Resources
W 2 credits 2V H. Signer-Hasler, C. Furcy, S. Neuenschwander

Abstract
Animal genetic resources refer to the genetic and species diversity of livestock. Only a few production breeds have been further developed through breeding, while local breeds have no longer been able to survive in this competition. Without the support of endangered breeds and the sustainable breeding of productive breeds, many regionally typical breeds are threatened with extinction.

Objective
At the end of the course, students are able to assess the importance and problems of small ruminant breeding and husbandry in Switzerland and neighbouring countries. They know the most important breeding objectives and are able to assess them in terms of production and sustainable development in small ruminants and cattle.

Learning Objectives: Part 1:
- have an overview of the national and international distribution of animal genetic resources and are familiar with the database DAD-IS (Domestic Animal Diversity Information System).
- can name the national and international efforts to conserve agricultural livestock breeds.
- know how to describe genetic diversity.
- can point out what is important in the management of small populations.
- can describe different conservation measures, especially in situ and ex situ conservation.
- can describe current national and international conservation programmes for different livestock breeds.
Prerequisites / notice

Examination: Examination Part 1: Graded written examination (1 hour) on the material covered.
Examination Part 2: Graded semester performance completed during the block course.

Parts 1 and 2 contribute equally to the final grade.

751-6127-00L Practical Course in Microscopy of Functional Histology W 3 credits 6P not available

Abstract
The "Funktionelle Histologie" describes the histological and zymological structures with their jeweils Aufgaben and Wechselwirkungen innerhalb ausgewählter Organssysteme. Die endokrinologisch relevanten Organe und deren Präparation werden am Beispiel des Rindes kennengelernt.

Objective
Grundlagen der Histologie; Gewebedünnschnitte (Gefrier- und Paraffinchnitte) und deren Übersichtsfärbungen und Immunhistochromie. Fortgeschrittene Mikroskopie von Gewebedünnschnitten: Kritische Bewertung von Physiologie/Pathologie aufgrund morphologisch/ histologischer Kriterien

Content
Jeder/n Studierenden wird ein Organ zugeteilt, mit welchem sie/er sich intensiv theoretisch und praktisch auseinandersetzt. Anhand dieses Organes als rotem Faden, welches vom Schlachthof bereitgestellt und von den Studierenden selber seziiert, eingebettet, geschnitten, gefärbt und mikroskopiert wird, werden die Lernziele erreicht.

751-6129-00L Practical Course Epigenetics W 3 credits 6P not available

Abstract
The practical course will comprise of lecture elements introducing the topic of epigenetics and a large amount of practical work where you will be able to perform DNA methylation analyses on your own. In particular, we will focus on DNA extraction and the estimation of global and local DNA methylation.

Objective
The competencies and aims for the course are:
- Get first hands-on experience with the experimental techniques.
- Answer a scientific question by conducting experiments.
- Obtain results of an experiment and get insight into what affects technical variation and thus influences reproducibility.
- Interpret results in an adequate manner to solve a scientific question.
- Combine results to draw an adequate conclusion.
- Present a research paper on epigenetics.

Lecture notes
You will receive in advance a selection of research papers, a document with the theoretical background of the techniques included in the course, the slides of the lessons in pdf and a detailed protocol of the work we will do.

Prerequisites / notice
In Form eines Vortrags werden den anderen TeilnehmerInnen das zugeteilte Organ bzw Gewebe bezüglich der Morphologie, Histologie und funktioneller Gesichtspunkte vorgestellt.

In der Nachbereitung zum Praktikum wird ein Bericht angefertigt, in dem die Vorgehensweise (Verfahrenspraktikum), die Befunde (Ergebnisprotokoll) und die kritische Auseinandersetzung mit den Inhalten des Praktikums (kritische Beurteilung) dokumentiert werden.

751-6305-00L Livestock Breeding and Genomics W+ 3 credits 3G P. von Rohr

Abstract
Swiss routine breeding value estimation/genetic evaluation systems of cattle, pig, sheep and goats are presented with methods and evaluated traits. Examples will be demonstrated using the statistical software R.

Objective
The students know the theoretical and practical application of breeding value estimation in Switzerland for cattle, pig, sheep and goats. The students are able to interpret estimated breeding values.

Content
basic principles of genetic evaluations
Applied genetic evaluation in cattle (data, methods, traits, national and international genetic evaluations)
Applied genetic evaluation in pigs (data, methods, traits)
Applied genetic evaluation in sheep and goats (data, methods, traits)

Lecture notes
Course notes in the form of a monograph, copies of the slides and solutions to the exercise questions are available on the net.

Literature
To be announced in the lectures.

751-6113-00L Endocrinology and Biology of Reproduction

Abstract
Endokrinologie und Reproduktionsbiologie der Säugetiere und des Menschen (Anatomie, Morphologie, Physiologie, Regelmechanismen) Die Systematik der Reproduktionshormone und der Hormonrezeptoren wird erläutert, die Wirkungsmechanismen (Bildung; orale Bioverfügbarkeit; Elimination) erklärt. Mit diesen Grundlagen wird das Verständnis der Regulation der Fortpflanzung umfassend erörtert.

Objective
Die Studierenden erlangen das grundlegende theoretische Verständnis und Fachwissen zur Endokrinologie der Reproduktion und zur weiblichen und männlichen Reproduktionsbiologie. Sie können darüber hinaus pathologische Situationen (Fortpflanzungsstörungen) und deren vielfältige Ursachen in den physiologischen Kontext einordnen.

Ruminant Science

Number
Title
Type
ECTS
Hours
Lecturers

751-6501-00L Ruminant Science (HS)

Abstract
The course provides the scientific basis of the central aspects of reproduction and nutrition physiology of ruminants, and of the implications for animal health, product quality, and breeding programs. Means of knowledge transfer include interdisciplinary approaches, disciplinary parts, web-based learning and self-study.

Objective
At the end of the course the students are able to apply, by a comprehensive understanding of the underlying mechanisms, their knowledge in various fields of ruminant science. They will be able to develop and recommend best strategies for breeding programs, feed formulation, improving forage quality, and increasing animal health. They will be trained to carry out interdisciplinary and disciplinary research at the highest level. The course Ruminant Science (FS) offered in spring has a similar structure but is complementary to this course.
Content

Fields (contact hours)
- Introduction: 2 h
- Special topics: 20 h
- Rumen Anatomy
- Hohenheim Gas Test
- Calf health
- Reproduction Techniques
- Fertility in Cows
- Disciplinary topics: 32 h
- Rumen Digestion: 8 h
- Ruminant Nutrition Physiology: 12 h
- Reproduction in Ruminants: 8 h
- Lectures held by the students: 4 h

In summary
- Contact hours: 58 h
- Self-study within semester: 30 h (especially preparation for the interdisciplinary courses and the own lecture)
- Self-study in semester break: 32 h
Total: 120 h

Lecture notes
Documentations, links and other materials will be provided at the start of the course

Literature
Information on books and other references will be communicated during the course

Prerequisites / notice
The specialty of this course is that for the first time the animal science disciplines are unified. This is realised with a particular emphasis on interdisciplinary special topics and new forms of teaching. At the same time the essential basics in the central fields are communicated.

The field of Ruminant Science will also be a part of the spring semester (special topics: Organic Ruminant Systems, Tropical Ruminant Systems, Mastitis; disciplinary courses: Cattle, Sheep and Goat Breeding, Ruminant Diseases and Prophylaxis, Ruminant Nutrition and the Environment). However both courses are organized independently.

Conditions for successful participation: Background on animal science from the Bachelor is desired. In order to attend the Minor in Ruminant Science without any animal science background, a realistic self-assessment concerning the need for additional self-study is recommended (e.g. by choosing an appropriate bachelor course which then may be counted as 'optional courses' in the master). These efforts depend on the extent to which animal science courses have already been attended in the bachelor.

The control of performance will consist of:
- an own short lecture
- a final oral examination with focus on comprehension of the fundamental linkages rather than of specific details

751-7211-00L Ruminal Digestion

W 1 credit 1G not available

Abstract
This course broadens the knowledge in one of the most important aspects of ruminant nutrition: the microbial digestion in the rumen (and in the hindgut). For a comprehensive understanding of the rumen microbial ecosystem, the mechanisms of nutrient fermentation and the synthesis of microbial protein, thorough basics are provided. Apart from lectures, group and laboratory exercises are included.

Objective
The course enables students to understand in detail how ruminal digestion works and how this knowledge can be applied to design optimal feeding diets using highly fibrous forages and a variety of other feeds. The students also are able to show how to modify the most important rumen microbes beneficially by nutritional means.

Content

Structure of the contact hour part of the course (16 h):

2 h Introduction and blackboard exercise

8 h Basic topics in ruminal digestion, lectures and group exercises:
- Systematics of the microbes involved in microbial digestion
- Measurement of microbial digestion
- Interactions of microbes and epithelium of the digestive tract
- Differences between ruminal and hindgut microbial digestion
- Microbial nutrient degradation and its modification
- Efficiency of microbial protein synthesis
- Manipulation of the ruminal digestion

4 h exercise at AgroVet-Strickhof:
- Measurements of microbial digestion
- Laboratory exercise with a rumen fistulated cow and a Rumen Simulation Technique

2 h Final seminar

The non-contact hour part is to comprehend the information given and to prepare either the written report or the oral presentation (cf. "Besonderes")

Lecture notes
Lecture notes are provided via Moodle.

Literature
Will be communicated at the start of the course.

Prerequisites / notice
The course is a balanced mixture of blackboard exercise, laboratory exercise, group exercise, lecture and student seminar presentation.

Credit point associated with grade of either a written report or an oral presentation in the final seminar (both on a self-chosen related topic)

751-6001-00L Forum: Livestock in the World Food System

W 2 credits 1S S. Meese

Abstract
This forum is a platform for the critical reflection of relevant topics of livestock in the frame of the world food system comprising issues from basic knowledge to acceptance in society. The exchange is operated by scientific writing and presentation.

In the Forum "Livestock in the World Food System", a topic of significance for livestock agriculture is selected by the students and subsequently dealt with from various angles (from scientific basis to production systems, environmental aspects and to the acceptance by society). The students learn to present a scientific subject in writing and orally to an audience and to defend the presentation in a discussion.
The Forum "Livestock in the World Food System" will take place in blocks of 2 hours each. Once the general topic has been selected, it comprises two elements:

Element 1. Oral presentation: The students form small groups and are lecturers. There are chair persons (moderators) from outside of these small groups and they also head the discussion. The remaining students and lecturer are the audience.

Element 2. Scientific writing:
1. preparation of a short scientific type of paper from a result table offered by the lecturers
2. writing of a critical review of a chosen topic.

There will be a discussion in small groups at several choosable dates.

Introductions to both forms of presentation will be offered by the lecturer.

The preparation of the oral and written presentations takes place to a small part during the 2-h blocks and mainly outside of this time.

Prerequisites / notice
Requirements for allocation of the two credit points:
- Theatre presentation (with handout) at the forum
- Delivery of written documents of sufficient quality
- Active participation during the presentations by the other participants

751-6243-00L Breeding and conservation of Animal Genetic Resources

Abstract
Animal genetic resources refer to the genetic and species diversity of livestock. Only a few production breeds have been further developed through breeding, while local breeds have no longer been able to survive in this competition. Without the support of endangered breeds and the sustainable breeding of productive breeds, many regionally typical breeds are threatened with extinction.

Objective
At the end of the course, students are able to assess the importance and problems of small ruminant breeding and husbandry in Switzerland and neighbouring countries. They know the most important breeding objectives and are able to assess them in terms of production and sustainable development in small ruminants and cattle.

Learning objectives part 2:
The second part gives an overview of the distribution, endangerment and conservation of breed diversity of farm animals in Switzerland and internationally. The theory is illustrated with numerous examples and the knowledge is deepened in exercises.

The students:
- have an overview of the national and international distribution of animal genetic resources and are familiar with the database DAD-IS (Domestic Animal Diversity Information System).
- can name the national and international efforts to conserve agricultural livestock breeds.
- know how to describe genetic diversity.
- can point out what is important in the management of small populations.
- can describe different conservation measures, especially in situ and ex situ conservation.
- can describe current national and international conservation programmes for different livestock breeds.

Examination:
Examination Part 1: Graded written examination (1 hour) on the material covered.
Examination Part 2: Graded semester performance completed during the block course.
Parts 1 and 2 contribute equally to the final grade.

Safety and Quality in Agri-Food Chain

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-6001-00L</td>
<td>Forum: Livestock in the World Food System</td>
<td>W</td>
<td>2 credits</td>
<td>1S</td>
<td>S. Meese</td>
</tr>
<tr>
<td>Number of participants limited to 20.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This forum is a platform for the critical reflection of relevant topics of livestock in the frame of the world food system comprising issues from basic knowledge to acceptance in society. The exchange is operated by scientific writing and presentation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>In the Forum "Livestock in the World Food System", a topic of significance for livestock agriculture is selected by the students and subsequently dealt with from various angles (from scientific basis to production systems, environmental aspects and to the acceptance by society). The students learn to present a scientific subject in writing and orally to an audience and to defend the presentation in a discussion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The Forum "Livestock in the World Food System" will take place in blocks of 2 hours each. Once the general topic has been selected, it comprises two elements:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Element 1. Oral presentation: The students form small groups and are lecturers. There are chair persons (moderators) from outside of these small groups and they also head the discussion. The remaining students and lecturer are the audience.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Element 2. Scientific writing:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. preparation of a short scientific type of paper from a result table offered by the lecturers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. writing of a critical review of a chosen topic.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to both forms of presentation will be offered by the lecturer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The preparation of the oral and written presentations takes place to a small part during the 2-h blocks and mainly outside of this time.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no script</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Food and Consumer Behaviour

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-2122-00L</td>
<td>Food and Consumer Behaviour</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>M. Siegrist, C. Hartmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course focuses on food consumer behavior, consumer's decision-making processes and consumer's attitudes towards food products.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course provides an overview about the following topics: Factors influencing consumer's food choice, food and health, attitudes towards new foods and food technologies, labeling and food policy issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752-5111-00L</td>
<td>Gene Technology in Foods</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>F. Constancias, G. Broggini, A. Greppi, F. Orelli</td>
</tr>
</tbody>
</table>

| Data: 11.11.2021 12:40 Autumn Semester 2021 | Page 53 of 2152 |
Abstract
This course will increase basic knowledge on biotechnological constructions and application of genetically modified organisms (GMO) which are used worldwide in food production systems. The course discusses health issues, the legislation frame and food safety aspects of GMO applications in agriculture, food production and consumption in Switzerland and EU-countries.

Objective
This course will provide knowledge and biological background on genetically modified organisms (GMO) and food produced with the help of GMO, especially on the molecular basis of GMO constructions with emphasis on genetically modified food in Switzerland and the EU. Criteria of rationale food safety and health assessment in agriculture and food consumption will be elaborated.

Content
Overview on application in gene technology, the gene transfer potential of bacteria, plants and other organisms and the mostly used transgenes in food as well as on GMO used for food production and their detection technologies in food; food safety assessment of GMO food; information on the legislation in Switzerland and EU-countries

Lecture notes
Copies of slides from lectures will be provided

Literature
Actual publications from literature will be provided

Prerequisites / notice
Good knowledge in biology, especially in microbiology and molecular biology are prerequisites. Some contents will be provided by registered students who will present as a group an actual publication.

752-2307-00L
Nutritional Aspects of Food Composition and Processing

Abstract
Lecture type course with an interdisciplinary approach for the evaluation of nutritional aspects of changes in food composition due to processing.

Objective
Students should be able to:
- describe and compare the major concepts/criteria used for the evaluation of the nutritional quality of food
- apply these criteria when assessing the effects of selected processing technologies on nutritional quality.
- evaluate recent formulation strategies aimed to achieve additional physiological benefits for targeted population groups (i.e. functional foods).

Content
The course gives inputs on compositional changes in food due to processing (with focus on thermal/chilling, enzymatic, chemical, emerging technologies) or new formulation strategies. Possible evaluation methods for these changes (e.g. nutritional profile) will be addressed.

Lecture notes
There is no script. Powerpoint presentations and relevant scientific articles will be available on-line for students. A selection of recommended readings will be given at the beginning of the course.

Prerequisites / notice
The course is open to Master and MAS students in food and science and nutrition or related. Basic knowledge of food chemistry and nutrition is expected, as well as an understanding of food processing.

751-7310-00L
Bioactive Food and Feed Components

Abstract
The course provides students with the basic knowledge to understand the connection between the structure of nutritive and non-nutritive bioactive food and feed components and their effects on the nutrient supply and health of humans and livestock as well as on the quality of animal-derived foods.

Objective
At the end of the course, the students are aware of food and feed as sources of different bioactive compounds. By a comprehensive understanding of the connection between bioavailability, molecular mechanisms and biological effects, they are able to apply their knowledge on beneficial and detrimental effects of bioactive food and feed components in the fields of human and animal nutrition.

Content
The course gives an introduction into different classes of bioactive components present in food and feed including fatty acids and secondary plant compounds such as carotenoids, polyphenols, phytoestrogens, glucosinolates, protease inhibitors and monoterpensides.

Topics include:
- sources of bioactive food and feed components
- bioavailability and modification in the gastrointestinal tract
- beneficial and detrimental effects
- molecular mechanisms of biological effects
- species differences concerning metabolism and biological effects

Lecture notes
The teaching slides and other materials will be provided during the course.

Literature
Information about books and other references will be communicated during the course.

Transdisciplinarity for Sustainable Development

Number Title Type ECTS Hours Lecturers
701-1551-00L Sustainability Assessment W 3 credits 2G P. Krütli, D. Nef

Waiting list will be deleted October 1st, 2021.

No enrollment possible after October 1st, 2021.

Abstract
The course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability. The format of the course is seminar-like, interactive.

Objective
At the end of the course, students:
- know core concepts of sustainable development, main features of social justice in the context of sustainability, a selection of methodologies for the assessment of sustainable development
- have a deepened understanding of the challenges of trade-offs between the different dimensions of sustainable development and their respective impacts on individual and societal decision-making

Content
The course is structured as follows:
- overview of rationale, objectives, concepts and origins of sustainable development (approx. 15%)
- overview of the concept of social justice as guiding principle of the social dimension of sustainability (approx. 20%)
- analysis of a selection of concepts and methodologies to assess sustainable development in a variety of contexts (approx. 65%)

Lecture notes
Handouts are provided

Literature
Selected scientific articles and book-chapters

Prerequisites / notice
Students of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L)

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork

Domain D - Personal Competencies
- Creative Thinking
- Critical Thinking

Elective Courses

Elective courses can be chosen from the entire course programme of the ETH Zurich as well as from the course programme of the University of Zurich.
Environmental Systems Data Science

Objective
The students are able to:
- frame a data science problem and build a hypothesis
- describe the steps of a typical data science project workflow
- conduct selected steps of a workflow on specifically prepared datasets, with a focus on choosing, fitting and evaluating appropriate algorithms and models
- critically think about the limits and implications of a method
- visualise data and results throughout the workflow
- access online resources to keep up with the latest data science methodology and deepen their understanding

Content
- The data science workflow
- Access and handle (large) datasets
- Prepare and clean data
- Analysis: data exploratory steps
- Analysis: machine learning and computational methods
- Evaluate results and analyse uncertainty
- Visualisation and communication

Prerequisites / notice
- 252-0840-02L Anwendungsnahe Programieren mit Python
- 401-0624-00L Mathematik IV: Statistik
- 401-6215-00L Using R for Data Analysis and Graphics (Part I)
- 401-6217-00L Using R for Data Analysis and Graphics (Part II)
- 701-0105-00L Mathematik VI: Angewandte Statistik für Umwelt Naturwissenschaften

Introduction to Agricultural Robotics

Abstract
In this course, students will learn theoretical and practical aspects of robotics. Lectures will give an introduction to how robots operate in the real world. Students will apply the concepts learned in class on educational robots to simulate a weeding task.

Objective
After the course, students will be able to critically examine and select appropriate robotic solutions for agricultural applications. The learning objectives of the course are: (i) illustrate the principle of operation of the main components of a robotic system, (ii) analyse how the different robotic components are integrated and contribute to the functioning of a robotic system, and (iii) solve problems in the field of agriculture using robotic principles.

Content
Robots are becoming a key technology in the transition to smart farming and in supporting the agricultural needs of the 21st century. For example, robots enable site-specific fertilization, automated weeding, or livestock herding. The course gives an overview of robotic systems, beginning with their fundamental components (e.g., sensors, actuators, locomotion strategies) and gradually scaling up to the system level, illustrating the concepts of perception, robot control, obstacle avoidance and navigation. Exercises performed with an educational robot (Thymio) will complement the theoretical lectures providing a hands-on practical experience of the challenges of using these machines.

During the course, students will gradually apply the theoretical and practical knowledge they are learning. To this end, students will work in small teams (2 to 3 members) to develop a robotic solution for an agricultural task of their choice. Students will learn to translate the task into meaningful requirements for a robotic system and critically select the most appropriate components to achieve the required robotic functions. Students will periodically present and discuss the development of this "robot design" exercise during presentations and in a journal report.

Lecture notes
Copies of the slides and exercises will be provided on the course web page

Literature

Prerequisites / notice
No mandatory prerequisites, but it is preferable that students have a basic knowledge of computer programming.

Agroecology and the Transition to Sustainable Food Systems

Abstract
The aim of this lecture series is to offer students and the interested public a deeper insight into the fundamentals of agroecology and its potential role in transforming food systems. For more information on the public lecture part of this course, please visit: https://worldfoodsystem.ethz.ch/outreach-and-events/past-events/agroecology-lectures-2021.html
Students know the elements of agroecology and are able to critically reflect on the important properties as well as benefits and trade-offs of agroecological systems and approaches.

Students are able to understand and explain how the 10 elements could be implemented as guiding principles for policymakers, practitioners and other stakeholders across the food system in planning, managing and evaluating agroecological transitions.

This course enables students and an interested public to engage in a lively and critical debate and to learn about scientific contributions to agroecology. Based on the knowledge gained, students are able to formulate a personal opinion on the role of agroecology and to reflect on the different facets and real-world applications supporting a transition toward sustainable food systems.

The Master thesis is an independent scientific work. Normally the subject is selected among topics of the core subject. It is written under the guidance of a agricultural sciences professor. Only students who fulfill the following criteria are allowed to begin with their master thesis:

- a. successful completion of the bachelor programme;
- b. fulfilling of any additional requirements necessary to gain admission to the master programme.

The aims of this course are to:

- Create an interdisciplinary approach to understanding key concepts of sustainable development and the SDGs
- Create solidarity through a cultural of intellectual exchange at ETH Zurich
- Create a common object of intellectual reference for students with different disciplinary interests to enable diverse ways and modes of thinking
- Create an interdisciplinary approach to understanding key concepts of sustainable development and the SDGs
- Create a common object of intellectual reference for students with different disciplinary interests to enable diverse ways and modes of thinking
- Enable students and an interested public to engage in a lively and critical debate and to learn about scientific contributions to agroecology.
- Enable students and an interested public to engage in a lively and critical debate and to learn about scientific contributions to agroecology.

The course is designed as a public lecture on “Agroecology in the transition to sustainable food systems” to allow for different perspectives to be represented, heard and discussed.

The ETH Sustainable Development Goals Book Club is a colloquium for Bachelor students within and outside of Department of Environmental Systems Science centered around the discussion of themes from a single book, with the aim of fostering interdisciplinary, intellectual and critical exploration of the scientific and societal complexities related to the Sustainable Development Goals.

The Sustainable Development Goals Book Club is a colloquium for Bachelor students within and outside of Department of Environmental Systems Science centered around the discussion of themes from a single book, with the aim of fostering interdisciplinary, intellectual and critical exploration of the scientific and societal complexities related to the Sustainable Development Goals.

The course is well balanced between theoretical and practical aspects. The theoretical content includes lectures on the history, principles, and applications of agroecology, while the practical component involves hands-on activities such as design and implementation of agroecological systems.

The course is a fall semester course at ETH Zurich, starting in the week of September 20, 2021 and lasting until December 17, 2021. During this period, the lecture will take place once a week, on Tuesdays from 18:00-20:00 (CEST/CET). Each lecture will be organized in an online format and will be set up in two parts consisting of a public and a student lecture:

- Public lecture part (virtually via Zoom webinar): The public lecture (18:00-19:00 CEST/CET) will take place virtually via this Zoom webinar: https://ethz.zoom.us/j/64352765873.
- Each lecture will be recorded and available online afterwards.

While most public lectures will take one hour, the last public lecture on “Agroecology, The Way Forward”, on Tuesday, 7th December 2021, will last 90 minutes.

Student’s lecture part (exchange with course instructors online via zoom):

- The student’s lecture (19:15-20:00h CEST/CET) will take place online via a normal Zoom call: https://ethz.zoom.us/j/61315399346.
- For further details, please refer to the Moodle-page of this course: https://moodle-app2.let.ethz.ch/course/view.php?id=15210
- On the Moodle-page you can find some pre-readings for the course.
- Literature:
- Prerequisites / notice:
 - The course is designed as a public lecture on “Agroecology in the transition to sustainable food systems’’ to allow for different perspectives to be represented, heard and discussed.
 - The course is well balanced between theoretical and practical aspects. The theoretical content includes lectures on the history, principles, and applications of agroecology, while the practical component involves hands-on activities such as design and implementation of agroecological systems.
 - The Sustainable Development Goals Book Club is a colloquium for Bachelor students within and outside of Department of Environmental Systems Science centered around the discussion of themes from a single book, with the aim of fostering interdisciplinary, intellectual and critical exploration of the scientific and societal complexities related to the Sustainable Development Goals.
 - The Sustainable Development Goals Book Club is a colloquium for Bachelor students within and outside of Department of Environmental Systems Science centered around the discussion of themes from a single book, with the aim of fostering interdisciplinary, intellectual and critical exploration of the scientific and societal complexities related to the Sustainable Development Goals.
 - The Sustainable Development Goals Book Club is a colloquium for Bachelor students within and outside of Department of Environmental Systems Science centered around the discussion of themes from a single book, with the aim of fostering interdisciplinary, intellectual and critical exploration of the scientific and societal complexities related to the Sustainable Development Goals.
Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System
■ Special students and auditors need special permission from the lecturers.
Applied Geophysics Master

Courses at ETH Zurich only take place in Spring Semester.

<table>
<thead>
<tr>
<th>Applied Geophysics Master - Key for Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Architecture Bachelor

First Year Examinations

First Year Examinations

Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0603-00L</td>
<td>Structural Design I</td>
<td>O</td>
<td>2</td>
<td>3G</td>
<td>P. Block, J. Schwartz</td>
</tr>
<tr>
<td>Abstract</td>
<td>Determination of internal forces and description of structural behaviour of mixed arches and cable structures, of truss systems, beams, slabs, panels and frames using method of graphical statics as well as dimensioning of these structural systems. Structural behaviour of columns. Discussion of reference buildings and illustration of interplay of structural system and architectural intention.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Awareness of the most important structural systems. Understanding of the interplay of load and form. Estimation of the inner forces and dimensioning of elements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>After a general introduction of basic concepts, structural systems such as cable and arch structures will be analyzed with the help of graphical statics. The students will learn to understand the flow of forces in a structural system in relation to the system's form. They will be able to modify this force flow and give dimension to the structural components.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>All concepts, approaches and methods will be introduced in the weekly lectures and practiced in subsequent exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>on eQuilibrium “Script Tragwerksentwurf I/II” http://www.block.arch.ethz.ch/eq/course/4?lang=en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Rule of thumb structural design” (Philippe Block, Christoph Gengangel, Stefan Peters, DVA Deutsche Verlags-Anstalt 2013, ISBN: 978-3-421-03904-0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

052-0703-00L Sociology I W 2 credits 2V C. Schmid, I. Apostol, N. Bathla, A. Hertzog-Fraser

Abstract Sociology I investigates the relation between social developments and the production of the built environment from a macro-sociological point of view. It examines central aspects of social change, historical and contemporary forms of urbanization, and typical examples of models of urbanization.

Objective This series of lectures should enable students to comprehend architecture in its social context.

Content Sociology I deals with the macro-sociological point of view, and investigates the relation between social developments and the production of the built environment. In the first part central aspects of social change are examined, in particular the transition from Fordism to Neoliberalism and the interlinked processes of globalization and regionalization. The second part deals with historical and current forms of urbanization. Among other aspects, it focuses on the changed significance of the urban-rural contradiction, the processes of suburbanization, periurbanization, and planetary urbanization; the formation of global cities and metropolitan regions; the development of new urban configurations in centres (gentrification) and in urban peripheries (edge city, exopolis, new urban intensity). In the third part these general processes are illustrated by typical models of urbanization: Manchester, Chicago, Los Angeles, Paris and Zürich.

Literature A detailed collection of original texts will be distributed.

052-0901-00L Building History I O 2 credits 2V S. Holzer

Abstract History of building from classical antiquity to modernity: building types, constructions, forms, with particular reference to functional issues such as flexibility of use, statics, durability. This is not a mere history lecture, but an important part of the basic introduction into construction.

Objective Participants know the fundamentals of building history, including landmark monuments of each era, key historic constructions and forms. They are able to "read" a historic building and to relate it to building history. They are aware of the variety of historic building constructions. Building history I covers the period from classical Greek antiquity to Gothic architecture. The principal topics include construction issues such as Greek megalithic building, Roman mortar-and-rubble construction, and Gothic rationalism of vaulted architecture. Within the Vitruvian and Albertian triad of firmitas, utilitas and venustas, we focus on the first two topics, whereas the last topic (deciphering the "meaning" of architecture) stands at the heart of the "architectural history" lectures. The present lecture contributes essentially to deepening knowledge about historic constructions, an indispensable precondition for building within existing fabric.

Lecture notes Please keep a tight record of manuscript notes yourself. Lecture notes to some topics will be provided. pdf of lecture slides will be on line before each lecture.

Literature Will be announced during the lectures.
Analytical Competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Leadership and Responsibility
Self-presentation and Social Influence

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics

1. Acquiring basic knowledge of the history and theory of architecture during the early modern period, of its key protagonists and
assessed

2. Identifying the main architectural issues and debates of the period and recognising the places and architectural works covered in the
course.
not assessed

3. Acquiring the tools to develop a historically informed reading of the built environment, recognising debates, styles, ideas and problems
which drive and inform architectural production.
assessed

4. Developing the tools to draw on historical, theoretical and critical research to the benefit to one's own architectural culture.
not assessed

Objective

Content

The course ‘History and Theory of Architecture I-II’ offers a chronological and thematic survey of early modern architecture and
architectural theory produced in Europe from the 15th to 19th century. The course is based on thematic lectures, analysing key
themes (e.g. the French Monarchy and the Roman Papacy); the relation between buildings and their urban setting in the development
of European capitals like Rome, Paris and Berlin; historicism and attitudes towards the past in architecture in Europe.
In addition to the main lectures, the course ‘History and Theory of Architecture I-II’ will also include a series of seminars, called ‘Small
Narratives’. These seminars are meant to widen the scope of the programme by exploring case studies, such as buildings and ruins in
Zurich, which relate and contribute to the content of the course. While content of the ‘Small Narratives’ seminars is not part of the exam,
students are invited to make use of it for their study, and attendance is compulsory.

The course ‘Fundamentals of the History and Theory of Architecture I-II’ aims to explore and develop basic methods and strategies to
research the history of art and architecture. It consists of four parts, each developed under one of the four Chairs of the gta, and each
dealing with a particular area of study in the field of architecture and art history. The course will consist of four different exercises and tasks,
carried out under the supervision of each of the four Chairs throughout the year:
1. Architecture and books (M. Delbeke)
2. Architecture and media (L. Stalder)
3. Architecture and art (P. Ursprung)
4. Urbanism and the Commons (T. Avermaete)

Literature

For the course ‘History and Theory of Architecture I-II’ students will rely on assisted self-study to acquire basic knowledge of the history of
architecture in Europe.

Prerequisites / notice

Course scripts, PowerPoints and lecture recordings for ‘History and Theory of Architecture I-II’ will be available to download from the
course page at the beginning of the semester. Printed copies of the course scripts will also be available for purchase.

Number Title Type ECTS Hours Lecturers
052-0803-00L History and Theory of Architecture I O 2 credits 2V+2U T. Avermaete, M. Delbeke,
L. Stalder, H. Teerds, P. Ursprung
052-0601-00L Building Materials I O 2 credits 2V J. Pauli
052-0701-00L Urban Design I O 2 credits 2V M. Wagner
The means and potentials in the field of urban planning and design are pointed out from different perspectives in order to shape the city in the sense of a future-proof and humane environment. To this end, the basic principles are explained and concrete methods of urban design are presented.

The goal is to provide students with a broad systemic basic knowledge, that enables them to synthesize and evaluate complex urban design and planning problems.

The lecture series imparts basic knowledge in urban planning and design. Pressing questions and main topics of contemporary urban design practice and theory will be addressed. The focus is on illustrating the richness of relationships as well as the potential of the discipline and its handling in everyday urban planning and design practice.

There is no script to the lecture series. The lectures are recorded on video and made available online on http://www.video.ethz.ch/lectures.html a few days after each lecture.

At the end of the year course a reader with secondary literature will be made available for download.

2 credits

B. Dillenburger

Design and Construction I

Architecture is no longer conceivable without information technology. The planning, construction, operation, and ultimately the nature of buildings are increasingly influenced by digital technology. The digital is omnipresent both in the work of architects and in our built environment itself.

The courses Computational Design 1 and 2 offer an introduction to the character, challenges, and possibilities of digital technology in architectural design. The lectures will discuss the topics of digital building models and data, computational geometry, digital fabrication, artificial intelligence, and mixed reality.

In this course, students will practice digital modeling processes and related techniques. The spectrum of exercises includes manual modeling, visual programming, and programming code within CAD software. Students learn to read, understand and adapt this code. In addition, the courses will provide insights into the nature and handling of different digital media formats, from real-time rendering to mixed reality.

Topics discussed within the lectures:
- Critical understanding of the possibilities of information technology in design
- Acquiring an overview of the mechanisms and types of CAD systems and digital building models
- Gaining knowledge of the basic principles of computational geometry
- Applying visualization techniques and creatively using various digital media
- Learning concepts and application of parametric design.
- Being able to integrate computer-aided analysis and optimization methods in design-process
- Understanding the principles of digital process chains from design to production
- Strategically using visual programming code
- Reading, understanding, and adapting programming code within CAD software.

Course Structure

The course consists of theoretical lectures, practical tutorials introducing technical concepts, and exercises supported by tutors. Participants can find updated and detailed information on Moodle, which is the learning platform for the course.

<table>
<thead>
<tr>
<th>Subjects with Semester Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
</tr>
<tr>
<td>052-0501-00L</td>
</tr>
</tbody>
</table>

Participation in the seminar week of the chair Deplazes (topic "Hybrid Modeling") from 25.-29.10.21, is mandatory!

Project grading at semester end is based on the list of enrolments on 2.11.21 (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Designing and constructing will be understood to be a complementarily complementary offer. The content and methodical foundations of design and construction are taught and deepened through lectures and exercises.

Understanding and dominating the methodology of designing and constructing.

Lectures and exercises to achieve the methodology and ability of designing and constructing.

Literature

Book recommendation BUK I - IV: "Construction"; A reference work on contemporary construction

German or English

360 pages, 171 images, 20 color images, texts

ISBN 978-3-0356-2225-6

Online reference source: https://www.hochparterre-buecher.ch/ Konstruktions.html
Title

3G

J. Schwartz

Students are enabled to integrate essential characteristics of structural systems made out reinforced concrete or steel into their architectural design. Normally, one would expect this course to teach students how to draw architecture while using computers. This course does not because attendance in the lecture “Thinking and Speaking about Art”. Elaboration of a self-contained artistic work in the framework of the group mentorates. (Emphasis of grading for the final semester grade: 3/5 final presentation, 1/5 written project-conception, 1/5 drawing examination in free and perspective drawing).

Objective

In the HS21, students prove artistic thinking and practise and develop their knowledge in a mentored course with an independent artistic work.

Content

Attendance in the lecture “Thinking and Speaking about Art”. Elaboration of a self-contained artistic work in the framework of the group mentorates. (Emphasis of grading for the final semester grade: 3/5 final presentation, 1/5 written project-conception, 1/5 drawing examination in free and perspective drawing).

► Examination Blocks

 ↑ Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0607-00L</td>
<td>Structural Design III</td>
<td>O</td>
<td>2</td>
<td>3G</td>
<td>J. Schwartz, P. Block</td>
</tr>
<tr>
<td>Abstract</td>
<td>After a review of essential facts from the first year the course will examine the interplay of architectural concept and structural system by analyzing buildings of exemplary quality. The focus will be on the integration of specifics of structural systems made out reinforced concrete or steel into architectural design. Students are enabled to integrate essential characteristics of structural systems made out reinforced concrete or steel into their architectural design. After a review of essential facts from the first year the course will examine the interplay of architectural concept and structural system by analyzing buildings of exemplary quality. The focus will be on the integration of specifics of structural systems made out reinforced concrete or steel into architectural design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students are enabled to integrate essential characteristics of structural systems made out reinforced concrete or steel into their architectural design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>After a review of essential facts from the first year the course will examine the interplay of architectural concept and structural system by analyzing buildings of exemplary quality. The focus will be on the integration of specifics of structural systems made out reinforced concrete or steel into architectural design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

052-0805-00L	History and Theory in Architecture III	O	2	2V	L. Stalder
Abstract	This two-semester course is an introduction to the history of architecture from the Second Industrial Revolution in the 1850s to the Oil Crisis in the 1970s in Europe. Students will be able to identify the “things”—technical objects and ensembles—that transformed architecture, and to relate them to the technical, scientific, and cultural concerns that introduced them as key features of modernity. The course proposes a new approach to the study of the history and theory of architecture in Europe during modernity. It focuses less on single architects or their buildings, and more on those “things” that have brought profound transformations in the built environment and daily life over the last 200 years, such as the revolving door, the clock, and the partition. To introduce students to the history and theory of architecture, the course has three objectives. First, students will be able to identify the “things” that transformed architecture in modernity, and the crucial events, buildings, theories, and actors that characterize their history. Second, students will be able to describe how these “things” operated at different scales, focusing less on the formal level, and naming instead the different forms of expertise that constituted them historically, as well as the processes within which they were embedded. Third, students will be able to reflect on a series of apparatuses, devices, and building parts that are in fact micro-architectures which have often been neglected, despite their pivotal role in shaping the daily lives of modern societies. Each lecture introduces one “thing” through a genealogy that shaped it, from patents and scientific discoveries and technological advancement, to cinema, the visual arts, and literature. A set of renowned projects as well as lesser-known buildings from all around Europe offer a variety of case studies to describe these “things,” to understand how they operated in relation with one another, and to identify the theories and tactics that architects mobilized to make sense of them.				
Objective	The course proposes a new approach to the study of the history and theory of architecture in Europe during modernity. It focuses less on single architects or their buildings, and more on those “things” that have brought profound transformations in the built environment and daily life over the last 200 years, such as the revolving door, the clock, and the partition. To introduce students to the history and theory of architecture, the course has three objectives. First, students will be able to identify the “things” that transformed architecture in modernity, and the crucial events, buildings, theories, and actors that characterize their history. Second, students will be able to describe how these “things” operated at different scales, focusing less on the formal level, and naming instead the different forms of expertise that constituted them historically, as well as the processes within which they were embedded. Third, students will be able to reflect on a series of apparatuses, devices, and building parts that are in fact micro-architectures which have often been neglected, despite their pivotal role in shaping the daily lives of modern societies. Each lecture introduces one “thing” through a genealogy that shaped it, from patents and scientific discoveries and technological advancement, to cinema, the visual arts, and literature. A set of renowned projects as well as lesser-known buildings from all around Europe offer a variety of case studies to describe these “things,” to understand how they operated in relation with one another, and to identify the theories and tactics that architects mobilized to make sense of them.				
Content	The course proposes a new approach to the study of the history and theory of architecture in Europe during modernity. It focuses less on single architects or their buildings, and more on those “things” that have brought profound transformations in the built environment and daily life over the last 200 years, such as the revolving door, the clock, and the partition. To introduce students to the history and theory of architecture, the course has three objectives. First, students will be able to identify the “things” that transformed architecture in modernity, and the crucial events, buildings, theories, and actors that characterize their history. Second, students will be able to describe how these “things” operated at different scales, focusing less on the formal level, and naming instead the different forms of expertise that constituted them historically, as well as the processes within which they were embedded. Third, students will be able to reflect on a series of apparatuses, devices, and building parts that are in fact micro-architectures which have often been neglected, despite their pivotal role in shaping the daily lives of modern societies. Each lecture introduces one “thing” through a genealogy that shaped it, from patents and scientific discoveries and technological advancement, to cinema, the visual arts, and literature. A set of renowned projects as well as lesser-known buildings from all around Europe offer a variety of case studies to describe these “things,” to understand how they operated in relation with one another, and to identify the theories and tactics that architects mobilized to make sense of them.				

052-0635-00L	Mathematical Thinking and Programming III	O	2	2V	L. Hovestadt
Abstract	An introduction to information technology for architects. It is not about the HOW, but rather about the WHAT, not about virtuosity when dealing with digital tools, but rather about understanding coding. Not about pragmatism, but rather about literacy. It forms the basis of digital architectonics, the art of joining, which needs to be cultivated with care, prudence and patience. Normally, one would expect this course to teach students how to draw architecture while using computers. This course does not because in the current discussion about building information models (BIM), we see how blocked the situation can become when one draws architecture digitally. Today, digital models are a tedious ‘minefield’ with hundreds of gigabytes of data of all kinds. A digital model as code, however, is lightweight, compact and fast – a sparkling crystal, like poetry. That is why coding is the focus of this course. More specifically, students learn to read code and to value thinking in code. Learning active coding goes beyond the time-frame and should not be forced upon people. Thanks to digital awareness, students can quickly learn a wide variety of software using help available in the Internet, and competently use it according to their personal preferences. The aim of the course is for the students to develop as architects and to grow a digital personality. Specific reference is made to the history of architecture in conjunction with mathematics and philosophy. The essential tool of the trade is the lambda calculus in the implementation of Mathematica. The information technology interconnection of all digital media will be presented: text, image, graphic, model, animation, film, audio and the corresponding software. Current issues will be discussed: Internet, internet of things, cryptography, privacy, big data, machine intelligence, building information models, responsive cities, smart homes, robotics, energy and logistics. Current and historical modelling processes will be worked on.				
Objective	Normally, one would expect this course to teach students how to draw architecture while using computers. This course does not because in the current discussion about building information models (BIM), we see how blocked the situation can become when one draws architecture digitally. Today, digital models are a tedious ‘minefield’ with hundreds of gigabytes of data of all kinds. A digital model as code, however, is lightweight, compact and fast – a sparkling crystal, like poetry. That is why coding is the focus of this course. More specifically, students learn to read code and to value thinking in code. Learning active coding goes beyond the time-frame and should not be forced upon people. Thanks to digital awareness, students can quickly learn a wide variety of software using help available in the Internet, and competently use it according to their personal preferences. The aim of the course is for the students to develop as architects and to grow a digital personality. Specific reference is made to the history of architecture in conjunction with mathematics and philosophy. The essential tool of the trade is the lambda calculus in the implementation of Mathematica. The information technology interconnection of all digital media will be presented: text, image, graphic, model, animation, film, audio and the corresponding software. Current issues will be discussed: Internet, internet of things, cryptography, privacy, big data, machine intelligence, building information models, responsive cities, smart homes, robotics, energy and logistics. Current and historical modelling processes will be worked on.				
Content	Normally, one would expect this course to teach students how to draw architecture while using computers. This course does not because in the current discussion about building information models (BIM), we see how blocked the situation can become when one draws architecture digitally. Today, digital models are a tedious ‘minefield’ with hundreds of gigabytes of data of all kinds. A digital model as code, however, is lightweight, compact and fast – a sparkling crystal, like poetry. That is why coding is the focus of this course. More specifically, students learn to read code and to value thinking in code. Learning active coding goes beyond the time-frame and should not be forced upon people. Thanks to digital awareness, students can quickly learn a wide variety of software using help available in the Internet, and competently use it according to their personal preferences. The aim of the course is for the students to develop as architects and to grow a digital personality. Specific reference is made to the history of architecture in conjunction with mathematics and philosophy. The essential tool of the trade is the lambda calculus in the implementation of Mathematica. The information technology interconnection of all digital media will be presented: text, image, graphic, model, animation, film, audio and the corresponding software. Current issues will be discussed: Internet, internet of things, cryptography, privacy, big data, machine intelligence, building information models, responsive cities, smart homes, robotics, energy and logistics. Current and historical modelling processes will be worked on.				
Content

The Mechanics of Digital
Introduction and overview on folding
Calculus
Text and numbers
Lists and colours
Pictures and films
Cryptography and communication
Rules and graphs
Graphics and Animation
3D models
Solid models
Music and sound

The Big Plenty
Parsers
Databases
Machine intelligence
Many images
Many texts
Many drawings
Many models
Smart buildings
City and country
On the Internet of Things

A Digital Archaeology of Architecture
The geometry of Euclid
The architecture of the Greeks
The arithmetic of Ptolemy
The architecture of the middle ages
The geometry of Descartes
The architecture of the Renaissance
The arithmetic of Lagrange
The architecture of the Enlightenment
The algebra of Boole
The architecture of the classical period
The theory of categories
The architecture of the 20th century

The Digital Architectural Model
Architecture and poetry
The perspective model
The probabilistic model
The crystal
The hybrid
The continuum
The Oikos
The model concept 1920
The model concept 1950
The model concept 1980
The model concept 2010
Brand and style

Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-8009-00L</td>
<td>Building Physics II</td>
<td>O</td>
<td>2 credits</td>
<td>2G</td>
<td>J. Carmeliet, M. Ettlin, A. Rubin</td>
</tr>
<tr>
<td>Abstract</td>
<td>Moisture related problems are common in buildings leading to costly damage and uncomfortable indoor environments. This course aims at providing the necessary theoretical background and training in order to foresee and avoid these problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>to develop a basic understanding of mass transport and buffering to become aware of potential moisture-related damage and health risks to learn how to (i) design building components and (ii) assess their hygrothermal performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>• hygrothermal loads • conservation of mass (dry air, water vapor, liquid water) • moist air: constitutive behavior, transport, potential problems and solutions • liquid water: constitutive behavior, transport, potential problems and solutions • exercises</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Handouts, supporting material and exercises are provided online via Moodle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prior knowledge of "BP I: heat" is required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

052-0801-00L	Global History of Urban Design I	O	2 credits	2G	T. Avermaete
Abstract	This course focuses on the history of the design of cities, as well as on the ideas, processes and actors that engender and lead their development and transformation. The history of urban design will be approached as a cross-cultural field of knowledge that integrates scientific, economic and technical innovation as well as social and cultural advances.				
Objective	The lectures deal mainly with the definition of urban design as an independent discipline, which maintains connections with other disciplines (politics, sociology, geography) that are concerned with the transformation of the city. The aim is to make students conversant with the multiple theories, concepts and approaches of urban design as they were articulated throughout time in a variety of cultural contexts, thus offering a theoretical framework for students’ future design work.				
Prior to each lecture a chapter of the reader (Skript) will be made available through the webpage of the Chair. These chapters will provide an introduction to the lecture, the basic visual references of each lecture, key dates and events, as well as references to the compulsory and additional reading.

There are three books that will function as main reference literature throughout the course:

These books will be reserved for consultation in the ETH Baubibliothek, and will not be available for individual loans.

A list of further recommended literature will be found within each chapter of the reader (Skript).

Students are required to familiarize themselves with the conventions of architectural drawing (reading and analyzing plans at various scales).

Urban Design III

Abstract

Students are introduced to a narrative of 'Urban Stories' through a series of three tools driven by social, governance, and environmental transformations in today's urbanization processes. Each lecture explores one city's spatial and organizational ingenuity born out of a particular place's realities, allowing students to transfer these inventions into a catalog of conceptual tools.

Objective

How can students of architecture become active agents of change? What does it take to go beyond a building's scale, making design-relevant decisions to the city rather than a single client? How can we design in cities with a lack of land, tax base, risk, and resilience, understanding that Zurich is the exception and these other cities are the rule? How can we discover, set rather than follow trends and understand existing urban phenomena activating them in a design process? The lecture series produces a growing catalog of operational urban tools across the globe, considering Governance, Social, and Environmental realities. Instead of limited binary comparing of cities, we are building a catalog of change, analyzing what design solutions cities have been developing informally incrementally over time, why, and how. We look at the people, institutions, culture behind the design and make concepts behind these tools visible. Students get first-hand information from cities where the chair as a Team has researched, worked, or constructed projects over the last year, allowing competent, practical insight about the people and topics that make these places unique. Students will be able to use and expand an alternative repertoire of experiences and evidence-based design tools, go to the conceptual core of them, and understand how and to what extent they can be relevant in other places. Urban Stories is the basic practice of architecture and urban design. It introduces a repertoire of urban design instruments to the students to use, test, and start their designs.

Content

Urban form cannot be reduced to physical space. Cities result from social construction, under the influence of technologies, ecology, culture, the impact of experts, and accidents. Urban un-concluded processes respond to political interests, economic pressure, cultural inclinations, along with the imagination of architects and urbanists and the informal powers at work in complex adaptive systems. Current urban phenomena are the result of urban evolution. The facts stored in urban environments include contributions from its entire lifecycle, visible in the physical environment, and non-physical aspects. This imaginary city exists along with its potentials and problems and with the conflicts that have evolved. Knowledge and understanding, along with a critical observation of the actions and policies, are necessary to understand the diversity and instability present in the contemporary city and understand how urban form evolved to its current state.

How did cities develop into the cities we live in now? Urban plans, instruments, visions, political decisions, economic reasonings, cultural inputs, and social organization have been used to operate in urban settlements in specific moments of change. We have chosen cities that exemplify how these instruments have been implemented and how they have shaped urban environments. We transcribe these into urban operational tools that we have recognized and collected within existing tested cases in contemporary cities across the globe.

This lecture series will introduce urban knowledge and the way it has introduced urban models and operational modes within different concrete realities, therefore shaping cities. The lecture series translates urban knowledge into operational tools, extracted from cities where they have been tested and become exemplary samples, most relevant for understanding how the urban landscape has taken shape. The tools are clustered in twelve thematic clusters and three tool scales for better comparability and cross-reflection.

The Tool case studies are compiled into a global urbanization toolbox, which we use as typological models to read the city and critically reflect upon it. The presented contents are meant to serve as inspiration for positioning in future professional life and provide instruments for future design decisions.

In an interview with a local designer, we measure our insights against the most pressing design topics in cities today, including inclusion, affordable housing, provision of public spaces, and infrastructure for all.

Lecture notes

The learning material, available via https://moodle-app2.let.ethz.ch/ is comprised of:
- Toolbox Reader with an introduction to the lecture course and tool summaries
- Weekly exercise tasks
- Infographics with basic information of each city
- Quiz question for each tool
- Additional reading material
- Interviews with experts
- Archive of lecture recordings

Literature

These books will be reserved for consultation in the ETH Baubibliothek, and will not be available for individual loans.

A list of further recommended literature will be found within each chapter of the reader (Skript).

Students are required to familiarize themselves with the conventions of architectural drawing (reading and analyzing plans at various scales).

<table>
<thead>
<tr>
<th>Lecture notes</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>The learning material, available via https://moodle-app2.let.ethz.ch/ is comprised of:</td>
<td></td>
</tr>
<tr>
<td>- Toolbox Reader with an introduction to the lecture course and tool summaries</td>
<td></td>
</tr>
<tr>
<td>- Weekly exercise tasks</td>
<td></td>
</tr>
<tr>
<td>- Infographics with basic information of each city</td>
<td></td>
</tr>
<tr>
<td>- Quiz question for each tool</td>
<td></td>
</tr>
<tr>
<td>- Additional reading material</td>
<td></td>
</tr>
<tr>
<td>- Interviews with experts</td>
<td></td>
</tr>
<tr>
<td>- Archive of lecture recordings</td>
<td></td>
</tr>
</tbody>
</table>

Literature

These books will be reserved for consultation in the ETH Baubibliothek, and will not be available for individual loans.
Content
The two-semester course offers an introduction to the history of modern and contemporary art and architecture since ca. 1970. Motivated by questions of the current discourse, central topics and exemplary works of art and architecture are discussed. Concepts such as “labor”, “economy”, “experience”, “research”, “nature”, “diversity” or “surface” are used to focus on specific historical developments and connections. Art and architecture is considered as a field of cultural change as well as an indicator of social, economic, and political conflicts which in turn helps to understand historical dynamics.

Lecture notes
A video documentation of the lecture class is available. https://video.ethz.ch/lectures/d-arch/2019/autumn/052-0807-00L.html

Literature

Philip Ursprung, Der Wert der Oberfläche, Essays zu Kunst, Architektur und Ökonomie, Zürich, gfa Verlag, 2017.

052-0651-00L Building Process I

Abstract
The building process is the main focus of this lecture series. The process is understood as a sequence of criteria in time. Topics: Acquisition and building law, building economics and sustainability strategies, participants and their services, construction and planning organization. Process thinking and a look at neighbouring countries complement the series.

Objective
Alongside a discussion of the basic principles, trends and terminologies, a closer look will be taken at each topic using case studies that investigate current structures as well as those relevant in terms of architecture and urban design. Active participation as well as interdisciplinary and process-oriented thinking on the part of students is a prerequisite.

Content
The building process is the main focus of this lecture series. The process is understood as a sequence of criteria in time. Topics: Acquisition and building law, building economics and sustainability strategies, participants and their services, construction and planning organization. Process thinking and a look at neighbouring countries complement the series. Alongside a discussion of the basic principles, trends and terminologies, a closer look will be taken at each topic using case studies that investigate current structures as well as those relevant in terms of architecture and urban design. Active participation as well as interdisciplinary and process-oriented thinking on the part of students is a prerequisite.

Lecture notes
https://map.arch.ethz.ch

052-0705-00L Landscape Architecture I

Abstract
Introduction to the history and theory of garden design and landscape architecture. Analysis of the design of historical gardens and landscapes within the cultural background.

Objective
The course covers the basic history and theory of garden design and landscape architecture from its beginnings to the 21st century. The course aims to raise awareness of a changing perception of nature and landscape.

Content
The lecture series on History and Theory of Garden Design and Landscape Architecture deals with the historical development of designed nature, from the beginnings of cultural landscapes and gardens to 21st century landscape architecture. In the analysis of each era, the focus is on the spatial and cultural relationship between the garden, the city and the landscape, as well as the changing perceptions of nature and its representation.

Lecture notes
Handouts and a reading list will be provided.

Literature
A reading list will be provided for the exams.

Prerequisites / notice
General Information for the final exam:
Bachelor students: The content of the lectures as well as texts and exam-relevant literature provided by the Chair make up the basis for preparing for the exam. The lecture series is conceived as a yearlong course. Since the written session examination will test knowledge from both semesters, it is necessary to fully attend the lectures of both courses “Landscape Architecture I” and “Landscape Architecture II”.

The themes of the examination will be announced at the end of the semester. The Chair will provide literature and texts available for download as pdfs. These allow a more in-depth understanding of the lecture material.

Exchange students or students from other departments: Students, who are attending only one semester, may pass the oral end-of-semester examination. Test-relevant literature will also be made available for download for this purpose.
The students are requested to get in touch by email with the Chair.

052-0609-00L Energy and Climate Systems II

Abstract
The second semester of the annual course focuses on physical principles, component and systems for the efficient and sustainable supply with electricity, daylight and artificial light. This includes concepts of on-site generation of energy, building systems controls and human-building interaction. Additionally, larger scale building energy systems for districts and buildings are considered. Learning and practicing methods of quantifying demand and supply allows identifying parameters relevant for design.

Objective
The lecture series focuses on the physical principles and technical components of relevant systems for an efficient and sustainable climatisation and energy supply of buildings. A special focus is on the interrelation of supply systems and architectural design and construction. Learning and practicing methods of quantifying demand and supply allows identifying parameters relevant for design.

Content
1. Introduction and overview
2. Electricity
3. Integrated design

Lecture notes
The slides of the lecture serve as lecture notes and are available as download.

Literature
A list of relevant literature is available at the chair.

052-0507-00L Architectural Technology V

Abstract
The lecture series explores the correlation among intentions of design, architectonic expression and construction premises. These critical areas or aspects of study, which are presented with selected projects, their respective theoretical backgrounds and historical development, are pluralistically associated and brought into relation with varying contemporary opinion.

Objective
The final part of the lecture series Konstruktion V/VI aims to analyse (structural) construction techniques and their formal appearance and expression in their interrelation. The different themed parts of structural design, building shell and knowledge of material get connected with architectural design in practice and reflected in the wider context of architectural theory. The intention is to consolidate the understanding of the connection between structure, process and formal appearance and expression in the architecture of the 20th century.

Content
The lecture series in the course entitled Architecture and Construction explores the correlation among intentions of design, architectonic expression and construction premises. Each lecture is focused on individual themes, as for example, the application of certain materials (glass, or natural stone), of particular construction systems (tectonic, hybrid) or design generators (grids, series) and alternatively the search for a definable, tangible architectural expression (vernacular architecture, readymades). These critical areas or aspects of study, which are presented with their respective theoretical backgrounds and historical development, are pluralistically associated and brought into relation with varying contemporary opinion. The yearlong lecture cycle is comprised of twenty individual lectures, in which the majority of projects being analyzed date from the last few decades.
Architectural Design III: Ideal Architecture, Storage

E. Christ

List of literature per lecture.

The brochures published by the chair offer additional help. Knowledge of these brochures and their key subjects is recommended for the exam. The brochures can be ordered at the chair after the last lecture before the examination. However, the subject matters of the brochures and the lectures are not identical, the brochures provide information for a deeper understanding of the lectures. Apart from additional articles written by the chair, the brochures are composed of three modules: Project documentation, crucial texts on the work reception as well as theoretical articles about the particular thematic priorities by various authors. Concerning their content these anthologies allow insights into a wide range of theories, lines of reasoning and fields of research up to diverging point of views of specific problems.

The time spent in the home office has led, among other things, to the accumulation of trillions of bytes. The question of storage arises and therefore the knowledge of the subject matter of the running as well as of the preceding semester's lectures is required. To improve your chances to pass the examination at first try, we strongly recommend you to take the exam after having visited the lecture during two semesters. A "Leistungselement" as an interim exam will take place as part of the lecture in the first half of the semester. The interim exam is voluntary. It will be conducted under exam conditions and will be graded. Its grade will contribute to the overall grade of the course, if it has a positive influence.

If you are an exchange student, or a student from a different department and wish to take a partial examination covering only the subject matter of the last semester (Konstruktion V or VI), you need to contact the chair in advance.

Architectural Design III: Ideal Architecture, Storage
(E.Christ/Ch.Gantenbein)

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php). Students who do not wish to change the design class don't have to participate in the internal enrolment.

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract

The time spent in the home office has led, among other things, to the accumulation of trillions of bytes. The question of storage arises almost automatically. Starting from historical architectures of storage in Switzerland (HS), we discuss social, political and ecological questions of contemporary globalised flows of goods and data (FS) and try answer through an architectural design.

Objective

HS21

Ability to systematically analyse buildings from different eras and describe them photographically. The study and understanding of architectural rules, qualities and principles by means of graphic representations such as axonometrics, plan representations with shadows and colours, but also photographs and models.

FS22

Develop an independent, responsible and visionary attitude to a current social issue using the medium of (plan) collages. Ability to critically read and discuss (architectural) theoretical texts and relate them to the question. Developing an independent project that is coherent in terms of urban planning, typology and form, which deals constructively with the topic of reuse and is presented by means of a model and plans.

Content

Ideal Architecture: Storage

We understand the issue of storage space as an urgent and constant problematic for all human societies in all historical periods. Form the prehistoric jars to the city of Delphi where the ancient Greeks stored for the first time in history of Europe written documents and personal belongings. From the primitive caves to the Knossos palazzo, from the roman corn warehouses to the Nevada desert, where the hidden side of our cloud society lies with his enormous amount of space used for data storage.

The act of storing something has to do with the issue of the "standard" measure. Every epoch and every society culturally defines what their standards are, based on the very necessity of their historical time, and so the architecture of the storage space adapts itself to the ever-changing standards and thus evolves. For many periods the most important conventions about storing were derived from the human body. From the weight a healthy person can lift to the way a hand reaches for an object, the body conditions storage.

To categorize the things our society stores, is as vast as the society itself. Along most Swiss train tracks, one can observe form designed to hold materials in different consistencies. From liquid to aeriform to solids, from bulldozed bulk freight to stacked blocks, the physical forces demonstrate the movement and storing.

In this semester we want to look closely at the architecture of storage in Switzerland. By means of fieldwork, drawing, reading, discussion and designing we will search for the ideal in storage and propose a collection of the most interesting storage buildings. We believe that these buildings, in addition to being a crucial part of any functioning of society, possess an underappreciated beauty, and that through typological mapping have the potential to shed light on the mechanism of the built world.

SS22

REAL ARCHITECTURE: SPACE OF ACCUMULATION

Accumulation describes the gradual gathering of elements. It is the law by which many great things operate, such as civilization, history, economy and not least the formation of planets. Architecture is also subject to the law of accumulation, as buildings do not appear in an instant, but are gradually put together on the building site. What are the pyramids if not an accumulation of stones? One possible answer would be to say that they are storage; an architectural response to accumulation as old as time itself. Is the traditional storage still valid today? What can spaces of accumulation mean for architecture?

With the increased focus on accumulation of capital, goods and data in today's society, you'd think that spaces of accumulation would be an essential part of our daily lives. Instead it is suspiciously missing from the public imagination, hidden away as some thing necessary but unsightly. It's true that the complexity and scale of accumulation can be unnerving and as the saying goes; you don't want to know how the sausage is made. Nevertheless, could it be necessary to understand the sausage for a sustainable future?

In our studio, using the knowledge from the previous semester on the ideal storage, we will combine the ideal and the real in order to speculate about how recycling meets tomorrow's space of accumulation, because we believe that answering the question about the accumulation of the future means implicitly linking architecture to the necessities and urgencies of the world to come.
Literature
Book recommendation BUK I - IV: "Construction"
A reference work on contemporary construction
German or English
360 pages, 171 images, 20 color images, texts
ISBN 978-3-0356-2225-6
Online reference source: https://www.hochparterre-buecher.ch/ Konstruktionen.html

Prerequisites / notice
Working in groups only.
Critiques: 12./13.10., 9./10.11. and 30.11./1.12;
Costs: CHF 100.-- (besides seminar week).

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories assessed
Domain B - Method-specific Competencies	Techniques and Technologies assessed
Domain C - Social Competencies	Analytical Competencies assessed
	Decision-making assessed
	Media and Digital Technologies assessed
	Problem-solving assessed
	Project Management assessed
Domain D - Personal Competencies	Communication assessed
	Cooperation and Teamwork assessed
	Sensitivity to Diversity assessed
	Adaptability and Flexibility assessed
	Creative Thinking assessed
	Critical Thinking assessed
	Integrity and Work Ethics assessed
	Self-awareness and Self-reflection assessed
	Self-direction and Self-management assessed

052-0543-21L Architectural Design III: House Behaviorology in Switzerland (Kaijima)
Teaching languages are English and German.

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).
Students who do not wish to change the design class must not enrol.

Project grading at semester end is based on the list of enrolments on 2.11.21 (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract
The course focuses on a house and housing design in and around Zurich. Through the analysis of existing houses, including their users and locations, and by designing a housing complex, students learn about basic principles of housing design and the knowledge about issues of private/public, common spatial design for urban ecology.

Objective
Knowledge:
• Design research by actor network drawing (Week 1-4)
 Learning about actor networks
 Learning basic research methods (collection and analysis of data and information)
 Understanding a building design by actor networks
 Visualizing a building by actor network drawing
 Finding design principles by drawing

• Principles of house and housing design (Week 5-9)
 Understanding the form of a house by understanding the behavior of climate, material, users, elements and typology
 Learning which spaces are needed for houses and housing
 Learning about dimensions in a house and housing design

• Private/public and common spaces in an urban context. Design for inclusivity, Principles of Detailing and Construction (Week 10-14)
 Learning about the architectural form and the gradient of privacy in houses and housing
 Finding the potential of commonly used spaces
 Learning how to design common spaces
 Learning how to design housing for everyone (children, elderly and differently abled people). Learning about the behavior of architecture in relation to weather and climate
 Learning about the behavior of materials
 Learning about the behavior of structure and gravity
 Learning the basics of detailing and construction

Skills:
• Hand drawing by pencil
• CAD drawing and 3d modeling
• Model building
• Learning the character of different tools, the skills to apply them as design methods and hybridizing them to achieve the desired results.
Architectural behaviorology and actor network theory are our two guiding principles to not only design architecture but also understand our current existing environment.

By understanding a building, a house not as an isolated object but as a node in a vast and far reaching network, or several networks, we grow conscious of the impact, which our design has, not only on the specific plot, but on the neighbors, the city, the environment, the society. Vice-versa, analyzing and understanding the networks, which have shaped existing buildings, helps us to better understand how and why the design of those buildings came to be.

While identifying the relationship between actors within the network, we simultaneously observe the behavior of each actor as a result of their relationship. The behavior can be static or dynamic, actors can be human, non-human, animate or inanimate. How does a building behave towards its environment? What behavior do inhabitants engage in within and around a building? How do we have to design to take Behaviors of certain materials into account?

House and housing is the base of our living environment and a diverse fields in architecture. House behaviorology will set the challenge to find sustainable living condition in the city, by understanding historical examples and their geography, density, economic standing, and time period.

At first, to find the character and essence of today’s house and housing design in Zurich, we will start with analyzing existing single-family houses in and around the city. We will research and map how these basic units of housing relate to the users, to each other and to their surroundings. What kind of purposes they fulfilled and what kind of activities and behaviors do those houses enable?

Second, we will try to improve on the design by changing the single-family house into housing complexes, responding to the need of greater density, but still retaining the qualities of the original houses. Where do we find synergies, when combining houses? What kind of common spaces arise and how can we make use of them to make better neighborhoods?

Simultaneously we will have a close look on designing for inclusivity. How do we design for marginalized groups, such as the elderly, children or differently abled people? How can we live together in the urban ecology?

Grading Criteria
The submissions will be graded before each review. Students are expected to do individual work.
Each submission will be graded according to the following points:
- Completeness and punctuality of the submission
- Research method, the ability to find and analyze information
- Understanding of the concept of behaviorology and the ability to implement behaviorology within the design
- Structural design, construction details and choice of material, in connection with concept of behaviorology and the actor network
- Choice of typology and design, in connection with the concept of behaviorology and the actor network
- Visualization, the ability to make easy to understand and compelling drawings
The final grade consists of the following partial grades:
- Mid review 1 submission: 30%
- Mid review 2 submission: 30%
- Final review submission: 40%

Lecture notes
Each student will receive a printed reader, containing the basic information about the course, such as schedule, syllabus and other important information, as well as examples and references for the design task, and readings to support the theoretical framework of the course.

Prerequisites / notice
To attend this course, students have to enroll through the "Enrolment in the Design Studios of D-Arch"-page: (www.einschreibung.arch.ethz.ch). The design studio is structured as a year-long course. The submissions during the autumn semester will be individual work. Schedule Autumn Semester 2021:
- Introduction 21.09.21
- Mid Review 1: 12. & 13.10.21
- Mid Review 2: 16. & 17.11.21
- Final Review: 21. & 22.12.21
Individual work only.
Costs: ca. 100 CHF (besides the seminar week)

Assistants
Teaching: Sandrine Badoux, Tanguy Caversaccio, Christoph Danuser, Kelly Man
Research: Tazuru Harada

Collaboration: GTA, Chair for the Theory of Architecture
ITA, Chair of Structural Design

Taught competencies

Domain A - Subject-specific Competencies	Concepts and theories	assessed
Domain B - Method-specific Competencies	Techniques and Technologies	assessed
	Analytical Competencies	assessed
	Decision-making	assessed
	Media and Digital Technologies	assessed
	Problem-solving	assessed
	Project Management	not assessed
Domain C - Social Competencies	Communication	assessed
	Cooperation and Teamwork	not assessed
	Customer Orientation	not assessed
	Leadership and Responsibility	not assessed
	Self-presentation and Social Influence	not assessed
	Sensitivity to Diversity	assessed
	Negotiation	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	assessed
	Creative Thinking	assessed
	Critical Thinking	assessed
	Integrity and Work Ethics	assessed
	Self-awareness and Self-reflection	assessed
	Self-direction and Self-management	assessed

052-0545-21L Architectural Design III: A Forest Bath (A.Spiro)
Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).

W 14 credits 2V+14U A. Spiro, J. De Vylder, D. Mettler, D. Studer
Students who do not wish to change the design class
don't have to participate in the internal enrolment.

Project grading at semester end is based on the list of
enrolments on 2.11.21, 24:00 h (valuation date) only.
This is also the ultimate deadline to unsubscribe or enroll
for the studio.

Abstract
We are going to design a bath in the nearby forest. You are going to acquire profound knowledge about structural concepts and work with contradictions and corresponding aspects between spatial structure and support structure. Further key aspects are materials and their inherent properties, light and the roof structure as such. The specific context of the forest strongly informs the design process.

Objective
Over the course of the design studio, you are going to acquire specific knowledge about different concepts of construction and apply them to your own projects. Central topic during the semester is the development of a design based on a central structural idea.

You will be working on
- a precise relation between spatial and supporting structure
- a materialisation based on the principles of the structural concept
- a concept for openings and lighting based on the principles of the structural concept
You will learn to develop your project based on
- your structural concept
- specific aspects of building in the forest
- your in-depth analysis of the immediate surroundings of the chosen site

Most of the spaces we design will not be insulated. This allows for a simple and direct way of construction. Based on this, you will work out a part of your project in detail, relating to measurements of the human body.

Concerning the representation of your project, you will
- learn a solid way of drawing in CAD in a 1:200 scale
- use combinations of CAD and analog drawing to convey the intended atmosphere
- use and enhance your hand drawing for 3D illustrations

By building physical models, you can
- learn about the adequate detailing in a respective scale
- simulate actual jointings and find out about their impact on the architectural expression
- develop further abilities to represent materials and surfaces in an appropriate way

The acquired knowledge in relation to structure, material, lighting, drawing and model building will be the base for the 4th semester where we are going to elaborate on these topics in a more complex way, designing urban residential buildings.

In this regard, our design task will be a forest bath in the Käferberg area close to the campus. Bathing in the forest allows a new experience of the local recreation area and adds a new level of use. The bath is explicitly not expected to feature a single large pool. Hence the actual way of bathing in the forest needs to be developed specifically in every project based on the structural idea and specific aspects of the chosen site. The bath is supposed to be open all year round. Therefore it offers both open and enclosed spaces, a rest area and the usual auxiliary spaces of a public bath. Special attention will be given to the transition of indoor and outdoor spaces which offers vast opportunities for specific designs between covered and uncovered, bright and dark, open and closed, and intelligent concepts for heated and uninsulated spaces.

During the definition of our approach to the design task, we will have several opportunities to spend time in the forest and get to know the controlled natural environment of the “urban forest”. In several exercises at the beginning of the semester, we are developing collections of objects, drawings, and impressions. This pool of ideas will be present in the studio as a base to define your own field of interest, which will later condense in your projects.

The forest will be present in the studio in the form of a large model which we are going to build during the first weeks as a base for your daily work on your projects and the critiques. During the course of the semester, you can choose from a range of sites that differ in respect to the density of the forest, topography and access.

Throughout the 3rd semester, we are focusing on structure as a catalyst for our designs. You will learn about different structural concepts and apply their basic principles in your projects. Further key aspects are the use of materials and their inherent properties, a conscious way of designing with daylight, and the development of coherent roof structures.

Outlook 4th Semester
Next semester, the core subject of our studio will be programme instead of structure. We are going to design residential buildings in Zurich. Starting from a selection of inspirational houses and apartments which we are analysing and measuring during extensive visits at the beginning of the semester to get an understanding for their architectural elements and spatial, you are going to develop your own specific form of living. From a selection of different sites in the city center, you determine the best suited for your project and develop dwellings right down to the materialisation in detail. In doing so, we will pick up and elaborate the topics we are touching in the first semester on a more complex level.

The 3rd semester has been newly developed based on core topics of the chair. It replaces the respective fall semester courses which used to focus on working in the built fabric. Further information about the housing semester are available on our Website in the form of semester documentation brochures (see Small Pleasures of Life I-III, https://spiro.arch.ethz.ch/lehre/zweiter-jahreskurs).

Lecture notes
Documents provided by the chair.

Literature
We will be reading and discussing texts that are relevant for the main topic of the current series of exercises on a regular basis (extracts provided by the chair) throughout the semester.

Book recommendation BUK I - IV: "Construction";
A reference work on contemporary construction
German or English
360 pages, 171 images, 20 color images, texts
ISBN 978-3-0356-2225-6
Online reference source: https://www.hochparterre-buecher.ch/Konstruktionen.html

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 69 of 2152
Prerequisites / notice

Inputs by the chair and external guests on a regular basis
Prof. Annette Spiro
Assistants: Rosário Gonçalves, Nicole Leuthold, Tobia Rapelli, Luis Sarabia, Florian Schrott

Introduction:
Tuesday, Sept 21th, 10 a.m., place / zoom link to be communicated.

Individual work and group work, whereof 5 or more weeks group work.

Costs: CHF 100.-- (besides seminar week)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0547-21L</td>
<td>Architectural Design III: 333%. - (P)re-Zu-rich (J. De Vylder)</td>
<td>2V+14U</td>
<td></td>
<td>J. De Vylder, D. Mettler, D. Studer</td>
</tr>
</tbody>
</table>

Teaching languages are English and German.

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).
Students who do not wish to change the design class must not enrol.

Project grading at semester end is based on the list of enrolments on 2.11.21 (valuation date) only.
This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract

In semester HS / III, a simple exercise will explore the development of the same program in the two different contexts of NEW-USE and RE-USE. On a given free plot versus a given build plot, the same project will be designed. In the FS / IV semester, the same simple exercise will test the results of the previous semester on a subsequent change.

Objective

It is clear. As good as the whole realm is on track on Re-Word today, a critical moment must be ambitioned. But not just to be critical. But to give the idea of Re-Prefix a chance to go beyond the tendency and give a chance for a truly different Future of Attitude. And not just a Pragmatic Future, but a Future to Dream about. d-RE-AM. About.

Content

The 333% studio is a studio on the scale of the BA SEM III & IV expectations. At the same time, the 333% studio is part of a broader ambition shaped by the title 3.33% 33.3% 333%.

In fact, these 3 sets of 3 numbers are 3 different studios but sharing the same interest 3 times. The interest of RE-USE. In the 33.3% and 3.33% studio - MA SEM I, II and III - the idea of economy, ecology and ergonomics is explored with a gesture of 3.33% or 33.3% of the normal 100% investment. A true belief in the under-explored capacity to really do less. Or said: needing less.

The 333% studio takes the perspective across two semesters - HS / III and FS / IV. In semester HS / III, a simple exercise will explore the development of the same program in the two different contexts of NEW-USE and RE-USE. On a given free plot versus a given build plot, the same project will be designed. In the FS / IV semester, the same simple exercise will test the results of the previous semester on a subsequent change. Both projects from the previous semester will be challenged with a new program, twice each time. One can say: it is a matter of RE-USE - semester FS / IV - of the RE-USE and the NEW-USE - semester HS / III -.

We introduce the word (P)RE-USE here since the NEW USE - semester HS / III - will still be tested in its first concept for its ability to be prepared for the next RE-USE. Likewise, the RE-USE project will be evaluated for its ability to change once more.

We will talk about many more RE-PREFIX words. The RE-WORD - once started with the word RE-USE - is everywhere and always today. The RE-word is omnipresent and in many ways. Many RE-words have now been found and defined. And many more must and will be added. Never is it a play on words. Always it is another angle. Or to explore the idea more and more. And to discover yet another entrance.

re-use re-store rest-ore re-pair
re-act re-cycle re-care re-accept
re-sumptions re-compress(ions)* re-economy*
re-love re-leave re-less re-confirm
re-silence re-vive re-live
re-veal un-re-vel
re-collage re-configurate
re-observe re-call re-read re-focus re-draw re-practice re-detail re-invent re-question
re-strategy re-confront re-venture
re-re

At all. We will find out together that in the end, taking into account all these RE-WORDS, it is and will be more a matter of RE-ATTITUDE. USE words in account. Attitudes must be changed. At all.

RE-THINKING-RE is the alter ego of the 3.33% 33.3% 333% studios. If we are not critical, RE-ERA may only be a trend, but in fact it is and will always be an eternal URGE.
The urge of u-R-g-E.

It is clear. As good as the whole realm is on track on RE-WORD today, a CRITICAL moment must be ambitioned. But not just to be CRITICAL. But to give the idea of RE-PREFIX a chance to go beyond the tendency and give a chance for a truly different FUTURE of ATTITUDE. And not just a PRAGMATIC FUTURE, but a FUTURE to DREAM about. d-RE-AM. About.

Prerequisites / notice

Course language are English and German.
Group work only.
No extra costs.
In HS21 in Falera, we will investigate the question of whether, in our time of individual action and unrestricted access to materials, places can emerge that are able to inspire us.

Architecture requires a fine perception of what already exists and a courageous design for what is to come. As a basic requirement for both moments, we consider a sustainable attitude to be developed from the lifeworld collective. The aim of the course is to increase the sensitivity to such an attitude. At the same time, the skills should be learned to make this attitude effective. Dealing with the immediate reality of construction and material plays a key role in this.

Many mountain villages were in a similar situation. There were major changes towards the end of the last century. Above all, tourism and the hotel industry, followed a little later by the construction of second homes, led to modest prosperity. The new opportunities resulted in a radical decline in agricultural livelihoods. The social structure of the village and the influence of the church have fallen. Liberation from these mighty bonds has been a relief for many. Effects were not lacking. Individual forms of life and the disappearance of local knowledge led to a leveling of phenomena in the entire Alpine region. The power of a place and its architecture emerged from the repetition of the almost identical.

The freedom gained also has a downside. The canon of values that characterized the culture of space has disappeared. Orientation guidelines are always in question.

The big change also took place in the Graubünden village of Falera. The small farming village became a tourist place. Falera still likes to see itself as a farming village. Agriculture is still present. With the change, the farmers have moved to the edge of the village. The stables in the village center are empty or have been converted. Holiday homes were built in the style of farmhouses. The stable entity, which used to see itself as a farming village. Agriculture is still present. With the change, the farmers have moved to the edge of the village. The stables in the village center are empty or have been converted. Holiday homes were built in the style of farmhouses. The stable entity, which used to see itself as a farming village.

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).
Objective
- Managing with environmental conditions of a site (orientation, visual, circulation, resources, pre-existences, etc.).
- Having the ability to rethink the pre-established and the interest to discover unknown approaches.
- Incorporating an emotional approach to architecture – designing from experience.
- Controlling and articulating the various qualities of space (dimensional, material, environmental, etc.).
- Integrating the behaviour of the building as a fundamental part of the project.
- Designing with natural systems and thermodynamics to create spaces with “real” comfort.
- Re-learning how to live and build in future climate paradigms.
- Knowing how to find expression and character of spaces through the use of matter.
- Understanding the potential offered by construction systems and technology.
- Combining technical decisions with formal ones in a significant way.
- Detecting opportunities to give innovative answers to the relationship between buildings and nature.
- Incorporating interdependence as a determining factor in the design of buildings.
- Organizing the work in a way, which is appropriate to the available time and the requested objectives.

Content
Inspired by Louis Kahn’s passionate and enigmatic interest in institutions and their origins, the aim of this studio is to investigate the possibility of a primordial architecture. A search for a “small” but essential architecture, able to define the character of an institution. What is substantial? What is really defining a theatre, a library, or a school? We are looking for new approaches that transcend the functionality of pre-established programs and discover their hidden nature, the invisible condition that characterizes each type of space and institution.

We aim to redefine and rediscover the architecture of the institution, “an organism that carries out a function of public interest” (according to the dictionary), “a world within the world”, “a centre around which existential space is organized” (according to Kahn).

The Studio will take place in a specific location in Zurich: a small but complex plot, cohabitating with various pre-existing elements that surround and condition it. Each student will be assigned one of these possible institutions:

LIBRARY - MUSEUM - SCHOOL - TEMPLE - TOWN HALL - MARKET - THEATRE - HOSPITAL - BATH - COURTHOUSE - GYM - ADMINISTRATION

The chosen site is voluntarily small - smaller than could be expected. The lack of space must be a positive condition, forcing us to take radical decisions. Necessary steps to discover the essence of the space: what is a priority, far from inherited or pre-established solutions.

To design the primordial (what really defines a place and the institution) we will need to go back and free ourselves from a part of what we have learned. To re-investigate the genesis of human activities, the sources and origins of what has historically set architecture.

This research requires a critical positioning. A confrontation with the established form, what could be a convention or just a trend. A fight against the status quo to allow us to redefine our values and our priorities, to discover the indispensable that qualifies as architecture.

We propose to deconstruct the great institutions, extracting the insubstantial and unnecessary to find their most elemental definition, their substance.

In the design of a new „small” institution, as in a good poem, it will be necessary to synthesize, reconstruct and retain only the fundamental. To find what awakens the most emotional dimension of architecture. What is necessary and unnecessary. What supports its meaning, its form, and its character. How is it built. What is it made of. How it behaves. It will be a precision exercise: learn to prioritize.

The reduction to the essential does not mean giving up ambition. It is an opportunity to find the most decisive expression of architecture (where nothing is superfluous or missing). A unique architecture that remains convincing over the years. Architecture that transforms inert matter into something vivid and extraordinary.

We will look for architecture that activates these processes from a pragmatic and reciprocal approach. From thermodynamics and interactions with the environment to the structure and tectonics of construction techniques. From space composition to social behaviours. From the reduction to the essential. Everything necessary to design and calibrate exceptional spaces. Spaces of inspiration, precision and interdependence.

Pre-institutions (or small primordial institutions) that redefine our priorities. A soft but radical plot twist, that perhaps can show us a different understanding of architectural space.

Prerequisites / notice
Individual work and group work, whereof at least 5 weeks of group work.

Critiques: Dates will follow.

052-1105-21L Architectural Design V-IX: (N.N.) ■ W 14 credits 16U not available
Does not take place this semester.
Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).
Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract
Not offered in HS21.

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).
Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract
Amplitude. Dynamic landscape structures for the Zealand. The search for future-oriented strategies in dealing with these extremes requires a paradigm shift - from fighting against to working with natural processes. It is necessary to lay new landscape structures that can deal with the fluctuations of the amplitudes.

Objective
Basic knowledge in landscape architecture, development of an attitude, formulation of a hypothesis, choice of appropriate design elements, design and representation of complex / dynamic systems and landscapes, alternation between different scales.
Heat, drought, heavy rain events - in the course of climate change, the extremes are getting stronger and the frequencies in which they occur faster and faster. Natural and cultural landscapes that were in equilibrium until a few years ago need to be adapted. These changes will not only affect the life of flora, fauna and people, but also the character and ultimately the identity of our Swiss landscape.

The search for future-oriented strategies in dealing with these extremes requires a paradigm shift - from fighting against to working with natural processes. It is necessary to lay new landscape structures that can deal with the fluctuations of the amplitudes.

But how can the forces of extremes be used and turned into positive things? And how should the new landscape deal with the dynamics - direct, balance, absorb?

As the most important production area in Switzerland, the Three Lakes Region is exposed to these extremes, as witnessed by the debris flow in Cressier and the floods in July as well as the dry periods of recent years. Therefore, the third Jura water correction is currently being considered, which, in addition to the previous tasks of large-scale drainage and bed load management, also includes irrigation.

The territory between Lake Neuchâtel and Lake Biel is characterized by the most varied levels of culture, infrastructure, settlement and industrial landscapes. The spatial planning consideration reveals extremes: small-grained, historical settlement cores collide with sprawling industrial areas such as the last refinery in Switzerland.

In search of new scenic identities for this valley, we will deal intensively with systems, processes and strategies without losing sight of spatial qualities, atmospheres and poetry.

The introduction of a new water system serves as a design engine. Due to the complexity of the territory and the task, an iterative design method is pursued that oscillates between design and analysis and between large and small scales. The development of an attitude, the crystallization of the specific topics and the selection of the appropriate design means are just as much a part of the work process as the design of the transformation processes.

Prerequisites / notice
Group work only.
Critiques: 13.10.21, 17.11.21, 7.12.21.
Costs: CHF 150.-- (besides seminar week).

052-1109-21L Architectural Design V-IX: Meteora 05 - Engenderings W 14 credits 16U L. Hovestadt
(L. Hovestadt)
Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract
This studio works on the idea that a substantial understanding of todays technology (internet of things, big data, machine intelligence ...) changes the perspective to architectural theory and will result in different architectural designs and building constructions.

Objective
1) Identification and understanding of the challenges of todays technologies;
2) techniques of working within the plenty of the internet;
3) a methodology to design digital architectures;
4) understanding of the shift from hard building construction to soft building applications, and
5) an understanding of the importance of becoming a literate digital persona in order to be an architect today.

Content
METEORA #05 ENGERDINGS

FASHION, JOURNALISM, FEMINISM

‘IF NATURE IS UNJUST, CHANGE NATURE.’

About freedom, nature, technology, gender, intellect.

What it is, a HUMAN?

Gendered by nature or engendered by ratio?

An architectonic stageplay:
Coco Chanel (1918) moves into the Villa Lemoine of Rem Koolhaas (1998) to discuss the XENOFEMINIST MANIFESTO (2018)

METEORA #05 will use artifical intelligence to write a text to explicate a precise position in today’s world, to create a spectrum of images to reflect this world and design an architectural artefact which brings things into adequate proportions.
Visibility and its Hidden Dimensions:
If something catches the eye, what is next to it will be mechanically less looked at. For a light to appear, it has to emerge from the surrounding darkness. And what attracts the light often leaves its surroundings in shadow. Hence an implacable theorem: the visible is always born from the invisible.

Visibility and movement:
There are also territories where one does not stop, places devoted to transit and exchange (business and industrial zones, areas near railway stations or airports, etc.). From these places, we can only have a partial vision, but also a vision in movement, a dynamic vision. From then on, they call for an architecture that adapts itself to this new speed of vision, and which opens onto another imaginary world. The history of art is full of these regenerations: the impressionists who revealed a new Paris by painting the "hidden banks" of the capital on the outskirts of the stations; street-art which gives back a cyma value to the gable walls, elements a priori the least worthy of attention in architecture.

Visibility and intimacy:
There is a "hidden dimension" (to use the title of Edward T. Hall's famous essay) that concerns our bubbles of intimacy, which vary according to times and cultures. These spheres remain the founding gauge of the human relationship with architecture. At what distance is the ultimate deadline to unsubscribe or enroll for the project site (Basel) with photographer Johannes Schwarz: 02-03.10.2021

Visibility and movement:
There are also territories where one does not stop, places devoted to transit and exchange (business and industrial zones, areas near railway stations or airports, etc.). From these places, we can only have a partial vision, but also a vision in movement, a dynamic vision. From then on, they call for an architecture that adapts itself to this new speed of vision, and which opens onto another imaginary world. The history of art is full of these regenerations: the impressionists who revealed a new Paris by painting the "hidden banks" of the capital on the outskirts of the stations; street-art which gives back a cyma value to the gable walls, elements a priori the least worthy of attention in architecture.

Visibility and intimacy:
There is a "hidden dimension" (to use the title of Edward T. Hall's famous essay) that concerns our bubbles of intimacy, which vary according to times and cultures. These spheres remain the founding gauge of the human relationship with architecture. At what distance is the ultimate deadline to unsubscribe or enroll for the

Visibility and illusory:
The gaze is, in any case, fallible and to take note of it is also to explore new areas of the visible. The art of trompe l'oeil works on certain productive ironies between painting and architecture (the frescoes in the Hall of Giants in the Té Palace in Mantua, a simulacrum of a building collapse, or closer to us, the "masking" of the Louvre Pyramid by J.R.). This art of camouflage does not always have artistic aims. Just think of the tarpaulins that hide the scaffolding on monuments that are being renovated, and on which the façade of the monument in question is drawn or photographed. Proof of the need to keep the facade of an emblematic building in the field of visibility (and even in the simulacrum mode)!

Visibility and new tools:
The change in the way we look at things is also accompanied by an addiction to new tools. The advent of the digital image has had an unexpected consequence: in the cinema, in photography, on television, the nights are sharper! Contours are better defined. Humans seem to have the vision of a cat! While the silver image better restores the density of the night, this darkness is both compact and indistinct, endowed with an enveloping dimension, with the impression that one can get lost in it. A digital night simply makes you believe that you have "dimmed the light" of the day, not that day and night are two opposing reigns.

Visibility and new tools:
The change in the way we look at things is also accompanied by an addiction to new tools. The advent of the digital image has had an unexpected consequence: in the cinema, in photography, on television, the nights are sharper! Contours are better defined. Humans seem to have the vision of a cat! While the silver image better restores the density of the night, this darkness is both compact and indistinct, endowed with an enveloping dimension, with the impression that one can get lost in it. A digital night simply makes you believe that you have "dimmed the light" of the day, not that day and night are two opposing reigns.

Visibility and new tools:
The change in the way we look at things is also accompanied by an addiction to new tools. The advent of the digital image has had an unexpected consequence: in the cinema, in photography, on television, the nights are sharper! Contours are better defined. Humans seem to have the vision of a cat! While the silver image better restores the density of the night, this darkness is both compact and indistinct, endowed with an enveloping dimension, with the impression that one can get lost in it. A digital night simply makes you believe that you have "dimmed the light" of the day, not that day and night are two opposing reigns.
The architecture of the city lies between the buildings. Too complex in nature, form and design to be understood as a single space, ground has become the network of mobility that defines the contemporary city. This semester, earth works will be the primer for a new experimental garden prepared with the Crowther Lab which, will in turn, lead to actions across Zurich’s greatest continuous interior.

Objective

Critical thinking, personal attitude:
- Demonstrate, through design work, a critical understanding of climate change and the ethical responsibilities of the architect
- Reflect on pieces of work in progress or already completed both individually and in conversation with peers and faculty
- Demonstrate, through design work, a growing knowledge of contemporary and historical architectural discourse
- Critically interpret requirements and working priorities in light of constraints to work practice arising from Covid, home working and personal circumstance. Communicate with teaching team if difficulties arise.

Working methodology:
- Conduct qualitative site/building analysis through photography and observational drawing
- Perform basic topographic surveying
- Use archives to conduct systematic analysis into social history, uses, materials, etc.
- Interpret and synthesize information into a concise and ongoing knowledge base for the design of a project
- Develop an understanding of the geology, climate, ecology, etc. of a place
- Assimilate small, fragmentary observations into broad understanding of place

Acquisition of subject-specific knowledge:
- Consider and understand the relationship and impact of a design on a wider landscape
- Understand the impacts of construction on ecology
- Demonstrate an understanding of the impacts of time on the repair and maintenance of a project
- Demonstrate an understanding of contemporary and historical construction techniques
- Demonstrate a critical understanding of the use of materials in relation to non-renewable resources, embodied energy, recyclability

Conversion of a conceptual intention into an architectural project:
- Develop an integrated and relevant structural, constructional and environmental concept for the project
- Formulate a spatial concept for a project, demonstrating an understanding of conceptual, spatial and programmatic decisions
- Design with reference to historical, political, cultural and other creative and technical fields
- Demonstrate an ability to assimilate a broad range of working practices, identifying and engaging especially with those which help to demonstrate and further ideas

Capability to design:
- Demonstrate an ability to design interior and exterior spaces, as well as the thresholds and the surrounding spaces
- Demonstrate awareness of a design project's environmental performance in construction and in use
- Demonstrate a good understanding of professional regulation and ethical responsibilities of the architect
- Design buildings, spaces and landscapes which are fully accessible

Representation and presentation in different media:
- Develop a critical eye in photography of place, space and design work with reference to broad photographic traditions
- Develop model making skills of small conceptual models, as well as working models made of everyday household materials, with precise conceptual purpose
- Demonstrate high technical and critical proficiency in 2D and 3D CAD drafting and modelling
- Develop an understanding of the status and purpose of different kinds of representation, and deploy them effectively
- Use detailed drawings and models to illustrate the conceptual construction of a project
- Demonstrate high technical and critical proficiency in image making and collage
- Clearly and concisely describe a concept, working practice, and outcome through written and oral material in English or German.
- Explore use of film and short film clips to present three-dimensional work. Note, advanced editing skills is not required.

Engagement in the studio:
- Actively participate in group projects such as the garden
- Actively listen to others
- Be able to learn alone, as part of a group and as a whole studio
- Demonstrate an ability to work comfortably with ambiguity as circumstances change
- At all times demonstrate honesty, integrity and respect for fellow students, teachers and staff.

Content

The architecture of the city lies between the buildings. Too complex in nature, form and design to be understood as a single space, ground has become the network of mobility that defines the contemporary city. Above the surface, life, visibility, architecture. Below, out of sight, waste efficiently removed in exchange for energy effortlessly provided. Between, the impervious membrane designed and constructed to seal and separate. It is described, used, and legislated in fragments; representation, mobility, safety, utility, expensive or cheap, hard or soft. But mostly hard. In Zurich 37% of the city is sealed. A modest proportion compared to many contemporary cities but enough to raise summer temperatures by three degrees compared with the surrounding countryside. Over-heating, or instant flooding from extreme weather is the norm in the sealed city.

But the ground is not a surface. The ground is a space whose natural and constructed metabolism above is determined by the actions of matter below. The city needs porous ground and generous planting to absorb and sweat in equal measure to support human and non-human life.

The urban heat island effect, floods and impoverished biodiversity are not the natural consequences of urbanisation but the result of design and construction. The in-between has been designed with as much care and attention as the architecture that stands beside it. From Bürgli to Europalpie, architecture has constructed the ground.

Breaking down the concrete barrier between air, water and earth, between light and darkness, we will construct a new space where the actions below naturally support those above. Ecology has proved that the richness of life above the ground is determined by the complexity and community below. Ecological thinking, in collaboration with the Crowther Lab at ETH, will offer both literal and metaphorical method for re-imagining how the architecture of ground can enrich and protect the city.

We shall challenge the separation between ecology and architecture. Architecture is ecological. Noël’s foundational notion of public versus private will be (re)turned inside out. It is the white space that needs our attention. Using the Atlas, we shall develop an approach to design based on observation and documentation through sampling. Crossing the Boyle Family’s Earth Pieces (1963-present) with Crowther’s ecological inoculation, fragments will form a new whole. Construction will determine scale shifts that extend far into contemporary territorial flows and deep into material structure. Starting in the garden and in the ground, earth works will be the primer for a new experimental garden prepared with the Crowther Lab which, will in turn, lead to actions across Zurich’s greatest continuous interior.

Prerequisites / notice

Individual work and group work, whereof at least 5 weeks of group work.

Critiques:
- Dates to follow.

No extra costs.
Ecological issues have been current since the 1970s, but, despite all attempts to counter the trend, worldwide energy consumption has continued to increase unabatedly since then. The main problem is the associated greenhouse-gas emissions, a large proportion of which are caused by buildings, i.e. their construction and operation.

We are continuing to explore the theme of cohabitation: the interplay of human and nonhuman systems in our built environment. We are focusing on a given ecosystem, as the context for our architectural proposals. Further, we are expanding our toolbox: storytelling and film continue to play an overarching role, but we are opening up the studio to other media and forms of architectural exploration.
Objective

The design studio is aimed at the students acquiring the following skills:

Prefigurative Architecting

The ability to think in different scales and systems, in order to determine issues and themes by observing the changing conditions of our environment. The aim is to develop an architectural position in relation to these observations and to translate it into a viable and sustainable proposal for the future of our coexistence.

Storytelling and Narrative-Design

The ability to translate factual knowledge about architecture and architectural systems into a story. These narratives function in parallel and offer other ways and speeds of communicating the design arguments besides the factual approach. In addition to time-based media such as film and episodic video formats which we call television, we will be developing additional formats with the students from this semester on.

Both learning objectives will be introduced in topic-specific lectures at the beginning of the course.

Content

This semester we are continuing to explore the theme of cohabitation: the interplay of human and nonhuman systems in our built environment. But this time, we are focusing on a given ecosystem, as the context for our architectural proposals. Further, we are expanding our toolbox: storytelling and film continue to play an overarching role, but we are opening up the studio to other media and forms of architectural exploration. (see learning objectives)

“Europe’s sea of plastic”, Almeria in the south of Spain, is our point of departure. It is one of the many places where our globalized and accelerated ways of life become visible and take on built form. Together, we want to explore and understand the different types of architecture that can be found on site. Dating from different times, created for different needs. A deeper understanding of the systemic relations of these local structures is essential in order to become active and to produce architectural models for the future — for Almeria and beyond.

Global (Eco)Systems

The ongoing industrialization and urbanization of our environment is the main driver of depletion on our planet. These changes are human-made, which is why we speak today of the Anthropocene: an unofficial unit of geologic time, used to describe the most recent period in Earth’s history when human activity started to have a significant impact on the planet’s climate and ecosystems.[1]

It is indispensable taking a look at the motives and conditions of our global actions, which laid ground for the occurrences and changes we are experiencing today and which led to the concept of the Anthropocene. Exponential growth has long been the western societal leitmotif, which places economic interests over ecological ones. But as economist Kenneth Boulding puts it: Anyone who thinks that you can have infinite growth in a finite environment is either a madman or an economist.

And although Western societies have access to data and knowledge about the consequences of their actions, and the limits and finiteness of the Earth’s ecosystem, we still seem unable or unwilling to act differently. The concept of the Anthropocene sees humanity equally responsible for this change. But it was mainly Western societies that emitted and benefited from the massive industrialization and are triggering the ongoing urbanization of our environment. From a relative point of view, it was the capital that drove Western societies. This is why other scholars such as environmental historian and political economist Jason W. Moore have been prompted to recast the notion of the Anthropocene, with the more nuanced and connective concept of the Capitalocene.

Capital-driven thinking is also evident in architecture, both in the built and unbuilt environment. Every crisis, including the most recent one, has caused economic eruptions that led to increasing investments in land and real estate and thus, resulted in profit-oriented-architectures. These take shape in different places, forms and typologies. Exploring them is of great importance, in order to understand the local and global role architecture plays in different systems. By doing so, we reflect on how urbanization — as the most prevalent socio-material form of environment-making under capitalism — has re-ordered human and non-human relations in profound ways.[2] This knowledge enables us to design an architecture that questions the status quo and, beyond that, creates new spaces for our coexistence.

Prerequisites / notice

Individual work and group work, whereof at least 3-4 weeks group work.

Critiques: 19.-20.10. and 23.-24.11.

Costs: CHF 100.-- (besides seminar week).

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract

The ONA building was not built to foster human life and interaction. As a welding factory, it was meant for machines. Situated on the border between Oerlikon and Seebach, it was part of an industrial zone where a.o. weapons were produced. In recent decades the area was transformed into a primarily residential neighbourhood, and the ONA building was converted into a mixed-use office building.

Objective

Understanding and exploring your body and the senses to design and facilitate dialogues.

Developing your ability to improvise and adjust to a dynamic environment.

Collaborating with a multitude of actors from different (professional) backgrounds.

Identifying physical and intangible borders and boundaries that define space.

Communicating complex ideas through a performative approach to architecture.

Being a host and creating a welcoming environment for a wide variety of people.

Documenting a non-linear creative process through a mix of media.

Getting immersed in the world around you.

Grading criteria:

Clarity and Independence of Position
Relevance regarding the case
Depth of engagement
Representation
Design in Dialogue
Mutual Collaboration
Personal Development
After a long period of forced social distancing and self-isolation, we will be seeing each other soon for the first of the semester. Finally freed from endless Zoom sessions, we can reconnect to the people and places around us. Our HS2021 design studio centres around this reconnection and rediscovery of the physical world and the power of proximity and embodied knowledge. Starting from ONA, the building where we are developing the Design in Dialogue Lab, we will use our brains, bodies and all of our senses and creativity to explore the building's potential as a safe and social space where we can be and work together.

Like many other buildings in cities across the world, ONA was not built to foster human life and interaction. As a welding factory, it was meant for machines. Situated on the border between Oerlikon and Seebach, it was part of an industrial zone where a.o. weapons were produced. In recent decades the area was transformed into a primarily residential neighbourhood, and the ONA building was converted into a mixed-use office building with ETH being one of the main tenants.

While approaching or entering the ONA building, you are confronted with a series of both physical and intangible obstacles and borders. Despite efforts to make it more accessible, the building's introverted nature continues to echo in its appearance. The grey concrete walls communicate the story of a space constructed to keep noise inside and people outside. Surrounded by railway tracks and other infrastructure, the main entrance is hidden behind a busy loading bay where trucks pull up during the day to load or unload goods. Once inside, the vast open ground floor is subdivided by walls in an attempt to create a sense of intimacy.

By joining Studio Seebach - Sensing Space, you will become part of a collective effort to identify, reimagine, and potentially remove or redesign some of these barriers. As users and hosts of the space, we will revisit ONA and explore it as - what we like to call - an 'Open Public Structure' that is welcoming to a wide variety of users, from students to local residents. Simultaneously we will also question whether ONA should become a seamless environment or keep certain 'meaningful thresholds' that help preserve existing values.

Instead of taking an intellectual approach based on a rational analysis of the spatial conditions, we instead will introduce a more intuitive approach that makes use of our senses and explores our body's ability to experience the (open) borders and (closed) boundaries that define ONA. We will be joined by practitioners from such diverse disciplines as dance, performing arts, anthropology, philosophy and club culture who will help us to Swarm, Sense and Settle.

French philosopher Maurice Merleau-Ponty once wrote that: “Rather than a mind and a body, a (wo)man is (...) a being who can only get to the truth of things because its body is, as it were, embedded in those things.” According to him, we are all “caught in the fabric of the world”. His words resonate with the assignment formulated by the late American composer and philosopher Pauline Oliveros (“listen to everything until it all belongs together and you are part of it”). The studio takes inspiration from these and other thinkers and practitioners and turns their ideas into actions that allow you to test and train your senses and get immersed in the world around you.

By joining Studio Seebach - Sensing Space, you will become part of a collective effort to identify, reimagine, and potentially remove or redesign some of these barriers. As users and hosts of the space, we will revisit ONA and explore it as - what we like to call - an 'Open Public Structure' that is welcoming to a wide variety of users, from students to local residents. Simultaneously we will also question whether ONA should become a seamless environment or keep certain 'meaningful thresholds' that help preserve existing values.

Instead of taking an intellectual approach based on a rational analysis of the spatial conditions, we instead will introduce a more intuitive approach that makes use of our senses and explores our body's ability to experience the (open) borders and (closed) boundaries that define ONA. We will be joined by practitioners from such diverse disciplines as dance, performing arts, anthropology, philosophy and club culture who will help us to Swarm, Sense and Settle.

French philosopher Maurice Merleau-Ponty once wrote that: “Rather than a mind and a body, a (wo)man is (...) a being who can only get to the truth of things because its body is, as it were, embedded in those things.” According to him, we are all “caught in the fabric of the world”. His words resonate with the assignment formulated by the late American composer and philosopher Pauline Oliveros (“listen to everything until it all belongs together and you are part of it”). The studio takes inspiration from these and other thinkers and practitioners and turns their ideas into actions that allow you to test and train your senses and get immersed in the world around you.

We as a society, but also specifically we as architects, must use land, resources and energy as sparingly as possible in the future. R. Boltshauser

A new awareness and thinking in dealing with finite resources will also let us this semester explore the material clay for its various properties. In addition to the low proportion of gray energy and the outstanding physical properties of the building material, the local availability of the material is of interest. Millions of tons of clay-containing excavated material are produced worldwide every year, for which our construction industry has no use and which therefore has to be disposed of (over 25 million tons in Switzerland alone). So why not use this unused resource to build with?

From our point of view, however, this requires new building methods that correspond to today's standards and needs for a rational construction method and that better exploit the physical potential of the building material. Prefabrication, a hybrid clay building technique or liquid clay technology are examples of possible answers.

The students will receive a reader at the beginning of the semester.
Literature

Cointeraux, François (Reprint des Originals von 1803): Der Lehmbau oder die Pisé-Baukunst, Reprint-Verlag, Leipzig.

Höninger, Christian; Menti, Urs-Peter; et al. (2018): Das Klima als Entwurfsfaktor, Quart Verlag, Luzern.

Morel Jean-Claude et al. (2021): Earth as construction material in the circular economy context: practitioner perspectives on barriers to overcome. Phil. Trans. R. Soc.

Prerequisites / notice

Participation in the seminar trip is recommended.

Individual work only.

Critiques: 12.10.21, 9.11.21, 30.11.21.

Costs: CHF 35.-- (besides seminar week).

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
	Decision-making	assessed
	Media and Digital Technologies	assessed
	Problem-solving	assessed
	Project Management	assessed
Domain C - Social Competencies	Communication	assessed
	Cooperation and Teamwork	not assessed
	Customer Orientation	assessed
	Leadership and Responsibility	not assessed
	Self-presentation and Social Influence	not assessed
	Sensitivity to Diversity	not assessed
	Negotiation	assessed
	Adaptable to Flexibility	assessed
	Creative Thinking	assessed
	Critical Thinking	assessed
	Integrity and Work Ethics	not assessed
	Self-awareness and Self-reflection	assessed
	Self-direction and Self-management	assessed

Architectural Design V-IX: Elemental Living (E. Mosayebi)

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.
Abstract

How do we want to live? Hardly any building task in architecture is so fundamentally and so strongly determined by conventions as housing. The focus of the work in the studio is the critical and experimental examination of new forms of living in different climatic regions of Switzerland.

Objective

- Knowledge of history, theory and typology of basic elements.
- Design of new forms of housing
- Pictorial representation of complex narratives in the form of miniatures
- Constructive Details
- Experimental photography

Content

How do we want to live? Hardly any building task in architecture is so fundamentally and so strongly determined by conventions as housing. The focus of the work in the studio is the critical and experimental examination of new forms of living in different climatic regions of Switzerland. The comparatively small scale allows the projects to focus on the themes of interior space, living form and basic architectural elements.

These basic elements are understood comprehensively and mean not only structural elements such as load-bearing parts, windows, doors, stairs, but also include secondary components such as beds, tables, curtains. Is it conceivable to develop the living form starting from an architectural element or furniture? Can we imagine a habitable elevator? How would a floor plan be designed starting from a refrigerator? Who would inhabit such spaces? The basic elements represent the thingness and craftsmanship of architecture. In the discourse on social and ecological building, the importance of everyday elements is often forgotten, even though it is the things themselves that create meaning or absurdity between life and the world.

Starting with a basic element, you will analyze at the beginning of the semester the specific characteristics and the variety of manifestations in different geographical contexts. You will ask: What functions does the element serve, what histories has it gone through, what norms has it cemented, in what materials and principles of construction is it created, and what future potential can it unlock? In addition to political, social, gender, and climatic contexts, you will also address the interaction of space, body, and scale, and thus the perception, impact, and use of architecture.

The semester takes place in cooperation with Prof. Dr. Ákos Moravánszky. In workshops with the artists Taiyo Onorato and Nico Krebs, experimental images of the projects will be created.

Prerequisites / notice

Group work only.

Critiques: 19.10., 17.11., 7.12.

No extra costs.

052-1127-21L Architectural Design V-IX: (Girot) □

Does not take place this semester.

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract

Is not offered in HS21.

Literature

A reader will be provided at the introduction. Furthermore, a pre-selection of relevant books will be available to the students at the ILA Library.

052-1129-21L Architectural Design V-IX: Structure and Space - Negotiation on the Inventory (GD Menn) □

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract

The theme of the studio is in the overriding interest for the architectural resource of the housing stock on the outskirts of Switzerland. We are concerned with the conversion of an industrial building that has been disused for decades in the rural context of the Gonzen mine in Sargans. Core topic is dealing with the phenomena of structure and space as a "negotiation" on and with this inventory.

Objective

The students learn to discover a building stock in its temporal and spatial structural context, which enables them to take a critical stance and to act in it as a designer. You learn to formulate an architectural idea of a change of use from the existing resource and to develop it into a consistent project.
The theme of the studio is the overriding interest for the architectural resource of the housing stock on the outskirts of Switzerland. We are concerned with the conversion of an industrial building that has been disused for decades in the rural context of the Gonzen mine in Sargans. The core topic is dealing with the phenomena of structure and space as a "negotiation" on and with this inventory.

The subject is the Malerva ore processing plant, a solitary witness to the industrial history of disused mining in the Sarganser Rhine Valley plain. The iron on the Gonzen shaped the region for centuries. After numerous scientific and technical development steps, the extraction of raw materials attained its greatest importance during the Second World War, before the decline and the cessation of operations in 1966. The Malerva ore processing and sorting plant was designed in 1940 as a three-dimensional steel framework, its structure and shape Free of aesthetic goals or thoughts of flexibility of use, it was tailored to the vertical and horizontal processes of ore processing and the economical use of the material.

Based on this special building typology and materiality, we would like to formulate design strategies for conversion and at the same time adopt an attitude towards the location and its historicity. We are researching the original machine, which today is a space structure that has lost its purpose. We are interested in the inner regularities and the thinking of the design from the conditions of the primary structure and material and the spatial potentials from them. We are guided by questions: What architectural relationship can be established with this filigree steel skeleton and its specific shape? Which spatial strategies and potentials does it open up? How evolutionary does an architectural concept emerge from the existing structure as a further development or how much does the intervention become a reshaping and new creation?

Programmatically, we design a mixed use in which a collective space formulates the heart of the facility. This public space is a new bearer of meaning and a meaningful part of the concept based on the existing conditions.

With the projects we would like to formulate answers to the memory and the future of this cultural heritage and to include questions of sustainability. In addition to dealing with material resources, we ask whether interventions in the specific space structure open up potential for a generic, open-use structure. Is a narrative conceivable that understands the project as an intermediate form in an open-ended life cycle?

Abstract
Building value. Extensive new developments continue to happen across Zurich and its periphery, with Ersatzneubauten still presented as the most desirable option. Even when a significant built substance exists, revenue-driven development patterns usually end up prescribing its demolition and replacement.

Objective
- Through inhabitation and close observation, identify material as well as immaterial strengths, weaknesses and potentialities of existing buildings and neighbourhoods
- Understand and critically engage with the financial and social reality of urban developments
- Explore how to document and represent existing spatial conditions through different media
- Challenge the omnipresent practice of replacing existing buildings, through imagining their potential contribution to a more inclusive and exciting urban landscape
- Define a personal position about the agency of the architect and architecture
- Gain confidence in the design process with an ability to be critical and conscious, bringing all aspects of the semester together in a personal and critical discourse

Content
Trust. A firm belief in the reliability, truth, or capacity of someone or something. A belief in the self, but also in the other. A state in which one might be seen as naive and credulous, often leading to disappointments and failure, but that can equally be read as mature and looking for opportunities. Can one trust in something one does not yet fully understand? Can trust lead to following unexpected paths, not being afraid of encountering new ways of thinking and seeing?

Building value. Extensive new developments continue to happen across Zurich and its periphery, with Ersatzneubauten still presented as the most desirable option. Even when a significant built substance exists, revenue-driven development patterns usually end up prescribing its demolition and replacement. A gesture erasing existing users and uses at the same time, as those are rarely given a place in the planned developments. So how can we trust in the value of what is there? How can we learn from the existing to propose models for the future, a future capable of accommodating all the lives that can exist in the city, including the less profitable ones?

Regensdorf. This semester, after exploring Zurich and its surroundings twice by means of walking, we will inhabit a Dorf longer to be a Stadt. Next to the Regensdorf station, a real estate operation called ZWHATT plans 1000 new housing units, developed by Pensimo and designed by offices including Peter Märkli, Roger Boltshauser and Lütjens Padmanabhan. We will take a complementary and alternative look at the area. In collaboration with the diploma students reflecting on the new development, including its business plan and the types of aesthetic goals or thoughts of flexibility of use, it was tailored to the vertical and horizontal processes of ore processing and the economical use of the material.

Inhabitation. Your studio will be located on the empty fourth floor of an existing office building: 400 m2 at the very center of the future development. Moving in will allow us to engage with the day to day life of the buildings. It will make us complicit to what we design, to get close and personal, to potentially find presences and qualities that are often overlooked and only surface in the slowness of being-in-it-together. This will allow us to become a critical audience reflecting on the decision making strategies behind large scale developments in the Zurich agglomeration. With our concrete and situated knowledge gained by actively being there, we will reflect on alternative futures for the four existing buildings, challenging the tabula rasa approach, and the accompanying architectural interventions and strategies.

The Dept. of the Ongoing. The Dept. of the Ongoing will move in with us to install an open research room, host the lecture series You’re Not My Type and surprise us with other ghostly modes of exchange and interaction.

Building Out Loud. During an integrated seminar week, we will take it a notch up and use our building as a test site, producing 1:1 interventions, guided by the skilled carpenters of NAME and the practice of scenographer Jozef Wouters and his Brussels based Decoratelier.
In this design studio, you will define your gestures of making and working with material(s) through research and experiment, and in response to the topic of the studio. You are required to produce an architecture that results from your specific engagement with the material and the spatial condition you construct with it. The architecture that results from this approach does not reference or represent something, but simply attempts to exist as a physical spatial reality in its own right.

Your research should be supported by the knowledge made available by our studio, and engaged through you with the use of available resources and facilities at departments of the ETH and from external specialists.

Throughout the whole semester, and for your final presentation, we require that you work with physical (fragment) models of your building in the actual material(s). It is important, in this design studio, not to make a complete building, but to show and support the found values of the material engagement in a spatial way, based on the full potential of the inherent qualities of the material itself and your way of working it.

This semester, we will focus on water. We will research water as an agency continuously shaping our environment and reacting to and forming other materials. At the same time, water will also be seen as the crucial element shaping the work of an architect.

Our relationship with water is complex and contradictory. Water is vital to all forms of life and to the genesis of matter, organic and inorganic. And yet it remains relatively invisible, and as a design agent, underestimated.

Architecture today is, to a large extent, about controlling water, whether in the atmosphere, in the soil, or in a building. Condensation, rainwater penetration and unwanted moisture can damage a building and impact on its longevity. An architect’s response to the durability of a construction and its materiality generally consists of designing resistance against weathering caused by water.

Our society increasingly demands controlled, standardised comfort: the building envelope separates indoor and outdoor climates and ecologies; the vapour barrier keeps window openings airtight and ensures the high performance of thermal insulation. In turn, the pesticide-applied plaster prevents mould growth on the façade.

Seen in a wider territorial frame, analogous to its role for architecture, the control of water following the Industrial Revolution has been crucial to the creation of the modern rationalised landscapes we now inhabit. It appears, however, that the modern mentalities and techniques of control of water have reached their limits. Today, water stands at the centre of the most urgent environmental challenges—from the melting glaciers, increasing droughts and floods and the demand for (green) hydroenergy, to the struggles over water pollution and access to water sources, water is becoming increasingly precious, scarce and politicised.

In this semester, we offer the possibility to reimagine the notion of durability by reconsidering our fraught relationship with water. In a movement from hydrophobic to hydroscopic design of buildings and environments, we will embrace the fundamental and unique characteristics of water and its influence on the changing states of matter and ecologies in the territory and architecture.

The sites we will study and travel to are located in the Valais on the slopes of Jungfraujoch, from the summit to the Rhone River. Following the trail of water, we will encounter extraordinary places — convergence of geologies, formations, an ancient alpine pilgrimage route, a water reservoir and a dam, rare crystal and mineral sites, riverbed movements, an active gypsum quarry, a salt mine and the largest debris-flow measuring system in the world.

When we take all aspects of the material into consideration — the geology, the sourcing, the industry, the different properties, the craftsmanship, the specialised techniques and the cultural significance — we can deploy the full potential of the inherent qualities of the material itself and our way of working it in what we call “Material Gesture”.

The students have the opportunity to examine spaces that are shaped by architectural elements. We carry out this search throughout the semester and divide it into three phases: space, structure and whole. We will delve deeply into the architectural space and the materialized elements that define that space.

The students develop a design based on the architectural theme “Hortus” with the integrated disciplines of structural design. They deal with the topic, a specific material, its constructive logic and supporting structure. The aim is to arrive at a holistic design for all designs based on individual inspiration and the logic of the material and to visualize this at the end.
The students have the opportunity to examine spaces that are shaped by architectural elements. We carry out this search throughout the semester and divide it into three phases: space, structure and whole. We will delve deeply into the architectural space and the materialized elements that define that space.

In a first step, elements that define the space are explored. Starting from an inspiration, rooms are designed that represent this inspiration. The rooms lead to a structure which, under the aspect of reuse, leads to its own detailed architectural project with an individual program.

The students work with working models, different types of renderings (renderings of the rooms and the structure), as well as detailed black and white CAD drawings and texts.

Assistant: Lorenz Bachmann, Elena Miegel
Assistant assistant: Lieselotte Düssterhus

Integrated discipline (3 ETCS points): Professorship for structural design, Prof. Schwartz, Dr. Luis Enrique (requirement: design and supporting structure are mutually dependent)

Landscape architecture / plant knowledge expert: Maja Tobler

Expert 3D visualization: Stefan Meyer, Lukas Burkhard

Individual work only.

Critiques: 5.10., 19./20.10., 16./17.11.

Costs: CHF 100.-- (besides seminar week).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-1137-21L</td>
<td>Architectural Design V-IX: Climate Corridors Sarajevo. W (GD Conen)</td>
<td>14</td>
<td>16U</td>
<td>M. Conen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enrol for the studio.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>052-1139-21L</td>
<td>Architectural Design V-IX: Story II - Unuseless Spaces W (GD Conen)</td>
<td>14</td>
<td>16U</td>
<td>M. Conen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enrol for the studio.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

They are often places along big roads, adjacent to infrastructural buildings, green spaces that do not have a clear function, or leftover spaces that are created by the parceling and division of land. Precisely these spaces interest us this semester: the ‘unuseless spaces’.

It is the ultimate deadline to unsubscribe or enrol for the studio. This enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).

Artist Gordon Matta-Clark's work 'Reality Properties: Fake Estates' (1973) shows a similar interest. In this work, he bought parcels of land that could not be built upon or used for real estate, formed when the land was subdivided into lots. These were narrow strips, some even narrower than a person's shoulders, or inaccessible triangular remnants of land squeezed awkwardly between overbuilt lots. Matta-Clark was interested in these places which were worthless for the real estate market - land that had no value because it did not meet the demands of the market and was therefore technically useless.

Similarly, the landscape designer Gilles Clément writes about such spaces and their potential in his 'Manifeste du Tiers paysage' (2004). He calls these spaces the 'third landscape' and writes the following:

"When one stops thinking of the landscape as the product of an industry, one suddenly discovers a multitude of undecided spaces without function for which it is difficult to find a name...they form a refuge for biodiversity that has been chased away everywhere else. Through their content, through the need to maintain this biodiversity or to keep its dynamics going, the third landscape takes on a political dimension.

These spaces are frequently forgotten, overlooked and underdeveloped which is precisely what leaves room for freedom: freedom of experimentation for new ways of developing such spaces, emancipated from the constraints of the traditional market.

We want to think about these spaces which offer a potential for other creatures and plants: for biodiversity. In the first phase of the semester, we will study unuseless spaces in Zurich and approach them through the medium of film. At the same time, we will look at different architectural projects from history and analyse them through synthesis drawings as well as listen to presentations on possible potentials of unuseless spaces. In the second phase we will use the different analyses to develop projects that try to engage with the themes of these ‘unuseless’ land fragments, to create a habitat that is as diverse and varied as possible.

We will work with drawings, models and model photographs to illustrate the architectural and landscape ideas of the projects. We will also use synthesis drawings to summarise the different ideas of the projects. The work will take place in groups of two. The seminar week is integrated into the design studio.

Costs: CHF 80.-- (besides seminar week)
Abstract

How can we as designers radically reimagine place-making in Sarajevo by connecting the existing natural and built environment with local resources and digital infrastructures as models for sustainable living? The watershed of the Miljacka River has the potential to unlock socio-ecological systems and multifunctional corridors, that address urban fragmentation, and Climate Action.

Objective

Climate corridors Sarajevo. Shaping public water places.

Students will emerge in our Chair’s “method-design” to step by step develop their individual prototypical design projects. They will address both architectural urban scales and will be guided to collaboratively develop a baseline scenario. Mapping, identifying existing and future challenges and opportunities, students will take the role of stakeholders and translate their demands and resources into different scenarios. They will design urbanistic concepts and translate them into an evidence-based prototypical architectural project intervention. This prototype is the synthesis of a process in time and space on different scales. The design project will be framed as a narrative that is consequentially visualized and communicated in analogue and digital graphic representations. The project concept will be tested and upscaled through urbanistic design-policy recommendations within overlapping spatial and programmatic systems of CLIMATE - CORRIDORS.

Content

The basic thesis for this Studio Fall Semester 2010 is constructing an urban imaginary creating an interplay of a linear public space system providing identity and orientation in the Miljacka River valley of Sarajevo. Sarajevo’s culture is as diverse as its rich architecture and history of urbanization. Located on the Balkan Route, a crossroads between north and south, east and west, the city confronts us with one of the highest pollution levels of air, soil water, of any capital city in Europe. The watershed of the Miljacka River, wells, fountains, retention infrastructures, and flood plains are our point of departure. They have the potential to unlock socio-ecological systems, multifunctional corridors, and catalytic projects, that can transform fragmented neighborhoods, offering a living system of public water-places to the inhabitants.

At the intersection of architecture, landscape, and public art, the studio envisions trans-scalar processes and interventions, addressing the cities social and ecological crisis, in support of the Sarajevo Cantonal Planning Office, applying a systemic design methodology, and responding to the urgent need for concrete projects and Climate Action. Policy recommendations and general advice for upscaling such prototypical concepts are already successful in other cities globally and apply to the Sarajevo-Case.

The design challenge includes redesigning and densifying public open space, that combines social and environmental developments into a system of architecture, urban, and landscape design networks. The transformative redevelopment of existing street corridors and the interplay of architecture with landscape design and concrete prototypical and small-scale design interventions is critical for bringing together segregated communities in quality public space along degraded transport corridors. Linear multifunctional corridors can strategically connect to the immediate context and subcenters with feeder routes (considering Zmaja od Bosne), participatory public spaces, markets, playgrounds, production, and creating new eco-systemic connections with increased social and ecological qualities.

Atmospheric contamination, fine dust, and CO2 have created during inversion weather one of the highest air contamination levels of any capital city in Europe compromising the health of Sarajevo’s people. Climate change is challenging necessary processes to re-planting the forest and trees of the city. The compliance with the targets and indicators of the SDGs pose considerable additional tasks to solve. In recent years, the bust and boom cycle in Sarajevo has put doubt on opportunistic international urban upgrading models linked with opportunistic investments, gentrification, and short-term gains for private investors.

We have developed a toolbox by analyzing internationally recognized developments, sometimes permanent and temporary strategies such as Chengyecheon River Park, Seoul, Isarpark, Schlachthof / Munich, Corredores Verdes / Medellin or Cali, communal target-plan Zurich, Closed Highways in Sao Paulo or Bogota, Etc. These spatial processes have followed a widely known practice of consolidating a sequence of transformations, short-term strategies for long-term value production. Neighborhoods are re-evaluated through investment often initiated by art, popular culture, local participation, and place-branding.

Urban- and Landscape Design can create a measurable impact in cities by increasing social justice, health, and wellbeing. The development of robust frameworks adaptable to change enable processes for regeneration with long-term operational, environmental and social benefits in response to global, local, and site-specific challenges. The role of architects is to imagine and model sustainable urban scenarios recognizing urban corridors as new possibilities and lifelines to impact meaningful and multidimensional transformative design strategies.

Lecture notes

“Method-design”: Systematically engaging students in the Studio topic, to unlock their potential and skills towards developing prototypical design resolution on an urban and architectural scale. Identifying, understanding and developing local stakeholder networks, so as to translate challenges into opportunities and negotiate diverse interests into strategic ideas for development, geo-references, inter-linked systems, diagrams and maps. Develop design concepts for urban prototypes on different scales, framed by a narrative of a process that is consequentially visualized and communicated in analog as well as digital tools.

Investigative Analysis/ Local Perspective: Registering the existing; prioritizing challenges and opportunities through qualitative and quantitative information; mapping on different design scales and periods of time; configuring stakeholder groups; connecting top-down and bottom-up initiatives; idea mapping and concept mapping; designing citizen scenarios.

“Project Design”: Synthesizing between different scenarios definition of a thesis and program between beneficiaries and stakeholders; projecting process presentation as a narrative embedded in multiple steps; describing an urban and architectural typology and prototypes; defining an urban paradigm.

“Domain Shift”: Shifting and translating different domains; testing and evaluating the design in feedback loops; including the project in the Urban Toolbox.

Literature

Reading material will be provided throughout the semester, as well as references to case studies. The class material can be downloaded from the student server.
Prerequisites / notice

Team:
Prof. Hubert Klumpner
Anne Graupner
Diogo Figueiredo

In collaboration with:
UNSA | Faculty of Architecture, University of Sarajevo
IPDS | Institute for Planning of Development Canton Sarajevo
Prof. Adnan Pašić, Assoc. Prof. Dr. Aida Idrizbegović Zgonić, Prof. Dr. Gordana Mimisević, Prof. Dr. Pavle Krstić
UTPS | Urban Transformation Project Sarajevo
Dr. Michael Walczak, Bojana Papic, Victoria Soto Magán

Skills:
Drawing & Representation | Michael Walczak and Melanie Fessel
Introduction to Graphic Tools: Rhinoceros 3D, V-Ray, Grasshopper, Illustrator, Photoshop and InDesign.

Graphic Design | Integral Designers, Ruedi and Vera Baur

Elective Course | ‘ACTION! Beautiful Data - The Filmic Art of Numbers’ is offered to complete the skillset of the studio, teaching in 3D modelling, filmmaking, and animating.

Organization:
Architectural Design V-IX | ECTS Credits - 14
Integrated Discipline Planning | ECTS Credits – 3

Work: Group work during research / Individual project design
Language: German, English, Spanish and Portuguese
Location: ONA, E25

Participants: max. 18 students

All inquiries can be directed to Diogo Figueiredo:
figueiredo@arch.ethz.ch

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making assessed
Media and Digital Technologies assessed
Problem-solving assessed
Project Management assessed

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork assessed
Customer Orientation assessed
Leadership and Responsibility assessed
Self-presentation and Social Influence assessed
Sensitivity to Diversity assessed
Negotiation assessed

Domain D - Personal Competencies
Adaptability and Flexibility assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics assessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed

052-1141-21L Architectural Design V-IX: Interim, Forever (A.Caruso)
W 14 credits 16U A. Caruso

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract
Improvising and adapting have a long history in the built environment and now that the time for new building is coming to an end, perhaps architects need to more fully embrace the sensibility of the interim.

Objective
Qualification to control the design process increasingly independent and with sole responsibility and to find to an individual design methodology and attitude.
Refining an idea until it is precise, developing a project so that it can be materialised, managing a design through the complexity of realisation. Architecture takes a long time and there is a strong temptation to reach for the eternal. Most of the constructed environment around us emerges out of even more complex circumstances and yet often comes together more quickly and flexibly. Are there things that architects can learn from how a farmer plans their fields to be productive and sustainable, how a tailor can mend a garment so that it acquires qualities that didn’t exist in the original, how resourceful builders can make do when materials and time are in short supply. Improvising and adapting have a long history in the built environment and now that the time for new building is coming to an end, perhaps architects need to more fully embrace the sensibility of the interim.

There is a long tradition of interim inhabitation, it is what squatters do, and it is acknowledged by artists when they move, like pioneers, into an unpopular quarter of the city. More recently the idea of interim inhabitation has become part of the development process, protecting empty buildings from squatters and vandalism, beginning to build the brand of what comes next. We are interested in all of these examples and wish to explore ways in which the positive qualities of the interim can be extended so that the seeming inevitability of gentrification is deferred, perhaps forever.

We will work in a series of buildings in Zurich that are currently being provisionally occupied under different legal arrangements. We will begin by closely observing and recording current conditions, learning something about the relationships between creative programme and inventive spatial practice. By deploying a series of processes; to repair, to collect, to mark, to remove, to arrange, to support, we will work to develop the current contingent situation into something more robust. In this process we will engage with the existing networks of inhabitants, building owners and spatial/material arrangement, and challenge the social, legal and aesthetic limitations of architecture.

Prerequisites / notice

Group work only.

Costs: CHF 100.-- (besides the seminar week).

<table>
<thead>
<tr>
<th>052-1143-21L</th>
<th>Architectural Design V-IX: Topic (GD N.N.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>14 credits</td>
</tr>
<tr>
<td>not available</td>
<td></td>
</tr>
</tbody>
</table>

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract

Not offered in HS21.

<table>
<thead>
<tr>
<th>052-1145-21L</th>
<th>Architectural Design V-IX: Voluptas S1E7 Repetition/Difference (F.Charbonnet/P.Heiz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>14 credits</td>
</tr>
<tr>
<td>16U</td>
<td>F. Charbonnet, P. Heiz</td>
</tr>
</tbody>
</table>

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract

This semester aims at both designing erratic hyper-contexts generated by hypothetical ruling incentives, and the obsessive recording of their past and present traces of erasures and becomings.

Objective

Objectives: Research & curation of contemporary concepts, articulation of a discursive argument, visual literacy & storytelling, image montage & composition, architectural drafting and projecting.

Incentives: Movies & scenario, territorial & urban scale, collectivity, situations & artefacts, socio-political dimension, critical position, contemporary conditions.

Steps: (1) Analyze a movie, research contemporary concepts, identify potentials, articulate a critical position. (2) Project an urban scenario on both the artefactual and the territorial scale, focusing on collectiveness and the socio-political aspects of society. (3) Express a critical position towards a contemporary condition by the means of such a fictive context in both image and plan. (4) Train rhetoric and argumentation, master drafting skills as well as image montage.
pentimento, n. [pen-tuh-men-toh], plural pen-ti-men-ti [pen-tuh-men-tee].

Painting:
The presence or emergence of earlier images, forms, or strokes that have been changed and painted over. (https://www.dictionary.com/browse/pentimento [2021])

Repentir, s.m.
A.1. RELIG. Regret douloureux de ses péchés avec le désir de les réparer et de ne plus y retomber. Synon. contrition, repentance (vieilli ou litt.) P. ext. Vil regret d'une faute, d'une erreur, d'une faiblesse. 2. P. ext. Regret d'une action quelconque.

“Since the trace is not a presence but the simulacrum of a presence that dislocates itself, displaces itself, refers itself, it properly has no site—erasure belongs to its structure. And not only the erasure which must always be able to overtake it (without which it would not be a trace but an indeluctible and monumental substance), but also the erasure which constitutes it from the outset as a trace, which situates it as the change of site, and makes it disappear in its appearance, makes it emerge from itself in its production. The erasure of the early trace of difference is therefore the ‘same’ as its tracing in the text of metaphysics. [...] The paradox of such a structure, in the language of metaphysics, is an inversion of metaphysical concepts, which produces the following effect: the present becomes the sign of the sign, the trace of the trace. It is no longer what every reference refers to in the last analysis. It becomes a function in a structure of generalized reference. It is a trace, and a trace of the erasure of the trace.” (J. Derrida,Margins of Philosophy, Différence, 1982 [1972])

Content:
Pursuing our rambling exploration on the lookout for urban environments beyond reasonable and more than ever considering humankind as embedded in, acting upon and dependent on its geological era, we shall look upon history’s intertwined layers and sediments as raw potential to be appropriated and composed with — joyfully disrespecting scientific authenticity. The visionary Histor seeks, finds novelty in the old, rather than an unfeigned assertion of the present with the past. This semester aims at both designing erratic hyper-contexts generated by hypothetical recording incentives, and the obsessive recording of their past and present traces of erasures and becoming.

Repetition/Differenc:
invokes identity and sameness, evolution and change, patterns and habits, originality and copy, time and recurrence, beat and rhythm... all things seemingly constant, all shades of their endless variations. How may such abstract notions contribute to shape immaterial processes and crystallize timeless and paradigmatic urban environments? The careful and critical consideration of architectural paragons, socio-economic dynamics, geopolitical shifts, further endowed with the lure of fiction, shall initiate new beginnings to alternate (hi)stories and cityscapes.

Prerequisites / notice
Group work only.
Introduction: 21.9.21, 10h, HIL G74
Critiques: Dates will follow;
Costs: 30 CHF per Student (besides the seminar week).

052-1147-21L
NOTHING BUT FLOWERS - Nature and Territory in Zurich

PROJECT CLASSES: M. Topalovic, 16U

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).

Project grading at semester end is based on the list of enrollments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enroll for the studio.

Abstract
From the age of the dinosaurs, cars have run on gasoline Where? Where have they gone? Now, it’s nothing but flowers (Talking Heads, 1988)

The studio will investigate and imagine nature in the metropolitan territory of Zurich. The results will be made public in the form of online investigative reportages, meant to inform design practices and public discourse on ecology and nature conservation.

Objective
NEW ECOLOGIES
New Ecologies is a studio series at Architecture of Territory dedicated to ecologising architecture. Ecological thinking, which foregrounds the interactions between organisms (or by extension between objects, or social and technical systems) and their environments, is applied in considering design practices in their social and environmental effects. The studio series is affiliated with the Future Cities Laboratory and the new Master of Advanced Studies MAS UTD starting in the fall 2021. Citizens, experts, and fellow designers and artists will accompany us in the process.

PROCESS AND RESULTS
The semester consists of investigative journeys and intensive studio sessions. Architecture of Territory values intellectual curiosity, commitment and team spirit. We are making strong and independent contributions. Our approach enables students to work with a range of methods and sources pertaining to territory, including ethnographic fieldwork, interviews, literature research and essay writing, large-scale drawing techniques, photography, videography, and online publishing. Experts and guests will help us sharpen our skills and craft common agendas through debates. Students work in groups of two to three.

SEMINAR WEEK: PIONEERS OF CONSERVATION
Investigative journeys constitute the core of the project. The first studio day starts with an exploratory walk through the forested backstage of the Hönggerberg. The investigations will continue throughout the seminar week, dedicated to pioneers of nature conservation. Foresters, gardeners, volunteers and veterans of nature associations, scientists, and environmental activists will be our guides. We will traverse the metropolitan territory of Zurich by foot, by bike, by bus and by train. The common trip is followed by a period dedicated to fieldwork in respective student teams. The seminar week takes place from October 24–30 (cost frame A). It is integrated, mandatory, and open to all interested students.

LECTURES SERIES: MY SPECIES
Within the lecture series ARCHITECTURE OF TERRITORY. Territorial Design running in alignment with the studio, four guest speakers engaged in fields ranging from art and landscape to bioethics and environmental philosophy, will address the theme MY SPECIES, approaching territory through the notions such as multispecies, coexistence, and diversity.

CREDITS
The semester offers the total of 19 credit points. The Design Studio with Integrated Discipline (Planning) 14+3 KP and the Seminar Week 2 KP.
We are often told that Nature is being lost, damaged and polluted, sacrificed to consumption habits and ambitions of urban development. We are told of the environmental crisis of planetary proportions, of the loss of species and the imminent collapse of the web of life. We hear appeals to preserve and respect Nature, to curb our resource use and manifest an ethos of care. Nature is the concept governing actions of individuals and societies, and yet, if we try to put our finger on “nature”, to situate it in our environments, it is slippery and far from clear. The politics of space and territory relies on both green arguments, as well as privileging of our own species. Nature is often not more than a convenient gesturing: the net loss or gain of forest; the carbon offsetting; the nature compensation, the green tech, the greenwash.

But nature is also a space of imaginary. As a concept, Nature has played a historical role for the human communities through its association with the divine, the primitive, the bestial, the corporeal, and the feminine. In Switzerland and other countries, the forming of nature conservation as a scientific discipline mirrored the industrialisation processes throughout out the XIX century as a specific reaction. Invigorated by aesthetic and patriotic sentiments, early activist movements deplored the industrial destruction of both “nature” and “homeland”. Gradually conservation efforts consolidated, working their way into institutional and land use frameworks. Much of nature conservation effort historically has been rooted in the nature-culture divide, an understanding where any product of human activity is seen as being separate from nature, and thus resulting in the production of landscapes cleared from human inhabitants and demarcated from human use. But different paradigms of conservation took hold as well. Some approaches have emphasised on the role of the human carer in the protection and a sustainable use of nature (through for example mining or logging). Others have explored rewilding of landscapes through the reintroduction of previously disappeared species.

In the seemingly pastoral, but essentially highly technological territory of Switzerland, the meaning and the role of nature is far from settled. Being woven into the territory, nature areas remain an object of multiple pressures and interests. As the failures of recent initiatives—the CO2-Gesetz, the Trinkwasser-Initiative and the Pestizidfrei-Initiative—have patently shown, there is little agreement on what kinds of nature are worth preserving, by whom, and how. As designers, we may add that, there is also a lack of environmental imagination, which ought to be explored.

In this semester we will investigate and imagine nature in the metropolitan territory of Zurich. We will analyse political, financial, cadastral and other entanglements between urban space and nature. We will engage in multispecies ethnography, tracing our relations with other species. We will engage with aesthetics, science, and the philosophy of nature. Focusing on selected sites, from the Rhine plains, through the fields of Weinland, the logistic valleys and leisure hilltops around Winterthur, to the forests and pastures of Zürcher Oberland, we will look at nature in its different incarnations—the protected biotopes, the nature monuments, the second natures and the third landscapes of the agglomeration, the cheap natures of industrial farming, and so on.

Students will write their own project briefs, and will develop territorial analysis and projects for the chosen sites. The takes form of a web-based investigative reportage. During the production we will work with GIS and CMS experts, a journalist, a data scientist, a videographer and a photographer. The results of the studio are delivered in the public forum, meant to inform design practices and public discourse on nature conservation.

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>Individual and group work.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critiques:</td>
<td>9.11.; 30.11.; 22.12</td>
</tr>
<tr>
<td>No extra costs.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>052-1151-21L</th>
<th>Architectural Design V-IX: Re-Use "selon arrivage"</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GD Buser)</td>
<td></td>
</tr>
<tr>
<td>Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).</td>
<td></td>
</tr>
<tr>
<td>Teaching Language is German and English.</td>
<td></td>
</tr>
<tr>
<td>Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date only). This is the ultimate deadline to unsubscribe or enroll for the studio.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abstract</th>
<th>In addition to the design and practice, knowledge on the topics of circular economy, CO2 balance, pollutants and component logistics will be imparted. Reuse projects that have already been implemented will be presented and visited.</th>
</tr>
</thead>
</table>
| Objective| - Respect for the existing, recognizing the identity
- Reversal of the design process, construction with rescued / found materials
- Understanding of the component hunting (dismantling, component logistics)
- Circular construction, dismantability, circular economy
- Calculation of the CO2 savings when reusing
- Expansion one’s own noosphere |
| Content | Design, construction, re-use |

The design program focuses on the reuse of components divided into three phases:

1. Handling of components and materials, component hunting and dismantling. Through dismantling workshops, the students will learn the theory, but above all the practical side of dismantling.
2. The students will deal with the collected components in order to design and construct building systems and elements in the form of mockups.
3. The researched and developed building systems and elements will be applied to a real case.

In addition to the design and practice, knowledge on the topics of circular economy, CO2 balance, pollutants and component logistics will be imparted. Reuse projects that have already been implemented will be presented and visited.

|----------------------------------|---|
| Group work only. | Critiques: 19./20.10., 23./24.11., 21./22.12.
Introduction: 21.9.21, 10:00 h.
No extra costs. |

<table>
<thead>
<tr>
<th>052-1181-21L</th>
<th>Architectural Design V-IX: A House for 10'000 People</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ch. Kerez)</td>
<td></td>
</tr>
<tr>
<td>Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php).</td>
<td></td>
</tr>
</tbody>
</table>

- Calculation of the CO2 savings when reusing rescued / found materials
- Circular construction, dismantability, circular economy
- Calculation of the CO2 savings when reusing
- Expansion one’s own noosphere

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date only). This is the ultimate deadline to unsubscribe or enroll for the studio.
Architecture defines the spaces in which we live and work in during every moment of our lives. We will study the large scale in which the work of an architect has an impact on the biggest possible amount of people. A house as big and complex as a whole village. The design work is understood as an investigation on the daily conditions of our times, through the media of architecture.

This semester the design studio will focus on the big scale. Students will develop a design based on a given competition brief and will deal with the theme through a critical approach.

Analysis of fundamental aspects of the given task, fast track design methods leading to alternative concepts should establish the strategic and factual basis for a critical understanding on how to deal with the big scale. The goal is to develop an individual and critical understanding of the topics and, just like in a real office, students will work individually towards a final collective output.

Architecture defines the spaces in which we live and work in during every moment of our lives. We will study the large scale in which the work of an architect has an impact on the biggest possible amount of people. A house as big and complex as a whole village. The design work is understood as an investigation on the daily conditions of our times, through the media of architecture.

The brief and the site of actual competitions will be the starting point of the semester. In the studio, students will work individually during some design stages and they will work together during others. This collaboration is understood as a teamwork in which each participant has a clear task, different from the others.

Students will develop their design capacities, which relate specifically to the work in the large scale and they will develop their own individual and critical understanding of the challenges of our times. Throughout the semester there will be lectures and discussions with architects working on large commissions. Zaha Hadid Architects, Christine Binswanger, Bjarke Ingels and Ma Yansong will be guests of this semester and give some inputs.

Prerequisites / notice

Individual work and group work, whereof at least 3-4 weeks of group work.

Grading percentage of the process of the study First mid review 35%, Second mid review 35%, Final review 30% (15% collective work, 15% individual work)
Introduction

Teaching and learning methods are evolving. The complexity of our lived reality demands new sets of skills and competencies to be integrated in education, especially in architecture, which is changing from a competitive model based on individual authorship to a complex, interdisciplinary challenge. Real-world problems urge universities worldwide to invest in pedagogical approaches that support exchange and reflexive learning, i.e. constant self-reflection based on our own experiences and positions. Experimenting, testing and taking strong, sometimes diverging positions need Safe Spaces that offer professional and emotional stability to turn confrontations and discussions into productive dialogues. These include informal spaces that invite a diversity of uses, where students and staff meet, exchange and inspire each other. In order to precisely integrate collaboration, self-management, positionality and collective evaluation into the teaching and learning methodology, we need spatial configurations that enable and promote diverse and flexible behavioural settings. For this reason, we collectively aim to transform and integrate informal learning environments in three existing situations at ETH Zürich:

(A) Studio space at the department of Architecture, ONA. For this case study, 2 groups of 4 students will work on architecture studio spaces. During their education, architecture students are reflecting about a diversity of spaces and scales, often without taking into consideration their own learning environments. These spaces remain until today, with some exceptions, very generic, very often lacking attractiveness. How can the education of architecture benefit from a transformation of its spatial environment? How can this spatial transformation support students in testing their own positions regarding complex problems?

(B) Public library at the InfoCenter of the ETH Library, in the main building of ETH. ETH Library offers a range of services that are unfortunately largely unknown to users. For this case, 2 groups of 4 students will think about the following questions: How could the spatial environment of the library offer both, an understanding and a visibility of the provided services? How can the functions of a library be combined with a learning space itself? How to manage acoustic or representational issues while offering the necessary representative freshness? Students are invited to collectively think about possibilities of the future of the library considering the different expectations of departments’ staff, students, librarians and public.

(C) Classroom at the Department for Environmental Systems (D-USYS), with the Transdisciplinary Lab (TdLab). During the Course "Tackling Environmental Problems" students of D-USYS work in groups and in close collaboration with different stakeholders for solutions of environmental issues. Their methods include role plays and performative presentations that enable participants to reflect on different positions in complex situations. 2 groups of 4 students will accompany the course and observe the spatial settings and use of a rather conventional classroom of ETH. How do staff and students work in groups in classrooms? What kind of intervention could strengthen collaboration? Which spatial configuration functions both, as a representative stage, and as a safe ground to strengthen roles and communicate information?

Literature

Prerequisites / notice

- Group and individual work, whereof at least 5 weeks group work.
- Costs: 100 CHF (besides the seminar week).

Assignment and deadlines

- Week V: Research Drawing & Documentation, Process Book*, Design of Presentation Setting
- Week XI: 1:1 Mock-up, Design Drawing, Process Book*, Mock-up Re-enactment on site
- Week XIV: Mock-up collective 1:1 installation in studio, Process Book, Research Report*

*Process Book and Research Report are individual work.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>
Electives and Focus Works

Electives

Design and Architecture

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0511-00L</td>
<td>Planning Strategies for Complex Buildings Using the Example of Health Facilities (HS)</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>T. Guthknecht</td>
</tr>
</tbody>
</table>

Abstract
Independently written scientific paper concerning a subject of planning of complex buildings - such as health facility planning and design - with special focus upon the dynamic changes in this context and the related planning and building reactions to them.

Objective
The objective is that the students engage in a debate of a differentiated functional planning as a basis for complex buildings which are to be successful functionally, operationally and in design. On the basis of a given scope of themes the students carry out research aiming for possible improvements for example in health facility planning. The scope of subjects is announced at the beginning of each semester.

Content
Complex buildings such as health care buildings are subject to constant change. In a new hospital building 60% of the diagnostic and treatment areas are subject to building changes within the first 10 years of operation. Architecture has to develop concepts which accommodate this level of dynamics into the building structure in a better way.

In the coming years this need for adaptability is going to be challenges even further by the even more reducing health care resources. The paper should discuss in this context a specific question in detail by analysing problems and developing and discussing potential planning solutions.

Lecture notes
Presentations of the lecturer and guests will be made available.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0513-00L</td>
<td>Spatial Concepts in Film and Architecture (HS)</td>
<td>W</td>
<td>1</td>
<td>1V</td>
<td>M. Bächtiger Zwicky, A. Gigon</td>
</tr>
</tbody>
</table>

Abstract
The course deals with spatial phenomena at the interface of film and architecture. The alternating influence of these two media will be analyzed, the dispositions of perception and effect will be compared and thus will sharpen the view for a architectural way of looking at space.

Objective
The examination of filmic space situations and performance discloses new perceptions of architecture which will be studied on behalf of film analyses and experimental topics. During the course space-effective creative means such as editing or framing will be introduced and discussed under perceptive aspects. Mediality within spatial perception can thus be integrated into a development of cultural history and leads towards a conception which goes beyond the limits of architecture and stimulates new processes of design.

Content
New perceptions of architecture are studied on behalf of film analyses and experimental topics. During the course space-effective creative means such as editing or framing will be introduced and discussed under perceptive aspects. Mediality within spatial perception can thus be integrated into a development of cultural history and leads towards a conception which goes beyond the limits of architecture and stimulates new processes of design.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0521-00L</td>
<td>3D Scanning and Freeform Modeling (HS)</td>
<td>W</td>
<td>2</td>
<td>2U</td>
<td>A. Grüninger</td>
</tr>
</tbody>
</table>

Abstract
Design in virtual space - 360° Reality to Virtuality (052-0523-00L) meets 3D Scanning & Modeling (052-0521-00L).

Objective
Our program this semester is to try out virtual design with the technology of VR glasses in the form of independent work.

We make every effort to ensure that new design techniques are taught at the ETH and that they find their way into design practice. The aim is to be able to scan and digitize the existing building structure and then to learn to expand and adapt it with the virtual VR Sketch Tool. It is a completely new technology for us architects. First we have to calibrate our senses and think differently in order to understand the possibilities of the tools. Finally, we will work together on a submission of VR architecture and present it in our showroom in HIL F.

Content
Our program this semester is to try out virtual design with the technology of VR glasses in the form of independent work.

We at the Chair of Architecture and Art endeavor to ensure that new design techniques are taught at the ETH and find their way into design practice. The aim is to be able to scan and digitize existing building structures and then to learn to expand and adapt them with virtual VR sketch tools. It is a completely new technology for us architects. First we have to calibrate our senses and think differently in order to understand the possibilities of the tools. Finally, we will work together on a submission of VR architecture and present it in our showroom in HIL F.

We will run the courses as follows this semester.
1. Both courses are combined. (2 x 2 ECTS points & please enter both courses)
2. Present tense lessons (online or physically according to the instructions of the school management, Mondays 2 p.m. to 4 p.m. (Course time 3D Modeling)
3. Self-study Mondays from 12 noon to 2 pm (course time 360° Reality to Virtuality) in self-study or whenever you can find the time.

We will provide Oculus Quest 2 glasses for each course participant. To register for the "virtual design” course, a deposit fee of CHF 200.00 is required for the Oculus Quest 2 VR glasses. This deposit must be submitted to the professorship no later than 2 weeks before the start of the course. This will also give you the Oculus Quest 2.

(Maria Hil F 46/48, every Monday and Tuesday afternoon)
The glasses remain in your possession until December 20th, 2021 and you have a reserved place in the course.

In the event of loss or defect without guarantee coverage, you will be charged CHF 510.00. Less the prepaid deposit of CHF 200.00.

If you have your own Oculus Quest 1 & 2 VR glasses, you can also be there. When registering in the system, please provide a separate e-mail to rolle@arch.ethz.ch. Of course, there are no custody fees.
Enrolments need the lecturer's allowance.

To enroll in the course, please consult the lecturer: Adi Grüninger; grueninger@arch.ethz.ch

Please send us a letter of motivation, stating your aspirations, goals / wishes for this elective.
Email to:
 rolle@arch.ethz.ch
 CC:
 grueninger@arch.ethz.ch
 kiryk@arch.ethz.ch

Tools where we use:
Gravity Sketch
Reality capture (3D scan program)
Oculus Quest 2
USB for Oculus Link (Beta Oculus Air)

We will use these tools and learn «design in virtual space» on the joint journey.

052-0523-00L 360° - Reality to Virtuality (HS) W 2 credits 2G K. Sander

Abstract
Design in virtual space - 360° Reality to Virtuality (052-0523-00L) meets 3D Scanning & Modelling (052-0521-00L)

Objective
The goal is to 3D-scan an existing space and use it in VR as a context for further design.
First, we learn the tools; then we work on an architectural VR-project; at the end of the course, we present the works in our exhibition space in HIL F.
Every student gets Oculus Quest VR-Headset to work with at home during the semester.

Content
We focus on virtual reality design process and create our own spaces using VR-headsets. We hope that this new technologies will change the design of architecture in the near future and will influence the learning process at ETH as well.
The goal is to 3D-scan an existing space and use it in VR as a context for further design.
First, we learn the tools; then we work on an architectural VR-project; at the end of the course, we present the works in our exhibition space in HIL F.
Every student gets Oculus Quest VR-Headset to work with at home during the semester.

Each student will be charged with 200 chf deposit for the VR-Headset 2 Weeks before the beginning of the course. The deposit has to be paid the latest 2 weeks before the beginning of the course. It will be paid back after the return of the Headset (it has to be returned until Monday, 20.12.2021).

In case of loss or damage that is uncovered by the warranty the student has to cover the equipment cost 510chf (minus 200chf deposit). If you already have Oculus Quest (Model 1 or 2) you don’t need to pay any deposit and you can work on your own device.

Prerequisites / notice
Course requirements:
Both courses are connected “360 – Reality to Virtuality” and “3D-Modeling”
Please register for both courses:
“360 – Reality to Virtuality” (052-0523-00L) and “3D-Modeling” (052-0521-00L) (2x 2 ETCS)
Classroom-teaching (online or physical meetings, Mondays, 14:00 – 16:00)
Self-teaching, research etc. (Mondays 12:00 – 14:00, or whenever you have time)

Please send us your short letter of motivation to Nicolas Rolle: rolle@arch.ethz.ch

Tools:
Gravity Sketch
Photogrammetry 3D-scanning (Reality Capture)
Oculus Quest 2
Oculus Link (USB-C cable)

Material-Workshop (HS) W 3 credits 3G A. Spiro

Abstract
This elective course is not taking place in HS21.

The elective is organised as a laboratory where one particular material will be explored on a theoretical and practical level. During this study the contemporary architectural potential of the material will be tested and applied.
Experience, know-how and interest are the basis to explore a material and develop new ways to construct and form architecture. The objective of this course aims at exploring the correlation between material, construction and architectural expression.

The elective is organised as a laboratory where one particular material will be explored on a theoretical and practical level. During this study the contemporary architectural potential of the material will be tested and applied.

Prerequisites / notice
Is not offered in HS21.

Model and Design (HS) W 3 credits 4U A. Tellini, K. Derleth

Abstract
The course Model and Design teaches architectural model building in an explorative way through systematic experiments and the development of corresponding methods in design.

The primary pursuit is an in-depth study of three-dimensional form, color, material and composition along with the practical development of your own technical and artistic competences.
In the first part of the semester, we are going to explore a variety of materials and techniques, both typical and atypical for the architectural model building. Equipped with the knowledge gained during the first phase we’ll go ahead and try to put all of that experience into use during the final build. With this final build, we reflect on basic design topics like the initial intent, color, material, composition, and construction in order to understand the sensual role of the model considering its sculptural properties.

In addition, a processing time during the week of about 4 hours can be expected.

Course Information:

052-0537-00L

Free Drawing (HS)

Number of participants limited to 35.

This course (ends with -00L-) can only be passed once!

Please check this before signing up.

Objective

Development of individual expression in the realm of drawing; artistic flexibility and skill in the areas of working strategy and aesthetic impact.

Abstract

Drawing is used to ascertain and develop the artistic ideas and abilities of students. Different techniques and methods will be tested.

Content

The number of participants is limited.

Application for the course via e-mail: Maude Léonard-Contant <leonard@arch.ethz.ch>

052-0549-00L

Hybrid Modeling: 3D-Printing for the Architectural Design (HS)

This course (ends with -00L-) can only be passed once!

Please check this before signing up.

Abstract

3D printing is a versatile representation tool for illustrating a design idea. This course teaches and practices how the design process can benefit greatly from 3D printing.

Objective

The students are motivated to use the machines for other subjects as well.

Content

ArchicAD is used as a software example to explain to students how complex BIM programs work in architecture.

Lecture notes

In the first half of the semester, I will explain how to model and print an urban context and urban study.

In the second half, there will be an opportunity to participate in elective exercises or to benefit from the lecturer as a 3D printing coach for the respective design studio.

Prerequisites / notice

Knowledge of 3D printing technology is not required.

052-0517-21L

Theory and Practice: Heterotopia, Referential Space

And Spatial Effects

Objective

In 1967, Foucault showed certain entanglements of space with his concept of heterotopia; a little later, Pierre Bourdieu established a multidimensional space sociologically with his concept of field. The seminar also discusses such intertwining in current local situations and tries to think about potentials for spatial policy practice.

The students gain insight into the spectrum of epistemological and perceptual theories, learn to read them and analyze and critique their respective requirements. From this work an object relationship model is developing in progress, which serves self-examination in the design process as well as the evaluation of architectural situations in general and in particular. The writing of "scientific diaries" in which the contents of the colloquium are combined with the everyday experience of the students in free form, trains the concentrated result-oriented thinking in general, as well as in architectural situations. The special form of the writing of the "scientific diary" leads abstract Theory together with the experience of the students and make the knowledge creatively available in their own way.

Content

In 1967, Foucault showed certain entanglements of space with his concept of heterotopia; a little later, Pierre Bourdieu established a multidimensional space sociologically with his concept of field. The seminar also discusses such intertwining in current local situations and tries to think about potentials for spatial policy practice.

Cooperation in the form of discussions and scientific diary.

The additional personal work (besides the course) is about 20 working hours for the creation of a scientific journal, individual deepening and filming!

Prerequisites / notice

This course (ends with «01L») can only be passed once!

Please check this before signing up.

Number of participants limited to 35.

In addition, processing time during the week of about 4 hours can be expected.

052-0533-00L

New Focal Points of Construction: Steel Constructions

This course (ends with -00L-) can only be passed once!

Please check this before signing up.

Abstract

The elective subject “New focal points of construction” investigates the complex interaction of construction elements by means of exemplary architectonic tender points such as base, wall, chamber, roof etc.

The comparative analysis of built constructions serves as a basis for further development of hypothetical future constructions.

Objective

Target of the course is the understanding of the impacts of material, technology and construction to the architectural education of constructive points. With comparative analysis of built constructions of high architectural relevance, by means of exemplary building elements such as base, wall, chamber, roof etc., the genesis of constructive building parts, the interaction of the building elements and stand of technique for the most of common constructive tender points is imparted. The conjunction to current constructive methods and basic conditions enables a critical evaluation of the constructive Status Quo within the contemporary producing architecture as well as a perspective to new konstructive education.

Content

Lecture:

1. Comparative analysis for derivation and understanding of the constructive points base, wall, chamber, roof etc.
2. Description of current level of technique, typical methods, and set of problems.
3. Colloquium with guests of producing and processing companies.

Exercise:

New formulation of a future constructive point as a result of a diagnostic work.

This course (ends with «01L») can only be passed once! Please check this before signing up.

https://www.buk.arch.ethz.ch/Lehre/VorlesungenNKOFS2021
052-0569-21L Lecture Series Design and Architecture: Architecture of...

| Objective | Specialists give lectures on current architecture-specific topics. |
| Content | Specialists give lectures on current architecture-specific topics. |

Lecturers are listed in due time.

Prerequisites / notice

The lecture series take place on Tuesdays from 6-8 pm in HIL E4 (s. room reservations):

Speakers:

- 28.09.21: Prof. Patrick Heiz
- 05.10.21: PD Dr. Erik Wegerhoff - Note: This lectures take place in the HIL underground carpark (follow the signs!)
- 12.10.21: Prof. Mike Guyer
- 02.11.21: Prof. Freek Persyn (ONA E7 Focushalle, Oerlikon)
- 16.11.21: GD Roger Boltshauser
- 30.11.21: GD Angela Deuber
- 07.12.21: Prof. Alexandre Theriot

063-0561-21L Integrated Discipline HS21 in the Field of Design and Architecture (IEA)

| Objective | The formal framework needs to be discussed with a chair within the institute IEA. |

052-0565-21L Formalistic Analysis of the Architecture of the Neo-Liberal Ideology: Richti-Areal

| Objective | The aim is a well-founded examination of a clearly formulated question. |

052-0561-00L Territories of Play - Surveying Architecture Through Gaming (HS)

| Objective | The seminar addresses a way of perceiving reality which has become key: through the lenses of Play and Gaming. Besides offering students steady footing on the makings of an architectural publication, it will provide students with a complementary, yet extremely relevant tool with which to approach architecture and urbanism. |

| Literature | Huizinga, Johann, “Homo Ludens”
| Sicart, Miguel, “Play Matters”
| Salen & Zimmerman, “Rules of Play” |

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 94 of 2152
The garden project has been an integral part of the teaching curriculum at Studio Tom Emerson, involving over 300 students in its Summer School: Under the Landscape - Young Makers Gathering.

This course is not taking place in HS21.

Abstract

We interrogate the possibilities of repair as a method for a new kind of architectural design model, as a disciplinary response in the era of climatic change. The course should pose range of questions and challenges to conventional building economies, standards of construction industry ranging in scale from urban to material choices.

Objective

- Investigate design research methods through analyses of architectural examples that focus on repair.
- Produce an in-depth survey of the maintenance of one building in the form of a Maintenance Manual.
- Question and suggest improvements to repair methods applied in the contemporary building culture.
- Compare possibilities of repair-as-design method in multiple disciplines (art, landscape, medicine, industry, software, etc) with the help of invited specialist guests.

Content

The garden project has been an integral part of the teaching curriculum at Studio Tom Emerson, involving over 300 students in its conception over the past five years. On the one hand it is a design project, a pedagogical tool, focusing on ideas of construction, reuse, renovation, rejuvenation, maintenance and subtraction, yet we also see it as a form of constant and continuing research into our interactions with the dynamic processes of time and passing seasons. Can we practice architecture, with the care of a gardener?

In this weekly elective course, the goal will be to look at repair as a possible method for a new kind of design. As a disciplinary response in an era of climatic change, it is envisioned that this study should pose a range of questions to challenge conventional building economies and the durability of the constructed environment. We will interrogate and look for ways of improving and repairing standards of construction industry ranging in scale from urban to material choices. The methods developed and gathered should become an outline of experimental possibilities for designers and practitioners who face the growing challenge of a lack of newly built form, and ever growing need to address the existing built substance, with an outlook to a conflict between construction industry standards orientated toward new buildings and acknowledged methods of prolongation and altering architecture. Instead of aspiring to build new, can we as a generation focus mainly on what is already there. A 2-weekly rhythm of lectures and tutorials will help us to produce a detailed picture of the maintenance architecture of one case study building.

Literature

Peter Maxwell, 'A Dangerous Breed'. Originally published in FORM 246, 2013
Michael Thompson, Rubbish Theory (Oxford: Oxford University Press, 1979) Ch.3 ‘Rat infested slum or glorious heritage?’ p.34-56
Vishmidt, Marina. ‘Management and Maintenance’. In Look at Hazards, Look at Losses, edited by Anthony Iles, Danny Mirales Ladermann Ukeles. Manifesto for Maintenance Art

Prerequisites / notice

Submission of a project in written, drawn or documented form.

052-0551-00L The Architecture of Maintenance (HS) W 2 credits 2G T. Emerson

Does not take place this semester.

052-0555-21L Summer School: Under the Landscape - Young Makers Gathering W 4 credits 6S A. Spiro

Autumn Semester 2021

Data: 11.11.2021 12:40
History, Criticism and Theory in Architecture: Things

Abstract
As part of a restoration project by the interdisciplinary research collective "Boulouki" on the Greek island of Thirasia, site-specific craft techniques are being revived. The focus of the investigation is the abandoned cave settlement Agrilia, the restoration of the natural stone path to the settlement with accompanying dry stone walls and two cisterns sealed with pozzolanic plaster.

Objective
- Getting to know traditional craft techniques, the corresponding construction principles and material properties through implementation on a 1:1 scale
- Understanding of the local relationships between landscape and type of settlement
- Interdisciplinary exchange with participating specialists
- International exchange with Greek students

Content
The interdisciplinary research collective "Boulouki" (www.boulouki.org) carries out restoration projects in Greece every year with student participation. The group, led mainly by young architects, is well networked with universities and specialists, prepares the events meticulously and tries to embed them in the local craft and social context.

As part of the workshop, the path to the abandoned cave settlement Agrilia will be restored, which is centrally located on the island of Thirasia in a valley. The natural stone paving of the path and the adjacent dry stone walls will be exposed and repaired, as will two cisterns of the water supply system. These are sealed with plaster, which has a special strength and water resistance due to its aggregates made of local pozzolan earth (Santorin earth, trass lime). The restoration work takes place in the mornings and is accompanied by local craftsmen and apprentices.

The type of settlement in Agrilia is uniquely dependent on the local (geological) conditions. The settlement should be understood in its entirety (connections between geology, agriculture, water drainage, architecture, volcanic materials, etc.). An artistic and creative examination of the local materials is also sought. For this purpose, seminars and lectures are organized in the afternoons and evenings with the participation of craftmen, archaeologists, geoarchaeologists, agronomists, the rector of the Athens School of Art and of course architects.

Prerequisites / notice
Accommodation costs EUR 400 for two weeks. Independent catering; Travel expenses individually.

In the course of organizing the workshop, it was possible to bring together older local craftsmen with young apprentices, who were taught traditional techniques for a month before.

History and Theory of Architecture

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0821-00L</td>
<td>Architecture and Photography (HS)</td>
<td>W</td>
<td>2</td>
<td>4S</td>
<td>T. Wootton</td>
</tr>
</tbody>
</table>

A letter is requested with the preference for one of the groups until 17.9.21. For details see course description!

This course (ending with «00L») can only be passed once! Please check this before signing up.

Abstract
Representation of architecture is inextricably linked to photography since the mid 19th century. As buildings are commonly discussed on the basis of images, understanding their technical origin is key to reading and making them. By teaching students how to use a 4x5" view camera, the artist and photographer Tobias Wootton will introduce different techniques of 'thinking through the lens'.

Objective
Knowledge of architectural photography

Content
This be-weekly course is taught in 2 groups of max.15 students each, in English and German.

Course dates s. room reservations!
Group 1: Thursdays 16:00 - 20:00; Group 2: Fridays 14:00 - 18:00

Students will be selected on the basis of a motivation letter.
Deadline: 10.9.21, 12:00 h, to wootton@arch.ethz.ch.
Please also state a preference which day suit you best:
Group 1: Thursday evening
Group 2: Friday afternoon

Course dates s. room reservations!

Students will be selected on the basis of a motivation letter.
Please also state if you have a preference for the Thursday or the Friday class.
Deadline: 17.9.21, 12:00 h, to wootton@arch.ethz.ch.

052-0847-00L | Experiments on the Spatial Perception and Spatial Cognition of Architects (HS) | W | 2 | 2S | A. Gerber |

This course (ends with «00L») can only be passed once! Please check this before signing up.

Abstract
The course deals with the question of how architects perceive architectural and urban space and how their spatial imagination can be grasped empirically. This before the tradition of comparable investigations in history and the theory of architecture. In the seminar we work with Unity.

Objective
Students gain insight into the history and theory of scientific spatial research and architectural aesthetics as well as into the related contemporary cognitive sciences (cognitive psychology and neuroscience). They develop an original question about the perception of space and the spatial imagination of architects, which they verify in an experiment. This experiment will be realised in a video game.

Content
The course presents the "state of the art" of cognitive sciences and their relevance to architecture against the background of the historical analysis of architectural theory with these topics. Discussions take place on existing experiments and theories that pertain to architecture and uses them to develop original, empirical experiments from which a sound understanding of architecture and design can be gained. Students will work also with Hololens and thus investigate upon the boundary between the experience of "real" and of "virtual" spaces.

052-0813-21L | History, Criticism and Theory in Architecture: Things of Postmodernity | W | 2 | 2S | D. Spina, L. Stalder |

Abstract
How is the postmodern condition architecturally constituted? The present course examines this question by focussing less on issues of style than on specific 'things'.

Objective
Students successfully completing the course will be in a position to read buildings of the last 50 years from an object-oriented perspective.

Content
How is the postmodern condition architecturally constituted? The present course examines this question by focussing less on issues of style than on specific 'things'. Through the analysis of twelve key objects, we will explore transformations in the design of buildings and the experience of the city from 1968 onwards. From a methodological standpoint, the course builds on the 'Things of Modernity' module, applying its rationale to a later stage of historical development and architectural production. Students who have completed the 'Things of Modernity' module are particularly encouraged to apply.

Lecture notes
http://www.stalder.arch.ethz.ch/courses
For centuries, architectural drawings have been at the center of the profession: how architects come up with ideas, share them with clients, and assess them. The function of drawing changed with the advent of digital modeling, which made hand drawing marginal at best to both firms and schools.

Theory of Architecture: What Drawings Did and Do

Analytical Competencies
Domain B - Method-specific Competencies

Concepts and Theories

Decision-making

Domain C - Social Competencies

Communication

Domain D - Personal Competencies

Adaptability and Flexibility

Creative Thinking

Critical Thinking

Negotiation

Adaptability and Flexibility

The two different attentions of the students’ tandem work, the digital experience and the real experience meet. Discussed are those ideas and to expand them with fictional content. Discussions will elaborate the advantages and disadvantages of traveling and being on-site. In light of current conditions, the seminar considers both historical techniques of drawing as well as a range of conceptual approaches and functions, and its possible future within the altered profession of architecture.

Students will develop a knowledge of techniques of historical drawings from the Renaissance forward, as well as a conceptual understanding of their uses, and the different graphic strategies adopted by draftsmen in response to varying conditions, materials, and aims. They will also have a chance to explore a range of approaches to making their own drawings, when possible in response to the earlier drawings we examine. The course will challenge students to consider what the future role of hand drawing could be for the architect.

It will take an interest not only in drawing as a practice, but also as a representational tool. It will adopt a critical attitude towards the traditional architectural conventions of plan, section, elevation, axonometric drawing and challenge students to think about how those conventions might be interrogated or undermined.

The chronological scope of the seminar will be very broad. The professor’s expertise is in Renaissance drawing, however the seminar aims to take advantage of the resources available in Zurich which include everything from fifteenth century drawings to the present. The course is limited to 24 students.

Literature

THOMPSON, Emily, The Soundscape of Modernity. Architectural Acoustics and the Culture of Listening in America, 1900-1933.

Domain A - Subject-specific Competencies

Concepts and Theories

Domain B - Method-specific Competencies

Analytical Competencies

Decision-making

Domain C - Social Competencies

Communication

Leadership and Responsibility

Leadership and Responsibility

Self-presentation and Social Influence

Self-presentation and Social Influence

Domain D - Personal Competencies

Adaptability and Flexibility

Critical Thinking

Creative Thinking

Critical Thinking

Self-awareness and Self-reflection

Self-awareness and Self-reflection

Self-direction and Self-management

Self-direction and Self-management

THOMPSON, Emily, The Soundscape of Modernity. Architectural Acoustics and the Culture of Listening in America, 1900-1933.

052-0815-21L Seminar Architectural Criticism: The Other Institution, W 2 credits 2G

Domain A - Subject-specific Competencies

Concepts and Theories

A. Stahl, L. Stalder, V. Vilardebo Sacchetti

Part II (A. Stahl)

Abstract

The doors of the D-Arch have been closed for over a year. We stayed at home and pretended digital teaching was still our concern. Meanwhile, over 4 million people worldwide died as a result of Corona, and the climate crisis is advancing, our construction industry is responsible for 38% of CO2 emissions. The time has never been so pressing. Let’s start critique the status quo. Let’s start writing.

Objective

In this seminar, writing is taught as a craft, and text work as well as journalistic strategies for its publication are dealt with intensively. The research materials that were put together by the students in part I of the seminar last semester will serve as a basis: We will deal with mental health issues from before and during the pandemic, as well as the absence of ecology in teaching, among others.

052-0817-21L Theory of Architecture: What Drawings Did and Do n W 2 credits 2S

Domain A - Subject-specific Competencies

Concepts and Theories

A. Stahl, L. Stalder, V. Vilardebo Sacchetti

Part II (A. Stahl)

Abstract

The course is limited to 24 students.

Objectives

For centuries, architectural drawings have been at the center of the profession: how architects come up with ideas, share them with clients, and communicate with builders. The seminar takes the point of view that hand drawing can still be a useful instrument for the architect, and that the ways how may be understood in part through a study of past drawings, studied in the original.

Objective

The seminar meetings will convene as often as possible in the drawing study rooms in and around Zurich, including the Archives of ETH, the Graphische Sammlung of ETH, the Kunsthaus Zurich, and the Stadthaus Zurich.

Content

The seminar will be limited to 24 students; groups of 12 will visit the drawing rooms while the other group does a drawing exercise lead by the professor.

Students will be expected to complete regular drawing assignments every other week (for a total of 5 per semester); these will be the basis of the final grade and most work will be concentrated towards the beginning and middle of the semester to avoid conflict with studio work. The seminar will be located at various sites around Zurich, students should allow 30 minutes before or after class for travel.

052-0825-21L Special Questions in History of Art and Architecture: W 2 credits 2S

Domain A - Subject-specific Competencies

Concepts and Theories

B. Seidel, H. Romakin

Abstract

“Protect Us From What We Want”

Have you ever resisted the urge to travel and tried to imagine your travel? That’s the experimental set up for the seminar. The idea is to split the participants of the seminar into two groups: travellers and non-travellers. In pairs (tandem partnerships), they will be responsible for 38% of CO2 emissions. The time has never been so pressing. Let’s start critique the status quo. Let’s start writing.

Objective

Because the class will be located at various sites around Zurich, students should allow 30 minutes before or after class for travel.

052-0815-21L Seminar Architectural Criticism: The Other Institution, W 2 credits 2G

A. Stahl, L. Stalder, V. Vilardebo Sacchetti

Part II (A. Stahl)

Abstract

The doors of the D-Arch have been closed for over a year. We stayed at home and pretended digital teaching was still our concern. Meanwhile, over 4 million people worldwide died as a result of Corona, and the climate crisis is advancing, our construction industry is responsible for 38% of CO2 emissions. The time has never been so pressing. Let’s start critique the status quo. Let’s start writing.

Objective

In this seminar, writing is taught as a craft, and text work as well as journalistic strategies for its publication are dealt with intensively. The research materials that were put together by the students in part I of the seminar last semester will serve as a basis: We will deal with mental health issues from before and during the pandemic, as well as the absence of ecology in teaching, among others.

052-0817-21L Theory of Architecture: What Drawings Did and Do n W 2 credits 2S

A. Stahl, L. Stalder, V. Vilardebo Sacchetti

Part II (A. Stahl)

Abstract

The course is limited to 24 students.

Objectives

For centuries, architectural drawings have been at the center of the profession: how architects come up with ideas, share them with clients, and communicate with builders. The seminar takes the point of view that hand drawing can still be a useful instrument for the architect, and that the ways how may be understood in part through a study of past drawings, studied in the original.

Objective

The seminar meetings will convene as often as possible in the drawing study rooms in and around Zurich, including the Archives of ETH, the Graphische Sammlung of ETH, the Kunsthaus Zurich, and the Stadthaus Zurich.

Content

The seminar will be limited to 24 students; groups of 12 will visit the drawing rooms while the other group does a drawing exercise lead by the professor.

Students will be expected to complete regular drawing assignments every other week (for a total of 5 per semester); these will be the basis of the final grade and most work will be concentrated towards the beginning and middle of the semester to avoid conflict with studio work. The seminar will be located at various sites around Zurich, students should allow 30 minutes before or after class for travel.

052-0825-21L Special Questions in History of Art and Architecture: W 2 credits 2S

B. Seidel, H. Romakin

Abstract

“Protect Us From What We Want”

Have you ever resisted the urge to travel and tried to imagine your travel? That’s the experimental set up for the seminar. The idea is to split the participants of the seminar into two groups: travellers and non-travellers. In pairs (tandem partnerships), they will be responsible for 38% of CO2 emissions. The time has never been so pressing. Let’s start critique the status quo. Let’s start writing.

Objective

Because the class will be located at various sites around Zurich, students should allow 30 minutes before or after class for travel.
The seminar participants will be divided into 2 groups: A) Students who are "travellers", i.e. who participate in a seminar trip of any professorship; and B) "non-travellers", students who do not take a seminar trip in this semester. Mixed tandems will be formed among the participants. First, the students will be prepared for the seminar week in an architectural history introduction to research trips, discussion of texts read together. Afterwards, the seminar group will work with the tutors to identify questions and topics for the upcoming trips, and discuss possible tools and practices for "travellers" and "non-travellers". During the seminar trip, the tandem partners are in contact with each other. Both groups are given different tasks: The "travellers" document the trip, select the collected footage and upload it to the online platform while tagging it. The "non-travellers" perform a commentary function on the resulting footage and conduct in-depth thematic research. After the seminar trip, both groups meet again in the seminar room to exchange and discuss their experiences. Together, they review and classify the footage that has been created and collected. From this, the assignment is developed and considered with the students: The hybrid journey is to be produced in the format of a video essay by the tandem partners as a semester achievement under the supervision of the tutors.

Content

The seminar participants will be divided into 2 groups: A) Students who are "travellers", i.e. who participate in a seminar trip of any professorship; and B) "non-travellers", students who do not take a seminar trip in this semester. Mixed tandems will be formed among the participants. First, the students will be prepared for the seminar week in an architectural history introduction to research trips, discussion of texts read together. Afterwards, the seminar group will work with the tutors to identify questions and topics for the upcoming trips, and discuss possible tools and practices for "travellers" and "non-travellers". During the seminar trip, the tandem partners are in contact with each other. Both groups are given different tasks: The "travellers" document the trip, select the collected footage and upload it to the online platform while tagging it. The "non-travellers" perform a commentary function on the resulting footage and conduct in-depth thematic research. After the seminar trip, both groups meet again in the seminar room to exchange and discuss their experiences. Together, they review and classify the footage that has been created and collected. From this, the assignment is developed and considered with the students: The hybrid journey is to be produced in the format of a video essay by the tandem partners as a semester achievement under the supervision of the tutors.

Objective

Upon completion of the course, the students will have:

1. acquired knowledge of theories and methods in the field of gender and urban sociology that have been crucial in shaping the architectural discourse, as well as the skills to apply this knowledge in the discussion of different case studies.

2. developed the ability to identify, analyze and interpret positions taken within architectural discussions from the perspectives of gender and urban sociology using critical analysis.

3. gained a firm grasp of the multidisciplinary character of architectural discourse and acquired the methodological tools to cross perspectives of gender and urban sociology in a critical analysis.

4. exercised skills to represent visually the complex multidisciplinary character of architectural discourse using digital concept mapping tools.

Content

Although the profession of architecture in the second half of the 20th century has increasingly become understood as a complex practice that combines knowledge and expertise from different disciplines, architectural historiographies are still being written as histoires des idées that focus almost exclusively on the concepts and work of architects. As a result of this gap between writing about architecture and the actual practice of architecture, architects and students of architecture nowadays find it hard to recognize themselves in these histories.

This course sets out to make a correction to the existing historiographies of architecture by exploring the interdisciplinary concepts and theories that shaped the architectural discourse in the second half of the 20th century. In this seminar, we focus on two crucial perspectives —gender and urban sociology—as a way of unlocking an alternative historiography of architecture, one that more truthfully aligns with the experience of architects and architectural students.

The Any Conferences (1990-2001). The Any Conferences were ten exceptional cross-cultural and multidisciplinary conferences, with associated books, on the undecidability of architecture at the end of the second millennium, convened by editor Cynthia Davidson. In this series of exploratory conferences, it was not the product, but the encounter of ideas, thinking, and concepts that was the goal. By inviting activists, art theorists, economists, artists, and philosophers to engage with architects in architectural discourse, The Any Conferences tried to expose architecture and its theories to contemporary concerns.

During the course, we will analyze one edition of The Any Conferences (1996 Anybody, Buenos Aires) from the perspectives of gender and urban sociology, and try to cross these perspectives. Collaboratively, we will reconstruct these conference discussions by making 'assemblages' of the actors and positions taken in the conferences. Next, by visualizing how architects and leaders in other disciplines encountered particular architectural ideas from multidisciplinary perspectives, this seminar will unlock an entirely new, more inclusive perspective of architecture and the city.

Lecture notes

- Seminar 1 (23/09) – Introduction
- Seminar 2 (30/09) – Introduction
- Seminar 3 (07/10) – Gender Perspectives
- Seminar 4 (14/10) – Gender Perspectives
- Seminar 5 (21/10) – Gender Perspectives
- (28 Oct - no class, seminar week)
- Seminar 6 (04/11) – Mid-term Review
- Seminar 7 (11/11) – Urban Sociology Perspectives
- Seminar 8 (18/11) – Urban Sociology Perspectives
- Seminar 9 (25/11) – Urban Sociology Perspectives
- Seminar 10 (02/12) – Special Workshop: Mixing Perspectives
- Seminar 11 (09/12) – Final Review

Scans of the texts that need to be read before each lecture will be provided in digital form at the start of the semester via the website of the Chair of the History and Theory of Urban Design.
To exhibit architecture is an oxymoron. In architecture we need many tools to communicate a project to an audience. These evidences of architectural thought are used to “exhibit the architecture.” Images, words and representations transmit ideas, concepts and ideologies and create shared meaning of things, which we will analyze and discuss.

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed

Domain B - Method-specific Competencies
- Techniques and Technologies: assessed

Domain C - Social Competencies
- Analytical Competencies: assessed
- Media and Digital Technologies: assessed
- Communication: assessed
- Cooperation and Teamwork: assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain D - Personal Competencies
- Creative Thinking: assessed
- Critical Thinking: assessed

Students will each submit a draft mapping (KUMU map, gender perspective) of a single “actor” in The Any Conferences as well as a well-written analysis of ca. 1 page of A4, situating this singular actor within the wider architecture culture. The text will serve as a draft for the final in-class presentation.

Final assignment: 50%
Students will each present a part of the collaboratively made concept map, and as such, offer an analysis of one “actor” in The Any Conferences from the perspectives of gender and urban sociology, explaining the relationship between these perspectives and deciphering the new ideas that materialized in the crossing of these perspectives. This analysis will also be submitted as a written text of ca.1000 words.

To exhibit architecture is an oxymoron. In architecture we need many tools to communicate a project to an audience. These evidences of architectural thought are used to “exhibit the architecture.” Images, words and representations transmit ideas, concepts and ideologies and create shared meaning of things, which we will analyze and discuss.

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed

Domain B - Method-specific Competencies
- Techniques and Technologies: assessed
- Analytical Competencies: assessed
- Media and Digital Technologies: assessed
- Communication: assessed
- Cooperation and Teamwork: assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain C - Social Competencies
- Creative Thinking: assessed
- Critical Thinking: assessed
- Self-awareness and Self-reflection: assessed

The commons is a concept that is garnering increased interest in academia and beyond. This course will critically approach this concept from a non-Western perspective based primarily on the work of the Sufi-Marxist Iraqi scholar Hadi Al-Alawi.

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed

Domain B - Method-specific Competencies
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Communication: assessed
- Cooperation and Teamwork: assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain C - Social Competencies
- Creative Thinking: assessed
- Critical Thinking: assessed
- Self-awareness and Self-reflection: assessed

To exhibit architecture is an oxymoron. In architecture we need many tools to communicate a project to an audience. These evidences of architectural thought are used to “exhibit the architecture.” Images, words and representations transmit ideas, concepts and ideologies and create shared meaning of things, which we will analyze and discuss. The object is to provide an imaginative space for the students to examine methods and relations between discourse and medium, context and institutional frameworks that inform representations of architecture in historical and contemporary practices.
The commons has been gaining traction in academia and beyond, including in architecture, both as theoretical framework and as self-standing subject for examination. The trailblazing work of Elinor Ostrom has won her the Nobel Prize in economics in 2009. Radical, politically engaged researchers, such as David Harvey, Massimo De Angelis, and Stavros Stavridis, have taken up the topic of the commons as an institution of revolutionary potential. This course will bring a different perspective into conversation, namely the work of Hadi Al-Alawi, a prominent Iraqi scholar who wrote, towards the end of the 20th century, on the concept of musha’a (an Arabic word that closely resembles the commons). Based on pan-Asian history, and focusing on Chinese and Islamic civilizations, Al-Alawi theorizes the musha’(commons) and musha’iya (communalism) as central to communism, and argues that these practices are historically rooted in Asia. In this approach, he is influenced by Maoism and its relationship to Taoism—an ancient Chinese philosophy. We will critically explore the theory of Al-Alawi, situate it in its historical and intellectual context, and reflect on it in relation to various experiences and theorizations of commons and communes around the world, past and present.

During Seminar Week, 4 days, 6 hours per day. The first hour will be dedicated to the lecture, two hours for structured group discussion, and three hours for development of work, alternatively including another 1-hour lecture. The last day will involve the student presentations of their work.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 100 of 2152
Water is a finite resource that has increasingly become a major geopolitical issue. In the European context, the Alps hold a strategic position as the ‘water tower of Europe’. Industrialization and urbanization apply significant pressure onto the water ecosystems of alpine valleys. Modifications to the flow of rivers can significantly impact downstream regions, across very extensive areas. Thus, concerted landscape management and urban planning is essential, especially as natural and man-made water systems are affected by climate change. The transect along the Massa river, from the Aletsch glacier to the Rhone valley floor, presents archetypal water management issues and opportunities. The transect is thought of as an autonomous territorial entity, which could be used as an abstract model for future systemic planning.

Fieldwork will be employed as a form of direct engagement with the landscape to document key infrastructure, such as irrigation channels, dams, and drainage systems. It will highlight specific urbanization processes and their associated ecosystem services (water retention, habitat provision, recreation). The objective is to develop a spatial, empirical, and material understanding of the landscape.

Learning objectives include the acquisition of foundational conceptual knowledge related to (1) landscape, planning, and systemic design issues linked to water in the Alps, and (2) broader trans-disciplinary challenges facing water landscapes (climate change, agriculture, energy, urban drainage). Participants will also develop observational and analytical skills alongside the methodological tools of field research from architecture, landscape architecture, archaeology, geology, and surveying. The final outcome will be the production of individual field diaries and a synthetic transect discussed through formal presentation and critique.

Teaching involves 4 expedition days, 1 production day, and 1 final critique day. Doctoral students with relevant expertise will lead field research on expedition days, supplemented by keynote lectures by invited guest experts. Workshops will take place on site and in the seminar room at Villa Cassel. Professors from ETH and EPFL will take part in the final day of critique.

All participants are required to take part in the full 6-day summer school (2 ECTS); mountain hiking is required.

Participation fees cover accommodation including full board at Villa Cassel. Participation fees (ETH/EPFL): CHF 250; Doctoral/master students (external university): CHF 500.

Domain A - Subject-specific Competencies: Concepts and Theories, Techniques and Technologies

Domain B - Method-specific Competencies: Analytical Competencies, Decision-making, Media and Digital Technologies, Problem-solving, Project Management

Domain D - Personal Competencies: Adaptability and Flexibility, Creative Thinking, Critical Thinking, Integrity and Work Ethics, Self-awareness and Self-reflection, Self-direction and Self-management

052-0851-21L Topical Questions in History and Theory of Architecture: Gendering History. Women Travellers

This course will take the form of reading seminars in which we examine women’s travel writings of the 18th and 19th centuries for their commentary on the designed environment. While architectural histories often focus on male-dominated processes of design and production, this seminar sets out to discover architecture’s past as seen through the eyes of female travellers.

Students will gain experience in different forms of reading primary sources (close and distant) and in placing these into an appropriate context. We will explore methodological approaches linking literary analysis to lived architectural experience, expanding the canon of our discipline as we include the view of women into our understanding of 18th and 19th-century architecture. Students will be familiarized with feminist approaches, intersectionality, and marginal historiography.

Primary readings are accompanied by secondary texts on feminist and intersectional methods and embedded into practical exercises. Students will prepare short presentations, engage in reading and sketching exercises, and undertake their own ficto-descriptive writing, expanding their critical writing skills.

This course is aimed at students from the 5th semester onwards. It will require a set amount of reading and sessions will include intensive discussion and practical exercises, so consistent attendance is very important.
same time.

Abstract
Works in the integrated discipline art and architectural history evolve in close connection with projects in design. Textual and creative works are possible. The length of the text or the extent of the creative project will be decided upon individually.
Interested students are asked to develop a (textual or diagrammatic) concept sketch explaining the content and the form.

Objective
We expect that students pursue their examination of the design process independently and in an original manner or that they develop a related theme from the perspective of the history of art and architecture.
The work should be part of the design process and interact with it formally and in regard to content.

Content
Works in the integrated discipline art and architectural history evolve in close connection with projects in design. Textual and creative works are possible. The length of the text or the extent of the creative project will be decided upon individually.
Interested students are asked to develop a (textual or diagrammatic) concept sketch explaining the content and the form.

052-0853-21L
Architecture Beyond the Studio: Reflecting the Social and Cultural Dimensions of Design Proposals
This course is offered until end of spring 2023 semester.

Abstract
"Architecture beyond the studio" is a seminar with the aim to reflect and rethink the formal and spatial aspects of the students' own design projects from the perspective of the Humanities and Social Sciences (HSS). Literature from the HSS is researched individually, related to the design projects in the form of a paper and presented jointly in an exhibition.

Objective
In this seminar students learn to critically reflect their practice as architects from the perspective of the humanities and social sciences (HSS). As object for these reflections serves one of the students' own design projects. This can be an architectural project they have designed at a chair for architecture and design, an architectural practice or independently.

The main focus of the seminar lies on identifying a spatially and architecturally clearly defined aspect within the students' design projects and in reflecting as well as deepening one’s own understanding of this aspect. By writing texts alienating architectural plans and images of their design projects and establishing an individual collection of architectural examples, the students learn to relate their own design practice to research of the HSS as well as the built environment.

At the end of the semester, the students will be able to identify the historical, political sociological and/or economic dimensions of the architectural aspects in their design project as well as to locate these aspects in a contemporary architectural and HSS discourse. Furthermore, they learn to develop an individual conceptual position towards architectural-spatial questions and to communicate them visually and verbally.

Content
Currently, the discipline of architecture is undergoing substantial change. Political and social aspects are again becoming more important within the profession of architecture. In the 1980s and 1990s architects legitimized their designs by recurring to their artistic abilities and individual ingenuity. Today, however, practicing architects cannot escape the social and political responsibility that comes with the design of architectural buildings. An increasing number of public as well as private developers expect architects to include considerations about the social and cultural live of prospective inhabitants in their architectural designs.

Against this background, the seminar “Architecture beyond the Studio” bridges the gap between architectural design and the Humanities and Social Sciences (HSS). Supported by two lecturers – with backgrounds in architecture and the social sciences – the students develop texts in which they critically reflect on spatial aspects in one of their own design projects from the perspective of the HSS.

The aim of this seminar is to enable students to better understand social, political and/or historic dimensions of spatial aspects in their architectural designs. The students’ tasks include reflexive and analytical writing, the presentation and discussion of these reflections, literature research and the production of a final text, in which they summarize their most important findings and define a theoretical position that could guide their future work as designers.

During the semester the seminar will be held as elective course (4 ECTS), including group-work, input by the tutors and individual feedback sessions. Additionally, this seminar contains two one-week-long writing workshops, which will be offered as focus work (6 ECTS) during the semester break. Next to a paper, the outcomes of this seminar will be presented in an exhibition taking place at the beginning of the following semester.

Prerequisites / notice
As the number of participants is limited, interested students are asked to send an A4 page including one image and/or one plan of a previous design project as well as 3-4 sentences describing the aspect of the design project the student wants to investigate and reflect on during this seminar. In order to register for the seminar, students have to send this document to both of the tutors of this course.

Students enrolling in this elective course are required to additionally enroll in the Focus-Work at the gta at the Chair of Prof. Philip Ursprung (063-0852-21). By successfully completing the whole seminar students receive 4 ECTS for the elective course and 6 ECTS for the focus work.

052-0855-21L
Summer School: On the Threshold - Guidebooks and Visions of Rome

Abstract
The summer school explores the mediated territories between the city, its guidebook and the traveller. By adopting a selection of itineraries established by past and present guidebooks, students investigate the thresholds of Rome, between the built city and its tourists.
By the end of the five days every group will have worked on a series of different building elements for each guide, so that by the end of the week about 25 units will be produced. As a collective critical guidebook of Rome, the units designed and written by the students will be presented in a final, one-day public exhibition and lecture on the last day. The instructors will follow the entire workflow, leading the visits, revisiting and checking the design outcomes, and coordinating the production phase.

The general aim of the week is not to present a linear or comprehensive history of the tourist guidebook, but rather to foster and implement a discourse around topics directly informed by the experience of tourism, such as everyday life, heritage, city planning, and artistic production. To this end, students will engage in in-depth analyses of specific historical periods through both scientific-synthetic and artistic-creative methods, and on a more comprehensive understandings around how to read a city, and how to critically employ a travel book. The itineraries are based on guidebooks stretching over a wide timeframe. Hence, by observing the contemporary phenomenon of tourism through a mass-social platform such as TripAdvisor, the programme introduces the topic of the Summer School from a familiar perspective, moving towards more historical and theoretical approaches as the week progresses.

The Summer School is planned for 15 international participants, ideally Master students or early career researchers, coming from different disciplines and curricula, such as architecture, applied arts, art history, literature, philosophy, sociology, photography, tourism studies and media studies. Use of personal laptops/tablets is expected. Students and tutors will stay at the magnificent Villa Maraini, the historical seat of the Istituto Svizzero. The fee will be 300 euro comprehensive of lunch (6 days).

This summer school is addressed to students from the 5th semester upwards.

25.07–01.08.2021 at Istituto Svizzero Rome

Landscape and Urban Studies

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0713-21L</td>
<td>Serendipity: Sourced Waters</td>
<td>W</td>
<td>2 credits</td>
<td>4G</td>
<td>M. Vollmer</td>
</tr>
<tr>
<td>052-0715-21L</td>
<td>Topology: Deep Poly</td>
<td>W</td>
<td>2 credits</td>
<td>2U</td>
<td>M. Kaufmann</td>
</tr>
</tbody>
</table>

Serendipity: Sourced Waters

Objective

A reading list will be provided.

Abstract

The next stop in our investigation of Zurich's water infrastructure is the spring water. Through acoustic and visual field recordings the students find a variety of ways to represent one starting point of the urban system.

Objective

Through the use of multimedia tools, this course will reflect on the contemporary use and perception of landscape. Analogue photography and audio recordings will be the core body of the work.

Content

Attention: The final inscription will take place on the first course date, everybody is treated the same.

After having investigated the lake water catchment and treatment plant Zürich-Lengg and Zurich's water storage chambers the reservoirs we will put our attention with the course «Sourced Waters» on another starting point of the water infrastructure of Zürich: to the spring water source.

Far from Zurich, the glacier shaped landscape allows an unusual access to lower water-carrying layers. After ten years enclosed between gravel and rock, the waters turns up in the wall of an ancient tunnel. After having investigated the lake water catchment and treatment plant Zürich-Lengg and Zurich's water storage chambers the reservoirs we will put our attention with the course «Sourced Waters» on another starting point of the water infrastructure of Zürich: to the spring water source.

Following the fieldwork, students will work on an audiovisual composition in the analogue PhotoLab and in the AudioVisual-Lab at the ETH Hönggerberg.

Prerequisites / notice

Notes: The course will be limited to 16 students. Participation on the following events of the course is mandatory: Introduction, Workshop, Mid- and Final Presentations. The Chair will provide some financial support (costs for production), possible additional costs (transportation, overnight stay, food and drinks) are asked to be paid by the participants. Basic trekking experience and outdoor clothing is required.

Contribution / A project realized individually or as a team for the exhibition.

Landscape and Urban Studies

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 103 of 2152

Lecture notes
A workbook with texts and background information is available for purchase (CHF 20.-). A digital version is also available for free.

Prerequisites / notice
The participation in the course is subject to the following three conditions:
1) The course is limited to 12 students. The restriction follows the time of the inscription according to the first-come-first-served-principle.
2) A two-days trip to Paris is mandatory for all students.
3) The contribution to expenses will be max. 250.- CHF per student. In case of short-notice cancellation, these costs will be charged to the student.

052-0773-21L
Sociology: African Urbanities - A Research Seminar
The number of participants is limited to 40.

Number of participants limited to W 2 credits 2S 2G 4A. Hertzog-Fraser. N. Bathla, C. Schmid

Abstract
Africa is an increasingly urban continent. How is this urbanity being produced? What form is it taking? And how is it being represented?

This research seminar will explore the multiple and varied facets of African urbanity today.

Objective
Participants will be expected to engage actively in:
- hosting and curating discussions with guests
- debating and discussing scholarly texts
- identifying and presenting creative representations of African urbanity

Content
The goals of this course include:
- gaining insights into the variety of urban forms and practices in Africa
- acquiring new skills in hosting and interviewing experts
- strengthening ability to read, present and debate academic texts
- making connections between scholarly findings and artistic productions

This course will unpack the range and variety of contemporary African urbanity. In doing so it will engage with both urban form and practices currently emerging, seeking to capture both the local manifestations as well as their regional, and global relevance. We will challenge the various cliché snapshots of African urbanity, as defined by a lack of infrastructure, a shortage of resources, or the informal slum. Instead, we will seek to produce a more complex portrait of African urbanity today, moving away from the city and its centre as the sole locus of urban activity, to consider the role of extended urbanisation, trans-local networks and the digital arena in shaping new urbanities.

We will welcome a series of scholars and practitioners who are currently redefining what we understand by African urbanity. For example, we will speak with architects, anthropologists, geographers, theorists, ecosemites, historians and curators. What are they observing on the field? And how does this challenge current understandings of urban Africa?

Each session will be structured a main reading and a presentation and discussion with our guest expert. In addition to this, students will be expected to present current representations of the topic under debate, for example from film, art or fiction. Along-side these conversations, we will read our way through a rich syllabus of both scientific articles, book chapters, and reviews. This will be complemented with an exploration of how art, film and fiction has shaped, and continues to shape current representations of urban Africa.
052-0725-21L
ACTION! Beautiful Data - The Filmic Art of Numbers
W 2 credits 2U H. Klumpner, C. E. Papanicolaou

Abstract
In the turf war between quantitative and qualitative methods, we appear as mediators bridging the two sides. How can quantitative and qualitative methods complement each other rather than work in opposition?

We will encourage reflections on this by developing new forms of urban literacy integrating ethnographic research methods with quantitative data, filmmaking and other forms of digital media.

Through a combination of practical exercises in video and audio techniques in parallel with the study of seminal observation-driven texts, this course aims to equip students with the basic tools and core principles to create short but complex portraits of urban space. This semester, the focus falls on the green spaces of Zürich, looking at its trees, green corridors, heat islands, and atmospheric conditions.

This approach will be applied to experiments in the audio/visualization of quantitative data and the contextualization of qualitative data that in turn inform quantitative outputs. Through various audiovisual experiments, students will collectively speculate on ways to marry the various forms of research methods that traditionally do not intersect, creating mosaics of experimental research forms, manifested through film and audio.

Using widely available recording tools and editing software, students will turn their fieldwork into short video or audio works of about 3-5 minutes.

Objective

- Self-direction and Self-management
- Self-awareness and Self-reflection
- Critical Thinking
- Self-direction and Self-management

Content

The course will compose of lectures, practical crash courses in media use and storytelling, and fieldwork sessions. The course will be a laboratory in the creation of short media works that aim to inform the architectural design process, working between the city and the studio in ONA. Students will be expected to complete all required work within the hours that the elective meets, with few requirements outside of the class hours.

Literature

- ‘Cross-Cultural Filmmaking’ (Barbash, Castaing-Taylor)
- ‘Acoustic Territories’ (LaBelle)
- ‘Ethnography: Principles in Practice’ (Hammersley, Atkinson)
- ‘Thick Description: Toward an Interpretative Theory of Culture (Geertz)

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>Techniques and Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>Decision-making</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>Problem-solving</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>Cooperation and Teamwork</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>Self-direction and Self-management</td>
</tr>
</tbody>
</table>

063-0761-21L
Integrated Discipline HS21 in the Field of Landscape and Urban Studies (LUS)
W 3 credits 2A Lecturers

Abstract
Enrolling in this course is only possible on agreement with the lecturer and if you attend a design course (V-IX) at the same time.

Objective
Dependent on the task at hand different themes are investigated. The goal of the integrated discipline is to develop design solutions of a specific topic in landscape architecture, which have to be incorporated into the overall design submission.

Content
Design concepts ranging from architectural objects to urban planning are developed together with the discipline of landscape architecture. Dependent on the task at hand different themes are investigated. The goal of the integrated discipline is to develop design solutions of a specific topic in landscape architecture, which have to be incorporated into the overall design submission.

052-0735-21L
Winter School: Metropolitan Landscapes: Case Study
W 4 credits 9S G. Vogt Berlin-Brandenburg

Abstract
We design models for the future of the Berlin-Brandenburg metropolitan region. We try to think about the future of the city explicitly from the perspective of the landscape. An analysis on two levels (pedestrian perspective: field trips as well as data and plan analyzes: GIS) lays the foundation for the design discussion in the second part of the course.

Objective
The students examine the metropolitan region of Berlin-Brandenburg and develop new approaches and strategies for the future of the urban landscape on different scales. They will familiarize themselves with methods of perception from the perspective of pedestrians, with GIS as an analysis tool, model making as a design method, and landscape architectural plan representation. Current issues with which urban landscapes will be confronted in the future (climate, densification, mobility, etc.) are addressed. The design process is accompanied by workshops, lectures, excursions, reviews, and a workbook.
Based on an analysis of the urban landscape, the students develop models for the future of the Berlin-Brandenburg metropolitan region. The Winter School is organized and carried out together with the University of Applied Sciences Potsdam. Close cooperation between the students of both universities is sought.

The metropolitan region of Berlin-Brandenburg is expected to grow rapidly over the next few decades. Similar to other metropolitan regions in Europe, the background of current issues (land consumption, mobility, urban climate, etc.) the question is of how the development should take place.

As a starting point for the considerations, we suggest a change of perspective. The strategies and models should not be developed based on the city, but rather from the surrounding landscape. At the beginning of the Winter School, there is an intensive preoccupation with the urbanized landscape of the Grosstadt region. Based on an in-depth understanding of the conditions and genesis of undeveloped space, it is important to identify potential and explore room for maneuver. On this basis, the urban landscape is to be further considered holistically.

After this overall general presentation and in order to have a closer look to specific aspects of sustainability, students will work in groups and assess during one or two weeks this specific criteria on one of the case studies presented before. This practical hands on the label will end with a presentation and a discussion where we will highlight differences between the labels.

Different certification schemes, including LEED (American standard), DGNB (German Standard with Swiss adaptation), Label SNBS, MINERGIE-ECO and 2000-Watt-Sites will be presented and explained by experts.

The students work in groups of two (ETH/FHP) and focus on different Perimeters. The work process is structured in four phases:
I: research and analysis,
II: program and design,
III: development and communication,
IV: synthesis.

In the last step, the different results become one "overall picture" and theses derived. The results are then publicly debated.

Communication via exhibitions, newspapers, etc.

The Winter School will take place in Berlin. Between 30.01.22 and 14.02.22.

Further lecturers from the core team: Prof. Dr. Silvia Malcovati, architect (FH Potsdam), Dipl. Ing. Maren Brakebusch, landscape architect (ETH Zurich / FH Potsdam), Prof. Bernd Albers, architect (FH Potsdam), Thomas Kissling, architect (ETH Zurich)

- Knowledge of pore network model and application to two-phase invasion percolation simulation
- Knowledge of experimental determination of moisture transport properties

Applications: building materials, soil science, geoscience

- Liquid transport in cracked materials, flow and transport in deformable porous media

- Application of pore network model in two-phase transport

Handouts, supporting material and exercises are provided online via Moodle.
The main focus of the diploma elective subject is in showing the building process by means of current examples of urban design with ecological, economical and social constraints. Students will learn the holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmental aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and design strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focusing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.

Content

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world
- Synthesis: Transition to sustainable development

Lecture notes

All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.

Literature

A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.

052-0615-00L Building Process: Realization (HS) W 2 credits 2G M. Eglin

The course is limited to 40 students. Enrollment is only possible in agreement with the lecturer (eglin@arch.ethz.ch).

This course (ends with -00L-) can only be passed once! Please check this before signing up.

Abstract

Visits to construction sites and interdisciplinary lectures on the topics of communication, complexity, landscape and investment are the main focus of the workshop. In addition, the term process is to be depicted by means of visits to manufacturers of construction components.

Objective

The main focus of the diploma elective subject is in showing the building process by means of current examples of urban design with architectural relevance. The Chair views itself as the facilitator between those involved in construction and students. Active participation is a prerequisite.

Content

The main focus of the diploma elective subject is in showing the building process by means of current examples of urban design with architectural relevance. Visits to construction sites and interdisciplinary lectures on the topics of communication, complexity, landscape and investment are the main focus of the workshop. In addition, the term process is to be depicted by means of visits to manufacturers of construction components. The Chair views itself as the facilitator between those involved in construction and students. Active participation is a prerequisite.

Lecture notes

This course is offered in cooperation with the chairs of Gramazio/Kohler and Delbeke. It is offered the last time in 2021.

Prerequisites / notice

This course provides an introduction to the notion of sustainable development when applied to our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmental aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and design strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focusing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.

Content

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world
- Synthesis: Transition to sustainable development

Lecture notes

All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.

Literature

A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.

052-0625-00L Historical and Systematic Aspects of Acoustic Design in Architecture (HS) W 2 credits 2G J. Strauss

The course is offered in cooperation with the chairs of Gramazio/Kohler and Delbeke. It is offered the last time in 2021.

This course is limited to 40 students. Enrollment is only possible in agreement with the lecturer (eglin@arch.ethz.ch).

This course (ends with -00L-) can only be passed once! Please check this before signing up.

Abstract

Visits to construction sites and interdisciplinary lectures on the topics of communication, complexity, landscape and investment are the main focus of the workshop. In addition, the term process is to be depicted by means of visits to manufacturers of construction components.

Objective

The main focus of the diploma elective subject is in showing the building process by means of current examples of urban design with architectural relevance. The Chair views itself as the facilitator between those involved in construction and students. Active participation is a prerequisite.

Content

The main focus of the diploma elective subject is in showing the building process by means of current examples of urban design with architectural relevance. Visits to construction sites and interdisciplinary lectures on the topics of communication, complexity, landscape and investment are the main focus of the workshop. In addition, the term process is to be depicted by means of visits to manufacturers of construction components. The Chair views itself as the facilitator between those involved in construction and students. Active participation is a prerequisite.

Lecture notes

This course is offered in cooperation with the chairs of Gramazio/Kohler and Delbeke. It is offered the last time in 2021.

Prerequisites / notice

This course is limited to 40 students. Enrollment is only possible in agreement with the lecturer (eglin@arch.ethz.ch).

This course (ends with -00L-) can only be passed once! Please check this before signing up.

Abstract

Visits to construction sites and interdisciplinary lectures on the topics of communication, complexity, landscape and investment are the main focus of the workshop. In addition, the term process is to be depicted by means of visits to manufacturers of construction components.

Objective

The main focus of the diploma elective subject is in showing the building process by means of current examples of urban design with architectural relevance. The Chair views itself as the facilitator between those involved in construction and students. Active participation is a prerequisite.

Content

The main focus of the diploma elective subject is in showing the building process by means of current examples of urban design with architectural relevance. Visits to construction sites and interdisciplinary lectures on the topics of communication, complexity, landscape and investment are the main focus of the workshop. In addition, the term process is to be depicted by means of visits to manufacturers of construction components. The Chair views itself as the facilitator between those involved in construction and students. Active participation is a prerequisite.

Lecture notes

This course is offered in cooperation with the chairs of Gramazio/Kohler and Delbeke. It is offered the last time in 2021.

Prerequisites / notice

This course is limited to 40 students. Enrollment is only possible in agreement with the lecturer (eglin@arch.ethz.ch).

This course (ends with -00L-) can only be passed once! Please check this before signing up.
Abstract
Selected texts from the history and theory of architecture are discussed. The focus is on the design principles of exemplary buildings for speech and music and their historical and systematic significance. A visit to the music studio will give you the opportunity to have your own listening experience and emphasize the importance of spatial listening for the perception of architecture.

Objective
The examination of the acoustic architectural design is intended to make the design potential of acoustics clear. The sensitization for the everyday phenomena of the acoustic impression of the room as well as the orientation and localization of sound sources in the room play a prominent role. The knowledge derived from history should provide information about the success and failure of different concepts for buildings for music and speech.

Content
The starting point for the historical consideration of the acoustic architectural design is the imagination of the harmony of the spheres: the Pythagorean-Babylonian cosmos is well-formed by proportions of whole numbers and elementary geometric figures. Mediated by Plato, Aristotle and the Stoa, the four Pythagorean mathematica (astronomy; geometry; music theory; algebra) appear as a medieval training course (quadrivium) in monastery schools and thus also shape Leon Battista Alberti's idea of well-formedness. Does Vitruvius share this Pythagorean world of ideas?

Referring to Aristoxenus, Vitruvius uses a theory of harmony for the dimensioning of sound vases in theaters, which makes the audible criterion and thus stands in opposition to the ideality of purely mathematical pitch division through the proportions of whole numbers. Connected with this turn towards the perceptible of the inner world, Vitruvius gives us a whole series of examples of acoustic design of architecture and uses the terms sound wave, sound beam, reflection, resonance and sound coloration. The criticism of the theories of proportion, as produced in large numbers by Vitruvianism of the Renaissance, is essentially done by Claude Perrault, whose work also includes a contribution on sound and noises (Du bruit) and tries to transcend the music theory of Pythagorean origin.

The baroque author Athanasius Kircher dealt with the formation of analogies between the eye and the ear in his work "New Hall and Thon Art" and transferred the geometric representation of light rays by Galileo Galilei to sound rays. Based on the echo phenomenon, he succeeded in describing sound reflections, bundling and scattering, which today form the basis of room acoustic simulation programs.

The collaboration between Gottfried Semper, Otto Bückwald and Richard Wagner on the development of a festival theater for Wagner's musical dramas has become an example of the acoustic design of architecture. An extraordinary performance space was created in Bayreuth, the diffuse orchestral sound of which contrasts sharply with the distinctness and clarity of the voices. Neither the architects nor Wagner had any room acoustic parameters available for planning; but after the final visual and acoustic votes, the composer and impresario was satisfied.

It was only with the experiments of Wallace Clement Sabine, published in the "Collected Papers on Acoustics", that the reverberation time parameter was formed and used for the new "Boston Symphony Hall" to be built. Sabine has visited and listened to European concert halls in order to find an optimal space for symphonic music.

In addition to the structures for music and speech, the "soundscape" of cities and landscapes has recently established itself as a theme of sound ecology. As a follow-up to Murray Schafer's "Tuning of the world", a number of studies and designs have been carried out that are intended to enable acoustic comfort in all architecturally designed rooms.

Up until now, architecture has included building and room acoustics for special structures, but today it is being expanded significantly through electroacoustics. Today, buildings can be simulated and auralized from a 3D plan, not only through ambient and elevator sounds, but also through sound systems that create spatial impression, such as in the cinema. These auxiliary tools have already become indispensable for the acoustic planning of rooms.

Prerequisites / notice
ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.
ZoomLink: https://ethz.zoom.us/j/66588100789

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Module</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0627-21L</td>
<td>CAAD Theory: Digital Epic - Creative Writing for Architects</td>
<td>W</td>
<td>2</td>
<td>G</td>
<td>H. Palmer, L. Hovestadt</td>
</tr>
<tr>
<td>052-0629-21L</td>
<td>CAAD Practice: Does not take place this semester.</td>
<td>W</td>
<td>2</td>
<td>G</td>
<td>L. Hovestadt</td>
</tr>
<tr>
<td>063-0661-21L</td>
<td>Integrated Discipline HS21 in the Field of Technology in Architecture (ITA)</td>
<td>W</td>
<td>3</td>
<td>A</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>
Enrolling in this course is only possible on agreement with
the lecturer and if you attend a design course (V-IX) at the
same time.

Abstract
This part of the curriculum addresses design work in different areas of architecture and urbanism and integrates the knowledge acquired in
previous years. It involves the active participation of specialists from the chairs of the institute ITA.

Objective
Understanding the importance of the ITA disciplines for architectural design and integration of structural thinking into the design process.

Content
This part of the curriculum addresses design work in different areas of architecture and urbanism and integrates the knowledge acquired in
previous years. It involves the active participation of specialists from the chairs of the institute ITA.

052-0639-00L Climate Responsive Architecture with Hive

Abstract
This Online course provides an introduction to climate-responsive design using the Hive tool and how to apply it in early building design
stages. Hive allows architecture and building science students to understand the relation between architectural design, climate, comfort
and energy. Hive is a plugin for the 3D modeling environment Rhino and its visual programming interface Grasshopper.

Objective
• Recall general principles of climate responsive design and examples of it.
• Utilize 3D building geometries to conduct simplified energy demand and supply simulations.
• Observe relevant physical principles and interactions between climate, energy and geometry.
• Implement passive and active concepts for Climate Responsive Design.
• Apply Hive for building design analysis and integrate it into own designs or in design courses.
• Identify and harness synergies and trade-offs between climate, energy and architectural design aspects.

Content
The course can be frequented individually, or as a prerequisite for other courses such as the master course Climate and Energy Systems 3 or architectural design studios.

Modules:
1. Course overview.
2. Introduction to climate responsive design.
3. Introduction to Rhino, Grasshopper and HIVE.
4. Early solar analyses.
7. Real-world Applications and Examples.

This is a blended-learning self-paced ONLINE COURSE that can be started at any time.

Prerequisites / notice
A working Rhino 6 or 7 license is necessary.

Historic Building Archaeology and Conservation

Number	Title	Type	ECTS	Hours	Lecturers
063-0961-21L | Integrated Discipline HS21 in the Field Historic Building Research and Conservation (IDB) | W | 3 credits | 2A | Lecturers

Abstract
The formal framework needs to be discussed with the staff members.

Objective
A study in building research and preservation of building heritage with a clear topic.

052-0913-21L Preservation: Communicate & Exhibit

Number of participants limited to 40.

Abstract
This elective course discusses current as well as historical practices and theories of preservation. Under the title “Communicate & Exhibit”, the focus in the fall semester of 2021 is on forward-looking positions on “Building in the Existing Building Stock” and how these are communicated to the public by preservation experts, architects, and curators.

Objective
This course provides students with insight into the most important theories and practices of historic preservation and ways of conveying and exhibiting them. Students can deepen their understanding of the subject and discuss issues in a group by examining a topic of their own choice.

Content
Current strategies of "building in the existing fabric" are backed by various historical theories and practices of preservation. But which architects follow - explicitly or implicitly - which theory? How do these points of view evolve through the activities of different actors in their preservation and building activities, what forms of sufficiency have been and are being practiced? What "first works" are worth showing that introduce significant architectural oeuvres as building within the existing built fabric?
In the fall semester of 2021, we will explore influential approaches to preservation and examine narratives associated with them, such as resource allocation, change of use, and "modernisation". We will also analyse, discuss, and question their public communication. The insights gained will flow into the development of curatorial concepts, which will be applied and tested on the basis of a specific project site.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

052-0911-21L Repair: Making Things Better

ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.
ZoomLink: https://ethz.zoom.us/j/66588100789

W 2 credits 2S S. Langenberg

Abstract
The lifespan of objects is decreasing not only in product design but also in architecture due to complex constructions, use of materials that are difficult to dismantle, and industrial manufacturing processes. Repairability is becoming less of a concern - replacement seems to be the norm. We need to rethink the way we build, starting already during the planning phase.

Objective
Traditional topics of preservation are combined with implementations of contemporary repair and FAB initiatives to raise awareness for a sustainable thinking and action. Students will learn both traditional and digital methods as well as the basic constructive and material criteria for repair. The objective is not only the hands-on repair of an object but especially the theoretical transfer to architecture.

Content
The elective course will discuss and examine the reparability of products and constructions. Based on a broken object of their choice, each student will first identify its defects and the reasons. Subsequently, they will develop a repair concept and carry it out under expert guidance or with the aid of digital fabrication processes. The objective is not only to restore the object to a working condition, but also to improve it through repair - if and where possible.
Literature

Abel van, Bas, Roel Klaassen, Lucas Evers und Peter Troxler (Hg.), *Open Design Now*, Amsterdam 2011.

Baier, Andrea u. a. (*Hg.*), *Die Welt reparieren*, Bielefeld 2016.

Baier, Andrea u. a., *Stadt der Commonisten*, Bielefeld 2013.

Gramazio, Fabio, Matthias Kohler und Silke Langenberg (Hg.), *Fabricate: Negotiating Design and Making*, Zürich 2014.

Hassler, Uta (Hg.), *Langfriststabilität: Beiträge zur langfristigen Dynamik der gebauten Umwelt*, Zürich 2011.

Krebs, Stefan u. a., *Kulturen des Reparierens*, Bielefeld 2018.

Langenberg, Silke (Hg.), *Reparatur. Anstiftung zum Denken und Machen*, Berlin 2018.

Schmidt, Hartwig (Hg.), *Das Konzept Reparatur. Ideal und Wirklichkeit* (ICOMOS Hefte des Deutschen Nationalkomitees XXXII), München 2000.

Thun-Hohenstein, Christoph (Hg.), *handWERK. Tradiertes Können in der digitalen Welt*, Wien 2016.

Walter-Herrmann, Julia und Corinne Büching (Hg.), *FabLab: Of Machines, Makers and Inventors*, Bielefeld 2014.

Prerequisites / notice

ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.

ZoomLink: https://ethz.zoom.us/j/66588100789

Prerequisites / notice

An Example-Based Introduction into Building Archaeology

This course is offered until end of HS22.

Abstract

An introduction to the scope, methodology, theoretical and practical developments of Building Archaeology (historische Bauforschung) based on a large-scale ongoing project conducted by the institute IDB under the project lead of the lecturer himself.

Objective

Introduce students to the current methodology and scope of Building Archaeology.

Content

This lecture will introduce students to the scope and methodology of Building Archaeology (historische Bauforschung). It will be given by the project leader of the ongoing project "Building history of the Basilica of St Anthony, Padua". Based on that project as a case study, but including other examples, the lecture will show how to formulate hypotheses in a BA project, how to develop a strategy of investigation, how to proceed methodologically and technologically. The course will cover surveying methods like laser scanning and 3D modeling (e.g. 3D printing, BIM for heritage), terrestrial and drone-based photogrammetry (structure from motion) and thermal imaging, as well as dating techniques like radiocarbon (14C), dendrochronology, mensiochronology (dating by statistical evaluation of brick sizes) and archival research. It will present the main project in parallel to the ongoing investigations, giving the students a unique opportunity to participate in the strategy, progress and preliminary results of an actual research project. Furthermore, the stage will be opened for an outlook on other projects, hence providing a broad overview of the field of BA and its recent developments. As the monument considered contains important historical structures from the 13th to the 18th centuries, this lecture will also offer a practical insight into Construction History.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

Focus Works

see Architecture MSc "Focus Work"

Seminar Weeks

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>051-0911-21L</td>
<td>Seminar Week Autumn Semester 2021</td>
<td>W</td>
<td>2 credits</td>
<td>3A</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Abstract
The seminar week is obligatory for students of all semesters. There are many and varied study contents.

Objective
The students will be enabled to discuss narrowly formulated factual questions in small groups and in direct contact with the professors.

GESS Science in Perspective

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-ARCH.

Language Courses

see GESS Science in Perspective: Language Courses ETH/UZH

Architecture Bachelor - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Core Courses

Field of History and Theory of Architecture

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>063-0801-00L</td>
<td>History of Art and Architecture VII:</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Does not take place this semester.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract: Imagining History and Inventing Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This class studies Antiquity and the Middle Ages through their reception since the Renaissance. We will investigate the role of history for architects then and now by analyzing how architecture has been defined in relationship to the past. The course includes short critical reading and writing assignments (in coordination with studio deadlines).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective: Deepen basic knowledge, improve ability to critically analyze architectural history texts, develop humanities-based reasoning and argument skills, especially persuasive writing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content: In the Renaissance, the practice of architecture fundamentally transformed into the design-based discipline it is now largely assumed to be. Both then and especially in nineteenth- and twentieth-century architectural history, this change was understood in opposition to "good" ancient and "bad" medieval models. This course investigates Antiquity and the Middle Ages as variously fashioned in the mind of the architect and the architectural historian. How does our understanding of these periods inform our thinking about the use of history for the contemporary architect?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature: Scans of the weekly readings will be made available on the course website.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>063-0803-00L</td>
<td>History and Theory in Architecture IX (Ursprung)</td>
<td>W</td>
<td>1</td>
<td>1V</td>
<td>P. Ursprung</td>
</tr>
<tr>
<td></td>
<td>This core course (ending with «00L») can only be passed once! Please check before signing up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract: Out of the Crisis: Architecture in Times of Disease:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Each lecture will be structured by an input by the professor and guests and followed by a discussion with all participants.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective: Awareness of the role of the immediate present on architectural discourse. Knowledge of contemporary practices and discourses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content: Out of the Crisis: Architecture in Times of Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Which lessons can be drawn for architecture from the pandemic?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Will there be a back to normal?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How did concepts of space and time change?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How can architecture education react?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Out of the Crisis: Architecture in Times of Disease:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The lecture will pose questions rather than offer answers. Each lecture will be structured by an input by the professor and guests and followed by a discussion with all participants.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>063-0803-01L</td>
<td>History and Theory in Architecture IX (Avermaete)</td>
<td>W</td>
<td>1</td>
<td>1V</td>
<td>T. Avermaete, H. Teerds</td>
</tr>
<tr>
<td></td>
<td>This core course (ends with «01L») can only be passed once! Please check this before signing up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract: This survey course offers an introduction to urban theory for students of architecture and urban design, by exploring the past and current discourses on cities and urban development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This course aims to offer a survey of the history and current state of urban theory for students of urban design and architecture. Weekly, one-hour lectures address one particular topic at a time (e.g., politics, public space, capital). In each lecture, this theme is investigated through three case-studies (either of particular cities or seminal contributions by theorists or designers) that highlight crucial moments in the history and developments of cities. At the same time, the case studies will be structured so as to bridge between urban theories and concrete urban situations, design reflections and political ambitions. This will help convey to students the historical pedigree of current discourses on cities, whether simultaneously gain insight the role of designers in respect to the chosen topic. Students will prepare the meetings by reading fragments from core texts on the foreground.

Objective

It is often said that we live in an 'urban age': cities are the most common habitat for the inhabitants of the world, today. Moreover, while more than half the global population lives in cities according to the reports of the UN, it is expected that within the next few decades this amount will increase to two-thirds. This 'urban' condition, however, cannot be generalized. Within the term 'city' a broad range of different urban conditions are taken together: from metropolises to suburban neighborhoods, and from shrinking (old industrial) cities to the new cities that prosper under the conditions of globalization. Nevertheless, because of the increase of the urbanized environments, the development of cities forms the topic of discussion among a wide range of people. Urban developments do concern politicians, economists, anthropologists, philosophers, citizens and activists, developers and designers. In turn, the urban realm has provoked theorists, citizens, politicians, artists and designers to think and write about its form and functioning, appearance and structure. The discourse regarding the current growth of cities has a long pedigree in history, going back to the establishment of Greek and Roman city-states. In turn, urban planners have made valuable contributions to these discussions, in writings and in actual urban design projects and proposals.

This course aims to offer an introduction to urban theory for students of architecture and urban design, by exploring the past and current discourses on cities and urban development. By investigating a range of topics, from politics to poverty, and from modernization to commodification, it aims to show how urban and architectural design are related to theory. The aim of the course is to challenge the question how architects and urban designers can have an influence on urban development. With this question, also students are urged to reflect upon their own position regarding architectural interventions in the urban fabric.

Content

Between Cosmos and Chaos: Gottfried Semper's Theory of Architecture

This reading class will closely examine key texts that discuss the phenomenon of a building's 'character' from the 1700s up until today. The reading class in which the architectural category of 'caractère' or character - a key concept in the 18th century but of great relevance until today - will be examined by a close reading of several key texts, from the late 1700s up until today. Independent reading and vivid discussion in class make up this course's character.

Literature

For this course, each week students will read fragments from key readings on the topics addressed. These readings will be made available via the website of the course.

Taught competencies

 Domain A - Subject-specific Competencies

- Concepts and Theories

 Domain B - Method-specific Competencies

- Analytical Competencies

 Domain C - Social Competencies

- Communication
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

 Domain D - Personal Competencies

- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection

Prerequisites / notice

Please note, this is a core course and it can only be passed once during the curriculum. Please check before enrolling!

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 114 of 2152
063-0901-00L Construction History: The Construction Site and Its Technology

This core course (ends with «00L») can only be passed once! Please check this before signing up.

Abstract
History of the construction site and its technology

Objective
Introduction to Construction History and the so-called "building archeology": ability to perform a "close reading" of historic built fabric, based on an in-depth knowledge of historic production techniques, both in the workshop and on the construction site itself.

Content
This lecture series deals with the history of the production of buildings. This history draws heavily on pictorial and archival sources, but the lecture will always establish the link to traces observable on site. In that sense, the lecture is an introduction to the wide topic of "building archeology". Among others, we will cover the following topics:

- construction materials, tools and tooling of construction elements
- material flow and economic boundary conditions of the construction site
- construction site technology and construction machinery (scaffolding, cranes, etc.)
- historic methods of architectural planning
- history of building production

Lecture notes
PDFs of the lecture slides will be provided before the lecture. Furthermore, the audience will be granted access to recent journal articles and book chapters providing in-depth insight into the topics covered by the lecture.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: not assessed

063-0903-00L Case Studies Construction History and Building Preservation (HS)

The number of participants is limited to 40.

This core course (ends with «00L») can only be passed once! Please check this before signing up.

Each enrolment requires an uninterrupted visit throughout the semester.
Cancellation (incl. deletion of enrolment) is permitted until 26.9.21.

Abstract
Acquiring in-depth knowledge of construction history and building archeology by means of detailed study of selected historic monuments.

Objective
The participants will gain in-depth knowledge on the methodology of building archeology by means of the documentation and interpretation of real historic structures in on-site studies.

Content
We study historic constructions in German-speaking Switzerland (individual small groups, objects within 2 hrs public transport reach from ETH Hoenggerberg). Each group will be assigned an individual tutor (PhD student) who will be present on-site, on individual appointment.

We will survey, document and analyze a historic construction, with particular attention to production traces, constructive detail and load-carrying system.

We will start with introductory classroom lectures and on-site teaching during the first third of the semester. This will be followed by individual investigations on site. The progress will be pinpointed in three critiques:
1) on site, with individual tutor
2) at institute, with professor and institute members
3) final delivery, at institute, with professor and all institute members

The detailed schedule of the case studies can be found here:

Each enrolment obliges the student to visit all compulsory dates during the entire semester without interruption.

Lecture notes
Detailed instructions on on-site investigations, as well as manuscripts on the background, will be provided. It is mandatory to read them in due time!

Literature
Will be announced during the introductory lectures
Prerequisites / notice

Elementary knowledge of architectural history and construction.

Semester program:
25.9.20: On site introduction, Rümlang (Glattbrücke).
Courses in HIL E 7 until end of October.
Group work on the object or individual work (at home).

Intermediate crits and final crits at the IDB (HIT, H Level). Details will follow in due time.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Future Monuments

This core course (ends with «00L») can only be passed once! Please check this before signing up.
ITA Pool Introduction to courses within the institute ITA:
3.9.21, 10-11h, HIB Open Space.

W 2 credits 2V S. Langenberg

Abstract
Heritage conservation is dedicated to the preservation and protection of historical buildings. In this lecture, students will learn about the theoretical positions on historic monuments and the basics of preservation in practice.

Objective
In addition to active participation in the discussions, students will be asked to engage with a topic or object of their own choice in order to be able to develop and comprehensibly justify their own positions within the context of preservation. Our goal here is to foster students’ communication skills and the culture of discussion.

Content
The responsible reconstruction and further development of the existing building stock requires knowledge and an understanding of the theoretical positions conservation and the basics of preservation in practice. This core conveys this knowledge to students with the help of selected writings and discusses them in the context of various guest lectures. In addition to dealing with historical buildings, the course is also dedicated to younger (and very young) objects and inventories - for in addition to the preservation of already listed objects, the selection and inventorisation of future protected objects is also one of the core tasks of heritage conservation.
Monographs and edited volumes:

Dehio, Georg, Kunsthistorische Aufsätze. München 1914

Eig, Kommission für Denkmalpflege (Hg.), Leitsätze zur Denkmalpflege in der Schweiz, Zürich 2007.

Franz, Birgit, Gerhard Vinken and Johanna Blokker (Hg.), Denkmal - Werte - Bewertung, Denkmalpflege im Spannungsfeld von Fachinstitution und bürgerschaftlichem Engagement, Holzminden 2013 (Veröffentlichung des Arbeitskreises Theorie und Lehre der Denkmalpflege e.V., Band 23).

Huse, Norbert (Hg.), Denkmalpflege: Deutsche Texte aus drei Jahrhunderten, München 1984.

ICOMOS Deutschland/ Österreich/ Luxemburg/ Schweiz (Hg.), Monumenta I: Internationale Grundsätze und Richtlinien der Denkmalpflege, Stuttgart 2012.

Petzet, Michael and Gert Mader (Hg.), Praktische Denkmalpflege, Stuttgart/ Berlin/ Köln 1993.

Schmidt, Leo (Hg.), Einführung in die Denkmalpflege, Darmstadt 2008.

Wohlleben, Marion and Georg Mörsch, Georg Dehio and Alois Riegl - Konservieren, nicht restaurieren. Streitschriften zur Denkmalpflege um 1900, Basel 1988 (Bauwelt Fundamente 80)

Hassler, Uta, Langfriststabilität. Beiträge zur langfristigen Dynamik der gebauten Umwelt, Zürich 2011

Fundamentals and legal texts:

Stadt Zürich Hochbaudepartement, Amt für Städtebau, Denkmalpflege und Archäologie (Hg.), Schulhäuser der Stadt Zürich. Spezialinventar Archäologie und Denkmalpflege, September 2008

Denkmalpflegegesetzgebung in den Heimatkantonen der Kursteilnehmenden.

Die Kunstdenkmäler der Schweiz

INSA – Inventare der Heimatkantone der Teilnehmenden
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Media and Digital Technologies not assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies
- Communication assessed
- Cooperation and Teamwork assessed
- Customer Orientation not assessed
- Leadership and Responsibility assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity assessed
- Negotiation assessed

Domain D - Personal Competencies
- Adaptability and Flexibility not assessed
- Creative Thinking not assessed
- Critical Thinking assessed
- Integrity and Work Ethics assessed
- Self-awareness and Self-reflection assessed
- Self-direction and Self-management not assessed

Field of Landscape Architecture and Urban Studies

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>063-0701-00L</td>
<td>Methods of Urban Research</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>C. Schmid, I. Apostol, N. Bathla, L. Howe, C. Ting</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course conveys an introduction into methods of urban research in social sciences through lectures and accompanying exercises. It treats the basic principles of scientific research, literature research, different forms of participant observation, qualitative interviews (expert interviews and ethnographic interviews), and the analysis of urban qualities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course aims at enabling students of architecture to use sociological analysis as basis for concrete projects in architecture and urban design. It is based on a specific set of methods that is applied in design studios (integrated disciplines) as well as in the master thesis (supplementary discipline sociology).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

063-0703-00L	Architecture of Territory: Territorial Design in Histories, Theories and Projects	W	2 credits	2V	M. Topalovic
Abstract	This lecture series sets up an agenda for widening the disciplinary field of architecture and urbanism from their focus on the city, or the urban in the narrow sense, to wider territorial scales, which correspond to the increasing scales of contemporary urbanisation. It discusses the concepts of territory and urbanisation, and their implications for the work of architects and urbanists.				
Objective	The course will enable students to critically discuss concepts of territory and urbanisation. It will invite students to revisit the history of architects’ work engaging with the problematic of urbanising territories and territorial organisation. The goal is to motivate and equip students to engage with territory in the present day and age, by setting out our contemporary urban agenda. The lectures are animated by a series of visual and conceptual exercises, usually on A4 sheets of paper. All original student contributions will be collected and bound together, creating a unique book-object. Some of the exercises are graded and count as proof of completion.				
Within the theme My Species, the four guest speakers engaged in fields ranging from art and landscape representation to bioethics and environmental philosophy, will approach territory through the notions such as multispecies, coexistence, and diversity. With a more-than-human perspective on the territory, the guest speakers will elaborate their take on “telling horrible stories in beautiful ways,” debate “the dignity of plants,” expound upon “mankind’s fascination to better the world,” and confer “the non-human turn” and what is to come after.

23. 09. 2021
On Territory
MILICA TOPALOVIĆ

30. 09. 2021
Architecture and Urbanisation
MILICA TOPALOVIĆ

07. 10. 2021
Methods in Territorial Research and Design
MILICA TOPALOVIĆ

14. 10. 2021
Multispecies Worldbuilding
Guest lecture by FEIFEI ZHOU

21. 10. 2021
Better Nature
Guest lecture by ALEXANDRA DAISY GINSBERG

04. 11. 2021
Planetary Urbanisation: Hinterland
MILICA TOPALOVIĆ

11. 11. 2021
Tomatoes Talk, Birch Trees Learn – Do Plants Have Dignity?
Guest lecture by FLORIANNE KOECHLIN

18. 11. 2021
Disappearance of the Countryside
MILICA TOPALOVIĆ

25. 11. 2021
What is Soul? On the Idea of Species Being
Guest lecture by OXANA TIMOFEEVA

09. 12. 2021
Our Common Territories: An Outlook
MILICA TOPALOVIĆ

The lectures will take place on Thursdays, 10.00-12:00, at ONA Fokushalle E7 and on ZOOM.

Lecturer:
Prof. Milica Topalovic

Team:
Prof. Milica Topalovic, Nazli Tümerdem, Vesna Jovanović

Contact:
Nazli Tümerdem
tuemerdem@arch.ethz.ch

Our website:
https://topalovic.arch.ethz.ch

Domain A - Subject-specific Competencies
Concepts and Theories assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed

Domain C - Social Competencies
Communication assessed
Self-presentation and Social Influence assessed

Domain D - Personal Competencies
Creative Thinking assessed
Critical Thinking assessed
Self-awareness and Self-reflection assessed

Field of Technology in Architecture

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>063-0605-00L</td>
<td>Computational Structural Design I</td>
<td>W</td>
<td>3 credits</td>
<td>3G</td>
<td>P. Block, L. Enrique Monzo, J. Lee</td>
</tr>
</tbody>
</table>

Number of participants limited to 60.
To participate in this course it is recommended that the student has previously taken the courses Tragwerksentwurf I-IV.
This core course ending with «00L» can only be passed once! Please check before signing up.

ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h.
ONLINE.
ZoomLink: https://ethz.zoom.us/j/66588100789

Abstract
Determination of the internal forces and description of the behaviour of load-bearing structures with the help of graphic statics. Design of details and simple dimensioning of these structures. Discussion of reference structures, illustration of the interaction of the structure and the architectural design. Application of all that in an own design.
Objective
Understanding the relationship between internal forces and the design of load-bearing systems and their connection details. Creative integration of what has been learned into an open design task.

Content
Determination of the internal forces and description of the behaviour of load-bearing structures with the help of graphic statics. Design of details and simple dimensioning of these structures. Discussion of reference structures, illustration of the interaction of the structure and the architectural design. Application of all that in an own design.

Lecture notes
on eQuilibrium
"Skript Tragwerkentwurf I/II/III/IV"
http://www.block.arch.ethz.ch/eq/course/4?lang=en

Printed versions can be bought at the chair of Structural Design Prof. Schwartz.

Literature
"Faustformel Tragwerkentwurf"
(Philippe Block, Christoph Gengang, Stefan Peters, DVA Deutsche Verlags-Anstalt 2013, ISBN: 978-3-421-03904-0)

Other Learning Material:
"Form and Forces: Designing Efficient, Expressive Structures"

"The art of structures, Introduction to the functioning of structures in architecture"

Prerequisites
ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.
ZoomLink: https://ethz.zoom.us/j/66588100789

Teaching Languages: English and German.

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Teaching Language(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>063-0607-00L</td>
<td>Energy- and Climate Systems III</td>
<td>2 credits, 2V</td>
<td>English and German</td>
</tr>
</tbody>
</table>

Objective
The course ‘Energy- and Climate Systems III’ introduces computational design and analysis methods and tools for climate responsive architectural design. Exercises throughout the semester allow applying new concepts learnt in exemplary architectural design tasks.

Content
1. Concepts of climate responsive design
2. Computational analysis methods
 - Climate and site analysis
 - Daylight, airflow and energy simulations
 - Energy supply systems optimization models
3. Computational methods for performance driven design
 - Parametric design
 - Sensitivity and uncertainty analysis
 - Single and multi-objective optimization
4. Exercises and walkthroughs
5. Invited expert speakers and panel discussion

Prerequisites
ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.
ZoomLink: https://ethz.zoom.us/j/66588100789

Recommendations:
MSc Arch: Successful participation in the course ‘Energie- und Klimasysteme I + II’.
MSc MIBS / Eng: Successful participation in the course ‘Bauwerksysteme’.

All students need to be capable of working with ‘Rhino / Grashopper’ modelling software on ‘Windows’ or willing to acquire the necessary skills before or during the course and are recommended to have completed the online blended learning course ‘Climate responsive architecture with Hive’.

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Teaching Language(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-8007-00L</td>
<td>Urban Physics</td>
<td>3 credits, 3G</td>
<td>English and German</td>
</tr>
</tbody>
</table>

Objective
Urban physics: wind, wind comfort, pollutant dispersion, natural ventilation, driving rain, heat islands, climate change and weather conditions, urban acoustics and energy use in the urban context.

Content
- Basic knowledge of the global climate and the local microclimate around buildings
- Impact of urban environment on wind, ventilation, rain, pollutants, acoustics and energy, and their relation to comfort, durability, air quality and energy demand
- Application of urban physics concepts in urban design
- Climate Change. The Global Picture: global energy balance, global climate models, the IPCC process. Towards regional climate scenarios: role of spatial resolution, overview of approaches, hydrostatic RCMS, cloud-resolving RCMS
- Urban micro climate and comfort: urban heat island effect, wind flow and radiation in the built environment, convective heat transport modelling, heat balance and ventilation of urban spaces - impact of morphology, outdoor wind comfort, outdoor thermal comfort,
- Urban energy and urban design. Energy performance of building quarters and cities, decentralized urban energy production and storage technologies, district heating networks, optimization of energy consumption at district level, effect of the micro climate, urban heat islands, and climate change on the energy performance of buildings and building blocks.
- Wind driving rain (WDR): WDR phenomena, WDR experimental and modeling, wind blocking effect, applications and moisture durability
- Pollutant dispersion, pollutant cycle: emission, transport and deposition, air quality
- Urban acoustics, noise propagation through the urban environment, meteorological effects, urban acoustic modeling, noise reduction measures, urban vegetation
The course lectures and material are provided online via Moodle.

For MIBS Master students 151-8011-00L Building Physics Theory & Application is a pre-requisite for this course or instructor permission. For others no prior knowledge is required.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>063-0553-21L</td>
<td>Subject Semester HS21 in the Field of History and Theory in Architecture (gta, Prof. Ursprung): Allocation only after consultation with the professor (meetings as required and after consultation with the chair).</td>
<td>W</td>
<td>14</td>
<td>29A</td>
<td>P. Ursprung, T. Avermaete,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M. Delbeke</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>063-0601-00L</td>
<td>Building Process: Economy</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>H. Reichel</td>
</tr>
<tr>
<td></td>
<td>ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE. ZoomLink: https://ethz.zoom.us/j/66588100789</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This core course (ends with «00L») can only be passed once! Please check this before signing up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The demonstration of economic considerations within the design and construction process of buildings is the main focus of the diploma elective subject.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To grasp the coherences of costs, income and income return.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The demonstration of economic considerations within the design and construction process of buildings is the main focus of the diploma elective subject. As long as determining basic principles, case studies play an important role in teaching. The economic factors of building construction are examined and the specific decision process is simulated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The case studies in the lectures as well as the processing of individual topics within the framework of elective work permit and require students active participation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>063-0611-00L</td>
<td>The Digital in Architecture II (Exercise)</td>
<td>W</td>
<td>2</td>
<td>1V+2U</td>
<td>J. Medina Ibañez</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: Successful completion of the course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Structural Design VI" (063-0606-00L), "Design III" (052-0541/43/45) or "Das Digitale in der Architektur" (063-0610-00L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This core course (ending with «00L») can only be passed once! Please check before signing up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE. ZoomLink: https://ethz.zoom.us/j/66588100789</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subject of the course is robotic fabrication in architecture. Through exercises, basic skills such as robotic control are being taught and applied to a small design and fabrication project. The course teaches how to develop a simple fabrication and material aware digital design process linked to a robotic fabrication procedure.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students learn to use industrial robots such as the Universal Robot UR5 and understand basic principles of robotic control. At the end of the course, students are able to translate simple design ideas into robotic fabrication processes, which they can run independently. Furthermore students deepen their skills in Python and Grasshopper.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>063-0611-00L</td>
<td>Architecture and Structure (HS)</td>
<td>W</td>
<td>3</td>
<td>3G</td>
<td>J. Schwartz, U. Jaray Bergianti</td>
</tr>
<tr>
<td></td>
<td>This core course (ends with «01L») can only be passed once! Please check this before signing up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE. ZoomLink: https://ethz.zoom.us/j/66588100789</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course is centered around a design exercise where the form should be the result of the flow of internal forces and the detailing concept combined with the quality of architectural space. The focus is on structural and load bearing issues with respect to realization implemented in an architectural design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understanding of structural design as translation of structural concepts into building materials with respect to design concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course is centered around a design exercise where the form should be the result of the flow of internal forces and the detailing concept combined with the quality of architectural space. The focus is on structural and load bearing issues with respect to realization implemented in an architectural design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE. ZoomLink: https://ethz.zoom.us/j/66588100789</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Architectural Design

Number of Choice of "Architectural Design" (from 05. Sem.) of the Bachelor course.

- **063-0553-21L**
 - Subject Semester HS21 in the Field of History and Theory in Architecture (gta, Prof. Ursprung): Allocation only after consultation with the professor (meetings as required and after consultation with the chair).
 - The application deadline is Wednesday September 8, 2021, 8 p.m. You will receive a message about acceptance or rejection for the subject semester by Thursday, September 9, 2021, 2 p.m. at the latest.
 - Students who have been rejected have the opportunity to...
Attention is a rare commodity. How do we deal with attention? How is it manipulated? Who pays?

Students produce autonomous texts.

Objective

Our aim is to increase the knowledge and sensitivity of architecture students toward the issue of attention, to make their voices heard and to develop a new teaching form for the history and theory of architecture. Students will be familiar with theories and practices of attention, they will learn to take position in a field, they will practice argumentation and increase their writing skills.

Literature

A student can only register once for a "Fachsemester" during the Master studies!

The application deadline is Wednesday, September 8, 2021, 8 p.m. You will receive a message about acceptance or rejection for the subject semester by Thursday, September 9, 2021, 2 p.m. at the latest. Students who have been rejected have the opportunity to choose a design class.

Accompanying courses:

- 063-0803-00L History and Theory in Architecture IX.
- 052-0825-20L Special Questions in History of Art and Architecture (optional, individual events).

Self dependent work.

Within the frame of the semester topic, the choice of topic is free.

For further information, please see: https://ursprung.arch.ethz.ch/courses/who-cares/information

| Subject Semester (Fachsemester) HS21 in the Field of W | 14 credits | 29A |
| History and Theory in Architecture gta(Delbeke) | M. Delbeke, T. Avermaete, P. Ursprung |

063-0855-21L

The theme of this History Research Studio is 'Female Agency in Architecture before 1850'. The Studio aims at exploring the crucial role women played in the birth, life and afterlife of buildings in the early modern period. We will study female patronage, authorship, and criticism in architecture.

Objective

Students are invited to identify and investigate their own specific case studies that pertain to this theme. The Studio will teach students to articulate their research questions, carry out appropriate primary and secondary study and write a complete paper.

The structure of the studio will follow an input-exchange-output model. All members of the chair will provide input, to both the theme and method, as well as examples and references of research. There is also room for students to read and discuss together with the material prepared for them (short texts, summaries and reading lists) and the materials they found. Weekly group meetings and individual supervision by the chair members will help students in academic research and writing. Exchanges with the researchers at the chair are also beneficial to further develop their research themes and teaching.

Content

Focussing on 'Female Agency in Architecture before 1850' this studio examines the emergence of the role of women in architecture and architectural theory, in a period of great economic, social and cultural change: 1450-1850.

Women acquired a major role in architectural patronage in eighteenth-century France and England, when they came to independently design and commission innovative mansions and dwellings. They stand in a tradition of major female builders in early-modern (sixteenth- and seventeenth-century) Italy and in Ottoman Turkey. The relationship between architect and patron surfaces in different types of buildings commanded by women: stately residences (hôtels urbains) and emerging types as pavilions and petites mansions. These women excited their influence in the various aspects of the design process. Female patrons used their expertise in determining the layouts of their dwellings and in arranging spaces that reflected as much their daily lives as special occasions. They tell us about women's lifestyles, their use of specific spaces, and the expression such spaces should have, as well as about their social and economic situations. While many of these patrons were women of fortune, from aristocracy, the period also sees a changing female clientele emerge with collectors, artists, dancers, actresses, writers and mistresses (the Petit Trianon for Madame de Pompadour for example). Furthermore, in this period women would increasingly express their ideas in pamphlets and articles in journals, in salons, in letter writing, in literature, or in travel accounts. They were thus voicing their ideas on architecture in both spoken and written form, and in drawing up plans for new buildings, when acting as a patron. Both as a patron and as a user of buildings women acted as a critical voice of how to design architecture from the point of view of the user of architectural spaces, be it in a domestic or a more public setting.

This Master Studio invites students to adopt female agency as a primary investigative territory and critically examine the ways in which architecture is produced, conceptualised and historiced in a particular cultural and historical context. It was in a wide array of media that constituted architectural debate that the female voice was heard and influenced the larger debate. By examining the female perspective this Studio aims to open up the corpus and historiography of thinking about buildings.

While we understand the necessity of a canonical history the Studio actively searches and tests approaches and methods of enquiry that challenge that canon and propose a different history. By examining the professional, artistic, authorial and cultural role of women in architecture the courses and meetings of the semester will offer an opportunity to look afresh at architectural history and theory of the early modern period.
Subject Semester HS21 in the Field of Historic Building Research and Conservation (IBB, Prof Holzer)

A student can only register once for a "Fachsemester" during the Master studies!

The application deadline is Friday September 3, 2021, 8 p.m. You will receive a message about acceptance or rejection for the subject semester by Thursday, September 9, 2021, 2 p.m. at the latest. Students who have been rejected have the opportunity to choose a design class.

The requirements for this subject semester are interest in the material as well as experience with and knowledge of historical wooden structures and the methods of building research. Ideally, the student has heard Prof. Holzer's lectures on construction history or does so during the semester. It is also beneficial to have attended the case studies exercise.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

Subject Semester (Fachsemester) HS21 in the Field of Technology in Architecture (ITA, Prof. Schlüter)

A student can only register once for a "Fachsemester" during the Master studies!

The application deadline is Friday September 3, 2021, 8 p.m. You will receive a message about acceptance or rejection for the subject semester by Thursday, September 9, 2021, 2 p.m. at the latest. Students who have been rejected have the opportunity to choose a design class.

In this research semester, we address the topic of Zero Emissions Building Design, which integrates aspects of energy, materials and technology, human behaviour and comfort into architectural design, aspiring synergetic design solutions.

After successfully concluding the research semester students can identify concepts and relevant design parameters for Zero Emissions Building Design and develop integrated architectural design strategies. They know how to select and use appropriate simulation and analysis tools to qualify and quantify their design solutions and visualize their concepts using both technical schematics as well as architectural drawings and visualizations.
The Research Studio has two objectives. First, to develop an ‘Archeology’ of Zürich’s housing commons. In this part, the work of the urban historian or theoretician is understood as an archaeological venture. The collective residential stock, as well as the integrated common-pool resources that often accompany it, will be systematically analyzed as the outcome of codes and as reliant on established practices of ‘commoning’. The result will be a catalogue of city’s cooperative and related networks, illustrating how these provide frameworks for ‘commoning’ and how, as urban figures, they are integrated into and impact upon the city fabric.

Secondly, we will develop an ‘Assemblage’ of Zürich’s housing commons by scrutinizing how they are experienced, practised, and ‘commoned’. The result will be a catalogue of city’s cooperative and related networks, illustrating how these provide frameworks for ‘commoning’ and how, as urban figures, they are integrated into and impact upon the city fabric.

Cities have always been places based on common resources and common practices. While designing and constructing the architecture of the city, architects, urban designers, builders, and inhabitants have had to engage with common resources located in particular places and geographies: inherited common-pool resources (water, nature, air); material common-pool resources (clay, brick, stone, wood); and immaterial common-pool resources (craft, knowledge). This understanding of the city, as related to common resources and practices, has gained renewed attention, as neoliberalism replaces ever-shrinking welfare structures, and global urbanization is accompanied by rising inequality. It is not only architects and urban designers who are again becoming interested in alternative principles of governing common resources, but also political movements and society at large.

Participants will work on an urban retrofit case study in a moderate climate. The analysis departs at analyzing the site, its climate, the status quo of the building and relevant architectural/urban parameters. After assessing the potentials for reducing energy demand and local renewable energy supply, students will develop integrated design concepts targeting zero carbon over the building lifecycle, both for building operation and construction/materials.

Using low-barrier modelling, simulation and optimization tools (preferably Rhino / Grasshopper, HIVE, etc.) the design concepts will be assessed and discussed both numerically as well as architecturally / aesthetically. For further development, students choose one component or aspect central to their design concept.

Content

First, students will be introduced to core concepts of Zero Emissions Building Design and discuss leading works and examples on a global scale. In combination with excursions and site visits (if possible), a catalogue of criteria and metrics for the development of their integrated design concepts will be developed.

All materials (lectures, tools, examples) are available on the **A/S knowledge platform**: https://moodle-app2.let.ethz.ch/course/view.php?id=11917

A student can only register once for a “Fachsemester” during the Master studies!

Apply with CV, concise motivation letter and your current Transcript of Records before September 1, 2021, to: illias.hischier@arch.ethz.ch.

Your participation in the Subject semester will be confirmed by September 3, 2021.

Lecture notes

Students will document the process and the results both numerically as well as architecturally, which will then be discussed with a final jury.

Literature

All materials (lectures, tools, examples) are available on the **A/S knowledge platform**: https://moodle-app2.let.ethz.ch/course/view.php?id=11917

Prerequisites / notice

The working mode is an individual design research studio with weekly group meetings and reviews. We expect good basic knowledge on sustainable construction and energy- and climate systems. Prior knowledge in parametric design tools (Rhino) and/or simulation is a plus.

Subject Semester (Fachsemester) HS21 in the Field of W History and Theory in Architecture (Avermaete) 14 credits 29A T. Avermaete, M. Debeke, P. Ursprung

Enrolment in agreement with the chair only.

Meetings as required and in consultation with the chair.

A student can only register once for a "Fachsemester" during the Master studies!

The application deadline is Wednesday 8th September 2021, 8 p.m. You will receive a message about acceptance or rejection for the subject semester by Thursday, September 9, 2021, 2 p.m. at the latest.

Students who have been rejected have the opportunity to choose a design class.

Abstract

Housing Commons and the City: Zurich

Focuses on the housing commons of Zurich, namely collectively owned, non-profit forms of housing ownership (e.g. cooperatives). In the ways that they have been produced, managed, used, maintained, and appropriated, housing commons offer new perspectives to think about contemporary urban challenges such as densification, housing demand, and sustainability.

Objective

The Research Studio has two objectives. First, to develop an ‘Archeology’ of Zurich’s housing commons. In this part, the work of the urban historian or theoretician is understood as an archaeological venture. The collective residential stock, as well as the integrated common-pool resources that often accompany it, will be systematically analyzed as the outcome of codes and as reliant on established practices of ‘commoning’. The result will be a catalogue of city’s cooperative and related networks, illustrating how these provide frameworks for ‘commoning’ and how, as urban figures, they are integrated into and impact upon the city fabric.

Secondly, we will develop an ‘Assemblage’ of Zurich’s housing commons by scrutinizing how they are experienced, practised, and ‘commoned’. The result will be a catalogue of city’s cooperative and related networks, illustrating how these provide frameworks for ‘commoning’ and how, as urban figures, they are integrated into and impact upon the city fabric.

Content

This Research Studio focuses on the housing commons of Zurich. By ‘housing commons’ we mean various collectively owned, non-profit forms of housing ownership such as associations, public (municipal) housing, and cooperatives, all formats that have built up the backbone of the city’s affordable housing policy since the early 1900s. A long-standing alliance with the local government, financial subsidies historically ratified in popular referendums, and the possibility of leasing city-owned land for development have rendered housing commons prominent, in a housing sector otherwise dominated by market rental and private ownership. About a quarter of the city’s residential stock qualifies as collectively owned housing, a ratio set up to increase to a third by 2040. In a city where 1-person households still make up almost half of the entire residential stock, housing commons are exemplary as models for sustainable densification and typological innovation.

In this research studio we will explore how housing commons have been produced, managed, used, maintained, and appropriated, how are they characterized themselves in the city, how they are iconographically or typologically distinguished from the housing on the market. We are particularly interested in how housing commons have contributed to ease the chronic housing shortage in the city, and might continue to do so in the future? We hold that housing commons offer us new perspectives to think about contemporary challenges such as densification, a growing housing demand, and sustainable urban living.

Participants will work on an urban retrofit case study in a moderate climate. The analysis departs at analyzing the site, its climate, the status quo of the building and relevant architectural/urban parameters. After assessing the potentials for reducing energy demand and local renewable energy supply, students will develop integrated design concepts targeting zero carbon over the building lifecycle, both for building operation and construction/materials.

Using low-barrier modelling, simulation and optimization tools (preferably Rhino / Grasshopper, HIVE, etc.) the design concepts will be assessed and discussed both numerically as well as architecturally / aesthetically. For further development, students choose one component or aspect central to their design concept.

A student can only register once for a “Fachsemester” during the Master studies!

Apply with CV, concise motivation letter and your current Transcript of Records before September 1, 2021, to: illias.hischier@arch.ethz.ch.

Your participation in the Subject semester will be confirmed by September 3, 2021.

063-0857-21L

Subject Semester (Fachsemester) HS21 in the Field of W History and Theory in Architecture (Avermaete) 14 credits 29A T. Avermaete, M. Debeke, P. Ursprung

Enrolment in agreement with the chair only.

Meetings as required and in consultation with the chair.

A student can only register once for a "Fachsemester" during the Master studies!

The application deadline is Wednesday 8th September 2021, 8 p.m. You will receive a message about acceptance or rejection for the subject semester by Thursday, September 9, 2021, 2 p.m. at the latest.

Students who have been rejected have the opportunity to choose a design class.

Abstract

Housing Commons and the City: Zurich

Focuses on the housing commons of Zurich, namely collectively owned, non-profit forms of housing ownership (e.g. cooperatives). In the ways that they have been produced, managed, used, maintained, and appropriated, housing commons offer new perspectives to think about contemporary urban challenges such as densification, housing demand, and sustainability.

Objective

The Research Studio has two objectives. First, to develop an ‘Archeology’ of Zurich’s housing commons. In this part, the work of the urban historian or theoretician is understood as an archaeological venture. The collective residential stock, as well as the integrated common-pool resources that often accompany it, will be systematically analyzed as the outcome of codes and as reliant on established practices of ‘commoning’. The result will be a catalogue of city’s cooperative and related networks, illustrating how these provide frameworks for ‘commoning’ and how, as urban figures, they are integrated into and impact upon the city fabric.

Secondly, we will develop an ‘Assemblage’ of Zurich’s housing commons by scrutinizing how they are experienced, practised, and ‘commoned’. The result will be a catalogue of city’s cooperative and related networks, illustrating how these provide frameworks for ‘commoning’ and how, as urban figures, they are integrated into and impact upon the city fabric.

Content

This Research Studio focuses on the housing commons of Zurich. By ‘housing commons’ we mean various collectively owned, non-profit forms of housing ownership such as associations, public (municipal) housing, and cooperatives, all formats that have built up the backbone of the city’s affordable housing policy since the early 1900s. A long-standing alliance with the local government, financial subsidies historically ratified in popular referendums, and the possibility of leasing city-owned land for development have rendered housing commons prominent, in a housing sector otherwise dominated by market rental and private ownership. About a quarter of the city’s residential stock qualifies as collectively owned housing, a ratio set up to increase to a third by 2040. In a city where 1-person households still make up almost half of the entire residential stock, housing commons are exemplary as models for sustainable densification and typological innovation.

In this research studio we will explore how housing commons have been produced, managed, used, maintained, and appropriated, how are they characterized themselves in the city, how they are iconographically or typologically distinguished from the housing on the market. We are particularly interested in how housing commons have contributed to ease the chronic housing shortage in the city, and might continue to do so in the future? We hold that housing commons offer us new perspectives to think about contemporary challenges such as densification, a growing housing demand, and sustainable urban living.

Cities have always been places based on common resources and common practices. While designing and constructing the architecture of the city, architects, urban designers, builders, and inhabitants have had to engage with common resources located in particular places and geographies: inherited common-pool resources (water, nature, air); material common-pool resources (clay, brick, stone, wood); and immaterial common-pool resources (craft, knowledge). This understanding of the city, as related to common resources and practices, has gained renewed attention, as neoliberalism replaces ever-shrinking welfare structures, and global urbanization is accompanied by rising inequality. It is not only architects and urban designers who are again becoming interested in alternative principles of governing common resources, but also political movements and society at large. Some of these issues – generally called ‘the commons’ – have also received growing academic attention in the last decades within the fields of critical urban studies, urban history, urban geography and the social sciences. This Research Studio continues the studio’s investigations into the rich history of ‘the commons’ in the city of Zurich by focusing on its residential infrastructures. The ‘housing commons’ will be investigated from architectural, urban, typological, environmental and material perspectives. We will explore how common practices and resources have affected their development in the city, and conversely how the built housing commons enable and structure common practices. The research will unlock an alternative reading of the urban and architectural qualities of the built environment of the city.
Adaptability and Flexibility
Self-dependent development of a program, according to which one intends to realize a free master thesis in the following semester.

Preparation semester for a self-determined Master thesis within the Department of Architecture. of ETH Zurich.

Analytical Competencies

Concepts and Theories
Methodology: Exploring the Tools and Knowledge of the Architect

The main hypothesis of the Research Studio is that historical and theoretical research can gain from a profound use of the tools and knowledge of an architect. During the Research Studio students will employ specific architectural tools, such as drawing, writing, and model making to explore historical and theoretical realities. Students will be urged to explore various methods of composing analytical and interpretative drawings. They will reflect upon the capacity of drawing methods from the field of architecture, such as plan drawing, sectional drawings, mappings, serial visions, public drawings, diagramming and perspective representations to act as tools of historical and theoretical research. At the same time, they will be asked to investigate various analytical and interpretative modes of scale-model making. Students may work with different types of models (structural models, mass models, counter form models, landscape and territorial models) as ways to historically or theoretically explore the reality of the city.

Far from being simple graphic or artefactual restitutions of the city, these drawings and models will create morphological, thematic or theoretical links between various occurrences in the city. These methods of drawing and model making will be combined with more conventional investigative techniques in the fields of history and theory such as discourse analysis, iconographic studies and compositional investigation, to support a better historical or theoretical understanding of specific occurrences and conditions in the city of Zürich.

Students will also be stimulated to use their spatial, formal, material and constructive architectural knowledge to offer alternative historical or theoretical interpretations of the reality that they encounter in the archives, in the library or in the city. They will be asked to activate their specific spatial, typological, compositional, technical, material and constructive expertise to probe into the various historical layers of the architecture of the city in newfangled ways.

Within the general theme of housing commons, students will be guided to identify their own subtheme, as well as explore their own different methodologies of doing research. During the Research Studio students will confront their empirical knowledge (about space, typology, composition, technique, material and construction), pertaining to the autonomy of architecture, with other types of knowledge (on politics, economy, the social and cultural) that belong to the heteronomy of architecture. In the relation between autonomous and heteronomous knowledge, a new understanding of the city will be constructed. The combination of these tools and methods will offer an in-depth mode of historical and theoretical research, wherein the students will retro-actively explore the spatial, formal, material and constructive features of a particular situation to uncover and reconstruct the logics that have led to a certain urban condition. On the basis of this research, students will be able to develop an architectural hypothesis of the developments in the city of Zürich.

A student can only register once for a "Fachsemester" during the Master studies!

The application deadline is Wednesday 8th September, 2021, 8 p.m. You will receive a message about acceptance or rejection for the subject semester by Thursday, September 9, 2021, 2 p.m. at the latest. Students who have been rejected have the opportunity to choose a design class.

Self-dependent work.
Enrollment on agreement with the chair only.
Meetings as required and after consultation with the chair (Wednesdays).

The collective and individual projects together will offer an alternative reading, which retro-actively traces the urban territory and architectural quality of the city of Zürich back to the local common resources and common practices. The different materials – texts, drawings, models – will be combined in an atlas, which presents this alternative reading to a larger audience.

Domain A - Subject-specific Competencies
Concepts and Theories - assessed
Techniques and Technologies - assessed

Domain B - Method-specific Competencies
Analytical Competencies - assessed
Decision-making - assessed
Media and Digital Technologies - assessed
Problem-solving - assessed
Project Management - not assessed

Domain C - Social Competencies
Communication - assessed
Cooperation and Teamwork - assessed
Customer Orientation - not assessed
Leadership and Responsibility - assessed
Self-presentation and Social Influence - not assessed
Sensitivity to Diversity - assessed
Negotiation - not assessed

Domain D - Personal Competencies
Adaptability and Flexibility - assessed
Creative Thinking - assessed
Critical Thinking - assessed
Integrity and Work Ethics - assessed
Self-awareness and Self-reflection - not assessed
Self-direction and Self-management - assessed

Focus Work
Realization in the respective fields of the institutes. Definition of topics by professors, in consultation with the students. The content may also refer to an elective course.

The performance assessment comprises either a purely written examination followed by an oral examination or a creative, manual or drawing work, including a description, followed by an oral examination.

At least one focus work is a written work followed by an oral exam. The written work fulfills the criteria of a scientific paper in a formal sense. In addition to the design, crafting or drawing part, it also includes a written description of the question, methodology and knowledge gained.

A creative, crafting or graphic focus work is shown in a public exhibition, a purely written focus work is accessible to the public.

Field of Historic Building Research and Conservation

Definition of topics by professors, in consultation with the students (student's proposal / content of an elective course).

Performance assessment: Purely written examination followed by an oral examination OR a creative, manual or drawing work, including a description, followed by an oral examination.

At least one focus work is a written work followed by an oral exam. The written work fulfills the criteria of a scientific paper in a formal sense. In addition to the design, crafting or drawing part, it also includes a written description of the question, methodology and possibly gained knowledge.

A creative, crafting or graphic focus work is shown in a public exhibition, a purely written focus work is accessible to the public.
Information on exams and grades: Art. 29 of the MSc D-ARCH regulations.

Focus Work HS21 in the Field of Historic Building Research and Conservation (IDB)

Number: 063-0951-21L
Type: W
ECTS: 6 credits
Hours: 13A
Lecturers: Supervisors

Abstract: Analysis of a single monument or a small group of interrelated monuments with the methods of archeological building research. Embedding of the objects studied into a context of construction history by means of archival and literature studies.

Objective: In-depth knowledge of the methods of archeological building research and construction history. Case-oriented in-depth knowledge of a selected historic building or construction type in its technical, social and economic setting and its architectural relevance.

Content: This study will require the in-depth analysis of a historic structure or a small group of structures. This includes an object documentation (survey drawings, photographic record, textual description). Contextual information to be researched by the methods of construction history (archival, literature).

Prerequisites / notice: The subjects can be proposed by the students. In consultation with the professors of architecture, the fixed topics are binding (see Art. 29 Reg. 201 MSc Architecture).

Focus Work HS21 in the Field of Historic Building Research and Conservation (IEA)

Number: 063-0551-21L
Type: W
ECTS: 6 credits
Hours: 13A
Lecturers: Supervisors

Abstract: IEA focus work, of which the content may also refer to an elective subject.

Objective: Development of skills and competences in a special area / sub-area of architectural theory or practice.

Content: In-depth work is carried out in the respective subject areas of the institute. The professors determine the topics in consultation with the students. The content of the in-depth work can also relate to the content of an elective course.

The performance assessment comprises either a purely written work with a subsequent oral examination or a creative, technical or graphic work, including a description, with a subsequent oral examination. At least in the case of one in-depth thesis, the performance assessment must take the form of a purely written work with a subsequent oral examination (Regulations Paragraph 2 Letter a). In formal terms, the written work must meet the criteria of an academic paper. In addition to the creative, manual or drawing part, it includes a written description of the question, the methodology and the possible gain in knowledge of the work.

The students take the oral examination with the professor with whom they have discussed the topic of the in-depth thesis.

The written or creative, manual or drawing work and the oral examination are each assessed individually. These two assessments are offset against each other and result in the overall grade for the in-depth work. Paragraph 7 remains reserved.

The oral examination can only be taken if the written work or the creative, technical or graphic work is sufficient.

A thesis is passed if the overall grade is at least 4. If it is considered not passed if the overall grade is below 4; if the written or creative, technical or graphic work is unsatisfactory and therefore the oral examination cannot be taken; in such a case, the failure will be noted with the term “dropout”.

An in-depth thesis that has not been passed cannot be repeated. In order to acquire the required CP, a further in-depth work must be carried out and the performance must be assessed with an overall grade of at least 4. The number of attempts is limited (see regulations).

If more than one “in-depth study” course unit is not passed, the course is considered to have been definitively failed, which leads to exclusion from the course.

A creative, craft or drawing in-depth work is publicly exhibited. Purely written in-depth theses are made publicly available.

Prerequisites / notice: The topic is determined in consultation with the chosen professor.

Field of History and Theory of Architecture

Definition of topics by professors, in consultation with the students (student's proposal / content of an elective course).

Performance assessment: Purely written examination followed by an oral examination OR a creative, manual or drawing work, including a description, followed by an oral examination.

At least one focus work is a written work followed by an oral exam. The written work fulfills the criteria of a scientific paper in a formal sense. In addition to the design, crafting or drawing part, it also includes a written description of the question, methodology and possibly gained knowledge.

A creative, crafting or graphic focus work is shown in a public exhibition, a purely written focus work is accessible to the public.

Information on exams and grades: Art. 29 of the MSc D-ARCH regulations.

Focus Work HS21 in the Field of History and Theory in Architecture (gta)

Number: 063-0851-21L
Type: W
ECTS: 6 credits
Hours: 13A
Lecturers: Supervisors

Abstract: Indentation work of the Institute gta, of which the content can also refer to an elective subject.

Objective: Development of skills and competences in a special area / sub-area of architectural theory or practice.
In-depth work is carried out in the respective subject areas of the institute. The professors determine the topics in consultation with the students. The content of the in-depth work can also relate to the content of an elective course.

The performance assessment comprises either a purely written work with a subsequent oral examination or a creative, technical or graphic work, including a description, with a subsequent oral examination. At least in the case of one in-depth thesis, the performance assessment must take the form of a purely written work with a subsequent oral examination (Regulations Paragraph 2 Letter a). In formal terms, the written work must meet the criteria of an academic paper. In addition to the creative, manual or drawing part, it includes a written description of the question, the methodology and the possible gain in knowledge of the work.

The students take the oral examination with the professor with whom they have discussed the topic of the in-depth thesis.

The written or creative, manual or drawing work and the oral examination are each assessed individually. These two assessments are offset against each other and result in the overall grade for the in-depth work. Paragraph 7 remains reserved.

The oral examination can only be taken if the written work or the creative, technical or graphic work is sufficient.

A thesis is passed if the overall grade is at least 4. It is considered not passed if the overall grade is below 4; if the written or creative, technical or graphic work is unsatisfactory and therefore the oral examination cannot be taken; in such a case, the failure will be noted with the term “dropout”.

An in-depth thesis that has not been passed cannot be repeated. In order to acquire the required CP, a further in-depth work must be carried out and the performance must be assessed with an overall grade of at least 4. The number of attempts is limited (see regulations).

If more than one “in-depth study” course unit is not passed, the course is considered to have been definitively failed, which leads to exclusion from the course.

The creative, craft or drawing in-depth work is publicly exhibited. Purely written in-depth theses are made publicly available.

The subjects can be proposed by the students.

In consultation with the professors of architecture, the fixed topics are binding (see Art. 29 Reg. 201 MSc Architecture).

Field of Landscape Architecture and Urban Studies

Definition of topics by professors, in consultation with the students (student’s proposal / content of an elective course).

Performance assessment: Purely written examination followed by an oral examination OR a creative, manual or drawing work, including a description, followed by an oral examination.

At least one focus work is a written work followed by an oral exam. The written work fulfills the criteria of a scientific paper in a formal sense. In addition to the design, drafting or drawing part, it also includes a written description of the question, methodology and possibly gained knowledge.

A creative, crafting or graphic focus work is shown in a public exhibition, a purely written focus work is accessible to the public.

Information on exams and grades: Art. 29 of the MSc D-ARCH regulations.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>063-0751-21L</td>
<td>Focus Work HS21 in the Field Landscape and Urban Studies (LUS)</td>
<td>W</td>
<td>6</td>
<td>13A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract

Indentation work of the Institute LUS, of which the content can also refer to an elective subject.

Objective

Development of skills and competences in a special area / sub-area of architectural theory or practice.

Content

In-depth work is carried out in the respective subject areas of the institute. The professors determine the topics in consultation with the students. The content of the in-depth work can also relate to the content of an elective course.

The performance assessment comprises either a purely written work with a subsequent oral examination or a creative, technical or graphic work, including a description, with a subsequent oral examination. At least in the case of one in-depth thesis, the performance assessment must take the form of a purely written work with a subsequent oral examination (Regulations Paragraph 2 Letter a). In formal terms, the written work must meet the criteria of an academic paper. In addition to the creative, manual or drawing part, it includes a written description of the question, the methodology and the possible gain in knowledge of the work.

The students take the oral examination with the professor with whom they have discussed the topic of the in-depth thesis.

The written or creative, manual or drawing work and the oral examination are each assessed individually. These two assessments are offset against each other and result in the overall grade for the in-depth work. Paragraph 7 remains reserved.

The oral examination can only be taken if the written work or the creative, technical or graphic work is sufficient.

A thesis is passed if the overall grade is at least 4. It is considered not passed if the overall grade is below 4; if the written or creative, technical or graphic work is unsatisfactory and therefore the oral examination cannot be taken; in such a case, the failure will be noted with the term “dropout”.

An in-depth thesis that has not been passed cannot be repeated. In order to acquire the required CP, a further in-depth work must be carried out and the performance must be assessed with an overall grade of at least 4. The number of attempts is limited (see regulations).

If more than one “in-depth study” course unit is not passed, the course is considered to have been definitively failed, which leads to exclusion from the course.

The creative, craft or drawing in-depth work is publicly exhibited. Purely written in-depth theses are made publicly available.

The subjects can be proposed by the students.

In consultation with the professors of architecture, the fixed topics are binding (see Art. 29 Reg. 201 MSc Architecture).
Keeping the general aim of exploring the European dimension of spatial planning in mind, the specific course learning objectives are as follows:
- to interpret the history of spatial planning at the transnational scale
- to understand and explain the content of the European spatial policy agenda
- to describe and analyse the role of territorial cooperation in making European spatial development patterns and planning procedures
- to discuss the changing role of planners and evaluate the ways of their engagement in European spatial policy-making

- European spatial policy agenda: introduction and basic directives
- governance models
- planning models; collaborative planning model (main concepts & critics)
- post-positivist approach to spatial planning
- transnational spatial planning in Europe; questioning the European spatial planning; spatial development trends in Europe
- EU as a political system: EU institutions & non-EU actors
- planning families in Europe; the European spatial planning agenda
- spatial planning strategies and programmes on territorial cooperation
- the notion of planning culture and planning system; planning cultures in Europe
- basic characteristics of planning systems in Europe
- the relevance of European transnational cooperation for spatial planning
- European transnational initiatives

The documents for the lecture will be provided at the moodle.

Obligatory literature:

Recommended literature:

Governance models:

Planning models:

EU as a political context:

Territorial cooperation in Europe:

Planning families and cultures:

Planning systems in Europe:

Prerequisites / notice

Only for master students, otherwise a special permission by the lecturer is required.

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concepts and Theories</td>
<td>Analytical Competencies</td>
<td>Communication</td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>Decision-making</td>
<td>Cooperation and Teamwork</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Negotiation</td>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
<td></td>
</tr>
</tbody>
</table>

Field of Technology in Architecture

Definition of topics by professors, in consultation with the students (student's proposal / content of an elective course).

Performance assessment: Purely written examination followed by an oral examination OR a creative, manual or drawing work, including a description, followed by an oral examination.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 128 of 2152
At least one focus work is a written work followed by an oral exam. The written work fulfills the criteria of a scientific paper in a formal sense. In addition to the design, crafting or drawing part, it also includes a written description of the question, methodology and possibly gained knowledge.

A creative, crafting or graphic focus work is shown in a public exhibition, a purely written focus work is accessible to the public.

Information on exams and grades: Art. 29 of the MSc D-ARCH regulations.

Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>063-0651-21L</td>
<td>Focus Work HS21 in the Field of Technology in Architecture (ITA)</td>
<td>W</td>
<td>6 credits</td>
<td>13A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
Indentation work of the Institute ITA of which the content can also refer to an elective subject. The topic is determined in consultation with the chosen professor.

Objective
Development of skills and competences in a special area / sub-area of architectural theory or practice.

Content
In-depth work is carried out in the respective subject areas of the institute. The professors determine the topics in consultation with the students. The content of the in-depth work can also relate to the content of an elective course.

The performance assessment comprises either a purely written work with a subsequent oral examination or a creative, technical or graphic work, including a description, with a subsequent oral examination. At least in the case of one in-depth thesis, the performance assessment must take the form of a purely written work with a subsequent oral examination (Regulations Paragraph 2 Letter a). In formal terms, the written work must meet the criteria of an academic paper. In addition to the creative, manual or drawing part, it includes a written description of the question, the methodology and the possible gain in knowledge of the work.

The students take the oral examination with the professor with whom they have discussed the topic of the in-depth thesis.

The written or creative, manual or drawing work and the oral examination are each assessed individually. These two assessments are offset against each other and result in the overall grade for the in-depth work. Paragraph 7 remains reserved.

The oral examination can only be taken if the written work or the creative, technical or graphic work is sufficient.

A thesis is passed if the overall grade is at least 4. If it is considered not passed if the overall grade is below 4; if the written or creative, technical or graphic work is unsatisfactory and therefore the oral examination cannot be taken; in such a case, the failure will be noted with the term “dropout”.

An in-depth thesis that has not been passed cannot be repeated. In order to acquire the required CP, a further in-depth work must be carried out and the performance must be assessed with an overall grade of at least 4. The number of attempts is limited (see regulations).

If more than one “in-depth study” course unit is not passed, the course is considered to have been definitively failed, which leads to exclusion from the course.

The creative, craft or drawing in-depth work is publicly exhibited. Purely written in-depth theses are made publicly available.

Prerequisites / notice
The subjects can be proposed by the students. In consultation with the professors of architecture, the fixed topics are binding (see Art. 29 Reg. 201 MSc Architecture).

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
This doctoral seminar organised by the D-BAUG platform on data science and machine learning aims at discussing recent research papers in the field of machine learning and analyzing the transferability/adaptability of the proposed approaches to applications in the field of civil and environmental engineering (if possible and applicable, also implementing the adapted algorithms).

Objective
Students will
- Critically read scientific papers on the recent developments in machine learning
- Put the research in context
- Present the contributions
- Discuss the validity of the scientific approach
- Evaluate the underlying assumptions
- Evaluate the transferability/adaptability of the proposed approaches to own research
- (Optionally) implement the proposed approaches.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 129 of 2152
With the increasing amount of data collected in various domains, the importance of data science in many disciplines, such as infrastructure monitoring and management, transportation, spatial planning, structural and environmental engineering, has been increasing. The field is constantly developing further with numerous advances, extensions and modifications.

The course aims at discussing recent research papers in the field of machine learning and analyzing the transferability/adaptability of the proposed approaches to applications in the field of civil and environmental engineering (if possible and applicable, also implementing the adapted algorithms).

Each student will select a paper that is relevant for his/her research and present its content in the seminar, putting it into context, analyzing the assumptions, the transferability and generalizability of the proposed approaches. The students will also link the research content of the selected paper to their own research, evaluating the potential of transferring or adapting it. If possible and applicable, the students will also implement the adapted algorithms. The students will work in groups of three students, where each of the three students will be reading each other’s selected papers and providing feedback to each other.

Prerequisites / notice

This doctoral seminar is intended for doctoral students affiliated with the Department of Civil, Environmental and Geomatic Engineering. Other students who work on related topics need approval by at least one of the organizers to register for the seminar.

Participants are expected to possess elementary skills in statistics, data science and machine learning, including both theory and practical modelling and implementation. The seminar targets students who are actively working on related research projects.

Seminar Weeks

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>051-0911-21L</td>
<td>Seminar Week Autumn Semester 2021</td>
<td>W</td>
<td>2 credits</td>
<td>3A</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Objective

The students will be enabled to discuss narrowly formulated factual questions in small groups and in direct contact with the professors.

GESS Science in Perspective

see GESS Science in Perspective: Language Courses
ETH/ÜZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-ARCH.

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-1100-AAL</td>
<td>Architectural Design V-IX (Part 1)</td>
<td>E-</td>
<td>14 credits</td>
<td>16U</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Abstract

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php)

Project grading at semester end is based on the list of enrolments on 2.11.21 (valuation date) only. This is the ultimate deadline to unsubscribe or enrol for the studio.

Objective

Session requirements.

Content

Session requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-1101-AAL</td>
<td>Architectural Design V-IX (Part 2)</td>
<td>E-</td>
<td>14 credits</td>
<td>16U</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Abstract

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Please register (www.mystudies.ethz.ch) only after the internal enrolment for the design classes (see http://www.einschreibung.arch.ethz.ch/design.php)

Project grading at semester end is based on the list of enrolments on 2.11.21, 24:00 h (valuation date) only. This is the ultimate deadline to unsubscribe or enrol for the studio.

Objective

Session requirements.

Content

Session requirements.

Architecture Master - Key for Type

<table>
<thead>
<tr>
<th></th>
<th>Compulsory</th>
<th>Eligible for credits and recommended</th>
<th>Eligible for credits</th>
<th>Recommended, not eligible for credits</th>
<th>Courses outside the curriculum</th>
<th>Suitable for doctorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key for Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS
- European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Atmospheric and Climate Science Master

Module Weather Systems and Atmospheric Dynamics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1221-00L</td>
<td>Dynamics of Large-Scale Atmospheric Flow</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>H. Wernli, L. Papritz</td>
</tr>
</tbody>
</table>

Abstract

This lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostrophic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course.

Objective

Understanding the dynamics of large-scale atmospheric flow

Content

Dynamical Meteorology is concerned with the dynamical processes of the earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.

Content notes

Dynamics of large-scale atmospheric flow

Literature

- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997

Prerequisites / notice

Physics I, II, Environmental Fluid Dynamics

Module Climate Processes and Feedbacks

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-4053-00L</td>
<td>Boundary Layer Meteorology</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>M. Rotach, P. Calanca</td>
</tr>
</tbody>
</table>

Abstract

The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. The course starts by providing the theoretical background and reviewing idealized concepts. These are contrasted to real world applications and discussed in the context of current research issues.

Objective

Overall goals of this course are given below. Focus is on the theoretical background and idealized concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).

Content

- Introduction
- Turbulence
- Statistical treatment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Scaling and similarity theory
- Spectral characteristics
- Concepts for non-ideal boundary layer conditions

Content notes

available (i.e. in English)

Literature

Prerequisites / notice

Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science

Module Climate Processes and Feedbacks

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1235-00L</td>
<td>Cloud Microphysics</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>U. Lohmann, N. Shardt</td>
</tr>
</tbody>
</table>

Objective

Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth’s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes.

Content

Lecture notes

This course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth.

Literature

Lamb and Verlinde: PHYSICS AND CHEMISTRY OF CLOUDS, Cambridge University Press, 2011

Prerequisites / notice

Target group: Doctoral and Master students in Atmosphere and Climate
The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.

Objective
The students can understand the role of land processes and associated feedbacks in the climate system.

Lecture notes
Powerpoint slides will be made available

Prerequisites / notice
Prerequisites: Introductory lectures in atmospheric and climate science

Atmospheric Composition and Cycles

Number Title Type ECTS Hours Lecturers
701-1239-00L Aerosols I: Physical and Chemical Principles W 4 credits 2V+1U M. Gysel Beer, D. Bell, E. Weingartner

Abstract
Aerosols I deals with basic physical and chemical properties of aerosol particles. The importance of aerosols in the atmosphere and in other fields is discussed.

Objective
Physical and chemical principles:
The students...
- know the processes and physical laws of aerosol dynamics.
- understand the thermodynamics of phase equilibria and chemical equilibria.
- know the photo-chemical formation of particulate matter from inorganic and organic precursor gases.

Experimental methods:
The students...
- know the most important chemical and physical measurement instruments.
- understand the underlying chemistry and physics.

Environmental impacts:
The students...
- know the major sources of atmospheric aerosols, their chemical composition and key physical properties.
- know the most important climate impacts of atmospheric aerosols.
- are aware of the health impacts of atmospheric aerosols.

Lecture notes
Material is distributed during the lecture

Literature

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving assessed

Domain C - Social Competencies
Communication not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking not assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

701-1233-00L Stratospheric Chemistry W 4 credits 2V+1U T. Peter, G. Chiado

Abstract
The lecture gives an overview on the manifold reactions which occur in the gas phase, in stratospheric aerosol droplets and in polar cloud particles. The focus is on the chemistry of stratospheric ozone and its influence through natural and anthropogenic effects, especially the ozone depletion caused by FCKW in mid-latitude and polar regions as well as the coupling with the greenhouse effect.
The students will understand the gas phase reactions in the stratosphere as well as reactions and processes in aerosol droplets and polar stratospheric clouds.

The students will also acquire a good understanding of the coupling between stratospheric ozone and climate change.

Furthermore, they will practise to explain fundamental concepts in stratospheric chemistry by means of scientific paper presentations.

The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.

The students will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators (glacial and geological records). Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitude and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.

In the Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?

The students will understand the gas phase reactions in the stratosphere as well as reactions and processes in aerosol droplets and polar stratospheric clouds.

The students will also acquire a good understanding of the coupling between stratospheric ozone and climate change.

Furthermore, they will practise to explain fundamental concepts in stratospheric chemistry by means of scientific paper presentations.

The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.

The students will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators (glacial and geological records). Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitude and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.

In the Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?

The students will understand the gas phase reactions in the stratosphere as well as reactions and processes in aerosol droplets and polar stratospheric clouds.

The students will also acquire a good understanding of the coupling between stratospheric ozone and climate change.

Furthermore, they will practise to explain fundamental concepts in stratospheric chemistry by means of scientific paper presentations.

The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.

The students will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators (glacial and geological records). Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitude and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.

In the Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?

The students will understand the gas phase reactions in the stratosphere as well as reactions and processes in aerosol droplets and polar stratospheric clouds.

The students will also acquire a good understanding of the coupling between stratospheric ozone and climate change.

Furthermore, they will practise to explain fundamental concepts in stratospheric chemistry by means of scientific paper presentations.

The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.

The students will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators (glacial and geological records). Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitude and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.
Content
The course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the theoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interpret results critically.

Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis.

The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results.

R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course.

Lecture notes
Documenting and supporting material:
- slides used during the lecture
- exercise sets and solutions
- R-packages with software and example datasets for workshop sessions

All material is made available via the lecture web-page.

Literature
For complementary reading:

Prerequisites / notice
Prerequisites: Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umwelt- und Naturwissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology.

651-4053-05L Boundary Layer Meteorology W 4 credits 3G M. Rotach, P. Calanca

Abstract
The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth’s surface. Theory on transport processes in the PBL and their dynamics is provided. The course starts by providing the theoretical background and reviewing idealized concepts. These are contrasted to real world applications and discussed in the context of current research issues.

Objective
Overall goals of this course are given below. Focus is on the theoretical background and idealized concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).

Content
- Introduction
- Turbulence
- Statistical treatment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Concepts for non-ideal boundary layer conditions

Lecture notes
available (i.e. in English)

Literature

Prerequisites / notice
Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science

102-0468-10L Watershed Modelling W 6 credits 3G P. Molnar

Abstract
Watershed modelling is a practical course on numerical water balance models for a range of catchment-scale water resource applications. The course covers GIS use in watershed analysis, models types from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises).

Objective
The main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on thematic lectures (2 hrs a week) and practical exercises (2 hrs a week). Theory and concepts in the lectures are underpinned by many practical applications. A comprehensive exercise block builds on the lectures with a series of 5 practical tasks to be conducted during the semester in group work. Exercise hours during the week focus on explanation of the tasks. The course is evaluated 60% by performance in the graded exercises and 40% by a semester-end oral examination (30 mins) on watershed modelling concepts.

Content
The first part (A) of the course is on watershed properties analysed from DEMs, and on global sources of hydrological data for modelling applications. Here students learn about GIS applications (ArcGIS, Q-GIS) in hydrology - flow direction routines, catchment morphometry, extracting river networks, and defining hydrological response units. In the second part (B) of the course on conceptual watershed models students build their own simple bucket model (Matlab, Python), they learn about performance measures in modelling, how to calibrate the parameters and how to validate models, about methods to simulate stochastic climate to drive models, uncertainty analysis. The third part (C) of the course is focussed on physically-based model components. Here students learn about components for soil water fluxes and evapotranspiration, they practice with a fully-distributed physically-based model Topkapi-ETH, and learn about other similar models. They apply Topkapi-ETH to an alpine catchment and study simulated discharge, snow, soil moisture and evapotranspiration spatial patterns. The final part (D) of the course provides open classroom discussion and simulation of a round-table discussion between modellers and clients about using watershed models in a case study.

Lecture notes
There is no textbook. Learning materials consist of (a) video-recording of lectures; (b) lecture presentations; and (c) exercise task documents that allow independent work.

Literature
Literature consist of collections from standard hydrological textbooks and research papers, collected by the instructors on the course moodle page.

Prerequisites / notice
Basic Hydrology in Bachelor Studies (engineering, environmental sciences, earth sciences), Basic knowledge of Matlab (Python), ArcGIS (Q-GIS).

Electives
The students are free to choose individually from the entire course offer of ETH Zürich and the universities of Zürich and Bern.

Weather Systems and Atmospheric Dynamics
Courses are only offered in Spring Semester.

Climate Processes and Feedbacks
Two additional courses are offered in Winter Semester by University of Berne.

Number Title Type ECTS Hours Lecturers
The students gain general knowledge of the technical processes resulting in air pollution and study the methods used for air pollution control. The lecture provides an introduction to the formation of air pollutants by technical processes, the emission of these pollutants and their transport processes. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of different atmospheric processes and systems. The students gain a deep understanding of the fundamental processes and mechanisms that govern air pollution dynamics. The lecture course provides a derivation of the mathematical basis along with some interpretations of the concept. The students will be able to describe the natural factors leading to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.

The lecture provides an overview of climate change in Europe, from a physical and atmospheric science perspective. It covers the following topics:

- Overview of elements of the climate system and earth energy balance
- The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene?
- Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future?
- Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in general monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
- The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?

The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?

The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene?
- Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future?
- Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in general monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
- The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?

The lecture provides an overview of climate change in Europe, from a physical and atmospheric science perspective. It covers the following topics:

- observational datasets, observation and detection of climate change;
- underling physical processes and feedbacks;
- numerical and statistical approaches;
- currently available projections.

At the end of this course, participants should:

- understand the key physical processes shaping climate change in Europe;
- know about the methodologies used in climate change studies, encompassing observational, numerical, as well as statistical approaches;
- be familiar with relevant observational and modeling data sets;
- be able to tackle simple climate change questions using available data sets.

Contents:

- global context
- observational data sets, analysis of climate trends and climate variability in Europe
- global and regional climate modeling
- statistical downscaling
- key aspects of European climate change: intensification of the water cycle, Polar and Mediterranean amplification, changes in extreme events, changes in hydrology and snow cover, topographic effects
- projections of European and Alpine climate change

Slides and lecture notes will be made available at http://www.iac.ethz.ch/edu/courses/master/electives/european-climate-change.html

Participants should have a background in natural sciences, and have attended introductory lectures in atmospheric sciences or meteorology.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0635-01L</td>
<td>Air Pollution Control</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>J. Wang, B. Buchmann</td>
</tr>
</tbody>
</table>

The lecture provides in the first part an introduction to the formation of air pollutants by technical processes, the emission of these chemicals into the atmosphere and their impact on air quality. The second part covers different strategies and techniques for emission reduction. The basic knowledge is deepened by the discussion of specific air pollution problems of today's society.

The students gain general knowledge of the technical processes resulting in air pollution and study the methods used for air pollution control. The students can identify major air pollution sources and understand the methods for measuring pollutants, collecting and analyzing data. The students can suggest and evaluate possible control methods and equipment, design control systems and estimate their efficiency and efforts.

The students know the different strategies of air pollution control and are familiar with their scientific fundamentals. They are able to incorporate goals concerning air quality into their engineering work.
Content

Part 1 Emission, Immission, Transmission
Fluxes of pollutants and their environmental impact:
- physical and chemical processes leading to emission of pollutants
- mass and energy of processes
- Emission measurement techniques and concepts
- quantification of emissions from individual and aggregated sources
- extent and development of the emissions (Switzerland and global)
- propagation and transport of pollutants (transmission)
- meteorological parameters influencing air pollution dispersion
- deterministic and stochastic models, describing air pollution dispersion
- dispersion models (Gaussian model, box model, receptor model)
- measurement concepts for ambient air (emission level)
- extent and development of ambient air mixing ratios
- goal and instrument of air pollution control

Part 2 Air Pollution Control Technologies
The reduction of the formation of pollutants is done by modifying the processes (pre-cessintegrated measures) and by different engineering operations for the cleaning of waste gas (downstream pollution control). It will be demonstrated, that the variety of these procedures can be traced back to the application of a few basic physical and chemical principles.

Procedures for the removal of particles (inertial separator, filtration, electrostatic precipitators, scrubbers) with their different mechanisms (field forces, impaction and diffusion processes) and the modelling of these mechanisms.

Procedures for the removal of gaseous pollutants and the description of the driving forces involved, as well as the equilibrium and the kinetics of the relevant processes (absorption, adsorption as well as thermal, catalytic and biological conversions).

Discussion of the technical possibilities to solve the actual air pollution problems.

Lecture notes
Brigitte Buchmann, Air pollution control, Part I
Jing Wang, Air pollution control, Part II
Lecture slides and exercises

Literature
List of literature included in script

Prerequisites / notice
College lectures on basic physics, chemistry and mathematics.
Language of instruction: In German or in English.

701-1235-00L Cloud Microphysics W 4 credits 2V+1U U. Lohmann, N. Shardt

Priority is given to PhD students majoring in Atmospheric and Climate Sciences, and remaining open spaces will be offered to the following groups:
- PhD student Environmental sciences
- MSc in Atmospheric and climate science
- MSc in Environmental sciences

All participants will be on the waiting list at first. Enrollment is possible until September 22nd, 2021. The waiting list is active until October 1st, 2021. All students will be informed on September 16th, if they can participate in the lecture.

The lecture takes place if a minimum of 5 students register for it.

Abstract
Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth’s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes.

Objective
The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation.

Content

Lecture notes
This course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth.

Literature
Lamb and Verlinde: PHYSICS AND CHEMISTRY OF CLOUDS, Cambridge University Press, 2011

Prerequisites / notice
Target group: Doctoral and Master students in Atmosphere and Climate

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Domain B - Method-specific Competencies
Analytical Competencies
Domain C - Social Competencies
Communication
Domain D - Personal Competencies
Critical Thinking
Self-direction and Self-management

651-4053-05L Boundary Layer Meteorology W 4 credits 3G M. Rotach, P. Calanca

Abstract
The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth’s surface. Theory on transport processes in the PBL and their dynamics is provided. The course starts by providing the theoretical background and reviewing idealized concepts. These are contrasted to real world applications and discussed in the context of current research issues.

Objective
Overall goals of this course are given below. Focus is on the theoretical background and idealized concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).

Content
- Introduction
- Turbulence
- Statistical tratment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Scaling and similarity theory
- Spectral characteristics
- Concepts for non-ideal boundary layer conditions
I. Hajdas

2G

no script. scientific articles will be distributed during the course

Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. At the end of the course students will:

1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies.
2. be able to calculate an age based on data of the six methods studied.
3. choose which dating method (or combination of methods) is suitable for a certain field problem.
4. critically read and evaluate the application of dating methods in scientific publications.

Abstract

The grading of students is based on in-class exercises and end-semester examination.

Objective

Details on the program will be handed out during the first lecture.

Content

We will attribute the papers for presentation on the 26th, so please be here on that day!

Literature

The sedimentary record of sea-level change

Angela Coe, the Open University.

Prerequisites / notice

ECTS

Sedimentology I: Physical Processes and Sedimentary Systems

651-4041-00L

W

Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems

651-4043-00L

W

Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).

Prerequisites / notice

The grading of students is based on in-class exercises and end-semester examination.

Notice

Climate History and Paleoclimatology

Two courses are offered in Autumn Semester at University of Berne. ETH courses are only offered in Spring Semester.

Number

Title

Type

ECTS

651-4041-00L

Sedimentology I: Physical Processes and Sedimentary Systems

W

3 credits

2G

V. Picotti

651-4043-00L

Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems

W

3 credits

2G

V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll

Prerequisites / notice

The sedimentary record of sea-level change

Prerequisites / notice

no script. scientific articles will be distributed during the course

Literature

We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" and "economic aspects of limestone".

Prerequisites / notice

The grading of students is based on in-class exercises and end-semester examination.

Number

Title

Type

ECTS

651-4901-00L

Quaternary Dating Methods

W

3 credits

2G

I. Hajdas, M. Christl, S. Ivy Ochs

Abstract

Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range.

Objective

Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories.

Content

1. Introduction: Time scales for the Quaternary, Isotopes and decay
2. Radiocarbon dating: principles and applications
3. Cosmogenic nuclides: 3He, 10Be, 14C, 21Ne, 26Cl, 36Cl
4. U-series disequilibria dating
5. Luminescence dating
6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies
7. Cs-137 and Pb-210 (soil, sediments, ice core)
8. Summary and comparison of results from several dating methods at specific sites

Prerequisites / notice

Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility.

Visit to Limno Lab and sampling a sediment core

Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggerebg

Required: attending the lecture, visiting laboratories, handing back solutions for problem sets (Exercises)
The course provides an introduction into quantitative analysis of groundwater flow and solute transport. It is focussed on understanding, formulating, and solving groundwater flow and solute transport problems.

Objective

a) Students understand the basic concepts of groundwater flow and solute transport processes, and boundary conditions.

b) Students are able to formulate simple, practical groundwater flow and solute transport problems.

c) Students are able to understand and apply simple analytical and/or numerical solutions to fluid flow and solute transport problems.

Content

1. Introduction to groundwater problems. Concepts to quantify properties of aquifers.

2. Flow equation. The generalised Darcy law.

3. The water balance equation and basic concepts of poroelasticity.

5. Analytical solutions to flow problems

6. Finite difference scheme solution for simple flow problems.

10. Analytical solutions to transport problems.

11. Fractured and karst aquifers.

12. The unsaturated zone and capillary pressure.

13. Examples of applied hydrogeology from Switzerland and around the world. (Given by Dr. Beatrice Marti from Hydrosolutions Ltd.)

Handouts of slides.

de Marsily G., Quantitative Hydrogeology, Academic Press, 1986

River Basin Erosion

The course presents a view of the catchment processes of sediment production and transport that shape the landscape. Focus is on sediment fluxes from sources on hillslopes to the river network. Students learn about how a fluvial system functions, how to identify sediment sources and sinks, how to make predictions with numerical models, develop sediment budgets, and quantify geomorphic change.

Objective

The course has two fundamental aims: (1) The first aim is to provide environmental engineers with the physical process basis needed to understand fluvial system change, using the right language and terminology to describe landforms. We will cover the main geomorphic concepts of landscape change, e.g. thresholds, equilibrium, criticality, to describe change. Students will learn about the importance of the concepts of connectivity and timescales of change. (2) The second aim is to provide quantitative skills in making simple and more complex predictions of change and the data and models required. We will learn about typical landscape evolution models, and about hillslope erosion model concepts like RUSLE. We will learn how to identify sediment sources and sinks, and develop simple sediment budgets with the right data needed for this purpose. Finally we will learn about methods to describe the topology of river networks as conduits of sediment through the fluvial system.

Content

The course consists of four sections: (1) Introduction to fluvial forms and processes and geomorphic concepts of landscape change, including climatic and human activities acting on the system. Concepts like thresholds, equilibrium, self-organised criticality, etc. are presented. (2) Landscape evolution modelling as a tool for describing the shape of the land surface. Soil formation and sediment production at long timescales. (3) The processes of sediment production, upland sheet-rill-gully erosion, basin sediment yield, rainfall-triggered landsliding, sediment budgets, and the modelling of the individual processes involved. Here we combine model concepts with field observations and look at many examples. (4) Processes in the river, floodplain and riparian zone, including river network topology, channel geometry, aquatic habitat, role of riparian vegetation, including basics of fluvial system management. The main focus of the course is on the hydrology-sediment connections at the field and catchment scale.

Lecture notes

There is no script.

Literature

The course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from textbooks, professional papers, and ongoing research activities of the instructor. All material is on the course webpage.

Prerequisites / notice

Prerequisites: Basic Hydrology and Watershed Modelling (or contact instructor).

Environmental Soil Physics/Vadose Zone Hydrology

The course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales.

Objective

Students are able to:

- characterize porous media at different scales
- parameterize structural, flow and transport properties of partially-saturated porous media
- quantify driving forces and resulting fluxes of water, solute, and heat in soils
Content

Week 1: Introduction, soil and vadose zone, units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil water content; soil texture; particle size distributions;

Week 2: Pore scale consideration, pore sizes, shapes and connectivity, coordination number, continuity and percolation, surface area, soil structure

Week 3: Capillarity – capillary rise, surface tension, Young-Laplace equation; Washburn equation; numerical lab

Week 4: Soil Water Potential - the energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); units and calculations and measurement of equilibrium soil water potential components

Week 5: Soil water characteristics - definitions and measurements; parametric models, fitting and interpretation, hysteresis; demo lab

Week 6: Saturated water flow in soils - laminar flow in tubes (Poiseuille’s Law); Darcy’s Law, conditions and states of flow; permeability and hydraulic conductivity, measurement and theoretical concepts (Kozeny-Carman)

Week 7: Unsaturated water flow in soils - unsaturated hydraulic conductivity models and applications; Richards equation, approximations of Richards equation for steady state; approximate solutions to infiltration (Green-Ampt, Philip); outlook on unstable and preferential flow

Week 8: Numerical solution of Richards equation – using Hydrus1D for simulation of unsaturated flow; choosing class project

Week 9: Energy balance and land atmosphere interactions - radiation and energy balance; evapotranspiration, definitions and estimation; evaporation stages and characteristic length; soil thermal properties; steady state heat flow; non-steady heat flow

Week 10: Root water uptake and transpiration

Week 11: Solute and gas transport in soils; transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion equation; solutions for pulse and step solute application; parameter estimation; salt balance.

Week 12: Summary of lectures; solution of old exam

Week 13: Written semester-end exam

Week 14: Short presentations of Hydrus class projects; discussion of written exam

Literature

Supplemental textbook (not mandatory) - Introduction to Environmental Soil Physics, by: D. Hillel

651-2915-00L Seminar in Hydrology Z 0 credits 1S P. Burlando, J. W. Kirchner, S. Löw, C. Schär, M. Schirmer, S. I. Seneviratne, M. Stähli, C. H. Stamm, University lecturers

860-0012-00L Cooperation and Conflict Over International Water Resources W 3 credits 2S B. Wehrli, T. Bernauer, E. Calamita, T. U. Siegfried

Objective

This is a research seminar at the Master level. PhD students are also welcome.

Abstract

This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.

Content

Ability to (1) understand the causes and consequences of water scarcity and water pollution problems in large international river systems; (2) understand ways and means of addressing such water challenges; and (3) analyse when and why international efforts in this respect succeed or fail.

Based on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in small teams coached by the instructors, carry out research on a case of their choice (i.e. an international river basin where riparian countries are trying to find solutions to water allocation and/or water quality problems associated with a large dam project). They will write a brief paper and present their findings towards the end of the semester.

Lecture notes

Slides and reading materials will be distributed electronically.

Literature

The UN World Water Development Reports provide a broad overview of the topic: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/

Prerequisites / notice

The course is open to Master and PhD students from any area of ETH. ISTP students who take this course should also register for the course 860-0012-01L - Cooperation and conflict over international water resources; In-depth case study.

Prerequisites

The definition of prerequisites is part of the admission procedure for the master studies. You are informed by the administration office as to what courses of the section «prerequisites» you have to catch up with. You are accredited for these courses in the electives block of the master studies.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0471-01L</td>
<td>Atmospheric Chemistry</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Ammann, T. Peter</td>
</tr>
</tbody>
</table>

Abstract

The lecture provides an introduction to atmospheric chemistry at bachelor level. It introduces the fundamentals of gas phase reactions, the concept of solubility and reactions in aerosols and in clouds. It explains the chemical and physical processes responsible for global (e.g. stratospheric ozone depletion) as well as regional (e.g. urban air pollution) environmental problems.

Objective

The students will understand the basics of gas phase reactions and of reactions and processes in aerosols and clouds. The students will understand the most important chemical processes in the troposphere and the stratosphere. The students will also acquire a good understanding of atmospheric environmental problems including air pollution, tropospheric ozone formation, stratospheric ozone destruction and the relationship between air pollution and climate change.
701-0473-00L Atmospheric Physics

Abstract

This course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation especially prediction of thunderstorm development, aerosol physics as well as artificial weather modification.

Objective

- Students are able to explain the mechanisms of thunderstorm formation using knowledge of thermodynamics and cloud microphysics.
- To evaluate the significance of clouds and aerosol particles for artificial weather modification.

Content

- Aerosol particles are introduced in terms of their physical properties and their role in cloud formation based on Köhler theory. Thereafter cloud microphysical processes including ice nucleation are discussed.
- With these basics, the different forms of precipitation formation (convective vs. stratiform) is discussed as well as the formation and different stages of severe convective storms.
- The concepts are applied to understand and judge the validity of different proposed artificial weather modification ideas.

Lecture notes

Powerpoint slides and chapters from the textbook will be made available on moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=15367

Literature

Prerequisites / notice

50% of the time we use the concept of "flipped classroom" (en.wikipedia.org/wiki/Flipped_classroom), which we introduce at the beginning.

Taught competencies

- **Domain A - Subject-specific Competencies**: Concepts and Theories
- **Domain B - Method-specific Competencies**: Analytical Competencies
- **Domain C - Social Competencies**: Communication
- **Domain D - Personal Competencies**: Critical Thinking, Self-direction and Self-management

701-0461-00L Numerical Methods in Environmental Sciences

Abstract

This lecture imparts the mathematical basis necessary for the development and application of numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.

Objective

This lecture imparts the mathematical basis necessary for the development and application of numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.

Objective

- The students are able to:
 - Discuss basic measurement and analysis techniques that are relevant in atmospheric dynamics
 - To discuss the mathematical basics of atmospheric dynamics, based on selected atmospheric flow phenomena
 - To explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
 - To explain how mountains influence the atmospheric flow on different scales
 - Basic understanding of the role of moist adiabatic processes for weather systems and why stable water isotopes are useful in this context

Content

- Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer

Objective

- The course starts with introducing selected concepts of thermodynamics for atmospheric processes: The students learn the concept of the thermodynamic equilibrium and derive the Clausius-Clayperon equation from the first law of thermodynamics. This equation is central for understanding convection.
- Students also learn to classify radiousondes with the help of the thermodynamic charts (tephigrams) and to identify cloud base, cloud top, available convective energy in them. Atmospheric mixing processes are introduced for fog formation. The concept of the air parcel is used to understand convection.
- Aerosol particles are introduced in terms of their physical properties and their role in cloud formation based on Köhler theory. Thereafter cloud microphysical processes including ice nucleation are discussed.

Prerequisites / notice

On Mondays (or upon agreement) a tutorial is offered. This allows the students to discuss unresolved issues from the lecture or to discuss the problems of the exercise series and their solution. Participation is recommended.
Additional Electives ETH

701-1257-00L European Climate Change

Abstract

The lecture provides an overview of climate change in Europe, from a physical and atmospheric science perspective. It covers the following topics:

- Observational datasets, observation and detection of climate change;
- Underlying physical processes and feedbacks;
- Numerical and statistical approaches;
- Currently available projections.

Objective

At the end of this course, participants should:

- Understand the physical processes shaping climate change in Europe;
- Know about the methodologies used in climate change studies, encompassing observational, numerical, as well as statistical approaches;
- Be familiar with relevant observational and modeling data sets;
- Be able to tackle simple climate change questions using available data sets.

Content

Contents:

- Global context;
- Observational data sets, analysis of climate trends and climate variability in Europe;
- Global and regional climate modeling;
- Statistical downscaling;
- Key aspects of European climate change: intensification of the water cycle, Polar and Mediterranean amplification, changes in extreme events, changes in hydrology and snow cover, topographic effects;
- Projections of European and Alpine climate change.

Lecture notes

Slides and lecture notes will be made available at http://www.iac.ethz.ch/edu/courses/master/electives/european-climate-change.html

Prerequisites / notice

Participants should have a background in natural sciences, and have attended introductory lectures in atmospheric sciences or meteorology.

701-1281-00L Self-Learning Course on Advanced Topics in Atmospheric and Climate Science (HS)

Abstract

This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields:

- Atmospheric chemistry
- Atmospheric dynamics
- Atmospheric physics
- Climate modeling
- Climate physics
- Land-climate dynamics
- Atmospheric circulation
- Paleoclimate
- Ocean biogeochemical dynamics

Objective

The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a concise summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD).

Content

The course has the following elements:

- Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers)
- Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University: https://www.coursera.org/learn/sciwrite?action=enroll
- Weeks 6 and 9: Meetings with supervisor to clarify scientific questions
- Week 12: Hand-in of written summary (4 pages maximum)
- Week 14: Supervisor provides written feedback to the summary document
- Week 16: Oral exam about the scientific topic

Lecture notes

See http://jupiter.ethz.ch/~pj/FORTRAN/FortranClass.html

Taught competencies

- Domain A - Subject-specific Competencies: Techniques and Technologies
- Domain B - Method-specific Competencies: Media and Digital Technologies
- Problem-solving

Content

Classification of numerical problems, introduction to finite-difference methods, time integration schemes, non-linearity, conservative numerical techniques, an overview of spectral and finite-element methods. Examples and exercises from a diverse cross-section of Environmental Science.

Three obligatory exercises, each two hours in length, are integrated into the lecture. The implementation language is Python (previous experience not necessary: a Python introduction is given). Example programs and graphics tools are supplied.

Literature

Number

701-1281-00L

Title

Self-Learning Course on Advanced Topics in Atmospheric and Climate Science (HS)

Type

W

ECTS

3 credits

Hours

6A

Lecturers

Supervisors
Understanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of the ice sheets of Greenland and Antarctica.

If you plan to take this course, please contact one of the professors according to your interest.

- atmospheric chemistry (Prof. T. Peter)
- atmospheric dynamics (Prof. H. Wernli)
- atmospheric physics (Prof. U. Lohmann)
- climate modeling (Prof. C. Schär)
- climate physics (Prof. R. Knutti)
- land-climate dynamics (Prof. S. Seneviratne)
- atmospheric circulation (Prof. S. Schemm)
- paleoclimate (Prof. H. Stoll)
- ocean biogeochemical dynamics (Prof. N. Gruber)

Course Catalogue of ETH Zurich

Minors

Minor in Physical Glaciology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0289-00L</td>
<td>Applied Glaciology</td>
<td>W</td>
<td>4 credits</td>
<td>2G</td>
<td>D. Farinotti, A. Bauder, M. Werder</td>
</tr>
</tbody>
</table>

Abstract
The course transmits fundamental knowledge for treating applied glaciological problems. Topics include climate-glacier interactions, glacier ice flow, glacier hydrology, ice avalanches, and lake ice.

Objective
The objectives of the course are to:
- learn about fundamental glaciological processes, including glacier mass balance, ice dynamics, and glacier-related hazards;
- apply the above knowledge to some case studies inspired by contract-works performed at ETH's Glaciology section;
- generate the own computer code to solve the above case studies, and interpret the results;
- understand, both in class and in the field, the practical relevance of glaciology, with a focus on the Swiss applications.

Content
The course will develop along the following outline:
- How glaciology became a scientific discipline
- Glaciology and hydropower
- Glacier mechanics and ice flow
- Gravitational glacier instabilities
- Glacier hydrology and glacier lake outbursts
- Lake ice and ice bearing capacity
- Field excursion to Jungfraujoch
- Discussion of the exercises performed during the semester

Digital lecture handouts will be distributed prior to each class.

Prerequisites / notice
Completed BSc studies. Basic knowledge in computer scripting in any language (e.g., Python, R, Julia, Matlab, IDL, ...) will be advantageous for solving the exercises. The exercises will be performed in groups. A minimal level of fitness is required for the field excursion.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

651-4101-00L

Abstract
Understanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of the ice sheets of Greenland and Antarctica.

Objective
After the course the students are able understand and interpret measurements of ice flow, subglacial water pressure and ice temperature. They will have an understanding of glaciology-related physical concepts sufficient to understand most of the contemporary literature on the topic. The students will be well equipped to work on glacier-related problems by numerical modeling, remote sensing, and field work.
Content The dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydraulics. The specific dynamics of tide water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate).

Lecture notes http://people.ee.ethz.ch/~luethim/teaching.html

Literature A list of relevant literature is available on the class web site.

Prerequisites / notice High school mathematics and physics knowledge required.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-1477-00L</td>
<td>Quantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich)</td>
<td>W</td>
<td>3</td>
<td>1V</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UZH Module Code: GEO815</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://www.uzh.ch/cmsssl/en/studies/application/deadline.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Overview of the most important earth surface processes and landforms in cold regions (regions with glaciers and intense frost) with emphasis on high-mountain aspects. Discussion of present research challenges.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Knowledge of the most prominent climate-related geomorphological processes and phenomena in high-mountain regions, understanding of primary research challenges.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Erosion and sedimentation by glaciers as a function of topography, englacial temperature, sediment balance, sliding and melt water runoff. Processes and landforms in regions of seasonal and perennial frost (frost weathering, rock falls, debris cones/talus, solifluction, permafrost creep/rock glaciers, debris flows).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 pages.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

651-1585-00L Seminar in Glaciology W 3 credits 2S A. Bauder

Abstract Introduction to classic and modern literature of research in Glaciology. Active participation is expected and participants are mentored by PhD students of Glaciology.

Objective In-depth knowledge of selected topics of research in Glaciology. Introduction to different types of scientific presentation. Improve ability of the discussion of scientific topics.

Content Selected topics of scientific research in Glaciology

Prerequisites / notice Active participation is expected with presence at the sessions. Only a limited number of participants can be accepted. One of the following courses should be taken as preparation:

- 651-3561-00L Kryosphäre
- 101-0289-00L Applied Glaciology
- 651-4101-00L Physics of Glaciers

Minor in Biogeochemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1313-00L</td>
<td>Isotopes and Biomarkers in Biogeochemistry</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>C. Schubert, R. Kipfer</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course introduces the scientific concepts and typical applications of tracers in biogeochemistry. The course covers stable and radioactive isotopes, geochemical tracers and biomarkers and their application in biogeochemical processes as well as regional and global cycles. The course provides essential theoretical background for the lab course "Isotopic and Organic Tracers Laboratory".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course aims at understanding the fractionation of stable isotopes in biogeochemical processes. Students learn to know the origin and decay modes of relevant radionuclides. They discover the spectrum of possible geochronological tracers and biomarkers, their potential and limitations and get familiar with important applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Geogenic and cosmogenic radionuclides (sources, decay chains); stable isotopes in biogeochemistry (natural abundance, fractionation); geochemical tracers for processes such as erosion, productivity, redox fronts; biomarkers for specific microbial processes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

701-1315-00L Biogeochemistry of Trace Elements W 3 credits 2G A. Voegelin, S. Bouchet, L. Winkel

Abstract The course addresses the biogeochemical classification and behavior of trace elements, including key processes driving the cycling of important trace elements in aquatic and terrestrial environments and the coupling of abiotic and biotic transformation processes of trace elements. Examples of the role of trace elements in natural or engineered systems will be presented and discussed in the course.

Objective The students are familiar with the chemical characteristics, the environmental behavior and fate, and the biogeochemical reactivity of different groups of trace elements. They are able to apply their knowledge on the interaction of trace elements with geosphere components and on abiotic and biotic transformation processes of trace elements to discuss and evaluate the behavior and impact of trace elements in aquatic and terrestrial systems.

Content (i) Definition, importance and biogeochemical classification of trace elements. (ii) Key biogeochemical processes controlling the cycling of different trace elements (base metals, redox-sensitive and chalcophile elements, volatile trace elements) in natural and engineered environments. (iii) Abiotic and biotic processes that determine the environmental fate and impact of selected trace elements.

Lecture notes Selected handouts (lecture notes, literature, exercises) will be distributed during the course.

Prerequisites / notice Students should have a basic knowledge of biogeochemical processes (BSc course on Biogeochemical processes in aquatic systems or equivalent).

701-1341-00L Water Resources and Drinking Water W 3 credits 2G S. Hug, M. Berg, F. Hammes, U. von Gunten

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 144 of 2152
Abstract
The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.

Objective
The goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.

Content
The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore, legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally, unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.

Lecture notes
Handouts will be distributed

Literature
Will be mentioned in handouts

701-1346-00L Carbon Mitigation

W 3 credits 2G N. Gruber

Abstract
Future climate change can only be kept within reasonable bounds when CO2 emissions are drastically reduced. In this course, we will discuss a portfolio of options involving the alteration of natural carbon sinks and carbon sequestration. The course includes introductory lectures, presentations from guest speakers from industry and the public sector, and final presentations by the students.

Objective
The goal of this course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences.

Content
From the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group.

Lecture notes
None

Literature
Will be identified based on the chosen topic.

Prerequisites / notice
Exam: No final exam. Pass/No-Pass is assigned based on the quality of the presentation and ensuing discussion.

Minor in Global Change and Sustainability

Number	Title	Type	ECTS	Hours	Lecturers
701-0015-00L Transdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder Engagement | W | 2 credits | 2S | M. Stauffacher, C. E. Pohl, B. Vienni Baptista

Abstract
This seminar is designed for PhD students and PostDoc researchers involved in inter- or transdisciplinary research. It addresses and discusses challenges of this kind of research using scientific literature presenting case studies, concepts, theories, methods and by testing practical tools. It concludes with a 10-step approach to make participants’ research projects more societally relevant.

Objective
Participants know specific challenges of inter- and transdisciplinary research and can address them by applying practical tools. They can tackle questions like: how to integrate knowledge from different disciplines, how to engage with societal actors, how to secure broader impact of research? They learn to critically reflect their own research project in its societal context and on their role as scientists.

Content
The seminar covers the following topics:
(1) Theories and concepts of inter- and transdisciplinary research
(2) The specific challenges of inter- and transdisciplinary research
(3) Collaborating between different disciplines
(4) Engaging with stakeholders
(5) 10 steps to make participants’ research projects more societally relevant

Throughout the whole course, scientific literature will be read and discussed as well as practical tools explored in class to address concrete challenges.

Literature
Literature will be made available to the participants.

The following open access article builds a core element of the course:

Further, this collection of tools will be used
https://naturalsciences.ch/topics/co-producing_knowledge

Prerequisites / notice
Participation in the course requires participants to be working on their own research project.

Dates (Wednesdays, 8h15-12h00): 29 September, 27 October, 10 November, 24 November, 8 December

701-1551-00L Sustainability Assessment

W 3 credits 2G P. Krüttli, D. Nef

Waiting list will be deleted October 1st, 2021.

No enrollment possible after October 1st, 2021.

Abstract
The course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability. The format of the course is seminar-like, interactive.

Objective
At the end of the course, students:
- know core concepts of sustainable development, main features of social justice in the context of sustainability, a selection of methodologies for the assessment of sustainable development
- have a deepened understanding of the challenges of trade-offs between the different dimensions of sustainable development and their respective impacts on individual and societal decision-making
The course is structured as follows:
- overview of the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.

Objective

Ability to (1) understand the causes and consequences of water scarcity and water pollution problems in large international river systems; (2) understand ways and means of addressing such water challenges; and (3) analyse when and why international efforts in this respect succeed or fail.

Content

Based on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in small teams coached by the instructors, carry out research on a case of their choice (i.e. an international river basin where riparian countries are trying to find solutions to water allocation and/or water quality problems associated with a large dam project). They will write a brief paper and present their findings towards the end of the semester.

Materials and Resources

Slides and reading materials will be distributed electronically.

Lecture notes

Handouts of the lecture

Literature

Selected scientific articles and book-chapters

Prerequisites / notice

Students of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L) and ISTP students who take this course should also register for the course 860-0012-01L - Cooperation and conflict over international water resources; In-depth case study.

Minor in Sustainable Energy Use

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0731-00L</td>
<td>Power Market I - Portfolio and Risk Management</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>D. Reichelt, G. A. Koeppel</td>
</tr>
</tbody>
</table>

Abstract

Objective

Evaluate trading and hedging strategies. Apply methods and tools of risk management.

Content

1. Pan-European power market and trading
 1.1. Power trading
 1.2. Development of the European power markets
 1.3. Energy economics
 1.4. Spot and OTC trading
 1.5. European energy exchange EEX

2. Market model
 2.1. Market place and organisation
 2.2. Balance groups / balancing energy
 2.3. Ancillary services
 2.4. Market for ancillary services
 2.5. Cross-border trading
 2.6. Capacity auctions

3. Portfolio and Risk management
 3.1. Portfolio management 1 (introduction)
 3.2. Forward and futures contracts
 3.3. Risk management 1 (m2m, VaR, hptc, volatility, cVaR)
 3.4. Risk management 2 (PaR)
 3.5. Contract valuation (HPFC)
 3.6. Portfolio management 2

2.8. Risk Management 3 (enterprise wide)

4. Energy & Finance I
 4.1. Options 1 basics
 4.2. Options 2 hedging with options
 4.3. Introduction to derivatives (swaps, cap, floor, collar)
 4.4. Financial modelling of physical assets
 4.5. Trading and hydro power
 4.6. Incentive regulation

Lecture notes

Handouts of the lecture
In this seminar, scientific project management is introduced and applied to the master projects. The course concludes with a presentation of all projects including an overview of the scientific content and a discussion of project management techniques related to the master thesis.

Prerequisites / notice
Attendance is mandatory.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 147 of 2152
Laboratory and Field Courses

The course in the category "lab and field work" are only offered in spring semester.

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4275-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30</td>
<td>64D</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Only students who fulfill the following criteria are allowed to begin with their master thesis:
- a. successful completion of the bachelor programme;
- b. fulfilling of any additional requirements necessary to gain admission to the master programme.

The master programme is completed by a master thesis on a topic selected from the subject range of the chosen major programme.

Objective

Students are to prove their skills in working autonomously on a scientific project.

Course Units for Additional Admission Requirements

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0412-AAL</td>
<td>Climate Systems</td>
<td>E-</td>
<td>3</td>
<td>6R</td>
<td>S. I. Seneviratne</td>
</tr>
</tbody>
</table>

Students have a basic understanding of the global energy balance, radiation budget, boundary, layer, atmosphere, ocean, biosphere, land-surface coupling, cryosphere, carbon cycle, climate variability, climate of the past and anthropogenic climate change, and they are able to apply this to solve simple quantitative problems and answer qualitative questions.

Objective

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0471-AAL</td>
<td>Atmospheric Chemistry</td>
<td>E-</td>
<td>3</td>
<td>6R</td>
<td>M. Ammann, T. Peter</td>
</tr>
</tbody>
</table>

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Objective

The learning target of this lecture is a general overview on the most important processes of atmospheric chemistry and the various problems of the anthropogenic change in the structure of Earth's atmosphere.

Content

- Origin and properties of the atmosphere: structure, large scale dynamics, UV radiation
- Thermodynamics and kinetics of gas phase reactions: enthalpy and free energy of reactions, rate laws, mechanisms of bimolecular and termolecular reactions.
- Tropospheric photochemistry: Photolysis reactions, photochemical C3 formation, role and budget of HOx, dry and wet deposition
- Aerosols and clouds: primary and secondary aerosol sources, phase transfer kinetics, solubility and hygroscopicity, N2O5 chemistry, SO2 oxidation, secondary organic aerosols
- Air quality: role of planetary boundary layer, summer- versus winter-smog, environmental problems, legislation, long-term trends
- Stratospheric chemistry: Chapman cycle, Brewer-Dobson circulation, catalytic ozone destruction cycles, polar ozone hole, Montreal protocol
- Global aspects: global budgets of ozone, methane, CO and NOx, air quality - climate interactions

Prerequisites / notice

Basic courses in chemistry and physics are expected.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0475-AAL</td>
<td>Atmospheric Physics</td>
<td>E-</td>
<td>3</td>
<td>6R</td>
<td>U. Lohmann</td>
</tr>
</tbody>
</table>

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
This course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation, thermodynamics, aerosol physics, radiation as well as the impact of aerosols and clouds on climate and artificial weather modification.

Objective
Students are able to:
- to explain the mechanisms of cloud and precipitation formation using knowledge of humidity processes and thermodynamics.
- to evaluate the significance of clouds and aerosol particles for climate and artificial weather modification.

Content
Moist processes/thermodynamics; aerosol physics; cloud formation; precipitation processes, storms; importance of aerosols and clouds for climate and weather modification, clouds and precipitation processes.

Lecture notes
Powerpoint slides/script will be made available.

Literature

701-0473-AAL Weather Systems E- 3 credits 6R M. A. Sprenger, F. Scholder-Aemisegger

Abstract
The students learn about the dynamical features of the Earth's atmosphere. They interpret satellite imagery and learn about basic concepts in dynamical meteorology. The global circulation is briefly discussed, before introducing the Eulerian and the Lagrangian perspective, which are used to study air stream in extratropical cyclones and to investigate basic aspects in mountain meteorology.

Objective
The students are able to:
- explain basic measurement and analysis techniques that are relevant in atmospheric dynamics
- to discuss the mathematical basics of atmospheric dynamics, based on selected atmospheric flow phenomena
- to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
- to explain how mountains influence the atmospheric flow on different scales
- to explain the role of moist adiabatic processes for weather systems and why stable water isotopes are useful in this context

Content
Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer

Lecture notes
Lecture notes and slides

Literature

701-0461-AAL Numerical Methods in Environmental Sciences E- 3 credits 6R C. Schär

Abstract
This lecture imparts the mathematical basis necessary for the development and application of numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.

Objective
This lecture imparts the mathematical basis necessary for the development and application of numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.

Content
Classification of numerical problems, introduction to finite-difference methods, time integration schemes, non-linear, conservative numerical techniques, an overview of spectral and finite-element methods. Examples and exercises from a diverse cross-section of Environmental Science.

Lecture notes
Is provided (CHF 10.- per copy).

Literature
List of literature is provided.

701-0106-AAL Mathematics V: Applied Deepening of Mathematics I - III E- 3 credits 6R M. A. Sprenger

Abstract
Selected mathematical topics are presented for later use in more specialised lectures. Part of the topics were already discussed in the lectures Mathematics I-III. Here, they should be shortly recapitulated and most importantly applied to practical problems. If necessary, new mathematical concepts and methods will be introduced in order to solve challenging and inspiring problems from practice.

Objective
The aim of this lecture is to prepare the students for the more specialised lectures. They should become more familiar with the mathematical background, the mathematical concepts and most of all with their application and interpretation.

Content
Practical examples from the following areas will be discussed: ordinary differential equations; eigenvalue problems from linear algebra; systems of linear and nonlinear differential equations; partial differential equations (diffusion, transport, waves).

701-0071-AAL Mathematics III: Systems Analysis E- 4 credits 9R R. Knutti, H. Wernli

Abstract
The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.

Objective
Learning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.

Content
Introduction to principles of models; one-dimensional linear box models; multi-dimensional linear box models; nonlinear box models; models in space and time
Lecture notes: Teaching material: book (see literature).

<table>
<thead>
<tr>
<th>Atmospheric and Climate Science Master - Key for Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Dr</td>
</tr>
<tr>
<td>W+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key for Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

ECTS: European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Eduational Science for Teaching Diploma and TC

These are the general course offerings of the programmes Teaching Diploma (TD) - categories Educational Science and Compulsory Elective Courses - and Teaching Certificate (TC) - category Educational Science.

▶ Educational Science Teaching Certificate

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>This lecture is only apt for students who intend to enrol in the programs "Teaching Diploma" or "Teaching Certificate". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course looks into scientific theories and also empirical studies on human learning and relates them to the school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way humans process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers are put in a position where they can further educate themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Thematische Schwerpunkte:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lernen als Verhaltensänderung und als Informationsverarbeitung; Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information; Lernen als Wissenskonstruktion und Kompetenzerwerb unter besonderer Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und Erklärungen; Die Rolle von Emotion und Motivation beim Lernen; Interindividuelle Unterschiede in der Lernfähigkeit und ihre Ursachen; Intelligenztheorien, Geschlechtsunterschiede beim Lernen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Folien werden zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>This course is only apt for students who intend to enrol in the programs "Lehrdiplom" or "Didaktisches Zertifikat". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

851-0240-22L Coping with Psychosocial Demands of Teaching (EW4 W D2) ■

Number of participants limited to 20.

The successful participation in EW1 ("Human Learning") and EW2 ("Designing Learning Environments for School") is recommended, but not a mandatory prerequisite.

Abstract

In this class, students will learn concepts and skills for coping with psychosocial demands of teaching

Objective

Students possess theoretical knowledge and practical competences to be able to cope with the psychosocial demands of teaching.

(1) They know relevant rules of conversation and conflict management and are able to apply them in an appropriate way in the school context (e.g. in parental talks).

(2) They know core aspects of classroom management and know how to apply it concretely (e.g. promoting a positive learning atmosphere, avoiding disciplinary difficulties) and they are aware of possible contacts (e.g. illegal or psychological services).

851-0242-06L Cognitively Activating Instructions in MINT Subjects ■ W

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW1)".

Abstract

This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.

Objective

- Get to know cognitively activating instructions in MINT subjects
- Get information about recent literature on learning and instruction

Prerequisites / notice

Für eine reibungslose Semesterplanung wird uns eine frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.

851-0242-07L Human Intelligence

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Number of participants limited to 30.

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW1)".

Abstract

The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.

Objective

- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding findings relevant for education

851-0242-08L Research Methods in Educational Science

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Number of participants limited to 30.

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW1)".

Abstract

This course looks into scientific theories and also empirical studies on human learning and relates them to the school.

Objective

This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.

Abstract

This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.

Objective

This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.

Abstract

This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.
The main goals are:
- Understand research methods used in the empirical educational sciences
- Understand and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

Gender Issues In Education and STEM

Number of participants limited to 30.

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Prerequisite: students should be taking the course 851-0240-00L Human Learning (EW1) in parallel, or to have successfully completed it.

Educational Science Teaching Diploma

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
</tbody>
</table>

This course looks into scientific theories and also empirical studies on human learning and relates them to the school.

Prerequisites:
- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- To integrate this knowledge with teacher’s work.

Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisites
- Successful participation in the course 851-0240-00L Human Learning (EW1).

Support and Diagnosis of Knowledge Acquisition Processes (EW3)

Enrolment only possible with matriculation in Teaching Diploma (except for students of Sport Teaching Diploma, who complete the sport-specific course unit EW3) and for students who intend to enrol in the “Teaching Diploma”.

Prerequisites: successful participation in 851-0240-00L Human Learning (EW1).

In this seminar students learn advanced techniques to support and to diagnose knowledge acquisition processes in school.

The main goals are:
1. You have a deep understanding about the cognitive mechanisms of knowledge acquisition.
2. You have a basic understanding about psychological research questions in group work.
3. You know various techniques of formative assessment and can apply these to uncover students’ misconceptions.

Coping with Psychosocial Demands of Teaching (EW4)

Enrolment possible with Teaching Diploma matriculation, except for students of Sport Teaching Diploma, who complete the sport-specific course unit EW4.

Students learn and practice techniques and skills for coping with psychosocial demands of teaching.
851-0240-15L Designing Educational Environments in Physical Education (EW2 Sport) [W](3 credits)

Objective
- Designing effective learning environments in Physical Education (EW2 Sport).

Abstract
- Students develop and implement learning environments tailored to the needs of physical education.

Content
- Principles of effective learning environments in Physical Education.
- Development of learning environments in Physical Education.
- Implementation of learning environments in Physical Education.

Lecture notes
- Designing Educational Environments in Physical Education (EW2 Sport).

Literature
- Buch "Lernwirksam unterrichten" (Felten/Stern)

Prerequisites / notice
- Der erfolgreiche Abschluss von EW1 und EW2 stellt eine wünschenswerte, jedoch nicht obligatorische Voraussetzung dar.

851-0240-19L Effective Learning Environments (EW 5) [W](1 credit)

Objective
- The focus of this course is on the development of effective learning environments.

Abstract
- Students learn how to design and implement effective learning environments.

Content
- Principles of effective learning environments.
- Development of effective learning environments.
- Implementation of effective learning environments.

Literature
- Buch "Lernwirksam unterrichten" (Felten/Stern)

Prerequisites / notice
- Detailed information: http://www.ifvll.ethz.ch/studium/lehre/ew-5.html

851-0242-07L Human Intelligence [W](1 credit)

Objective
- Understanding of research methods used in the empirical human sciences.

Abstract
- The focus of this course is on understanding research methods used in the empirical human sciences.

Content
- Principles of research methods used in the empirical human sciences.
- Development of research methods used in the empirical human sciences.
- Implementation of research methods used in the empirical human sciences.

Literature
- Buch "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer

851-0242-06L Cognitively Activating Instructions in MINT Subjects [W](2 credits)

Objective
- Getting to know cognitively activating instructions in MINT subjects.

Abstract
- This seminar focuses on teaching units in chemistry, physics, and mathematics.

Content
- Principles of cognitively activating instructions in MINT subjects.
- Development of cognitively activating instructions in MINT subjects.
- Implementation of cognitively activating instructions in MINT subjects.

Literature
- Buch "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer.

Prerequisites / notice
- This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".
Prerequisites / notice

- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- Understand and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

Objective

- Understand research methods used in the empirical educational sciences
- Understand and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

Prerequisites / notice

- Prerequisite: students should be taking the course 851-0240-00L Human Learning (EW1) in parallel, or to have successfully completed it.

Objective

- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- To integrate this knowledge with teacher's work.

Content

Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Notes:

- Focus on STEM subjects (biology, chemistry, computer science, mathematics, and physics) with no explicit discussion of geography or physical education.

Prerequisites / notice

- Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

Objective

- Assessing the adequacy of Matura thesis topics and defining the scope of a project.
- Determining and promoting a successful work process.
- Devising and applying criteria for assessing process, product and presentation of a Matura thesis.

Prerequisites / notice

- Focus on STEM subjects (biology, chemistry, computer science, mathematics, and physics) with no explicit discussion of geography or physical education.

Objective

- Forest Soil: The soil in the focus of the climate and weather. The assistantship provides didactic experience and exposure to a different school level (more heterogeneous groups such as for example low-performing to very high-performing Children, language problems etc.)
LD students learn more about potentials and deficits of students. They get to know better the early stages of knowledge as well as the formation of misconceptions of students in their subject area. The seminar with assistantship includes three phases: In the block seminar misconceptions in the own subject as well as theoretical inputs from developmental and cognitive psychology are discussed (takes place partially in English). During the assistantship, a teaching task defined by the primary and secondary teachers is actively taken on in a class. At the end there is the writing of a final report, which includes the description of the knowledge level of the students. This seminar is only suitable for LD students who can flexibly adapt to the needs of students from lower grades.

Compulsory Elective Courses Teaching Diploma

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0237-01L</td>
<td>Vocational Schools as Sites of Teaching and Learning</td>
<td>W</td>
<td>3 credits</td>
<td>2S</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>I: Teaching Structure (University of Zürich)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with Teaching Diploma matriculation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UZH Module Code: 090LLB1 (ATTENTION: Students of Sport Teaching Diploma enroll in course 090LLB1S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simultaneous enrolment in course "Lehr- und Lernort Berufsfachschule II: Förderung und Unterstützung von Lernenden" (UZH Module Code: 090LLB2) is compulsory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://www.uzh.ch/cmsssl/en/studies/application/deadline s.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>("Registering for studies at more than one university, Teaching Diplom", Philosophische Fakultät)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Formulating learning objectives at different levels, and implementing and monitoring these.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Steer tuition in terms of content and method to fit in with the objectives.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Formulating examination questions and assignments on the basis of the learning objectives set out in the curriculum and the teaching given.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Selectively deploying different examination types and procedures/structuring selected learning contents logically in terms of the subject matter and learning process (from the concrete to the abstract, from the simple to the complex) and implementing these with different didactic visual aids.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In der Veranstaltung werden die Rahmen- und Schullehrpläne der Berufsmaturität (alle Richtungen) analysiert und deren Fachinhalt in Übungen und Hospitationen didaktisch umgesetzt. Der Unterricht an der Berufsmaturität wird im Hinblick auf die Herausforderung "Viel Stoff-wenig Zeit" erarbeitet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Von den Dozierenden.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unterrichten an Berufsfachschulen: Berufsmaturität. hep Verlag Bern</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Steiner (2007): Der Kick zum effizienten Lernen. hep Verlag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rahmen- und Schullehrpläne der Berufsmaturität</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To be able to perceive the special situation of the vocational learners in their double burden of occupation and school and to take it into account pedagogically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Know the transfer topic with regard to performance motivation. Be able to deal with conflicts, disorders and generally difficult situations in BM lessons in a solution-oriented way.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Know the forms of company learning and make them usable for teaching.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Diagnose crisis developments and take supportive measures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Know the essential aspects of a support-oriented teaching management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Finding role security as a teacher and defining its limits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Gain insights into the concrete training situation of vocational learners.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Lehrveranstaltung ist seit September 2008 vom Bundesamt für Berufsbildung und Technologie akkreditiert.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 155 of 2152
Content
- Positionierung des Berufsfachschulunterrichts innerhalb des dualen (trialen) Systems.
- Berufsmaturität: Entwicklung von Kernkompetenzen für die Wirtschaft?
- "Verakademisierung" der Berufsbildung?
- Sozialisations- und Lernprozesse im beruflichen Umfeld / Führungsverständnis im Umgang mit Jugendlichen an Berufsfachschulen.
- Konfliktmanagement I: Wahrnehmungsinstrumente und Interventionssstrategien, Konfliktprävention und niederschwelliges Konfliktmanagement.
- Konfliktmanagement II: Der ressourcenorientierte Ansatz im Umgang mit Störungen.
- Das lösungsorientierte Konfliktgespräch in schulischen Kontext / Beratung und Coaching: Beratungssituationen im Kontext des Unterrichtsalltags.
- Rollenverständnis und Rollegrenzen.
- Berufslernendengerechtes Unterrichtsmanagement.
- Mobbing in der Schule.
- Konzepte und Praxis der betrieblichen Betreuung und Förderung.
- Jugendkriminalität und Jugendgewalt.
- Jugendkrisen und Krisenintervention.

Prerequisites / notice
Die Lehrveranstaltung ist seit September 2008 vom Bundesamt für Berufsbildung und Technologie akkreditiert.

Literature
Handouts vom Dozenten und Sammlung von Arbeitsmaterialien auf dem BSCW-Server.

Lecture notes

Literature from the learning sciences is critically discussed with a focus on research methods.

Using Outdoor Education

- **Objective**: Get to know cognitively activating instructions in MINT subjects
- **Objective**: Get information about recent literature on learning and instruction

Human Intelligence

- **Objective**: Understanding findings relevant for education

Research Methods in Educational Science

- **Objective**: Understand research methods used in the empirical educational sciences
- **Objective**: Understand and critically examine information from scientific journals and media

Gender Issues In Education and STEM

- **Objective**: Get information about recent literature in the area of gender issues in education and STEM
- **Objective**: Understand and critically examine information from scientific journals and media

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 156 of 2152
In this seminar, we introduce some of the major gender-related issues in the context of education and science learning, such as the under-representation of girls and women in science, technology, engineering and mathematics (STEM). Common perspectives, controversies and empirical evidence will be discussed.

- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- To integrate this knowledge with teacher’s work.

Content

Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisites

Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Hours</th>
<th>Offered By</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-27L</td>
<td>Supervising and Assessing Matura Theses</td>
<td>W</td>
<td>1</td>
<td>1V</td>
<td>J. Maue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prerequisites: successful participation in 851-0240-00L Human Learning (EW1).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course prepares prospective teachers to supervising and assessing scientific projects at upper secondary school level, particularly Matura theses in STEM subjects at Gymnasium.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Assessing the adequacy of Matura thesis topics and defining the scope of a project.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Determining and promoting a successful work process.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Devising and applying criteria for assessing process, product and presentation of a Matura thesis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: successful participation in 851-0240-00L Human Learning (EW1).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Hours</th>
<th>Offered By</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0252-12L</td>
<td>The Science of Learning From Failure</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>M. Kapur, E. Ziegler</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 60.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>We can learn from failure. But, what does “failure” mean? And, what, how, and why do we learn from failure? This course covers research from the cognitive, educational, and learning sciences that addresses the role of failure in human learning. Students will critically examine how failure affects thinking, knowledge, creativity, problem-solving, and motivation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students will:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Critically read and analyze articles on research that addresses failure in learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Participate in in-class problem-solving activities around research in failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Discuss and reflect upon topics in both online and face-to-face formats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Engage in activities through the online platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Complete a final paper on a subtopic related to failure in learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>By the end of the course, students should be able to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Demonstrate a critical understanding of the role that failure plays in learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Discuss how and why failure can benefit learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Discuss how and why failure does not facilitate learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Apply understanding to a related sub-topic.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>We learn from our mistakes, or rather, we hope that we do. Another way to say this is that we can learn from failure. But, what does “failure” mean? What, how, and why do we learn from failure? This course covers research from the cognitive, educational, and learning sciences that addresses the role of failure in human learning. Students will critically examine how failure affects development of knowledge, creativity, problem-solving, and general thinking and learning. More specifically, they will have the opportunity to question and evaluate the potential relationships between the facets around failure within individual, interactional, cultural, societal, and global contexts through seminal readings and problem-solving activities. Students from any discipline are welcome to this course to learn more about how failure can be harnessed to improve our knowledge, capabilities, innovations, teamwork, and contribute to the larger global world.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This seminar is an interactive course, thus attendance and classroom participation are required. Processing of online tasks is a requirement for obtaining credit points.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Educational Science for Teaching Diploma and TC - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Letter</th>
<th>Type</th>
<th>P</th>
<th>Practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td>A</td>
<td>Independent project</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>D</td>
<td>Diploma thesis</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>R</td>
<td>Revision course / private study</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Generally Accessible Seminars and Colloquia

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-1187-00L</td>
<td>Colloquium in Structural Engineering</td>
<td>E-</td>
<td>0 credits</td>
<td>1K</td>
<td>W. Kaufmann, E. Chatzi, A. Frangi, B. Stojadinovic, B. Sudret, A. Taras, M. Vassiliou</td>
</tr>
</tbody>
</table>

Abstract

Professors from national and international universities, technical experts from the industry as well as research associates of the institute of structural engineering (IBK) are invited to present recent research results and specific projects from the practice. This colloquium is addressed to members of universities, practicing engineers and interested persons in general.

Objective

Learn about recent research results in structural engineering.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-1387-00L</td>
<td>Colloquia in Geotechnics</td>
<td>E-</td>
<td>0 credits</td>
<td>1K</td>
<td>A. Puzrin, G. Anagnostou, I. Anastasopoulos</td>
</tr>
</tbody>
</table>

Abstract

The Institute for Geotechnical Engineering invites distinguished speakers from research and practice, nationally and internationally. The colloquia are directed towards staff and students from Universities as well as engineers and scientists working in industry. Details can be obtained from www.igt.ethz.ch by following Events & Public Events. Some colloquia are available via webcast.

Objective

Learn about recent research results in geotechnics.

Civil Engineering (General Courses) - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Civil Engineering Bachelor

First Year Compulsory Courses

First Year Examinations

In place of the German course 851-0703-03L Private Construction Law students can take the French course 851-0709-00L Introduction to Civil Law.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0241-00L</td>
<td>Analysis I</td>
<td>O</td>
<td>7 credits</td>
<td>5V+2U</td>
<td>M. Akveld</td>
</tr>
<tr>
<td></td>
<td>Mathematical tools for the engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics as a tool to solve engineering problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic mathematical knowledge for engineers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complex numbers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculus for functions of one variable with applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simple Mathematical models in engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wird auf der Vorlesungshomepage zu Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klaus Dürnchabel, "Mathematik für Ingenieure - Eine Einführung mit Anwendungs- und Alltagsbeispielen", Springer; online verfügbar unter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://link.springer.com/book/10.1007/978-3-8348-2559-9/page/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tilo Arens et al., "Mathematik", Springer; online verfügbar unter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://link.springer.com/book/10.1007/978-3-642-44919-2/page/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meike Akveld und Rene Sperb, "Analysis I", vdf;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urs Stammbach, "Analysis I/II" (erhältlich im ETH Store);</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://people.math.ethz.ch/~stammb/analysisskript.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-0141-00L</td>
<td>Linear Algebra</td>
<td>O</td>
<td>5 credits</td>
<td>3V+1U</td>
<td>M. Akka Ginosar</td>
</tr>
<tr>
<td></td>
<td>Introduction to Linear Algebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic knowledge of linear algebra as a tool for solving engineering problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understanding of abstract mathematical formulation of technical and scientific problems. Together with Analysis we develop the basic mathematical knowledge for an engineer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculation with MATLAB will be introduced in the first exercise class.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The lecturer will provide course notes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. Nipp, D. Stoffer, Lineare Algebra, VdF Hochschulverlag ETH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Strang, Lineare Algebra, Springer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-0845-00L</td>
<td>Computer Science I</td>
<td>O</td>
<td>5 credits</td>
<td>2V+2U</td>
<td>C. Cotrini Jimenez, R. Sasse</td>
</tr>
<tr>
<td></td>
<td>The course covers the basic concepts of computer programming.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic understanding of programming concepts. Students will be able to write and read simple programs and to modify existing programs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variablen, Typen, Kontrollanweisungen, Prozeduren und Funktionen, Scoping, Rekursion, dynamische Programmierung, vektorisierte Programmierung, Effizienz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Als Lernsprache wird Java eingesetzt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sprechen Sie Java?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hanspeter Mössenböck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dpunkt.verlag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0501-00L</td>
<td>Mechanics 1: Kinematics and Statics</td>
<td>O</td>
<td>5 credits</td>
<td>3V+2U</td>
<td>E. Mazza</td>
</tr>
<tr>
<td></td>
<td>Basics: Position of a material point, velocity, kinematics of rigid bodies, forces, reaction principle, mechanical power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statics: Groups of forces, moments, equilibrium of rigid bodies, reactions at supports, parallel forces, center of gravity, statics of systems, principle of virtual power, trusses, frames, forces in beams and cables, friction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grundlagen: Lage eines materiellen Punktes; Geschwindigkeit; Kinematik starrer Körper, Translation, Rotation, Kreiselung, ebene Bewegung; Kräfte, Reaktionsprinzip, innere und äussere Kräfte, verteilte Flächen- und Raumkräfte; Leistung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statik: Äquivalenz und Reduktion von Kräftegruppen; Ruhe und Gleichgewicht, Hauptsatz der Statik; Lagerbindungen und Lagerkräfte, Lager bei Balkenträgern und Wellen, Vorgehen zur Ermittlung der Lagerkräfte; Parallel Kräfte und Schwerpunkt; Statik der Systeme, Behandlung mit Hauptsatz, mit Prinzip der virtuellen Leistungen, statisch unbestimmte Systeme; Statisch bestimmte Fachwerke, ideale Fachwerke, Pendelstützen, Knotengleichgewicht, räumliche Fachwerke; Reibung, Haftreibung, Gleitreibung, Gelenk und Lagerreibung, Rollreibung; Seilstatik; Beanspruchung in Stab trägern, Querkraft, Normalkraft, Biege- und Torsionsmoment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grundlagen: Lage eines materiellen Punktes; Geschwindigkeit; Kinematik starrer Körper, Translation, Rotation, Kreiselung, ebene Bewegung; Kräfte, Reaktionsprinzip, innere und äussere Kräfte, verteilte Flächen- und Raumkräfte; Leistung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statik: Äquivalenz und Reduktion von Kräftegruppen; Ruhe und Gleichgewicht, Hauptsatz der Statik; Lagerbindungen und Lagerkräfte, Lager bei Balkenträgern und Wellen, Vorgehen zur Ermittlung der Lagerkräfte; Parallel Kräfte und Schwerpunkt; Statik der Systeme, Behandlung mit Hauptsatz, mit Prinzip der virtuellen Leistungen, statisch unbestimmte Systeme; Statisch bestimmte Fachwerke, ideale Fachwerke, Pendelstützen, Knotengleichgewicht, räumliche Fachwerke; Reibung, Haftreibung, Gleitreibung, Gelenk und Lagerreibung, Rollreibung; Seilstatik; Beanspruchung in Stabträgern, Querkraft, Normalkraft, Biege- und Torsionsmoment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übungsblätter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sayir, M.B., Dual. J., Kaufmann S., Mazza E., Ingenieurmechanik 1: Grundlagen und Statik, Springer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>651-0032-00L</td>
<td>Geology and Petrography</td>
<td>O</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>K. Rauchenstein, M. O. Saar</td>
</tr>
<tr>
<td></td>
<td>This course gives an overview of the basic concepts of geology and petrography and shows some links to the application of these concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course consists of weekly lectures and bi-weekly exercises in groups.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übungen zum Gesteinsbestimmen und Lesen von geologischen, tektonischen und geotechnischen Karten, einfache Konstruktionen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weekly handouts of PPT slides via MyStudies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The course Private Law focuses on the Swiss Code of Obligations (contracts, torts) and on Property Law (ownership, mortgage and easements). In addition, the course will provide a short overview of Civil Procedure and Enforcement.

The course Private Law focuses on the Swiss Code of Obligations (contracts, torts) and on Property Law (ownership, mortgage and easements). In addition, the course will provide a short overview of Civil Procedure and Enforcement.

Prerequisites / notice
- The course Private Law focuses on the Swiss Code of Obligations (contracts, torts) and on Property Law (ownership, mortgage and easements). In addition, the course will provide a short overview of Civil Procedure and Enforcement.

- **Remarques**
 - Le cours de droit civil porte notamment sur le droit des obligations (droit des contrats et responsabilité civile) et sur les droits réels (propriété, gages et servitudes). De plus, il est donné un bref aperçu du droit de la procédure et de l'exécution forcée.

- **Literature**
 - Sont indispensables:
 - le Code civil et le Code des obligations;
 - Sont conseillés:
 - Nef, Urs Ch.: Le droit des obligations à l'usage des ingénieurs et des architectes, trad. Bovay, J., éd. Payot, Lausanne
 - Boillod, J.-P.: Manuel de droit, éd Statkine, Genève

Number Title Type ECTS Hours Lecturers

151-0501-02L Mechanics 1: Kinematics and Statics (Colloquium) Z 0 credits 1K R. Hopf

Abstract
Basics: Position of a material point, velocity, kinematics of rigid bodies, forces, reaction principle, mechanical power
Static: Groups of forces, moments, equilibrium of rigid bodies, reactions at supports, parallel forces, center of gravity, statics of systems, principle of virtual power, trusses, frames, forces in beams and cables, friction

Objective
The understanding of the fundamentals of Statics for engineers and their application in simple settings.

Content
Basics: Position of a material point; velocity; kinematics of rigid bodies; translation, rotation, planar motion; forces, action-reaction principle, internal and external forces, distributed forces; mechanical power.
Static: Equivalence and reduction of groups of forces; rest and equilibrium; basic theorem of statics; kinematic and static boundary conditions, applications to supports and clamps of rods and beams; procedures for determination of forces at supports and clamps; parallel forces and centre of gravity; statics of systems, solution using basic theorem and using the principle of virtual power, statically indeterminate systems; statically indeterminate truss structures, ideal truss structures, nodal point equilibrium, methods for truss force determination; friction, static friction, sliding friction, friction at joints and supports, rolling resistance; forces in cables; beam loading, force and moment vector.

Lecture notes
Übungsblätter

Literature
Sayir, M.B., Dual J., Kaufmann S., Ingenieurmechanik 1: Grundlagen und Statik, Teubner

Objective
Learning to model scientific problems using partial differential equations and developing a good command of the mathematical tools that can be applied to them. Knowing the formulation of important problems in science and engineering with a view toward civil engineering (when possible). Understanding the properties of the different types of partial differential equations arising in science and in engineering.

Content
Classification of partial differential equations
Study of the Heat equation general diffusion/parabolic problems using the following tools through Separation of variables as an introduction to Fourier Series.
Systematic treatment of the complex and real Fourier Series
Study of the wave equation and general hyperbolic problems using Fourier Series, D'Alembert solution and the method of characteristics.
Laplace transform and its use to differential equations
Study of the Laplace equation and general elliptic problems using similar tools and generalizations of Fourier series.
Application of Laplace transform for beam theory will be discussed.

Time permitting, we will introduce the Fourier transform.

Number Title Type ECTS Hours Lecturers

401-0243-00L Analysis III O 3 credits 2V+1U M. Akka Ginosar

Abstract
We will model and solve scientific problems with partial differential equations. Differential equations which are important in applications will be classified and solved. Elliptic, parabolic and hyperbolic differential equations will be treated. The following mathematical tools will be introduced: Laplace and Fourier transforms, Fourier series, separation of variables, methods of characteristics.

Objective
Learning to model scientific problems using partial differential equations and developing a good command of the mathematical tools that can be applied to them. Knowing the formulation of important problems in science and engineering with a view toward civil engineering (when possible). Understanding the properties of the different types of partial differential equations arising in science and in engineering.

Content
Classification of partial differential equations
Study of the Heat equation general diffusion/parabolic problems using the following tools through Separation of variables as an introduction to Fourier Series.
Systematic treatment of the complex and real Fourier Series
Study of the wave equation and general hyperbolic problems using Fourier Series, D'Alembert solution and the method of characteristics.
Laplace transform and its use to differential equations
Study of the Laplace equation and general elliptic problems using similar tools and generalizations of Fourier series.
Application of Laplace transform for beam theory will be discussed.

Time permitting, we will introduce the Fourier transform.
Lecture notes will be provided

Literature

The course material is taken from the following sources:

Prerequisites / notice

Analysis I and II, insbesondere, gewöhnliche Differentialgleichungen.

Abstract

This course gives an overview of important concepts in classical dynamics, thermodynamics, electromagnetism, quantum physics, atomic physics, and special relativity. Emphasis is placed on demonstrating key phenomena using experiments, and in developing skills for quantitative problem solving.

Objective

The goal of this course is to make students able to explain and apply the basic principles and methodology of physics to problems of interest in modern science and engineering. An important component of this is learning how to solve new, complex problems by breaking them down into parts and applying simplifications. A secondary goal is to provide to students an overview of important subjects in both classical and modern physics.

Content

Electrodynamics, Thermodynamics, Quantum physics, Waves and Oscillations, special relativity

Lecture notes

Lecture notes and exercise sheets will be distributed via Moodle

Literature

402-0023-01L

Physics

O 7 credits 5V+2U S. Johnson

Abstract

The course teaches the basics of hydromechanics, relevant for civil and environmental engineers.

Objective

Familiarization with the basics of hydromechanics of steady state flows

Content

Properties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall

Lecture notes

Script and collection of previous problems

Literature

Bollrich, Technische Hydromechanik 1, Verlag Bauwesen, Berlin

151-0503-00L

Dynamics

O 6 credits 4V+2U D. Kochmann

Abstract

Dynamics of particles, rigid bodies and deformable bodies: Motion of a single particle, motion of systems of particles, 2D and 3D motion of rigid bodies, vibrations, waves

Objective

This course provides Bachelor students of mechanical and civil engineering with fundamental knowledge of the kinematics and dynamics of mechanical systems. By studying the motion of a single particle, systems of particles, of rigid bodies and of deformable bodies, we introduce essential concepts such as kinematics, kinetics, work and energy, equations of motion, and forces and torques. Further topics include the stability of equilibria and vibrations as well as an introduction to the dynamics of deformable bodies and waves in elastic rods. Throughout the course, the basic principles and application-oriented examples presented in the lectures and weekly exercise sessions help students acquire a proficient background in engineering dynamics, learn and embrace problem-solving techniques for dynamical engineering problems, gain cross-disciplinary expertise (by linking concepts from, among others, mechanics, mathematics, and physics), and prepare students for advanced courses and work on engineering applications.
1. Motion of a single particle: kinematics (trajectory, velocity, acceleration), forces and torques, constraints, active and reaction forces, balance of linear and angular momentum, work-energy balance, conservative systems, equations of motion.
2. Motion of systems of particles: internal and external forces, balance of linear and angular momentum, work-energy balance, rigid systems of particles, particle collisions, mass accretion/loss.
3. Motion of rigid bodies in 2D and 3D: kinematics (angular velocity, velocity and acceleration transfer, instantaneous center and axis of rotation), balance of linear and angular momentum, work-energy balance, angular momentum transport, inertial vs. moving reference frames, apparent forces, Euler equations.
5. Introduction to waves and vibrations in deformable elastic bodies: local form of linear momentum balance, waves and vibrations in slender elastic rods.

Lecture notes
Lecture notes (a scriptum) will be available on Moodle. Students are strongly encouraged to take their own notes during class.

Introduction to structural mechanics, statically determinate beams and frame structures, trusses, stresses and deformations, statically

Hours
The course explores the fundamental principles of Geomechanics and Geotechnical Engineering, with the following objectives:

1. Motion of a single particle: kinematics (trajectory, velocity, acceleration), forces and torques, constraints, active and reaction forces, balance of linear and angular momentum, work-energy balance, conservative systems, equations of motion.
2. Motion of systems of particles: internal and external forces, balance of linear and angular momentum, work-energy balance, rigid systems of particles, particle collisions, mass accretion/loss.
3. Motion of rigid bodies in 2D and 3D: kinematics (angular velocity, velocity and acceleration transfer, instantaneous center and axis of rotation), balance of linear and angular momentum, work-energy balance, angular momentum transport, inertial vs. moving reference frames, apparent forces, Euler equations.
5. Introduction to waves and vibrations in deformable elastic bodies: local form of linear momentum balance, waves and vibrations in slender elastic rods.

Lecture notes
Lecture notes (a scriptum) will be available on Moodle. Students are strongly encouraged to take their own notes during class.

A complete set of lecture notes (a scriptum) is available on Moodle. Further reading materials are suggested but not required for this class.

All course materials (including lecture notes, exercise problems, etc.) are available on Moodle.

Domain A - Subject-specific Competencies
Concepts and Theories
assessed
Techniques and Technologies
assessed

Domain B - Method-specific Competencies
Analytical Competencies
assessed
Decision-making
assessed
Media and Digital Technologies
not assessed
Problem-solving
assessed
Project Management
not assessed

Domain C - Social Competencies
Communication
not assessed
Cooperation and Teamwork
not assessed
Customer Orientation
not assessed
Leadership and Responsibility
not assessed
Self-presentation and Social Influence
not assessed
Sensitivity to Diversity
not assessed
Negotiation
not assessed

Domain D - Personal Competencies
Adaptability and Flexibility
not assessed
Creative Thinking
not assessed
Critical Thinking
assessed
Integrity and Work Ethics
not assessed
Self-awareness and Self-reflection
not assessed
Self-direction and Self-management
not assessed

►► Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0113-00L</td>
<td>Theory of Structures I</td>
<td>O</td>
<td>5 credits</td>
<td>3V+2U</td>
<td>B. Sudret</td>
</tr>
</tbody>
</table>

Abstract
Introduction to structural mechanics, statically determinate beams and frame structures, trusses, stresses and deformations, statically indeterminate beams and frame structures (force method)

Objective
- Understanding the response of elastic beam and frame structures
- Ability to correctly apply the equilibrium conditions
- Understanding the basics of continuum mechanics
- Computation of stresses and deformations of elastic structures
- Ability to apply the force (flexibility) method for statically indeterminate structures

Content
- Equilibrium, reactions, static determinacy
- Internal forces (normal and shear forces, moments)
- Arches and cables
- Elastic trusses
- Influence lines
- Basics of continuum mechanics
- Stresses in elastic beams
- Deformations in Euler-Bernoulli and Timoshenko beams
- Energy theorems
- Statically indeterminate systems (Force method)

Lecture notes
Bruno Sudret, “Einführung in die Baustatik” (2018)

Additional course material will be available on the web page: https://sudret.ibk.ethz.ch/education/baustatik.html

Literature

► Compulsory Courses 5. Semester

►► Examination Block 3

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0315-00L</td>
<td>Geotechnical Engineering</td>
<td>O</td>
<td>5 credits</td>
<td>4G</td>
<td>A. Puzrin</td>
</tr>
</tbody>
</table>

Abstract
The course explores the fundamental principles of Geomechanics and Geotechnical Engineering, with the following objectives:
- Recognition of the basic consequences of the ground construction;
- Understanding of the important fundamental concepts of Soil mechanics and Geotechnical Engineering;
- Independent analysis of the basic geotechnical problems.

Objective
The course explores the fundamental principles of Geomechanics and Geotechnical Engineering, with the following objectives:
- Recognition of the basic consequences of the ground construction;
- Understanding of the important fundamental concepts of Soil mechanics and Geotechnical Engineering;
- Independent analysis of the basic geotechnical problems.

Content
Overview of stability problems; Bearing capacity of shallow and deep foundations; Soil-foundation interaction; Analysis and design of shallow and deep foundations; Earth pressure on retaining structures; Analysis and design of retaining walls; Excavations: dewatering, analysis and design; Soil improvement; Safety considerations.
Domain A - Subject-specific Competencies

- Concepts and Theories
 - Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Project Management

Domain C - Social Competencies

- Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity
 - Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

101-0125-01L Steel Structures II

<table>
<thead>
<tr>
<th>O</th>
<th>4 credits</th>
<th>4G</th>
<th>A. Taras</th>
</tr>
</thead>
</table>

Abstract

Objective

Students will expand the knowledge acquired during "Steel Structures I" and learn how to apply these skills to the design of more complex building and bridge steel and composite structures. They will acquire the fundamental background for the phenomena of plate buckling and fatigue and learn how to apply it to practical design tasks. In addition, students will learn to appreciate the importance of questions of detailing, fabrication, erection and cost calculation for the effective design of steel and composite structures.

After completion of the year-long course in Steel Structures I+II, students will have at their disposal a wide and detailed set of skills concerning the modern practice for steel and composite structures design and have a deep understanding of its theoretical & scientific background. The examples of scientific and standardisation work provided in the lectures give the students the opportunity to learn about the most current developments and see how these are used to shape the future practice in the structural engineering field.

Content

The lecture Steel Structures II complements the knowledge acquired in part I by providing students with additional theoretical and practical knowledge, e.g. on the design of steel and composite structures against fatigue, plate buckling, as well as on the structural modelling and analysis of more complex building and bridge structures. These more theoretical topics will be exemplified and illustrated by applications to real problems in the design of bridges and multi-storey building structures. Finally, the course will provide detailed insight into aspects pertaining to structural detailing, fabrication, erection and cost estimation for constructional steelwork.

Content overview:
- Structural forms, analysis techniques and modelling of multi-storey buildings and bridges.
- Structural analysis (deformations, internal forces, stresses and strains) in steel-concrete composite girders considering the effects of creep, shrinkage and shear deformations.
- Elastic and plastic longitudinal shear transfer mechanisms and effects
- Plate buckling of unstiffened and stiffened panels
- Fatigue resistance and safe life assessment; phenomenon and design approaches
- Special topics of steel connection design
- Detailing, drafting, fabrication and erection, cost determination in constructional steelwork

Lecture notes

Lecture notes and slides. Worked Examples with summary of theory. Design aids and formula collections. Videos of lectures.

Literature

- J.-P. Lebet, M. Hirt: Steel Bridges, Conceptual and Structural Design of Steel and Steel-Concrete Composite Bridges, EPFL Press
- Stahlbaukalender (various editions), Ernst & Sohn, Berlin

Prerequisites / notice

The content of steel structures I is a prerequisite

101-0415-01L Public Transport and Railways

<table>
<thead>
<tr>
<th>O</th>
<th>3 credits</th>
<th>2G</th>
<th>A. Nash, H. Orth, S. Schranil</th>
</tr>
</thead>
</table>

Abstract

Fundamentals of public and collective transport, in its different forms. Categorization of performance dimensions of public transport systems, and their implications to their design and operations.

Objective

Teaches the basic principles of public transport network and topology design, to understand the main characteristics and differences of public transport networks, based on buses, railways, or other technologies. Teaches students to recognize the interactions between the infrastructure design and the production processes, and various performance criteria based on various perspective and stakeholders.

At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate different choices of technologies to suitable cases; optimize the use of resources in public transport.

Content

Fundamentals: Infrastructures and vehicle technologies of public transport systems; interaction between track and vehicles; passengers and goods as infrastructure users; management and financing of networks.

Infrastructure: Planning processes and decision levels in network development and infrastructure planning, planning of topologies; tracks and roadways, station infrastructures; Fundamentals of the infrastructure design for lines; track geometries; switches and crossings

Vehicles: Classification, design and suitability for different goals

Network design: design dilemmas, conceptual models for passenger transport on long distance, urban regional transport.

Lecture notes

Operations: Passenger/Supply requirements for line operations; timetabling, measures of realized operations, capacity

Literature

Slides, in English, are made available some days before each lecture.

Reference material books are provided in German and English (list disseminated at lecture), plus Skript Bahninfrastruktur: System- und Netzplanung
The world's growing population, changing demographics, and changing climate pose formidable challenges to humanity's ability to live sustainably. Ensuring that humanity can live sustainably requires accommodating Earth's growing and changing population through the provision and operation of a sustainable and resilient built environment. This requires ensuring excellent decision-making as to how the built environment is constructed and modified.

The objective of this course is to ensure the best possible decision making when engineering sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long term. In this course, you will learn the main principles of Systems Engineering that can help you from the first idea that a system may not meet expectations, to the quantitative and qualitative evaluation of possible system modifications. Additionally, the course includes an introduction to the use of operations research methods in the determination of optimal solutions in complex systems.

More specifically upon completion of the course, you will have gained insight into:
- how to structure the large amount of information that is often associated with attempting to modify complex systems
- how to set goals and define constraints in the engineering of complex systems
- how to generate possible solutions to complex problems in ways that limit exceedingly narrow thinking
- how to compare multiple possible solutions over time with differences in the temporal distribution of costs and benefits and uncertainty as to what might happen in the future
- how to assess values of benefits to stakeholders that are not in monetary units
- how to assess whether it is worth obtaining more information in determining optimal solution
- how to take a step back from the numbers and qualitatively evaluate the possible solutions in light of the bigger picture
- the basics of operations research and how it can be used to determine optimal solutions to complex problems, including linear, integer and network programming, dealing with multiple objectives and conducting sensitivity analyses.

The weekly lectures are structured as follows:
1. Introduction – An introduction to System Engineering, a way of thinking that helps to engineer sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long term. A high-level overview of the main principles of System Engineering. An introduction to the example that we will be working with through most of the course. The expectations of your efforts throughout the semester.
2. Situation analysis – How to structure the large amount of information that is often associated with attempting to modify complex systems.
3. Goals and constraints – How to set goals and constraints to identify the best solutions as clearly as possible.
4. Generation of possible solutions – How to generate possible solutions to problems, considering multiple stakeholders.
5. Analysis – 1/5 – The principles of net-benefit maximization and a series of methods that range from qualitative and approximate to quantitative and exact, including pairwise comparison, elimination, display, weighting, and expected value.
6. Analysis – 2/5 – The idea behind the supply and demand curves and revealed preference methods.
7. Analysis – 3/5 – The concept of equivalence, including the time value of money, interest, life times and terminal values.
8. Analysis – 4/5 – The relationship between net-benefit and the benefit-cost ratio. How incremental cost benefit analysis can be used to determine the maximum net benefit. Marginal rates of return and internal rates of return.
9. Analysis – 5/5 – How to consider multiple possible futures and use simple rules to help pick optimal solutions and to determine the value of more information.
10. Evaluation of solutions – Regardless how sophisticated an analysis is, it requires that decision makers stand back and critically evaluate the results. This week we discuss the aspects of evaluating the results of an analysis.
11. Operations research – 1/4 – Once quantitative analysis is used it becomes possible to use operations research methods to analyse large numbers of possible solutions. This week we discuss linear programming and the simplex method.
13. Operations research – 3/4 – How to use operations research to solve problems that consist of discrete values, as well as how to exploit the structure of networks to find optimal solutions to network problems.
14. Operations research – 4/4 – How to set up and solve problems when there are multiple objectives.

The course uses a combination of qualitative and quantitative approaches. The quantitative analyses requires the use of Excel. An introduction to Excel will be provided in one of the help sessions.

This course has no prerequisites.
The course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, and snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis.

Prerequisites / notice
Knowledge of statistics is a prerequisite. The required theoretical background, which is needed for understanding part of the lectures and performing part of the assignments, may be summarised as follows:
- Elementary data processing: hydrological measurements and data, data visualisation (graphical representation and numerical parameters).
- Frequency analysis: hydrological data as random variables, return period, frequency factor, probability paper, probability distribution fitting, parametric and non-parametric tests, parameter estimation.

Lecture notes
The lecture notes as well as the lecture presentations and handouts may be downloaded from the website of the Chair of Hydrology and Water Resources Management.

Literature

Examination Block 4

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0125-00L</td>
<td>Structural Concrete I</td>
<td>O</td>
<td>5 credits</td>
<td>4G</td>
<td>W. Kaufmann</td>
</tr>
</tbody>
</table>

Abstract
Contents: Introduction, historical development of structural concrete, materials and material behaviour (cement, concrete, reinforcing steel, prestressing steel), linear members (axial force, flexure and axial force, compression members and columns, shear, bending and shear, torsion and combined actions), strut-and-tie models and simple stress fields, detailing, basic aspects of membrane elements.

Objective
Knowledge of the materials concrete and reinforcing steel and understanding their interaction;
Understanding the response of typical structural members;
Knowledge of elementary models and ability to apply them to practical problems;
Ability to correctly dimension and detail simple structures.

Content
Introduction, historical development of structural concrete, materials and material behaviour (cement, concrete, reinforcing steel, prestressing steel), linear members (axial force, flexure and axial force, compression members and columns, shear, bending and shear, torsion and combined actions), strut-and-tie models and simple stress fields, detailing.
A structure to be designed serves as a mean to practice the holistic approach of conceptual design by working in parallel and iteratively on different levels of detailing. Both, requirements and scope of action, are identified by the students and serve as basis for a solution. The task group organizes itself to solve complex tasks.

The project work conceptual design conveys a first insight into the holistic approach to cope with typical tasks of civil engineering and introduces professional techniques of civil engineering to students. A further aim is to consolidate the knowledge gained so far in bachelor courses, to link different domains and to fill gaps with respect to work techniques. The students analyse the inventory, formulate design requirements and boundary conditions, elaborate approaches and proposals for solutions, dimension some exemplary structural elements, practise detailing and document their work by different media.

Methods:
Excursion with mission, lectures, autonomous work, poster session, role playing, workshop, exemplary plenary review.

Deliveries:
Poster, sketches, service criteria agreement and basis of design, static calculations, plans, models.

Additional Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0007-10L</td>
<td>Project Work Conceptual Design</td>
<td>O</td>
<td>3 credits</td>
<td>3S</td>
<td>A. Taras, F. Ortiz Quintana</td>
</tr>
</tbody>
</table>

Bachelor’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0006-10L</td>
<td>Bachelor’s Thesis</td>
<td>O</td>
<td>8 credits</td>
<td>17D</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Recommended Courses

No specific courses offered in HS21.

GESS Science in Perspective

see GESS Science in Perspective: Language Courses ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-BAUG.
Civil Engineering Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
This course is designed to lay down the foundation of the different concepts, techniques, and tools for successful project management of construction projects. The goal is that at the end of this course students should have a good understanding of the different project management knowledge areas, the phases required for successful project management, and the role of a project manager. To demonstrate this, students will work in groups in different case studies to apply the concepts, tools and techniques presented in the class. Two 3 to 4 hours sessions towards the end of the lecture series will introduce a practical project to allow the teams to demonstrate the tools and techniques learned during the semester. The course will have a final quiz that will be graded.

Content
The main content of the course is summarized in the following topics:
- Project and organization structures
- Project scheduling
- Resource management
- Project estimating
- Project financing
- Risk management
- Project Reporting
- Interpersonal skills

Lecture notes
The slides for the class will be available for download from Moodle at least one day before each class. Copies of all necessary documents will be distributed at appropriate times.

Literature
Relevant readings will be recommended throughout the course (and made available to the students via Moodle).

Prerequisites / notice
The students will be randomly assigned to teams. Students will be graded as a team based on the final Project report and the in-class oral presentation of the Project Proposal as well as a final exam (50% exam and 50% project report and presentation). Homework will not be graded but your final report and presentation will consist mostly of your homework assignments consolidated and put in a report and presentation format.

►►► Major Courses

►►►► Major in Construction and Maintenance Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0007-00L</td>
<td>Project Management for Construction Projects</td>
<td>O</td>
<td>4</td>
<td>3S</td>
<td>J. J. Hoffman</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course aims at analyzing, designing, improving public transport systems, as part of the overall transport system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The main content of the course is summarized in the following topics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The students will be randomly assigned to teams. Students will be graded as a team based on the final Project report and the in-class oral presentation of the Project Proposal as well as a final exam (50% exam and 50% project report and presentation). Homework will not be graded but your final report and presentation will consist mostly of your homework assignments consolidated and put in a report and presentation format.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>066-0427-00L</td>
<td>Design and Building Process MIBS</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>A. Ruben, D. A. Strebel</td>
</tr>
<tr>
<td>Abstract</td>
<td>“Design and Building Process MIBS” is a brief manual for prospective architects and engineers covering the competencies and responsibilities of all involved parties through the design and building process. Lectures on twelve compact aspects gaining importance in an increasingly specialised, complex and international surrounding.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will come to understand how they can best navigate the design and building process, especially in relation to understanding their profession, gaining a thorough knowledge of rules and regulations, as well as understanding how involved parties’ minds work. They will also have the opportunity to investigate ways in which they can relate to, understand, and best respond to their clients’ wants and needs. Finally, course participants will come to appreciate the various tools and instruments, which are available to them when implementing their projects. The course will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>“Design and Building Process MIBS” is a brief manual for prospective architects and engineers covering the competencies and responsibilities of all involved parties through the design and building process. Twelve compact aspects regarding the establish building culture are gaining importance in an increasingly specialised, complex and international surrounding. Lectures on the topics of profession, service model, organisation, project, design quality, coordination, costing, tendering and construction management, contracts and agreements, life cycle, real estate market, and getting started will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship. The course introduces the key figures, depicts the criteria of the project and highlights the provided services of the consultants. In addition to discussing the basics, the terminologies and the tendencies, the lecture units will refer to the studies as well as the practice: Teaching-based case studies will complement and deepen the understanding of the twelve selected aspects. The course is presented as a moderated seminar to allow students the opportunity for individual input: active collaboration between the students and their tutor therefore required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The recordings of the lectures are available on the MAP under the link https://map.arch.ethz.ch (book symbol at the top right).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The recordings of the lectures are available on the MAP under the link https://map.arch.ethz.ch (book symbol at the top right).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE. ZoomLink: https://ethz.zoom.us/j/66588100789</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 168 of 2152
Objective

Public transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups.

Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders. The most relevant decision making problems in a planning tactical and operational point of view. At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport.

General structure:
general introduction of transport, modes, technologies, system design and line planning for different situations, mathematical models for design and line planning, timetabling and tactical planning, and related mathematical approaches operations, and quantitative support to operational problems, evaluation of public transport systems.

Content
Basics for line transport systems and networks
Passenger/Supply requirements for line operations
Objectives of system and network planning, from different perspectives and users, design dilemmas
Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport
Planning process, from demand evaluation to line planning to timetables to operations
Matching demand and modes
Line planning techniques
Timetabling principles
Allocation of resources
Management of operations
Measures of realized operations
Improvements of existing services

Lecture notes
Lecture slides are provided.

Literature
Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English)

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

101-0509-00L Infrastructure Management 1: Process
6 credits

Abstract
Infrastructure asset management is the process used to ensure that infrastructure provides adequate levels of service for specified periods of time. This course provides an overview of the process, from setting goals to developing intervention programs to analyzing the process itself. It consists of weekly lectures and a group project. Additionally, there is a weekly help session.
Objective

There are a large number of efforts around the world to obtain more net benefits from infrastructure assets. This can be seen through the proliferation of codes and guidelines and the increasing amount of research in road infrastructure asset management. Many of these codes and guidelines and much of the research, however, are focused on only part of the large complex problem of infrastructure asset management.

The objective of this course is to provide an overview of the entire infrastructure management process. The high-level process described can be used as a starting point to ensure that infrastructure management is done professionally, efficiently and effectively. It also enables a clear understanding of where computer systems can be used to help automate parts of the process. Students can use this process to help improve the specific infrastructure management processes in the organisations in which they work in the future.

More specifically upon completion of the course, students will
- understand the main tasks of an infrastructure manager and the complexity of these tasks,
- understand the importance of setting goals and constraints in the management of infrastructure,
- be able to predict the deterioration of individual assets using discrete states that are often associated with visual inspections,
- be able to develop and evaluate simple management strategies for individual infrastructure assets,
- be able to develop and evaluate intervention programs that are aligned with their strategies,
- understand the principles of guiding projects and evaluating the success of projects,
- be able to formally model infrastructure management processes, and
- understand the importance of evaluating the infrastructure management process and have a general idea of how to do so.

Content

The weekly lectures are structured as follows:

1. Introduction: An introduction to infrastructure management, with emphasis on the consideration of the benefits and costs of infrastructure to all members of society, and balancing the need for prediction accuracy with analysis effort. The expectations of your throughout the semester, including a description of the project.
2. Positioning infrastructure management in society: As infrastructure plays such an integral part in society, there is considerable need to ensure that infrastructure managers are managing it as best possible. A prominent network regulator explains the role and activities of a network regulator.
3. Setting goals and constraints – To manage infrastructure you need to know what you expect from it in terms of service and how much you are willing to pay for it. We discuss the measures of service for this purpose, as well as the ideas of quantifiable and non-quantifiable benefits, proxies of service, and valuing service.
4. Predicting the future – As infrastructure and our expectations of service from it change over time, these changes need to be included in the justification of management activities. This we discuss the connection between provided service and the physical state of the infrastructure and one way to predict their evolution over time.
5. Help session 1
6. Determining and justifying general interventions - It is advantageous to be able to explain why infrastructure assets need to be maintained, and not simply say that they need to be maintained. This requires explanation of the types of interventions that should be executed and how these interventions will achieve the goals. It also requires explaining which interventions are to be done if it is not possible to do everything due to for example budget constraints. This week we cover how to determine optimal intervention strategies for individual assets, and how to convert these strategies into network level intervention programs.
7. Determining and justifying monitoring - Once it is clear how infrastructure might change over time, and the optimal intervention strategies are determined, you need to explain how you are going to know that these states exist. This requires the construction of monitoring strategies for each of asset. This week we focus on how to develop monitoring strategies that ensure interventions are triggered at the right time.
8. Converting programs to projects / Analysing projects – Once programs are completed and approved, infrastructure managers must create, supervise and analyse projects. This week we focus on this conversion and the supervision and analysis of projects.
9. Help session 2
10. Ensuring good information – Infrastructure management requires consistent and correct information. This is enabled by the development of a good information model. This week we provide an introduction to information models and how they are used in infrastructure management.
11. Ensuring a well-run organization – How people work together affects how well the infrastructure is managed. This week we focus on the development of the human side of the infrastructure management organisation.
12. Describing the IM process – Infrastructure management is a process that is followed continually and improved over time. It should be written down clearly. This week we will concentrate on how this can be done using the formal modelling notation BPMN 2.0.
13. Evaluating the IM process – Infrastructure management processes can always be improved. Good managers acknowledge this, but also have a plan for continual improvement. This week we concentrate on how you can systematically evaluate the infrastructure management process.
14. Help session 3 and submission of project report.

Lecture notes

- The lecture materials consist of handouts, the slides, and example calculations in Excel.
- The lecture materials will be distributed via Moodle two days before each lecture.

Literature

Appropriate literature will be handed out when required via Moodle.

Prerequisites / notice

This course has no prerequisites.
This course is an introduction to innovative construction project delivery through three strategies: integrated information, integrated organization, and integrated processes. Students will be introduced to project and production management concepts such as Lean Construction, Building Information Modeling, the Tri-Constraint Method, & Integrated Project Delivery.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Objective
- Transfer of practical knowledge regarding
- Selection of tunneling methods
- Execution and working cycles in conventional and mechanical tunneling
- Management of the muck and of materials
- Quality control and monitoring during construction
- Occupational health and safety requirements and environmental requirements
- Maintenance

The students will be enabled to work on an underground construction project in the preliminary and final design phase as a planner (taking into account contractor's considerations).

Content
- General basics
- Codes SIA 196, SIA 197, SIA 198, SIA 118/198
- Knowledge of the tunneling methods
- Decision-making principles for the selection of the tunneling method
- Construction site logistics (transport, ventilation, cooling, water, material management)
- Construction materials

Conventional tunneling
- Excavation methods (full breakout / partial breakout)
- Rock support
- Impermeabilisation
- Inner lining

Mechanical tunneling
- Open TBM (Gripper TBM), rock support concepts
- Shield TBM's in rock and loose ground

Lecture notes
Charts of the lecture and references

Literature
References to the usual specialist literature will be made in the course of the lecture

101-0524-00L
Lean, Integrated and Digital Project Delivery

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Methods and Technologies</th>
<th>Domain-specific Competencies</th>
<th>Method-specific Competencies</th>
<th>Social Competencies</th>
<th>Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>W 4 credits</td>
<td>3G</td>
<td>D. Hall</td>
<td>1. Understand the fundamentals of Virtual Design and Construction and Building Information Modeling. This includes the ability to prepare a model breakdown structure capable of integrating project information for all stakeholders; describe the upcoming transition to a common data environment for BIM that will use platforms such as Autodesk Forge; and describe the barriers to successful implementation of BIM within construction and design firms.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>W 3 credits</td>
<td>2G</td>
<td>H. Ehrbar</td>
<td>2. Plan and schedule an integrated '5D' scope schedule cost model using the Tri-Constraint Method. This includes the ability to understand the TCM algorithm, apply parametric logic to the creation of a virtual model for construction production; and evaluate the limitations of the critical path method when compared to resource- and space-constrained scheduling.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>W 3 credits</td>
<td>3G</td>
<td>D. Hall</td>
<td>3. Plan and schedule an integrated ‘5D’ scope schedule cost model using the Tri-Constraint Method. This includes the ability to understand the TCM algorithm, apply parametric logic to the creation of a virtual model for construction production; and evaluate the limitations of the critical path method when compared to resource- and space-constrained scheduling.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>W 2 credits</td>
<td>3G</td>
<td>H. Ehrbar</td>
<td>4. Evaluate benefits of integrated project governance compared to the organization of traditional construction project delivery systems. This includes the ability to evaluate the risks, benefits and considerations for integrated teams using multi-perspective relational contracts that cross disciplinary and firm boundaries; and explain to others the ‘elements’ of integrated projects (e.g. colocation, early involvement of key stakeholders, shared risk/reward, collaborative decision making).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 171 of 2152
The construction industry is continually seeking to deliver High-Performance (HP) projects for their clients. HP buildings must meet the criteria of four focus areas – buildability, operability, usability, and sustainability. The project must be buildable, as measured by metrics of cost, schedule, and quality. It must be operable, as measured by the cost of maintaining the facility for the duration of its lifecycle. It must be usable, enabling productivity, efficiency and well-being of those who will inhabit the building. Finally, it must be sustainable, minimizing the use of resources such as energy and water. Buildings that succeed in all four of these areas can be considered HP projects. HP buildings require the integration of building systems. However, the traditional methods of planning and construction do not use an integrated approach. Project fragmentation between many stakeholders is often cited as the cause of poor project outcomes and the reason for poor productivity gains in the construction industry. In response, the construction industry has turned to new forms of integration in order to integrate the processes, organization, and information required for high performance projects.

This course investigates emerging trends in the construction industry – e.g. colocation, shared risk/reward contracts, lean construction methods, and use of shared building information models (BIM) for virtual design and construction (VDC) – as a way to achieve HP projects. For integrated processes, students will be introduced to the fundamentals of lean construction management. This course will look at the causes of variability in construction production and teach the theory of lean production for construction. Processes and technologies will be introduced for lean management, such as the last planner system, takit time planning, production tracking, and target value design. For integrated information, students will be introduced to the fundamentals of virtual design and construction, including how to use work breakdown structures and model breakdown structures for building information modeling, and the fundamentals and opportunities for 4D scheduling, clash detection, and “5D and 6D” models. Future technologies emerging to integrate information such as the use of Autodesk Forge will be presented. Students will have the opportunity to discuss barriers to the industry to more advanced implementation of BIM and VDC.

For integrated organization, students will study the limitations of the construction industry to effectively organize for complex projects, including the challenges of managing highly interdependent tasks and generating knowledge and learning within large multi-organizational project teams. One emerging approach in North America known as IPD will be studied as a case example. Students will explore the benefits of certain 'elements' of IPD such as project team colocation, early involvement of trade contractors, shared risk/reward contracts, and collaborative decision making.

The course will also include several guest lectures from industry experts to further demonstrate how these concepts are applied in practice. The class will be presented in a "flipped classroom" environment where students will be required to do readings or watch video before class. In-class activities will act to reinforce and expand upon these primary concepts. If possible due to COVID restrictions, students will be expected to attend a half-day workshop on the Last Planner System. The date of this workshop will be provided at a later point in time.

A full list of required readings will be made available to the students via Moodle. Project Management for Construction Projects (101-0007-00L) is a recommended but not required prerequisite for this course.

An Introduction to Sustainable Development in the Built Environment

In 2015, the UN Conference in Paris shaped future world objectives to tackle climate change. In 2016, other political bodies made these changes more difficult to predict.

This course provides an introduction to the notion of sustainable development when applied to our built environment. At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmental aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focusing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.
Overview of soil behaviour

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world
- Synthesis: Transition to sustainable development

Lecture notes
All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.

The following topics give an overview of the themes that are to be worked on during the lecture.

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Auxiliary measures:
- Face reinforcement
- Forepoling
- Drainage
- Injections
- Ground freezing
- Jet-grouting
- Face reinforcement

Conventional excavation methods (full face, top heading and bench, side drift method,...)

Auxiliary measures:
- Injections
- Jet-grouting
- Ground freezing
- Drainage
- Forepoling

The following topics give an overview of the themes that are to be worked on during the lecture.

2G

Overview of soil behaviour

I. Anastasopoulos

All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.

W

Empfehlungen

A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.

http://geotip.igt.ethz.ch/

Hours

Type

ECTS

Lecturers

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0317-00L</td>
<td>Tunnelling I</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>G. Anagnostou, E. Pimentel</td>
</tr>
<tr>
<td>Abstract</td>
<td>Basic aspects of design and analysis of underground structures. Conventional tunnel construction methods. Auxiliary measures (ground improvement and drainage, forepoling, face reinforcement), Numerical analysis methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Basic aspects of design and analysis of underground structures. Conventional tunnel construction methods. Auxiliary measures (ground improvement and drainage, forepoling, face reinforcement), Numerical analysis methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Numerical analysis methods in tunnelling. Conventional excavation methods (full face, top heading and bench, side drift method,...) Auxiliary measures: - Injections - Jet-grouting - Ground freezing - Drainage - Forepoling - Face reinforcement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Autographieblätter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Empfehlungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Domain A - Subject-specific Competencies

Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed
Decision-making assessed

101-0357-00L Theoretical and Experimental Soil Mechanics

Prerequisites: Mechanics I, II and III.

The number of participants is limited to 60 due to the existing laboratory equipment! Students with major in Geotechnical Engineering have priority. Registrations will be accepted in the order they are received.

Abstract
Overview of soil behaviour
Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples
Consolidation theory and typical applications in practice
Triaxial & direct shear tests: consolidation & shear, drained & undrained response
Plasticity theory & Critical State Soil Mechanics, Cam Clay
Application of plasticity theory

Objective
Extend knowledge of theoretical approaches that can be used to describe soil behaviour to enable students to carry out more advanced geotechnical design and to plan the appropriate laboratory tests to obtain relevant parameters for coupled plasticity models of soil behaviour.
A further goal is to give students the wherewithal to be able to select an appropriate constitutive model and set up insitu stress conditions in preparation for subsequent numerical modelling (e.g. with finite elements).

Content
Overview of soil behaviour
Discussion of general gaps between basic theory and soil response
Stress paths in practice & in laboratory tests
Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples
Consolidation theory for incremental and continuous loading oedometer tests and typical applications in practice
Triaxial & direct shear tests: consolidation & shear, drained & undrained response
Plasticity theory & Critical State Soil Mechanics, Cam Clay
Application of plasticity theory

Lecture notes
Printed script with web support
Exercises

Literature
http://geotip.igt.ethz.ch/

Prerequisites / notice
Lectures will be conducted as Problem Based Learning within the framework of a case history
Virtual laboratory in support of 'hands-on' experience of selected laboratory tests
Pre-requirements: Basic knowledge in soil mechanics as well as knowledge of advanced mechanics
Laboratory equipment will be available for 60 students. First priority goes to those registered for the geotechnics specialty in the Masters, 2nd year students then first year students, doctoral students qualifying officially for their PhD status and then 'first come, first served'.

101-0307-00L Design and Construction in Geotechnical Engineering

Abstract
This lecture deals with the practical application of the knowledge gained in the fundamental lectures from the Bachelor degree.
The basics of planning and design of geotechnical structures will be taught for the main topics geotechnical engineers are faced to in practice. Ability to plan and design geotechnical structures based on the state of the art.
Introduction to Swisscode SIA
Foundations and settlements
Pile foundations
Excavations
Slopes
Soil nailing
Reinforced geosystems
Ground improvement
River levees

Lecture notes
Script in the form of chapters and powerpoint overheads with web support (http://geotip.igt.ethz.ch)
Exercises

Literature
Relevant literature will be stated during the lectures

Prerequisites / notice
Pre-condition: Successful examinations (pass) in the geotechnical studies (soil mechanics and ground engineering, each 5 credits) in the Bachelor degree of Civil Engineering (ETH), or equivalent for new students.
The lecture contains at least one presentation from practice.

101-0369-00L Forensic Geotechnical Engineering W 3 credits 2G A. Puzrin
Prerequisites: successful participation in "Geotechnical Engineering" (101-0315-00L) or an equivalent course.

Abstract
In this course selected famous geotechnical failures are investigated with the following purpose: (a) to deepen understanding of the geotechnical risks and possible solutions; (b) to practice design and analysis methods; (c) to learn the techniques for investigation of failures; (d) to learn the techniques for mitigation of the failure damage.

Objective
In this course selected famous geotechnical failures are investigated with the following purpose: (a) to deepen understanding of the geotechnical risks and possible solutions; (b) to practice design and analysis methods; (c) to learn the techniques for investigation of failures; (d) to learn the techniques for mitigation of the failure damage.

Content
Failure due to the loading history
Failure due to excessive settlements
Failure due to the leaning instability
Bearing capacity failure
Excavation failure
Failure in the creeping landslides
Failure evolution in submarine landslides
Construction in the landslide influence zone
Delayed failure in snow avalanches

Lecture notes
Lecture notes
Exercises

Literature

Prerequisites / notice
The course is given in the first MSc semester.
Prerequisite: Basic knowledge in Geotechnical Engineering (Course content of "Grundbau" or similar lecture).

101-0517-10L Construction Management for Tunneling W 3 credits 2G H. Ehrbar

Abstract
- Construction methods for conventional tunneling in loose material and in hard rock conditions (tunnel, shaft and cavern construction)
- Construction methods for mechanical excavation
- Decision criteria for the selection of tunneling method
- Construction facilities, logistics and construction management

Objective
Transfer of practical knowledge regarding
- Selection of tunneling methods
- Execution and working cycles in conventional and mechanical tunneling
- Management of the muck and of materials
- Quality control and monitoring during construction
- Occupational health and safety requirements and environmental requirements
- Maintenance
The students will be enabled to work on an underground construction project in the preliminary and final design phase as a planner (taking into account contractor's considerations).
Analytical Competencies
- W. Kaufmann

This is the third course in the ETH series on theory of structures. Building on the material covered in previous courses, this course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures, may be addressed time-permitting.

Adaptability and Flexibility
- Lecturers

Enhancement of the understanding of the load-deformation response of reinforced and prestressed concrete; refined knowledge of models and ability to check, the limits of applicability of limit analysis methods; knowledge of models suitable for computer-aided structural design and ability for critical use of structural design software.

Major in Structural Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0117-00L</td>
<td>Theory of Structures III</td>
<td>O</td>
<td>3 credits</td>
<td>2G</td>
<td>B. Stojadinovic</td>
</tr>
</tbody>
</table>

Abstract

This course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures, may be addressed time-permitting.

Objective

After passing this course students will be able to:

1. Explain the equilibrium of continuous structural elements.
2. Formulate mechanical models of continuous prismatic structural elements.
3. Analyze the axial, shear, bending and torsion load-deformation response of prismatic structural elements and structures assembled using these elements.
4. Determine the state of forces and deformations in rods, beams, frame structures, arches, cables and rings under combined mechanical and thermal loading.
5. Use the theory of continuous structures to design structures and understand the basis for structural design code provisions.

Content

This is the third course in the ETH series on theory of structures. Building on the material covered in previous courses, this course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures may be addressed if time permits.

Prerequisites / notice

Working knowledge of theory of structures, as covered in ETH course Theory of Structures I (Baustatik I) and Theory of Structures II (Baustatik II) and ordinary differential equations. Basic knowledge of structural design of reinforced concrete, steel or wood structures.

Literature

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
 - Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

101-0127-00L Advanced Structural Concrete

This course supplements the courses Structural Concrete I and II regarding the analysis and dimensioning of reinforced and prestressed concrete structures. It focuses on limit analysis methods for girders, discs, slabs and shells, particularly regarding their applicability to the safety assessment of existing structures and their computer-aided implementation.

Objective

Enhancement of the understanding of the load-deformation response of reinforced and prestressed concrete; refined knowledge of models and ability to apply them to general problems, particularly regarding the structural safety assessment of existing structures; awareness of, and ability to check, the limits of applicability of limit analysis methods; knowledge of models suitable for computer-aided structural design and ability for critical use of structural design software.
In Steel Structures III, students will deepen and expand their theoretical background and practical knowledge of the design and analysis of steel structures. This course provides an in-depth theoretical background and practical knowledge on advanced design topics in steel and composite structures. The focus of the course lies on design tasks and solutions in modern, multi-storey, steel-framed buildings driven by architectural needs, as well as on certain special fields of application of steel structures. Students will learn how to solve complex structural engineering tasks in larger building projects, e.g., through the use and correct design of large-span slim-floor girders and ultra-slender composite columns, or the use of glazing and cable structures as principal load-carrying components. They learn how steel structures behave under fire conditions and how they can be protected and designed accordingly. Finally, students learn about the fundamental aspects governing the design of specialty steel structures, such as thin-walled cold-formed sections, crane girders, masts and storage tanks.

The examples of scientific and standardisation work provided in the lectures give the students the opportunity to learn about the most current developments and see how these are used to shape the future practice in the structural engineering field. The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis.

Prerequisites
- **Domain A - Subject-specific Competencies**
 - Concepts and Theories: assessed
 - Techniques and Technologies: assessed
 - Analytical Competencies: assessed
 - Decision-making: assessed
 - Media and Digital Technologies: not assessed
 - Problem-solving: assessed

- **Domain B - Method-specific Competencies**
 - Communication: not assessed
 - Cooperation and Teamwork: not assessed
 - Customer Orientation: not assessed
 - Sensitivity to Diversity: not assessed

- **Domain C - Social Competencies**
 - Critical Thinking: assessed
 - Integrity and Work Ethics: not assessed
 - Self-awareness and Self-reflection: not assessed

Content
- **101-0137-00L Steel Structures III: Advanced Steel and Composite Structures**
 - 3 credits
 - A. Taras, U. Angst

 Abstract
 Expand the theoretical background and practical knowledge in the design of steel and composite structures. Special composite construction and detailing: partial connection, serviceability. Fire design. Cold-formed steel design. Crane girders; masts; tanks & silos. Structural glazing and lightweight cable-supported structures.

 Objective
 In Steel Structures III, students will deepen and expand their theoretical background and practical knowledge of the design and construction of steel and composite structures. The focus of the course lies on design tasks and solutions in modern, multi-storey, steel-framed buildings driven by architectural needs, as well as on certain special fields of application of steel structures. The course discusses the use and design of large-span slim-floor girders and ultra-slender composite columns, as well as the use of glazing and cable structures as principal load-carrying components. The design of steel structures under elevated temperatures (fire conditions) is treated, as well as special topics of design for serviceability. In addition, fundamental concepts of the design of cold-formed steel framed structures are discussed. Finally, the course will give an overview on the design of specialty steel structures, such as crane girders, masts and storage tanks.

 The examples of scientific and standardisation work provided in the lectures give the students the opportunity to learn about the most current developments and see how these are used to shape the future practice in the structural engineering field.

- **101-0187-00L Structural Reliability and Risk Analysis**
 - 3 credits
 - S. Marelli

 Abstract
 Structural reliability and risk analysis aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment.

 Objective
 The goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field.

 Content
 Engineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro- codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making.

 The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented.

 The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design indices are shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information.

 The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented.

 The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis.
1. Introduction

Fibre Composite Materials in Structural Engineering

Moisture transport and related degradation processes in porous materials; experimental determination of moisture transport properties; theory and application of pore network model for two-phase transport in porous media; flow in cracked and deformable porous media.

Objective

After successful completion of this course the students will be able to:
1. Explain the dynamic equilibrium of structures under dynamic loading.
2. Use second-order differential equations to theoretically and numerically model the dynamic equilibrium of structural systems.
4. Compute the dynamic response of structural system to harmonic, periodic, pulse, and impulse excitation using time-history and response-spectrum methods.
5. Use dynamics of structures to identify the basis for structural design code provisions related to dynamic loading.

Content

This is a course on structural dynamics, an extension of structural analysis for loads that induce significant inertial forces and vibratory response of structures. Dynamic responses of elastic and inelastic single-degree-of-freedom and multiple-degree-of-freedom structural systems subjected to harmonic, periodic, pulse, and impulse excitation are discussed. Theoretical background and engineering guidelines for practical solutions to vibration problems in flexible structures caused by human, machinery, wind or explosions are presented.

Lecture notes

The course will be taught mainly on the blackboard.

Handouts, supporting material and exercises are provided online via Moodle.

All the material can be found in Anil Chopra's comprehensive textbook given in the literature below.

S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107.

Prerequisites / notice

Basic course on probability theory and statistics.

151-8015-00L

Moisture Transport in Porous Media

W 3 credits 2G J. Carmeliet, L. Fei, J. Huang, J. Zhao

Abstract

Moisture transport and related degradation processes in porous materials; experimental determination of moisture transport properties; theory and application of pore network model for two-phase transport in porous media; flow in cracked and deformable porous media.

Objective

- Basic knowledge of moisture transport and related degradation processes in porous materials
- Knowledge of experimental determination of moisture transport properties
- Knowledge of pore network model and application to two-phase invasion percolation simulation
- Application of knowledge to moisture transport in cracked materials and flow in deformable porous media

Content

1. Introduction

Moisture damage: problem statement, durability
Applications: building materials, soil science, geoscience

2. Moisture transport: theory and application

Description of moisture transport
Determination of moisture transport properties
Liquid transport in cracked materials, flow and transport in deformable porous media

3. Pore network model: theory and application

Single- and two-phase pore network model: quasi-static and dynamic
Exercise on quasi-static two-phase pore network model: invasion pattern, capillary pressure curve
Application of pore network model in two-phase transport

Lecture notes

Handouts, supporting material and exercises are provided online via Moodle.

Literature

All the material can be found in Anil Chopra's comprehensive textbook given in the literature below.

S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107.

101-0167-01L

Fibre Composite Materials in Structural Engineering

W 3 credits 2G M. Motavalli

Abstract

1) Lamina and Laminate Theory
2) FRP Manufacturing and Testing Methods
3) Design and Application of Externally Bonded Reinforcement to Concrete, Timber, and metallic Structures
4) FRP Reinforced Concrete, All FRP Structures
5) Measurement Techniques and Structural Health Monitoring

Objective

At the end of the course, you shall be able to
1) Design advanced FRP composites for your structures,
2) To consult owners and clients with neccessray testing and SHM techniques for FRP structures,
3) Continue your education as a phd student in this field.

Content

Fibre Reinforced Polymer (FRP) composites are increasingly being used in civil infrastructure applications, such as reinforcing rods, tendons and FRP profiles as well as wraps for seismic upgrading of columns and repair of deteriorated structures. The objective of this course is on one hand to provide new generation of engineering students with an overall awareness of the application and design of FRP reinforcing materials for internal and external strengthening (repair) of reinforced concrete structures. The FRP strengthening of other structures such as metallic and timber will also be shortly discussed. On the other hand the course will provide guidance to students seeking additional information on the topic. Many practical cases will be presented analysed and discussed. An ongoing structural health monitoring of these new materials is necessary to ensure that the structures are performing as planned, and that the safety and integrity of structures is not compromised. The course outlines some of the primary considerations to keep in mind when designing and utilizing structural health monitoring technologies. During the course, students will have the opportunity to design FRP strengthened concrete beams and columns, apply the FRP by themselves, and finally test their samples up to failure.
Comprehension and application of basic knowledge of structural timber design including material behaviour especially anisotropy, moisture

Timber Structures I
F. Leutwiler

Energy and Climate Systems II
I. Burgert, G. Fink

A list of relevant literature is available at the chair.

A. Frangi
Learning from mistakes and failures is as old as the engineering discipline. Understanding why things went wrong is essential for

Hours

W

1 Introduction to (numeric) forensic engineering
Public Transport Design and Operations
D. Kammer
F. Corman

ECTS

2G

This course aims at analyzing, designing, improving public transport systems, as part of the overall transport system.

Lecturers

R. Steiger

Literature

Will be provided during the lecture via moodle.

101-0637-01L Timber Structures I

Abstract
Conceptual design, detailing and structural analysis of multi-storey timber buildings as well as timber roof structures and halls.

Objective
Comprehension and application of basic knowledge of structural timber design including material behaviour especially anisotropy, moisture and long duration effects and their consideration in structural analysis and detailing.

Content
Field of application of timber structures; Timber as building material (wood structure, physical and mechanical properties of wood and wood-based products); Durability; Principles of design and dimensioning; Connections (dowels, nails, screws, glued connections); Timber components and assemblies (mechanically jointed beams, trusses); Design and detailing of multi-storey timber buildings as well as timber roof structures and halls.

Lecture notes

101-0609-00L Energy and Climate Systems II

Abstract
The second semester of the annual course focuses on physical principles, component and systems for the efficient and sustainable supply with electricity, daylight and artificial light. This includes concepts of on-site generation of energy, building systems controls and human-building interaction. Additionally, larger scale building energy systems for districts are discussed.

Objective
The lecture series focuses on the physical principles and technical components of relevant systems for an efficient and sustainable climatisation and energy supply of buildings. A special focus is on the interrelation of supply systems and architectural design and construction. Learning and practicing methods of quantifying demand and supply allows identifying parameters relevant for design.

Content
1. Introduction and overview
2. Electricity
3. Integrated design

Lecture notes
The slides of the lecture serve as lecture notes and are available as download.

Literature
Timber design tables HBT 1, Lignum
Swiss Standard SIA 265
Swiss Standard SIA 265/1
Eurocode 5

101-0617-02L Computational Science Investigation for Material Mechanics

Abstract
Introduction to computational sciences with focus on numerical modeling of the mechanics of materials. Simulation of material damage and failure with advanced finite element methods.

Objective
Learning from mistakes and failures is as old as the engineering discipline. Understanding why things went wrong is essential for improvement, but often impossible without the help of numerical modelling. Real world problems are often highly nonlinear, dependent on multiple physical fields, involve fundamental material behavior far from equilibrium and reversibility, and can often only be understood by addressing different relevant scales.

In this course, we will use real-life cases to learn how to deal with such problems. Starting from the problem description with governing equations, you will learn how to tackle non-linear and multi-field problems using numerical simulations. A particular focus will be on fracture. Starting from the failed state, we will investigate potential causes and find the conditions that resulted in failure. For doing so, you will learn how to predict it with the Finite Element Method (FEM). To correctly assess failure, plastic behavior and size effects, originating from the underlying material microstructure, need to be considered. You will learn how to deal with plasticity in FEM and how you can get information from the heterogeneous material scale into your FEM framework.

Content
1 Introduction to (numeric) forensic engineering
2 The nature of engineering problems (governing equations)
3 Numerical recipes for dealing with non-linear problems
4 Multi-field problems (HTM; Comsol)
5 On the nature of failure - Physics of damage and fracture
6 Cracks and growth in structures (LEFM and beyond)
7 A practical approach to LEFM with FEM (Abaqus)
8 Introduction to metal plasticity
9 Damage and fracture in heterogeneous materials
10 Mechanics of fatigue
11 Visco-elastic failure
12 Student -Project presentation

Lecture notes

Will be provided during the lecture via moodle.

Literature

Will be provided during the lecture.

Major in Transport Systems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0427-01L</td>
<td>Public Transport Design and Operations</td>
<td>O</td>
<td>6</td>
<td>4G</td>
<td>F. Corman, F. Leutwiler</td>
</tr>
</tbody>
</table>
Objective

Public transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups.

Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders. The most relevant decision making problems in a planning tactical and operational point of view

At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport.

General structure:
- general introduction of transport, modes, technologies, system design and line planning for different situations, mathematical models for design and line planning, timetabling and tactical planning, and related mathematical approaches operations, and quantitative support to operational problems, evaluation of public transport systems.

Content

Basics for line transport systems and networks
- Passenger/Supply requirements for line operations
- Objectives of system and network planning, from different perspectives and users, design dilemmas
- Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport

Planning process, from demand evaluation to line planning to timetables to operations
- Matching demand and modes
- Line planning techniques
- Timetabling principles
- Allocation of resources
- Management of operations
- Measures of realized operations
- Improvements of existing services

Lecture notes
- Lecture slides are provided.

Literature

Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English)

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

101-0437-00L Traffic Engineering O 6 credits 4G A. Kouvelas

Abstract
- Fundamentals of traffic flow theory and control.

Objective
- The objective of this course is to fully understand the fundamentals of traffic flow theory in order to effectively manage traffic operations. By the end of this course students should be able to apply basic techniques to model different aspects of urban and inter-urban traffic performance, including congestion.

Content
- Introduction to fundamentals of traffic flow theory and control. Includes understanding of traffic data collection and processing techniques, as well as data analysis, traffic modeling, and methodologies for traffic control.

Lecture notes
- The lecture notes and additional handouts will be provided during the lectures.

Literature
- Additional literature recommendations will be provided during the lectures.
Introduction to Mathematical Optimization

The course introduces necessary basic knowledge and is based on the following main topics:

- Inward development and challenges of spatial transformation
- Planning approaches and The (political) steering of spatial development
- Interplay of formal and informal processes and processes across different scales of spatial development
- Methods of action-oriented planning in situations of insecurity
- Integrated space and infrastructure development
- Different types of participation in spatial development

By taking up the lecture, the students are able to recognize cross-scale, complex tasks of spatial development and transformation and to use their theoretical, methodical and professional knowledge to clarify them.

- Planning approaches and political organization in Switzerland
- Tasks of spatial relevance
- Key figures and ratios
- Drivers of spatial development
- Steering spatial development I: Policy
- Steering spatial development II: Formal and informal instruments
- Organizing spatial development I: Governance
- Organizing spatial development II: Processes and organization
- Methods in spatial planning I
- Methods in spatial planning II
- Planning in complex situations
- Participation in spatial development
- Present and future core tasks of spatial development

Only for master students, otherwise a special permission by the lecturer is required.
Abstract
In general the course explains the main principles of air transport and elaborates on simple interdisciplinary topics. Working on broad 14 different topics like aerodynamics, manufacturers, airport operations, business aviation, business models etc. the students get a good overview in air transportation. The program is taught in English and we provide 11 different experts/lecturers.

Objective
The goal is to understand and explain basics, principles and contexts of the broader air transport industry. Further, we provide the tools for starting a career in the air transport industry. The knowledge may also be used for other modes of transport. Ideal foundation for Aviation II - Management of Air Transport.

Content
Weekly: 1h independent preparation; 2h lectures and 1 h training with an expert in the respective field

Concept: This course will be taught as Aviation I. A subsequent course - Aviation II - covers the "Management of Air Transport".

Content: Transport as part of the overall transportation scheme; Aerodynamics; Aircraft (A/C) Designs & Structures; A/C Operations; Aviation Law; Maintenance & Manufacturers; Airport Operations & Planning; Aviation Security; ATC & Airspace; Air Freight; General Aviation; Business Jet Operations; Business models within Airline Industry; Military Aviation.

Technical visit: This course includes a guided tour at Zurich Airport and Dubendorf Airfield (baggage sorting system, apron, Tower & Radar Simulator at Skyguide Dubendorf).

Lecture notes
Preparation materials & slides are provided prior to each class

Literature
Literature will be provided by the lecturers, respectively there will be additional Information upon registration (normally available in Moodle)

Prerequisites / notice
The lecture is planned as class teaching with live-streaming and recordings.

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Problem-solving assessed

Domain C - Social Competencies
- Cooperation and Teamwork not assessed

Domain D - Personal Competencies
- Creative Thinking assessed
- Critical Thinking assessed
- Self-direction and Self-management not assessed

Basics of Air Transport (Aviation I) 151-0227-00L
W 4 credits 3G P. Wild

Abstract
In general the course explains the main principles of air transport and elaborates on simple interdisciplinary topics. Working on broad 14 different topics like aerodynamics, manufacturers, airport operations, business aviation, business models etc. the students get a good overview in air transportation. The program is taught in English and we provide 11 different experts/lecturers.

Objective
The goal is to understand and explain basics, principles and contexts of the broader air transport industry. Further, we provide the tools for starting a career in the air transport industry. The knowledge may also be used for other modes of transport. Ideal foundation for Aviation II - Management of Air Transport.

Content
Weekly: 1h independent preparation; 2h lectures and 1 h training with an expert in the respective field

Concept: This course will be taught as Aviation I. A subsequent course - Aviation II - covers the "Management of Air Transport".

Content: Transport as part of the overall transportation scheme; Aerodynamics; Aircraft (A/C) Designs & Structures; A/C Operations; Aviation Law; Maintenance & Manufacturers; Airport Operations & Planning; Aviation Security; ATC & Airspace; Air Freight; General Aviation; Business Jet Operations; Business models within Airline Industry; Military Aviation.

Technical visit: This course includes a guided tour at Zurich Airport and Dubendorf Airfield (baggage sorting system, apron, Tower & Radar Simulator at Skyguide Dubendorf).

Lecture notes
Preparation materials & slides are provided prior to each class

Literature
Literature will be provided by the lecturers, respectively there will be additional Information upon registration (normally available in Moodle)

Prerequisites / notice
The lecture is planned as class teaching with live-streaming and recordings.

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Problem-solving assessed

Domain C - Social Competencies
- Cooperation and Teamwork not assessed

Domain D - Personal Competencies
- Creative Thinking assessed
- Critical Thinking assessed
- Self-direction and Self-management not assessed

Railway Systems I 227-0523-00L
W 6 credits 4G M. Meyer

Abstract
Basic characteristics of railway vehicles and their interfaces with the railway infrastructure:
- Transportation tasks and vehicle types
- Running dynamics
- Mechanical part of rail vehicles
- Brakes
- Traction chain and auxiliary supply
- Railway power supply
- Signalling systems
- Standards
- Availability and safety
- Traffic control and maintenance

Objective
- Overview of the technical characteristics of railway systems
- Interrelationship between different fields of engineering sciences (mechanics, electro and information technology, transport systems)
- Understanding tasks and opportunities of engineers working in an environment which has strong economical and political boundaries
- Insight into the activities of the railway vehicle industry and railway operators in Switzerland
- Motivation of young engineers to start a career in the railway industry or with railway operators
Content

EST I (Herbstsemester) - Begriffen, Grundlagen, Merkmale

1 Einführung:
1.1 Geschichtliche und struktureller Aufbau des Bahnsystems
1.2 Fahrdynamik

2 Vollbahnhäfen:
2.1 Geschichte und Struktur des Bahnsystems
2.2 Bremsen
2.3 Traktionsantriebssysteme
2.4 Hilfsbetriebe und Komfortanlagen
2.5 Steuerung und Regelung

3 Infrastruktur:
3.1 Fahrwege
3.2 Bahnstromversorgung
3.3 Sicherungsanlagen

4 Betrieb:
4.1 Interoperabilität, Normen und Zulassung
4.2 RAMS, LCC
4.3 Anwendungsbeispiele

Voraussichtlich ein oder zwei Gastvorträge

Geplante Exkursionen:
- Betriebszentrale SBB, Zürich Flughafen
- Reparatur und Unterhalt, SBB Zürich Altstetten
- Fahrzeugfertigung, Stadler Bussnang

Lecture notes
Abgabe der Unterlagen (gegen eine Schutzgebühr) zu Beginn des Semesters. Rechtzeitig eingeschriebene Teilnehmer können die Unterlagen auf Wunsch und gegen eine Zusatzgebühr auch in Farbe beziehen.

Prerequisites / notice
Dozent: Dr. Markus Meyer, Emkamatik GmbH

Voraussichtlich ein oder zwei Gastvorträge von anderen Referenten.

EST I (Herbstsemester) kann als in sich geschlossene einsemestrige Vorlesung besucht werden. EST II (Frühjahrssemester) dient der weiteren Vertiefung der Fahrzeugtechnik und der Integration in die Bahninfrastruktur.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain D - Personal Competencies	Critical Thinking	assessed

101-0509-00L Infrastructure Management 1: Process 6 credits 3G B. T. Adey

Abstract
Infrastructure asset management is the process used to ensure that infrastructure provides adequate levels of service for specified periods of time. This course provides an overview of the process, from setting goals to developing intervention programs to analyzing the process itself. It consists of weekly lectures and a group project. Additionally, there is a weekly help session.

Objective
There are a large number of efforts around the world to obtain more net benefits from infrastructure assets. This can be seen through the proliferation of codes and guidelines and the increasing amount of research in road infrastructure asset management. Many of these codes and guidelines and much of the research, however, are focused on only part of the large complex problem of infrastructure asset management.

The objective of this course is to provide an overview of the entire infrastructure management process. The high-level process described can be used as a starting point to ensure that infrastructure management is done professionally, efficiently and effectively. It also enables a clear understanding of where computer systems can be used to help automate parts of the process. Students can use this process to help improve the specific infrastructure management processes in the organisations in which they work in the future.

More specifically upon completion of the course, students will
- understand the main tasks of an infrastructure manager and the complexity of these tasks,
- understand the importance of setting goals and constraints in the management of infrastructure,
- be able to predict the deterioration of individual assets using discrete states that are often associated with visual inspections,
- be able to develop and evaluate simple management strategies for individual infrastructure assets,
- be able to develop and evaluate intervention programs that are aligned with their strategies,
- understand the principles of guiding projects and evaluating the success of projects,
- be able to formally model infrastructure management processes, and
- understand the importance of evaluating the infrastructure management process and have a general idea of how to do so.
The weekly lectures are structured as follows:

1. Introduction: An introduction to infrastructure management, with emphasis on the consideration of the benefits and costs of infrastructure to all members of society, and balancing the need for prediction accuracy with analysis effort. The expectations of your throughout the semester, including a description of the project.

2. Positioning infrastructure management in society. As infrastructure plays such an integral part in society, there is considerable need to ensure that infrastructure managers are managing it as best possible. A prominent network regulator explains the role and activities of a network regulator.

3. Setting goals and constraints – To manage infrastructure you need to know what you expect from it in terms of service and how much you are willing to pay for it. We discuss the measures of service for this purpose, as well as the ideas of quantifiable and non-quantifiable benefits, proxies of service, and valuing service.

4. Predicting the future – As infrastructure and our expectations of service from it change over time, these changes need to be included in the justification of management activities. This we discuss the connection between provided service and the physical state of the infrastructure and one way to predict their evolution over time.

5. Help session 1

6. Determining and justifying general interventions - It is advantageous to be able to explain why infrastructure assets need to be maintained, and not simply say that they need to be maintained. This requires explanation of the types of interventions that should be executed and how these interventions will achieve the goals. It also requires explaining which interventions are to be done if it is not possible to do everything due to for example budget constraints. This week we cover how to determine optimal intervention strategies for individual assets, and how to convert these strategies into network level intervention programs.

7. Determining and justifying monitoring – Once it is clear how infrastructure might change over time, and the optimal intervention strategies are determined, you need to explain how you are going to know that these states exist. This requires the construction of monitoring strategies for each of asset. This week we focus on how to develop monitoring strategies that ensure interventions are triggered at the right time.

8. Converting programs to projects / Analysing projects – Once programs are completed and approved, infrastructure managers must create, supervise and analyse projects. This week we focus on this conversion and the supervision and analysis of projects.

9. Help session 2

10. Ensuring good information – Infrastructure management requires consistent and correct information. This is enabled by the development of a good information model. This week we provide an introduction to information models and how they are used in infrastructure management.

11. Ensuring a well-run organization – How people work together affects how well the infrastructure is managed. This week we focus on the development of the human side of the infrastructure management organisation.

12. Describing the IM process – Infrastructure management is a process that is followed continually and improved over time. It should be written down clearly. This week we will concentrate on how this can be done using the formal modelling notation BPMN 2.0.

13. Evaluating the IM process – Infrastructure management processes can always be improved. Good managers acknowledge this, but also have a plan for continual improvement. This week we concentrate on how you can systematically evaluate the infrastructure management process.

14. Help session 3 and submission of project report.

The course uses a combination of qualitative and quantitative approaches. The quantitative analysis required in the project requires at least the use of Excel. Some students, however, prefer to use Python or R.

Lecture notes

- The lecture materials consist of handouts, the slides, and example calculations in Excel.
- The lecture materials will be distributed via Moodle two days before each lecture.

Literature

Appropriate literature will be handed out when required via Moodle.

Prerequisites / notice

This course has no prerequisites.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

363-1047-00L Urban Systems and Transportation

W 3 credits 2G G. Loumeau

Abstract

This course is an introduction to urban and regional economics. It focuses on the formation and development of urban systems, and highlight how transport infrastructure investments can affect the location, size and composition of such systems.

Objective

The main objective of this course is to provide students with some basic tools to analyze the fundamental economic forces at play in urban systems (i.e., agglomeration and congestion forces), and the role of transport networks in shaping the structure of these systems. Why do urban areas grow or decline? How do transport networks affect the location of individuals and firms? Does the location of a firm determine its productivity? Can transport infrastructure investments reduce economic disparities? These are some of the questions that students should be able to answer after having completed the course.
The course is organized in four parts. I start with the key observation that economic activity (both in terms of population density and productivity) is unevenly distributed in space. For instance, the share of the population living in urban centers is increasing globally, from 16% in 1900 and 50% in 2000 to about 68% by the year 2050 (UN, World Economic Prospects, 2014). The goal of the first part is then to understand the economic forces at play behind these trends, looking at the effects within and across urban areas. I will also discuss how natural or man-made geographical characteristics (e.g., rivers, mountains, borders, etc.) affect the development of such urban systems.

In the second part, I discuss the planning and pricing of transport networks, moving from simple local models to more complex transport models at a global scale. The key aspects include: the first and second best road pricing, the public provision of transport networks and the demographic effects of transport networks.

In the third part, I combine the previous two parts and analyze the interaction between urban systems and transportation. Thereby, the main focus is to understand the economic mechanisms that can lead to a general equilibrium of all actors involved. However, as the study of the historical development of urban systems and transport networks provides interesting insights, I will discuss how their interaction in the past shapes today’s economic geography.

Finally, I broaden the scope of the course and explore related topics. There will be a particular emphasis on the relation between urban systems and fiscal federalism as well as environmental policies. Both aspects are important determinants of the contemporary developments of urban systems, and as such deserve our attention.

In general, this class focuses on the latest research developments in urban and regional economics, though it does not require prior knowledge in this field. It pays particular attention to economic approaches, which are based on theoretical frameworks with strong micro-foundations and allow for precise policy recommendations.

The course provides a quantitative introduction to groundwater flow and contaminant transport. Course slides will be made available to students prior to each class.

Possible simplifications relevant for practical problems are shown and their applications are discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated.

All methods discussed are applied practically in exercises. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generally available softwares such as BASEMENT for non-steady shallow water flows are used.

Numerical Hydraulics

Abstract

In the course Numerical Hydraulics the basics of numerical modelling of flows are presented.

Content

The basic equations are derived from first principles. Possible simplifications relevant for practical problems are shown and their applicability is discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated.

Lecture notes

Literature

Prerequisites / notice

Information: Because Hydraulic Structures II is strongly based on Hydraulic Engineering (101-0206-00L) it is strongly recommended to have taken this course (101-0206-00L) or a similar one previously.

Groundwater I

Abstract

The course provides a quantitative introduction to groundwater flow and contaminant transport.

Content

Properties of porous and fractured media. Darcy’s law, flow equation, stream functions, interpretation of pumping tests, transport processes, transport equation, analytical solutions for transport, numerical methods: finite differences method, aquifers remediation, case studies.

Lecture notes

Literature

W. Kinzelbach, R. Rausch, Grundwassermodellierung, Gebrüder Bornträger, Stuttgart, 1995

River Engineering

Abstract

The lecture addresses the fundamentals of river engineering to quantitatively describe the flow of water, transport of sediment and wood, and morphological changes such as erosion and deposition processes associated with river structures. In addition, design guidelines for river engineering structures are introduced.

Lecture notes

Literature

K. Sperger

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 184 of 2152
At the end of the course, the students will be able to:
- recall and describe the fundamentals of transport processes in rivers,
- apply different calculation approaches and methods to tackle river engineering problems and tasks such as the discharge capacity of a river, scour estimation, or sediment budget of a river,
- design and dimension river engineering works needed to influence the processes in watercourses, and
determine the interaction between flow (discharge), sediment transport, wood transport and the resulting channel evolution.

The first part of the lecture introduces the fundamentals of river engineering, such as methods to determine and calculate the river discharge, or sampling methods to characterize the bed material. In addition, the transport processes of sediment (bedload and suspended load) and wood in rivers will be examined, including the principles of incipient motion, and initiation of erosion or deposition processes.

In the second part of the lecture, the methods will be explained to quantify the bed load budget and the morphological changes (erosion, deposition) in river systems. Specifically, natural channel formation processes, different bed forms and plan forms of rivers (straight, meandering, braided) are examined.

The last part of the lecture focuses on the design of river engineering structures, including examples from an ongoing flood and river revitalization project at the Alpine Rhine in Austria and Switzerland.

The course covers GIS use in watershed analysis, models types from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with practical tasks (exercises).

The main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on thematic lectures (2 hrs a week) and practical exercises (2 hrs a week). Theory and concepts in the lectures are underpinned by many examples from scientific studies. A comprehensive exercise block builds on the lectures with a series of 5 practical tasks to be conducted during the semester in group work. Exercise hours during the week focus on explanation of the tasks. The course is evaluated 60% by performance in the graded exercises and 40% by a semester-end oral examination (30 mins) on watershed modelling concepts.

The first part (A) of the course is on watershed properties analysed from DEMs, and on global sources of hydrological data for modelling applications. Here students learn about GIS applications (ArcGIS, Q-GIS) in hydrology - flow direction routines, catchment morphometry, extracting river networks, and defining hydrological response units. In the second part (B) of the course on conceptual watershed models students build their own simple bucket model (Matlab, Python), they learn about performance measures in modelling, how to calibrate the parameters and how to validate models, about methods to simulate stochastic climate to drive models, uncertainty analysis. The third part (C) of the course is focused on physically-based model components. Here students learn about components for soil water fluxes and evapotranspiration, they practice with a fully-distributed physically-based model Topkapi-ETH, and learn about other similar models. They apply Topkapi-ETH to an alpine catchment and study simulated discharge, snow, soil moisture and evapotranspiration spatial patterns. The final part (D) of the course provides open classroom discussion and simulation of a round-table discussion between modellers and clients about using watershed models in a case study.

There is no textbook. Learning materials consist of (a) video-recording of lectures; (b) lecture presentations; and (c) exercise task documents that allow independent work.

Basic Hydrology in Bachelor Studies (engineering, environmental sciences, earth sciences). Basic knowledge of Matlab (Python), ArcGIS (Q-GIS).

This course aims to cover state-of-the-art methods in modern parallel Graphical Processing Unit (GPU) computing, supercomputing and code development with applications to natural sciences and engineering.

When quantitative assessment of physical processes governing natural and engineered systems relies on numerically solving differential equations, fast and accurate solutions require performing algorithms leveraging parallel hardware. The goal of this course is to offer a practical approach to solve systems of differential equations in parallel on GPUs using the Julia language. Julia combines high-level language conciseness to low-level language performance which enables efficient code development.

The course will be taught in a hands-on fashion, putting emphasis on you writing code and completing exercises; lecturing will be kept at a minimum. In a final project you will solve a solid mechanics or fluid dynamics problem of your interest, such as the shallow water equation, the shallow ice equation, acoustic wave propagation, nonlinear diffusion, viscous flow, elastic deformation, viscous or elastic poromechanics, frictional heating, and more. Your Julia GPU application will be hosted on a git-platform and implement modern software development practices.

Part 1 - Discovering a modern parallel computing ecosystem
- Learn the basics of the Julia language;
- Learn about the diffusion process and how to solve it;
- Understand the practical challenges of parallel and distributed computing: (multi-)GPUs, multi-core CPUs;
- Learn about software development tools: git, version control, continuous integration (CI), unit tests.

Part 2 - Developing your own parallel algorithms
- Implement wave propagation (or more advanced physics);
- Apply spatial and temporal discretisation (finite-differences, various time-stepper);
- Implement efficient iterative algorithms;
- Implement shared (on CPU and GPU) and, if time allows, distributed memory parallelisation (multi-GPUs/CPUs);
- Learn about main simulation performance limits.

Part 3 - Final project
- Apply your new skills in a final project;
- Implement advanced physical processes (solid and fluid dynamic - elastic and viscous solutions).

Digital lecture notes, interactive Julia notebooks, online material.

Links to relevant literature will be provided during classes.
Prerequisites / notice

Completed BSc studies. Interest in and basic knowledge of numerics, applied mathematics, and physics/engineering sciences. Basic programming skills (e.g., Matlab, Python, Julia); advanced programming skills are a plus.

Major in Materials and Mechanics

Number	Title	Type	ECTS	Hours	Lecturers

101-0677-00L	Concrete Technology	W	2 credits	2G	F. Constandopoulos, M. Báuml, G. Martinola, T. Wangler

Abstract

Opportunities and limitations of concrete technology; Commodities and leading edge specialties.

Objective

Advanced education in concrete technology for civil engineers who are designing, specifying and executing concrete structures.

Content

Based on the lecture 'Werkstoffe' students receive deep concrete technology training. Comprehensive knowledge of the most important properties of conventional concrete and the current areas of research in concrete technology will be presented. The course covers various topics, including:

- concrete components
- concrete properties
- concrete mix design
- production, transport, casting
- demoulding, curing and additional protective measures
- durability
- standards
- chemical admixtures
- alternative binders
- specialty concretes such as
 - self compacting concrete
 - fiber reinforced concrete
 - fast setting concrete
 - fair faced concrete
 - recycled concrete
- new research in digital fabrication with concrete

Lecture notes

Slides provided for download.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>techniques and technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
</tbody>
</table>

151-8015-00L Moisture Transport in Porous Media

Abstract

Moisture transport and related degradation processes in porous materials; experimental determination of moisture transport properties; theory and application of pore network model for two-phase transport in porous media; flow in cracked and deformable porous media.

Objective

- Basic knowledge of moisture transport and related degradation processes in porous materials
- Knowledge of experimental determination of moisture transport properties
- Knowledge of pore network model and application to two-phase invasion percolation simulation
- Application of knowledge to moisture transport in cracked materials and flow in deformable porous media

Content

1. Introduction
 - Moisture damage: problem statement, durability
 - Applications: building materials, soil science, geoscience

2. Moisture transport: theory and application
 - Description of moisture transport
 - Determination of moisture transport properties
 - Liquid transport in cracked materials, flow and transport in deformable porous media

3. Pore network model: theory and application
 - Single- and two-phase pore network model: quasi-static and dynamic
 - Exercise on quasi-static two-phase pore network model: invasion pattern, capillary pressure curve
 - Application of pore network model in two-phase transport

Lecture notes

Handouts, supporting material and exercises are provided online via Moodle.

Literature

All material is provided online via Moodle.

151-0353-00L Mechanics of Composite Materials

Abstract

Focus is on laminated fibre reinforced polymer composites. The courses treats aspects related to micromechanics, elastic behavior of unidirectional and multidirectional laminates, failure and damage analysis, design and analysis of composite structures.

Objective

To introduce the underlying concept of composite materials and give a thorough understanding of the mechanical response of materials and structures made from fibre reinforced polymer composites, including elastic behaviour, fracture and damage analysis as well as structural design aspects. The ultimate goal is to provide the necessary skills to address the design and analysis of modern lightweight composite structures.

Content

The course is addressing following topics:

- Introduction
- Elastic anisotropy
- Micromechanics aspects
- Classical Lamine Theory (CLT)
- Failure hypotheses and damage analysis
- Analysis and design of composite structures
- Variable stiffness structures

Lecture notes

Script, handouts, exercises and additional material are available in PDF-format on the CMASLab webpage resp on moodle.

https://moodle-app2.let.ethz.ch/course/view.php?id=2610

Literature

The lecture material is covered by the script and further literature is referenced in there.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

101-0617-01L Advances in Building Materials

W 4 credits 2G

R. J. Flatt, I. Burgert

Abstract
The course on Advances in Building Materials provides an introductory overview of the needs and future of materials science in the building sector. Focus topics concern sustainability, durability, thermal insulation, coatings, sealants, adhesives, flame retardancy and the future perspective and developments of concrete and wood with regard to smart material development and ecological concerns.

Objective
In this course, the students will gain a broad overview of the use of materials in the building sector, with a particular focus on concrete and wood. Current limitations and in particular sustainability related challenges will be detailed with the objective of laying the grounds to discuss future developments anticipated in this field.

Content
The following topics are covered:

1. Material selection
2. Materials and sustainability 1
3. Materials and sustainability 2
4. Recyclability
5. Material science of wood durability
6. Material science of concrete durability
7. Foams in construction and thermal insulation
8. Sealants and adhesives in construction
9. Coatings
10. Flame retardants
11. Future of wood – 1
12. Future of wood – 2
13. Future of concrete – 1
14. Future of concrete – 2

Lecture notes
Handouts will be provided for each lecture.

101-0617-02L Computational Science Investigation for Material Mechanics

W 4 credits 2S

D. Kammer, F. Wittel

Abstract
Introduction to computational sciences with focus on numerical modeling of the mechanics of materials. Simulation of material damage and failure with advanced finite element methods.

Objective
Learning from mistakes and failures is as old as the engineering discipline. Understanding why things went wrong is essential for improvement, but often impossible without the help of numerical modelling. Real world problems are often highly nonlinear, dependent on multiple physical fields, involve fundamental material behavior far from equilibrium and reversibility, and can often only be understood by addressing different relevant scales.

In this course, we will use real-life cases to learn how to deal with such problems. Starting from the problem description with governing equations, you will learn how to tackle non-linear and multi-field problems using numerical simulations. A particular focus will be on fracture. Starting from the failed state, we will investigate potential causes and find the conditions that resulted in failure. For doing so, you will learn how to predict it with the Finite Element Method (FEM). To correctly assess failure, plastic behavior and size effects, originating from the underlying material microstructure, need to be considered. You will learn how to deal with plasticity in FEM and how you can get information from the heterogeneous material scale into your FEM framework.

Content

1. Introduction to (numeric) forensic engineering
2. The nature of engineering problems (governing equations)
3. Numerical recipes for dealing with non-linear problems
4. Multi-field problems (HTM; Comsol)
5. On the nature of failure - Physics of damage and fracture
6. Cracks and growth in structures (LEFM and beyond)
7. A practical approach to LEFM with FEM (Abaqus)
8. Introduction to metal plasticity
9. Damage and fracture in heterogeneous materials
10. Mechanics of fatigue
11. Visco-elastic failure
12. Student - Project presentation

Lecture notes
Will be provided during the lecture via moodle.

Literature
Will be provided during the lecture.

3. Semester

Major Courses

Major in Construction and Maintenance Management
101-0549-00L Selected Topics on Legal Aspects in Civil Engineering W+ 4 credits 2G H. Briner, D. Trümpy

Abstract
Basic knowledge in public and private law of civil engineering. Examples of the subjects treated: space management, protection of the environment, legal procedures, standards for building technology and contracts.

Objective
Part 1: The students shall acquire basic knowledge of the public law concerning civil engineering: space management, conception of buildings, protection of the environment, procedures
Part 2: The students shall acquire basic knowledge of the private law concerning civil engineering

Content
Teil 1: Jede Lektion behandelt für ein bestimmtes Stadium des Projekts ein Thema des öffentlichen Baurechts wie Bau- und Zonenordnungen, Quartierpläne, Umweltverträglichkeitsprüfungen, Baubewilligungsverfahren etc.
Teil 2: Grundzüge des privaten Baurechts wie Abnahme und Genehmigung von Bauwerken, Vollmacht des Architekten / Ingenieurs zu Rechtshandlungen namens des Bauherrn, Mängelrüge im Bauwesen, Mehrheit ersatzpflichtiger Baubeteiligter, Generalunternehmervertrag, Haftung des Bauunternehmens, Bauverkäufe, Grundzüge der SIA-Norm 118, Baukonsortium, technische Normen, internationale Bauverträge, Architekten / Ingenieure als Gerichtsexperten, Aspekte des Bauzivilprozesses

Lecture notes
D. Trümpy: Tafeln zu den Grundzügen des schweizerischen Bauvertragsrechts (Vorlesungsunterlage)
H. Briner: Tafeln zu den Grundzügen des öffentlichen Raumplanungs-, Bau- und Umweltrechts (Vorlesungsunterlage)

Literature
- Stöckli P./Siegenthaler Th. (Hrsg.) Die Planerverträge, Schulthess 2013
- Gauch Peter, Werkvertrag, 5. Auflage, Schulthess 2011

Prerequisites / notice
Die Teilnehmer sollen stets ein Exemplar der SIA-Norm 118, der SIA-LHO 103 sowie die Gesetzesausgaben von OR und ZGB bei sich haben.

101-0587-00L Workshop on Sustainable Building Certification W+ 3 credits 2G D. Kellenberger

Number of participants limited to 25

Abstract
Building labels are used to certify buildings and neighbourhoods in terms of sustainability. Many different labels have been developed and can be used in Switzerland (LEED, DGNB, SNBS, Minenergie, 2000-Watt-Sites). In this course the differences between the certification labels and its application on 3 emblematic case study buildings will be discussed.

Objective
After this course, the students are able to understand and use the different certification labels. They have a clear view of what the labels take into consideration and what they don't.

Content
Three buildings case study will be presented.
Different certification schemes, including LEED (American standard), DGNB (German Standard with Swiss adaptation), Label SNBS, MINERGIE-ECO and 2000-Watt-Sites (Swiss standards) will be presented and explained by experts.
After this overall general presentation and in order to have a closer look to specific aspects of sustainability, students will work in groups and assess during one or two weeks this specific criteria on one of the case studies presented before. This practical hands on the label will end with a presentation and a discussion where we will highlight differences between the labels.

Lecture notes
The slides from the presentations will be made available.

Literature
All documents for certification labels as well as detail plans of the buildings will be available for the students.

101-0507-00L Infrastructure Management 3: Optimisation Tools W+ 6 credits 2G B. T. Adey

Abstract
This course will provide an introduction to the methods and tools that can be used to determine optimal inspection and intervention strategies and work programs for infrastructure.

Objective
Upon successful completion of this course students will be able:
- to use preventive maintenance models, such as block replacement, periodic preventive maintenance with minimal repair, and preventive maintenance based on parameter control, to determine when, where and what should be done to maintain infrastructure
- to take into consideration future uncertainties in appropriate ways when devising and evaluating monitoring and management strategies for physical infrastructure
- to use operation research methods to find optimal solutions to infrastructure management problems

Content
Part 1: Explanation of the principal models of preventative maintenance, including block replacement, periodic group repair, periodic maintenance with minimal repair and age replacement, and when they can be used to determine optimal intervention strategies
Part 2: Explanation of preventive maintenance models that are based on parameter control, including Markovian models and opportunistic replacement models
Part 3: Explanation of the methods that can be used to take into consideration the future uncertainties in the evaluation of monitoring strategies
Part 4: Explanation of how operations research methods can be used to solve typical infrastructure management problems.

Lecture notes
A script will be given out at the beginning of the course.

Prerequisites / notice
A copy of the slides will be handed out at the beginning of each class.
Successful completion of IM1: 101-0579-00 Evaluation tools is a prerequisite for this course.

101-0520-00L Project Management: Project Execution to Closeout W+ 4 credits 2G J. J. Hoffman

Abstract
The course will give Engineering students a comprehensive overview and enduring understanding of the techniques, processes, tool and terminology to manage the Project Triangle (time, cost Quality) and to organize, analyze, control and report a complex project from start of Project Execution to Project Completion. Responsibilities will be detailed in each phase of the execution.
A student after completing the course will have the understanding of the Project Management duties, responsibilities, actions and decisions to be done during the Execution phase of a complex project.
As the course follows a lecture on demand approach, the lecture slides will be provided after each course. Required and suggested reading will be uploaded on a weekly basis. The course will follow two main objectives and a third optional objective, depending on the design projects the students choose. At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and environmental aspects.

The course will be structured into two parts, each making up about half of the semester. An Introduction to Sustainable Development in the Built Environment

Objective

At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmental aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.

Literature

Environmental Health and safety during execution

Prerequisites

Prerequisite for this course is course Project Management: Pre-Tender to Contract Execution number 101-0517-01 G, unless otherwise approved by the lecturer.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Level</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0608-00L</td>
<td>Design-Integrated Life Cycle Assessment</td>
<td>3</td>
<td>G</td>
<td>G. Habert</td>
</tr>
<tr>
<td>101-0577-00L</td>
<td>An Introduction to Sustainable Development in the Built Environment</td>
<td>3</td>
<td>O</td>
<td>G. Habert, D. Kauschal</td>
</tr>
</tbody>
</table>
The following topics give an overview of the themes that are to be worked on during the lecture.

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world

- Synthesis: Transition to sustainable development

Lecture notes
All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.

Literature
A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0527-10L</td>
<td>Materials and Constructions</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>G. Habert, D. Sanz Pont</td>
</tr>
</tbody>
</table>

Abstract
Building materials with a special focus on regenerative materials: earth, bio-based and reuse.
Sourcing, properties and performance, building envelope integration and detailing, sustainable building construction

Objective
Special focus on regenerative materials: earth, bio-based and reuse
The students will acquire knowledge in the following fields:
Fundamentals of material performance
Introduction to durability problems of building facades
Materials for the building envelope:
- Overview of structural materials and systems: concrete, steel, wood and bamboo, earth
- Insulating materials (bio-based vs conventional)
- Air barrier, vapour barrier and sealants
- Interior finishing
Assessment of materials and components behaviour and performance
Solutions for energy retrofitting of (historical) buildings
Aspects of sustainability and durability

Content
Introduction
Sustainable cement and concrete
Earth construction
Visit
Steel and bamboo
Timber construction
Building physic and conventional insulation
Bio-based insulation
Finishing
Reuse

Major in Geotechnical Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0329-00L</td>
<td>Tunnelling III</td>
<td>W</td>
<td>4</td>
<td>2G</td>
<td>G. Anagnostou, E. Pimentel, M. Ramoni</td>
</tr>
</tbody>
</table>

Abstract
Deepen the knowledge on selected topics of underground construction as well as learning working out conceptual solutions of complex problems.

Objective
Lecture: Deepen the knowledge on selected topics of underground construction.
Exercises: Conceptual solutions of complex problems.

Content
Caverns: Geometry, construction methods, support.
Shafts: Construction methods, support.
Urban tunnelling: Boundary conditions, system choice, alignment, design.
Field measurements: Principles, monitoring layout, applications, interpretation.
Cut and cover tunnels: Modelling, design.
Exercising conceptual solution of complex tunnelling problems based upon discussion of current tunnel cases with particularly demanding problems in small groups.

Lecture notes
Autographieblätter

Prerequisites / notice
Prerequisite: BSc course “Tunnelling”, MSc courses “Tunnelling I” and “Tunnelling II”.

Environmental Geotechnics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0339-00L</td>
<td>Environmental Geotechnics</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Plütze</td>
</tr>
</tbody>
</table>

Abstract
Introduction of basic knowledge about problems with contaminated sites, investigation of this sites, risque management, remediation and reclamation techniques as well as monitoring systems.
Introduction in landfill design and engineering with focus on barrier- and drainage systems and lining materials, evaluation of geotechnical problems, e.g. stability

Objective
Introduction of basic knowledge about problems with contaminated sites, investigation of this sites, risque management, remediation and reclamation techniques as well as monitoring systems.
Introduction in landfill design and engineering with focus on barrier- and drainage systems as wellas lining materials, evaluation of geotechnical problems, e.g. stability
Aim of the course is to teach students the most important aspects of the road structure, its building and design methods. An essential part of the course is to develop an understanding of the influence of the insitu conditions: soil, underground, climate, water, as well as of the characteristics of building materials and of road surface on the durability of the pavement.

Prerequisites / Notice

Voraussetzungen: Grundlagenkenntnisse in "Bodenmechanik/Grundbau" sowie in "Projektierung von Verkehrsanlagen"

Major in Structural Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0119-00L</td>
<td>Structural Masonry</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>N. Mojsilovic</td>
</tr>
<tr>
<td>Abstract</td>
<td>Knowledge of the engineering properties of materials for masonry construction. Technical understanding of the structural behaviour of load-bearing masonry structures subjected to in-plane forces and combined actions. Develop a technical competence for design procedures for load-bearing masonry structures by means of exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Technical understanding of the structural behaviour of load-bearing masonry structures subjected to in-plane forces and combined actions. Develop a technical competence for design procedures for load-bearing masonry structures by means of exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Historical Development of Masonry Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>"Mauerwerk, Bemessungsbeispiele zur Norm SIA 266", SIA Dokumentation D0257, 2015 "Mauerwerk", Norm SIA 266, 2015 "Mauerwerk - Ergänzende Festlegungen", Norm SIA 266/1, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>In den Vorlesungen und Übungen werden verschiedene Demonstrationsmaterialien verwendet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non Destructive Evaluation & Rehabilitation of Existing Structures

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0129-00L</td>
<td>Advanced Structural Concrete</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>E. Chatzi, B. Herraiz Gómez, G. Kocur</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to non destructive evaluation tools and quantitative structural analyses and verifications for condition assessment of existing structures and subsequent decisions on their rehabilitation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal is for students to familiarize themselves with the handling of assessment and rehabilitation of existing structures from the perspective of a consulting engineer, following a systematic approach as described in current codes and to further learn how to use new non destructive evaluation technologies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course is organized in two main pillars. The first pillar describes the technologies that are available for non destructive evaluation of structures and delves into description of the principle of operation of such methods (e.g. wave propagation, acoustic emission analysis, tomography). The second pillar, overviews the current implementation of condition assessment processes in codes and standards. Complementary to the topic of structural evaluation, the topic of interventions, rehabilitation and retrofitting of existing structures for different construction materials is next addressed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method of Finite Elements II

The Method of Finite Elements II is a continuation of Method of Finite Elements I. Here, we explore the theoretical and numerical implementation concepts for the finite element analysis beyond the linear elastic behavior. This course aims to offer students with the skills to perform nonlinear FEM simulations using coding in Python.

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: assessed
- Leadership and Responsibility: assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

101-0159-00L

Objective

Upon completion of the course, the participants will be able to:
- Recognize when linear elastic analysis is insufficient
- Solve nonlinear dynamics problems, which form the core for limit state calculations (e.g. ultimate capacity, failure) of structures
- Numerically simulate fracture; a dominant failure phenomenon for structural systems.

See the class webpage for more information:

Lecture notes

The course slides serve as Script. These are openly available on: http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html

Useful (optional) Reading:

Prerequisites:
- 101-0158-01. Method of Finite Elements I (FS)
- A good knowledge of Python is necessary for attending this course.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Problem-solving: assessed

Domain C - Social Competencies
- Cooperation and Teamwork: assessed

Domain D - Personal Competencies
- Critical Thinking: assessed

101-0189-00L

Seismic Design of Structures II

The following topics are covered: behavior and non-linear response of structural systems under earthquake excitation; seismic behavior and design of moment frame, braced frame, shear wall and masonry structures; fundamentals of seismic response modification; and assessment and retrofit of existing buildings. They are discussed in the framework of risk-informed performance-based design.

Domain A - Subject-specific Competencies
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Problem-solving: assessed

Domain C - Social Competencies
- Cooperation and Teamwork: assessed

Domain D - Personal Competencies
- Critical Thinking: assessed

101-0189-00L

Abstract

The following topics are covered: behavior and non-linear response of structural systems under earthquake excitation; seismic behavior and design of moment frame, braced frame, shear wall and masonry structures; fundamentals of seismic response modification; and assessment and retrofit of existing buildings. They are discussed in the framework of risk-informed performance-based design.

Objective

After successfully completing this course the students will be able to:
1. Use the knowledge of nonlinear dynamic response of structures to interpret the design code provisions and apply them in seismic design of structural systems.
2. Explain the seismic behavior of moment frame, braced frame and shear wall structural systems and successfully design such systems to achieve the performance objectives stipulated by the design codes.

Content

This course completes the series of two courses on seismic design of structures at ETHZ. Building on the material covered in Seismic Design of Structures I, the following advanced topics will be covered in this course: 1) behavior and non-linear response of structural systems under earthquake excitation; 2) seismic behavior and design of moment frame, braced frame and shear wall structures; 3) fundamentals of seismic response modification; and 4) assessment and retrofit of existing buildings. These topics will be discussed from the standpoint of risk-informed performance-based design.

Lecture notes

Electronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes the lecture presentations, additional reading, and exercise problems and solutions. Lectures are recorded and streamed on the ETH Video Portal.

Autumn Semester 2021

Page 192 of 2152
Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, Yousef Borzorgnia and Vitelmo Bertero, Eds., CRC Press, 2004

Prerequisites / notice

ETH Seismic Design of Structures I course, or equivalent. Students are expected to understand the seismological nature of earthquakes, to characterize the ground motion excitation, to analyze the response of elastic single- and multiple-degree-of-freedom systems to earthquake excitation, to use the concept of response and design spectrum, to compute the equivalent seismic loads on simple structures, and to perform code-based seismic design of simple structures. Familiarity with structural analysis software, such as SAP2000, and general-purpose numerical analysis software, such as Matlab, is expected.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

101-0191-00L Seismic and Vibration Isolation W 2 credits 1G M. Vassiliou

Abstract
This course will cover the analysis and design of isolation systems to mitigate earthquakes and other forms of vibrations. The course will cover:
1. Conceptual basis of seismic isolation, seismic isolation types, mechanical characteristics of isolators.
3. Design approaches and code requirements

Objective
After successfully completing this course the students will be able to:
1. Understand the mechanics of and design isolator bearings.
2. Understand the dynamics of and design an isolated structure.

Content
1. Introduction: Overview of seismic isolation; review of structural dynamics and earthquake engineering principles. Viscoelastic behavior.
2. Linear theory of seismic isolation
3. Types of seismic isolation devices - Modelling of seismic isolation devices – Nonlinear response analysis of seismically isolated structures in Matlab
4. Behavior of rubber isolators under shear and compression
5. Behavior of rubber isolators under bending
6. Buckling and stability of rubber isolators
7. Code provisions for seismically isolated buildings

Lecture notes
The electronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes: reading material, and (optional) exercise problems and solutions.

Literature
There is no single textbook for this course. However, most of the lectures are based on parts of the following books:
- Dynamics of Structures, Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2017
- Design of seismic isolated structures: from theory to practice, Farzad Naeim and James M. Kelly, John Wiley & Sons, 1999

Prerequisites / notice
- Mechanics of rubber bearings for seismic and vibration isolation, James M. Kelly and Dimitrios Konstantinidis, John Wiley & Sons, 2011
- 101-0157-01 Structural Dynamics and Vibration Problems course, or equivalent, or consent of the instructor. Students are expected to know basic modal analysis, elastic spectrum analysis and basic structural mechanics.

101-0123-00L Structural Design W 3 credits 2G P. Ohlbrock, P. Block, J. Schwartz

Abstract
The goal of the course is to introduce the civil engineering students to Structural Design, which is regarded as a discipline that relates structural behavior, construction technologies and architectural concepts. The course encourages the students to understand the relationship between the form of a structure and the forces within it by promoting the development of designed projects.

Objective
After successfully completing this course the students will be able to:
1. Critically question structural design concepts of historical and contemporary references
2. Use graphic statics and strut-and-tie models based on the Theory of Plasticity to describe the load bearing behavior of structures
3. Understand different construction technologies and have an awareness of their potential for structural design
4. Use contemporary digital tools for the design of structures in equilibrium
5. Design an appropriate structural system for a given design task taking into account architectural considerations

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 193 of 2152
The goal of the course is to introduce the civil engineering students to Structural Design, which is understood as a discipline that relates structural behavior, construction technologies and architectural concepts. Hence, the course encourages the students to develop an intuitive understanding of the relationship between the form of a structure and the forces within it by promoting the development of designed projects, in which the static and architectural aspects come together. The course is structured in two main parts, each developed in half of a semester: a mainly theoretical one (including the teaching of graphic statics) and a mainly applied one (focused on the development of a design project by the students using digital form-finding tools).

Theory:
Graphic statics is a graphical method developed by Prof. Karl Culmann and firstly published in 1864 at ETH Zurich. In this approach to structural analysis and design, geometric construction techniques are used to visualize the relation between the geometry of a structure and the forces acting in and on it, represented by geometrically dependent form and force diagrams.

The course will firstly review the main principles of graphic statics through a series of frontal lectures and discuss the relationship to analytical statics. Graphic statics is then used as an operative tool to design structures in equilibrium based on the lower bound theorem of the Theory of Plasticity. Additionally, the course will introduce contemporary methodologies and tools (parametric CAD software) for the interactive application of equilibrium modelling in the form of short workshops. The students will familiarize with the topic by solving exercises and confronting themselves with simple design tasks.

Design Project:
Specific structural design approaches and design methodologies based on graphic statics and references from construction history will be introduced to the students by means of seminars and workshops. By developing a design project, the students will apply these concepts and techniques in order to become proficient with open design tasks (such as the design of a bridge, a large span hall or a tower). At the end of the semester, the students present their projects to a jury of internal and external critics in a final review. The main criterion of evaluation is the students' ability to integrate architectural considerations into their structural design.

Literature
"Faustformel Tragwerksentwurf"
(PhilippBlock, Christian Gengangel, Stefan Peters,

"Form and Forces: Designing Efficient, Expressive Structures"

"The art of structures. Introduction to the functioning of structures in architecture"

101-0121-00L Fatigue and Fracture in Materials and Structures

Abstract
The fundamentals in fatigue and fracture mechanics, which are used in different engineering disciplines (e.g., for mechanical, aerospace, civil and material engineers) will be discussed. The focus will be on fundamental theories (based on fracture mechanics) that model fatigue damage and crack propagation.

Objective
In this course, the students will learn:
- Linear elastic and elastic-plastic fracture mechanics.
- Modern computer-based techniques (using ABAQUS Finite Element Package) to simulate cracks in both bulk materials and bonded joints/interfaces.
- Laboratory fatigue and fracture tests on details with cracks.

Content
The course starts with a discussion on the importance of fatigue and fracture in different engineering disciplines such as mechanical, aerospace, civil and material engineering domains. The preliminary topics that are covered in this course are:

I) Fatigue of materials:
- Mechanisms of fatigue crack initiation in (ductile and brittle) metals.
- Crack initiation under uni-axial high-cycle fatigue (HCF) loadings: Wöhler (S-N) curves, constant life diagram approach (mean-stress effects), rainflow analysis and Miner’s damage rule.
- Crack initiation under multi-axial HCF loadings: multi-axial fatigue mechanisms, critical plane approach (critical distance theory), equivalent stress approach, proportional and non-proportional loading.

II) Fracture mechanics:
- ELinear elastic fracture mechanics (LEFM): limits of LEFM, stress intensity factors, crack opening displacement, mixed-mode fracture, etc.
- Elastic-plastic fracture mechanics: Irwin and Dugdale models, plastic zone shapes, crack-tip opening displacement and J-integral.
- Fatigue crack growth (FCG): FCG models, Paris’ law, cyclic plastic zones, crack closure effects. This also includes FE modeling of the FCG and laboratory tests (at Empa).

III) Introduction to cohesive zone models (CZMs):
- Advantages and disadvantages of CZMs compared to fracture mechanics.
- Different bond-slip models for the bonded joints/interfaces.

IV) Computer laboratory to simulate cracks and debonding problems:
- Finite Element (FE) modeling of complex details with cracks.
- FE simulations of debonding problems using CZMs.
- Computer laboratory: FE training and exercises using (the student edition of) the ABAQUS FE Package.

V) Introduction to fatigue and fracture design in civil structures. Different methods for fatigue strengthening will be discussed.

VI) Visits to the Empa (Swiss Federal Laboratories for Materials Science and Technology) in Dübendorf, and “Laboratory Competition”. The students will:
- Visit different small-scale and large-scale fatigue testing equipment.
- Get to know different ongoing fatigue- and fracture-related projects.
- Witness and help to conduct a fatigue test on a steel plate with a pre-crack and a fracture test on an adhesively-bonded joint.
- Compare the experimental results with their own calculations (from the fracture theories).
- “Laboratory Competition” at Empa: the students with the closest predictions will win the “Empa Laboratory Competition” and will be awarded by a prize.

Lecture notes
Lectures are based on the lecture slides and the handouts, which will be given to the students during the semester.

Literature
After successful completion of the course, students will be able to:

- Understand and apply the fundamentals of the material glass and glass products, the basic principles for using glass as a load-carrying building material for structural applications and the types of connections used for glass elements;
- Recognize requirements for glass elements depending on their application area and choose the appropriate glass products and assemblies accordingly;
- Structurally design out-of-plane loaded glass elements based on available standards, both by hand calculations and specific software applications;
- Apply selected approaches for the structural design of in-plane loaded glass elements;
- Select suitable supporting systems (post-and-beam façade, curtain wall, etc.) and connections (point fixings, brackets, etc.) for the glass elements and structurally design them.

This course introduces civil engineering students to structural glass design and related façade engineering aspects. It aims to provide the students the knowledge required in engineering offices to design glass elements but at the same time, the necessary fundamentals for later performing research in this field. To achieve this, the course includes lectures, design exercises and a design project.

Lectures:
The lectures will cover the following contents:
- Production methods and properties of the material glass and glass products and their structurally relevant properties (annealed glass, thermally tempered glass, chemically tempered glass, laminated glass, insulating glass, curved glass);
- Connection principles and types for glass elements (mechanical fixing, adhesive bonding);
- Requirements for glass elements depending on the application area (vertical glazing, overhead glazing, walk-on glazing, barrier glazing);
- Structural design of glass elements based on standards and research results (out-of-plane loaded glass elements and in-plane loaded glass elements);
- Typologies and design of structural systems for transparent façades;
- Requirements and functions for transparent façades.

Design exercises:
The principles and methods presented in the lectures are practiced with the students in design exercises. Hand calculation methods and their limitations as well as the software for structural glass design SJ Mepla are used for out-of-plane loaded glass elements. For in-plane loaded glass elements, the specifics of numerical calculation procedures are exemplified with the software Abaqus.

Design project:
The students will consolidate the knowledge gained in the theory-lectures and in the design exercises by working on a small design task (e.g. a glass canopy, a glass façade, a glass pavilion) in the form of a group work (ideally groups of 2-3 students). Within this task, the students will: conceptually design the structure and selected connection details; identify requirements for the glass elements and define their assembly; structurally design selected glass components, their support systems and their connections. The students will work on the design task in the second half of the semester and will get feedback on their progress in weekly review sessions. At the end of the semester, the groups will submit a project report and give an oral presentation of their projects.

The lectures are based on lecture slides and handouts.

Recommended and supplementary literature:

Prior knowledge of structural analysis, especially steel structures is necessary. Prior basic knowledge on the method of finite elements is recommended.
Objective

This course aims to provide graduate level introduction into Machine and especially scientific Machine Learning for applications in the design and construction phases of projects from civil engineering.

Upon completion of the course, the students will be able to:
1. understand main ML background theory and methods
2. assess a problem and apply ML and DL in a computational framework accordingly
3. Incorporating scientific domain knowledge in the SciML process
4. Define, Plan, Conduct and Present a SciML project

Content

The course will include theory and algorithms for SciML, programming assignments, as well as a final project assessment.

The topics to be covered are:
1. Fundamentals of Machine and Deep Learning (ML / DL)
2. Incorporation of Domain Knowledge into ML and DL
3. ML training, validation and testing pipelines for academic and research projects

A comprehensive series of computer/lab exercises and in-class demonstrations will take place, providing a “hands-on” feel for the course topics.

Lecture notes

The course script is composed by lecture slides, which are available online and will be continuously updated throughout the duration of the course.

Literature

Suggested Reading:
Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong Mathematics for Machine Learning
S. Guido, A. Müller: Introduction to machine learning with python. O'Reilly Media, 2016
O. Martin: Bayesian analysis with python. Packt Publishing Ltd, 2016

Prerequisites / notice

Familiarity with MATLAB and / or Python is advised.

Major in Transport Systems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0469-00L</td>
<td>Road Safety</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>M. Deublein, P. Eberling</td>
</tr>
<tr>
<td>Abstract</td>
<td>The collection and the methods of statistical and geographical analysis of road accidents are important fundamentals of this course. Safety Aspects in design of urban roads are discussed and measures for improving the safety situation are presented. Procedures of infrastructure safety management for administrations and police are another topic.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Imparting knowledge base about road safety and the event of accident, presenting possibilities to increase road safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Accident origin, collection of road accidents, statistical (descriptive and multivariate, accident prediction models) and geographical analysis of road accidents, risk analysis and rehabilitation measures, road safety instruments for infrastructure with focus on road safety audit, Swiss and international transport policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

103-0417-02L	Methodology of Planning Research and Practice	W	3 credits	2G	A. Peric Momcilovic, T. Hug, R. Streit
Abstract	This course deals with scientific and applied methods and the ways of thinking that are useful in planning practice as well as in scientific research. Students are offered interdisciplinary knowledge from planning practice and research, behavioural economics and social sciences. New perspectives on planning are opened up, which can lead to better results in future projects and research.				
Objective	Keeping the general aim of exploring the basic methodologies in spatial planning research and practice, the specific course learning objectives are as follows:				
- to address complex real-world spatial problems in adequate ways					
- to know relevant theories and maxims that are subject to specific methods of problem solving					
- to identify key questions and key concepts in contemporary planning research					
- to select appropriate research methods to properly address the research questions					
In practical terms, students:					
- learn to deal with uncertainties and estimate quantities					
- improve their ability to take decisions based on incomplete data and information					
- are informed about different (qualitative and quantitative) methods and techniques for spatial research					
- learn about different types of research (theoretical, empirical, action-oriented, qualitative, quantitative)					
- get skilled for writing simple research essays					
- are urged to question their own knowledge and challenge the course of action taken in planning processes					
The course is based on the following questions:

How do we deal with complex issues in planning?
- Forms of knowledge, half-knowledge and not knowing
- Occurrence and explanation patterns for irrational behaviour
- Spatial research and planning practice
- Planning maxims
- Mapping complex topics in research questions

How do we generate knowledge about complex issues?
- Methods for scientific data generation
- Applied handling of quantities and probabilities
- Estimating despite uncertainties
- Opportunities of digitisation in planning (Participation, BigData)

How do we react to complex questions in planning?
- Methods of scientific data analysis
- Making decisions despite incomplete information
- Dealing with robustness and fragility

More specifically, the lectures focus on the following topics (NB: Some content units will be presented in English, they are marked with *asterisk below)
- (Half-) knowledge/behaviour/irrationalsities
- Initial situation: Solving complex problems
- Forms of knowledge, knowing of not knowing something, not knowing of not knowing something
- Behavioural patterns, occurrence and explanation patterns for irrational behaviour
- Methods for solving complex tasks in planning practice
- Spatial research and planning practice - connections, differences, overlaps
- Challenges in the solution of complex tasks: System delimitation, interdisciplinarity, retrospective vs. prospective approach (descriptive vs. action-oriented, *reflected scenario building*)
- Planning maxims
- *Methodology in spatial research
- *Research design
- *Research questions (types of research questions; research questions, hypotheses and theories); justification of research question
- Data generation methods (interviews and questionnaires, ethnography and observation, documents, official statistics)
- Dealing with quantities, estimations, anchor effect
- Importance of scales and key figures in planning
- Estimation methods
- Danger of the anchor effect
- Digitization in planning
- New data sources and sizes
- Opportunities and challenges through digitisation in planning
- Data analysis methods (quantitative and qualitative data; quantitative analysis of survey data; qualitative analysis - content analysis, discourse analysis, case study, comparative research)
- *Research ethics
- Decisions based on incomplete information
- Dealing with complex systems/roughness
- *Role of science in planning - the perspective of both research and practice

Lecture notes:
Learning materials: available online (Moodle) before corresponding lecture.

Literature:

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Media and Digital Technologies assessed
- Problem-solving assessed
- Project Management assessed

Domain C - Social Competencies
- Communication assessed
- Cooperation and Teamwork assessed
- Customer Orientation assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity assessed
- Negotiation assessed

Domain D - Personal Competencies
- Adaptability and Flexibility assessed
- Creative Thinking assessed
- Critical Thinking assessed
- Integrity and Work Ethics not assessed
- Self-awareness and Self-reflection assessed
- Self-direction and Self-management not assessed

101-0491-00L Agent Based Modeling in Transportation W 6 credits 4G M. Balac

Abstract
This course provides an introduction to agent-based modeling in transportation. The lectures and exercises offer an opportunity to learn about agent-based models' current methodology, focusing on MATSim, how agent-based models are set up, and perform a practical case study by working in teams.

Objective
At the end of the course, the students should:
- have an understanding of agent-based modeling
- have an understanding of MATSim
- have an understanding of the process needed to set up an agent-based study
- have practical experience of using MATSim to perform practical transportation studies
This course provides an introduction to agent-based models for transportation policy analysis. Four essential topics are covered:

1) Introduction of agent-based modeling and its comparison to the traditional state of practice modeling
2) Introduction of MATSim, an open-source agent-based model, developed at ETH Zurich and TU Berlin, and its various parts
3) Setting up an agent-based model simulation, where different statistical methods used in the process will be introduced and explained
4) Conducting a transport policy study. The case study will be performed in groups and will include a paper-like report.

During the course, outside lecturers will give several lectures on using MATSim in practice (i.e., SBB).

Agent-based modeling in general

MATSim

Additional relevant readings, primarily scientific articles, will be recommended throughout the course.

There are no strict prerequisites in terms of which lectures the students should have previously attended. However, knowledge of basic statistical theory is expected, and experience with at least one high-level programming language (Java, R, Python, or other) is recommended.

Microscopic Modelling and Simulation of Traffic Operations
W 3 credits 2G M. Makridis

Abstract
The course introduces basics of microscopic modelling and simulation of traffic operations, including model design and development, calibration, validation, data analysis, identification of strategies for improving traffic flow performance, and evaluation of such strategies.

The aim is to provide the fundamentals for building a realistic traffic-engineering project from beginning to end. The students will first familiarize themselves with microscopic traffic models. Students will work in groups on a project that includes a base scenario on a real traffic network. Throughout the semester, along with theoretical concepts, the students will build the base scenario (design, calibration and validation) and will develop alternative scenarios regarding modification on the infrastructure, simulation of in-vehicle technologies and vehicle-to-everything (V2X) communication.

Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario.

Upon completion of the course, the students will:

- Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.).
- Design a road transport network inside the simulation software.
- Understand the basics behind modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network.
- Understand how to design a complete study, implement and validate it for planning purposes, e.g., creating a new road infrastructure.
- Make valid and concrete engineering proposals based on the simulation model and alternative scenarios.

The course will be based on a project that each group of students will build (design, calibrate, analyze and presentation) across the semester. A mid-term and final examination of the work will be asked of every individual student.

The lecture notes and additional handouts will be provided before the lectures.

Students need to know some basic road transport concepts. The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. Previous experience with Aimsun/Python/C++ is helpful but not mandatory.

Geotechnical Engineering in Transportation
W 3 credits 2G D. Hauswirth

Abstract
Road design criteria, Technology of road construction materials, geotechnical testing methods in Laboratory and in situ, Planning, monitoring and interpretation of soil field tests, Soil classification for traffic construction, Compaction of road structures and dams, Frost characteristics of soil materials, soil stabilization

Objective
Aim of the course is to teach students the most important aspects of the road structure, its building and design methods. An essential part of the course is devoted to understand the influence of the in situ conditions: soil, underground, climate, water, as well as of the characteristics of building materials and of road surface on the durability of the pavement.

Content
Road design criteria, Technology of road construction materials, geotechnical testing methods in Laboratory and in situ, Planning, monitoring and interpretation of soil field tests, Soil classification for traffic construction, Compaction of road structures and dams, Frost characteristics of soil materials, soil stabilization

Lecture notes
Autographe, Uebungsblatter, Handouts, Folien

Literature
as indicated in the course

Prerequisites / notice
In den Vorlesungen und Übungen werden verschiedene Demonstrationsmaterialien verwendet.

Voraussetzungen: Grundlagenkenntnisse in "Bodenmechanik/Grundbau" sowie in "Projektierung von Verkehrsanlagen"

Infrastructure Management 3: Optimisation Tools
W 6 credits 2G B. T. Adey

Does not take place this semester.
This course will provide an introduction to the methods and tools that can be used to determine optimal inspection and intervention strategies and work programs for infrastructure.

Upon successful completion of this course students will be able:
- to use preventive maintenance models, such as block replacement, periodic preventive maintenance with minimal repair, and preventive maintenance based on parameter control, to determine when, where and what should be done to maintain infrastructure
- to take into consideration future uncertainties in appropriate ways when devising and evaluating monitoring and management strategies for physical infrastructure
- to use operation research methods to find optimal solutions to infrastructure management problems

Content

Part 1:
Explanation of the principal models of preventative maintenance, including block replacement, periodic group repair, periodic maintenance with minimal repair and age replacement, and when they can be used to determine optimal intervention strategies

Part 2:
Explanation of preventive maintenance models that are based on parameter control, including Markovian models and opportunistic replacement models

Part 3:
Explanation of the methods that can be used to take into consideration the future uncertainties in the evaluation of monitoring strategies

Part 4:
Explanation of how operations research methods can be used to solve typical infrastructure management problems.

Lecture notes
A script will be given out at the beginning of the course.
Class relevant materials will be distributed electronically before the start of class.
A copy of the slides will be handed out at the beginning of each class.

Prerequisites / notice
Successful completion of IM1: 101-0579-00 Evaluation tools is a prerequisite for this course.

101-0419-02L Railway Infrastructures 2 Arithmetic 2 credits 2G W
U. A. Weidmann, P. Gültenapfel, M. Kohler, M. J. Manhart

Abstract
Track geometry including calculation and measuring as well as related data systems; clearance profiles; interaction between track and vehicles, vehicle dynamics, stress; track construction including special features of railway bridges and tunnels; environmental aspects in track construction; track diagnostics and forecast; track maintenance and related methods

Objective
The lecture gives a deeper insight into track geometry including clearance profile, the interaction between track and vehicles as well as in construction and dimensioning of the track. Methods for the diagnosis of the state of the track and its forecast are shown. State-of-the-art maintenance strategies and technologies are presented.

Content
1 - Track geometry
Track geometry including calculation and measuring as well as related data systems; clearance profiles

2 - Interaction
Interaction between track and vehicles, vehicle dynamics

3 - Railway Track
Stress; track construction including special features of railway bridges and tunnels

4 - Environmental aspects in track construction
Fundamentals; noise protection; vibration protection

5 - Diagnostics, maintenance strategies
Track diagnostics and forecast; maintenance strategies

6 - Track maintenance
Fundamentals of track maintenance and related methods

Lecture notes
The slides will be made available.

Literature
A list with related technical literature will be handed out.

Prerequisites / notice
Prerequisite: 101-0419-01 Railway Infrastructures 1 (FS)

101-0249-00L Hydraulic Engineering: Selected Topics Arithmetic 3 credits 2S W
R. Boes

Abstract
The lecture focuses on selected topics in hydraulic engineering, water management and aquatic ecology relating to hydropower and flood protection projects.

Objective
The overarching goal of the course is to deepen knowledge on special aspects in hydraulic engineering and to understand the procedures and the planning sequence of hydropower projects.

Content
Different selected topics in hydraulic engineering will be focused on, e.g. dam safety, materials in dam building, possible problems at reservoirs like natural hazards by impulse waves, the hydraulics of spillways and intake structures at dams and weirs and the area of conflict between hydropower and ecology. Another focus will be put on typical approaches and procedures in the planning process of hydropower projects at the national and international level.

Lecture notes
Lecture notes will be specified in the lecture

Literature
External speakers will be involved to present current topics and projects in Switzerland and abroad.

Prerequisites / notice
Prerequisites: 101-0247-01L Hydraulic Engineering II or equivalent course.

101-0289-00L Applied Glaciology Arithmetic 4 credits 2G W
D. Farinotti, A. Bauder, M. Werder

Abstract
The course transmits fundamental knowledge for treating applied glaciological problems. Topics include climate-glacier interactions, glacier ice flow, glacier hydrology, ice avalanches, and lake ice.

Objective
The objectives of the courses are to:
- learn about fundamental glaciological processes, including glacier mass balance, ice dynamics, and glacier-related hazards;
- apply the above knowledge to some case studies inspired by contract-works performed at ETH's Glaciology section;
- generate the own computer code to solve the above case studies, and interpret the results;
- understand, both in class and in the field, the practical relevance of glaciology, with a focus on the Swiss applications.
Content
The course will develop along the following outline:
- How glaciology became a scientific discipline
- Glaciology and hydropower
- Glaciological mechanics and ice flow
- Gravitational glacier instabilities
- Glacier hydrology and glacier lake outbursts
- Lake ice and ice bearing capacity
- Field excursion to Jungfraujoch
- Discussion of the exercises performed during the semester

Lecture notes
Digital lecture handouts will be distributed prior to each class.

Literature
Links to relevant literature will be provided during the classes.

Prerequisites / notice
Completed BSc studies. Basic knowledge in computer scripting in any language (e.g. Python, R, Julia, Matlab, IDL, ...) will be advantageous for solving the exercises. The exercises will be performed in groups. A minimal level of fitness is required for the field excursion.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Method-specific Competencies</th>
<th>Social Competencies</th>
<th>Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Concepts and Theories</td>
<td>Techniques and Technologies</td>
<td>Communication</td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>not assessed</td>
</tr>
<tr>
<td>B</td>
<td>Analytical Competencies</td>
<td>Decision-making</td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>Problem-solving</td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>Leadership and Responsibility</td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>not assessed</td>
<td>not assessed</td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not assessed</td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Adaptability and Flexibility</td>
<td>Creative Thinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>assessed</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>Integrity and Work Ethics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>assessed</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not assessed</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>assessed</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

101-1249-00L Hydraulics of Engineering Structures

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Hydraulic fundamentals are applied to hydraulic structures for wastewater, flood protection and hydropower. Typical case studies from engineering practice are further described.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Understanding and quantification of fundamental hydraulic processes with particular focus on hydraulic structures for wastewater, flood protection and hydropower</td>
</tr>
</tbody>
</table>
| Content | 1. Introduction & Basic equations
3. Uniform flow & Critical flow
4. Hydraulic jump & Stilling basin
5. Backwater curves
6. Weirs & End overfall
7. Sidewir & Side channel
8. Bottom opening, Venturi & Culverts, Restrictors, Inverted siphons
9. Fall manholes & Vortex drop
10. Supercritical flow & Special manholes
11. Aerated flows & Low level outlets
12. Hydraulics of sediment bypass tunnels
13. Vegetated flows - Introduction & Application
14. Summary |
| Lecture notes | Text books |

102-0215-00L Urban Water Management II

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Consolidation of the basic procedures for design and operation of technical networks in water engineering.</td>
</tr>
</tbody>
</table>
| Content | Demand Side Management versus Supply Side Management
Optimierung von Wasserverteilnetzen
Kalkausfällung, Korrosion von Leitungen
Hygiene in Verteilsystemen
Siedlungshydrologie: Niederschlag, Abflussbildung
Instationäre Strömungen in Kanalisationen
Stofftransport in der Kanalisation
Einleitungsbildungen bei Regenwetter
Versickerung von Regenwasser
Generelle Entwässerungsplanung (GEP) |
| Lecture notes | Written material will be available digital. |
| Prerequisites / notice | Prerequisite: Introduction to Urban Water Management |
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Cooperation and Teamwork: not assessed

Domain D - Personal Competencies
- Critical Thinking: assessed

Management of Hillslope and Channel Processes

Abstract

Objective
To recognise and understand channel and hillslope processes and their interactions. To learn about methods of hazard analysis and of technical and bioengineering protection measures and their assessment. Determination of critical loads and design of protective structures. Assessment of spatial and future developments with and without protective measures.

Content

Lecture notes
see "Literatur"

Literature

Prerequisites / notice
- Essentials of Construction Analysis
- Hydraulics
- Geology and Petrography
- Soil Physics
- Soil Mechanics and Geotechnics

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Project Management: not assessed
- Problem-solving: assessed

Domain C - Social Competencies
- Communication: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: not assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

Major in Materials and Mechanics

Number	Title	Type	ECTS	Hours	Lecturers
101-0639-01L | Science and Engineering of Glass and Natural Stone in Construction | W | 3 credits | 2G | F. Wittel, T. Wangler

Abstract
The course offers an overview of relevant practical issues and present technological challenges for glass and natural stones in constructions. Students gain a good knowledge of the basics of glasses and natural stones, their potential as engineering materials and learn to apply them in the design of civil engineering constructions and to evaluate concepts.
Objective

Glass is increasingly used in constructions to ease the construction process, as functional insulation barrier, even for structural applications of impressive size. While everyone has experienced the innovation potential of glass in the last decade, products from natural stone suffer from an unjustified traditional image that often originates from a lack of understanding of the material and its combination with other materials. Culturally important structures often are made from natural stone and their conservation demands an understanding of their deterioration mechanisms, the concepts of which can be applied to other civil engineering materials. Designers and engineers need the knowledge to reconcile materials and system behavior with the entire processing, handling, integration and life time in mind.

In this module students are provided with a broad fundamental as well as practice-oriented education on glass and natural stone in civil engineering applications. Present and future construction and building concepts demand for such materials with optimized properties. Based on the fundamentals from the Bachelor course in materials by the end of this module, you should be able to:

- recognize and choose specific applications from the broad overview you were provided with,
- relate processing technologies to typical products and building applications and recognize (and explain typical damage related to wrong material choice or application,
- explain the nature of glassy and crystalline materials and interpret their physical behavior against this background,
- explain the major deterioration mechanisms in natural stone and how this relates to durability,
- analyze material combinations and appraise their application in future products as well as integration in existing constructions,
- summarize with appropriate guidance publications on a related topic in an oral presentation and short report.

Content

Lecture 1: An introduction to science and engineering of glass and natural stone in construction (FW/TW)

Lecture 2: Glass chemistry including historical development of glass composition, use of raw materials, melts, chemical stability and corrosion. (FW)

Lecture 3: Geology and mineralogy of stones used in construction. Formation processes, chemistry, crystal structure. (TW)

Lecture 4: Microscopic models for glassy materials. Physics of vitrification. From microscopic physical models to thermodynamics, rheology and mechanics of glassy materials. (FW)

Lecture 5: Stone properties and behavior: microstructure, density, porosity, mechanical properties (TW)

Lecture 6: Glass physics: Optical properties (transmission, reflection, emission, refraction, polarization and birefringence, testing methods); Mechanical properties (density, thermal, mechanical, electric properties, glass testing) (FW)

Lecture 7: Stone properties and durability: transport, moisture and thermal cycling (TW)

Lecture 8: Forming and processing of glass: (plate and molded glass, drawing, slumping, profiling etc.; Processing: Cutting, mechanical processing, tempering, gluing, bending, laminating of glass Surface treatments: coating, sputtering, enameling, printing, etching, chemical pre-stressing.) (FW)

Lecture 9: Durability: Salt crystallization, freezing, biodeterioration (TW)

Lecture 10: Glass products for civil engineering applications: (Molded glasses, fiber glass, foam glass, plate glass); construction glass (insulation glass, structural glass, protective glass, intelligent glass, codes); (FW)

Lecture 11: Conservation: Consolidation, cleaning, and other treatments (TW).

Lecture 12: Glass in constructions. (modelling, application and regulation, typical damage in glass) (FW)

Lecture 13: Student presentations; exam questions (FW/TW)

Lab1: Durability of natural stone (FW/TW)

Lab2: Fracture of glass (FW/TW)

Will be handed out in the lectures

Literature

Will be handed out in the lectures

Werkstoffe II script (download via the IFB homepage). Rest will be handed out in the lectures

Werkstoffe I/II of the bachelor studies or equivalent introductory materials lecture.

Abstract

We look at the durability of reinforced concrete structures, covering common deterioration processes such as reinforcement corrosion, frost damage, ASR, etc. The course spans the range from fundamental mechanisms to aspects of engineering practice. New methods and materials for preventative measures, condition assessment and repair techniques are treated. Examples from real cases are shown.
Objective
After this course you will have profound understanding about:
- the different mechanisms of deterioration of concrete structures, in particular reinforcement corrosion
- the relevant parameters affecting durability of reinforced concrete (cover depth, concrete quality, moisture, etc.)

Furthermore, you will know:
- current engineering approaches for durability design (according to standards) and their limitations
- refined models for enhanced durability design and service life predictions
- preventive measures to improve durability (e.g. stainless steel reinforcement, concrete surface coatings, etc.)
- the particular durability challenges with post-tensioned structures and ways to overcome them (electrically isolated tendons)
- methods for inspection and condition assessment of existing, ageing structures (including non-destructive techniques and monitoring with sensors)
- repair methods for deteriorated concrete structures such as conventional repair and electrochemical methods (in particular cathodic protection)
- possible future problems for durability that may arise with modern materials and construction technologies

Content
- Socio-economic challenges related to ageing infrastructures
- Degradation mechanisms for concrete: sulphate attack, ASR, frost attack.
- Inspection and condition assessment: Chloride analyses, carbonation depth, etc. Non-destructive tests, particularly potential mapping to detect corrosion. New developments (for example, monitoring with sensors).
- Stainless steel as reinforcing steel for concrete: Different types of stainless steels. Coupling with black reinforcing steel. Examples of application. Life-cycle-costs.
- Modern materials and construction technologies: Discussion of expected implications for the durability of structures today and in the future.

Excursion:
- We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area.

Lecture notes
The course is based on the book

Slides of the lectures will be distributed in advance

Literature
The course is based on the book

Slides of the lectures will be distributed in advance

Prerequisites / notice
Special handouts and reprints for particular topics will be distributed

Form of teaching:
The course is a lecture that contains frequent discussion and interaction between students and lecturer. You will see and work on many examples from engineering practice, both during the lectures and in the form of exercises to be solved at home.

Report:
Each student will work on a small case study and deliver a report during the semester. The report will be graded.

Excursion:
We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Techniques and Technologies	assessed
	Analytical Competencies	assessed
	Decision-making	assessed
	Media and Digital Technologies	not assessed
	Problem-solving	assessed
	Project Management	not assessed
Domain C - Social Competencies	Communication	assessed
	Cooperation and Teamwork	assessed
	Customer Orientation	not assessed
	Leadership and Responsibility	not assessed
	Self-presentation and Social Influence	not assessed
	Sensitivity to Diversity	not assessed
	Negotiation	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed
	Creative Thinking	assessed
	Critical Thinking	assessed
	Integrity and Work Ethics	assessed
	Self-awareness and Self-reflection	not assessed
	Self-direction and Self-management	assessed

101-0689-00L Shrinkage and Cracking of Concrete: Mechanisms and Impact on Durability
W 3 credits 2V P. Lura, M. Wyrzykowski

Abstract
Concrete is generally viewed as a durable construction material. However, the long-term performance of a concrete structure can be greatly compromised by early-age cracking. This course will explain how shrinkage of concrete leads to cracking and how control of shrinkage allows increasing the expected durability of a concrete structure.
This course will begin with a brief introduction about hydration and microstructure development in cement paste and concrete. The students will learn the main causes of cracking at early ages, namely plastic, drying, thermal and autogenous shrinkage, with special emphasis on the driving mechanisms. The importance of concrete curing, especially in the first few days after casting, will be stressed and explained. Building on the knowledge of the driving forces of shrinkage, the way of action of shrinkage-reducing admixtures will be clarified and different applications illustrated. As an extension of external curing, the students will become familiar with internal water curing by means of saturated lightweight aggregates and superabsorbent polymers.

Most concrete members are restrained by adjacent structures. When shrinkage is restrained, cracks may develop. The students will learn how to apply different criteria for assessing concrete cracking and how to retrieve the mechanical properties of the concrete, especially stiffness and creep, which are needed for the calculations of self-induced stresses and risk of cracking.

In addition to macroscopic cracks, microcracking may occur in the cement paste due to inner restraint offered by the aggregates. Both macroscopic cracks and diffuse microcracking within a concrete may facilitate the ingress of harmful substances (e.g., chloride and sulfate ions) into the concrete; these may react with the concrete or with the reinforcement and create further deterioration. The students will acquire an understanding of the mechanisms of transport through cracked concrete, with special focus on experimental evidence and on techniques able to visualize the transport process and follow it in time.

As a final outcome of the course, the students will be able to estimate the impact of cracking on the expected durability of concrete structures and to implement different types of measures to reduce the extent of cracking.

Specific topics covered by the course:
- Hydration and microstructure development
- Plastic shrinkage
- Development of mechanical properties
- Thermal deformation
- Autogenous deformation
- Drying shrinkage
- Creep and relaxation
- Curing
- Shrinkage-reducing admixtures
- Internal curing: saturated lightweight aggregates and superabsorbent polymers
- Fracture and microcracking
- Transport in cracked concrete
- Impact of cracking on concrete durability
- Self-healing of cracks

For each lecture, lecture notes will be provided. In addition, one or two research papers for each lecture will be indicated as supportive information.

Copies of one to two research papers relevant to the topic of each lecture will be provided to the students as supportive information.

A basic knowledge of concrete technology is preferable.

The course Wood Structure and Function conveys basic knowledge on the microstructure of softwoods and hardwoods as well as general and species-specific relationships between growth processes, wood properties and wood function in the living tree.

Learning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. The students can learn how to distinguish common central European wood species at the macroscopic and microscopic level. A deeper insight will be gained by wood identification exercises for softwood species. Further, the students will gain insight into the relationships between tree growth and wood properties with a specific focus on the wood function in the living tree.

In an introduction to wood anatomy, the general structural features of softwoods and hardwoods will be explained and factors of diversity and variability will be discussed. A specific focus is laid on common central European tree species with relevance in the wood sector, which will be studied in macro- and microstructural investigations. In the following, relationships between wood structure, properties and function in the living tree will be in the focus of the lectures. Topics covered are water transport, trends in wood anatomy within trees, environmental impact on wood anatomy, wood defects and their causes, tools to study wood properties over time, secondary changes in wood, and tree biomechanics.

The course Wood Structure and Function conveys basic knowledge on the microstructure of softwoods and hardwoods as well as general and species-specific relationships between growth processes, wood properties and wood function in the living tree.

Learning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. The students can learn how to distinguish common central European wood species at the macroscopic and microscopic level. A deeper insight will be gained by wood identification exercises for softwood species. Further, the students will gain insight into the relationships between tree growth and wood properties with a specific focus on the wood function in the living tree.

In an introduction to wood anatomy, the general structural features of softwoods and hardwoods will be explained and factors of diversity and variability will be discussed. A specific focus is laid on common central European tree species with relevance in the wood sector, which will be studied in macro- and microstructural investigations. In the following, relationships between wood structure, properties and function in the living tree will be in the focus of the lectures. Topics covered are water transport, trends in wood anatomy within trees, environmental impact on wood anatomy, wood defects and their causes, tools to study wood properties over time, secondary changes in wood, and tree biomechanics.

The course Wood Structure and Function conveys basic knowledge on the microstructure of softwoods and hardwoods as well as general and species-specific relationships between growth processes, wood properties and wood function in the living tree.

Learning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. The students can learn how to distinguish common central European wood species at the macroscopic and microscopic level. A deeper insight will be gained by wood identification exercises for softwood species. Further, the students will gain insight into the relationships between tree growth and wood properties with a specific focus on the wood function in the living tree.

In an introduction to wood anatomy, the general structural features of softwoods and hardwoods will be explained and factors of diversity and variability will be discussed. A specific focus is laid on common central European tree species with relevance in the wood sector, which will be studied in macro- and microstructural investigations. In the following, relationships between wood structure, properties and function in the living tree will be in the focus of the lectures. Topics covered are water transport, trends in wood anatomy within trees, environmental impact on wood anatomy, wood defects and their causes, tools to study wood properties over time, secondary changes in wood, and tree biomechanics.

The course Wood Structure and Function conveys basic knowledge on the microstructure of softwoods and hardwoods as well as general and species-specific relationships between growth processes, wood properties and wood function in the living tree.

Learning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. The students can learn how to distinguish common central European wood species at the macroscopic and microscopic level. A deeper insight will be gained by wood identification exercises for softwood species. Further, the students will gain insight into the relationships between tree growth and wood properties with a specific focus on the wood function in the living tree.

In an introduction to wood anatomy, the general structural features of softwoods and hardwoods will be explained and factors of diversity and variability will be discussed. A specific focus is laid on common central European tree species with relevance in the wood sector, which will be studied in macro- and microstructural investigations. In the following, relationships between wood structure, properties and function in the living tree will be in the focus of the lectures. Topics covered are water transport, trends in wood anatomy within trees, environmental impact on wood anatomy, wood defects and their causes, tools to study wood properties over time, secondary changes in wood, and tree biomechanics.

The course Wood Structure and Function conveys basic knowledge on the microstructure of softwoods and hardwoods as well as general and species-specific relationships between growth processes, wood properties and wood function in the living tree.

Learning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. The students can learn how to distinguish common central European wood species at the macroscopic and microscopic level. A deeper insight will be gained by wood identification exercises for softwood species. Further, the students will gain insight into the relationships between tree growth and wood properties with a specific focus on the wood function in the living tree.

In an introduction to wood anatomy, the general structural features of softwoods and hardwoods will be explained and factors of diversity and variability will be discussed. A specific focus is laid on common central European tree species with relevance in the wood sector, which will be studied in macro- and microstructural investigations. In the following, relationships between wood structure, properties and function in the living tree will be in the focus of the lectures. Topics covered are water transport, trends in wood anatomy within trees, environmental impact on wood anatomy, wood defects and their causes, tools to study wood properties over time, secondary changes in wood, and tree biomechanics.

The course Wood Structure and Function conveys basic knowledge on the microstructure of softwoods and hardwoods as well as general and species-specific relationships between growth processes, wood properties and wood function in the living tree.

Learning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. The students can learn how to distinguish common central European wood species at the macroscopic and microscopic level. A deeper insight will be gained by wood identification exercises for softwood species. Further, the students will gain insight into the relationships between tree growth and wood properties with a specific focus on the wood function in the living tree.

In an introduction to wood anatomy, the general structural features of softwoods and hardwoods will be explained and factors of diversity and variability will be discussed. A specific focus is laid on common central European tree species with relevance in the wood sector, which will be studied in macro- and microstructural investigations. In the following, relationships between wood structure, properties and function in the living tree will be in the focus of the lectures. Topics covered are water transport, trends in wood anatomy within trees, environmental impact on wood anatomy, wood defects and their causes, tools to study wood properties over time, secondary changes in wood, and tree biomechanics.

The course Wood Structure and Function conveys basic knowledge on the microstructure of softwoods and hardwoods as well as general and species-specific relationships between growth processes, wood properties and wood function in the living tree.

Learning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. The students can learn how to distinguish common central European wood species at the macroscopic and microscopic level. A deeper insight will be gained by wood identification exercises for softwood species. Further, the students will gain insight into the relationships between tree growth and wood properties with a specific focus on the wood function in the living tree.

In an introduction to wood anatomy, the general structural features of softwoods and hardwoods will be explained and factors of diversity and variability will be discussed. A specific focus is laid on common central European tree species with relevance in the wood sector, which will be studied in macro- and microstructural investigations. In the following, relationships between wood structure, properties and function in the living tree will be in the focus of the lectures. Topics covered are water transport, trends in wood anatomy within trees, environmental impact on wood anatomy, wood defects and their causes, tools to study wood properties over time, secondary changes in wood, and tree biomechanics.

The course Wood Structure and Function conveys basic knowledge on the microstructure of softwoods and hardwoods as well as general and species-specific relationships between growth processes, wood properties and wood function in the living tree.

Learning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. The students can learn how to distinguish common central European wood species at the macroscopic and microscopic level. A deeper insight will be gained by wood identification exercises for softwood species. Further, the students will gain insight into the relationships between tree growth and wood properties with a specific focus on the wood function in the living tree.

In an introduction to wood anatomy, the general structural features of softwoods and hardwoods will be explained and factors of diversity and variability will be discussed. A specific focus is laid on common central European tree species with relevance in the wood sector, which will be studied in macro- and microstructural investigations. In the following, relationships between wood structure, properties and function in the living tree will be in the focus of the lectures. Topics covered are water transport, trends in wood anatomy within trees, environmental impact on wood anatomy, wood defects and their causes, tools to study wood properties over time, secondary changes in wood, and tree biomechanics.
Objective
This class overviews advanced topics of the Method of Finite Elements, beyond linear elasticity. Such phenomena are particularly linked to excessive loading effects and energy dissipation mechanisms. Their understanding is necessary for reliably computing structural capacity. In this course, instead of blindly using generic structural analysis software, we offer an explicit understanding of what goes on behind the curtains, by explaining the algorithms that are used in such software.

The course specifically covers the treatment of the following phenomena:
- Material Nonlinearity (Plasticity)
- Geometric Nonlinearity (Large Displacement Problems)
- Nonlinear Dynamics
- Fracture Mechanics

The concepts are introduced via theory, numerical examples, demonstrators and computer labs in Python (starting Fall 2021).

Upon completion of the course, the participants will be able to:
- Recognize when linear elastic analysis is insufficient
- Solve nonlinear dynamics problems, which form the core for limit state calculations (e.g. ultimate capacity, failure) of structures
- Numerically simulate fracture; a dominant failure phenomenon for structural systems.

See the class webpage for more information:

Lecture notes
The course slides serve as Script. These are openly available on: http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html

Useful (optional) Reading:

Prerequisites / notice
Prerequisites:
- 101-0158-01 Method of Finite Elements I (FS)
- A good knowledge of Python is necessary for attending this course.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Problem-solving assessed

Domain C - Social Competencies
Cooperation and Teamwork assessed

Domain D - Personal Competencies
Creative Thinking assessed
Critical Thinking assessed

Projects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0198-10L</td>
<td>Project on Construction Engineering</td>
<td>W</td>
<td>11</td>
<td>24A</td>
<td>Supervisors</td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task in Construction Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-0298-10L</td>
<td>Project on Hydraulic Engineering and Water Resources Management</td>
<td>W</td>
<td>11</td>
<td>24A</td>
<td>Supervisors</td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task in Hydraulic Engineering and Water Resources Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-0398-10L</td>
<td>Project on Geotechnical Engineering</td>
<td>W</td>
<td>11</td>
<td>24A</td>
<td>Supervisors</td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task in Geotechnical Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-0498-10L</td>
<td>Project on Transport Systems</td>
<td>W</td>
<td>11</td>
<td>24A</td>
<td>Supervisors</td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task on Transport Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-0598-10L</td>
<td>Project on Construction and Maintenance Management</td>
<td>W</td>
<td>11</td>
<td>24A</td>
<td>Supervisors</td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task in Construction and Maintenance Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-0698-10L</td>
<td>Project on Materials and Mechanics</td>
<td>W</td>
<td>11</td>
<td>24A</td>
<td>Supervisors</td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task on Materials and Mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This course is an introduction to innovative construction project delivery through three strategies: integrated information, integrated organization, and integrated processes. Students will be introduced to project and production management concepts such as Lean Construction, Building Information Modeling, the Tri-Constraint Method, & Integrated Project Delivery. By the end of the course, students will be able to plan and manage the lean, integrated, and digital project delivery of a construction project. Students will know they have achieved this overall course goal when they can:

1. Apply the fundamental theories of lean production to the context of construction management. This includes the ability to describe the three views of production: transformation, flow and value generation; evaluate the benefits of a pull production system compared to push production systems; evaluate how production variability and uncertainty contribute to work-in-process and ‘waste’; and apply the concepts of lean production to several construction management tools including the Last Planner System, Pull Planning, Target Value Design, and Takt Planning.

2. Understand the fundamentals of Virtual Design and Construction and Building Information Modeling. This includes the ability to prepare a model breakdown structure capable of integrating project information for all stakeholders; describe the upcoming transition to a common data environment for BIM that will use platforms such as Autodesk Forge; and describe the barriers to successful implementation of BIM within construction and design firms.

3. Plan and schedule an integrated ‘SD’ scope schedule cost model using the Tri-Constraint Method. This includes the ability to understand the TCM algorithm, apply parametric logic to the creation of a virtual model for construction production; and evaluate the limitations of the critical path method when compared to resource- and space-constrained scheduling.

4. Evaluate benefits of integrated project governance compared to the organization of traditional construction project delivery systems. This includes the ability to evaluate the risks, benefits and considerations for integrated teams using multi-party relational contracts that cross disciplinary and firm boundaries; and explain to others the ‘elements’ of integrated projects (e.g. colocation, early involvement of key stakeholders, shared risk/reward, collaborative decision making).

The course will also include several guest lectures from industry experts to further demonstrate how these concepts are applied in practice. For integrated processes, students will be introduced to the fundamentals of lean construction management. This course will look at the causes of variability in construction production and teach the theory of lean production for construction. Processes and technologies will be introduced for lean management, such as the last planner system, tak time planning, production tracking, and target value design. For integrated organization, students will study the limitations of the construction industry to effectively organize for complex projects, including the challenges of managing highly interdependent tasks and generating knowledge and learning within large multi-organizational project teams. One emerging approach in North America known as IPD will be studied as a case example. Students will explore the benefits of certain ‘elements’ of IPD such as project team colocation, early involvement of trade contractors, shared risk/reward contracts, and collaborative decision making.

For integrated organization, students will study the limitations of the construction industry to effectively organize for complex projects, including the challenges of managing highly interdependent tasks and generating knowledge and learning within large multi-organizational project teams. One emerging approach in North America known as IPD will be studied as a case example. Students will explore the benefits of certain ‘elements’ of IPD such as project team colocation, early involvement of trade contractors, shared risk/reward contracts, and collaborative decision making. The course will also include several guest lectures from industry experts to further demonstrate how these concepts are applied in practice.

The class will be presented in a "flipped classroom" environment where students will be required to do readings or watch video before class. In-class activities will act to reinforce and expand upon these primary concepts.

If possible due to COVID restrictions, students will be expected to attend a half-day workshop on the Last Planner System. The date of this workshop will be provided at a later point in time.

A full list of required readings will be made available to the students via Moodle.

Project Management for Construction Projects (101-0007-00L) is a recommended but not required prerequisite for this course.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0524-00L</td>
<td>Lean, Integrated and Digital Project Delivery</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>D. Hall</td>
</tr>
</tbody>
</table>

Abstract

This course is an introduction to innovative construction project delivery through three strategies: integrated information, integrated organization, and integrated processes. Students will be introduced to project and production management concepts such as Lean Construction, Building Information Modeling, the Tri-Constraint Method, & Integrated Project Delivery.

Objective

The project work is supervised by a professor. Students can choose from different subjects and tasks.

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies

- Communication: not assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies

- Critical Thinking: assessed
- Self-direction and Self-management: not assessed

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 206 of 2152
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Lecture Notes</th>
<th>Literature</th>
<th>Prerequisites / Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0317-00L</td>
<td>Tunnelling I</td>
<td>3</td>
<td>Autographieblätter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic aspects of design and analysis of underground structures. Conventional tunnel construction methods. Auxiliary measures (ground improvement and drainage, forepoling, face reinforcement). Numerical analysis methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>2G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic aspects of design and analysis of underground structures. Conventional tunnel construction methods. Auxiliary measures (ground improvement and drainage, forepoling, face reinforcement). Numerical analysis methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numerical analysis methods in tunnelling.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conventional excavation methods (full face, top heading and bench, side drift method, ...)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auxiliary measures:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Injections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jet grouting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ground freezing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Drainage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Forepoling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Face reinforcement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concepts and Theories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analytical Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guided practical work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-0187-00L</td>
<td>Structural Reliability and Risk Analysis</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>2G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro-codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The third part of the course addresses risk assessment methods, Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis. Slides of the lectures are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Marelli, R. Schöbi, B. Sudret, UQlab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / Notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic course on probability theory and statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-0437-00L</td>
<td>Traffic Engineering</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of traffic flow theory and control.</td>
<td>4G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>A. Kouvelas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The objective of this course is to fully understand the fundamentals of traffic flow theory in order to effectively manage traffic operations. By the end of this course the students should be able to apply basic techniques to model different aspects of urban and inter-urban traffic performance, including congestion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to fundamentals of traffic flow theory and control. Includes understanding of traffic data collection and processing techniques, as well as data analysis, traffic modeling, and methodologies for traffic control.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The lecture notes and additional handouts will be provided during the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional literature recommendations will be provided during the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / Notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verkehr III - Road Transport Systems 6th Sem. BSc (101-0415-00L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special permission from the instructor can be requested if the student has not taken Verkehr III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-0417-00L</td>
<td>Transport Planning Methods</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course provides the necessary knowledge to develop models supporting and also evaluating the solution of given planning problems. The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/ policy by means of cost-benefit analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>K. W. Axhausen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge and understanding of statistical methods and algorithms commonly used in transport planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Comprehend the reasoning and capabilities of transport models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ability to independently develop a transport model able to solve / answer planning problem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Getting familiar with cost-benefit analysis as a decision-making supporting tool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The course provides the necessary knowledge to develop models supporting the solution of given planning problems and also introduces cost-benefit analysis as a decision-making tool. Examples of such planning problems are the estimation of traffic volumes, prediction of estimated utilization of new public transport lines, and evaluation of effects (e.g. change in emissions of a city) triggered by building new infrastructure and changes to operational regulations.

To cope with that, the problem is divided into sub-problems, which are solved using various statistical models (e.g. regression, discrete choice analysis) and algorithms (e.g. iterative proportional fitting, shortest path algorithms, method of successive averages).

The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/policy by means of cost-benefit analysis. Interim lab sessions take place regularly to guide and support students with the applied part of the course.

101-0491-00L
Agent Based Modeling in Transportation
W 6 credits 4G
M. Balac

Abstract
This course provides an introduction to agent-based modeling in transportation. The lectures and exercises offer an opportunity to learn about agent-based models' current methodology, focusing on MATSim, how agent-based models are set up, and perform a practical case study by working in teams.

Objective
At the end of the course, the students should:
- have an understanding of agent-based modeling
- have an understanding of MATSim
- have an understanding of the process needed to set up an agent-based study
- have practical experience of using MATSim to perform practical transportation studies

Content
This course provides an introduction to agent-based models for transportation policy analysis. Four essential topics are covered:
1) Introduction of agent-based modeling and its comparison to the traditional state of practice modeling
2) Introduction of MATSim, an open-source agent-based model, developed at ETH Zurich and TU Berlin, and its various parts
3) Setting up an agent-based model simulation, where different statistical methods used in the process will be introduced and explained. Here the open-source eqasim framework used at ETH Zurich to set up agent-based models will be introduced
4) Conducting a transport policy study. The case study will be performed in groups and will include a paper-like report.

Literature

MATSim

Prerequisites / notice
Additional relevant readings, primarily scientific articles, will be recommended throughout the course.

101-0507-00L
Infrastructure Management 3: Optimisation Tools
W 6 credits 2G
B. T. Adey

Abstract
This course will provide an introduction to the methods and tools that can be used to determine optimal inspection and intervention strategies and work programs for infrastructure.

Objective
Upon successful completion of this course students will be able:
- to use preventive maintenance models, such as block replacement, periodic preventive maintenance with minimal repair, and preventive maintenance based on parameter control, to determine when, where and what should be done to maintain infrastructure
- to take into consideration future uncertainties in appropriate ways when devising and evaluating monitoring and management strategies for physical infrastructure
- to use operation research methods to find optimal solutions to infrastructure management problems

Content
Part 1: Explanation of the principal models of preventative maintenance, including block replacement, periodic group repair, periodic maintenance with minimal repair and age replacement, and when they can be used to determine optimal intervention strategies
- Part 2: Explanation of preventive maintenance models that are based on parameter control, including Markovian models and opportunistic replacement models
- Part 3: Explanation of the methods that can be used to take into consideration the future uncertainties in the evaluation of monitoring strategies
- Part 4: Explanation of how operations research methods can be used to solve typical infrastructure management problems.

Lecture notes
A script will be given out at the beginning of the course. Class relevant materials will be distributed electronically before the start of class. A copy of the slides will be handed out at the beginning of each class.

Prerequisites / notice
Successful completion of IM1: 101-0579-00 Evaluation tools is a prerequisite for this course.
101-0267-01L Numerical Hydraulics

W 3 credits 2G M. Holzer

<table>
<thead>
<tr>
<th>Abstract</th>
<th>In the course Numerical Hydraulics the basics of numerical modelling of flows are presented.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>The goal of the course is to develop the understanding of the students for numerical simulation of flows to an extent that they can later use commercial software in a responsible and critical way.</td>
</tr>
<tr>
<td>Content</td>
<td>The basic equations are derived from first principles. Possible simplifications relevant for practical problems are shown and their applicability is discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated. All methods discussed are applied practically in exercises. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generally available softwares such as BASEMENT for non-steady shallow water flows are used.</td>
</tr>
<tr>
<td>Lecture notes/Literature</td>
<td>Lecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German.</td>
</tr>
</tbody>
</table>

101-0159-00L Method of Finite Elements II

W 3 credits 2G E. Chatzi, K. Tatsis

| Abstract | The Method of Finite Elements II is a continuation of Method of Finite Elements I. Here, we explore the theoretical and numerical implementation concepts for the finite element analysis beyond the linear elastic behavior. This course aims to offer students with the skills to perform nonlinear FEM simulations using coding in Python. *This course offers no introduction to commercial software.* This class overviews advanced topics of the Method of Finite Elements, beyond linear elasticity. Such phenomena are particularly linked to excessive loading effects and energy dissipation mechanisms. Their understanding is necessary for reliably computing structural capacity. In this course, instead of blindly using generic structural analysis software, we offer an explicit understanding of what goes on behind the curtains, by explaining the algorithms that are used in such software. |
| Objective | The course specifically covers the treatment of the following phenomena:
- Material Nonlinearity (Plasticity)
- Geometric Nonlinearity (Large Displacement Problems)
- Nonlinear Dynamics
- Fracture Mechanics
The concepts are introduced via theory, numerical examples, demonstrators and computer labs in Python (starting Fall 2021). Upon completion of the course, the participants will be able to:
- Recognize when linear elastic analysis is insufficient
- Solve nonlinear dynamics problems, which form the core for limit state calculations (e.g. ultimate capacity, failure) of structures
- Numerically simulate fracture; a dominant failure phenomenon for structural systems. |
| Lecture notes/Literature | Course Slides (Script): http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html |

101-0617-02L Computational Science Investigation for Material Mechanics

W 4 credits 2S D. Kammer, F. Wittel

| Abstract | Introduction to computational sciences with focus on numerical modeling of the mechanics of materials. Simulation of material damage and failure with advanced finite element methods. |
| Objective | Learning from mistakes and failures is as old as the engineering discipline. Understanding why things went wrong is essential for improvement, but often impossible without the help of numerical modelling. Real world problems are often highly nonlinear, dependent on multiple physical fields, involve fundamental material behavior far from equilibrium and reversibility, and can often only be understood by addressing different relevant scales. In this course, we will use real-life cases to learn how to deal with such problems. Starting from the problem description with governing equations, you will learn how to tackle non-linear and multi-field problems using numerical simulations. A particular focus will be on fracture. Starting from the failed state, we will investigate potential causes and find the conditions that resulted in failure. For doing so, you will learn how to predict it with the Finite Element Method (FEM). To correctly assess failure, plastic behavior and size effects, originating from the underlying material microstructure, need to be considered. You will learn how to deal with plasticity in FEM and how you can get information from the heterogeneous material scale into your FEM framework. |
| Content | 1 Introduction to (numeric) forensic engineering
2 The nature of engineering problems (governing equations)
3 Numerical recipes for dealing with non-linear problems
4 Multi-field problems (HTM; Comsol)
5 On the nature of failure - Physics of damage and fracture
6 Cracks and growth in structures (LEFM and beyond)
7 A practical approach to LEFM with FEM (Abaqus)
8 Introduction to metal plasticity
9 Damage and fracture in heterogeneous materials
10 Mechanics of fatigue
11 Visco-elastic failure
12 Student -Project presentation |
<p>| Lecture notes/Literature | Will be provided via moodle. Will be provided during the lecture. |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semester</th>
<th>Faculty / Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0185-01L</td>
<td>CAD for Civil Engineers</td>
<td>2</td>
<td>G</td>
<td>K.-H. Hamel, F. Ortiz Quintana</td>
</tr>
</tbody>
</table>

Abstract
Introduction to computer aided design and drafting in 2D and 3D with examples from structural engineering.

Objective
Having followed the course, students are able to develop 2D-structure (formwork drawing) and they know the principle of a reinforcement module. They have also got an introduction to a 3D program (reinforcement in 3D).

Lecture notes
CAD für Bauingenieure

Prerequisites / notice

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semester</th>
<th>Faculty / Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0250-00L</td>
<td>Solving Partial Differential Equations in parallel on 3D GPUs</td>
<td>4</td>
<td>G</td>
<td>L. Räss, S. Omlin, M. Werder</td>
</tr>
</tbody>
</table>

Abstract
This course aims to cover state-of-the-art methods in modern parallel Graphical Processing Unit (GPU) computing, supercomputing and code development with applications to natural sciences and engineering.

Objective
When quantitative assessment of physical processes governing natural and engineered systems relies on numerically solving differential equations, fast and accurate solutions require performant algorithms leveraging parallel hardware. The goal of this course is to offer a practical approach to solve systems of differential equations in parallel on GPUs using the Julia language. Julia combines high-level language conciseness to low-level language performance which enables efficient code development.

Content
- Part 1 - Discovering a modern parallel computing ecosystem
 - Learn the basics of the Julia language;
 - Learn about the diffusion process and how to solve it;
 - Understand the practical challenges of parallel and distributed computing: (multi-)GPUs, multi-core CPUs;
 - Learn about software development tools: git, version control, continuous integration (CI), unit tests.
- Part 2 - Developing your own parallel algorithms
 - Implement wave propagation (or more advanced physics);
 - Apply spatial and temporal discretisation (finite-differences, various time-stepper);
 - Implement efficient iterative algorithms;
 - Implement shared (on CPU and GPU) and, if time allows, distributed memory parallelisation (multi-GPUs/CMPUs);
 - Learn about main simulation performance limiters.
- Part 3 - Final project
 - Apply your new skills in a final project;
 - Implement advanced physical processes (solid and fluid dynamic - elastic and viscous solutions).

Lecture notes
Digital lecture notes, interactive Julia notebooks, online material.

Literature
Links to relevant literature will be provided during classes.

Prerequisites / notice
Completed BSc studies. Interest in and basic knowledge of numerics, applied mathematics, and physics/engineering sciences. Basic programming skills (in e.g. Matlab, Python, Julia); advanced programming skills are a plus.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semester</th>
<th>Faculty / Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0139-00L</td>
<td>Scientific Machine and Deep Learning for Design and Construction in Civil Engineering</td>
<td>3</td>
<td>G</td>
<td>M. A. Kraus, D. Griep</td>
</tr>
</tbody>
</table>

Abstract
This course will present methods of scientific machine and deep learning (ML / DL) for applications in design and construction in civil engineering. After providing proper background on ML and the scientific ML (SciML) track, several applications of SciML together with their computational implementation during the design and construction process of the built environment are examined.

Objective
This course aims to provide graduate level introduction into Machine and especially scientific Machine Learning for applications in the design and construction phases of projects from civil engineering.

Content
- Upon completion of the course, the students will be able to:
 1. understand main ML background theory and methods;
 2. assess a problem and apply ML and DL in a computational framework accordingly;
 3. Incorporating scientific domain knowledge in the SciML process;
 4. Define, Plan, Conduct and Present a SciML project.
- The course will include theory and algorithms for SciML, programming assignments, as well as a final project assessment.

Lecture notes
The course script is composed by lecture slides, which are available online and will be continuously updated throughout the duration of the course/master thesis.

Literature
Suggested Reading:
- Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong Mathematics for Machine Learning

Prerequisites / notice
Familiarity with MATLAB and / or Python is advised.
The course gives an introduction to structural glass design and related façade engineering aspects. It will focus on the properties of the material glass and glass products, as well as on the structural design of glass elements and their supporting systems and connections.

After successful completion of the course, students will be able to:

- Understand and apply the fundamentals of the material glass and glass products, the basic principles for using glass as a load-carrying building material for structural applications and the types of connections used for glass elements;
- Recognize requirements for glass elements depending on their application area and chose the appropriate glass products and assemblies accordingly;
- Structurally design out-of-plane loaded glass elements based on available standards, both by hand calculations and specific software applications;
- Apply selected approaches for the structural design of in-plane loaded glass elements;
- Select suitable supporting systems (post-and-beam façade, curtain wall, etc.) and connections (point fixings, brackets, etc.) for the glass elements and structurally design them.

This course introduces civil engineering students to structural glass design and related façade engineering aspects. It aims to provide the students the knowledge required in engineering offices to design glass elements but at the same time, the necessary fundamentals for later performing research in this field. To achieve this, the course includes lectures, design exercises and a design project.

Lectures:
The lectures will cover the following contents:
- Production methods and properties of the material glass and glass products and their structurally relevant properties (annealed glass, thermally tempered glass, chemically tempered glass, laminated glass, insulating glass, curved glass);
- Connection principles and types for glass elements (mechanical fixing, adhesive bonding);
- Requirements for glass elements depending on the application area (vertical glazing, overhead glazing, walk-on glazing, barrier glazing);
- Structural design of glass elements based on standards and research results (out-of-plane loaded glass elements and in-plane loaded glass elements);
- Typologies and design of structural systems for transparent façades;
- Requirements and functions for transparent facades.

Design exercises:
The principles and methods presented in the lectures are practiced with the students in design exercises. Hand calculation methods and their limitations as well as the software for structural glass design SJ Mepla are used for out-of-plane loaded glass elements. For in-plane loaded glass elements, the specifics of numerical calculation procedures are exemplified with the software Abaqus.

Design project:
The students will consolidate the knowledge gained in the theory-lectures and in the design exercises by working on a small design task (e.g. a glass canopy, a glass façade, a glass pavilion) in the form of a group work (ideally groups of 2-3 students). Within this task, the students will: conceptually design the structure and selected connection details; identify requirements for the glass elements and define their assembly; structurally design selected glass components, their support systems and their connections. The students will work on the design task in the second half of the semester and will get feedback on their progress in weekly review sessions. At the end of the semester, the groups will submit a project report and give an oral presentation of their projects.

Lecture notes
The lectures are based on lecture slides and handouts.

Literature
Recommended and supplementary literature:

Prerequisites / notice
Prior knowledge of structural analysis, especially steel structures is necessary. Prior basic knowledge on the method of finite elements is recommended.

101-0509-00L Infrastructure Management 1: Process W 6 credits 3G B. T. Adey

Abstract
Infrastructure asset management is the process used to ensure that infrastructure provides adequate levels of service for specified periods of time. This course provides an overview of the process, from setting goals to developing intervention programs to analyzing the process itself. It consists of weekly lectures and a group project. Additionally, there is a weekly help session.

Objective
There are a large number of efforts around the world to obtain more net benefits from infrastructure assets. This can be seen through the proliferation of codes and guidelines and the increasing amount of research in road infrastructure asset management. Many of these codes and guidelines and much of the research, however, are focused on only part of the large complex problem of infrastructure asset management.

The objective of this course is to provide an overview of the entire infrastructure management process. The high-level process described can be used as a starting point to ensure that infrastructure management is done professionally, efficiently and effectively. It also enables a clear understanding of where computer systems can be used to help automate parts of the process. Students can use this process to help improve the specific infrastructure management processes in the organisations in which they work in the future.

More specifically, upon completion of the course, students will
- understand the main tasks of an infrastructure manager and the complexity of these tasks,
- understand the importance of setting goals and constraints in the management of infrastructure,
- be able to predict the deterioration of individual assets using discrete states that are often associated with visual inspections,
- be able to develop and evaluate simple management strategies for individual infrastructure assets,
- be able to develop and evaluate intervention programs that are aligned with their strategies,
- understand the principles of guiding projects and evaluating the success of projects,
- be able to formally model infrastructure management processes, and
- understand the importance of evaluating the infrastructure management process and have a general idea of how to do so.
The weekly lectures are structured as follows:

1. Introduction: An introduction to infrastructure management, with emphasis on the consideration of the benefits and costs of infrastructure to all members of society, and balancing the need for prediction accuracy with analysis effort. The expectations of your throughout the semester, including a description of the project.
2. Positioning infrastructure management in society. As infrastructure plays such an integral part in society, there is considerable need to ensure that infrastructure managers are managing it as best possible. A prominent network regulator explains the role and activities of a network regulator.
3. Setting goals and constraints – To manage infrastructure you need to know what you expect from it in terms of service and how much you are willing to pay for it. We discuss the measures of service for this purpose, as well as the ideas of quantifiable and non-quantifiable benefits, proxies of service, and valuing service.
4. Predicting the future – As infrastructure and our expectations of service from it change over time, these changes need to be included in the justification of management activities. This we discuss the connection between provided service and the physical state of the infrastructure and one way to predict their evolution over time.
5. Help session 1
6. Determining and justifying general interventions - It is advantageous to be able to explain why infrastructure assets need to be maintained, and not simply say that they need to be maintained. This requires explanation of the types of interventions that should be executed and how these interventions will achieve the goals. It also requires explaining which interventions are to be done if it is not possible to do everything due to for example budget constraints. This week we cover how to determine optimal intervention strategies for individual assets, and how to convert these strategies into network level intervention programs.
7. Determining and justifying monitoring – Once it is clear how infrastructure might change over time, and the optimal intervention strategies are determined, you need to explain how you are going to know that these states exist. This requires the construction of monitoring strategies for each of asset. This week we focus on how to develop monitoring strategies that ensure interventions are triggered at the right time.
8. Converting programs to projects / Analysing projects – Once programs are completed and approved, infrastructure managers must create, supervise and analyse projects. This week we focus on this conversion and the supervision and analysis of projects.
9. Help session 2
10. Ensuring good information – Infrastructure management requires consistent and correct information. This is enabled by the development of a good information model. This week we provide an introduction to information models and how they are used in infrastructure management.
11. Ensuring a well-run organization – How people work together affects how well the infrastructure is managed. This week we focus on the development of the human side of the infrastructure management organisation.
12. Describing the IM process – Infrastructure management is a process that is followed continually and improved over time. It should be written down clearly. This week we will concentrate on how this can be done using the formal modelling notation BPMN 2.0.
13. Evaluating the IM process – Infrastructure management processes can always be improved. Good managers acknowledge this, but also have a plan for continual improvement. This week we concentrate on how you can systematically evaluate the infrastructure management process.
14. Help session 3 and submission of project report.

The course uses a combination of qualitative and quantitative approaches. The quantitative analysis required in the project requires at least the use of Excel. Some students, however, prefer to use Python or R.

Lecture materials will be distributed via Moodle two days before each lecture.

This course has no prerequisites.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Abstract

Microscopic Modelling and Simulation of Traffic Operations

The course introduces basics of microscopic modelling and simulation of traffic operations, including model design and development, calibration, validation, data analysis, identification of strategies for improving traffic flow performance, and evaluation of such strategies. The aim is to provide the fundamentals for building a realistic traffic-engineering project from beginning to end.
Objective

The objective of this course is to conduct a realistic traffic engineering project from beginning to end. The students will first familiarize themselves with microscopic traffic models. Students will work in groups on a project that includes a base scenario on a real traffic network. Throughout the semester, along with theoretical concepts, the students will build the base scenario (design, calibration and validation) and will develop alternative scenarios regarding modification on the infrastructure, simulation of in-vehicle technologies and vehicle-to-everything (V2X) communication.

Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario.

Upon completion of the course, the students will:

1. Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.).
2. Design a road transport network inside the simulation software.
3. Understand the basics behind modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network.
4. Understand how to design a complete study, implement and validate it for planning purposes, e.g. creating a new road infrastructure.
5. Make valid and concrete engineering proposals based on the simulation model and alternative scenarios.

Content

In this course, the students will first learn some microscopic modelling and simulation concepts, and then complete a traffic-engineering project with microscopic traffic simulator Aimsun.

Microscopic modelling and simulation concepts will include:

1) Car following models
2) Lane change models
3) Calibration and validation methodology
 Specific tasks for the project will include:

1) Building a model with the simulator Aimsun in order to replicate and analyze the traffic conditions measured/observed.
2) Calibrating and validating the simulation model.
3) Redesigning/extending the model to improve the traffic performance through Aimsun and with/without programming in Python or C++.

The course will be based on a project that each group of students will build (design, calibrate, analyze and present) across the semester. A mid-term and final presentation of the work will be asked from each group of students. It consists of weekly 2-hour work packages. The students work in pairs on a group project that completes in the end of the semester. The modelling software used is Aimsun and lectures (theory and hands on experience) are taking place in a computer room.

The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. Previous experience with Aimsun/Python/C++ is helpful but not mandatory.

Lecture notes / literature

The lecture notes and additional handouts will be provided before the lectures.

Additional literature recommendations will be provided at the lectures.

Prerequisites / notice

Students need to know some basic road transport concepts. The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. Previous experience with Aimsun is helpful but not mandatory.

101-0123-00L Structural Design W 3 credits 2G P. Ohlbrock, P. Block, J. Schwartz

Abstract

The goal of the course is to introduce the civil engineering students to Structural Design, which is regarded as a discipline that relates structural behavior, construction technologies and architectural concepts. The course encourages the students to understand the relationship between the form of a structure and the forces within it by promoting the development of designed projects.

Objective

After successfully completing this course the students will be able to:

1. Critically question structural design concepts of historical and contemporary references
2. Use graphic statics and strut-and-tie models based on the Theory of Plasticity to describe the load bearing behavior of structures
3. Understand different construction technologies and have an awareness of their potential for structural design
4. Use contemporary digital tools for the design of structures in equilibrium
5. Design an appropriate structural system for a given design task taking into account architectural considerations

Content

The goal of the course is to introduce the civil engineering students to Structural Design, which is understood as a discipline that relates structural behavior, construction technologies and architectural concepts. Hence, the course encourages the students to develop an intuitive understanding of the relationship between the form of a structure and the forces within it by promoting the development of designed projects, in which the static and architectural aspects come together. The course is structured in two main parts, each developed in half of a semester: a mainly theoretical one (including the teaching of graphic statics) and a mainly applied one (focused on the development of a design project by the students using digital form-finding tools).

Theory:

Graphic statics is a graphical method developed by Prof. Karl Culmann and firstly published in 1864 at ETH Zurich. In this approach to structural analysis and design, geometric construction techniques are used to visualize the relation between the geometry of a structure and the forces acting in and on it, represented by geometrical dependent form and force diagrams.

The course will firstly review the main principles of graphic statics through a series of frontal lectures and discuss the relationship to analytical statics. Graphic statics then used as an operative tool to design structures in equilibrium based on the lower bound theorem of the Theory of Plasticity. Additionally, the course will introduce contemporary methodologies and tools (parametric CAD software) for the interactive application of equilibrium modelling in the form of short workshops. The students will familiarize with the topic by solving exercises and confronting themselves with simple design tasks.

Design Project:

Specific structural design approaches and design methodologies based on graphic statics and references from construction history will be introduced to the students by means of seminars and workshops. By developing a design project, the students will apply these concepts and techniques in order to become proficient with open design tasks (such as the design of a bridge, a large span hall or a tower). At the end of the semester, the students present their projects to a jury of internal and external critics in a final review. The main criterion of evaluation is the students' ability to integrate architectural considerations into their structural design.

Literature

"Faustformel Tragwerksentwurf" (Philipp Block, Christoph Gengang, Stefan Peters, DVA Deutsche Verlags-Anstalt 2015, ISBN 978-3-421-04012-1)

102-0468-10L Watershed Modelling W 6 credits 4G P. Molnar

Abstract

Watershed Modelling is a practical course on numerical water balance models for a range of catchment-scale water resource applications. The course covers GIS use in watershed analysis, models types from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises).
Objective

The main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on thematic lectures (2 hrs a week) and practical exercises (2 hrs a week). Theory and concepts in the lectures are underpinned by many examples from scientific studies. A comprehensive exercise block builds on the lectures with a series of 5 practical tasks to be conducted during the semester in group work. Exercise hours during the week focus on explanation of the tasks. The course is evaluated 60% by performance in the graded exercises and 40% by a semester-end oral examination (30 mins) on watershed modelling concepts.

Content

The first part (A) of the course is on watershed properties analysed from DEMs, and on global sources of hydrological data for modelling applications. Here students learn about GIS applications (ArcGIS, Q-GIS) in hydrology - flow direction routines, catchment morphometry, extracting river networks, and defining hydrological response units. In the second part (B) of the course on conceptual watershed models students build their own simple bucket model (Matlab, Python), they learn about performance measures in modelling, how to calibrate the parameters and how to validate models, about methods to simulate stochastic climate to drive models, uncertainty analysis. The third part (C) of the course is focussed on physically-based model components. Here students learn about components for soil water fluxes and evapotranspiration, they practice with a fully-distributed physically-based model Topkapi-ETH, and learn about other similar models. They apply Topkapi-ETH to an alpine catchment and study simulated discharge, snow, soil moisture and evapotranspiration spatial patterns. The final part (D) of the course provides open classroom discussion and simulation of a round-table discussion between modellers and clients about using watershed models in a case study.

Lecture notes

There is no textbook. Learning materials consist of (a) video-recording of lectures; (b) lecture presentations; and (c) exercise task documents that allow independent work.

Literature

Literature consist of collections from standard hydrological textbooks and research papers, collected by the instructors on the course moodle page.

Prerequisites / notice

Basic Hydrology in Bachelor Studies (engineering, environmental sciences, earth sciences). Basic knowledge of Matlab (Python), ArcGIS (Q-GIS).

Project Based Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0509-00L</td>
<td>Infrastructure Management 1: Process</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>B. T. Adey</td>
</tr>
</tbody>
</table>

Abstract

Infrastructure asset management is the process used to ensure that infrastructure provides adequate levels of service for specified periods of time. This course provides an overview of the process, from setting goals to developing intervention programs to analyzing the process itself. It consists of weekly lectures and a group project. Additionally, there is a weekly help session.

Objective

There are a large number of efforts around the world to obtain more net benefits from infrastructure assets. This can be seen through the proliferation of codes and guidelines and the increasing amount of research in road infrastructure asset management. Many of these codes and guidelines and much of the research, however, are focused on only part of the large complex problem of infrastructure asset management.

The objective of this course is to provide an overview of the entire infrastructure management process. The high-level process described can be used as a starting point to ensure that infrastructure management is done professionally, efficiently and effectively. It also enables a clear understanding of where computer systems can be used to help automate parts of the process. Students can use this process to help improve the specific infrastructure management processes in the organisations in which they work in the future.

More specifically upon completion of the course, students will

- understand the main tasks of an infrastructure manager and the complexity of these tasks,
- understand the importance of setting goals and constraints in the management of infrastructure,
- be able to predict the deterioration of individual assets using discrete states that are often associated with visual inspections,
- be able to develop and evaluate simple management strategies for individual infrastructure assets,
- be able to develop and evaluate intervention programs that are aligned with their strategies,
- understand the principles of guiding projects and evaluating the success of projects,
- be able to formally model infrastructure management processes, and
- understand the importance of evaluating the infrastructure management process and have a general idea of how to do so.
The lecture focuses on selected topics in hydraulic engineering, water management and aquatic ecology relating to hydropower and flood protection projects.

Objective
The overarching goal of the course is to deepen knowledge on special aspects in hydraulic engineering and to understand the procedures and the planning sequence of hydropower projects.

Content
Different selected topics in hydraulic engineering will be focused on, e.g. dam safety, materials in dam building, possible problems at reservoirs like natural hazards by impulse waves, the hydraulics of spillways and intake structures at dams and weirs and the area of conflict between hydropower and ecology. Another focus will be put on typical approaches and procedures in the planning process of hydropower projects at the national and international level.

Lecture notes
Lecture notes will be available online.

Literature

Prerequisites / notice
External speakers will be involved to present current topics and projects in Switzerland and abroad.

Content

1. Introduction: An introduction to infrastructure management, with emphasis on the consideration of the benefits and costs of infrastructure to all members of society, and balancing the need for prediction accuracy with analysis effort. The expectations of your throughout the semester, including a description of the project.

2. Positioning infrastructure management in society. As infrastructure plays such an integral part in society, there is considerable need to ensure that infrastructure managers are managing it as best possible. A prominent network regulator explains the role and activities of a network regulator.

3. Setting goals and constraints - To manage infrastructure you need to know what you expect from it in terms of service and how much you are willing to pay for it. We discuss the measures of service for this purpose, as well as the ideas of quantifiable and non-quantifiable benefits, proxies of service, and valuing service.

4. Predicting the future – As infrastructure and our expectations of service from it change over time, these changes need to be included in the justification of management activities. This we discuss the connection between provided service and the physical state of the infrastructure and one way to predict their evolution over time.

5. Help session 1

6. Determining and justifying general interventions - It is advantageous to be able to explain why infrastructure assets need to be maintained, and not simply say that they need to be maintained. This requires explanation of the types of interventions that should be executed and how these interventions will achieve the goals. It also requires explaining which interventions are to be done if it is not possible to do everything due to for example budget constraints. This week we cover how to determine optimal intervention strategies for individual assets, and how to convert these strategies into network level intervention programs.

7. Determining and justifying monitoring - Once it is clear how infrastructure might change over time, and the optimal intervention strategies are determined, you need to explain how you are going to know that these states exist. This requires the construction of monitoring strategies for each of asset. This week we focus on how to develop monitoring strategies that ensure interventions are triggered at the right time.

8. Converting projects to programs / Analysing projects – Once programs are completed and approved, infrastructure managers must create, supervise and analyse projects. This week we focus on this conversion and the supervision and analysis of projects.

9. Help session 2

10. Ensuring good information – Infrastructure management requires consistent and correct information. This is enabled by the development of a good information model. This week we provide an introduction to information models and how they are used in infrastructure management.

11. Ensuring a well-run organization – How people work together affects how well the infrastructure is managed. This week we focus on the development of the human side of the infrastructure management organisation.

12. Describing the IM process – Infrastructure management is a process that is followed continually and improved over time. It should be written down clearly. This week we will concentrate on how this can be done using the formal modelling notation BPMN 2.0.

13. Evaluating the IM process – Infrastructure management processes can always be improved. Good managers acknowledge this, but also have a plan for continual improvement. This week we concentrate on how you can systematically evaluate the infrastructure management process.

14. Help session 3 and submission of project report.

The course uses a combination of qualitative and quantitative approaches. The quantitative analysis required in the project requires at least the use of Excel. Some students, however, prefer to use Python or R.

- The lecture materials consist of handouts, the slides, and example calculations in Excel.
- The lecture materials will be distributed via Moodle two days before each lecture.

Prerequisites / notice

This course has no prerequisites.

Lecture notes

- The lecture materials consist of handouts, the slides, and example calculations in Excel.
- The lecture materials will be distributed via Moodle two days before each lecture.

Literature

Appropriate literature will be handed out when required via Moodle.

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed

Domain C - Social Competencies

- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies

- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: not assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

101-0249-00L Hydraulic Engineering: Selected Topics

Prerequisites: 101-0247-01L Hydraulic Engineering II or equivalent course.

Abstract
The lecture focuses on selected topics in hydraulic engineering, water management and aquatic ecology relating to hydropower and flood protection projects.

Objective
The overarching goal of the course is to deepen knowledge on special aspects in hydraulic engineering and to understand the procedures and the planning sequence of hydropower projects.

Content
Different selected topics in hydraulic engineering will be focused on, e.g. dam safety, materials in dam building, possible problems at reservoirs like natural hazards by impulse waves, the hydraulics of spillways and intake structures at dams and weirs and the area of conflict between hydropower and ecology. Another focus will be put on typical approaches and procedures in the planning process of hydropower projects at the national and international level.

Lecture notes
Lecture notes will be available online.

Literature

Prerequisites / notice
External speakers will be involved to present current topics and projects in Switzerland and abroad.

101-0608-00L Design-Integrated Life Cycle Assessment

Prerequisites / notice

Data: 11.11.2021 12:40

Autumn Semester 2021
Abstract
Currently, Life Cycle Assessment (LCA) is applied as an ex-post design evaluation of buildings, but rarely used to improve the building during the design process. The aim of this course is to apply LCA during the design of buildings by means of a digital, parametric tool. The necessary fundamentals of the LCA method will be taught following a lecture on demands approach.

Objective
The course will follow two main objectives and a third optional objective, depending on the design projects the students' choose. At the end of the course, the students will:
1. Know the methodology of LCA
2. Be able to apply LCA in the design process to assess and improve the environmental performance of their projects
3. Be able to use the parametric LCA tool and link it to additional performance assessment tools for a holistic optimisation

Content
The course will be structured into two parts, each making up about half of the semester.

Part I: Exercises with lectures on demand
The first six individual courses will follow the "lectures on demand" approach. Small "hands-on" exercises focusing on one specific aspect will be given out and the necessary background knowledge will be provided in the form of short input lectures when questions arise. The following topics will be discussed during the first part:
1) LCA basic introduction
2) System boundaries, functional unit, end of life
3) Carbon budget and LCA benchmarks
4) BIM-LCA, available calculation tools and databases
5) Integrated analysis of environmental and cost assessment
6) Bio-based carbon storage

Part II: Project-based learning
In the second part, the students will work on their individual project in groups of three. For the design task, the students will bring their own project and work on improving it. The projects can be chosen depending on the students background and range from buildings to infrastructure projects. Intermediate presentations will ensure the continuous work and make sure all groups are on the same level and learn from each other. During this part, the following hands-on tutorials will be given:
1) Introduction to Rhinoceros 6 and 7
2) Introduction to grasshopper
3) Integrated assessment tools (ladybug tools)
4) Introduction to in-house grasshopper plugin for LCA analysis

Lecture notes
As the course follows a lecture on demand approach, the lecture slides will be provided after each course.

Literature
A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.

Prerequisites / notice
Prerequisite: Sustainable construction (101-0577-00L). Otherwise a special permission by the lecturer is required.

The students are expected to work out of class as well. The course time will be used by the teachers to answer project-specific questions.

The lecture series will be conducted in English and is aimed at students of master’s programs, particularly the departments ARCH, BAUG, ITET, MAVT, MTEC and UWIS.

No lecture will be given during Seminar week.

101-0329-00L Tunnelling III W 4 credits 2G G. Anagnostou, E. Pimentel, M. Ramoni

Abstract
Deepen the knowledge on selected topics of underground construction as well as learning working out conceptual solutions of complex problems.

Objective
Lecture: Deepen the knowledge on selected topics of underground construction.
Exercises: Conceptual solutions of complex problems.

Content
Caverns: Geometry, construction methods, support.
Shafts: Construction methods, support.
Urban tunnelling: Boundary conditions, system choice, alignment, design.
Field measurements: Principles, monitoring layout, applications, interpretation.
Cut and cover tunnels: Modelling, design.
Exercising conceptual solution of complex tunnelling problems based upon discussion of current tunnel cases with particularly demanding problems in small groups.

Lecture notes
Autographieblätter

Literature
Empfehlungen

Prerequisites / notice
Prerequisite: BSc course "Tunnelling", MSc courses "Tunnelling I" and "Tunnelling II".

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Problem-solving

101-0200-10L Research-Focused Project Work ■ W 11 credits 24A Supervisors

Abstract
Working on a concrete task as preparation for the master’s thesis

Objective
Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.

Content
The project work is supervised by a professor. The topic is going to be continued as master’s thesis.

101-0139-00L Scientific Machine and Deep Learning for Design and Construction in Civil Engineering W 3 credits 4G M. A. Kraus, D. Gregio

Abstract
This course will present methods of scientific machine and deep learning (ML / DL) for applications in design and construction in civil engineering: After providing proper background on ML and the scientific ML (SciML) track, several applications of SciML together with their computational implementation during the design and construction process of the built environment are examined.

Objective
This course aims to provide graduate level introduction into Machine and especially Scientific Machine Learning for applications in the design and construction phases of projects from civil engineering.

Upon completion of the course, the students will be able to:
1. understand main ML background theory and methods
2. assess a problem and apply ML and DL in a computational framework accordingly
3. Incorporating scientific domain knowledge in the SciML process
4. Define, Plan, Conduct and Present a SciML project
Abstract
The number of participants is limited to 60 due to the existing laboratory equipment! Students with major in Geotechnical Engineering have priority. Registrations will be accepted in the order they are received.

Objective
Extend knowledge of theoretical approaches that can be used to describe soil behaviour to enable students to carry out more advanced geotechnical design and to plan the appropriate laboratory tests to obtain relevant parameters for coupled plasticity models of soil behaviour.

Content
Overview of soil behaviour
Discussion of general gaps between basic theory and soil response
Stress paths in practice & in laboratory tests
Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples
Consolidation theory and typical applications in practice
Stress paths in practice & in laboratory tests
Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples
Consolidation theory for incremental and continuous loading oedometer tests and typical applications in practice
Stress paths in practice & in laboratory tests
Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples
Consolidation theory and typical applications in practice
Stress paths in practice & in laboratory tests
Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples
Consolidation theory for incremental and continuous loading oedometer tests and typical applications in practice
Stress paths in practice & in laboratory tests
Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples
Consolidation theory and typical applications in practice

Literature
http://geotop.igt.ethz.ch/
Exercises
Lectures will be conducted as Problem Based Learning within the framework of a case history
Virtual laboratory in support of 'hands-on' experience of selected laboratory tests
Pre-requirements: Basic knowledge in soil mechanics as well as knowledge of advanced mechanics
Laboratory equipment will be available for 60 students. First priority goes to those registered for the geotechnics specialty in the Masters, 2nd year students then first year students, doctoral students qualifying officially for their PhD status and then 'first come, first served'.

Abstract
The course will include theory and algorithms for SciML, programming assignments, as well as a final project assessment.

Objective
A student after completing the course will have the understanding of the Project Management duties, responsibilities, actions and decisions to be done during the Execution phase of a complex project.

Content
Project Execution Phase of the Project
Execution Management - Scope, EV Measurement, Reporting and Organization
Procurement and Transportation - Scope, EV Measurement, Reporting and Organization
Civil Construction and Erection - Scope, EV Measurement, Reporting and Organization
Financial Reporting and forecasting
Risk & Opportunity Identification Assessment and Quantification during Execution
Team Organization and Leadership
Risk and opportunity identification and quantification
Contract Claims and Delays
Execution Quality
Environmental Health and safety during execution

Literature
Required and suggested reading will be uploaded on weakly basis.

Prerequisites / notice
The course gives an introduction to structural glass design and related façade engineering aspects. It will focus on the properties of the material glass and glass products, as well as on the structural design of glass elements and their supporting systems and connections.
Objective
After successful completion of the course, students will be able to:
- Understand and apply the fundamentals of the material glass and glass products, the basic principles for using glass as a load-carrying building material for structural applications and the types of connections used for glass elements;
- Recognize requirements for glass elements depending on their application area and chose the appropriate glass products and assemblies accordingly;
- Structurally design out-of-plane loaded glass elements based on available standards, both by hand calculations and specific software applications;
- Apply selected approaches for the structural design of in-plane loaded glass elements;
- Select suitable supporting systems (post-and-beam façade, curtain wall, etc.) and connections (point fixings, brackets, etc.) for the glass elements and structurally design them.

Content
This course introduces civil engineering students to structural glass design and related façade engineering aspects. It aims to provide the students the knowledge required in engineering offices to design glass elements but at the same time, the necessary fundamentals for later performing research in this field. To achieve this, the course includes lectures, design exercises and a design project.

Lectures:
The lectures will cover the following contents:
- Production methods and properties of the material glass and glass products and their structurally relevant properties (annealed glass, thermally tempered glass, chemically tempered glass, laminated glass, insulating glass, curved glass);
- Connection principles and types for glass elements (mechanical fixing, adhesive bonding);
- Requirements for glass elements depending on the application area (vertical glazing, overhead glazing, walk-on glazing, barrier glazing);
- Structural design of glass elements based on standards and research results (out-of-plane loaded glass elements and in-plane loaded glass elements);
- Typologies and design of structural systems for transparent façades;
- Requirements and functions for transparent façades.

Design exercises:
The principles and methods presented in the lectures are practiced with the students in design exercises. Hand calculation methods and their limitations as well as the software for structural glass design SJ Mepla are used for out-of-plane loaded glass elements. For in-plane loaded glass elements, the specifics of numerical calculation procedures are exemplified with the software Abaqus.

Part 2 - Developing your own parallel algorithms
- Implement wave propagation (or more advanced physics);
- Apply spatial and temporal discretisation (finite-differences, various time-stepper);
- Implement efficient iterative algorithms;
- Implement shared (on CPU and GPU) and, if time allows, distributed memory parallelisation (multi-GPUs/CPUs);
- Learn about software development tools: git, version control, continuous integration (CI), unit tests.

Part 3 - Final project
- Apply your new skills in a final project;
- Implement advanced physical processes (solid and fluid dynamic - elastic and viscous solutions);
- Apply spatial and temporal discretisation and solution methods;
- Implement efficient iterative algorithms;
- Implement parallelisation (multi-GPUs/CPUs);
After this course you will have profound understanding about:

- the different mechanisms of deterioration of concrete structures, in particular reinforcement corrosion
- the relevant parameters affecting durability of reinforced concrete (cover depth, concrete quality, moisture, etc.)

Furthermore, you will know:

- current engineering approaches for durability design (according to standards) and their limitations
- refined models for enhanced durability design and service life predictions
- preventive measures to improve durability (e.g. stainless steel reinforcement, concrete surface coatings, etc.)
- the particular durability challenges with post-tensioned structures and ways to overcome them (electrically isolated tendons)
- methods for inspection and condition assessment of existing, ageing structures (including non-destructive techniques and monitoring with sensors)
- repair methods for deteriorated concrete structures such as conventional repair and electrochemical methods (in particular cathodic protection)
- possible future problems for durability that may arise with modern materials and construction technologies

Opportunities and limitations of concrete technology.

The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder

The course is a lecture that contains frequent discussion and interaction between students and lecturer. You will see and work on many examples from engineering practice, both during the lectures and in the form of exercises to be solved at home.

Each student will work on a small case study and deliver a report during the semester. The report will be graded.

We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area.

Each student will work on a small case study and deliver a report during the semester. The report will be graded.

We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area.

The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder

Special handouts and reprints for particular topics will be distributed

The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder

Slides of the lectures will be distributed in advance

Slides of the lectures will be distributed in advance

Special handouts and reprints for particular topics will be distributed

The course is a lecture that contains frequent discussion and interaction between students and lecturer. You will see and work on many examples from engineering practice, both during the lectures and in the form of exercises to be solved at home.

Each student will work on a small case study and deliver a report during the semester. The report will be graded.

We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area.

The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder

Special handouts and reprints for particular topics will be distributed

The course is a lecture that contains frequent discussion and interaction between students and lecturer. You will see and work on many examples from engineering practice, both during the lectures and in the form of exercises to be solved at home.

Each student will work on a small case study and deliver a report during the semester. The report will be graded.

We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area.

The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder

Special handouts and reprints for particular topics will be distributed

The course is a lecture that contains frequent discussion and interaction between students and lecturer. You will see and work on many examples from engineering practice, both during the lectures and in the form of exercises to be solved at home.

Each student will work on a small case study and deliver a report during the semester. The report will be graded.

We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area.

The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder

Special handouts and reprints for particular topics will be distributed

The course is a lecture that contains frequent discussion and interaction between students and lecturer. You will see and work on many examples from engineering practice, both during the lectures and in the form of exercises to be solved at home.

Each student will work on a small case study and deliver a report during the semester. The report will be graded.

We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area.

The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder

Special handouts and reprints for particular topics will be distributed

The course is a lecture that contains frequent discussion and interaction between students and lecturer. You will see and work on many examples from engineering practice, both during the lectures and in the form of exercises to be solved at home.

Each student will work on a small case study and deliver a report during the semester. The report will be graded.

We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area.

The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder

Special handouts and reprints for particular topics will be distributed

The course is a lecture that contains frequent discussion and interaction between students and lecturer. You will see and work on many examples from engineering practice, both during the lectures and in the form of exercises to be solved at home.

Each student will work on a small case study and deliver a report during the semester. The report will be graded.

We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area.
Based on the lecture 'Werkstoffe' students receive deep concrete technology training. Comprehensive knowledge of the most important properties of conventional concrete and the current areas of research in concrete technology will be presented. The course covers various topics, including:

- concrete components
- concrete properties
- concrete mix design
- production, transport, casting
- demoulding, curing and additional protective measures
- durability
- standards
- chemical admixtures
- alternative binders
- specialty concretes such as
 - self compacting concrete
 - fiber reinforced concrete
 - fast setting concrete
 - fair faced concrete
 - recycled concrete
- new research in digital fabrication with concrete

Lecture notes

Slides provided for download.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Problem-solving

Domain C - Social Competencies
Communication
Cooperation and Teamwork

Domain D - Personal Competencies
Creative Thinking
Critical Thinking

101-0427-01L Public Transport Design and Operations W 6 credits 4G F. Corman, F. Leutwiler

Abstract
This course aims at analyzing, designing, improving public transport systems, as part of the overall transport system.

Objective
Public transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups.

Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders.

The most relevant decision making problems in a planning tactical and operational point of view
At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport.

Content
Basics for line transport systems and networks
Passenger/Supply requirements for line operations
Objectives of system and network planning, from different perspectives and users, design dilemmas
Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport
Planning process, from demand evaluation to line planning to timetables to operations
Matching demand and modes
Line planning techniques
Timetabling principles
Allocation of resources
Management of operations
Measures of realized operations
Improvements of existing services

Lecture notes
Lecture slides are provided.

Literature
Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English)
Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
	Decision-making	assessed
	Media and Digital Technologies	not assessed
	Problem-solving	assessed
	Project Management	not assessed
Domain C - Social Competencies	Communication	assessed
	Cooperation and Teamwork	assessed
	Customer Orientation	assessed
	Leadership and Responsibility	not assessed
	Self-presentation and Social Influence	not assessed
	Sensitivity to Diversity	not assessed
	Negotiation	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed
	Creative Thinking	assessed
	Critical Thinking	assessed
	Integrity and Work Ethics	not assessed
	Self-awareness and Self-reflection	not assessed
	Self-direction and Self-management	not assessed

101-0524-00L Lean, Integrated and Digital Project Delivery W 4 credits 3G D. Hall

Abstract

This course is an introduction to innovative construction project delivery through three strategies: integrated information, integrated organization, and integrated processes. Students will be introduced to project and production management concepts such as Lean Construction, Building Information Modeling, the Tri-Constraint Method, & Integrated Project Delivery.

Objective

By the end of the course, students will be able to plan and manage the lean, integrated, and digital project delivery of a construction project.

Students will know they are able to achieve this overall course goal when they can:

1. Apply the fundamental theories of lean production to the context of construction management. This includes the ability to describe the three views of production: transformation, flow and value generation; evaluate the benefits of a pull production system compared to push production systems; evaluate how production variability and uncertainty contributes to work-in-process and 'waste'; and apply the concepts of lean production to several construction management tools including the Last Planner System, Pull Planning, Target Value Design, and Takt Planning.

2. Understand the fundamentals of Virtual Design and Construction and Building Information Modeling. This includes the ability to prepare a model breakdown structure capable of integrating project information for all stakeholders; describe the upcoming transition to a common data environment for BIM that will use platforms such as Autodesk Forge; and describe the barriers to successful implementation of BIM within construction and design firms.

3. Plan and schedule an integrated '5D' scope schedule cost model using the Tri-Constraint Method. This includes the ability to understand the TCM algorithm, apply parametric logic to the creation of a virtual model for construction production; and evaluate the limitations of the critical path method when compared to resource- and space-constrained scheduling.

4. Evaluate benefits of integrated project governance compared to the organization of traditional construction project delivery systems. This includes the ability to evaluate the risks, benefits and considerations for integrated teams using multi-party relational contracts that cross disciplinary and firm boundaries; and explain to others the 'elements' of integrated projects (e.g. colocation, early involvement of key stakeholders, shared risk/reward, collaborative decision making).

Content

The construction industry is continually seeking to deliver High-Performance (HP) projects for their clients. HP buildings must meet the criteria of four focus areas – buildability, operability, usability, and sustainability. The project must be buildable, as measured by metrics of cost, schedule, and quality. It must be operable, as measured by the cost of maintaining the facility for the duration of its lifecycle. It must be usable, enabling productivity, efficiency and well-being of those who will inhabit the building. Finally, it must be sustainable, minimizing the use of resources such as energy and water. Buildings that succeed in all four of these areas can be considered HP projects.

HP buildings require the integration of building systems. However, the traditional methods of planning and construction do not use an integrated approach. Project fragmentation between many stakeholders is often cited as the cause of poor project outcomes and the reason for poor productivity gains in the construction industry. In response, the construction industry has turned to new forms of integration in order to integrate the processes, organization, and information required for high performance projects.

This course will investigate and explore emerging trends in the construction industry – e.g. colocation, shared risk/reward contracts, lean construction methods, and use of shared building information models (BIM) for virtual design and construction (VDC) – as a way to achieve HP projects. For integrated processes, students will be introduced to the fundamentals of lean construction management. This course will look at the causes of variability in construction production and teach the theory of lean production for construction. Processes and technologies will be introduced for lean management, such as the last planner system, takt time planning, production tracking, and target value design.

For integrated information, students will be introduced to the fundamentals of virtual design and construction, including how to use work breakdown structures and model breakdown structures for building information modeling, and the fundamentals and opportunities for 4D scheduling, clash detection, and "5D and 6D" models. Future technologies emerging to integrate information such as the use of Autodesk Forge will be presented. Students will have the opportunity to discuss barriers in the industry to more advanced implementation of BIM and VDC.

For integrated organization, students will study the limitations of the construction industry to effectively organize for complex projects, including the challenges of managing highly interdependent tasks and generating knowledge and learning within large multi-organizational project teams. One emerging approach in North America known as IPD will be studied as a case example. Students will explore the benefits of certain 'elements' of IPD such as project team colocation, early involvement of trade contractors, shared risk/reward contracts, and collaborative decision making.

Lecture notes

The course will also include several guest lectures from industry experts to further demonstrate how these concepts are applied in practice.

Lecture Presentation slides will be available for viewing and download the day before each lecture.

If possible due to COVID restrictions, students will be expected to attend a half-day workshop on the Last Planner System. The date of this workshop will be provided at a later point in time.

Literature

A full list of required readings will be made available to the students via Moodle.

Prerequisites / notice

Project Management for Construction Projects (101-0007-00L) is a recommended but not required prerequisite for this course.
The objective of this course is to conduct a realistic traffic engineering project from beginning to end. The students will first familiarize
themselves with microscopic traffic models. Students will work in groups on a project that includes a base scenario on a real traffic network.
Throughout the semester, along with theoretical concepts, the students will build the base scenario (design, calibration and validation) and will develop alternative scenarios regarding modification on the infrastructure, simulation of in-vehicle technologies and vehicle-to-everything (V2X) communication. Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario.

Upon completion of the course, the students will:
- Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.).
- Design a road transport network inside the simulation software.
- Understand the basics behind modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network.
- Understand how to design a complete study, implement and validate it for planning purposes, e.g. creating a new road infrastructure.
- Make valid and concrete engineering proposals based on the simulation model and alternative scenarios.

Microscopic modelling and simulation concepts will include:
1) Car following models
2) Lane change models
3) Calibration and validation methodology
Specific tasks for the project will include:
1) Building a model with the simulator Aimsun in order to replicate and analyze the traffic conditions measured/observed.
2) Calibrating and validating the simulation model.
3) Redesigning/extend the model to improve the traffic performance through Aimsun and with/without programming in Python or C++.

The course will be based on a project that each group of students will build (design, calibrate, analyze and presentation) across the semester. A mid-term and final presentation of the work will be asked from each group of students.
It consists of weekly 2-hour lectures. The students work in pairs on a group project that completes in the end of the semester. The modelling software used is Aimsun and lectures (theory and hands on experience) are taking place in a computer room.
The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. Previous experience with Aimsun is helpful but not mandatory.

Students need to know some basic road transport concepts. The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. Previous experience with Aimsun is helpful but not mandatory.

478.739.598
After successfully completing this course the students will be able to:

- The goal of the course is to introduce the civil engineering students to Structural Design, which is regarded as a discipline that relates "Faustformel Tragwerksentwurf" to the students.
- After this course, the students are able to understand and use the different certification labels.

ECTS
All documents for certification labels as well as detail plans of the buildings will be available for the students.

Hours

- 2G

Building labels are used to certify buildings and neighbourhoods in terms of sustainability. Many different labels have been developed and assessed during or one two weeks this specific criteria on one of the case studies presented before. This practical hands on the label will end with a presentation and a discussion where we will highlight differences between the labels.

This alternation of working session on one specific criteria for one specific building followed by a group presentation and discussion to compare labels is repeated for the different focus point (operation energy, mobility, daylight, indoor air quality).

Lecture notes
- The slides from the presentations will be made available.

Literature
- All documents for certification labels as well as detail plans of the buildings will be available for the students.

Structural Design

W 3 credits 2G P. Ohiobrock, P. Block, J. Schwartz

Abstract
The goal of the course is to introduce the civil engineering students to Structural Design, which is regarded as a discipline that relates structural behavior, construction technologies and architectural concepts. The course encourages the students to understand the relationship between the form of a structure and the forces within it by promoting the development of designed projects.

Objective
- After successfully completing this course the students will be able to:
 1. Critically question structural design concepts of historical and contemporary references
 2. Use simple structural models to describe the load bearing behavior of structures
 3. Understand different construction technologies and have an awareness of their potential for structural design
 4. Use contemporary digital tools for the design of structures in equilibrium
 5. Design an appropriate structural system for a given design task taking into account architectural considerations

Content
The goal of the course is to introduce the civil engineering students to Structural Design, which is understood as a discipline that relates structural behavior, construction technologies and architectural concepts. Hence, the course encourages the students to develop an intuitive understanding of the relationship between the form of a structure and the forces within it by promoting the development of designed projects, in which the static and architectural aspects come together. The course is structured in two main parts, each developed in half of a semester: a mainly theoretical one (including the teaching of graphic statics) and a mainly applied one (focused on the development of a design project by the students using digital form-finding tools).

Theory:
Graphic statics is a graphical method developed by Prof. Karl Culmann and firstly published in 1864 at ETH Zurich. In this approach to structural analysis and design, geometric construction techniques are used to visualize the relationship between the geometry of a structure and the forces acting in and on it, represented by geometrically dependent form and force diagrams.

The course will firstly review the main principles of graphic statics through a series of frontal lectures and discuss the relationship to analytical statics. Graphic statics is then used as an operative tool to design structures in equilibrium based on the lower bound theorem of the Theory of Plasticity. Additionally, the course will introduce contemporary methodologies and tools (parametric CAD software) for the interactive application of equilibrium modelling in the form of short workshops. The students will familiarize with the topic by solving exercises and confronting themselves with simple design tasks.

Design Project:
Specific structural design approaches and design methodologies based on graphic statics and references from construction history will be introduced to the students by means of seminars and workshops. By developing a design project, the students will apply these concepts and techniques in order to become proficient with open design tasks (such as the design of a bridge, a large span hall or a tower). At the end of the semester, the students present their projects to a jury of internal and external critics in a final review. The main criterion of evaluation is the students' ability to integrate architectural considerations into their structural design.

Literature
- "Faustformel Tragwerksentwurf" (Philippe Block, Christoph Gengangel, Stefan Peters, DVA Deutsche Verlags-Anstalt 2015, ISBN 978-3-421-04012-1)

Numerical Hydraulics

W 3 credits 2G M. Holzner

Abstract
In the course Numerical Hydraulics the basics of numerical modelling of flows are presented.

Objective
The goal of the course is to develop the understanding of the students for numerical simulation of flows to an extent that they can later use commercial software in a responsible and critical way.

Content
The basic equations are derived from first principles. Possible simplifications relevant for practical problems are shown and their applicability is discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated.

Lecture notes
- All methods discussed are applied practically in exercises. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generally available softwares such as BASEMENT for non-steady shallow water flows are used.
- Given in lecture

Master’s Thesis

Number
- **101-0010-10L Master’s Thesis**

Title
- Only for Civil Engineering MSc, Programme Regulations 2020.

Type
- O

ECTS
- 20

Hours
- 43D

Lecturers
- Supervisors

Only students who fulfill the following criteria are allowed

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 223 of 2152
The Master Programme concludes with the Master Thesis, which has to be done in one of the chosen specialisations and has to be completed within 18 weeks. The Master Thesis is supervised by a professor and shall attest the student's ability to work independently and to produce scientifically structured work.

Abstract

The topics of the Master Thesis are published by the professors. The Topic can be set also in consultation between the student and the professor.

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0010-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>24</td>
<td>51D</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Only students who fulfill the following criteria are allowed to begin with their master thesis:

- successful completion of the bachelor programme;
- fulfilling of any additional requirements necessary to gain admission to the master programme.

Objective

To work independently and to produce a scientifically structured work.

Master Studies (Programme Regulations 2006)

3. Semester

Projects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0198-01L</td>
<td>Project on Construction Engineering</td>
<td>W</td>
<td>9</td>
<td>19A</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Only for Civil Engineering MSc, Programme Regulations 2006.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task in Construction Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The project work requires normally 250 to 300 hours of work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0298-01L</td>
<td>Project on Hydraulic Engineering and Water Resources Management</td>
<td>W</td>
<td>9</td>
<td>19A</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Only for Civil Engineering MSc, Programme Regulations 2006.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task in Hydraulic Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0398-01L</td>
<td>Project on Geotechnical Engineering</td>
<td>W</td>
<td>9</td>
<td>19A</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Only for Civil Engineering MSc, Programme Regulations 2006.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task in Geotechnical Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0498-01L</td>
<td>Project on Transport Systems</td>
<td>W</td>
<td>9</td>
<td>19A</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Only for Civil Engineering MSc, Programme Regulations 2006.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task in Transport Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0598-01L</td>
<td>Project on Construction and Maintenance Management</td>
<td>W</td>
<td>9</td>
<td>19A</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Only for Civil Engineering MSc, Programme Regulations 2006.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task in Construction Engineering and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0698-01L</td>
<td>Project on Materials and Mechanics</td>
<td>W</td>
<td>9</td>
<td>18A</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Only for Civil Engineering MSc, Programme Regulations 2006.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Working on a concrete task in Materials and Mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The project work is supervised by a professor. Students can choose from different subjects and tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The goal of this course is to engage students in a multidisciplinary collaboration to tackle real world problems. Following a design thinking approach, students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.

Information and application: http://sparklabs.ch/

During the course, students will learn about different design thinking methods and tools. This will enable them to:

- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).
- Engage in collaborative ideation with a multidisciplinary team.
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.

The purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validated them through quick iterations of prototyping and testing using different tools and materials. The students will work in multidisciplinary teams on a set of challenges that are organized as a one-week, a three-week, and a final six-week project with an external project partner. In this course, the students will learn about the different Design Thinking methods and tools that are needed to generate deep insights, to engage in collaborative ideation, rapid prototyping and iterative testing.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

For more information and the application visit: http://sparklabs.ch/

Please also note that the group work outside class is an essential element of this course, so that students must expect an above-average workload.

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Linda Armbruster to learn about the requirements of the class.

This course is an introduction to urban and regional economics. It focuses on the formation and development of urban systems, and as such deserve our attention. In general, this class focuses on the latest research developments in urban and regional economics, though it does not require prior knowledge in this field. It pays particular attention to economic approaches, which are based on theoretical frameworks with strong micro-foundations and allow for precise policy recommendations.

The main objective of this course is to provide students with some basic tools to analyze the fundamental economic forces at play in urban systems (i.e., agglomeration and congestion forces), and the role of transport networks in shaping the structure of these systems. Why do urban areas grow or decline? How do transport networks affect the location of individuals and firms? Does the location of a firm determine its productivity? Can transport infrastructure investments reduce economic disparities? These are some of the questions that students should be able to answer after having completed the course.

The course is organized in four parts. I start with the key observation that economic activity (both in terms of population density and productivity) is unevenly distributed in space. For instance, the share of the population living in urban centers is increasing globally, from 16% in 1900 and 50% in 2000 to about 68% by the year 2050 (UN, World Economic Prospects, 2014). The goal of the first part is then to understand the economic forces at play behind these trends, looking at the effects within and across urban areas. I will also discuss how natural or man-made geographical characteristics (e.g., rivers, mountains, borders, etc.) affect the development of such urban systems.

In the second part, I discuss the planning and pricing of transport networks, moving from simple local models to more complex transport models at a global scale. The key aspects include: the first and second best road pricing, the public provision of transport networks and the demographic effects of transport networks.

In the third part, I combine the previous two parts and analyze the interaction between urban systems and transportation. Thereby, the main focus is to understand the economic mechanisms that can lead to a general equilibrium of all actors involved. However, as the study of the historical development of urban systems and transport networks provides interesting insights, I will discuss how their interaction in the past shapes today’s economic geography.

Finally, I broaden the scope of the course and explore related topics. There will be a particular emphasis on the relation between urban systems and fiscal federalism as well as environmental policies. Both aspects are important determinants of the contemporary developments of urban systems, and as such deserve our attention.

In general, this class focuses on the latest research developments in urban and regional economics, though it does not require prior knowledge in this field. It pays particular attention to economic approaches, which are based on theoretical frameworks with strong micro-foundations and allow for precise policy recommendations.

For more information and the application visit: http://sparklabs.ch/

Please also note that the group work outside class is an essential element of this course, so that students must expect an above-average workload.

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Linda Armbruster to learn about the requirements of the class.

The entire course programs of ETH Zurich and the University of Zurich are open to the students to individual selection.
How can students of architecture become active agents of change? What does it take to go beyond a building’s scale, making design-relevant decisions to the city rather than a single client? How can we design in cities with a lack of land, tax base, risk, and resilience, understanding that Zurich is the exception and these other cities are the rule? How can we discover, set rather than follow trends and understand existing urban phenomena activating them in a design process? The lecture series produces a growing catalog of operational urban tools across the globe, considering Governance, Social, and Environmental realities. Instead of limited binary comparing of cities, we are building a catalog of change, analyzing what design solutions cities have been developing informally incrementally over time, why, and how. We look at the people, institutions, culture behind the design and make concepts behind these tools visible. Students get first-hand information from cities where the chair as a Team has researched, worked, or constructed projects over the last year, allowing competent, practical insight about the people and topics that make these places unique. Students will be able to use and expand an alternative repertoire of experiences and evidence-based design tools, go to the conceptual core of them, and understand how and to what extent they can be relevant in other places. Urban Stories is the basic practice of architecture and urban design. It introduces a repertoire of urban design instruments to the students to use, test, and start their designs.

Urban form cannot be reduced to physical space. Cities result from social construction, under the influence of technologies, ecology, culture, the impact of experts, and accidents. Urban un-concluded processes respond to political interests, economic pressure, cultural inclinations, along with the imagination of architects and urbanists and the informal powers at work in complex adaptive systems. Current urban phenomena are the result of urban evolution. The facts stored in urban environments include contributions from its entire lifecycle, visible in the physical environment, and non-physical aspects. This imaginary city exists along with its potentials and problems and with the conflicts that have evolved. Knowledge and understanding, along with a critical observation of the actions and policies, are necessary to understand the diversity and instability present in the contemporary city and understand how urban form evolved to its current state.

How did cities develop into the cities we live in now? Urban plans, instruments, visions, political decisions, economic reasonings, cultural inputs, and social organization have been used to operate in urban settlements in specific moments of change. We have chosen cities that exemplify how these instruments have been implemented and how they have shaped urban environments. We transcribe these instruments into urban operational tools that we have recognized and collected within existing tested cases in contemporary cities across the globe.

This lecture series will introduce urban knowledge and the way it has introduced urban models and operational modes within different concrete realities, therefore shaping cities. The lecture series translates urban knowledge into operational tools, extracted from cities where they have been tested and become exemplary samples, most relevant for understanding how the urban landscape has taken shape. The tools are clustered in twelve thematic clusters and three tool scales for better comparability and cross-reflection.

The Tool case studies are compiled into a global urbanization toolbox, which we use as typological models to read the city and critically reflect upon it. The presented contents are meant to serve as inspiration for positioning in future professional life and provide instruments for future design decisions.

In an interview with a local designer, we measure our insights against the most pressing design topics in cities today, including inclusion, affordable housing, provision of public spaces, and infrastructure for all.

The learning material, available via https://moodle-app2.let.ethz.ch/ is comprised of:
- Toolbox ‘Reader’ with an introduction to the lecture course and tool summaries
- Weekly exercise tasks
- Infographics with basic information of each city
- Quiz question for each tool
- Additional reading material
- Interviews with experts
- Archive of lecture recordings

The Objective of the course are to introduce students to Systemic Design as theory, methodology and practice. This includes whole systems thinking, circularity, cross-scale design, Gigamapping, and many more. The course stimulates overall reflective eco-social thinking in design, planning and engineering disciplines.
Design Challenge: How to re-design alpine-urban circularity? How to revive mountain livelihoods, focusing on local identity, resilient landscapes and a regenerative economy? What is a regenerative relation between the alpine and the urban? Covid has accelerated and intensified a traditionally challenging relation of the alpine (mountain livelihoods) and the urban. Both depend on each other, but there are as well many unsustainable elements in this relation, especially for the alpine.

The specific design challenge is to identify and layout a holistic, partly quantified and visualized systems strategy for building a resilient community economy in relation to the actual Covid driven pressure factors in the relation of the alpine with the urban.

We build upon former ETH SDL students who developed a systems maps for the community of Ostana, Italy, that embraces local identity, revitalizes cultural and landscape biodiversity, and creates alpine-urban circularity.

This course will extend this systems map to more clearly understand the urban component, the source market, and design in new opportunities of urban-alpine regeneration, for circularity, for new ways of tourism, of mobility, in a creative economy.

Recap of former SDL courses:
In Ostana, a clear connection is between the local identity (culture, traditions, visions) which is formed by Occitan culture (food, music, dance, language), traditional stone building architecture which is under pressure to carefully evolve with new needs for carbon-neutral and net-positive buildings, and the Monte Viso landscape. How does a re-growing economy that should be regenerative and circular by design, correlate with innovation in architecture, with population growth and associated challenges in mobility, waste systems and supplies, with growing tourism, new agro-forestry practices like industrial hemp and Paulownia, while impacts of climate change are clearly visible? How does the community design a vision that is based on cooperation on different governance scales, balancing local identity and urgently needed international innovation?

Deliverables & output: This SDL course RE:GENERATE builds upon related work from former courses hosted and lead by the MonViso Institute (i.e. on social innovation, mobility, architecture and local identity, tourism, circular economy, land use change) to develop and design foundations for an extension of the existing, visualized and partly quantified systems map, that will support ongoing and future innovation processes in this community. The focus now is on the urban integration into new, regenerative business models of the alpine, and in regenerative relation between both as a model for the future. This course will thus develop an extended graphical systems map from the alpine to the urban, backed up by a technical report, and connected with the existing systems maps of Ostana and the surrounding valley.

Deliverables & output: This SDL course RE:GENERATE builds upon related work from former courses hosted and lead by the MonViso Institute (i.e. on social innovation, mobility, architecture and local identity, tourism, circular economy, land use change) to develop and design foundations for an extension of the existing, visualized and partly quantified systems map, that will support ongoing and future innovation processes in this community. The focus now is on the urban integration into new, regenerative business models of the alpine, and in regenerative relation between both as a model for the future. This course will thus develop an extended graphical systems map from the alpine to the urban, backed up by a technical report, and connected with the existing systems maps of Ostana and the surrounding valley.

Prerequisites / notice
Depending on the Covid situation, some part of the course will be virtual via Zoom, using a Miro design board. If possible, we will do a field trip. Some travel costs may apply.

Students need to be motivated to design in teams on the preparation of the deliverables, a systemic strategy map and a written report.

Literature
see learning materials and https://systemicsignallabs.ethz.ch/
e.g. Strieb, B. and Ogundipe, A. 2016. Engineering Applications in Sustainable Design and Development. ISBN-10: 8131529053

GESS Science in Perspective
see GESS Science in Perspective: Language Courses
ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-BAUG.

Course Units for Additional Admission Requirements
The courses below are only available to MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0700-00L</td>
<td>Programming for Engineers</td>
<td>E-</td>
<td>4 credits</td>
<td>4G</td>
<td>to be announced</td>
</tr>
</tbody>
</table>

Does not take place this semester.
Remark: Will only be offered as of HS22.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 227 of 2152
Civil Engineering Master - Key for Type

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Core Courses First Year Examination

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0011-02L</td>
<td>General Chemistry (Inorganic Chemistry)</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>A. Togni</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to the chemistry of ionic equilibria: Acids and bases, redox reactions, formation of coordination complexes and precipitation reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding and describing ionic equilibria from both a qualitative and a quantitative perspective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Chemical equilibrium and equilibrium constants, mono- and polyprotic acids and bases in aqueous solution, calculation of equilibrium concentrations, acidity functions, Lewis acids, acids in non-aqueous solvents, redox reactions and equilibria, Galvanic cells, electrode potentials, Nernst equation, coordination chemistry, stepwise formation of metal complexes, solubility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Copies of the course slides as well as other documents will be provided as pdf files via the moodle platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0011-03L</td>
<td>General Chemistry (Organic Chemistry) I</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>P. Chen</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to Organic Chemistry. Classical structure theory, stereochemistry, chemical bonds and bonding, symmetry, nomenclature, organic thermochemistry, conformational analysis, basics of chemical reactions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to the structures of organic compounds as well as the structural and energetic basis of organic chemistry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Introduction to the history of organic chemistry, introduction to nomenclature, learning of classical structures and stereochemistry: isomerism, Fischer projections, CIP rules, point groups, molecular symmetry and chirality, topicy, chemical bonding: Lewis bonding model and resonance theory in organic chemistry, description of linear and cyclic conjugated molecules, aromaticity, Huckel rules, organic thermochemistry, learning of organic chemistry reactions, intermolecular interactions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Unterlagen werden als PDF über die ILIAS-Plattform zur Verfügung gestellt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain B - Method-specific Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity

Domain C - Social Competencies

- Negotiation
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Domain D - Personal Competencies

- Adaptability and Flexibility
- Negotiation
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

529-0011-01L

General Chemistry (Physical Chemistry) I

- **Abstract**
 - Die Vorlesung vermittelt eine Einführung in einige physikalischen Grundlagen der Chemie, insbesondere in die Radioaktivität, die Quantenmechanik, den Aufbau der Materie und eines Atoms, des Periodensystems der Elemente und die chemische Bindung.
 - Die Studierenden sind nach der Vorlesung in der Lage, - mit für die Chemie wichtigen physikalischen Grössen und deren Einheiten zu rechnen,
 - einige Eigenschaften chemisch relevanter Teilchen zu benennen und experimentelle Methoden zur Bestimmung dieser Eigenschaften vorzuschlagen,
 - Anwendungen und Gefahren der Radioaktivität zu benennen,
 - radioaktive Zerfallsprozesse zu kategorisieren und den zeitlichen Verlauf von einfachen Zerfallsreaktionen mathematisch wiederzugeben sowie qualitativ vorherzusagen und darzustellen,
 - Wellen- und Teilcheneigenschaften von elektromagnetischer Strahlung und Materie zu beschreiben und experimentelle Methoden zu deren Nachweis vorzuschlagen,
 - die Grundlagen der Quantenmechanik (Bedeutung der Wellenfunktion, Heisenbergsche Unschärferelation, Operatoren, Kommutatoren) zu erklären und einfache Rechnungen damit auszuführen,
 - Absorptions- und Emissionsspektren von Einzelektronenatomen zu analysieren und zu berechnen,
 - die Schrödingergleichung für ein molekulares Mehrteilchensystem aufzustellen,
 - die Schrödinger-Gleichung für die Modellsysteme Teilchen im Kasten und harmonischer Osillator in einer Dimension selbstständig zu lösen und auf höherdimensionale nicht-wechselwirkende Probleme zu verallgemeinern,
 - Molekülverschiebungen von zweiatomigen Molekülen mit dem Modell des harmonischen und des anharmonischen Ozillators zu modellieren,
 - das Konzept eines Orbitals zu erklären und die qualitative Form der Orbitale des Wasserstoffatoms mathematisch und bildlich wiederzugeben,
 - den Aufbau des Periodensystems der Elemente mit Hilfe des Orbitalkonzepts zu erklären,
 - Ähnlichkeiten in der elektronischen Struktur von Atomen zu erkennen und zu benutzen, um chemisch relevante Eigenschaften vorhersagen und
 - Termssymbole für atomare Grundzustände aufzustellen.

- **Content**
 - Atomic structure and structure of matter: atomic theory, elementary particles, atomic nuclei, radioactivity, nuclear reactions. Atomic orbitals and energy levels: ionisation energies, atomic spectroscopy, term values and symbols. Quantum mechanical atom model: wave-particle duality, the uncertainty principle, Schrödinger's equation, the hydrogen atom, construction of the periodic table of the elements. Chemical bonding: ionic bonding, covalent bonding, molecular orbitals.

- **Lecture notes**
 - See homepage of the lecture.

- **Literature**
 - See homepage of the lecture.
Fundamentals of Biology I: From Molecules to the Biochemistry of Cells

Objective
The lecture provides an introduction to the basics of biochemistry and molecular biology as well as evolutionary principles. The focus is on bacteria and archaea under consideration of universal concepts.

Content
- Introduction to biochemistry, molecular biology and evolutionary principles
- Universal mechanisms of inheritance, transcription and translation
- Reaction Kinetics, binding equilibria and enzymatic catalysis
- Essentials of Catabolism
- Metabolism and biogeochemical cycling of elements

The lecture is divided into different sections:
1. Geochemical perspectives on Earth and introduction to evolution
2. Building blocks of life
3. Macromolecules: Proteins
4. Membranes and transport across the plasma membrane
5. Functions of one variable: the notion of a function, of the derivative, the idea of a differential equation, complex numbers, Taylor polynomials and Taylor series. The integral of a function of one variable.
6. Universal mechanisms of inheritance, transcription and translation
7. Reaction Kinetics, binding equilibria and enzymatic catalysis
8. Essentials of Catabolism
9. Metabolism and biogeochemical cycling of elements

Literature

Prerequisites / notice
Voraussetzungen: Maturastoff. Insbesondere Integral- und Differenialrechnung.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Techniques and Technologies assessed
- Decision-making not assessed
- Media and Digital Technologies not assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies
- Communication not assessed
- Cooperation and Teamwork not assessed
- Customer Orientation not assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence not assessed
- Sensitivity to Diversity not assessed
- Negotiation not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility not assessed
- Creative Thinking assessed
- Critical Thinking assessed
- Integrity and Work Ethics assessed
- Self-awareness and Self-reflection assessed
- Self-direction and Self-management assessed

Mathematical Foundations I: Analysis A

Abstract
Introduction to calculus in one dimension. Building simple models and analysing them mathematically.

Objective
Introduction to calculus in one dimension. Building simple models and analysing them mathematically.

Content
- Functions of one variable: the notion of a function, of the derivative, the idea of a differential equation, complex numbers, Taylor polynomials and Taylor series. The integral of a function of one variable.
- Universal mechanisms of inheritance, transcription and translation
- Reaction Kinetics, binding equilibria and enzymatic catalysis
- Essentials of Catabolism
- Metabolism and biogeochemical cycling of elements

The lecture is divided into different sections:
1. Geochemical perspectives on Earth and introduction to evolution
2. Building blocks of life
3. Macromolecules: Proteins
4. Membranes and transport across the plasma membrane
5. Functions of one variable: the notion of a function, of the derivative, the idea of a differential equation, complex numbers, Taylor polynomials and Taylor series. The integral of a function of one variable.
6. Universal mechanisms of inheritance, transcription and translation
7. Reaction Kinetics, binding equilibria and enzymatic catalysis
8. Essentials of Catabolism
9. Metabolism and biogeochemical cycling of elements

Literature
The newly conceived lecture is supported by scripts.

Prerequisites / notice
Voraussetzungen: Maturastoff. Insbesondere Integral- und Differenialrechnung.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Techniques and Technologies assessed
- Decision-making not assessed
- Media and Digital Technologies not assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies
- Communication not assessed
- Cooperation and Teamwork not assessed
- Customer Orientation not assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence not assessed
- Sensitivity to Diversity not assessed
- Negotiation not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility not assessed
- Creative Thinking assessed
- Critical Thinking assessed
- Integrity and Work Ethics assessed
- Self-awareness and Self-reflection assessed
- Self-direction and Self-management assessed

Introduction to Computer Science

Abstract
Introduction to UNIX, introduction to C++ programming, data representation and processing, computational errors, algorithms and scaling, sorting and searching, numerical algorithms, algorithmic strategies, computer simulation, computer architecture, operating systems, programming languages, computer networks, databases, representation of chemical structures, molecular simulation. Exercises: Make students familiar with the UNIX operating system, C++ programming techniques, simple algorithms and computational applications in chemistry by means of exercise series at the computer.

Objective
Acquire a starting package concerning the computational aspects of natural sciences; discuss fundamentals of computer architecture, languages, algorithms and programming with an eye to their application in the area of chemistry, biology and material science.

Content
- Lecture: Introduction to UNIX, introduction to C++ programming, data representation and processing, computational errors, algorithms and scaling, sorting and searching, numerical algorithms, algorithmic strategies, computer simulation, computer architecture, operating systems, programming languages, computer networks, databases, representation of chemical structures, molecular simulation; Exercises: Make students familiar with the UNIX operating system, C++ programming techniques, simple algorithms and computational applications in chemistry by means of exercise series at the computer.
- Script booklet (copies of powerpoint slides, in English), distributed at first or second lecture.
Since the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the written exam, the results of the exercises are taken into account when evaluating the results of the exam (compulsory performance component, 12% of the exam mark; in case of repetition of the exam, the exercise marks from a previous semester can be kept).

For more information about the lecture: www.csms.ethz.ch/education/info

Second and Third Year Core Courses

Examination Blocks

Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0121-00L</td>
<td>Inorganic Chemistry I</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>H. Grützmacher, P. Steinegger</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion of syntheses, structures, and general reactivity of coordination compounds of the transition metals as well as the lanthanides and actinides. Introduction of methods of characterization, physical-chemical properties of coordination compounds as well as principles of radiochemistry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The students will learn and understand the methodological basics of binding theory in complexes of transition metals. They will be able to explain the structure, chemical bonding, spectroscopic properties as well as general strategies for the synthesis of complexes of transition metals. The students will acquire knowledge on the fundamentals of radioactive decay and radiochemistry. Furthermore, they will be familiar with the basics of inorganic chemistry of lanthanides and actinides.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course consists of the following parts, which introduce the students to the chemistry of transition metals as well as lanthanides and actinides: 1) General definitions and terms in coordination chemistry; 2) Coordination numbers and structures; 3) Ligand types; 4) The chemical bond in coordination compounds part A: Crystal field theory and ligand field theory; 5) The chemical bond in coordination compounds part B: Qualitative MO theory; 6) Reactivity and reaction mechanisms of coordination compounds; 7) Group theory and character tables; 8) Properties and characterization of coordination compounds; 9) Introduction to radiochemistry; 10) Principles of the chemistry of the lanthanides and actinides.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eine kommentierte Foliensammlung ist im HCI-Shop erhältlich.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concepts and Theories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analytical Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adaptability and Flexibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0221-00L</td>
<td>Organic Chemistry I</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>H. Wennenemers</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acquisition of a basic repertoire of synthetic methods including important reactions of aldehydes, ketones, carboxylic acids and carboxylic acid derivatives, as well as eliminations and fragmentations. Particular emphasis is placed on the understanding of reaction mechanisms and the correlation between structure and reactivity. A deeper understanding of the concepts presented during the lecture is reached by solving the problems handed out each time and discussed one week later in the exercise class.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A pdf file of the printed lecture notes is provided online. Supplementary material may be provided online.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No set textbooks. Optional literature will be proposed at the beginning of the class and in the lecture notes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0422-00L</td>
<td>Physical Chemistry II: Chemical Reaction Kinetics</td>
<td>O</td>
<td>4</td>
<td>3V+1U</td>
<td>F. Merkt, U. Hollenstein</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prerequisites / notice
- Mathematik I und II
- Allgemeine Chemie I und II
- Physikalische Chemie I

402-0043-00L
Physics I

<table>
<thead>
<tr>
<th>Credits</th>
<th>ECTS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 credits</td>
<td>3V+1U</td>
<td>O</td>
<td>J. Home</td>
</tr>
</tbody>
</table>

Abstract

Introduction to the concepts and tools in physics with the help of demonstration experiments: mechanics of point-like and ridged bodies, periodic motion and mechanical waves.

Objective

The concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science.

Content

Mechanics (motion, Newton's laws, work and energy, conservation of momentum, rotation, gravitation, fluids) Periodic Motion and Waves (periodic motion, mechanical waves, acoustics).

Lecture notes

The lecture follows the book "Physics" by Paul A. Tipler.

Literature

Paul A. Tipler and Gene P. Mosca, Physics (for Scientists and Engineers), W. H. Freeman and Company

401-0643-13L
Statistics II

<table>
<thead>
<tr>
<th>Credits</th>
<th>ECTS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 credits</td>
<td>2V+1U</td>
<td>O</td>
<td>M. Kalisch</td>
</tr>
</tbody>
</table>

Abstract

Vertiefung von Statistikmethoden. Nach dem detaillierten Fundament aus Statistik I liegt nun der Fokus auf konzeptueller Breite und konkreter Problemlösungsfähigkeit mit der Statistiksoftware R.

Objective

529-0051-00L
Analytical Chemistry I

<table>
<thead>
<tr>
<th>Credits</th>
<th>ECTS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 credits</td>
<td>3G</td>
<td>O</td>
<td>D. Günther, M.-O. Ebert, G. Schwarz, R. Zenobi</td>
</tr>
</tbody>
</table>

Abstract

Introduction into the most important spectroscopical methods and their applications to gain structural information.

Objective

Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications

Content

Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:

- Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
- NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling.
- IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra;
- Raman spectroscopy:
- UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) and optical rotation dispersion (ORD).

Lecture notes

Script will be for the production price

Literature

- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995

Prerequisites / notice

Exercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounds" (4th semester) is recommended.

535-0521-00L
Pharmacology and Toxicology I

<table>
<thead>
<tr>
<th>Credits</th>
<th>ECTS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 credits</td>
<td>2V</td>
<td>O</td>
<td>U. Quitterer, J. Abd Alla</td>
</tr>
</tbody>
</table>

Abstract

The two-semester lecture course will provide a detailed understanding of the fundamentals of drug action and the mechanisms of action and therapeutic use of the important classes of drugs. The lectures are intended for students of pharmaceutical sciences.

Objective

The lectures will provide a comprehensive survey of pharmacology and toxicology. Special emphasis is placed on the interrelationship between pharmacological, pathophysiological and clinical aspects.

Content

Topics include disease-relevant macroscopic, microscopic, pathobiocchemical and functional disturbances of specific organs and organ systems. The lectures integrate disease pathology with mechanisms of drug action, usage, metabolism, pharmacokinetics, side effects, toxicity, contraindications and dosage of relevant drug classes. Basic principles of clinical pharmacology and pharmaconotherapy will be covered.

Lecture notes

A script is provided for each lecture. Scripts define important course contents but do not replace the lectures.

Literature

Recommended reading:

Klaus Aktories, Ulrich Förstermann, Franz Hofmann, Klaus Starke.
Allgemeine und spezielle Pharmakologie und Toxikologie.
Urban & Fischer (Elsevier, München)

The classic textbook in Pharmacology:

Goodman and Gilman’s The Pharmacological Basis of Therapeutics
Laurence Brunton, Bjorn Knollman, Randa Hilal-Dandan.
ISBN-10: 1259584739

Prerequisites / notice

Voraussetzungen: Abschluss Grundstudium

Examination Block 2

Starting Autumn Semester 2022.

Laboratory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0124-00L</td>
<td>BCB I: General Chemistry</td>
<td>O</td>
<td>6 credits</td>
<td>8P</td>
<td>H. V. Schönberg</td>
</tr>
</tbody>
</table>
Abstract
Qualitative Analyse (Kationen- und Anionennachweis), Säure-Base-Gleichgewicht (pH-Wert, Titrationen, Puffer), Fällungsgleichgewichte (Gravimetrie, Potentiometrie, Leitfähigkeit), Redoxreaktionen (Synthese, Redoxtitrationen, galvanische Elemente), Metallkomplexe (Synthese, komplexometrische Titration)

Objective
Qualitative Analyse (einfacher Kationen- und Anionentrennungsgang, Nachweis von Kationen und Anionen), Säure-Base-Gleichgewicht (Säure- und Basenstärke, pH- und pKa-Werte, Titrationen, Puffer, Kjeldahlbestimmung), Fällungsgleichgewichte (Gravimetrie, Potentiometrie, Leitfähigkeit), Oxidationszahlen und Redoxverhalten (Synthese), Redoxtitrationen, galvanische Elemente), Metallkomplexe (Synthese von Komplexen, Ligandaustauschreaktionen, Komplexometrische Titration)

Content

Lecture notes
http://www.gruetzmacher.ethz.ch/education/labcourses

Literature
https://moodle-app2.let.ethz.ch

Prerequisites / notice
Safety concept: https://chab.ethz.ch/studium/bachelor1.html

<table>
<thead>
<tr>
<th>529-0016-00L</th>
<th>BCB III: Organic Chemistry</th>
<th>O</th>
<th>8 credits</th>
<th>12P</th>
<th>J. W. Bode</th>
</tr>
</thead>
</table>
Abstract | Laboratory course in Organic Chemistry for students of "Biochemistry - Chemical Biology" |
Objective | Introduction into basic techniques used in the organic laboratory. Understanding organic reactions through experiments. |
Content | Part I: Basic operations such as the isolation, purification, and characterization of organic compounds: distillation, extraction, chromatography, crystallization, IR (UV/1H-NMR)-spectroscopy for the identification of the constitution of organic compounds. Part II: Organic reactions: preparative chemistry. From simple, one-step to multi-step syntheses. The syntheses include classic Organic Chemistry as well as methods widely used in a Chemical Biology context; |
Lecture notes | see https://bode.ethz.ch/education/bcb-iii/bcb-iii-lab-course.html |
Prerequisites / notice | Basisprüfung + BCB I: General Chemistry |

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Block Courses
Starting Autumn Semester 2022

Electives
Course offerings from 3. year on (starting autumn semester 2022)

GESS Science in Perspective

Science in Perspective
see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-CHAB

Language Courses
see Science in Perspective: Language Courses ETH/UZH

Biochemistry – Chemical Biology Bachelor - Key for Type

<table>
<thead>
<tr>
<th>W</th>
<th>Eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
</tbody>
</table>

Dr Suitable for doctorate
O Compulsory
W+ Eligible for credits and recommended
<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Biology (General Courses)

Complementary Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1791-00L</td>
<td>Introductory Course in Neuroscience I (University of Zurich)</td>
<td>Z Dr</td>
<td>2 credits</td>
<td>2V</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: SPV0Y005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
The course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.

Objective
The course gives an introduction to the development and anatomical structure of nervous systems. Furthermore, it discusses the basics of cellular neurophysiology and neuropharmacology. Finally, the nervous system is described on a system level.

Content
1) Human Neuroanatomy I&II
2) Comparative Neuroanatomy
3) Building a central nervous system I&II
4) Synapses I&II
5) Glia and more
6) Excitability
7) Circuits underlying Emotion
8) Visual System
9) Auditory & Vestibular System
10) Somatosensory and Motor Systems
11) Learning in artificial and biological neural networks

Prerequisites / notice
For doctoral students of the Neuroscience Center Zurich (ZNZ).

<table>
<thead>
<tr>
<th>Number</th>
<th>Rate-Controlled Separations in Fine Chemistry</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0927-00L</td>
<td>Rate-Controlled Separations in Fine Chemistry</td>
<td>Z Dr</td>
<td>6 credits</td>
<td>3V+1U</td>
<td>M. Mazzotti, V. Becattini</td>
</tr>
</tbody>
</table>

Abstract
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications.

Objective
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology.

Content
The class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation.

Lecture notes
Handouts during the class

Literature
Recommendations for text books will be covered in the class

Prerequisites / notice
Requirements (recommended, not mandatory): Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00)

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concept and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th>Analytical Competencies</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain C - Social Competencies</th>
<th>Communication</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain D - Personal Competencies</th>
<th>Adaptable and Flexibility</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Applied Statistical Regression</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>Z Dr</td>
<td>5 credits</td>
<td>2V+1U</td>
<td>M. Dettling</td>
</tr>
</tbody>
</table>

Abstract
This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.

Objective
The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.

Content
The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.

Lecture notes
A script will be available.
Prerequisites / notice

The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptness and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Literature
- Faraway (2005): Linear Models with R
- Faraway (2006): Extending the Linear Model with R
- Draper & Smith (1998): Applied Regression Analysis
- Fox (2008): Applied Regression Analysis and GLMs
- Montgomery et al. (2006): Introduction to Linear Regression Analysis

Prerequisites / notice

The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptness and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

551-1619-00L Structural Biology

Does not take place this semester.

Z Dr 1 credit 1K

R. Glockshuber, F. Allain, N. Ban, K. Locher, M. Pilhofer, E. Weber-Ban, K. Wüthrich

Abstract
The course consists of a series of research seminars on Structural Biology, Biochemistry and Biophysics, given by both scientists of the National Center of Competence in Research (NCCR) in Structural Biology and external speakers. Information on the individual seminars is provided on the following websites:
http://www.structuralbiology.uzh.ch/educ002.asp
http://www.biol.ethz.ch/dbiol-cal/index

Objective
The goal of this course is to provide doctoral and postdoctoral students with a broad overview on the most recent developments in biochemistry, structural biology and biophysics.

851-0180-00L Research Ethics

Number of participants limited to 40

Z Dr 2 credits 2G

G. Achermann, P. Emch

Abstract
Students are able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different normative perspectives and to create their own well-justified reasoning for taking decisions to the kind of ethical problems a scientist is likely to encounter during the different phases of biomedical research.

Objective
Participants of the course Research Ethics will
• Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
• Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles), and their ability to use these skills in assessing other people's arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;
The lecture deals with problems of tumor epidemiology (causes, mortality, incidence). Cancer is delineated as a multi-step process.

3. Decision making: How to solve a moral dilemma
3.1 How (not) to approach ethical issues 3.2 What is a moral dilemma? Is there a correct method for answering moral questions? 3.3 Methods of making ethical decisions 3.4 Is there a "right" answer?

II. Research Ethics - Internal responsibilities
1. Integrity in research and research misconduct
1.1 What is research integrity and why is it important? 1.2 What is research misconduct? 1.3 Questionable/Detrimental Research Practice (QR/DRP) 1.4 What is the incidence of misconduct? 1.5 What are the factors that lead to misconduct? 1.6 Responding to research wrongdoing 1.7 The process of dealing with misconduct 1.8 Approaches to misconduct prevention and for promoting integrity in research

2. Data Management
2.1 Data collection and recordkeeping 2.2 Analysis and selection of data 2.3 The (mis)representation of data 2.4 Ownership of data 2.5 Retention of data 2.6 Sharing of data (open research data) 2.7 The ethics of big data

3. Publication ethics / Responsible publishing 3.1 Background 3.2 Criteria for being an author 3.3 Ordering of authors 3.4 Publication practices

III. Research Ethics – External responsibilities
1. Research involving human subjects 1.1 History of research with human subjects 1.2 Basic ethical principles – The Belmont Report 1.3 Requirements to make clinical research ethical 1.4 Social value and scientific validity 1.5 Selection of study participants – the concept of vulnerability 1.6 Favourable risk-benefit ratio 1.7 Independent review - Ethics Committees 1.8 Informed consent 1.9 Respect for potential and enrolled participants

2. Social responsibility
2.1 What is social responsibility? a) Social responsibility of the individual scientist b) Social responsibility of the scientific community as a whole; 2.2 Participation in public discussions: a) Debate & Dialogue b) Communicating risks & uncertainties c) Science and the media 2.3 Public advocacy (policy making)

3. Dual use research 3.1 Introduction to Dual use research 3.2 Case study – Censuring science? 3.3 Transmission studies for avian flu (H5N1) 3.4 Synthetic biology

Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.

What are the requirements?
First and foremost your strong willingness to seriously achieve the main learning outcomes as indicated in the Course Catalogue (specific learning outcomes for each module will be provided at the beginning of the course). For successfully completing the course Research Ethics, the following commitment is absolutely necessary (but not sufficient) (observed success factors for many years!):
1. Your regular presence is absolutely required (so please no double, parallel enrollment for courses taking place at the identical time!) connected with your active participation during class, e.g. taking notes, contributing to discussions (in group as well as in plenary class), solving exercises.
2. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more...).

Cancer: Fundamentals, Origin and Therapy 376-1581-00L

Abstract

Objective
Students are able to describe selected chemicals, biological and molecular processes that occur in cells spontaneously or after physical or chemical exposure and resulting in a tumor. They are able to list important cancer-inducing agents and explain the respective mechanism of action. They have knowledge of significant risk factors for cancer diseases. They are confronted with the basics of toxicology and they can explain the principle of the most common therapeutic strategies.

Content
The lecture deals with problems of tumor epidemiology (causes, mortality, incidence). Cancer is delineated as a multi-step process. Classes of chemical compounds that induce cancer are discussed as well as the reactive metabolites that may be built from. Covalent binding to DNA is discussed and different types of mutations resulting therof. A selection of proto-oncogenes and tumor suppressor genes is presented. Their function will be discussed as well as the changes which are found in these genes in tumor cells, starting from single nucleotide exchanges up to large deletions. The reason for genetic predisposition to cancer will be discussed as well as cancer relevant aspects of cell cycle regulation. The role of tumor microenvironments and phenomena like angiogenesis and metastasis are presented as well as the mechanisms that protect the genome from mutagenic damage. Further subjects address old and new strategies of cancer treatment. Personalised cancer treatment. Handouts with reproductions of all presented transparencies will be distributed.

Literature

additional information is given during the lecture

Abstract
About 5 talks on applied statistics.

Objective
See how statistical methods are applied in practice.

Content
There will be about 5 talks on how statistical methods are applied in practice.

Prerequisites / notice
This is no lecture. There is no exam and no credit points will be awarded. The current program can be found on the website:
http://stat.ethz.ch/events/zukost
Course language is English or German and may depend on the speaker.

551-1109-00L Seminars in Microbiology Z Dr 0 credits 2K S. Sunagawa, W.-D. Hardt, M. Künzler, J. Piel, J. Vorholt-Zambelli

Abstract
Seminars by invited speakers covering selected microbiology themes.

Objective
Discussion of selected microbiology themes presented by invited speakers.

551-0512-00L Current Topics in Molecular and Cellular Neurobiology Z Dr 2 credits 1S U. Suter

Abstract
Does not take place this semester.

Objective
Number of participants limited to 8.

Content
The course is a literature seminar or "journal club". Each Friday a student, or a member of the Suter Lab in the Institute of Molecular Health Sciences, will present a paper from the recent literature.

Lecture notes
Presentations will be made available after the seminars.

Prerequisites / notice
You must attend at least 80% of the journal clubs, and give a presentation of your own. At the end of the semester there will be a 30 minute oral exam on the material presented during the semester. The grade will be based on the exam (45%), your presentation (45%), and a contribution based on your active participation in discussion of other presentations (10%).
Progress Reports in Microbiology and Immunology

This monthly meeting is a platform for Zurich-based immunology research groups to present and discuss their ongoing research projects. At each meeting three PhD students or Postdocs from the participating research groups present an ongoing research project in a 30 min seminar followed by a plenary discussion.

Objective
The aim of this monthly meeting is to provide further education for master and doctoral students as well as Postdocs in diverse topics of immunology and to give an insight in the related research. Furthermore, this platform fosters the establishment of science- and technology-based interactions between the participating research groups.

Content
Presentation and discussion of current research projects carried out by various immunology-oriented research groups in Zurich.

Lecture notes
none

551-1106-00L
Progress Reports in Microbiology and Immunology

Abstract
Presentation and discussion of current research results in the field of Microbiology and Infection Immunology

Objective
Precise and transparent presentation of research findings in relation to the current literature, critical discussion of experimental data and their interpretation, development and presentation of future research aims

551-0209-00L
Sustainable Plant Systems (Seminar)

Abstract
Participants will be able to discuss and understand sustainability in the context of plant science research. A special focus will be on research on agro-ecological systems and farming system research.

Objective
Participants will be able to:
1. Review issues of sustainability in the context of plant science research and literature on sustainable agriculture and the food system.
2. Analyze and interact on several case studies in agro-ecology and the food system.
3. Use SDGs in your case study as a target and assessment system for sustainability in agriculture and in the food system.

Content
Future society has to feed nine billion people, therefore agriculture but also food, waste and resource management has to go hand in hand in the use of less resources. We will discuss current plant science research in the context of sustainability.

Focus of the seminar will be on:
1. Research on agro-ecological systems and farming system research. Can we transform our agricultural practices and move behind existing paradigms to develop innovative and sustainable agriculture production systems? Where does current research indicate on directions for transformation of current practice and how can we assess and analyse them?
2. The Sustainable Development Goals that should guide the current contributions of plant sciences: What research and innovation are necessary to contribute to the SDGs? How can we assess their possible contribution in the near future?
3. Sustainable food systems: How could local food systems be build and scaled? In this topic, our focus is on giving insight in policy strategies and local sustainability efforts to give the group of participants an opportunity to understand sustainability in a real societal context.

The course will be organized with two workshops (half days, 14:00 - 18:00) and an intensive, well-structured self-study/ group work phase in between the workshops. Online learning material in provided on for example:

1 | Biotic interactions
2 | Nutrient management
3 | Plant breeding
4 | Global change

Lecture notes
Access to the learning platform: https://lms.uzh.ch/auth/RepositoryEntry/3604873218/CourseNode/83441794245107 (use your AAI login)

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
assessed

Domain B - Method-specific Competencies
Analytical Competencies
assessed

Domain C - Social Competencies
Communication
not assessed

Domain D - Personal Competencies
Creative Thinking
not assessed

551-0120-00L
Plant Biology Colloquium (Autumn Semester)

This compulsory course is required only once. It may be taken in autumn as course 551-0120-00 "Plant Biology Colloquium (Autumn Semester)") or in spring as course 551-0120-01 "Plant Biology Colloquium (Spring Semester)".

Abstract
Current topics in Molecular Plant Biology presented by internal and external speakers from academia.

Objective
Getting insight into actual areas and challenges of Molecular Plant Biology.

Content

551-1615-00L
NMR Methods for Studies of Biological Macromolecules

Prerequisites: Basic knowledge in biological NMR spectroscopy.

Abstract
Seminar series on technical aspects of high resolution nuclear magnetic resonance (NMR) spectroscopy with biological macromolecules. This seminar series is targeted at Master students and PhD students conducting research projects in the field of biomolecular NMR in solution.

Objective
Introduction and discussion of advanced methods for recording and analysis of NMR data with biological macromolecules.

Content
Seminar series on technical aspects of high-resolution nuclear magnetic resonance (NMR) spectroscopy with biological macromolecules. This seminar series is targeted at Master students and PhD students conducting research projects in the field of biomolecular NMR in solution.
Current Topics in Molecular Health Sciences

Abstract
This course is a seminar series on current research topics within the Institute of Molecular Health Sciences.

Prerequisites / notice
Approval of the responsible lecturer necessary for participation.

Lecture Series: Space Research and Exploration

Abstract
Lecture Series about topics of space research and exploration consisting of individual talks given by different leading experts from industry and academia.

Objective
Attending students will
• experience the interdisciplinarity of space research and exploration spanning physics, engineering, geosciences, biology and more
• be familiarized with the Swiss space research and industry sector
• improve their communication skills by broadening their research horizon
• have the opportunity for direct learning by posing questions to experts

Content
The field of space research and exploration is intrinsically interdisciplinary. Cutting edge space activities are dominated by an interplay between the scientifically desirable and the technologically possible. The ‘Lecture Series: Space Research and Exploration’ aims to shed light on key questions engaged by leading scientists and engineers today. It consists of weekly lecture, given by different speakers with vast experience in their respective field (e.g., Human Spaceflight, System Engineering of Spacecraft, Space Life Sciences, Space-based astrophysics). Subsequent to the talk, the student will have the opportunity to deepen their understanding by asking questions to the presenter in a moderated Q&A.

Confirmed speakers include:
21.09.: Prof. Sascha P. Quanz (ETH Zürich); Professor for Exoplanets
28.09.: Dr. Anna Kubik (ETH Zürich); Senior Scientist for Orbital Dynamics
12.10.: Dr. Andrea Fortier (University of Bern); CHEOPS Instrument Scientist
19.10.: Prof. Volker Gass (EPFL Lausanne); Director of Space Innovation
26.10.: Dr. Hendrik Kolvenbach (ETH Zürich); Postdoctoral Researcher for Space Robotics
02.11.: Deborah Müller (RUAG Space); Director of Innovation & Business Development
16.11. & 21.12.: Prof. Claude Nicollier (EPFL Lausanne); Professor Emeritus, EPFL and former Astronaut
23.11.: Dr. Adrian Glauser (ETH Zürich); Senior Scientist for Astronomical Instrumentation
30.11.: Prof. Louise Harra (ETH Zürich); Professor of Solar Astrophysics
17.12.: Prof. Didier Queloz (ETH Zürich / Cambridge); Professor for Exoplanets

Biology (General Courses) - Key for Type

<table>
<thead>
<tr>
<th>W+</th>
<th>Eligible for credits and recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
The lecture deals with a number of basic chemistry concepts. These include (amongst others) chemical reactions, energy transfer during
not assessed
N. Ban,
Organic molecules: Isolation, separation and characterization of organic compounds. Classical structure theory: constitution, covalent
not assessed
not assessed
Introduction to biochemistry, molecular biology and evolutionary principles
Lecturers
assessed
The lecture is supported by scripts.
Type
Adaptability and Flexibility
assessed
J. Vorholt-Zambelli
6 credits
4G
not assessed
Fundamentals of Organic Chemistry: molecular structure. Bonding and functional groups; nomenclature; resonance and aromaticity;
Organic Chemistry I (for Biol./Pharm.Sc./HST)
assessed
assessed
5G
not assessed
Understanding the basic concepts and definitions of organic chemistry. Knowledge of the functional groups and classes of compounds that
C. Thilgen
The lecture contains elements of "Brock Biology of Microorganisms", Madigan et al. 15th edition, Pearson and "Biochemistry" (Stryer), Berg
et al. 9th edition, Macmillan international.
Taught
competencies
Domain D - Personal Competencies
Adaptability and Flexibility
assessed
Creative Thinking
assessed
Critical Thinking
assessed
Integrity and Work Ethics
not assessed
Self-awareness and Self-reflection
not assessed
Self-direction and Self-management
assessed
529-1011-00L
Organic Chemistry I (for Biol./Pharm.Sc./HST)
O
4 credits
4G
C. Thilgen
Abstract
Fundamentals of Organic Chemistry: molecular structure. Bonding and functional groups; nomenclature; resonance and aromaticity;
stereochemistry; conformation; bond strength; organic acids and bases; basic reaction thermodynamics and kinetics; reactive
intermediates: carbanions, carbenium ions and radicals.
Objective
Understanding the basic concepts and definitions of organic chemistry. Knowledge of the functional groups and classes of compounds that
are important in biological systems. Foundations for the understanding of the relationship between structure and reactivity.
Content
Organic molecules: Isolation, separation and characterization of organic compounds. Classical structure theory: constitution, covalent
bonding, bonding geometry, functional groups, classes of compounds, nomenclature. Electron delocalization: resonance, aromacticy.
Stereochemistry: chirality, configuration, topicity. Conformational analysis. Bond energies, non-covalent interactions. Organic acids and
bases. Basic reaction thermodynamics and kinetics; reactive intermediates: carbanions, carbenium ions and radicals.
Printed lecture notes are available. Exercises, answer keys and other handouts can be downloaded from the Moodle course "Organic Chemistry I" of the current semester (https://moodle-app2.let.ethz.ch).

Literature

• Essential Organic Chemistry (Global Edition). Paula Y. Bruce, 3rd ed., Pearson. (Designed for a one-term course)

Prerequisites / notice

The course consists of lectures (36 hours) and problem-solving lessons (20 hours, groups of ca. 25 people). In addition, online exercises are available in the e-learning environment Moodle (Course OC I).

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Analytical Competencies
- Communication
- Sensitivity to Diversity

Domain B - Method-specific Competencies
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Domain D - Personal Competencies
- Critical Thinking
- Self-awareness and Self-reflection
- Self-direction and Self-management

First Year Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0073-00L</td>
<td>Physics I</td>
<td>O</td>
<td>3</td>
<td>2V+2U</td>
<td>T. M. Ihn</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to the concepts and tools in physics with the help of demonstration experiments: mechanics and elements of quantum mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students know and understand the basic ideas of the scientific description of nature. They understand the fundamental concepts and laws of mechanics and they are able to apply them in practical problems. They know the concepts of quantization and quantum numbers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>1. Description of Motion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. The laws of Newton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Work and energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Collision problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Wave properties of particles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. The atomic structure of matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>T. Ihn: Physics for Students in Biology and Pharmaceutical Sciences (unpublished lecture notes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The lecture contains elements of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

401-0291-00L	Mathematics I	O	6	4V+2U	A. Caspar
Abstract	Mathematics I is an introduction to one- and multidimensional calculus and linear algebra emphasizing on applications.				
Objective	Students understand mathematics as a language for modeling and as a tool for solving practical problems in natural sciences. Students can analyze models, describe solutions qualitatively or calculate them explicitly if need be. They can solve examples as well as their practical applications manually and using computer algebra systems.				
Eindimensionale diskrete Entwicklungen
- linear, exponentiell, begrenzt, logistisch
- Fixpunkte, diskrete Veränderungsraten
- Folgen und Grenzwerte

Funktionen in einer Variablen
- Reproduktion, Fixpunkte
- Periodizität
- Stetigkeit

Differentialrechnung (I)
- Veränderungsrate/-geschwindigkeit
- Differentialquotient und Ableitungsfunction
- Anwendungen der Ableitungsfunction

Integralrechnung (I)
- Stammfunktionen
- Integrationstechniken

Gewöhnliche Differentialgleichungen (I)
- Qualitative Beschreibung an Beispielen: Beschränkt, Logistisch, Gompertz
- Stationäre Lösungen
- Lineare DGL 1. Ordnung
- Trennung der Variablen

Lineare Algebra
- Erste Arithmetische Aspekte
- Matrizenrechnung
- Eigenwerte/-vektoren
- Quadratische LGS und Determinante

Lecture notes
In Ergänzung zu den Vorlesungskapiteln der Lehrveranstaltungen fassen wir wichtige Sachverhalte, Formeln und weitere Ausführungen jeweils in einem Vademecum zusammen.

Dabei gilt:
* Die Skripte ersetzen nicht die Vorlesung und/oder die Übungen!
* Ohne den Besuch der Lehrveranstaltungen verlieren die Ausführungen ihren Mehrwert.
* Details entwickeln wir in den Vorlesungen und den Übungen, um die hier bestehenden Lücken zu schliessen.
* Prüfungsrelevant ist, was wir in der Vorlesung und in den Übungen behandeln.

Literature
Siehe auch Lernmaterial > Literatur

Th. Wihler
Mathematik für Naturwissenschaften, 2 Bände: Einführung in die Analysis, Einführung in die Lineare Algebra; Haupt-Verlag Bern, UTB.

H. H. Storrer
Einführung in die mathematische Behandlung der Naturwissenschaften I; Birkhäuser.
Via ETHZ-Bibliothek: https://link.springer.com/book/10.1007/978-3-0348-8598-0

Ch. Blatter
Lineare Algebra: VDF
auch als [pdf](<https://people.math.ethz.ch/~blatter/linalg.pdf>)

Prerequisites / notice
+ Die Übungsaufgaben (inkl. Multiple-Choice) sind ein wichtiger Bestandteil der Lehrveranstaltung.
+ Es wird erwartet, dass Sie mindestens 75 % der wöchentlichen Serien bearbeiten und zur Korrektur einreichen.
+ Der Prüfungsstoff ist eine Auswahl von Themen aus Vorlesung und Übungen. Für eine erfolgreiche Prüfung ist die konzentrierte Bearbeitung der Aufgaben unerlässlich.

First Year Laboratory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-1001-00L</td>
<td>Laboratory Course General Chemistry (for Biology and Pharmacy)</td>
<td>O</td>
<td>6 credits</td>
<td>8P</td>
<td>S. Gruber, K.-H. Altmann, J. Hall</td>
</tr>
</tbody>
</table>

Register in myStudies as early as possible, because the fire protection courses take place separately before the internship starts.

Abstract
Introduction to the practical work in a chemistry laboratory. The most important manipulations and techniques are treated, as well as the most fundamental chemical reaction types.

Objective
- Knowledge of the basic chemical laboratory methods
- Basic knowledge of the scientific approach in experimenting
- Observation and interpretation of chemical processes
- Keeping of a laboratory journal

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 243 of 2152
Second Year Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
The lecture conveys the fundamental concepts underlying multicellularity with an emphasis on the molecular basis of multicellular biological systems and their functional integration into coherent wholes. The structural and functional specialization in multicellular organisms will be discussed by highlighting common and specific functions in fungi, plants, and animals (including humans).

Objective
1. Students can describe advantages and challenges associated with being multicellular and outline independent solutions that organisms have developed to cope with the challenges of complex multicellularity
2. Students can explain how the internal and external structures of fungi, plants and animals function to support survival, growth, behavior, and reproduction.
3. Students can explain the basic pathways and mechanisms of cellular communication regulating cellular behavior (cell adhesion, metabolism, proliferation, reproduction, development).
4. Students can describe how a single cell develops from one cell into many, each with different specialized functions.

Content
The lecture introduces the structural and functional specialization in fungi, plants and animals, including humans. After providing an overview on the diversity of eukaryotic organisms, the lecture will discuss how fungi, plants, animals and humans have evolved structures and strategies to cope with the challenges of multicellularity. The molecular basis underlying communication, coordination and differentiation will be conveyed and complemented by key aspects of reproduction, metabolism development, and regeneration. Topics include form and function of fungi and plants, human anatomy and physiology, metabolism, cell signaling, adhesion, stem cells, regeneration, reproduction, and development.

Literature
- Alberts et al. 'Molecular Biology of the Cell' 6th edition
- Campbell ‘Biology’, 11th Edition

Prerequisites / notice
Some lecture are held in English.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1005-00L</td>
<td>Bioanalytics</td>
<td>O</td>
<td>4</td>
<td>4G</td>
<td>P. Picotti, F. Alain, V. Korkhov, M. Pilhofer, R. Schlapbach, K. Weis, K. Wüthrich, further lecturers</td>
</tr>
</tbody>
</table>

Abstract
The course will introduce students to a selected set of laboratory techniques that are foundational to modern biological research.

Objective
For each of the techniques covered in the course, the students will be able to explain:
1. the physical, chemical and biological principles underlying the technique,
2. the requirements for the sample,
3. the type of raw data collected by the technique,
4. the assumptions and auxiliary information used in the interpretation of the data and
5. how these data can be used to answer a given biological question.

By the end of the course the students will be able to select the appropriate experimental technique to answer a given biological problem and will be able to discuss the advantages and limitations of individual techniques as well as how different techniques can be combined to gain a more complete understanding of a given biological questions.

Content
The course will be based on a combination of lectures, self-study elements and exercises.

Lecture notes
The course is supported by a Moodle page that gives access to all supporting materials necessary for the course.
<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taught competencies</td>
<td>Concepts and Theories</td>
<td>Techniques and Technologies</td>
<td>Analytical Competencies</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td>Competencies</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td></td>
<td>Domain C - Social Competencies</td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td></td>
<td>Domain C - Social Competencies</td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td></td>
<td></td>
<td>Domain D - Personal Competencies</td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
</tr>
</tbody>
</table>

252-0852-00L Foundations of Computer Science

Abstract

Students learn to apply selected concepts and tools from computer science for working on interdisciplinary projects.

Objective

- understand the role of computer science in science,
- to control computer and automate processes of problem solving by programming,
- choose and apply appropriate tools from computer science,
- process and analyze real-world data from their subject of study,
- handle the complexity of real-world data.

Content

1. The role of computer science in science
2. Introduction to Programming with Python
3. Modeling and simulations
4. Data management with lists and tables
5. Data management with a relational database
6. Introduction to Matrices

Lecture notes

All materials for the lecture are available at www.gdi.ethz.ch

Literature

Prerequisites / notice

This course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Taught competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Taught competencies</th>
<th>Domain C - Social Competencies</th>
<th>Taught competencies</th>
<th>Domain D - Personal Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td></td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td></td>
<td></td>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In addition to the lecture script, the following two books can be used to gain deeper understanding:

Jacob Israelachvili, Intermolecular and Surface Forces, Academic Press, 1992

Literature

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

529-0229-00L Practical Course Organic Chemistry (for Students of Biology and Pharmaceutical Sciences)

Abstract
- Analytical part: basic operations for the separation of mixtures of organic compounds (recrystallization, distillation, extraction, chromatography)
- Synthetic part (main part): at least 8 synthetic steps (one- or two-step syntheses)

Objective
- Learn the basic techniques for the preparation and purification of organic compounds.
- Learn to take accurate notes of the experiments and to write reports.
- Deepen the understanding of reaction mechanisms.

Content
- Analytical part: basic operations for the separation of mixtures of organic compounds (recrystallization, distillation, extraction, chromatography)
- Synthetic part (main part): at least 8 synthetic steps (one- or two-step syntheses) from the following classes of reactions: 1. nucleophilic substitution at C(sp3), 2. elimination or electrophilic addition to C=C, 3. electrophilic aromatic substitution, 4. oxidation, 5. reduction, 6. Grignard reaction, 7. synthesis of a carboxylic acid derivative, 8. Aldol-, Claisen-, Mannich-, Michael reaction or Robinson annulation.

Lecture notes
- Introduction to database searches (Reaxys, SciFinder)

Literature
- 1) P. Wörfel, M. Bitzer, U. Claus, H. Felber, M. Hübel, B. Vollenweider, Laborpraxis (Bd. 1: Einführung, allgemeine Methoden; Bd. 2: Messmethoden; Bd. 3: Trennungsmethoden; Bd. 4: Analytische Methoden); Birkhäuser Verlag; Basel; 1990
- 2) J. Leonard, B. Lygo, G. Procter; Advanced Practical Organic Chemistry; CRC Press Taylor & Francis Group; Boca Raton, FL; 2013

Prerequisites / notice
- The basic reactions of Organic Chemistry and their mechanisms should be known (cf. course 529-1012-00L Organic Chemistry II for Students of Biology, Pharmaceutical Sciences, and Health Sci. and Tech.).
- As a prerequisite, all participants need to pass the "Safety Test HCI Chemie_V2 English" (see https://moodle-app2.let.ethz.ch). A printout of the certificate generated by the system needs to be presented to the teaching assistants prior to starting lab work.

Safety concept: https://chab.ethz.ch/studium/bachelor1.html

Bachelor Studies (Programme Regulations 2013)

2. Year, 3. Semester

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 246 of 2152
Methods of Biological Analysis
Abstract
The course will teach the basis and typical applications of methods for the analysis of nucleic acid sequences, mass spectrometric analysis of proteins and proteomes and advanced light and fluorescent imaging methods.

Objective
Knowledge of the theoretical basis of the methods for nucleic acid sequence analysis, mass spectrometry based protein and proteome analysis and advanced light and fluorescent imaging methods, and an understanding of the application of these principles in experimental biology.

Content
The course will consist of lectures covering the theoretical and technical base of the respective analytical methods and of exercises where typical applications of the methods in modern experimental biology are discussed.

Lecture notes
Materials supporting the lectures and exercises will be made available via Moodle.

- **Statistics II**

 Abstract
 Vertiefung von Statistikmethoden. Nach dem detaillierten Fundament aus Statistik I liegt nun der Fokus auf konzeptueller Breite und konkreter Problemlösungsfähigkeit mit der Statistiksoftware R.

 Objective

- **Fundamentals of Biology II: Biochemistry and Molecular Biology**

 Abstract
 The course provides an introduction to Biochemistry / Molecular Biology with some emphasis on chemical and biophysical aspects.

 Objective
 Topics include the structure-function relationship of proteins / nucleic acids, protein folding, enzymatic catalysis, cellular pathways involved in bioenergetics and the biosynthesis and breakdown of amino acids, glycans, nucleotides, fatty acids and phospholipids, and steroids. There will also be a discussion of DNA replication and repair, transcription, and translation.

 Lecture notes
 None mandatory; "Biochemistry".

 Prerequisites / notice
 Some of the lectures are given in the English language.

- **Fundamentals of Biology II: Cell Biology**

 Abstract
 The goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students will have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.

 Objective
 The goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students will have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.

 Content
 The focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.

 Lecture notes
 The lectures are presented in the Powerpoint format. These are available on the WEB for ETH students over the nethz (Moodle). Some lectures are available on the WEB site in a live format (Livestream) at the above WEB site.

 Prerequisites / notice
 Some of the lectures are given in the English language. Certain sections of the text-book must be studied by self-instruction.

- **Physical Chemistry I (for Biology and Pharmacy)**

 Abstract
 This course is offered for the last time in autumn 2021.

 Objective
 Understanding the fundamental thermodynamic properties of chemical and biological systems.

 Content

 Lecture notes
 in process, will be distributed at the beginning of the first lecture

 Prerequisites / notice
 Prerequisite: mathematics I-II, functions of multiple variables, partial derivatives.

In particular: There are learning tasks used as performance assessments.

<<<< Elective Blocks

<<<< Biodiversity
Systematic Biology: Zoology

Abstract
Lecture: The lecture provides an overview of animal diversity. Using key selected groups, phylogenetic, morphological and ecological aspects are addressed. Two priority topics are the arthropods and the vertebrates (including vertebrate fauna of Switzerland).

Objective
Lecture: The systematic classification of animals and the characteristics of the most important animal groups, basic animal body plans.

Content
Lecture: Body plans, characteristics, diversity and phylogenetic position of the main groups of Protozoa, Invertebrates, and Vertebrates, with a special focus on Arthropods and Vertebrates (including vertebrate fauna of Switzerland).

Practical: Macroscopic and microscopic study of selected Protozoa, Invertebrates (especially insects) and Vertebrates; morphology and anatomy; behaviour, mainly locomotion, feeding, and reproduction.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.

Practical: Examples of selected animal groups and their characteristics; acquire the relevant skills: simple preparations, dissection, microscopy, drawing, protocols.

Practical: Knowledge of selected animal groups and their characteristics (supplementing the lecture) and of the basic methods.
Evolutionary Genetics

Population genetics - Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of
not assessed

Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical
Basics:
assessed

ECTS Documentation will be handed out at the beginning of the course.

Type Analytical Competencies

Communication assessed

Analytical part: basic operations for the separation of mixtures of organic compounds (recrystallization, distillation, extraction, chromatography).

not assessed

T. Städler

not assessed

Learn the basic techniques for the preparation and purification of organic compounds.

not assessed

D. Bopp, A. Hajnal,

1) P. Wörfel, M. Bitzer, U. Claus, H. Felber, M. Hübel, B. Vollenweider, Laborpraxis (Bd. 1: Einführung, allgemeine Methoden; Bd. 2: Messmethoden; Bd. 3: Trennungsmethoden; Bd. 4: Analytische Methoden); Birkhäuser Verlag; Basel; 1990.

Handouts

Safety conceptttt: https://chab.ethz.ch/studium/bachelor1.html

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories assessed

Techniques and Technologies assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed

Media and Digital Technologies not assessed

Domain C - Social Competencies

Communication not assessed

Cooperation and Teamwork not assessed

Self-presentation and Social Influence not assessed

Sensitivity to Diversity not assessed

Negotiation not assessed

Domain D - Personal Competencies

Adaptability and Flexibility not assessed

Creative Thinking not assessed

Critical Thinking not assessed

Integrity and Work Ethics not assessed

Self-awareness and Self-reflection not assessed

Self-direction and Self-management not assessed

3. Year, 5. Semester

Concept Courses

Number Type ECTS Hours Lecturers

701-2413-00L Evolutionary Genetics W 6 credits 4V T. Städler, A. Widmer, S. Fior, M. C. Fischer, J. Stapley

Abstract

The concept course 'Evolutionary Genetics' consists of two lectures that jointly provide an introduction to the fields of population and quantitative genetics (emphasis on basic concepts) and ecological genetics (more emphasis on evolutionary and ecological processes of adaptation and speciation).

Objective

The aim of the course is to provide students with a solid introduction to the fields of population genetics, quantitative genetics, and ecological genetics. The concepts and research methods developed in these fields have undergone profound transformations; they are of fundamental importance in our understanding of evolutionary processes, both past and present. Students should gain an appreciation for the concepts, methods and explanatory power of evolutionary genetics.

Content

Population genetics - Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of inbreeding; natural selection; random genetic drift and effective population size; gene flow and hierarchical population structure; molecular population genetics: neutral theory of molecular evolution and basics of coalescent theory.

Quantitative genetics - Continuous variation; measurement of quant. characters; genes, environments and their interactions; measuring their influence; response to selection; inbreeding and crossbreeding, effects on fitness; Fisher's fundamental theorem.

Ecological Genetics - Concepts and methods for the study of genetic variation and its role in adaptation, reproductive isolation, hybridization and speciation.

Lecture notes

Handouts

Literature

551-0307-00L Molecular and Structural Biology I: Protein Structure

W 3 credits

D-BIOL students are obliged to take part I and part II (next semester) as a two-semester course

Abstract

Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology.

Objective

Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics.

Lecture notes

Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching.

Literature

Basics:
- Creighton, T.E., Proteins, Freeman, (1993)

Current topics: References will be given during the lectures.

551-0309-00L Concepts in Modern Genetics

Information for UZH students: Enrolment to this course unit only possible at ETH. No
The course "Molecular Life of Plants" will cover the following topics:

Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

This course focuses on the concepts of classical and modern genetics and genomics.

The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.

The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Structural and functional details of individual cell components, regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.

The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Structural and functional details of individual cell components, regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

The new course "Molecular Life of Plants" reflects the rapid advances that are occurring in the field of experimental plant biology as well as the changing interests of students being trained in this discipline. Contemporary plant biology courses emphasize a traditional approach to experimental plant biology by discussing discrete topics that are removed from the context of the plant life cycle. The course will take an integrative approach that focuses on developmental concepts. Whereas traditional plant physiology courses were based on research carried out on intact plants or plant organs and were often based on phenomenological observations, current research in plant biology emphasizes work at the cellular, subcellular and molecular levels.

The goal of "Molecular Life of Plants" is to train students in integrative approaches to understand the function of plants in a developmental context. While the course focuses on plants, the training integrative approaches will also be useful for other organisms.

The course "Molecular Life of Plants" will cover the following topics:

- Plant genome organization and evolution
- Plant functional genomics and systems biology
- Plant genome engineering and editing
- Seed development and embryogenesis
- Root apical meristem: structure, function and hormone regulation
- Shoot apical meristem: structure, function and hormone regulation
- Mobilization of seed reserves
- Heterotrophic to autotrophic growth
- Chloroplast biogenesis and light perception
- Photosynthetic and central carbon metabolism
- Integration of carbon and nitrogen metabolism
- Principles of RNA silencing
- MicroRNAs: discovery and modes of action
- RNA silencing and pathogen defense
- RNA silencing movement, amplification and trans-generational silencing
- Plants and the environment
- Plant-pathogen interactions: pathogen attack, first layers of plant defense and plant responses

Senescence

The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.

The new course "Molecular Life of Plants" reflects the rapid advances that are occurring in the field of experimental plant biology as well as the changing interests of students being trained in this discipline. Contemporary plant biology courses emphasize a traditional approach to experimental plant biology by discussing discrete topics that are removed from the context of the plant life cycle. The course will take an integrative approach that focuses on developmental concepts. Whereas traditional plant physiology courses were based on research carried out on intact plants or plant organs and were often based on phenomenological observations, current research in plant biology emphasizes work at the cellular, subcellular and molecular levels.

The goal of "Molecular Life of Plants" is to train students in integrative approaches to understand the function of plants in a developmental context. While the course focuses on plants, the training integrative approaches will also be useful for other organisms.

The course "Molecular Life of Plants" will cover the following topics:

- Plant genome organization and evolution
- Plant functional genomics and systems biology
- Plant genome engineering and editing
- Seed development and embryogenesis
- Root apical meristem: structure, function and hormone regulation
- Shoot apical meristem: structure, function and hormone regulation
- Mobilization of seed reserves
- Heterotrophic to autotrophic growth
- Chloroplast biogenesis and light perception
- Photosynthetic and central carbon metabolism
- Integration of carbon and nitrogen metabolism
- Principles of RNA silencing
- MicroRNAs: discovery and modes of action
- RNA silencing and pathogen defense
- RNA silencing movement, amplification and trans-generational silencing
- Plants and the environment
- Plant-pathogen interactions: pathogen attack, first layers of plant defense and plant responses

Senescence
529-0731-00L Nucleic Acids and Carbohydrates

Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree.

Abstract
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines.

Objective
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Content
Introduction into structural and functional aspects of the immune system.

Lecture notes
No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server).

Literature
Mainly based on original literature, a detailed list will be distributed during the lecture

Taught competencies

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>W 3 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
</tr>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td></td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td></td>
</tr>
<tr>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

551-0317-00L Immunology I

Abstract
Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.

Objective
Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.

Content
- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions

Lecture notes
Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien"

Literature
- Kuby, Immunology, 9th edition, Freemen + Co., New York, 2020

Prerequisites / notice
For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session.

Taught competencies

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>W 3 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
</tr>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td></td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td></td>
</tr>
<tr>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

551-1299-00L Introduction to Bioinformatics

Abstract
This course introduces principle concepts, the state-of-the-art and methods used in some major fields of Bioinformatics. Topics include: genomics, metagenomics, network bioinformatics, and imaging. Lectures are accompanied by practical exercises that involve the use of common bioinformatic methods and basic programming.
Objective

The course will provide students with theoretical background in the area of genomics, metagenomics, network bioinformatics and imaging. In addition, students will acquire basic skills in applying modern methods that are used in these sub-disciplines of Bioinformatics. Students will be able to access and analyse DNA sequence information, construct and interpret networks that emerge through interactions of e.g. genes/proteins, and extract information based on computer-assisted image data analysis. Students will also be able to assess the ethical implications of access to and generation of new and large amounts of information as they relate to the identifiability of a person and the ownership of data.

Content

Ethics:
Case studies to learn about applying ethical principles in human genomics research

Genomics:
Genetic variant calling
Analysis and critical evaluation of genome wide association studies

Metagenomics:
Reconstruction of microbial genomes
Microbial community compositional analysis
Quantitative metagenomics

Network bioinformatics:
Inference of molecular networks
Use of networks for interpretation of (gen)omics data

Imaging:
High throughput single cell imaging
Image segmentation
Automatic analysis of drug effects on single cell suspension (chemotyping)

Prerequisites / notice
Course participants have already acquired basic programming skills in Python and R.

Students will bring and work on their own laptop computers, preferentially running the latest versions of Windows or MacOSX.

Block Courses

Registration for Block courses is mandatory. Please register under https://www.uzh.ch/zoolmed/ssl-dir/Blockkurse_UNIETH.php. Registration period: from 26.07.2021 to 13.08.2021

Please note the ETH admission criteria for the admission of ETH students to ETH block courses on the block course registration website under "allocation".

Block Courses in 1st Quarter of the Semester
From 21.9.2021 to 13.10.2021

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1129-00L</td>
<td>Understanding and Engineering Microbial Metabolism</td>
<td>W</td>
<td>6 credits</td>
<td>7P</td>
<td>J. Vorholt-Zambelli</td>
</tr>
</tbody>
</table>

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich.
Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course.
Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract

This laboratory course has a focus on current research topics in our laboratory related to metabolic engineering, the general understanding of metabolism, and is partially focused on one carbon metabolism. Projects will be conducted in small groups.

Objective

The course aims at introducing technologies to investigate bacterial metabolism and key principles of metabolic engineering. The main focus of this block course is on practical work and will familiarize participants with complementary approaches, in particular genetic, biochemical and analytical techniques including metabolomics. Results will be presented by students in scientific presentations. Another goal is to learn how to write a scientific report.

Content

The course and will include topics such as pathway elucidation & engineering and related ongoing research projects in the lab.
Experimental work applied during the course will comprise methods such as cloning work & transformation, growth determination, enzyme activity assays, liquid-chromatography mass-spectrometry and dynamic labeling experiments.

Lecture notes

None

Literature

Will be provided at the beginning of the course.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1421-00L</td>
<td>The Mechanisms of Natural Transformation in Competent Gram-Negative Bacteria</td>
<td>W</td>
<td>6 credits</td>
<td>7P</td>
<td>M. Hospenthal</td>
</tr>
</tbody>
</table>

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich.
Abstract
Students will carry out defined research projects related to the current research topics of the Hospenthal group. The topics will include protein expression of pilins and/or other competence proteins from Gram-negative bacteria, protein purification using affinity chromatography, crystallisation experiments and analysis of assembled pili by electron microscopy.

Objective
The course should enable students to understand concepts of protein expression, purification and the characterisation of biomolecular interactions. In addition, students will learn some basic principles of X-ray crystallography and electron microscopy.

Content
The students will be tutored in their experimental work by an experienced doctoral student. The course will also include a short lecture delivered by M. Hospenthal, providing the theoretical background for the experimental work. Throughout the course, students will receive exercises that further help to explain the theory of the practical work, as well as literature research tasks.

Participation in the following Hospenthal lab projects will be possible:
- Purification, biophysical characterisation and structure determination of pilins
- Purification, biophysical characterisation and structure determination of proteins and protein complexes involved in natural transformation.

Experimental work on this project involves:
- Cloning and mutagenesis
- Recombinant or endogenous protein production in E. coli or Legionella
- Protein purification by affinity chromatography (other chromatographic purification techniques will also be discussed)
- Protein crystallisation and crystal optimisation
- Visualisation of bacterial pili by electron microscopy (negative stain or cryo electron microscopy)
- DNA binding experiments
- Enzymatic activity measurements
- In silico structural analyses using PyMOL and Chimera

Literature
Any required reading of literature will be discussed at the beginning of the course.

Prerequisites / notice
There are no special requirements for this course.

551-1415-00L Image-Based Drug Screening in Human Blood for Personalized Medicine
Number of participants limited to 6.

The enrolment is done by the D-BIOL study administration.

Abstract
Image-based screening allows to measure in high throughput the phenotype of millions of individual cells to external perturbations. We have recently shown that image-based screening in human blood can help to find active treatments for patients with blood cancers. In this course we will take the students through the entire workflow (to the extent that biosafety regulations allow it).

Objective
Take the students through the entire workflow from experimental design, to screen, to imaging and analysis.

- Learn to design an image-based screening experiment
- Observe human blood sample handling
- Perform immunofluorescence & automated confocal microscopy
- Image analysis and result interpretation
- Result presentation

Literature
- Relevant study: https://www.thelancet.com/journals/lancet/article/PIIS2352-3026(17)30208-9/fulltext
- Editorial commentary: https://www.thelancet.com/journals/lancet/article/PIIS2352-3026(17)30213-2/fulltext

551-0337-00L Cell Biology of the Nucleus
Number of participants limited to 18.

The enrolment is done by the D-BIOL study administration.

Abstract
Cell biology of the nucleus is a fascinating and rapidly expanding field. This course will provide an overview of the subcellular components and processes that contribute to nuclear function.
General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich.
Only students who have a Covid certificate, i.e. who have
been vaccinated, have recovered or have been tested, are
titled to attend courses in attendance.
- Whenever possible the distance rules have to be
respected
- All students have to wear masks throughout the course.
 Please keep reserve masks ready. Surgical masks (IIR) or
 medical grade masks (FFP2) without a valve are
 permitted. Community masks (fabric masks) are not
 allowed.
- The installation and activation of the Swiss Covid-App is
 highly encouraged
- Any additional rules for individual courses have to be
 respected
- Students showing any COVID-19 symptoms are not
 allowed to enter ETH buildings and have to inform the
course responsible.

Abstract
Introduction to the organizational principles of the nucleus using budding yeast, drosophila and vertebrate cells as model systems.

Objective
The aim of our course is to introduce the students to the organizational principles of the nucleus using budding yeast, drosophila and vertebrate cells as model systems. Emphasis is given to:
• Establishment of nuclear identity and nuclear-cytoplasmic communication
• Reorganization of the nucleus in aging
• Animal cells during the generation of cell diversity and neuronal differentiation

By the end of the course, based on lectures, literature reading and practical lab work, the students will be able to formulate open questions concerning the function of the nucleus. Thus, the students will know about the mechanisms and consequences of nuclear-cytoplasmic compartmentalization, nuclear positioning, DNA clustering in the nucleus and cytoplasm during cell divisions and aging.

Content
- During this block-course, the students will
 - learn how organelles establish and maintain identity with a focus on the nucleus
 - discover the evolutionary and functional plasticity of the nucleus
 - design, apply, evaluate and compare experimental strategies

Students - in groups of 2 or max. 3 - will be integrated into a research project connected to the subject of the course, within one of the participating research groups.

Lecture notes
There will be optional papers to be read before the course start. They serve as framework orientation for the practical parts of this block course and will be made accessible to you shortly before the course starts on the relevant Moodle site.

Literature
Documentation and recommended literature (review articles) will be provided during the course.

Block Courses in 2nd Quarter of the Semester
From 14.10.2021 bis 5.11.2021

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0345-00L</td>
<td>Mechanisms of Bacterial Pathogenesis</td>
<td>W</td>
<td>6</td>
<td>7P</td>
<td>W.-D. Hardt, B. Nguyen</td>
</tr>
</tbody>
</table>

Number of participants limited to 9 in the 2nd semester quarter of the autumn semester.
Number of participants limited to 6 in the 4th semester quarter of the autumn semester.
The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich.
Only students who have a Covid certificate, i.e. who have
been vaccinated, have recovered or have been tested, are
- Whenever possible the distance rules have to be
respected
- All students have to wear masks throughout the course.
 Please keep reserve masks ready. Surgical masks (IIR) or
 medical grade masks (FFP2) without a valve are
 permitted. Community masks (fabric masks) are not
 allowed.
- The installation and activation of the Swiss Covid-App is
 highly encouraged
- Any additional rules for individual courses have to be
 respected
- Students showing any COVID-19 symptoms are not
 allowed to enter ETH buildings and have to inform the
course responsible.

Abstract
Research laboratory class in small groups. Research projects on current topics in cellular microbiology and bacterial pathogenesis are assigned to each student.

Objective
Introduction to a current topic in cellular microbiology and/or molecular genetics of a bacterial pathogen. Experimental work in the research lab and introduction to the current lab techniques. Work with the current research literature in bacterial pathogenesis. Writing of a research protocol.

Requirement for obtaining the credit points: oral presentation of the research project and evaluation of the research protocol.

Content
Research projects on the model pathogen Salmonella.

Lecture notes
none.

Literature
Literature will be selected with reference to the assigned research project.
Students will be engaged in research projects aimed at understanding the biological membranes at the molecular, organellar and cellular levels. Students will design and perform experiments, evaluate experimental results, analyze the current scientific literature and understand the relevance of their work in the context of the current state of the membrane biology field.

Abstract

Introduction of the biological and ecological basics of fungi in forests. Focusing on mycorrhizal, saprobic, and pathogenic fungi and their functional relevance in the forest ecosystems. To get to know current methodological research approaches on the basis of selected examples with practical works in forest and lab as well as excursions and lectures.

Objective

Knowledge of the fungi of forest and its ecological significance. Knowing of current methodological research approaches. Self-reliant and deepened activities of selected topics of fungi from forests.

Content

Introduction of the biological and ecological basics of fungi in forests. Focusing on mycorrhizal, saprobic, and pathogenic fungi and their functional relevance in the forest ecosystems. To get to know current methodological research approaches on the basis of selected examples with practical works in forest and lab as well as excursions and lectures.

Lecture notes

Unterlagen zum Kurs werden abgegeben.

Literature

Prerequisites / notice

Der Blockkurs findet an der Eidg. Forschungsanstalt WSL in Birmensdorf statt. Der Wald vor der Haustüre des Institutes macht diesen Kurs besonders praxisnah.

Erreichbarkeit mit Tram 14 bis Triemli, danach PTT-Bus 220 oder 350 bis Birmensdorf Sternen/WSL, oder mit S9 bis Birmensdorf SBB und mit PTT-Bus eine Station in Richtung Zürich bis Birmensdorf Sternen/WSL.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:

The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.

-Whenever possible the distance rules have to be respected

-All students have to wear masks throughout the course.

Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.

-The installation and activation of the Swiss Covid-App is highly encouraged

-Any additional rules for individual courses have to be respected

-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract

The course will introduce the students to the key concepts in membrane biology and will allow them to be involved in laboratory projects related to that broad field. The course will consist of lectures, literature discussions, and practical laboratory work in small groups. Results of the practical projects will be presented during the poster session at the end of the course.

Objective

The aim of the course is to expose the students to a wide range of modern research areas encompassed by the field of membrane biology.

Content

Students will be engaged in research projects aimed at understanding the biological membranes at the molecular, organellar and cellular levels. Students will design and perform experiments, evaluate experimental results, analyze the current scientific literature and understand the relevance of their work in the context of the current state of the membrane biology field.

Lecture notes

No script

Literature

The recommended literature, including reviews and primary research articles, will be provided during the course

Prerequisites / notice

The course will be taught in English. All general lectures will be held at ETH Hoenggerberg. Students will be divided into small groups to carry out experiments at ETH or at the Paul Scherrer Institute. Travel to the Paul Scherrer Institute will be by public transportation.

The enrolment is done by the D-BIOL study administration.
General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance. -Whenever possible the distance rules have to be respected -All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed. -The installation and activation of the Swiss Covid-App is highly encouraged -Any additional rules for individual courses have to be respected -Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract
This course aims to provide students with a comprehensive overview of computational methods for sequence analysis and assist with developing skills for application of computational approaches by experimental scientists in the life sciences.

Objective
Methods for analyzing animal genomes are increasingly becoming important for applications in human health and biotechnology suggesting that the experience will be useful to develop relevant expertise for a broad range of functions. Students will have the opportunity to advance their knowledge in programming by focusing on algorithms for genome and gene sequence analysis. A major goal of the course will be to lead the student to an independent and empowered attitude towards computational problems. For reaching this goal the students will work on an implementation of a solution for a set real-world problem in genome and sequence analysis under guided supervision.

Content
- Understanding the information in biological sequences and quantifying similarity
- Introduction to algorithms for sequence comparison and searches
- Implementation of sequence comparisons and searches in Python
- Accessing data formats associated with genome sequence analysis tasks
- Understanding the anatomy of a real world sequence analysis project
- Applying tools for sequence alignment and estimating error rates
- Ability to implement a solution to a problem in sequence analysis using Python
- Accessing genome annotation and retrieving relevant information in Pandas
- Application of Genomic intervals and arrays for sequence analysis with HTSeq

The course will consist of a series of lectures, assignments for implementing elementary tasks in Python, project development and discussion workshops, and 3 and a half week of practical work implementing a Python script as a solution to a real world problem associated with sequence analysis. At the end of the course students will explain their solutions and demonstrate the functionality of their implementations. The course responsible will provide and the students will have the opportunity to present their projects and discuss recent publications.

Prerequisites / notice
- It is recommended to bring your own computer with a Python installation to the course
- Simple computers can be provided
- Programming basics with Python

551-1143-00L Analysis of Human T and B Cell Responses to Infectious Agents

Number of participants limited to 15.

The enrolment is done by the D-BIOL study administration.

The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance. -Whenever possible the distance rules have to be respected -All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed. -The installation and activation of the Swiss Covid-App is highly encouraged -Any additional rules for individual courses have to be respected -Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract
Students actively participate in ongoing research projects on the analysis of human T and B cell response to pathogens and vaccines. They will be tutored in small groups by doctoral students and postdocs. In a lecture series, the theoretical background for the projects will be provided and the students will have the opportunity to present their projects and discuss recent publications.

Objective
To learn current methodologies in human immunology through experimental work in the lab. To learn current concepts through lectures and discussion of original papers. Requirement for obtaining the credit points: oral presentation of the research project in a ppt format.

551-0359-00L Plant Biochemistry

Number of participants limited to 15.

The enrolment is done by the D-BIOL study administration.

The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are...
entitled to attend courses in attendance.
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course.
Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
- The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract
In this block course, students actively participate in ongoing research projects on plant metabolism and are tutored by doctoral students and postdocs. The theoretical background of the projects is provided in a lecture series. Finally, students discuss their projects and results during an interactive poster session.

Objective
Through supervision in small groups (either individually or in groups of two) students learn to conduct experiments in molecular plant biology, interpret the results, record them and communicate them to peers. Students also gain an insight into the larger context of their projects and how they are planned in the longer term.

Content
Participation in a project from the following list is possible: 1) Photosynthesis: How is photosynthesis regulated and how is photoassimilated carbon distributed in plants? 2) Biology of chloroplasts: How do chloroplasts develop and how is their function coordinated with that of the whole cell? 3) Starch biosynthesis and degradation: How are complex, semi-crystalline starch granules produced from monosaccharides and how are they broken down again to release energy?

Lecture notes
No script

Literature
Descriptions of the possible projects including individual reading suggestions will be handed out beforehand.

Block Courses in 3rd Quarter of the Semester
From 9.11.2021 to 1.12.2021

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0355-00L</td>
<td>Phytopathology</td>
<td>W</td>
<td>6</td>
<td>7P</td>
<td>M. Maurhofer Bringolf, B. McDonald</td>
</tr>
</tbody>
</table>

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
- The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract
Fundamentals (theoretical and practical) in phytopathology, e.g. interaction between plants and plant-pathogenic microorganisms, morphology and lifecycles of plant-pathogenic fungi, evolution of plant-pathogenic fungi, biological control of plant diseases

Objective
Fundamentals (theoretical and practical) in phytopathology, e.g. interaction between plants and plant-pathogenic microorganisms, morphology and lifecycles of plant-pathogenic fungi, evolution of plant-pathogenic fungi, biological control of plant diseases

Content
Insight into ongoing research projects

Practical courses:
Experiments within ongoing phytopathological research projects
Macro- and microscopic diagnostic of plant diseases

Theoretical courses:
Fundamentals of phytopathology, e.g. interaction between plants and plant-pathogenic microorganisms, morphology and lifecycles of plant-pathogenic fungi, evolution of plant-pathogenic fungi, biological control of plant diseases

Teaching language is English and German.
will be distributed at the beginning of the course

Lecture notes

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories: assessed
 - Techniques and Technologies: assessed

- Domain B - Method-specific Competencies
 - Analytical Competencies: not assessed

- Domain C - Social Competencies
 - Communication: assessed
 - Cooperation and Teamwork: not assessed

- Domain D - Personal Competencies
 - Critical Thinking: not assessed

529-0739-01L Biological Chemistry B: New Enzymes from Directed Evolution Experiments
Number of participants limited to 12.
During the block course in the fall semester, we will carry out biological-chemical enzyme evolution experiments using molecular genetic mutation technologies and in vivo selection in recombinant bacterial strains. The class with its very dense program consists of the practical course itself and an integrated series of seminar/lecture sessions.

Abstract During the block course in the fall semester, we will carry out biological-chemical enzyme evolution experiments using molecular genetic mutation technologies and in vivo selection in recombinant bacterial strains. By working in parallel, teams of 2 participants each will generate a variety of different variants of a chorismate mutase. Individual enzyme catalysts will be purified and subsequently characterized using several different spectroscopic methods. The detailed chemical-physical analyses include determination of the enzymes' kinetic parameters, their molecular mass, and the integrity of the protein structure. The results obtained from the individual evolution experiments will be compared and discussed at the end of the class in a final seminar. We expect that during this lab course we will not only generate novel enzymes, but also gain new mechanistic insights into the investigated catalyst.

Objective All technologies used for the experiments will be explained to the students in theory and in practice with the goal that they will be able to independently apply them for the course project and in future research endeavors. After the course, an individual report about the results obtained has to be prepared.

Content The class deals with a specifically designed and genuine research project. We intend to carry out biological-chemical enzyme evolution experiments using molecular genetic mutation technologies and in vivo selection in recombinant bacterial strains. By working in parallel, teams of 2 participants each will generate a variety of different variants of a chorismate mutase. Individual enzyme catalysts will be purified and subsequently characterized using several different spectroscopic methods. The detailed chemical-physical analyses include determination of the enzymes' kinetic parameters, their molecular mass, and the integrity of the protein structure. The results obtained from the individual evolution experiments will be compared and discussed at the end of the class in a final seminar. We expect that during this lab course we will not only generate novel enzymes, but also gain new mechanistic insights into the investigated catalyst.

Lecture notes A script will be distributed to the participants on the first day of the course.

Literature General literature to "Directed Evolution" and chorismate mutases, e.g.:

Further literature will be indicated in the distributed script.

Prerequisites / notice This laboratory course will involve experiments that require a tight schedule and, particularly in the second half, very long (!) working days. The maximum number of participants for the laboratory class is limited, but surplus applicants may contact P. Kast directly to have their names added to a waiting list. A valid registration is considered a commitment for attendance of the entire course, as involved material orders and experimental preparations are necessary and, once the class has started, the flow of the experiments must not be interrupted by individual absences. In case of an emergency, please immediately notify P. Kast. For more information see http://www.kast.ethz.ch/teaching.html, from where you can also download a flyer.

Safety concepttt: https://chab.ethz.ch/studium/bachelor1.html

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competencies</th>
<th>Concepts and Theories</th>
<th>Techniques and Technologies</th>
<th>Analytical Competencies</th>
<th>Decision-making</th>
<th>Communication</th>
<th>Cooperation and Teamwork</th>
<th>Adaptability and Flexibility</th>
<th>Integrity and Work Ethics</th>
<th>Self-awareness and Self-reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A</td>
<td>Subject-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain B</td>
<td>Method-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C</td>
<td>Social Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D</td>
<td>Personal Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

551-0336-00L Methods in Cellular Biochemistry

Number of participants limited to 13.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:

The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.

-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.
Students will learn about biochemical approaches to analyze cellular functions. The course consists of practical projects in small groups, lectures and literature discussions. The course concludes with the presentation of results at a poster session.

Abstract

Objective

Students will learn to design, carry out and assess experiments using current biochemical and cell biological strategies to analyze cellular functions in model systems. In particular they will learn novel imaging techniques along with biochemical approaches to understand fundamental cellular pathways. Furthermore, they will learn to assess strengths and limitations of the different approaches and be able to discuss their validity for the analysis of cellular functions.

Literature

Documentation and recommended literature (review articles and selected primary literature) will be provided during the course.

This course will be taught in English.
The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.
- Whenever possible the distance rules have to be respected
- All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
- The installation and activation of the Swiss Covid-App is highly encouraged
- Any additional rules for individual courses have to be respected
- Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract
Proteins that seem to have evolved to help stabilize meiosis to temperature and/or polyploidy in plants.

Objective
To learn techniques in protein structure prediction, functional prediction and evolutionary analyses (bioinformatic), as well as protein purification from e. coli, insect cell, and/or cell-free systems, and analysis of e.g. interactions with DNA, thermostability, etc...

Content
Guided research projects to study the biochemical consequences of adaptive evolution in a variety of proteins. Mostly the focus is on proteins that seem to have evolved to help stabilize meiosis to temperature and/or polyploidy in plants.

Lecture notes
Will be provided, as appropriate, during the course.

Literature
Will be provided during course.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Period</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1119-00L</td>
<td>Microbial Community Genomics</td>
<td>W</td>
<td>6</td>
<td>S. Sunagawa</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 10.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: Basic knowledge in [R] (e.g. introductory course) and/or UNIX is required. Participants should bring their own laptop computer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The enrolment is done by the D-BIOL study administration.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General safety regulations for all block courses:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The COVID certificate is mandatory at ETH Zurich.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Whenever possible the distance rules have to be respected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The installation and activation of the Swiss Covid-App is highly encouraged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Any additional rules for individual courses have to be respected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Period</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1147-00L</td>
<td>Bioactive Natural Products from Bacteria</td>
<td>W</td>
<td>6</td>
<td>J. Piel</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The enrolment is done by the D-BIOL study administration.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General safety regulations for all block courses:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The COVID certificate is mandatory at ETH Zurich.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Whenever possible the distance rules have to be respected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The installation and activation of the Swiss Covid-App is highly encouraged</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
Introduction to current research methods in the analysis of microbial communities using Next Generation Sequencing approaches - metagenomics. Practical experience of work in a computational laboratory and an introduction to scientific programming.

Objective
Gain skills in data analysis and presentation for oral and written reports. Lectures introducing state-of-the-art in respective research areas and community microbiology, which is the target of ongoing research. Start to assess current literature.

Prerequisites / notice
Basic knowledge in [R] (e.g. introductory course) and/or UNIX is required. Participants should bring their own laptop computer.
highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract
Lab course. In small groups projects of relevance to current research questions in the field of bacterial natural product biosynthesis are addressed.

Objective
Introduction to relevant subjects of the secondary metabolism of bacteria. Training in practical work in a research laboratory. Scientific writing in form of a research report.

Content
Research project on bacteria that produce bioactive natural products (e.g., Streptomyces, Cyanobacteria, uncultivated bacteria). The techniques used will depend on the project, e.g. PCR, cloning, natural product analysis, precursor feeding studies, enzyme expression and analysis.

Lecture notes
none.

Literature
Will be provided for each of the projects at the beginning of the course.

Lab courses in 4th Quarter of the Semester
From 2.12.2021 to 23.12.2021

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0361-00L</td>
<td>Biology of Bryophytes and Ferns</td>
<td>W</td>
<td>6</td>
<td>7P</td>
<td>R. Holderegger, A. L. Bergamini</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 16.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The enrolment is done by the D-BIOL study administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General safety regulations for all block courses: The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance. Whenever possible the distance rules have to be respected. All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed. The installation and activation of the Swiss Covid-App is highly encouraged. Any additional rules for individual courses have to be respected. Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract: Bryophytes: basic knowledge on the morphology, ecology, biogeography and endangerment of byrophytes; knowledge of common species; skills in the determination of bryophytes; field trip. Ferns: basic knowledge on the life cycle, morphology, evolution and ecology of ferns; identification of Swiss fern species; field trips. Objective: Bryophytes: basic knowledge on the morphology, ecology, biogeography and endangerment of byrophytes; knowledge of common species; skills in the determination of bryophytes. Ferns: basic knowledge on the life cycle, morphology, evolution and ecology of ferns; identification of Swiss fern species. Content: Bryophytes: Systematics and morphology of hornworts, liverworts and mosses and special themes such as ecology, biogeography, diversity and endangerment of bryophytes; one full-day field trip. Ferns: Life cycle and morphology; evolutionary groups of ferns and lycopods; mating systems, micro- and macroevolution; ecology; full-day and half-day field trips.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes: Hand-outs will be distributed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice: Grade according to poster presentation and contributions during the course. Requirements: first and second year courses in Botany and Evolution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 17.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The enrolment is done by the D-BIOL study administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General safety regulations for all block courses: The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance. Whenever possible the distance rules have to be respected. All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed. The installation and activation of the Swiss Covid-App is highly encouraged. Any additional rules for individual courses have to be respected. Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
allowed to enter ETH buildings and have to inform the course responsible.

Abstract
Introduction to the diversity of current RNA-research at all levels from structural biology to systems biology using mainly model systems like S. cerevisiae (yeast), mammalian cells.

Objective
The students will obtain an overview about the diversity of current RNA-research. They will learn to design experiments and use techniques necessary to analyze different aspects of RNA biology. Through lectures and literature seminars, they will learn about the burning questions of RNA research and discuss approaches to address these questions experimentally. In practical lab projects the students will work in one of the participating laboratories. Finally, they will learn how to present and discuss their data in an appropriate manner. Student assessment is a graded semester performance based on individual performance in the laboratory, the written exam and the poster presentation.

Literature
Documentation and recommended literature will be provided at the beginning and during the course.

Prerequisites / notice
The course will be taught in English.

551-1511-00L
Parallels Between Tissue Repair and Cancer
Number of participants limited to 20.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich.
Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance. -Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course.
-Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
- The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract
This course aims at the understanding of the cellular and molecular mechanisms underlying tissue repair processes in response to different insults. The focus will be on repair of the skin and the liver. In addition, we will highlight the parallels and differences between tissue repair and cancer.

Objective
To learn the cellular and molecular principles underlying tissue repair processes, in particular in the skin and in the liver, and the parallels and differences to cancer. To learn modern technologies in Molecular and Cellular Biology as well as Histology and to use these technologies to study questions related to mechanisms underlying tissue repair and cancer.

Content
This course aims at the understanding of the cellular and molecular mechanisms underlying tissue repair processes in response to different insults. The focus will be on repair of the skin and the liver. In addition, we will highlight the parallels and differences between tissue repair and cancer. Experimental approaches include biochemical studies, molecular and cellular studies using cultured cell lines and primary cells, as well as analysis of murine and human tissues.

The course combines practical work with lectures, discussions, project preparations and presentations.

Lecture notes
siehe Lernmaterialien

551-0371-00L
Growth Control and Aging
Number of participants limited to 8.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich.
Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance. -Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course.
-Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
- The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract
Organisms have to control their growth in accordance with environmental conditions. Interestingly, the pathways regulating growth often also affect aging. This course focuses on the analysis of growth regulation in yeast, Drosophila, and mammalian cells and on its connection to aging. The participants will perform experiments to study insulin/TOR signaling as a key regulator of growth and aging.
Objective

The aims of the block course are that participants

(I) understand the function and evolution of insulin/TOR signaling

(II) learn how genetic approaches in different organisms contribute to the understanding of complex processes such as aging and cancer in humans

(III) will get familiarized with reading and discussing research articles

(IV) get a first exposure to current research.

Content

The block course consists of

(I) experiments:

Teams of two students each will join research labs to work on current projects focusing on aging and growth regulation in budding yeast, Drosophila and mammalian cells. The students will present their projects and results to their colleagues.

(II) lectures on growth regulation and aging in yeast, Drosophila and mammals.

(III) journal clubs to discuss recent literature.

Lecture notes

Lecture handouts

Literature

Original research articles will be discussed during the course.

<table>
<thead>
<tr>
<th>551-1403-00L</th>
<th>Imaging Bacterial Cells in a Native State by Electron Cryotomography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants limited to 15.</td>
<td></td>
</tr>
</tbody>
</table>

The enrollment is done by the D-BIOL study administration.

General safety regulations for all block courses:

The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.

- Whenever possible the distance rules have to be respected
- All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
- The installation and activation of the Swiss Covid-App is highly encouraged
- Any additional rules for individual courses have to be respected
- Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract

The goal is to acquire the techniques to image bacteria by electron cryotomography, resolving their structure in a native state, in 3D, and to macromolecular resolution. In a small group, students will perform wet lab experiments, data collection with state-of-the-art equipment, data processing and analyses. The key method and its application in bacterial cell biology will be introduced by lectures

https://www.mol.biol.ethz.ch/groups/pilhofer_group/

<table>
<thead>
<tr>
<th>551-1417-00L</th>
<th>In Vivo Cryo-EM Analysis of Dynein Motor Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants limited to 5.</td>
<td></td>
</tr>
</tbody>
</table>

The enrollment is done by the D-BIOL study administration.

General safety regulations for all block courses:

The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.

- Whenever possible the distance rules have to be respected
- All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
- The installation and activation of the Swiss Covid-App is highly encouraged
- Any additional rules for individual courses have to be respected
- Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Abstract

Motor proteins convert chemical energy into mechanical motion. In this block course, we study dynein motor proteins in cilia. Dynein causes conformational change upon ATP hydrolysis and finally generate ciliary bending motion. Participants will analyze cryo-EM data of cilia and visualize in vivo 3D structure of dynein to learn how motor proteins function in the cell.
Objective
The goal of this course is to be familiar with structural biology techniques of cryo-electron tomography and single particle cryo-EM studies on motor proteins. The main focus is 3D image analysis of cryo-EM datasets acquired by highest-end microscopes. Participants will learn structure-function relationship at various scales: how the conformational change of motor proteins causes mechanical force and generates cellular motility.

Content
Motor proteins, such as dynein, myosin and kinesin, hydrolyze ATP to ADP and phosphate to convert chemical energy to mechanical motion. Their function is essential for intracellular transport, muscle contraction and other cellular motility as well as cell division. Motor proteins have been major targets of biophysical studies. There exist questions from atomic to tissue levels - how ATP hydrolysis causes conformational change of motor proteins; how their motion is regulated by calcium, phosphorylation and other factors; how motions of multiple motor proteins are coordinated to generate cellular motility. Structural biology has been playing central roles to answer these questions. X-ray crystallography and single particle cryo-EM address structural analysis at atomic resolution and try to reveal molecular mechanism of conformational change. Cryo-electron tomography analyze localization and 3D structure of motor proteins in the cell to explain how motions of molecular motors happen in the context of cellular environment and are integrated into cellular motion.

In this course, we study dyneins in cilia. Cilia are force-generating organelles, made by nine microtubules and thousands of dyneins. Dynein hydrolyzes ATP and undergoes conformational change, generating linear motion with respect to the microtubule. As a whole, cilia integrate motions of these dyneins and orchestrate beating motion. To explain ciliary motion at molecular level, we need to know dynein conformational change in the cellular context. Cryo-electron tomography is recently developed technique to study molecular structures in vivo and therefore a suitable method to study dynein in cilia. Recently spatial resolution of these cryo-EM techniques was dramatically improved, driven by development of new types of detectors and electron optics.

The participants of this course will learn a program to analyze cryo-electron tomography and single particle cryo-EM data, acquired by highest-end electron microscopes and detectors in ETH and other places, and reconstruct 3D structure (tomogram) of cilia from various organisms (from green algae to human). They will further learn a program to study molecular structures from these tomograms (called subtomogram averaging) and apply it to reconstruct high-resolution 3D structure of dyneins, microtubules and regulatory proteins. This practical course is therefore mainly computational, but we will also provide students a chance of cilia preparation from green algae, cryo-EM data collection using an electron microscope in PSI and site-visit of highest-end electron microscope facility in ETH.

Lecture notes
Scripts will be distributed during the course.

Literature
An overview is given in the following review articles. Further literature will be indicated during the course.

551-0345-00L Mechanisms of Bacterial Pathogenesis
Number of participants limited to 9 in the 2nd semester quarter of the autumn semester.
Number of participants limited to 6 in the 4th semester quarter of the autumn semester.
The enrolment is done by the D-BIOL study administration.

Abstract
Research laboratory class in small groups. Research projects on current topics in cellular microbiology and bacterial pathogenesis are assigned to each student.

Objective
Introduction to a current topic in cellular microbiology and/or molecular genetics of a bacterial pathogen. Experimental work in the research lab and introduction to the current lab techniques. Work with the current research literature in bacterial pathogenesis. Writing of a research protocol.

Requirement for obtaining the credit points: oral presentation of the research project and evaluation of the research protocol.

Content
Research projects on the model pathogen Salmonella.

Lecture notes
none.

Literature
Literature projects on the model pathogen Salmonella.

Block Courses in the 1st Half of the Semester
From 21.9.2021 to 5.11.2021

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich.
- Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.
- Whenever possible the distance rules have to be respected.
- All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
- The installation and activation of the Swiss Covid-App is highly encouraged.
- Any additional rules for individual courses have to be respected.
- Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Research laboratory class in small groups. Research projects on current topics in cellular microbiology and bacterial pathogenesis are assigned to each student.

Introduction to a current topic in cellular microbiology and/or molecular genetics of a bacterial pathogen. Experimental work in the research lab and introduction to the current lab techniques. Work with the current research literature in bacterial pathogenesis. Writing of a research protocol.

Requirement for obtaining the credit points: oral presentation of the research project and evaluation of the research protocol.

Research projects on the model pathogen Salmonella.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 264 of 2152
This course combines Limnology (the study of inland waters in its broad sense) with ecological and evolutionary concepts. It deals with rivers, groundwater and lakes.

Abstract

This course contains a lecture part, an experimental part, two determination courses (aquatic invertebrates and algae) as well as excursions.

Objective

During this course you will get an overview of the world's typical continental aquatic ecosystems. After this course you will be able to understand how aquatic organisms have adapted to their habitat, and how the interactions (e.g. food web) between organisms work. During the experimental part of this course you will learn the principles of doing research to observe interrelations in aquatic ecosystems. You will measure and interpret biological and physical data (e.g. during experiments, field work) and present the collected knowledge. After this course you will know the most important aquatic species groups (macroinvertebrates, microinvertebrates and freshwater algae) in Switzerland and the most important identification traits.

Content

The course contains a lecture part, an experimental part, two determination courses (aquatic invertebrates and algae) and field excursions.

- **Lecture:**
 - The lecture part covers ecology and evolution of aquatic organisms in lentic and lotic waters. Topics include: Adaptations, distribution patterns, biotic interactions, and conceptual paradigms in freshwater ecosystems; important aspects regarding ecosystem metabolism and habitat properties of freshwaters; applied case studies and experiments testing ecological and evolutionary processes in freshwaters.

- **Practical part:**
 - The practical part includes an excursion to Greifensee and a 3-day-excursion to the river Glatt in Niederuzwil, where you independently perform small research projects. Additionally, you will perform in small groups an independent experiment in a research group at Eawag.

- **The taxonomic part will cover macroinvertebrates (e.g. Crustacean, aquatic insects), microinvertebrates and algae. The goal is to get to know the most common aquatic taxa in Switzerland, to identify them with commonly used identification literature, and to get an idea how these organisms are used in research and practice. (language: German, translation of the most important things during the course possible)**

Lecture notes

Course notes and power point presentations provided during the course.

Prerequisites / notice

The maximal participating number of biology students is 14.

The course includes a field trip to Greifensee (23.09.2021) and a 3-day-excursion to the river Glatt in Niederuzwil from 29.09. to 01.10.2021.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1709-00L</td>
<td>Genomic and Genetic Methods in Cell and Developmental Biology</td>
<td>W</td>
<td>6 credits</td>
<td>7P</td>
<td>A. Wutz, M. Kopf, T. Schroeder</td>
</tr>
</tbody>
</table>

General safety regulations for all block courses:
- The COVID certificate is mandatory at ETH Zurich. Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.
- Whenever possible the distance rules have to be respected
- All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
- The installation and activation of the Swiss Covid-App is highly encouraged.
- Any additional rules for individual courses have to be respected
- Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.

Block Courses during Semester Break

GESS Science in Perspective

Science in Perspective

Recommended GESS Science in Perspective (Type B) for D-BIOL.

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability
Language Courses

*see GESS Science in Perspective: Language Courses

ETH/Universität Zürich

Biology Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS: European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Educational Science

Course offerings in the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-06L</td>
<td>Cognitive Activating Instructions in MINT Subjects</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>R. Schumacher</td>
</tr>
</tbody>
</table>

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".

Abstract

This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.

Objective

- Get to know cognitively activating instructions in MINT subjects
- Get information about recent literature on learning and instruction

Prerequisites / notice

Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.

see Educational Science Teaching Diploma

| 851-0242-07L | Human Intelligence | W | 1 credit | 1S | E. Stern |

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Number of participants limited to 30.

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".

Abstract

The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.

Objective

- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding findings relevant for education

| 851-0242-08L | Research Methods in Educational Science | W | 1 credit | 2S | P. Edelsbrunner, T. Braas, C. M. Thurn |

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".

Abstract

Literature from the learning sciences is critically discussed with a focus on research methods. At the first meeting, working groups will be assembled and meetings with those will be set up.

In the small groups students will write critical essays about the read literature. At the third meeting, we will discuss the essays and develop research questions in group work.

Objective

- Understand research methods used in the empirical educational sciences
- Understand and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

| 851-0242-11L | Gender Issues In Education and STEM | W | 2 credits | 2S | M. Berkowitz Biran, T. Braas, C. M. Thurn |

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Prerequisite: students should be taking the course 851-0240-00L Human Learning (EW1) in parallel, or to have successfully completed it.

Abstract

In this seminar, we introduce some of the major gender-related issues in the context of education and science learning, such as the under-representation of girls and women in science, technology, engineering and mathematics (STEM). Common perspectives, controversies and empirical evidence will be discussed.

Objective

- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- To integrate this knowledge with teacher’s work.

Content

Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisites / notice

Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

| 851-0229-00L | Using Outdoor Education | W | 1 credit | 1S | R. Schumacher, P. Faller |

Enrolment only possible with matriculation in Teaching Diploma Biology and Geography.

Abstract

In this seminar, future teachers will be trained to prepare and conduct excursions to out-of-school learning venues. For this purpose, excursions are offered at the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf.
Objective
Future teachers will learn to prepare and conduct excursions to out-of-school learning venues.

Content
Excursions at the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf:
- Dendrochronology: What annual rings tell
- Photosynthesis/Climate change: The tracks in the forest
- Forest Soil: The soil in the focus of the climate

Subject Didactics in Biology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0961-00L</td>
<td>Mentored Work Subject Didactics Biology A</td>
<td>O</td>
<td>2 credits</td>
<td>4A</td>
<td>P. Faller, H. Stocker</td>
</tr>
</tbody>
</table>

Abstract
In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures. Under supervision, they compile tuition materials enabling effective learning and/or analyse and reflect on certain topics from a subject-based and pedagogical perspective.

Objective
The objectives for the students are

- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics, pedagogical, and potentially social perspective.

- to prove that they can independently compile a tuition sequence and develop it to deployment.

Content
Thematische Schwerpunkte
Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen

Lecture notes
Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.

Literature
Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.

Prerequisites / notice
Beginn nach Absprache jederzeit möglich, jedoch erst nach Abschluss der Fachdidaktik I und II und nach Erfüllung allfälliger fachwissenschaftlicher Auflagen.

Die Arbeit sollte vor Beginn des Unterrichtspraktikums abgeschlossen werden.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0962-00L</td>
<td>Mentored Work Subject Didactics Biology B</td>
<td>O</td>
<td>2 credits</td>
<td>4A</td>
<td>P. Faller, H. Stocker</td>
</tr>
</tbody>
</table>

Abstract
In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures. Under supervision, they compile tuition materials enabling effective learning and/or analyse and reflect on certain topics from a subject-based and pedagogical perspective.

Objective
The objectives for the students are

- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics, pedagogical, and potentially social perspective.

- to prove that they can independently compile a tuition sequence and develop it to deployment.

Content
Thematische Schwerpunkte
Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen

Lecture notes
Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.

Literature
Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.

Prerequisites / notice
Beginn nach Absprache jederzeit möglich, jedoch erst nach Abschluss der Fachdidaktik I und II und nach Erfüllung allfälliger fachwissenschaftlicher Auflagen.

Die Arbeit sollte vor Beginn des Unterrichtspraktikums abgeschlossen werden.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0971-00L</td>
<td>Subject Didactics Biology I</td>
<td>O</td>
<td>4 credits</td>
<td>3G</td>
<td>P. Faller</td>
</tr>
</tbody>
</table>

Abstract
Simultaneous enrolment in Introductory Internship Biology
- course 551-0968-00L - is compulsory.

Objective
- Basic conditions for tuition (MAR - recognition of Matura certificates - curricula, standards), selection of topics and reduction of the complexity of topics.
- Application of teaching methods and techniques from educational science in biology classes.
- Planning and preparation of lessons.

- Students can discuss and put into practice in their teaching work the conditions and objectives set out in the regulations governing the school-leaving examination (Matura), the framework curriculum and the conditions and objectives specified by their school.
- They are in a position to select learning objectives and formulate these on the basis of the target level model. They can plan and prepare lessons and can also develop appropriate learning assignments.
- Students can reconstruct specialist contents in didactic terms and develop teaching modules suitable for the different levels from these on the basis of the subject structure and learner requirements.
- They can reduce the complexity of subject-based specialist contents and present them in such a way that they are comprehensible and meaningful for learners.
- They can select appropriate media for their work (e.g. school books) and use these. They can employ appropriate experiments.
- The students can use different forms of examination for monitoring performance.
- Students are in a position to implement and discuss the concepts of biology teaching and learning on the basis of specific topics covered in school biology.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 268 of 2152
Professional Training

Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0968-00L</td>
<td>Introductory Internship Biology ■</td>
<td>O</td>
<td>3</td>
<td>6P</td>
<td>P. Faller</td>
</tr>
<tr>
<td></td>
<td>Simultaneous enrolment in Biology Didactics I - course 551-0871-00L - is compulsory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>During the introductory teaching practice, the students sit in on five lessons given by the teacher responsible for their teaching practice, and teach five lessons themselves. The students are given observation and reflection assignments by the teacher responsible for their teaching practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Right at the start of their training, students acquire initial experience with the observation of teaching, the establishment of concepts for teaching and the implementation of teaching. This early confrontation with the complexity of everything that teaching involves helps students decide whether they wish to and, indeed, ought to, continue with the training. It forms a basis for the subsequent pedagogical and subject-didactics training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Wird von der Praktikumslehrperson bestimmt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0966-00L</td>
<td>Teaching Internship Biology ■</td>
<td>O</td>
<td>8</td>
<td>17P</td>
<td>P. Faller</td>
</tr>
<tr>
<td></td>
<td>Simultaneous enrolment in "Teaching Internship Biology" is compulsory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The teaching practice takes in 50 lessons: 30 are taught by the students, and the students sit in on 20 lessons. The teaching practice lasts 4-6 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching. - They are able to assess the significance of tuition topics in their subject from different angles (including interdisciplinary angles) and impart these to their pupils. - They acquire the skills of the teaching trade. - They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution. - They learn to assess pupils' work. - Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Wird von der Praktikumslehrperson bestimmt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0969-01L</td>
<td>Examination Lesson I Biology ■</td>
<td>O</td>
<td>1</td>
<td>2P</td>
<td>P. Faller</td>
</tr>
<tr>
<td></td>
<td>Simultaneous enrolment in "Examination Lesson I Biology" (551-0969-02L) is compulsory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- On the basis of a specified topic, the candidate shows that they are in a position to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0969-02L</td>
<td>Examination Lesson II Biology ■</td>
<td>O</td>
<td>1</td>
<td>2P</td>
<td>P. Faller</td>
</tr>
<tr>
<td></td>
<td>Simultaneous enrolment in "Examination Lesson II Biology" (551-0969-01L) is compulsory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- On the basis of a specified topic, the candidate shows that they are in a position to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 269 of 2152
Participants of the course Research Ethics will be able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different normative perspectives and to create their own well-justified reasoning for taking decisions to the kind of ethical problems a scientist is likely to encounter during the different phases of biomedical research.

The Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on teaching materials are available online on Moodle. The students' compilations are available in a data archive.

After successful completion of the module, students should be able to retrieve in-depth knowledge of biology with a special focus on evolution and to impart this to others. They can incorporate these experiments in their tuition in a didactically meaningful manner.

The Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module comprises lectures, a book club, and a seminar thesis.

Students perform, off the cuff, 12 school experiments (which they have tested themselves), from the different subject areas, and conduct these correctly in technical terms. They can incorporate these experiments in their tuition in a didactically meaningful manner.

By contrast to the Subject Specialisation 1 and 2 course units, these are "basic tests" and do not involve the implementation of current research topics. The students' compilations are available in a data archive.

Hand out of course material.

The Specialized Biology Course with an Educational Focus (6+6 CP) can be acknowledged, in agreement with the advisor of the respective elective major, as one of the two obligatory research projects (each 15 CP). In such a case, additional 3 CP must be obtained in another course.

In case of overbooking of the course, students enrolled in the Teaching Diploma in Biology will have priority.

In Autumn Semester 2021, further course offerings from the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

The Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module of the spring semester deals with biological concepts. Students attending both modules can start with either module.

Performance is assessed during the course of the entire module. Active participation in the course is required. The thesis (including oral presentation) has to be completed.

The Specialized Biology Course with an Educational Focus (6+6 CP) can be acknowledged, in agreement with the advisor of the respective elective major, as one of the two obligatory research projects (each 15 CP). In such a case, additional 3 CP must be obtained in another course.

In case of overbooking of the course, students enrolled in the Teaching Diploma in Biology will have priority.

The Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module comprises lectures, a book club, and a seminar thesis.

The Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module of the spring semester deals with biological concepts. Students attending both modules can start with either module.

Performance is assessed during the course of the entire module. Active participation in the course is required. The thesis (including oral presentation) has to be completed.

The Specialized Biology Course with an Educational Focus (6+6 CP) can be acknowledged, in agreement with the advisor of the respective elective major, as one of the two obligatory research projects (each 15 CP). In such a case, additional 3 CP must be obtained in another course.

In case of overbooking of the course, students enrolled in the Teaching Diploma in Biology will have priority.

In Autumn Semester 2021, further course offerings from the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

The Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module comprises lectures, a book club, and a seminar thesis.

The Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module comprises lectures, a book club, and a seminar thesis.

Performance is assessed during the course of the entire module. Active participation in the course is required. The thesis (including oral presentation) has to be completed.

The Specialized Biology Course with an Educational Focus (6+6 CP) can be acknowledged, in agreement with the advisor of the respective elective major, as one of the two obligatory research projects (each 15 CP). In such a case, additional 3 CP must be obtained in another course.

In case of overbooking of the course, students enrolled in the Teaching Diploma in Biology will have priority.

In Autumn Semester 2021, further course offerings from the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

The Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module comprises lectures, a book club, and a seminar thesis.

The Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module comprises lectures, a book club, and a seminar thesis.

Performance is assessed during the course of the entire module. Active participation in the course is required. The thesis (including oral presentation) has to be completed.

The Specialized Biology Course with an Educational Focus (6+6 CP) can be acknowledged, in agreement with the advisor of the respective elective major, as one of the two obligatory research projects (each 15 CP). In such a case, additional 3 CP must be obtained in another course.

In case of overbooking of the course, students enrolled in the Teaching Diploma in Biology will have priority.
I. Introduction to Moral Reasoning

1. Ethics - the basics
 1.1 What ethics is not… 1.2 Recognising an ethical issue (awareness) 1.3 What is ethics? Personal, cultural and ethical values, principles and norms 1.4 Ethics: a classification 1.5 Research Ethics: what is it and why is it important?

2. Normative Ethics
 2.1 What is normative ethics? 2.2 Types of normative theories – three different ways of thinking about ethics: Virtue theories, duty-based theories, consequentialist theories 2.3 The plurality of normative theories (moral pluralism); 2.4 Roles of normative theories in “Research Ethics”

3. Decision making: How to solve a moral dilemma
 3.1 How (not) to approach ethical issues 3.2 What is a moral dilemma? Is there a correct method for answering moral questions? 3.3 Methods of making ethical decisions 3.4 Is there a “right” answer?

II. Research Ethics - Internal responsibilities
 1. Integrity in research and research misconduct
 1.1 What is research integrity and why is it important? 1.2 What is research misconduct? 1.3 Questionable/Detrimental Research Practice (QRP/DRP) 1.4 What is the incidence of misconduct? 1.5 What are the factors that lead to misconduct? 1.6 Responding to research wrongdoing 1.7 The process of dealing with misconduct 1.8 Approaches to misconduct prevention and for promoting integrity in research

2. Data Management
 2.1 Data collection and recordkeeping 2.2 Analysis and selection of data 2.3 The (mis)representation of data 2.4 Ownership of data 2.5 Retention of data 2.6 Sharing of data (open research data) 2.7 The ethics of big data

3. Publication ethics / Responsible publishing
 3.1 Background 3.2 Criteria for being an author 3.3 Ordering of authors 3.4 Publication practices

III. Research Ethics – External responsibilities
 1. Research involving human subjects
 1.1 History of research with human subjects 1.2 Basic ethical principles – The Belmont Report 1.3 Requirements to make clinical research ethical 1.4 Social value and scientific validity
 1.5 Selection of study participants – the concept of vulnerability
 1.6 Favourable risk-benefit ratio 1.7 Independent review - Ethics Committees 1.8 Informed consent 1.9 Respect for potential and enrolled participants

 2. Social responsibility
 2.1 What is social responsibility? a) Social responsibility of the individual scientist b) Social responsibility of the scientific community as a whole; 2.2 Participation in public discussions: a) Debate & Dialogue b) Communicating risks & uncertainties c) Science and the media 2.3 Public advocacy (policy making)

 3. Dual use research
 3.1 Introduction to Dual use research 3.2 Case study – Censuring science? 3.3 Transmission studies for avian flu (H5N1) 3.4 Synthetic biology

Lecture notes

Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.

Prerequisites / notice

What are the requirements?
 First and foremost your strong willingness to seriously achieve the main learning outcomes as indicated in the Course Catalogue (specific learning outcomes for each module will be provided at the beginning of the course). For successfully completing the course Research Ethics, the following commitment is absolutely necessary (but not sufficient) (observed success factors for many years!):
 1. Your regular presence is absolutely required (so please no double, parallel enrollment for courses taking place at the identical time!)
 2. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more…).

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Communication	assessed
Domain D - Personal Competencies	Creative Thinking	assessed

701-0015-00L Transdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder Engagement

W 2 credits 2S

M. Stauffacher, C. E. Pohl, B. Vieni Baptista

All participants will be on the waiting list at first. Enrollment is possible until 15 September 2021. The waiting list is active until 17 September. All students will be informed on 19 September, if they can participate in the lecture. The lecture takes place if a minimum of 12 students register for it.

Abstract

This seminar is designed for PhD students and PostDoc researchers involved in inter- or transdisciplinary research. It addresses and discusses challenges of this kind of research using scientific literature presenting case studies, concepts, theories, methods and by testing practical tools. It concludes with a 10-step approach to make participants’ research projects more societally relevant.

Objective

Participants know specific challenges of inter- and transdisciplinary research and can address them by applying practical tools. They can tackle questions like: how to integrate knowledge from different disciplines, how to engage with societal actors, how to secure broader impact of research? They learn to critically reflect their own research project in its societal context and on their role as scientists.
To understand how an environmental problem may (not) become a policy and explain political processes, using basic concepts and techniques from political science.

In this course, we will address both the practical aspects of as well as the scientific debate on environmental governance. The course gives future environmental experts a strong basis to position themselves in the governance debate, which does not preclude government but rather involves a spectrum from government to governance.

Key questions that this course seeks to answer: What are the core characteristics of environmental challenges from a policy perspective? What are key elements of 'environmental governance' and how legitimate and effective are these approaches in addressing persistent environmental challenges?

During the lecture we will work with Moodle. We ask that all students register themselves on this platform before the lecture.

We recommend that students have (a) three-years BSc education of a (technical) university; (b) successfully completed Bachelor introductory course to environmental policy (Entwicklungen nationaler Umweltpolitik (or equivalent)) and (c) familiarity with key issues in environmental policy and some fundamental knowledge of one social science or humanities discipline (political science, economics, sociology, history, psychology, philosophy).

In this course, we will address both the practical aspects of as well as the scientific debate on environmental governance. The course gives future environmental experts a strong basis to position themselves in the governance debate, which does not preclude government but rather involves a spectrum from government to governance.

Key questions that this course seeks to answer: What are the core characteristics of environmental challenges from a policy perspective? What are key elements of 'environmental governance' and how legitimate and effective are these approaches in addressing persistent environmental challenges?

During the lecture we will work with Moodle. We ask that all students register themselves on this platform before the lecture.
At the end of the course, students:
- know core concepts of sustainable development, main features of social justice in the context of sustainability, a selection of methodologies for the assessment of sustainable development
- have a deepened understanding of the challenges of trade-offs between the different dimensions of sustainable development and their respective impacts on individual and societal decision-making

The course is structured as follows:
- overview of rationales, objectives, concepts and origins of sustainable development (approx. 15%)
- overview of the concept of social justice as guiding principle of the social dimension of sustainability (approx. 20%)
- analysis of a selection of concepts and methodologies to assess sustainable development in a variety of contexts (approx. 65%)

Students of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L)

This course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.

This course will take place fully online. Course units have three components:
1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

851-0022-00L Using Outdoor Education

Enrolment only possible with matriculation in Teaching Diploma Biology and Geography.

In this seminar, future teachers will be trained to prepare and conduct excursions to out-of-school learning venues. For this purpose, excursions are offered at the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf.

Students of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L)

This course will take place fully online. Course units have three components:
1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.
Course Units for Additional Admission Requirements

The courses below are only available for students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
Basic knowledge of the anatomy and physiology of tissues, of the embryonal and postnatal development, the sensory organs, the neuro-muscular system, the cardiovascular system and the respiratory system.

Objective
Basic knowledge of human anatomy and physiology and basics of clinical pathophysiology.

Content
The lecture series provides a short overview of human anatomy and physiology

- Anatomy and Physiology I (fall term):
 - Basics of cytology, histology, embryology; nervous system, sensory organs, muscles, cardiovascular system, respiratory system
- Anatomy and Physiology II (spring term):
 - digestive tract, endocrine organs, metabolism and thermoregulation, skin, blood and immune system, urinary system, circadian rhythm, reproductive organs, pregnancy and birth.

Prerequisites / notice
Requirements: 1st year, scientific part.
Part of the course is read and checked in English.

| 752-4001-00L | Microbiology | E- | 2 credits | 2V | M. Ackermann, M. Schuppeter, J. Vorholt-Zambelli |

Abstract
Teaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.

Objective
Teaching of basic knowledge in microbiology.

Content

Lecture notes
Wird von den jeweiligen Dozenten ausgegeben.

Literature
Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms

| 551-0127-01L | Plants and Fungi | E- | 4 credits | 3G | S. C. Zeeman, M. Künzler, O. Y. Martin |

Abstract
The lecture conveys the fundamental concepts underlying multicellularity with an emphasis on the molecular basis of multicellular biological systems and their functional integration into coherent wholes. The structural and functional specialization in multicellular organisms will be discussed by highlighting common and specific functions in fungi and plants.

Objective
1. Students can describe advantages and challenges associated with being multicellular and outline independent solutions that organisms have developed to cope with the challenges of complex multicellularity
2. Students can explain how the internal and external structures of fungi and plants function to support survival, growth, behavior, and reproduction.
3. Students can explain the basic pathways and mechanisms of cellular communication regulating cellular behavior (cell adhesion, metabolism, proliferation, reproduction, development).
4. Students can describe how a single cell develops from one cell into many, each with different specialized functions.

Content
The lecture introduces the structural and functional specialization in fungi and plants. After providing an overview on the diversity of eukaryotic organisms, the lecture will discuss how fungi and plants have evolved structures and strategies to cope with the challenges of multicellularity. The molecular basis underlying communication, coordination and differentiation will be conveyed and complemented by key aspects of reproduction, metabolism development, and regeneration. Topics include form and function of fungi and plants, metabolism, cell signaling, adhesion, stem cells, regeneration, reproduction, and development.

Literature
Campbell ‘Biologie’, 11th Edition

Prerequisites / notice
Some lecture are held in English.

Biology Teaching Diploma - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 274 of 2152
This course presents the theoretical and empirical approaches used to understand the ecological processes structuring communities. Central problems in community ecology including the dynamics of species interactions, the influence of spatial structure, the controls over species invasions, and community responses to environmental change will be explored from basic and applied perspectives.

Upon completing the course, students will be able to:

- Understand the factors determining the outcome of species interactions in communities, and how this information informs management.
- Apply theoretical knowledge on species interactions to predict the potential outcomes of novel species introductions.
- Understanding the role of spatial structure in mediating population dynamics and persistence, species interactions, and patterns of species diversity.
- Use population and community models to predict the stability of interactions between predators and prey and between different competitors.
- Understand the conceptual basis of predictions concerning how ecological communities will respond to climate change.
- Discuss the types of conceptual advances ecology as a science can realistically achieve, and how these relate to the applications of the discipline.

Lectures supplemented with readings from the primary literature and occasional computer exercises will focus on understanding central processes in community ecology. Topics will include demographic and spatial structure, consumer resource interactions, food webs, competition, mutualism, invasion, the maintenance of species diversity, and species effects on ecosystem processes. Each of these more conceptual topics will be discussed in concert with their applications to the conservation and management of species and communities in a changing world.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-4801-00L</td>
<td>System-Oriented Management of Herbivore Insects</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>to be announced</td>
</tr>
<tr>
<td>Abstract</td>
<td>The focus is on the potential to assess strategies and tactics of pest management, in view of the demands from the economy, environment and society. Significant management measures will be explained using practical examples, such as surveillance and forecasting, resistance management, biological control as well as the use of plant protection products, incl. regulatory aspects and ecology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students gain a good understanding of fundamental aspects of pest management in agroecosystems. They will be able to assess options for action in view of requirements from the economy, environment and society. Further, they will learn to elaborate on current issues in pest management, and to critically evaluate case studies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>701-1409-00L</td>
<td>Research Seminar: Ecological Genetics</td>
<td>W</td>
<td>2</td>
<td>1S</td>
<td>S. Fior</td>
</tr>
<tr>
<td>Abstract</td>
<td>In this research seminar we will critically discuss recent publications on current topics in Ecological Genetics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>It is our aim that participants gain insight into current research topics and approaches in Ecological Genetics and learn to critically assess and appreciate scientific publications in this field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Active and regular participation in the discussions, together with the presentation of a scientific paper are required to successfully pass this course. It is strongly recommended that participants have in advance successfully participated in the course Evolutionary Genetics (701-2413-00) or Ecological Genetics (701-1413-01).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>751-5121-00L</td>
<td>Insect Ecology</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>C. De Moraes, M. Mescher, N. Stanczyk</td>
</tr>
<tr>
<td>Abstract</td>
<td>This is an introductory class on insect ecology. During the course you will learn about insect interactions with, and adaptations to, their environment and other organisms, and the importance of insect roles in our ecosystems. This course includes lectures, small group discussions and outside readings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The aim of the course is to gain an understanding of how insects have specialised and adapted to occupy diverse environmental niches and become vital to ecosystem processes. Important topics include: insect-plant interactions, chemical ecology, predator-prey interactions, vectors of disease, social insects, mutual and parasitic interactions and examining insect ecology in an evolutionary context.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Provided to students through Moodle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-0625-01L</td>
<td>Applied Analysis of Variance and Experimental Design</td>
<td>W</td>
<td>5</td>
<td>2V+1U</td>
<td>L. Meier</td>
</tr>
<tr>
<td>Abstract</td>
<td>Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>W</td>
<td>5</td>
<td>2V+1U</td>
<td>M. Dettling</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>A script will be available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Faraway (2005): Linear Models with R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faraway (2006): Extending the Linear Model with R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Draper & Smith (1998): Applied Regression Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fox (2008): Applied Regression Analysis and GLMs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montgomery et al. (2006): Introduction to Linear Regression Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td></td>
</tr>
</tbody>
</table>

701-0301-00L Applied Systems Ecology

Number of participants limited to 35. Waiting list will be deleted October 3rd, 2021.

Abstract
This course provides the ecological systems' knowledge needed to question applied solutions to current environmental issues. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.

Objective
At the end of the course...

- ...you know how to structure your inquiry and how to proceed the analysis when faced with a complex environmental issue. You can formulate the relevant questions, find answers (supported by discussions, input from the lecturers and the literature), and you are able to present your conclusions clearly and cautiously.
- ...you understand the complexity of interactions and structures in ecosystems. You know how ecosystem processes, functions and services interact and feed back across multiple spatio-temporal scales (in general, plus in depth case examples).
- ...you understand that biodiversity and the interaction between organisms are an integral part of ecosystems. You are aware that the link between biodiversity and process/function/service is rarely fully understood. You know how to honestly deal with this lack of understanding and can nevertheless find, critically analyse and communicate solutions.
- ...you understand the importance of ecosystem services for society.
- ...you have an overview of the methods of ecosystem research and have a deeper insight into some of them, e.g. ecosystem observation, manipulation and modelling.
- ...you have reflected on ecology as a young discipline at the heart of significant applied questions.

Content
This course provides the ecological systems' knowledge needed to question applied sustainability solutions. We will critically assess the complexity of current environmental issues, illustrating basic ecological concepts and principles. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.

The course is structured around four larger topical areas: (1) Integrated Water Management -- Green infrastructure (land management options) as an alternative to engineered solutions (e.g. large reservoirs) in flood and drought management; (2) Fire dynamics, the water cycle and biodiversity -- The surprising dynamics of species life cycles and populations in arid landscapes; (3) Rewilding, e.g. re-introducing apex predators (e.g. wolves), or large ungulates (e.g. bisons) in protected areas -- A nature conservation trend with counterintuitive effects; (4) Coupling of aquatic and terrestrial systems: carbon, nitrogen and phosphorus transfers of global importance on landscape scale.

Lecture notes
Case descriptions, commented glossary and a list of literature and further resources per case.

Literature
It is not essential to borrow/buy the following books. We will continuously provide excerpts and other literature during the course.

Schulze et al. (2005) Plant Ecology; Springer.

Prerequisites / notice
The course combines elements of a classic lecture, group discussions and problem based learning. It is helpful, but not essential to be familiar with the "seven stages" method (see e.g. course 701-0352-00L "Analysis and Assessment of Environmental Sustainability" by Christian Pohl et al.).

401-6215-00L Using R for Data Analysis and Graphics (Part I)

Abstract
The course provides the first part an introduction to the statistical software R (https://www.r-project.org/) for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.

Objective
The students will be able to use the software R for simple data analysis and graphics.

Number of participants limited to 35. Waiting list will be deleted October 3rd, 2021.

Waiting list will be deleted October 3rd, 2021.

Objective
At the end of the course...

...you know how to structure your inquiry and how to proceed the analysis when faced with a complex environmental issue. You can formulate the relevant questions, find answers (supported by discussions, input from the lecturers and the literature), and you are able to present your conclusions clearly and cautiously.

...you understand the complexity of interactions and structures in ecosystems. You know how ecosystem processes, functions and services interact and feed back across multiple spatio-temporal scales (in general, plus in depth case examples).

...you understand that biodiversity and the interaction between organisms are an integral part of ecosystems. You are aware that the link between biodiversity and process/function/service is rarely fully understood. You know how to honestly deal with this lack of understanding and can nevertheless find, critically analyse and communicate solutions.

...you understand the importance of ecosystem services for society.

...you have an overview of the methods of ecosystem research and have a deeper insight into some of them, e.g. ecosystem observation, manipulation and modelling.

...you have reflected on ecology as a young discipline at the heart of significant applied questions.

Content
This course provides the ecological systems' knowledge needed to question applied sustainability solutions. We will critically assess the complexity of current environmental issues, illustrating basic ecological concepts and principles. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.

The course is structured around four larger topical areas: (1) Integrated Water Management -- Green infrastructure (land management options) as an alternative to engineered solutions (e.g. large reservoirs) in flood and drought management; (2) Fire dynamics, the water cycle and biodiversity -- The surprising dynamics of species life cycles and populations in arid landscapes; (3) Rewilding, e.g. re-introducing apex predators (e.g. wolves), or large ungulates (e.g. bisons) in protected areas -- A nature conservation trend with counterintuitive effects; (4) Coupling of aquatic and terrestrial systems: carbon, nitrogen and phosphorus transfers of global importance on landscape scale.

Lecture notes
Case descriptions, commented glossary and a list of literature and further resources per case.

Literature
It is not essential to borrow/buy the following books. We will continuously provide excerpts and other literature during the course.

Schulze et al. (2005) Plant Ecology; Springer.

Prerequisites / notice
The course combines elements of a classic lecture, group discussions and problem based learning. It is helpful, but not essential to be familiar with the "seven stages" method (see e.g. course 701-0352-00L "Analysis and Assessment of Environmental Sustainability" by Christian Pohl et al.).
Content
The course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part I of the course covers the following topics:
- What is R?
- R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics;
- Types of data: numeric, character, logical and categorical data, missing values;
- Simple (statistical) functions: summary, mean, var, etc., simple statistical tests;
- Writing simple functions;
- Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots.

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org

Lecture notes
An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf

Prerequisites / notice
The course resources will be provided via the Moodle web learning platform.
As from FS 2019, subscribing via Mystudies should "automatically" make you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=15518

401-6217-00L Using R for Data Analysis and Graphics (Part II) W 1.5 credits 1G M. Mächler

Abstract
The course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions.

Note: This part builds on “Using R... (Part I)”, but can be taken independently if the basics of R are already known.

Objective
The students will be able to use the software R efficiently for data analysis, graphics and simple programming

Content
The course provides the second part of an introduction to the statistical software R (https://www.r-project.org/) for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part II of the course builds on part I and covers the following additional topics:
- Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects;
- More on R functions;
- Applying functions to elements of vectors, matrices and lists;
- Object oriented programming with R: classes and methods;
- Tayloring R: options
- Extending basic R: packages

Lecture notes
An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf

Prerequisites / notice
Basic knowledge of R equivalent to "Using R .. (part 1)" (= 401-6215-00L) is a prerequisite for this course.

The course resources will be provided via the Moodle web learning platform.
As from FS 2019, subscribing via Mystudies should "automatically" make you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=15522

751-4504-00L Plant Pathology I W 2 credits 2G B. McDonald

Abstract
Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems.

Objective
Students will understand: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems as a basis for implementing disease management strategies in agroecosystems.
Course description: Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. Topics under the first theme will include pathogen life cycles, disease cycles, and an overview of plant pathogenic nematodes, viruses, bacteria, and fungi. Topics under the second theme will include plant defense strategies, host range, passive and active defenses, and chemical and structural defenses. Topics under the third theme will include the disease triangle and cultural control strategies.

Lecture Topics and Tentative Schedule

Week 1 The nature of plant diseases, symbiosis, parasites, mutualism, biotrophs and necrotrophs, disease cycles and pathogen life cycles.

Week 2 Nematode attack strategies and types of damage. Viral pathogens, classification, reproduction and transmission, attack strategies and types of damage. Examples TMV, BYDV. Bacterial pathogens and phytoplasmas, classification, reproduction and transmission.

Week 3 Bacterial attack strategies and symptoms. Example bacterial diseases: fire blight, Agrobacterium crown gall, soft rots. Fungal and oomycete pathogens, classification, growth and reproduction, sexual and asexual spores, transmission.

Week 4 Fungal and oomycete life cycles, disease cycles, infection processes, colonization, phytotoxins and mycotoxins. Attack strategies of fungal necrotrophs and biotrophs. Symptoms and signs of fungal infection. Example fungal diseases: potato late blight.

Week 5 Example fungal diseases: wheat stem rust, grape powdery mildew, wheat septoria tritici blotch. Plant defense mechanisms, host range and non-host resistance. Passive structural and chemical defenses, preformed chemical defenses. Active structural defense, histological and cellular (papillae).

Week 6 Active chemical defense, hypersensitive response, pathogenesis-related (PR) proteins, phytoalexins and disease resistance. Pisatin and pisatin demethylase. Local and systemic acquired resistance (LAR, SAR), induced systemic resistance (ISR), signal molecules, defense activators (Bion). Pathogen effects on food quality. Positive and negative transformations.

Week 8 Epidemiology: Disease pyramid, environmental effects on epidemic development, plant effects on development of epidemics, including resistance, physiology, density, uniformity.

Week 9 Disease assessment: incidence and severity measures, keys, diagrams, scales, measurement errors. Correlations between incidence and severity. Molecular detection and diagnosis of pathogens. Host indexing, serology, monoclonal and polyclonal antibodies, ELISA.

Week 10 Molecular detection and diagnosis of pathogens: PCR, rDNA and loop-mediated isothermal amplification. Strategies for minimizing disease risks: calculating disease thresholds, disease forecasting systems.

Week 12 Physical control methods. Cultural control methods: avoidance, tillage practices, crop sanitation.

Week 13 Cultural control methods: fertilizers, crop rotations.

Week 14 Open lecture.

Lecture notes

Detailed lecture notes (~160 pages) will be available for purchase at the cost of reproduction at the start of the semester.

636-0017-00L Computational Biology W 6 credits 3G+2A T. Vaughan

Abstract

The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.

Objective

Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:

* stochastic models in molecular evolution
* phylogenetic & phylodynamic inference
* maximum likelihood and Bayesian statistics

Attendees will apply these concepts to a number of applications yielding biological insight into:

* epidemiology
* pathogen evolution
* macroevolution of species

Content

The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.

Lecture notes

Lecture slides will be available on moodle.

Literature

The course is not based on any of the textbooks below, but they are excellent choices as accompanying material:

* Yang, Z. 2006. Computational Molecular Evolution.
* Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.
We will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes:

1. Understanding ecological and evolutionary processes in host-parasite interactions.
2. Conduct parasitological research.
3. Diversification and natural history of parasites (i.e. systematic groups and life-cycles).
4. Adapting to life cycles, host manipulation.
5. Ecology of host-parasite interactions (e.g. parasite communities, effects of environmental changes).

Ecological Parasitology (701-1471-00L)

W 3 credits 1V+1P J. Jokela, C. Vorburger

Number of participants limited to 20.

A minimum of 6 students is required that the course will take place.

Waiting list will be deleted on October 1st, 2021.

Abstract

Course focuses on the ecology and evolution of macroparasites and their hosts. Through lectures and practical work, students learn about diversity and natural history of parasites, adaptations of parasites, ecology of host-parasite interactions, applied parasitology, and human macroparasites in the modern world.

Objective

1. Identify common macroparasites in invertebrates.
2. Understand ecological and evolutionary processes in host-parasite interactions.
3. Conduct parasitological research.

Content

Lectures:
1. Diversity and natural history of parasites (i.e. systematic groups and life-cycles).
2. Adaptations of parasites (e.g. evolution of life-cycles, host manipulation).
3. Ecology of host-parasite interactions (e.g. parasite communities, effects of environmental changes).
5. Human macroparasites (schistosomiasis, malaria).

Practical exercises:
1. Examination of parasites in molluscs (identification and examination of host exploitation strategies).
2. Examination of parasites in amphipods (identification and examination of effects on hosts).
3. Examination of parasitoids of aphids.

Literature

Stearns & Medzhitov 2016 Evolutionary Medicine
Schmid Hempel 2011 Evolutionary Parasitology

Prerequisites / notice

The three practicals will take place at the 05.10.2021, the 19.10.2021 and the 09.11.2021 at Eawag Dübendorf from 08:15 - 12:00. Note that each practical takes 2 hours longer than the weekly lecture.

Experimental Evolution (701-1427-00L)

W 4 credits 2S G. Velicer, A. Hall

Does not take place this semester. Semester change. This lecture will be offered in Spring Semester 2022 for the next time.

Abstract

Students will analyze experimental evolution literature covering a wide range of questions, species and types of analysis and will lead discussions of this literature. Students will develop a written project proposal for a novel evolution experiment (or a novel analysis of a published experiment) to address an unanswered question and will also deliver an oral presentation of the project proposal.

Objective

Course objectives:

1. Become familiar with a diverse sample of experimental evolution literature.
2. Gain understanding of the strengths and limitations of experimental evolution for addressing evolutionary questions relative to other forms of evolutionary analysis, and
3. Gain the ability to effectively design and analyze evolution experiments that address fundamental or applied questions in evolutionary biology.

Content

Experimental evolution is a powerful and increasingly prominent approach to investigating evolutionary processes. Students will analyze experimental evolution literature covering a diverse range of topics, species and types of analysis and will lead discussions of this literature. Students will develop a written project proposal for a novel evolution experiment (or a novel analysis of a published experiment) to address an unanswered question and will also deliver an oral presentation of the project proposal. Evaluation will be based on a combination of participation in and leadership of literature discussions, in-class exams, and oral and written presentations of the project proposal.

Literature

Primary research papers and review articles.

Prerequisites / notice

701-0245-00 Evolutionary Analysis (or equivalent).

Evolutionary Medicine for Infectious Diseases (701-1703-00L)

W 3 credits 2G A. Hall

Number of participants limited to 35.

Waiting list will be deleted October 3rd, 2021.

Abstract

This course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively.

Objective

Students will learn to

1. Identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses.

Content

We will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes:

1. Determinants of pathogen host range and virulence.
2. Pathogen adaptation to evade or suppress immune responses.
3. Antimicrobial resistance.
4. Evolution-proof medicine.

Literature

Schmid Hempel 2011 Evolutionary Parasitology
Steams & Medzhitov 2016 Evolutionary Medicine

Prerequisites / notice

A basic understanding of evolutionary biology, microbiology or parasitology will be advantageous but is not essential.

Evolutionary Dynamics (636-0009-00L)

W 6 credits 2V+1U+2A N. Beerenwinkel

Abstract

Evolutionary dynamics is concerned with the mathematical principles according to which life has evolved. This course offers an introduction to mathematical modeling of evolution, including deterministic and stochastic models, with an emphasis on tumor evolution.
The goal of this course is to understand and to appreciate mathematical models and computational methods that provide insight into the evolutionary process in general and tumor evolution in particular. Students should analyze and evaluate models and their application critically and be able to design new models.

Evolution is the one theory that encompasses all of biology. It provides a single, unifying concept to understand the living systems that we observe today. We will introduce several types of mathematical models of evolution to describe gene frequency changes over time in the context of different biological systems, focusing on asexual populations. Viruses and cancer cells provide the most prominent examples of such systems and they are at the same time of great biomedical interest. The course will cover some classical mathematical population genetics and population dynamics, and also introduce several new approaches. This is reflected in a diverse set of mathematical concepts which make their appearance throughout the course, all of which are introduced from scratch. Topics covered include the quasispecies equation, evolution of HIV, evolutionary game theory, evolutionary stability, evolutionary graph theory, tumor evolution, stochastic tunneling, genetic progression of cancer, diffusion theory, fitness landscapes, branching processes, and evolutionary escape.

Prerequisites: Basic mathematics (linear algebra, calculus, probability)

Domain A - Subject-specific Competencies
Concepts and Theories
assessed

Domain B - Method-specific Competencies
Analytical Competencies
assessed

Domain C - Social Competencies
Communication
not assessed

Domain D - Personal Competencies
Critical Thinking
assessed
Self-direction and Self-management
not assessed

►►► Elective Concept Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0313-00L</td>
<td>Microbiology (Part I)</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>W. D. Hardt, L. Eberl, J. Piel, M. Pilhofer</td>
</tr>
</tbody>
</table>

Abstract
Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Objective
This course will provide students with theoretical background in the area of genomics, metagenomics, network bioinformatics, and imaging. Lectures are accompanied by practical exercises that involve the use of common bioinformatic methods and basic programming.

Objective
The course will provide students with theoretical background in the area of genomics, metagenomics, network bioinformatics, and imaging. In addition, students will acquire basic skills in applying modern methods that are used in these sub-disciplines of Bioinformatics. Students will be able to access and analyse DNA sequence information, construct and interpret networks that emerge through interactions of e.g. genes/proteins, and extract information based on computer-assisted image data analysis. Students will also be able to assess the ethical implications of access to and generation of new and large amounts of information as they relate to the identifiability of a person and the ownership of data.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 281 of 2152
Content

Ethics:
Case studies to learn about applying ethical principles in human genomics research

Genomics:
Genetic variant calling
Analysis and critical evaluation of genome wide association studies

Metagenomics:
Reconstruction of microbial genomes
Microbial community compositional analysis
Quantitative metagenomics

Network bioinformatics:
Inference of molecular networks
Use of networks for interpretation of (gen)omics data

Imaging:
High throughput single cell imaging
Image segmentation
Automatic analysis of drug effects on single cell suspension (chemotyping)

Prerequisites / notice
Course participants have already acquired basic programming skills in Python and R.

Students will bring and work on their own laptop computers, preferentially running the latest versions of Windows or MacOSX.

Elective Major: Microbiology and Immunology

Compulsory Concept Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0313-00L</td>
<td>Microbiology (Part I)</td>
<td>O</td>
<td>3 credits</td>
<td>2V</td>
<td>W.-D. Hardt, L. Eberl, J. Piel, M. Pilhofer</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>Updated handouts will be provided during the class.</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>Current literature references will be provided during the lectures.</td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td>English</td>
</tr>
</tbody>
</table>

551-0317-00L	Immunology I	O	3 credits	2V	M. Kopf, A. Oxenius
	Abstract				Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.
	Objective				Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.
	Content				- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions |
| | **Lecture notes** | | | | Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien" |
| | **Literature** | | | | - Kuby, Immunology, 9th edition, Freemen + Co., New York, 2020 |
| | **Prerequisites / notice** | | | | For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session. |

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Analytical Competencies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain E - Technical Competencies</td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain F - Ethical Competencies</td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain G - Regulatory Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain H - Ethical Competencies</td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain I - Regulatory Competencies</td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain J - Ethical Competencies</td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain K - Regulatory Competencies</td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain L - Ethical Competencies</td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain M - Regulatory Competencies</td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain N - Ethical Competencies</td>
<td>Adaptable and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain O - Regulatory Competencies</td>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain P - Ethical Competencies</td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain Q - Regulatory Competencies</td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain R - Ethical Competencies</td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain S - Regulatory Competencies</td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 282 of 2152
Elective Compulsory Master Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0223-00L</td>
<td>Immunology III</td>
<td>W</td>
<td>4</td>
<td>2V</td>
<td>M. Kopf, S. B. Freigang, J. Kisielow,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S. R. Leibundgut, A. Oxenius,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. Schneider, R. Spörri, L. Tortola,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E. Wetter Slack</td>
</tr>
</tbody>
</table>

Abstract
This course provides a detailed understanding of
- development of T and B cells
- the dynamics of a immune response during acute and chronic infection
- mechanisms of immunopathology
- modern vaccination strategies
Key experimental results will be shown to help understanding how immunological text book knowledge has evolved.

Objective
Obtain a detailed understanding of
- the development, activation, and differentiation of different types of T cells and their effectormechanisms during immune responses,
- Recognition of pathogenic microorganisms by the host cells and molecular events thereafter,
- events and signals for maturation of naive B cells to antibody producing plasma cells and memory B cells.
- Optimization of B cell responses by intelligent design of new vaccines

Content
- Development and selection of CD4 and CD8 T cells, natural killer T cells (NKT), and regulatory T cells (Treg)
- NK T cells and responses to lipid antigens
- Differentiation, characterization, and function of CD4 T cell subsets such as Th1, Th2, and Th17
- Overview of cytokines and their effector function
- Co-stimulation (signals 1-3)
- Dendritic cells
- Evolution of the "Danger" concept
- Cells expressing Pattern Recognition Receptors and their downstream signals
- T cell function and dysfunction in acute and chronic viral infections

Literature
Documents of the lectures are available for download at:
https://moodle-app2.let.ethz.ch/course/view.php?id=25811

Prerequisites / notice
Immunology I and II recommended but not compulsory

551-0512-00L Current Topics in Molecular and Cellular Neurobiology

Abstract
The course is a literature seminar or "journal club". Each Friday a student, or a member of the Suter Lab in the Institute of Molecular Health Sciences, will present a paper from the recent literature.

Objective
The course introduces you to recent developments in the fields of cellular and molecular neurobiology. It also supports you to develop your skills in critically reading the scientific literature. You should be able to grasp what the authors wanted to learn i.e. their goals, why the authors chose the experimental approach they used, the strengths and weaknesses of the experiments and the data presented, and how the work fits into the wider literature in the field. You will present one paper yourself, which provides you with practice in public speaking.

Content
You will present one paper yourself. Give an introduction to the field of the paper, then show and comment on the main results (all the papers we present are available online, so you can show original figures with a beamer). Finish with a summary of the main points and a discussion of their significance.

You are expected to take part in the discussion and to ask questions. To prepare for this you should read all the papers beforehand (they will be announced a week in advance of the presentation).

Lecture notes
Presentations will be made available after the seminars.

551-1117-00L Cutting Edge Topics: Immunology and Infection Biology

Abstract
Weekly seminar about cutting edge topics in immunology and infection biology. Internationally renowned experts present their current research followed by an open discussion.

Weekly seminar about cutting edge topics in immunology and infection biology. Internationally renowned experts present their current research followed by an open discussion.

The aim of this course is to confront students with current research topics and with scientific presentation. The course offers the opportunity to gain in depth knowledge about diverse topics which are often only briefly touched in the concept courses and to engage in discussion with experts in the field.

Content
Immunology and infection biology.

The specific topics are variable and depend each semester on the list of invited experts.

Lecture notes
Current research data (often not yet published) are presented in this seminar series. There is no script and we are not allowed to record or distribute the contents of the seminars. Thus, the ability of students to extract the most relevant points of each seminar is promoted, which is an important skill for the future attendance of scientific meetings.

Literature
Often parts of the presented seminars have already been published by the respective speakers and the respective primary research can be retrieved from scientific journals.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 283 of 2152
Taught competencies	Domain A - Subject-specific Competencies	Concepts and Theories	assessed
-	Domain B - Method-specific Competencies	Analytical Competencies	not assessed
-	Domain C - Social Competencies	Communication	not assessed
-	Domain D - Personal Competencies	Adaptability and Flexibility	assessed

Systems Biology of Metabolism

Number of participants limited to 15.

Abstract
Starting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.

Objective
Develop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology.

Content
The course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics. For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various approaches, metabolic flux analyses, metabolomics and other omics.

Lecture notes
Script and original publications will be supplied during the course.

Prerequisites / notice
The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.

Taught competencies	Domain A - Subject-specific Competencies	Concepts and Theories	assessed
-	Domain B - Method-specific Competencies	Analytical Competencies	not assessed
-	Domain C - Social Competencies	Communication	not assessed
-	Domain D - Personal Competencies	Adaptability and Flexibility	assessed

Immunology: From Milestones to Current Topics

Number of participants limited to 15.

Abstract
Milestones in immunology: on old concepts and modern experiments

Objective
The course will cover the current grand topics in immunology: B cells, innate immunity, antigen presentation, tumor immunity, T cells, myeloid cells and stromal cells. For each topic two or four hours will be allocated. Historical milestone papers will be presented by the tutor/lecturer providing an overview on the development of the theoretical framework and critical technological advances. The students will read the historical milestone papers and contribute to the discussion. In the second part of the lecture, students will present recent high impact research papers that have emerged from the landmark achievements of the previously discussed milestone concepts.

Content
Milestones and current topics of innate immunity, antigen presentatino, B cells, thymus and T cells, cytotoxic T cells, NK cells, stromal cells, CNS immunity and tumor immunology.

Lecture notes
Original and review articles will be distributed by the respective lecturer.

Literature
Literaturunterlagen werden vor Beginn des Kurses auf folgender website zugänglich sein: https://moodle-app2.let.ethz.ch/course/view.php?id=15568

Taught competencies	Domain A - Subject-specific Competencies	Concepts and Theories	assessed
-	Domain B - Method-specific Competencies	Analytical Competencies	not assessed
-	Domain C - Social Competencies	Communication	not assessed
-	Domain D - Personal Competencies	Critical Thinking	not assessed

Cellular Biochemistry of Health and Disease

Number of participants limited to 20.

Abstract
During this Masters level seminar style course, students will explore current research topics in cellular biochemistry focused on the structure, function and regulation of selected cell components, and the consequences of dysregulation for pathologies. Students will alternate as discussion leaders throughout the semester, with the student leader responsible to briefly summarize key general knowledge and context of the assigned primary research paper. Together with the faculty expert, all students will participate in discussion of the primary paper, including the foundation of the biological question, specific questions addressed, key methods, key results, remaining gaps and research implications.

Content
The literature will be provided during the course

Literature
The course will be taught in English.

Taught competencies	Domain A - Subject-specific Competencies	Concepts and Theories	assessed
-	Domain B - Method-specific Competencies	Analytical Competencies	not assessed
-	Domain C - Social Competencies	Communication	not assessed
-	Domain D - Personal Competencies	Critical Thinking	not assessed

Molecular Biology of Foodborne Pathogens

Number of participants limited to 20.

Abstract
The course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.

Taught competencies	Domain A - Subject-specific Competencies	Concepts and Theories	assessed
-	Domain B - Method-specific Competencies	Analytical Competencies	not assessed
-	Domain C - Social Competencies	Communication	not assessed
-	Domain D - Personal Competencies	Critical Thinking	not assessed

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 284 of 2152
Objective

Detailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.

Content

Molecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnostics and antimicrobial intervention.

Lecture notes

Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.

Literature

Recommendations will be given in the first lecture.

Prerequisites / notice

Lectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), without break.

752-S103-00L

Objective

To understand the principles, roles and mechanisms of microorganisms with metabolic activities of high potential for application in traditional and functional foods, and for benefiting human health. This course will integrate basic knowledge in food microbiology, physiology, biochemistry, and technology.

Content

This course will address selected and current topics targeting functional characterization and new applications of microorganisms in food and for promoting human health. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to different topics:

- Probiotics and Prebiotics: human gut microbiota, functional foods and microbial-based products for gastrointestinal health and functionality, diet-microbiota interactions, molecular mechanisms; challenges for the production and addition of probiotics to foods.

- Protective Cultures and Antimicrobial Metabolites for enhancing food quality and safety: antifungal cultures; bacteriocin-producing cultures (bacteriocins); long path from research to industry in the development of new protective cultures.

- Legal and protection issues related to functional foods

- Industrial biotechnology of flavor and taste development

- Safety of food cultures and probiotics

Students will be required to complete a Project on a selected current topic relating to functional culture development, application and claims. Project will involve information research and critical assessment to develop an opinion, developed in an oral presentation.

Lecture notes

Copy of the power point slides from lectures will be provided.

Literature

A list of topics for group projects will be supplied, with key references for each topic.

Prerequisites / notice

This lecture requires strong basics in microbiology.

751-4504-00L

Abstract

Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems.

Objective

Students will understand: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems as a basis for implementing disease management strategies in agroecosystems.
Course description: Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. Topics under the first theme will include pathogen life cycles, disease cycles, and an overview of plant pathogenic nematodes, viruses, bacteria, and fungi. Topics under the second theme will include plant defense strategies, host range, passive and active defenses, and chemical and structural defenses. Topics under the third theme will include the disease triangle and cultural control strategies.

Lecture Topics and Tentative Schedule

Week 1 The nature of plant diseases, symbiosis, parasites, mutualism, biotrophs and necrotrophs, disease cycles and pathogen life cycles.

Week 2 Nematode attack strategies and types of damage. Viral pathogens, classification, reproduction and transmission, attack strategies and types of damage. Examples TMV, BYDV. Bacterial pathogens and phytoplasmas, classification, reproduction and transmission.

Week 3 Bacterial attack strategies and symptoms. Example bacterial diseases: fire blight, Agrobacterium crown gall, soft rots. Fungal and oomycete pathogens, classification, growth and reproduction, sexual and asexual spores, transmission.

Week 4 Fungal and oomycete life cycles, disease cycles, infection processes, colonization, phytotoxins and mycotoxins. Attack strategies of fungal necrotrophs and biotrophs. Symptoms and signs of fungal infection. Example fungal diseases: potato late blight.

Week 5 Example fungal diseases: wheat stem rust, grape powdery mildew, wheat septoria tritici blotch. Plant defense mechanisms, host range and non-host resistance. Passive structural and chemical defenses, preformed chemical defenses. Active structural defense, histological and cellular (papillae).

Week 6 Active chemical defense, hypersensitive response, pathogenesis-related (PR) proteins, phytoalexins and disease resistance. Pisatin and pisatin demethylase. Local and systemic acquired resistance (LAR, SAR), induced systemic resistance (ISR), signal molecules, defense activators (Bion). Pathogen effects on food quality. Positive and negative transformations.

Week 8 Epidemiology: Disease pyramid, environmental effects on epidemic development, plant effects on development of epidemics, including resistance, physiology, density, uniformity.

Week 9 Disease assessment: incidence and severity measures, keys, diagrams, scales, measurement errors. Correlations between incidence and severity. Molecular detection and diagnosis of pathogens. Host indexing, serology, monoclonal and polyclonal antibodies, ELISA.

Week 10 Molecular detection and diagnosis of pathogens: PCR, rDNA and loop-mediated isothermal amplification. Strategies for minimizing disease risks: calculating disease thresholds, disease forecasting systems.

Week 12 Physical control methods. Cultural control methods: avoidance, tillage practices, crop sanitation.

Week 13 Cultural control methods: fertilizers, crop rotations.

Week 14 Open lecture.

Lecture notes

Detailed lecture notes (~160 pages) will be available for purchase at the cost of reproduction at the start of the semester.
Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course 'Introduction to Programming', which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date.

http://www.cbb.ethz.ch/news-events.html

For the Zurich-based students without R experience, we recommend the R course http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2018W&ansicht=KATALOGDATEN&lerneinheitsid=123546&lang=de, or working through the script provided as part of this R course.

701-1703-00L Evolutionary Medicine for Infectious Diseases

Waiting list will be deleted October 3rd, 2021.

Abstract

This course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively.

Objective

Students will learn to (i) identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses.

Content

We will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes: (i) determinants of pathogen host range and virulence, (ii) dynamics of host-parasite coevolution, (iii) pathogen adaptation to evade or suppress immune responses, (iv) antimicrobial resistance, (v) evolution-proof medicine. For each topic there will be a short (< 20 minutes) introductory lecture, before students independently research the primary literature and develop discussion points and questions, followed by interactive discussion in class.

Literature

The focus is on primary literature, but for some parts the following text books provide good background information:

- Schmid Hempel 2011 Evolutionary Parasitology
- Stearns & Medzhitov 2016 Evolutionary Medicine

Prerequisites / notice

A basic understanding of evolutionary biology, microbiology or parasitology will be advantageous but is not essential.
This course focuses on the concepts of classical and modern genetics and genomics.

The course "Molecular Life of Plants" will cover the following topics:

- Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

- Plant-pathogen interactions: pathogen attack, first layers of plant defense and plant responses to experimental plant biology by discussing discrete topics that are removed from the context of the plant life cycle. The course will take an integrative approach that focuses on developmental concepts. Whereas traditional plant physiology courses were based on research carried out on intact plants or plant organs and were often based on phenomenological observations, current research in plant biology emphasizes work at the cellular, subcellular and molecular levels.

The goal of "Molecular Life of Plants" is to train students in integrative approaches to understand the function of plants in a developmental context. While the course focuses on plants, the training integrative approaches will also be useful for other organisms.

The course "Molecular Life of Plants" will cover the following topics:

- Plant genome organization and evolution
- Plant functional genomics and systems biology
- Plant genome engineering and editing
- Seed development and embryogenesis
- Root apical meristem: structure, function and hormone regulation
- Shoot apical meristem: structure, function and hormone regulation
- Mobilization of seed reserves
- Heterotrophic to autotrophic growth
- Chloroplast biogenesis and light perception
- Photosynthetic and central carbon metabolism
- Integration of carbon and nitrogen metabolism
- Principles of RNA silencing
- MicroRNAs: discovery and modes of action
- RNA silencing and pathogen defense
- RNA silencing movement, amplification and trans-generational silencing
- Plants and the environment
- Plant-pathogen interactions: pathogen attack, first layers of plant defense and plant responses to experimental plant biology by discussing discrete topics that are removed from the context of the plant life cycle. The course will take an integrative approach that focuses on developmental concepts. Whereas traditional plant physiology courses were based on research carried out on intact plants or plant organs and were often based on phenomenological observations, current research in plant biology emphasizes work at the cellular, subcellular and molecular levels.

The goal of "Molecular Life of Plants" is to train students in integrative approaches to understand the function of plants in a developmental context. While the course focuses on plants, the training integrative approaches will also be useful for other organisms.

The course "Molecular Life of Plants" will cover the following topics:

- Boppe, A. Hajnal, W. Molecular Life of Plants
- Zeeman, S. C. Zeeman, K. Bombies, A. Rodríguez-Villalon, C. Sánchez-Rodríguez, O. Voinnet

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semester</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0311-00L</td>
<td>Molecular Life of Plants</td>
<td>6</td>
<td>W</td>
<td>S. C. Zeeman, K. Bombies, A. Rodríguez-Villalon, C. Sánchez-Rodríguez, O. Voinnet</td>
</tr>
<tr>
<td>551-0307-00L</td>
<td>Molecular and Structural Biology I: Protein Structure and Function</td>
<td>3</td>
<td>W</td>
<td>R. Glockshuber, K. Locher, E. Weber-Ban</td>
</tr>
<tr>
<td>551-0309-00L</td>
<td>Concepts in Modern Genetics</td>
<td>6</td>
<td>W</td>
<td>Y. Barral, D. Boppe, A. Hajnal, O. Voinnet</td>
</tr>
<tr>
<td>551-0319-00L</td>
<td>Cellular Biochemistry (Part I)</td>
<td>3</td>
<td>W</td>
<td>U. Kutay, G. Neurohr, M. Peter, K. Weis, I. Zemp</td>
</tr>
</tbody>
</table>
Abstract
Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division, and cell migration.

Objective
The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Content
Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes.

Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression.

Lecture notes
Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch)

Literature
Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

Prerequisites / notice
To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.

529-0731-00L Nucleic Acids and Carbohydrates
Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree.

Abstract
Structure, function and chemistry of nucleic acids and carbohydrates, DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Objective
Structure, function and chemistry of nucleic acids and carbohydrates, DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Content
Structure, function and chemistry of nucleic acids and carbohydrates, DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Lecture notes
No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server).

Literature
Mainly based on original literature, a detailed list will be distributed during the lecture

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Problem-solving

Domain C - Social Competencies
Communication
Cooperation and Teamwork

Domain D - Personal Competencies
Self-awareness and Self-reflection
Self-direction and Self-management

551-1299-00L Introduction to Bioinformatics

Abstract
This course introduces principle concepts, the state-of-the-art and methods used in some major fields of Bioinformatics. Topics include: genomics, metagenomics, network bioinformatics, and imaging. Lectures are accompanied by practical exercises that involve the use of common bioinformatic methods and basic programming.

Objective
The course will provide students with theoretical background in the area of genomics, metagenomics, network bioinformatics and imaging. In addition, students will acquire basic skills in applying modern methods that are used in these sub-disciplines of Bioinformatics. Students will be able to access and analyse DNA sequence information, construct and interpret networks that emerge though interactions of e.g. genes/proteins, and extract information based on computer-assisted image data analysis. Students will also be able to assess the ethical implications of access to and generation of new and large amounts of information as they relate to the identifiability of a person and the ownership of data.

Content
Ethics:
Case studies to learn about applying ethical principles in human genomics research

Genomics:
Genetic variant calling
Analysis and critical evaluation of genome wide association studies

Metagenomics:
Reconstruction of microbial genomes
Microbial community compositional analysis
Quantitative metagenomics

Network bioinformatics:
Inference of molecular networks
Use of networks for interpretation of (gen)omics data

Imaging:
High throughput single cell imaging
Image segmentation
Automatic analysis of drug effects on single cell suspension (chemotyping)

Prerequisites / notice
Course participants have already acquired basic programming skills in Python and R.

Students will bring and work on their own laptop computers, preferentially running the latest versions of Windows or MacOSX.
Objective
The course introduces the students to recent developments in the fields of metabolism and disease. It also supports the development of analytical skills, including critical reading of scientific literature, being able to present and critically discuss scientific experiments, point out technical limitations, and placing recent discoveries in the broader context of biology, physiology and medicine. The student should be able to grasp what the author wanted to learn i.e. their hypothesis and their goals, why the authors chose the experimental approach and methods used, the strengths and weaknesses of the experiments, the quality of the data presented, the conclusions drawn, and how the work fits into the wider literature in the field. Furthermore, the student should discuss alternative approaches and future experiments. Each student will present one paper during the course, which provides him/her with practice in public speaking.

Content
Each student will present at least once during the semester. The presentation includes an introduction to the field of the paper, a critical description of the main results, a summary of the main points and a discussion of their significance. Every participant is expected to take part in the discussion and to ask questions. At each meeting, all students are expected to read and prepare the paper beforehand. Each paper presented will be announced one week in advance of the presentation.

Lecture notes
Presentations will be made available after the seminars.

Literature
Students will be guided to choose their papers base on recent literature published less than 1 year prior in a relevant journal.

Elective Major: Cell Biology

Elective Compulsory Concept Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0319-00L</td>
<td>Cellular Biochemistry (Part I)</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>U. Kutay, G. Neurohr, M. Peter, K. Weis, I. Zemp</td>
</tr>
<tr>
<td>551-0309-00L</td>
<td>Concepts in Modern Genetics</td>
<td>W</td>
<td>6</td>
<td>4V</td>
<td>Y. Barral, D. Bopp, A. Hajnal, O. Voinnet</td>
</tr>
<tr>
<td>551-0317-00L</td>
<td>Immunology I</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>M. Kopf, A. Oxenius</td>
</tr>
</tbody>
</table>

Objective
Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Lecture notes
Scripts and additional material will be provided during the semester.

Elective Master Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1423-00L</td>
<td>Current Topics in Metabolism and Disease</td>
<td>W</td>
<td>2</td>
<td>1S</td>
<td>to be announced</td>
</tr>
</tbody>
</table>

Abstract
The course is a literature seminar or "journal club". Each Friday a student, or a member of the Stoffel Lab in the Institute of Molecular Health Sciences, will present a comprehensive presentation of a recent paper published in a top ranking international peer reviewed journal that relates to metabolism and disease.

Objective
The course is a literature seminar or "journal club". Each Friday a student, or a member of the Stoffel Lab in the Institute of Molecular Health Sciences, will present a comprehensive presentation of a recent paper published in a top ranking international peer reviewed journal that relates to metabolism and disease.

Content
Each student will present at least once during the semester. The presentation includes an introduction to the field of the paper, a critical description of the main results, a summary of the main points and a discussion of their significance. Every participant is expected to take part in the discussion and to ask questions. At each meeting, all students are expected to read and prepare the paper beforehand. Each paper presented will be announced one week in advance of the presentation.

Lecture notes
Presentations will be made available after the seminars.

Literature
Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

Prerequisites / notice
To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.

Autumn Semester 2021

Page 290 of 2152
Content
- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions

Lecture notes
Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien"

Literature
- Kuby, Immunology, 9th edition, Freeman + Co., New York, 2020

Prerequisites
- For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a “Sessionsprüfung”. All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

551-1299-00L Introduction to Bioinformatics

Abstract
This course introduces principle concepts, the state-of-the-art and methods used in some major fields of Bioinformatics. Topics include: genomics, metagenomics, network bioinformatics, and imaging. Lectures are accompanied by practical exercises that involve the use of common bioinformatic methods and basic programming.

Objective
The course will provide students with theoretical background in the area of genomics, metagenomics, network bioinformatics and imaging. In addition, students will acquire basic skills in applying modern methods that are used in these sub-disciplines of Bioinformatics. Students will be able to access and analyse DNA sequence information, construct and interpret networks that emerge though interactions of e.g. genes/proteins, and extract information based on computer-assisted image data analysis. Students will also be able to assess the ethical implications of access to and generation of new and large amounts of information as they relate to the identifiability of a person and the ownership of data.

Content
Ethics:
- Case studies to learn about applying ethical principles in human genomics research
- Genomics:
 - Genetic variant calling
 - Analysis and critical evaluation of genome wide association studies
- Metagenomics:
 - Reconstruction of microbial genomes
 - Microbial community compositional analysis
 - Quantitative metagenomics
- Network bioinformatics:
 - Inference of molecular networks
 - Use of networks for interpretation of (gen)omics data
- Imaging:
 - High throughput single cell imaging
 - Image segmentation
 - Automatic analysis of drug effects on single cell suspension (chemotyping)

Prerequisites
Course participants have already acquired basic programming skills in Python and R.

Students will bring and work on their own laptop computers, preferentially running the latest versions of Windows or MacOSX.

551-0512-00L Current Topics in Molecular and Cellular Neurobiology
W 2 credits 1S U. Suter

Does not take place this semester.
Number of participants limited to 8.
Abstract

The course is a literature seminar or "journal club". Each Friday a student, or a member of the Suter Lab in the Institute of Molecular Health Sciences, will present a paper from the recent literature.

Objective

The course introduces you to recent developments in the fields of cellular and molecular neurobiology. It also supports you to develop your skills in critically reading the scientific literature. You should be able to grasp what the authors wanted to learn i.e. their goals, why the authors chose the experimental approach they used, the strengths and weaknesses of the experiments and the data presented, and how the work fits into the wider literature in the field. You will present one paper yourself, which provides you with practice in public speaking.

Content

You will present one paper yourself. Give an introduction to the field of the paper, then show and comment on the main results (all the papers we present are available online, so you can show original figures with a beamer). Finish with a summary of the main points and a discussion of their significance.

You are expected to take part in the discussion and to ask questions. To prepare for this you should read all the papers beforehand (they will be announced a week in advance of the presentation).

Lecture notes

Presentations will be made available after the seminars.

Prerequisites / notice

You must attend at least 80% of the journal clubs, and give a presentation of your own. At the end of the semester there will be a 30 minute oral exam on the material presented during the semester. The grade will be based on the exam (45%), your presentation (45%), and a contribution based on your active participation in discussion of other presentations (10%).

551-0571-00L From DNA to Diversity (University of Zurich)

Abstract

The evolution of the various body-plans is investigated by means of comparison of developmentally essential control genes of molecularly analysed model organisms.

Objective

By the end of this module, each student should be able to
- recognize the universal principles underlying the development of different animal body plans.
- explain how the genes encoding the molecular toolkit have evolved to create animal diversity.
- relate changes in gene structure or function to evolutionary changes in animal development.

Key skills:

By the end of this module, each student should be able to
- present and discuss a relevant evolutionary topic in an oral presentation
- select and integrate key concepts in animal evolution from primary literature
- participate in discussions on topics presented by others

551-1117-00L Cutting Edge Topics: Immunology and Infection Biology

Abstract

Weekly seminar about cutting edge topics in immunology and infection biology. Internationally renowned experts present their current research followed by an open discussion.

Objective

Weekly seminar about cutting edge topics in immunology and infection biology. Internationally renowned experts present their current research followed by an open discussion.

The aim of this course is to confront students with current research topics and with scientific presentation. The course offers the opportunity to gain in depth knowledge about diverse topics which are often only briefly touched in the concept courses and to engage in discussion with experts in the field.

Content

Immunology and infection biology.

The specific topics are variable and depend each semester on the list of invited experts.

Lecture notes

Current research data (often not yet published) are presented in this seminar series. There is no script and we are not allowed to record or distribute the contents of the seminars. Thus, the ability of students to extract the most relevant points of each seminar is promoted, which is an important skill for the future attendance of scientific meetings.

Literature

Often parts of the presented seminars have already been published by the respective speakers and the respective primary research can be retrieved from scientific journals.
<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>551-1153-00L</th>
<th>Systems Biology of Metabolism</th>
<th>W</th>
<th>4 credits</th>
<th>2V</th>
<th>U. Sauer, N. Zamboni, M. Zampieri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Starting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics. For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various approaches, metabolic flux analyses, metabolomics and other omics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The literature will be provided during the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Script and original publications will be supplied during the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>551-1171-00L</th>
<th>Immunology: From Milestones to Current Topics</th>
<th>W</th>
<th>4 credits</th>
<th>2S</th>
<th>B. Ludewig, J. Kisielow, A. Oxenius, L. Tortola, University lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Milestones in Immunology: on old concepts and modern experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course will cover the current grand topics in immunology: B cells, innate immunity, antigen presentation, tumor immunity, T cells, myeloid cells and stromal cells. For each topic two or four hours will be allocated. Historical milestone papers will be presented by the tutor/lecturer providing an overview on the development of the theoretical framework and critical technological advances. The students will read the historical milestone papers and contribute to the discussion. In the second part of the lecture, students will present recent high impact research papers that have emerged from the landmark achievements of the previously discussed milestone concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Milestones and current topics of innate immunity, antigen presentatino, B cells, thymus and T cells, cytotoxic T cells, NK cells, stromal cells, CNS immunity and tumor immunology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Original and review articles will be distributed by the respective lecturer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literaturunterlagen werden vor Beginn des Kurses auf folgender website zugänglich sein: https://moodle- app2.let.ethz.ch/course/view.php?id=15568</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>551-1303-00L</th>
<th>Cellular Biochemistry of Health and Disease</th>
<th>W</th>
<th>4 credits</th>
<th>2S</th>
<th>V. Korkhov, Y. Barnal, T. Ishikawa, M. Jagannathan, R. Kroschewski, G. Neurohr, M. Peter, A. E. Smith, B. Snijder, K. Weis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>During this Masters level seminar style course, students will explore current research topics in cellular biochemistry focused on the structure, function and regulation of selected cell components, and the consequences of dysregulation for pathologies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will work with experts toward a critical analysis of cutting-edge research in the domain of cellular biochemistry, with emphasis on normal cellular processes and the consequences of their dysregulation. At the end of the course, students will be able to introduce, present, evaluate, critically discuss and write about recent scientific articles in the research area of cellular biochemistry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Guided by an expert in the field, students will engage in classical round-table style discussions of current literature with occasional frontal presentations. Students will alternate as discussion leaders throughout the semester, with the student leader responsible to briefly summarize key general knowledge and context of the assigned primary research paper. Together with the faculty expert, all students will participate in discussion of the primary paper, including the foundation of the biological question, specific questions addressed, key methods, key results, remaining gaps and research implications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The literature will be provided during the course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The course will be taught in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>529-0733-01L</th>
<th>Enzymes</th>
<th>W</th>
<th>6 credits</th>
<th>3G</th>
<th>D. Hilvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Principles of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme-catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Overview of enzymes, enzyme-catalyzed reactions and metabolic processes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Type</td>
<td>Lecturers</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>551-1407-00L</td>
<td>RNA Biology Lecture Series I: Transcription & Processing & Translation</td>
<td>W 4 credits 2V</td>
<td>F. Allain, N. Ban, U. Kutay, further lecturers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>551-1407-00L</td>
<td>RNA Biology Lecture Series II: Non-coding RNAs: Biology and Therapeutics</td>
<td>W 4 credits 2V</td>
<td>J. Hall, M. Stoffel, further lecturers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0939-00L</td>
<td>Cell Biophysics</td>
<td>W 6 credits 4G</td>
<td>T. Zambelli</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content
Principles of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerizations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.

Lecture notes
A script will not be handed out.

Literature

In addition, citations from the original literature relevant to the individual lectures will be assigned weekly.

551-1407-00L

Abstract
This course covers aspects of RNA biology related to gene expression at the posttranscriptional level. These include RNA transcription, processing, alternative splicing, editing, export and translation.

Objective
The students should obtain an understanding of these processes, which are at work during gene expression.

Content
- Transcription & 3'end formation; splicing, alternative splicing, RNA editing; the ribosome & translation, translation regulation, RNP biogenesis & nuclear export, mRNA surveillance & mRNA turnover; signal transduction & RNA.
- Basic knowledge of cell and molecular biology.

Prerequisites / notice

551-1407-00L

Abstract
This course covers aspects of RNA biology related to the functions of non-coding RNAs as well as their use as drugs to treat diseases.

Objective
- Understanding of the role of non-coding RNAs in cellular functions.

Content
- Basic knowledge of cell and molecular biology.

Prerequisites / notice

551-0223-00L

Abstract
This course provides a detailed understanding of:
- Development of T and B cells
- The dynamics of an immune response during acute and chronic infections
- Mechanisms of immunopathology
- Modern vaccination strategies

Objective
- Obtain a detailed understanding of:
 - The development, activation, and differentiation of different types of T cells and their effectormechanisms during immune responses.
 - Recognition of pathogenic microorganisms by the host cells and molecular events thereafter.
 - Events and signals for maturation of naive B cells to antibody producing plasma cells and memory B cells.
 - Optimization of B cell responses by intelligent design of new vaccines

Content
- Development and selection of CD4 and CD8 T cells, natural killer T cells (NKT), and regulatory T cells (Treg)
- NK T cells and responses to lipid antigens
- Differentiation, characterization, and function of CD4 T cell subsets such as Th1, Th2, and Th17
- Overview of cytokines and their effector function
- Co-stimulation (signals 1-3)
- Dendritic cells
- Evolution of the "Danger" concept
- Cells expressing Pattern Recognition Receptors and their downstream signals
- T cell function and dysfunction in acute and chronic viral infections

Prerequisites / notice
Immunology I and II recommended but not compulsory

227-0939-00L

Abstract
Applying two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization), an analytical model is derived for a variety of biological phenomena at the molecular as well as cellular level, and critically compared with the corresponding experimental data in the literature.

Objective
- Obtain a detailed understanding of:
 - Optimization of B cell responses by intelligent design of new vaccines
 - Recognition of pathogenic microorganisms by the host cells and molecular events thereafter.
- Understanding of the role of non-coding RNAs in cellular functions.

Content
- Basics of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerizations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.
- Understanding of the role of non-coding RNAs in cellular functions.

Literature
Does not take place this semester.

Documents of the lectures are available for download at: https://moodle-app2.let.ethz.ch/course/view.php?id=2581¬ifyeditingon=1

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 294 of 2152
Content

- Basics of theory of probability
- Boltzmann's law
- Entropy maximization and Gibbs free energy minimization
- Ligand-receptor: two-state systems and the MWC model
- Random walks, diffusion, crowding
- Electrostatics for salty solutions
- Elasticity: fibers and membranes
- Molecular motors
- Action potential: Hodgkin-Huxley model
- Photosynthesis and vision
- Gene regulation
- Development: Turing patterns
- Sequences and evolution

Lecture notes

Theory and corresponding exercises are merged together during the classes.

No lecture notes because the two proposed textbooks are more than exhaustive!

An extra hour (Mon 17.00 o'clock - 18.00) will be proposed via zoom to solve together the exercises of the previous week.

!!!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!!

Literature

Prerequisites / notice

Participants need a good command of

- differentiation and integration of a function with one or more variables (basics of Analysis),
- Newton's and Coulomb's laws (basics of Mechanics and Electrostatics).

Notions of vectors in 2D and 3D are beneficial.

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

376-1305-01L

Neural Systems for Sensory, Motor and Higher Brain Functions

Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIO343 at UZH. Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree/courses/special-students-university-of-zurich.html

Abstract

The course covers the structure, plasticity and regeneration of the adult nervous system (NS) with focus on: sensory systems, cognitive functions, learning and memory, molecular and cellular mechanisms, animal models, and diseases of the NS.

Objective

The aim is to give a deepened insight into the structure, plasticity and regeneration of the nervous system based on molecular, cellular and biochemical approaches.

Content

The main focus is on the structure, plasticity and regeneration of the NS: biology of the adult nervous system; structural plasticity of the adult nervous system, regeneration and repair: networks and nerve fibers, regeneration, pathological loss of cells.

Literature

The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on Moodle / OLAT.

376-1305-00L

Development of the Nervous System (University of Zurich)

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: BIO344

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html

Abstract

The lecture will cover molecular and cellular processes underlying the development of the nervous system (neurogenesis, cell death, cell migration and differentiation, axon guidance and synapse formation). The importance of these processes in the context of developmental diseases is discussed.
Each student will present at least once during the semester. The presentation includes an introduction to the field of the paper, a critical analysis of the main results, a summary of the main points and a discussion of their significance. Key skills include: - interpret and critically evaluate original research reports - apply knowledge and relate experimental approaches from molecular, cellular and developmental biology to the developing nervous system.

Content
The lecture will cover molecular and cellular processes underlying the development of the nervous system. After an introduction to structure and function of the nervous system, we will discuss neurogenesis, cell death, cell migration and differentiation, axon guidance and synapse formation. The importance of these processes in the context of developmental diseases will be discussed.

Lecture notes
Must be downloaded from OLAT: https://www.olat.uzh.ch/olat/dmz as BCH344.

Literature
The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on OLAT.

Prerequisites / notice
None. Bring something to write and your student ID.

551-1423-00L Current Topics in Metabolism and Disease W 2 credits 1S to be announced

Abstract
The course is a literature seminar or "journal club". Each Friday a student, or a member of the Stopfeli Lab in the Institute of Molecular Health Sciences, will present a comprehensive presentation of a recent paper published in a top ranking international peer reviewed journal that relates to metabolism and disease.

Objective
The course introduces the students to recent developments in the fields of metabolism and disease. It also supports the development of analytical skills, including critical reading of scientific literature, being able to present and critically discuss scientific experiments, point out technical limitations, and placing recent discoveries in the broader context of biology, physiology, and medicine. The student should be able to recognize key steps in development underlying neurological syndromes and diseases.

Content
Each student will present at least once during the semester. The presentation includes an introduction to the field of the paper, a critical description of the main results, a summary of the main points and a discussion of their significance. Every participant is expected to take part in the discussion and to ask questions. At each meeting, all students are expected to read and prepare the paper beforehand. Each paper presented will be announced one week in advance of the presentation.

Lecture notes
Presentations will be made available after the seminars.

Literature
Students will be guided to choose their papers base on recent literature published less than 1 year prior in a relevant journal.

Elective Major: Molecular Health Sciences

Elective Compulsory Concept Courses
See D-BIOL Master Studies Guide

Number Title Type ECTS Hours Lecturers
551-0309-00L Concepts in Modern Genetics W 6 credits 4V Y. Barral, D. Bopp, A. Hajnal, O. Voinnet

Abstract
Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Objective
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Content

Introduction to Bioinformatics W 6 credits 4G

Abstract
This course introduces principle concepts, the state-of-the-art and methods used in some major fields of Bioinformatics. Topics include: genomics, metagenomics, network bioinformatics, and imaging. Lectures are accompanied by practical exercises that involve the use of common bioinformatic methods and basic programming.

Objective
The course will provide students with theoretical background in the area of genomics, metagenomics, network bioinformatics and imaging. In addition, students will acquire basic skills in applying modern methods that are used in these sub-disciplines of Bioinformatics. Students will be able to access and analyse DNA sequence information, construct and interpret networks that emerge through interactions of e.g. genes/proteins, and extract information based on computer-assisted image data analysis. Students will also be able to assess the ethical implications of access to and generation of new and large amounts of information as they relate to the identifiability of a person and the ownership of data.

Auxiliary tools:
None. Bring something to write and your student ID.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 296 of 2152
Content

Ethics:
Case studies to learn about applying ethical principles in human genomics research

Genomics:
Genetic variant calling
Analysis and critical evaluation of genome wide association studies

Metagenomics:
Reconstruction of microbial genomes
Microbial community compositional analysis
Quantitative metagenomics

Network bioinformatics:
Inference of molecular networks
Use of networks for interpretation of (gen)omics data

Imaging:
High throughput single cell imaging
Image segmentation
Automatic analysis of drug effects on single cell suspension (chemotyping)

Prerequisites / notice
Course participants have already acquired basic programming skills in Python and R.

Students will bring and work on their own laptop computers, preferentially running the latest versions of Windows or MacOSX.

Elective Compulsory Master Courses

See D-BIOL Master Studies Guide

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0571-00L</td>
<td>From DNA to Diversity (University of Zurich)</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>A. Hajnal, D. Bopp</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: BIO336</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The evolution of the various body-plans is investigated by means of comparison of developmentally essential control genes of molecularly analysed model organisms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>By the end of this module, each student should be able to - recognize the universal principles underlying the development of different animal body plans. - explain how the genes encoding the molecular toolkit have evolved to create animal diversity. - relate changes in gene structure or function to evolutionary changes in animal development. Key skills: By the end of this module, each student should be able to - present and discuss a relevant evolutionary topic in an oral presentation - select and integrate key concepts in animal evolution from primary literature - participate in discussions on topics presented by others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Guided by an expert in the field, students will engage in classical round-table style discussions of current literature with occasional frontal presentations. Students will alternate as discussion leaders throughout the semester, with the student leader responsible to briefly summarize key general knowledge and context of the assigned primary research paper. Together with the faculty expert, all students will participate in discussion of the primary paper, including the foundation of the biological question, specific questions addressed, key methods, key results, remaining gaps and research implications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The literature will be provided during the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The course will be taught in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1303-00L</td>
<td>Cellular Biochemistry of Health and Disease</td>
<td>W</td>
<td>4 credits</td>
<td>2S</td>
<td>V. Korkhov, Y. Barral, T. Ishikawa, M. Jagannathan, R. Kroschewski, G. Neurohr, M. Peter, A. E. Smith, R. Snijder, K. Weis</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 20.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>During this Masters level seminar style course, students will explore current research topics in cellular biochemistry focused on the structure, function and regulation of selected cell components, and the consequences of dysregulation for pathologies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will work with experts toward a critical analysis of cutting-edge research in the domain of cellular biochemistry, with emphasis on normal cellular processes and the consequences of their dysregulation. At the end of the course, students will be able to introduce, present, evaluate, critically discuss and write about recent scientific articles in the research area of cellular biochemistry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Guided by an expert in the field, students will engage in classical round-table style discussions of current literature with occasional frontal presentations. Students will alternate as discussion leaders throughout the semester, with the student leader responsible to briefly summarize key general knowledge and context of the assigned primary research paper. Together with the faculty expert, all students will participate in discussion of the primary paper, including the foundation of the biological question, specific questions addressed, key methods, key results, remaining gaps and research implications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The literature will be provided during the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The course will be taught in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0512-00L</td>
<td>Current Topics in Molecular and Cellular Neurobiology</td>
<td>W</td>
<td>2 credits</td>
<td>1S</td>
<td>U. Suter</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester. Number of participants limited to 8.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The course is a literature seminar or “journal club”. Each Friday a student, or a member of the Suter Lab in the Institute of Molecular Health Sciences, will present a paper from the recent literature.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course introduces you to recent developments in the fields of cellular and molecular neurobiology. It also supports you to develop your skills in critically reading the scientific literature. You should be able to grasp what the authors wanted to learn i.e. their goals, why the authors chose the experimental approach they used, the strengths and weaknesses of the experiments and the data presented, and how the work fits into the wider literature in the field. You will present one paper yourself, which provides you with practice in public speaking.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The module Epidemiology and prevention describes the process of scientific discovery from the detection of a disease and its causes, to public health research. Students will also become aware of how epidemiological facts are used in prevention, practice and politics.

You are expected to take part in the discussion and to ask questions. To prepare for this you should read all the papers beforehand (they will be announced a week in advance of the presentation). Presentations will be made available after the seminars.

You must attend at least 80% of the journal clubs, and give a presentation of your own. At the end of the semester there will be a 30 minute oral exam on the material presented during the semester. The grade will be based on the exam (45%), your presentation (45%), and a contribution based on your active participation in discussion of other presentations (10%).

551-1153-00L Systems Biology of Metabolism

W 4 credits

Prerequisites / notice

The course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics. For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various modeling approaches, metabolic flux analyses, metabolomics and other omics.

Lecture notes

Script and original publications will be supplied during the course.

Literature

Literaturunterlagen werden vor Beginn des Kurses auf folgender website zugänglich sein: https://moodle-2p2.let.ethz.ch/course/view.php?id=15568

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories: assessed
 - Techniques and Technologies: assessed

- Domain B - Method-specific Competencies
 - Analytical Competencies: assessed
 - Communication: assessed

- Domain C - Social Competencies
 - Self-presentation and Social Influence: assessed

- Domain D - Personal Competencies
 - Critical Thinking: assessed
 - Self-awareness and Self-reflection: not assessed
 - Self-direction and Self-management: not assessed

Number of participants limited to 15.

551-1171-00L Immunology: From Milestones to Current Topics

W 4 credits

Prerequisites / notice

The course will cover the current grand topics in immunology: B cells, innate immunity, antigen presentation, tumor immunity, T cells, myeloid cells and stromal cells. For each topic two or four hours will be allocated. Historical milestone papers will be presented by the tutor/lecturer providing an overview on the development of the theoretical framework and critical technological advances. The students will read the historical milestone papers and contribute to the discussion. In the second part of the lecture, students will present recent high impact research papers that have emerged from the landmark achievements of the previously discussed milestone concepts.

Lecture notes

Original and review articles will be distributed by the respective lecturer.

Literature

Littheraturunterlagen werden vor Beginn des Kurses auf folgender website zugänglich sein: https://moodle-appp2.let.ethz.ch/course/view.php?id=15568

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories: assessed

- Domain B - Method-specific Competencies
 - Analytical Competencies: assessed
 - Decision-making: assessed
 - Problem-solving: not assessed

- Domain C - Social Competencies
 - Communication: not assessed

- Domain D - Personal Competencies
 - Critical Thinking: assessed
 - Creative Thinking: not assessed

752-6105-00L Epidemiology and Prevention

W 3 credits

Prerequisites / notice

The overall goal of the course is to introduce students to epidemiological thinking and methods, which are critical pillars for medical and public health research. Students will also become aware of how epidemiological facts are used in prevention, practice and politics.

Lecture notes

Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.

Literature

Recommendations will be given in the first lecture.

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories: assessed

- Domain B - Method-specific Competencies
 - Analytical Competencies: assessed
 - Problem-solving: not assessed
 - Project Management: not assessed

- Domain C - Social Competencies
 - Communication: not assessed

- Domain D - Personal Competencies
 - Critical Thinking: assessed
752-6101-00L Dietary Etiologies of Chronic Disease

Abstract
To have the student gain understanding of the links between the diet and the etiology and progression of chronic diseases, including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Objective
To examine and understand the protective effect of foods and food ingredients in the maintenance of health and the prevention of chronic disease, as well as the progression of complications of the chronic diseases.

Content
The course evaluates food and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Lecture notes
There is no script. Powerpoint presentations will be made available on-line to students.

Literature
To be provided by the individual lecturers, at their discretion.

376-0300-00L Translational Science for Health and Medicine

Abstract
Translational science is a cross disciplinary scientific research that is motivated by the need for practical applications that help people. The course should help to clarify basics of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.

Objective
After completing this course, students will be able to understand:
- Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication)

Content
What is translational science and what is it not?
- Disease concepts and consequences for research
- Basics about incidence, prevalence etc., and orphan indications
- How to choose the appropriate research type and methodology
- Ethical considerations including ethics application
- Pros and cons of different types of research
- Coordination of complex approaches incl. timing and resources
- How to measure success?
- Outcome variables
- Improving the translational process
- Challenges of communication?
- How independent is translational science?
- Academic boundary conditions vs. industrial influences

Literature
No compulsory prerequisites, but prior completion of the courses "Introduction to Nutritional Science" and "Advanced Topics in Nutritional Science" is strongly advised.

701-1703-00L Evolutionary Medicine for Infectious Diseases

Abstract
This course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively.

Objective
Students will learn to:
(i) identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses.

Content
We will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes: (i) determinants of pathogen host range and virulence, (ii) dynamics of host-parasite coevolution, (iii) pathogen adaptation to evade or suppress immune responses, (iv) antimicrobial resistance, (v) evolution-proof medicine. For each topic there will be a short (< 20 minutes) introductory lecture, before students independently research the primary literature and develop discussion points and questions, followed by interactive discussion in class.

Literature
The focus is on primary literature, but for some parts the following text books provide good background information:
- Schmid Hampel 2011 Evolutionary Parasitology
- Stearns & Medzhitov 2016 Evolutionary Medicine

636-0108-00L Biological Engineering and Biotechnology

Abstract
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Objective
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content

Lecture notes
Handout during the course.
The course introduces the students to recent developments in the fields of metabolism and disease. It also supports the development of the students' understanding of the wide array of roles, which non-coding RNAs play in cellular functions. This course covers aspects of RNA biology related to the functions of non-coding RNAs as well as their use as drugs to treat diseases.

The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

The students will be guided to choose their papers based on recent literature published less than 1 year prior in a relevant journal. Presentations will be made available after the seminars.

Every participant is expected to take part in the discussion and to ask questions. At each meeting, all students are expected to read the materials. (alicia.smith@bc.biol.ethz.ch)

Students will be guided to choose their papers based on recent literature published less than 1 year prior in a relevant journal.

To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.

During this Masters level seminar style course, students will explore current research topics in cellular biochemistry focused on the structure, function and regulation of selected cell components, and the consequences of dysregulation for pathologies.

Students will work with experts toward a critical analysis of cutting-edge research in the domain of cellular biochemistry, with emphasis on normal cellular processes and the consequences of their dysregulation. At the end of the course, students will be able to introduce, present, evaluate, critically discuss and write about recent scientific articles in the research area of cellular biochemistry.

The course will be taught in English.

The literature will be provided during the course.

To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.
See D-BIOL Master Studies Guide

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0307-00L</td>
<td>Molecular and Structural Biology I: Protein Structure and Function</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>R. Glockshuber, K. Locher, E. Weber-Ban</td>
</tr>
</tbody>
</table>

Abstract
Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology.

Objective
Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalysis.

Lecture notes
Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching.

Literature
Basics:
- Creighton, T.E., Proteins, Freeman, (1993)
- Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman.

Current topics: References will be given during the lectures.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0309-00L</td>
<td>Concepts in Modern Genetics</td>
<td>W</td>
<td>6 credits</td>
<td>4V</td>
<td>Y. Barral, D. Bopp, A. Hajnal, O. Voinnet</td>
</tr>
</tbody>
</table>

Abstract
Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Objective
This course focuses on the concepts of classical and modern genetics and genomics.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Lecture notes
Scripts and additional material will be provided during the semester.

Elective Compulsory Master Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0733-01L</td>
<td>Enzymes</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>D. Hilvert</td>
</tr>
</tbody>
</table>

Abstract
Principles of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme-catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.

Objective
Overview of enzymes, enzyme-catalyzed reactions and metabolic processes.

Content
Principles of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.

Prerequisites / notice
A script will not be handed out.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1153-00L</td>
<td>Systems Biology of Metabolism</td>
<td>W</td>
<td>4 credits</td>
<td>2V</td>
<td>U. Sauer, N. Zamboni, M. Zampieri</td>
</tr>
</tbody>
</table>

Abstract
Starting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.

Objective
Develop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology.

Content
The course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics. For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various modeling approaches, metabolic flux analyses, metabolomics and other omics.

Lecture notes
Script and original publications will be supplied during the course.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0007-00L</td>
<td>Computational Systems Biology</td>
<td>W</td>
<td>6 credits</td>
<td>3V+2U</td>
<td>J. Stelling</td>
</tr>
</tbody>
</table>

Abstract
Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

Objective
The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.
Biology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks.

We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.

Lecture notes
http://www.csb.ethz.ch/education/lectures.html

401-0649-00L Applied Statistical Regression

Abstract
This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.

Objective
The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.

Content
The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

A script will be available.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.

Lecture notes
Faraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competences
Decision-making
Media and Digital Technologies
Problem-solving
Project Management

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

529-0041-00L Modern Mass Spectrometry, Hyphenated Methods,
and Chemometrics

Abstract
Modern mass spectrometry, hyphenated analytical methods, speciation, chemometrics.

Objective
Comprehensive knowledge about the analytical methods introduced in this course and their practical applications.

Content
Hyphenation of separation with identification methods such as GC-MS, LC-MS, GC-IR, LC-IR, LC-NMR etc.; importance of speciation. Modern mass spectrometry: time-of-flight, orbitrap and ion cyclotron resonance mass spectrometry, ICP-MS. Soft ionization methods, desorption methods, spray methods. Mass spectrometry imaging.

Use of statistical and computer-assisted methods for processing analytical data (chemometrics).

Lecture notes
Lecture notes will be made available online.

Literature
Information about relevant literature will be available in the lecture & in the lecture notes.

Prerequisites / notice
Exercises are an integral part of the lecture.

Prerequisites:
529-0051-00 "Analytische Chemie I (3. Semester)"
529-0058-00 "Analytische Chemie II (4. Semester)" (or equivalent)
Applying two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization), an analytical model is assessed for a variety of biological phenomena at the molecular as well as cellular level, and critically compared with the corresponding available experimental results.

By the end of the course, students will also learn to critically evaluate the concepts of making an assumption and making an approximation.
Content

- Basics of theory of probability
- Boltzmann's law
- Entropy maximization and Gibbs free energy minimization
- Ligand-receptor: two-state systems and the MWC model
- Random walks, diffusion, crowding
- Electrostatics for salty solutions
- Elasticity: fibers and membranes
- Molecular motors
- Action potential: Hodgkin-Huxley model
- Photosynthesis and vision
- Gene regulation
- Development: Turing patterns
- Sequences and evolution

Lecture notes

Theory and corresponding exercises are merged together during the classes.

An extra hour (Mon 17.00 o'clock - 18.00) will be proposed via zoom to solve together the exercises of the previous week.

!!!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!!

Literature

Prerequisites / notice

Participants need a good command of
- differentiation and integration of a function with one or more variables (basics of Analysis),
- Newton's and Coulomb's laws (basics of Mechanics and Electrostatics).

Notions of vectors in 2D and 3D are beneficial.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptable and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Elective Concept Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0307-00L</td>
<td>Molecular and Structural Biology I: Protein Structure and Function</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>R. Glockshuber, K. Locher, E. Weber-Ban</td>
</tr>
</tbody>
</table>

Abstract

Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology.

Objective

Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics.

Lecture notes

Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching.

Literature

- Creighton, T.E., Proteins, Freeman, (1993)
- Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman.

Current topics: References will be given during the lectures.

| 551-0309-00L | Concepts in Modern Genetics | W | 6 credits | 4V | Y. Barral, D. Bopp, A. Hajnal, O. Voinnet |

Information for UZH students:

Enrolment to this course unit only possible at ETH. No enrolment to module BIOC348 at UZH.

Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students/university-of-zurich.html
Abstract

Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Objective

This course focuses on the concepts of classical and modern genetics and genomics.

Content

The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Lecture notes

Scripts and additional material will be provided during the semester.
Elective Major: Molecular Plant Biology

Compulsory Master Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0120-00L</td>
<td>Plant Biology Colloquium (Autumn Semester)</td>
<td>W</td>
<td>2</td>
<td>1K</td>
<td>C. Sánchez-Rodríguez, K. Bomblies, A. Rodriguez-Villalon, O. Voinnet</td>
</tr>
</tbody>
</table>

Abstract
Current topics in Molecular Plant Biology presented by internal and external speakers from academia.

Objective
Getting insight into actual areas and challenges of Molecular Plant Biology.

Content

Compulsory Concept Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0311-00L</td>
<td>Molecular Life of Plants</td>
<td>O</td>
<td>6</td>
<td>4V</td>
<td>S. C. Zeeman, K. Bomblies, A. Rodriguez-Villalon, C. Sánchez-Rodríguez, O. Voinnet</td>
</tr>
</tbody>
</table>

Abstract
The advanced course introduces students to plants through a concept-based discussion of developmental processes that integrates physiology and biochemistry with genetics, molecular biology, and cell biology. The course follows the life of the plant, starting with the seed, progressing through germination to the seedling and mature plant, and ending with reproduction and senescence.

Objective
The new course "Molecular Life of Plants" reflects the rapid advances that are occurring in the field of experimental plant biology as well as the changing interests of students being trained in this discipline. Contemporary plant biology courses emphasize a traditional approach to experimental plant biology by discussing discrete topics that are removed from the context of the plant life cycle. The course will take an integrative approach that focuses on developmental concepts. Whereas traditional plant physiology courses were based on research carried out on intact plants or plant organs and were often based on phenomenological observations, current research in plant biology emphasizes work at the cellular, subcellular and molecular levels.

The goal of "Molecular Life of Plants" is to train students in integrative approaches to understand the function of plants in a developmental context. While the course focuses on plants, the training integrative approaches will also be useful for other organisms.

Content
The course "Molecular Life of Plants" will cover the following topics:
- Plant genome organization and evolution
- Plant functional genomics and systems biology
- Plant genome engineering and editing
- Seed development and embryogenesis
- Root apical meristem: structure, function and hormone regulation
- Shoot apical meristem: structure, function and hormone regulation
- Mobilization of seed reserves
- Heterotrophic to autotrophic growth
- Chloroplast biogenesis and light perception
- Photosynthetic and central carbon metabolism
- Integration of carbon and nitrogen metabolism
- Principles of RNA silencing
- MicroRNAs: discovery and modes of action
- RNA silencing and pathogen defense
- RNA silencing movement, amplification and trans-generational silencing
- Plants and the environment
- Plant-pathogen interactions: pathogen attack, first layers of plant defense and plant responses
- Senescence

Elective Compulsory Concept Courses

See D-BIOL Master Studies Guide

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0307-00L</td>
<td>Molecular and Structural Biology I: Protein Structure and Function</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>R. Glockshuber, E. Weber-Ban</td>
</tr>
</tbody>
</table>

Abstract
Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology.

Objective
Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics.

Lecture notes
Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching.

Literature
Basics:
- Creighton, T.E., Proteins, Freeman, (1993)
- Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman.

Current topics: References will be given during the lectures.
551-0309-00L
Concepts in Modern Genetics

Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module BIC348 at UZH.

Abstract
Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Objective
This course focuses on the concepts of classical and modern genetics and genomics.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Lecture notes
Scripts and additional material will be provided during the semester.

551-0313-00L
Microbiology (Part I)

Abstract
Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Objective
This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination.

Lecture notes
Updated handouts will be provided during the class.

Literature
Current literature references will be provided during the lectures.

Prerequisites / notice
The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.

551-0319-00L
Cellular Biochemistry (Part I)

Abstract
Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

Objective
The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.

Content
The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Lecture notes
Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch)

Literature
Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

Prerequisites / notice
To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.

701-2413-00L
Evolutionary Genetics

Abstract
The concept course ‘Evolutionary Genetics’ consists of two lectures that jointly provide an introduction to the fields of population and quantitative genetics (emphasis on basic concepts) and ecological genetics (emphasis on evolutionary and ecological processes of adaptation and speciation).

Objective
The aim of the course is to provide students with a solid introduction to the fields of population genetics, quantitative genetics, and ecological genetics. The concepts and research methods developed in these fields have undergone profound transformations; they are of fundamental importance in our understanding of evolutionary processes, both past and present. Students should gain an appreciation for the concepts, methods and explanatory power of evolutionary genetics.

Content
Population genetics - Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of inbreeding; natural selection; random genetic drift and effective population size; gene flow and hierarchical population structure; molecular population genetics: neutral theory of molecular evolution and basics of coalescent theory. Quantitative genetics - Continuous variation; measurement of quant. characters; genes, environments and their interactions; measuring their influence; response to selection; inbreeding and crossbreeding, effects on fitness; Fisher’s fundamental theorem. Ecological Genetics - Concepts and methods for the study of genetic variation and its role in adaptation, reproductive isolation, hybridization and speciation.

Lecture notes
Handouts

Literature

529-0731-00L
Nucleic Acids and Carbohydrates

Abstract
Structure, function and chemistry of nucleic acids and carbohydrates, DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Objective
Structure, function and chemistry of nucleic acids and carbohydrates, DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines
Concepts and Theories

A script will not be handed out.

Lecturers

Mainly based on original literature, a detailed list will be distributed during the lecture.

Taught competencies

Domain A - Subject-specific Competencies	Concept and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Communication	assessed
Domain D - Personal Competencies	Self-awareness and Self-reflection	assessed

Insect Ecology

The focus is on the potential to assess strategies and tactics of pest management, in view of the demands from the economy, environment and society. Significant management measures will be explained using practical examples, such as surveillance and forecasting, resistance management, biological control as well as the use of plant protection products, incl. regulatory aspects and ecotoxicology.

Objective

The students gain a good understanding of fundamental aspects of pest management in agroecosystems. They will be able to assess options for action in view of requirements from the economy, environment and society. Further, they will learn to elaborate on current issues in pest management, and critically evaluate case studies.

Prerequisites / notice

Does not take place this semester.

Literature

Selected required readings (peer reviewed literature). Optional recommended readings with additional information.

Lecture notes

No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server).

Plant Pathology I

Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems.

Objective

Students will understand: 1) how pathogens attack plants; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems as a basis for implementing disease management strategies in agroecosystems.

Prerequisites / notice

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.

Lecture notes

In addition, citations from the original literature relevant to the individual lectures will be assigned weekly.

Literature

Selected required readings (peer reviewed literature). Optional recommended readings with additional information.

Abstract

The number of participants is limited to 30.

Number of participants

Limited to 15.

Lecture notes

A script will not be handed out.

Literature

Provided to students through Moodle.

Systems Biology of Metabolism

For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem issues in pest management, and to critically evaluate case studies.

Objective

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.

Abstract

Starting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.

Content

The course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics.

For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various modeling approaches, metabolic flux analyses, metabolomics and other omics.

Prerequisites / notice

Script and original publications will be supplied during the course.

Lecture notes

- 2 credits
- 2G
- B. McDonald

Numbers

- 751-4801-00L
- 529-0733-01L
- 751-5121-00L
- 551-1153-00L
- 551-4504-00L

Elective Compulsory Master Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-4801-00L</td>
<td>System-Oriented Management of Herbivore Insects</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>to be announced</td>
</tr>
<tr>
<td>529-0733-01L</td>
<td>Enzymes</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>D. Hilvert</td>
</tr>
<tr>
<td>751-5121-00L</td>
<td>Insect Ecology</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>C. De Moraes, M. Mescher, N. Stanczyk</td>
</tr>
<tr>
<td>551-1153-00L</td>
<td>Systems Biology of Metabolism</td>
<td>W</td>
<td>4</td>
<td>2V</td>
<td>U. Sauer, N. Zamboni, M. Zampieri</td>
</tr>
<tr>
<td>751-4504-00L</td>
<td>Plant Pathology I</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>B. McDonald</td>
</tr>
</tbody>
</table>

Abstract

The focus is on the potential to assess strategies and tactics of pest management, in view of the demands from the economy, environment and society.

Objective

The students gain a good understanding of fundamental aspects of pest management in agroecosystems. They will be able to assess options for action in view of requirements from the economy, environment and society. Further, they will learn to elaborate on current issues in pest management, and critically evaluate case studies.

Literature

Number of participants

Limited to 15.

Lecture notes

A script will not be handed out.

Literature

Provided to students through Moodle.

Abstract

Overview of enzymes, enzyme-catalyzed reactions and metabolic processes.

Objective

Overview of enzymes, enzyme-catalyzed reactions and metabolic processes.

Number of participants

Limited to 30.

Lecture notes

A script will not be handed out.

Literature

General:

In addition, citations from the original literature relevant to the individual lectures will be assigned weekly.

Abstract

The number of participants is limited to 30.

Objective

The aim of the course is to gain an understanding of how insects have specialised and adapted to occupy diverse environmental niches and become vital to ecosystem processes. Important topics include: insect-plant interactions, chemical ecology, predator-prey interactions, vectors of disease, social insects, mutual and parasitic interactions and examining insect ecology in an evolutionary context.

Literature

- Selected required readings (peer reviewed literature). Optional recommended readings with additional information.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 308 of 2152
Content

Course description: Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. Topics under the first theme will include pathogen life cycles, disease cycles, and an overview of plant pathogenic nematodes, viruses, bacteria, and fungi. Topics under the second theme will include plant defense strategies, host range, passive and active defenses, and chemical and structural defenses. Topics under the third theme will include the disease triangle and cultural control strategies.

Lecture Topics and Tentative Schedule

Week 1 The nature of plant diseases, symbiosis, parasites, mutualism, biotrophs and necrotrophs, disease cycles and pathogen life cycles.

Week 2 Nematode attack strategies and types of damage. Viral pathogens, classification, reproduction and transmission, attack strategies and types of damage. Examples TMV, BYDV. Bacterial pathogens and phytoplasmas, classification, reproduction and transmission.

Week 3 Bacterial attack strategies and symptoms. Example bacterial diseases: fire blight, Agrobacterium crown gall, soft rots. Fungal and oomycete pathogens, classification, growth and reproduction, sexual and asexual spores, transmission.

Week 4 Fungal and oomycete life cycles, disease cycles, infection processes, colonization, phytotoxins and mycotoxins. Attack strategies of fungal necrotrrophs and biotrophs. Symptoms and signs of fungal infection. Example fungal diseases: potato late blight.

Week 5 Example fungal diseases: wheat stem rust, grape powdery mildew, wheat septoria tritici blotch. Plant defense mechanisms, host range and non-host resistance. Passive structural and chemical defenses, preformed chemical defenses. Active structural defense, histological and cellular (papillae).

Week 6 Active chemical defense, hypersensitive response, pathogenesis-related (PR) proteins, phytoalexins and disease resistance.

Week 8 Epidemiology: Disease pyramid, environmental effects on epidemic development, plant effects on development of epidemics, including resistance, physiology, density, uniformity.

Week 9 Disease assessment: incidence and severity measures, keys, diagrams, scales, measurement errors. Correlations between incidence and severity. Molecular detection and diagnosis of pathogens. Host indexing, serology, monoclonal and polyclonal antibodies, ELISA.

Week 10 Molecular detection and diagnosis of pathogens: PCR, rDNA and loop-mediated isothermal amplification. Strategies for minimizing disease risks: calculating disease thresholds, disease forecasting systems.

Week 12 Physical control methods. Cultural control methods: avoidance, tillage practices, crop sanitation.

Week 13 Cultural control methods: fertilizers, crop rotations.

Week 14 Open lecture.

Lecture notes

Detailed lecture notes (~160 pages) will be available for purchase at the cost of reproduction at the start of the semester.

551-1407-00L RNA Biology Lecture Series I: Transcription & Processing & Translation

W 4 credits 2V F. Allain, N. Ban, U. Kutay, further lecturers

Abstract

This course covers aspects of RNA biology related to gene expression at the posttranscriptional level. These include RNA transcription, processing, alternative splicing, editing, export and translation.

Objective

The students should obtain an understanding of these processes, which are at work during gene expression.

Content

Transcription & 3’end formation; splicing, alternative splicing, RNA editing; the ribosome & translation, translation regulation, RNP biogenesis & nuclear export, mRNA surveillance & mRNA turnover; signal transduction & RNA.

Prerequisites / notice

Basic knowledge of cell and molecular biology.

551-1409-00L RNA Biology Lecture Series II: Non-coding RNAs: Biology and Therapeutics

W 4 credits 2V J. Hall, M. Stoffel, further lecturers

Abstract

This course covers aspects of RNA biology related to the functions of non-coding RNAs as well as their use as drugs to treat diseases.

Objective

The students should get familiar with the wide array of roles, which non-coding RNAs play in cellular functions.

Content

Micro RNs; computational approaches to miRNAs; micro RNA function in metabolism; viruses and viral RNAs; nuclear acid-based drugs; ncRNA-mediated genome regulation; epigenetic programming of genome remodelling in ciliates; telomerase and telomeres; TRNA biology.

Prerequisites / notice

Basic knowledge of cell and molecular biology.

Elective Concept Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0307-00L</td>
<td>Molecular and Structural Biology I: Protein Structure and Function</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>R. Glockshuber, K. Locher, E. Weber-Ban</td>
</tr>
</tbody>
</table>

Abstract

Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAI, current topics in protein biophysics and structural biology.

Objective

Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics.

Lecture notes

Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching.
Current topics: References will be given during the lectures.

551-0309-00L Concepts in Modern Genetics

Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH.

Abstract
Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Objective
This course focuses on the concepts of classical and modern genetics and genomics.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Lecture notes
Scripts and additional material will be provided during the semester.

551-0313-00L Microbiology (Part I)

Abstract
Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Objective
This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Content
Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Literature
Current literature references will be provided during the lectures.

Language
English

The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.

551-0319-00L Cellular Biochemistry (Part I)

Abstract
Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

Objective
The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.

Content
The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Lecture notes
Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

Literature
- Creighton, T.E., Proteins, Freeman, (1993)

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 310 of 2152
Lecture notes
Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch)

Literature
Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

Prerequisites / notice
To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.

551-0309-00L Concepts in Modern Genetics
Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH.

Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students-university-of-zurich.html

Abstract
Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Objective
This course focuses on the concepts of classical and modern genetics and genomics.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Lecture notes
Scripts and additional material will be provided during the semester.

551-0303-00L Microbiology (Part I)
Abstract
Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Objective
This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Lecture notes
Updated handouts will be provided during the class.

Literature
Current literature references will be provided during the lectures.

Prerequisites / notice
The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.

551-1299-00L Introduction to Bioinformatics
Abstract
This course introduces principle concepts, the state-of-the-art and methods used in some major fields of Bioinformatics. Topics include: genomics, metagenomics, network bioinformatics, and imaging. Lectures are accompanied by practical exercises that involve the use of common bioinformatic methods and basic programming.

Objective
The course will provide students with theoretical background in the area of genomics, metagenomics, network bioinformatics and imaging. In addition, students will acquire basic skills in applying modern methods that are used in these sub-disciplines of Bioinformatics. Students will be able to access and analyse DNA sequence information, construct and interpret networks that emerge though interactions of e.g. genes/proteins, and extract information based on computer-assisted image data analysis. Students will also be able to assess the ethical implications of access to and generation of new and large amounts of information as they relate to the identifiability of a person and the ownership of data.

Content
Ethics: Case studies to learn about applying ethical principles in human genomics research

Genomics:
Genetic variant calling

Analysis and critical evaluation of genome wide association studies

Metagenomics:
Reconstruction of microbial genomes

Microbial community compositional analysis

Quantitative metagenomics

Network bioinformatics:
Inference of molecular networks

Use of networks for interpretation of (gen)omics data

Imaging:
High throughput single cell imaging

Image segmentation

Automatic analysis of drug effects on single cell suspension (chemotyping)

Prerequisites / notice
Course participants have already acquired basic programming skills in Python and R.

Students will bring and work on their own laptop computers, preferentially running the latest versions of Windows or MacOSX.

Elective Compulsory Master Courses I: Computation

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0007-00L</td>
<td>Computational Systems Biology</td>
<td>W</td>
<td>6 credits</td>
<td>3V+2U</td>
<td>J. Stelling</td>
</tr>
</tbody>
</table>

Abstract
Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

Objective
The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.
The evolution of the various body-plans is investigated by means of comparison of developmentally essential control genes of molecularly analyzed model organisms.

The lecture course is not based on any textbook. The following textbooks are related to some of its content. The textbooks may be of interest for further reading, but are not necessary to follow the course:

- Murray, Mathematical Biology, Springer
- Forgacs and Newman, Biological Physics of the Developing Embryo, CUP
- Keener and Sneyd, Mathematical Physiology, Springer
- Fall et al, Computational Cell Biology, Springer
- Szallasi et al, System Modeling in Cellular Biology, MIT Press
- Wolkenhauer, Systems Biology
- Kreyszig, Engineering Mathematics, Wiley

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

- Biological examples discussed in the course are real and of current interest for further reading, but are not necessary to follow the course.
- The course covers classic as well as current approaches and exposes students to open problems in the field. In this way, the course seeks to prepare students to conduct research in the field. The course prepares students for research in developmental biology, as well as for applications in tissue engineering, and for biomedical research.

- Biological systems are analyzed model organisms.
- Mathematical and numerical techniques are introduced as required. Biological examples discussed in the course are real and of current interest for further reading, but are not necessary to follow the course.
- The course covers classic as well as current approaches and exposes students to open problems in the field. In this way, the course seeks to prepare students to conduct research in the field. The course prepares students for research in developmental biology, as well as for applications in tissue engineering, and for biomedical research.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good background of biology and computational techniques.
Evolutionary Dynamics

Abstract

Evolutionary dynamics is concerned with the mathematical principles according to which life has evolved. This course offers an introduction to mathematical modeling of evolution, including deterministic and stochastic models, with an emphasis on tumor evolution.

Objective

The goal of this course is to understand and to appreciate mathematical models and computational methods that provide insight into the evolutionary process in general and tumor evolution in particular. Students should analyze and evaluate models and their application critically and be able to design new models.

Content

Evolution is the one theory that encompasses all of biology. It provides a single, unifying concept to understand the living systems that we observe today. We will introduce several types of mathematical models of evolution to describe gene frequency changes over time in the context of different biological systems, focusing on asexual populations. Viruses and cancer cells provide the most prominent examples of such systems and they are at the same time of great biomedical interest. The course will cover some classical mathematical population genetics and population dynamics, and also introduce several new approaches. This is reflected in a diverse set of mathematical concepts which make their appearance throughout the course, all of which are introduced from scratch. Topics covered include the quasispecies equation, evolution of HIV, evolutionary game theory, evolutionary stability, evolutionary graph theory, tumor evolution, stochastic tunneling, genetic progression of cancer, diffusion theory, fitness landscapes, branching processes, and evolutionary escape.

Literature

Prerequisites

Basic mathematics (linear algebra, calculus, probability)

Lecture notes

No. I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!!

An extra hour (Mon 17.00 o'clock - 18.00) will be proposed via zoom to solve together the exercises of the previous week.

Data: 11.11.2021 12:40

Autumn Semester 2021
Participants need a good command of
• differentiation and integration of a function with one or more variables (basics of Analysis),
• Newton's and Coulomb's laws (basics of Mechanics and Electrostatics).

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Elective Major: Molecular and Structural Biology

Compulsory Concept Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0307-00L</td>
<td>Molecular and Structural Biology I: Protein Structure and Function</td>
<td>O</td>
<td>3 credits</td>
<td>2V</td>
<td>R. Glockshuber, K. Locher, E. Weber-Barr</td>
</tr>
</tbody>
</table>

Abstract
Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology.

Objective
Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics.

Lecture notes
Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching.

Literature
- Creighton, T.E., Proteins, Freeman, (1993)
- Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman.

Current topics: References will be given during the lectures.

Elective Compulsory Concept Courses

See D-BIOL Master Studies Guide

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0319-00L</td>
<td>Cellular Biochemistry (Part I)</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>U. Kutay, G. Neurohr, M. Peter, K. Weis, I. Zemp</td>
</tr>
</tbody>
</table>

Abstract
Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

Objective
The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Content
Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes.

Lecture notes
Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch)

Literature
Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

Prerequisites / notice
To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0731-00L</td>
<td>Nucleic Acids and Carbohydrates</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>D. Hilvert, P. A. Kast, S. J. Sturla, H. Wennenemers</td>
</tr>
</tbody>
</table>

Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree.
Abstract
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Objective
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Content
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Lecture notes
No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server).

Literature
Mainly based on original literature, a detailed list will be distributed during the lecture

Taught competencies
Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Problem-solving

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork

Domain D - Personal Competencies
- Self-awareness and Self-reflection
- Self-direction and Self-management

551-0313-00L Microbiology (Part I) W 3 credits 2V W.-D. Hardt, L. Eberli, J. Piel, M. Pilhofer

551-0309-00L Concepts in Modern Genetics Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH.

Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students-special-students-university-of-zurich.html

Abstract
Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Objective
This course focuses on the concepts of classical and modern genetics and genomics.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Lecture notes
Scripts and additional material will be provided during the semester.

Abstract
This course introduces principle concepts, the state-of-the-art and methods used in some major fields of Bioinformatics. Topics include: genomics, metagenomics, network bioinformatics, and imaging. Lectures are accompanied by practical exercises that involve the use of common bioinformatic methods and basic programming.

Objective
The course will provide students with theoretical background in the area of genomics, metagenomics, network bioinformatics and imaging. In addition, students will acquire basic skills in applying modern methods that are used in these sub-disciplines of Bioinformatics. Students will be able to access and analyse DNA sequence information, construct and interpret networks that emerge though interactions of e.g. genes/proteins, and extract information based on computer-assisted image data analysis. Students will also be able to assess the ethical implications of access to and generation of new and large amounts of information as they relate to the identifiability of a person and the ownership of data.

Content
Ethics:
- Case studies to learn about applying ethical principles in human genomics research

Genomics:
- Genetic variant calling
- Analysis and critical evaluation of genome wide association studies

Metagenomics:
- Reconstruction of microbial genomes
- Microbial community compositional analysis
- Quantitative metagenomics

Network bioinformatics:
- Inference of molecular networks
- Use of networks for interpretation of (gen)omics data

Imaging:
- High throughput single cell imaging
- Image segmentation
- Automatic analysis of drug effects on single cell suspension (chemotyping)
Course participants have already acquired basic programming skills in Python and R.

Students will bring and work on their own laptop computers, preferentially running the latest versions of Windows or MacOSX.

Elective Compulsory Master Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0733-01L</td>
<td>Enzymes</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>D. Hilvert</td>
</tr>
<tr>
<td>Abstract</td>
<td>Principles of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Overview of enzymes, enzyme-catalyzed reactions and metabolic processes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Principles of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In addition, citations from the original literature relevant to the individual lectures will be assigned weekly.</td>
</tr>
<tr>
<td>551-1401-00L</td>
<td>Advanced Protein Engineering (University of Zurich)</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction into current research strategies in protein science.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>To understand current research strategies in protein science.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Slides and references will be available on OLAT server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Solid knowledge in biochemistry strongly recommended</td>
</tr>
<tr>
<td>551-1153-00L</td>
<td>Systems Biology of Metabolism</td>
<td>W</td>
<td>4</td>
<td>2V</td>
<td>U. Sauer, N. Zamboni, M. Zampieri</td>
</tr>
<tr>
<td>Abstract</td>
<td>Starting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Develop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics. For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various modeling approaches, metabolic flux analyses, metabolomics and other omics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Script and original publications will be supplied during the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.</td>
</tr>
<tr>
<td>529-0004-01L</td>
<td>Classical Simulation of (Bio)Molecular Systems</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>P. H. Hünenberger, J. Dolenc, S. Rinker</td>
</tr>
<tr>
<td>Abstract</td>
<td>Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to classical (atomic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The powerpoint slides of the lectures will be made available weekly on the website in pdf format (on the day preceding each lecture).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See: www.csms.ethz.ch/education/CSBMS</td>
</tr>
<tr>
<td>401-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>W</td>
<td>5</td>
<td>2V+1U</td>
<td>M. Detting</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.

Adaptability and Flexibility

Modern Mass Spectrometry, Hyphenated Methods, and Chemometrics

1.5 credits

Domain A - Subject-specific Competencies

Concepts and Theories assessed

Techniques and Technologies assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed

Decision-making assessed

Media and Digital Technologies assessed

Problem-solving assessed

Domain C - Social Competencies

Communication assessed

Leadership and Responsibility not assessed

Self-presentation and Social Influence not assessed

Sensitivity to Diversity not assessed

Domain D - Personal Competencies

Adaptability and Flexibility assessed

Creative Thinking assessed

Critical Thinking assessed

Integrity and Work Ethics assessed

Self-awareness and Self-reflection not assessed

Self-direction and Self-management not assessed

401-6215-00L

Using R for Data Analysis and Graphics (Part I)

W 1.5 credits 1G M. Mächler

Abstract

The course provides the first part an introduction to the statistical software R (https://www.r-project.org/) for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.

Objective

The course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part I of the course covers the following topics:

- What is R?
- R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics;
- Types of data: numeric, character, logical and categorical data, missing values;
- Simple (statistical) functions: summary, mean, var, etc., simple statistical tests;
- Writing simple functions;
- Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots.

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org

Note: Part I of UsingR is complemented and extended by Part II, which is offered during the second part of the semester and which can be taken independently from Part I.

Lecture notes

An Introduction to R. http://stat.ethz.ch/CRAI/doc/contrib/Lam-IntroductionToR_LHL.pdf

Prerequisites / notice

The course resources will be provided via the Moodle web learning platform. As from FS 2019, subscribing via Mystudies should *automatically* make you a student participant of the Moodle course of this lecture, which is at

https://moodle-app2.let.ethz.ch/course/view.php?id=15518

529-0041-00L

Modern Mass Spectrometry, Hyphenated Methods, and Chemometrics

W 6 credits 3G R. Zenobi, B. Hattendorf, P. Sinués Martinez-Lozano

Abstract

Modern mass spectrometry, hyphenated analytical methods, speciation, chemometrics.

Objective

Comprehensive knowledge about the analytical methods introduced in this course and their practical applications.

Content

Hyphenation of separation with identification methods such as GC-MS, LC-MS, GC-IR, LC-IR, LC-NMR etc.; importance of speciation. Modern mass spectrometry: time-of-flight, orbitrap and ion cyclotron resonance mass spectrometry, ICP-MS. Soft ionization methods, desorption methods, spray methods. Mass spectrometry imaging. Use of statistical and computer-assisted methods for processing analytical data (chemometrics).

Lecture notes

Lecture notes will be made available online.

Literature

Information about relevant literature will be available in the lecture & in the lecture notes.
551-1407-00L RNA Biology Lecture Series I: Transcription & Processing & Translation

W 4 credits 2V
F. Allain, N. Ban, U. Kutay, further lecturers

Prerequisites / notice

Does not take place this semester.

Abstract
This course covers aspects of RNA biology related to gene expression at the posttranscriptional level. These include RNA transcription, processing, alternative splicing, editing, export and translation.

Objective
The students should obtain an understanding of these processes, which are at work during gene expression.

Content
- Transcription & 3’end formation
- splicing, alternative splicing, RNA editing
- the ribosome & translation
- translation regulation
- RNP biogenesis & nuclear export
- mRNA surveillance & mRNA turnover
- signal transduction & RNA

Prerequisites / notice
Basic knowledge of cell and molecular biology.

551-1409-00L RNA Biology Lecture Series II: Non-coding RNAs: Biogenesis, Processing & Therapeutics

W 4 credits 2V
J. Hall, M. Stoffel, further lecturers

Prerequisites / notice

Basic knowledge of cell and molecular biology.

Abstract
This course covers aspects of RNA biology related to the functions of non-coding RNAs as well as their use as drugs to treat diseases.

Objective
The students should get familiar with the wide array of roles, which non-coding RNAs play in cellular functions.

Content
- Micro RNAs; computational approaches to miRNAs; micro RNA function in metabolism; viruses and viral RNAs; nucleic acid-based drugs;
- ncRNA-mediated genome regulation; epigenetic programming of genome remodelling in ciliates; telomerase and telomeres; tRNA biology.

227-0939-00L Cell Biophysics

W 6 credits 4G
T. Zambelli

Abstract
Applying two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization), an analytical model is derived for a variety of biological phenomena at the molecular as well as cellular level, and critically compared with the corresponding experimental data in the literature.

Objective
Engineering uses the laws of physics to predict the behavior of a system. Biological systems are so diverse and complex prompting the question whether we can apply unifying concepts of theoretical physics coping with the multiplicity of life’s mechanisms.

Content
- By the end of the course, students will also learn to critically evaluate the concepts of making an assumption and making an approximation.
- Basics of theory of probability
- Boltzmann’s law
- Entropy maximization and Gibbs free energy minimization
- Ligand-receptor: two-state systems and the MWC model
- Random walks, diffusion, crowding
- Electrostatics for salty solutions
- Elasticity: fibers and membranes
- Molecular motors
- Action potential: Hodgkin-Huxley model
- Photosynthesis and vision
- Gene regulation
- Development: Turing patterns
- Sequences and evolution

Theory and corresponding exercises are merged together during the classes.
Lecture notes

No lecture notes because the two proposed textbooks are more than exhaustive!

An extra hour (Mon 17.00 o'clock - 18.00) will be proposed via zoom to solve together the exercises of the previous week.

!!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!!

Literature

Prerequisites / notice

Participants need a good command of
• differentiation and integration of a function with one or more variables (basics of Analysis),
• Newton's and Coulomb's laws (basics of Mechanics and Electrostatics).

Notions of vectors in 2D and 3D are beneficial.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

👀 Elective Major: Biological Chemistry

👀👀 Compulsory Concept Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Objective

Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Content

Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Lecture notes

No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server).

Literature

Mainly based on original literature, a detailed list will be distributed during the lecture

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

👀👀 Compulsory Master Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0733-01L</td>
<td>Enzymes</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>D. Hilvert</td>
</tr>
</tbody>
</table>

Abstract

Principles of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme-catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.

Objective

Overview of enzymes, enzyme-catalyzed reactions and metabolic processes.

Content

Principles of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.

Lecture notes

A script will not be handed out.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 319 of 2152
Literature
General:

529-0004-01L Classical Simulation of (Bio)Molecular Systems

Abstract
Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).

Objective
Introduction to classical (atomic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations.

Content
Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).

Lecture notes Literature
The powerpoint slides of the lectures will be made available weekly on the website in pdf format (on the day preceding each lecture).

Prerequisites / notice
Since the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark).

For more information about the lecture: www.csms.ethz.ch/education/CSBMS

529-0233-01L Organic Synthesis: Methods and Strategies

Abstract
The complex relation between structural analysis, methods leading to desired transformations, and insight into reaction mechanisms is exemplified. Relations between retrosynthetic analysis of target structures, synthetic methods and their combination in a synthetic strategy.

Objective
Extension and deepening of the knowledge in organic synthesis and the principles of structure and reactivity.

Content

Literature

Prerequisites / notice
OC I-IV

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

529-0243-01L Transition Metal Catalysis: From Mechanisms to Applications

Abstract
Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint

Objective
Understanding and critical evaluation of current research in transition metal catalysis. Design of mechanistic experiments to elucidate reaction mechanisms. Synthetic relevance of transition metal catalysis. Students will also learn about writing an original research proposal during a workshop.

Content
Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint. Synthetic applications of these reactions. Introduction and application of tools for the elucidation of mechanisms. Selected examples of topics include: C-H activation, C-O activation, C-C activation, redox active ligands, main group redox catalysis, bimetallic catalysis.

Lecture notes Literature
Lecture slides will be provided online. A Handout summarizing important concepts in organometallic and physical organic chemistry will also be provided. Useful references and handouts will also be provided during the workshop.

Prerequisites / notice
Special requirement: each participant will have to come up with an independent research proposal to be presented orally (or handed in in written form) at the end of the semester. A dedicated workshop will be organized in the middle of the semester to introduce the students to proposal writing and presentation.

Slides will be uploaded 1-2 days before each lecture on http://morandi.ethz.ch/education.html

Primary literature and review articles will be cited during the course.

The following textbooks can provide useful support for the course:

Required level: Courses in organic and physical chemistry (kinetics in particular) of the first and second year as well as ACIII

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 320 of 2152
This course covers aspects of RNA biology related to the functions of non-coding RNAs as well as their use as drugs to treat diseases.

Modern mass spectrometry, hyphenated methods, and chemometrics.

Abstract
Comprehensive knowledge about the analytical methods introduced in this course and their practical applications.

Content
Hyphenation of separation with identification methods such as GC-MS, LC-MS, GC-IR, LC-IR, LC-NMR etc.; importance of speciation. Modern mass spectrometry: time-of-flight, orbitrap and ion cyclotron resonance mass spectrometry, ICP-MS. Soft ionization methods, desorption methods, spray methods. Mass spectrometry imaging. Use of statistical and computer-assisted methods for processing analytical data (chemometrics).

Lecture notes
Lecture notes will be made available online.

Literature
Information about relevant literature will be available in the lecture & in the lecture notes.

Prerequisites / notice
Exercises are an integral part of the lecture.

Prerequisites:
529-0051-00 "Analytische Chemie I (3. Semester)"
529-0058-00 "Analytische Chemie II (4. Semester)"
(or equivalent)

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Competencies</td>
</tr>
<tr>
<td>Decision-making</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
</tr>
<tr>
<td>Problem-solving</td>
</tr>
<tr>
<td>Project Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain C - Social Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
</tr>
<tr>
<td>Customer Orientation</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
</tr>
<tr>
<td>Negotiation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td>Creative Thinking</td>
</tr>
<tr>
<td>Critical Thinking</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
</tr>
</tbody>
</table>

529-0240-00L
Chemical Biology - Peptides

W 6 credits 3G
H. Wennemers

Abstract
An advanced course on the synthesis, properties and function of peptides in chemistry and biology.

Objective
Knowledge of the synthesis, properties and function of peptides in chemistry and biology.

Content
Advanced peptide synthesis, conformational properties, combinatorial chemistry, therapeutic peptides, peptide based materials, peptides in nanotechnology, peptides in asymmetric catalysis.

Lecture notes
Citations from the original literature relevant to the individual lectures will be assigned weekly.

Literature

636-0108-00L
Biological Engineering and Biotechnology

W 4 credits 3V
M. Fussenegger

Abstract
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Objective
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content

Lecture notes
Handout during the course.

551-1407-00L
RNA Biology Lecture Series I: Transcription & Processing & Translation

W 4 credits 2V
F. Allain, N. Ban, U. Kutay, further lecturers

Abstract
This course covers aspects of RNA biology related to gene expression at the posttranscriptional level. These include RNA transcription, processing, alternative splicing, editing, export and translation.

Objective
The students should obtain an understanding of these processes, which are at work during gene expression.

Content
Transcription & 3'end formation ; splicing, alternative splicing, RNA editing; the ribosome & translation, translation regulation, RNP biogenesis & nuclear export, mRNA surveillance & mRNA turnover; signal transduction & RNA.

Prerequisites / notice
Basic knowledge of cell and molecular biology.

551-1409-00L
RNA Biology Lecture Series II: Non-coding RNAs:

W 4 credits 2V
J. Hall, M. Stoffel, further lecturers

Abstract
This course covers aspects of RNA biology related to the functions of non-coding RNAs as well as their use as drugs to treat diseases.

Objective
The students should get familiar with the wide array of roles, which non-coding RNAs play in cellular functions.

Content
Micro RNAs; computational approaches to miRNAs; micro RNA function in metabolism; viruses and viral RNAs; nucleic acid-based drugs; ncRNA-mediated genome regulation; epigenetic programming of genome remodelling in ciliates; telomerase and telomerases; tRNA biology.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>G</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0241-10L</td>
<td>Advanced Methods and Strategies in Synthesis</td>
<td>6</td>
<td>3G</td>
<td>J. W. Bode</td>
</tr>
</tbody>
</table>

Abstract

Knowledge of modern methods in asymmetric stereocontrol, enantioselective catalysis, and organic reaction mechanisms.

Objective

Current trends in methods for and approaches to synthesis of complex natural products, pharmaceuticals, and biological molecules; fragment coupling and protecting group strategies; chemical ligation and biomolecules synthesis; enantioselective catalysis including ligand design and optimization; cross coupling reactions from preactivated precursors; C-H activation and oxidation chemistry; building block synthesis with chiral auxiliaries and reagents; new concepts in asymmetric catalysis. Analysis of key primarily literature including identification of trends, key precendents, and emerging topics will be emphasized.

Lecture notes

will be provided in class and online

Literature

Suggesting Textbooks

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>G</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0939-00L</td>
<td>Cell Biophysics</td>
<td>6</td>
<td>4G</td>
<td>T. Zambelli</td>
</tr>
</tbody>
</table>

Abstract

Applying two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization), an analytical model is derived for a variety of biological phenomena at the molecular level, and critically compared with the corresponding experimental data in the literature.

Objective

Engineering uses the laws of physics to predict the behavior of a system. Biological systems are so diverse and complex prompting the question whether we can apply unifying concepts of theoretical physics coping with the multiplicity of life’s mechanisms.

Objective of this course is to show that biological phenomena despite their variety can be analytically described using only two principles from statistical mechanics: maximization of the entropy and minimization of the Gibbs free energy.

Starting point of the course is the probability theory, which enables to derive step-by-step the two pillars thermodynamics from the perspective of statistical mechanics: the maximization of entropy according to the Boltzmann’s law as well as the minimization of the Gibbs free energy. Then, an assortment of biological phenomena at the molecular and cellular level (e.g. cytoskeletal polymerization, action potential, photosynthesis, gene regulation, morphogen patterning) will be examined at the light of these two principles with the aim to derive a quantitative expression describing their behavior. Each analytical model is finally validated by comparing it with the corresponding available experimental results.

By the end of the course, students will also learn to critically evaluate the concepts of making an assumption and making an approximation.

Content

- Basics of theory of probability
- Boltzmann's law
- Entropy maximization and Gibbs free energy minimization
- Ligand-receptor: two-state systems and the MWC model
- Random walks, diffusion, crowding
- Electrostatics for salty solutions
- Elasticity: fibers and membranes
- Molecular motors
- Action potential: Hodgkin-Huxley model
- Photosynthesis and vision
- Gene regulation
- Development: Turing patterns
- Sequences and evolution

Theory and corresponding exercises are merged together during the classes.

Lecture notes

No lecture notes because the two proposed textbooks are more than exhaustive!

An extra hour (Mon 17.00 o'clock - 18.00) will be proposed via zoom to solve together the exercises of the previous week.

Literature

Prerequisites / notice

Participants need a good command of

- differentiation and integration of a function with one or more variables (basics of Analysis),
- Newton’s and Coulomb’s laws (basics of Mechanics and Electrostatics).

Notions of vectors in 2D and 3D are beneficial.
Elective Concept Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0307-00L</td>
<td>Molecular and Structural Biology I: Protein Structure and Function</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>R. Glockshuber, K. Locher</td>
</tr>
<tr>
<td></td>
<td>D-BIOL students are obliged to take part I and part II (next semester) as a two-semester course</td>
<td></td>
<td></td>
<td></td>
<td>E. Weber-Ban</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching.</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>Basics:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Creighton, T.E., Proteins, Freeman, (1993)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman.</td>
</tr>
<tr>
<td></td>
<td>Current topics: References will be given during the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>551-0319-00L</td>
<td>Cellular Biochemistry (Part I)</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>U. Kutay, G. Neurohr, M. Peter,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K. Weis, I. Zemp</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterization of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch)</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.</td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td>To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.</td>
</tr>
<tr>
<td>551-1299-00L</td>
<td>Introduction to Bioinformatics</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>S. Sunagawa, M. Gstaiger,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A. Kahlke, G. Rätzsch, B. Snijder,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E. Vayena, C. von Mering,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N. Zamboni</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>This course introduces principle concepts, the state-of-the-art and methods used in some major fields of Bioinformatics. Topics include: genomics, metagenomics, network bioinformatics, and imaging. Lectures are accompanied by practical exercises that involve the use of common bioinformatic methods and basic programming.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The course will provide students with theoretical background in the area of genomics, metagenomics, network bioinformatics and imaging. In addition, students will acquire basic skills in applying modern methods that are used in these sub-disciplines of Bioinformatics. Students will be able to access and analyse DNA sequence information, construct and interpret networks that emerge though interactions of e.g. genes/proteins, and extract information based on computer-assisted image data analysis. Students will also be able to assess the ethical implications of access to and generation of new and large amounts of information as they relate to the identifiability of a person and the ownership of data.</td>
</tr>
</tbody>
</table>
Content

Ethics:
- Case studies to learn about applying ethical principles in human genomics research

Genomics:
- Genetic variant calling
- Analysis and critical evaluation of genome wide association studies

Metagenomics:
- Reconstruction of microbial genomes
- Microbial community compositional analysis
- Quantitative metagenomics

Network bioinformatics:
- Inference of molecular networks
- Use of networks for interpretation of (gen)omics data

Imaging:
- High throughput single cell imaging
- Image segmentation
- Automatic analysis of drug effects on single cell suspension (chemotyping)

Prerequisites / notice

Course participants have already acquired basic programming skills in Python and R.

Students will bring and work on their own laptop computers, preferentially running the latest versions of Windows or MacOSX.

Recommended Elective Courses (for all Master Majors)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0180-00L</td>
<td>Research Ethics</td>
<td>W+</td>
<td>2 credits</td>
<td>2G</td>
<td>G. Achermann, P. Emch</td>
</tr>
</tbody>
</table>

Abstract

Students are able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different normative perspectives and to create their own well-justified reasoning for taking decisions to the kind of ethical problems a scientist is likely to encounter during the different phases of biomedical research.

Objective

Participants of the course Research Ethics will

- Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
- Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles); and their ability to use these skills in assessing other people’s arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;

Content

1. Introduction to Moral Reasoning
 1.1 Ethics - the basics
 1.2 Recognising an ethical issue (awareness)
 1.3 What is ethics? Personal, cultural and ethical values, principles and norms
 1.4 Ethics: a classification
 1.5 Research Ethics: what is it and why is it important?

2. Normative Ethics
 2.1 What is normative ethics? Types of normative theories – three different ways of thinking about ethics: Virtue theories, duty-based theories, consequentialist theories
 2.2 The plurality of normative theories (moral pluralism);
 2.3 Roles of normative theories in “Research Ethics”

3. Decision making: How to solve a moral dilemma
 3.1 How (not) to approach ethical issues
 3.2 What is a moral dilemma? Is there a correct method for answering moral questions?
 3.3 Methods of making ethical decisions
 3.4 Is there a “right” answer?

2. Research Ethics - Internal responsibilities
 1.1 What is research integrity and why is it important?
 1.2 What is research misconduct?
 1.3 Questionable/Detrimental Research Practice (QRP/DRP)
 1.4 What is the incidence of misconduct? What are the factors that lead to misconduct?
 1.5 Responding to research wrongdoing
 1.7 The process of dealing with misconduct

2.2 Data Management
 2.1 Data collection and recordkeeping
 2.2 Analysis and selection of data
 2.3 The (mis)representation of data
 2.4 Retention of data
 2.6 Sharing of data
 2.7 The ethics of big data

3. Publication ethics / Responsible publishing
 3.1 Background
 3.2 Criteria for being an author
 3.3 Ordering of authors
 3.4 Publication practices

3. Research Ethics – External responsibilities
 1. History of research with human subjects
 1.2 Basic ethical principles – The Belmont Report
 1.3 Requirements to make clinical research ethical
 1.4 Social value and scientific validity
 1.5 Selection of study participants
 1.6 Favourable risk-benefit ratio
 1.7 Independent review

2. Social responsibility
 2.1 What is social responsibility?
 2.2 Participation in public discussions
 2.3 Public advocacy

3. Dual use research
 3.1 Introduction to Dual use research

Lecture notes

Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.
What are the requirements?
First and foremost your strong willingness to seriously achieve the main learning outcomes as indicated in the Course Catalogue (specific learning outcomes for each module will be provided at the beginning of the course). For successfully completing the course Research Ethics, the following commitment is absolutely necessary (but not sufficient) (observed success factors for many years!):
1. Your regular presence is absolutely required (so please no double, parallel enrollment for courses taking place at the identical time), connected with your active participation during class, e.g. taking notes, contributing to discussions (in group as well as in plenary class), solving exercises.
2. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more...).

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
	Decision-making	assessed
	Problem-solving	assessed
Domain C - Social Competencies	Communication	assessed
Domain D - Personal Competencies	Creative Thinking	assessed
	Critical Thinking	assessed
	Integrity and Work Ethics	assessed
	Self-awareness and Self-reflection	assessed

Research Projects (for all Master Majors)
Research projects neither accepted nor registered nor approved will not be credited.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1801-00L</td>
<td>Research Project I</td>
<td>O</td>
<td>15 credits</td>
<td>34A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research projects, with themes from the chosen scientific fields of interest, are intended to familiarise candidates with scientific procedures and operational methodologies through supervised participation in current research work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>551-1801-01L</td>
<td>Research Project II</td>
<td>O</td>
<td>15 credits</td>
<td>34A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research projects, with themes from the chosen scientific fields of interest, are intended to familiarise candidates with scientific procedures and operational methodologies through supervised participation in current research work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GESS Science in Perspective
see GESS Science in Perspective: Language Courses
ETH/UZH
see GESS Science in Perspective: Type A: Enhancement of Reflection Capability
Recommended GESS Science in Perspective (Type B) for D-BIOL.

Master's Thesis
A Master's thesis neither accepted nor registered nor approved will not be credited.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1800-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30 credits</td>
<td>64D</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Only students who fulfill the following criteria are allowed to begin with their master thesis: a. successful completion of the bachelor programme; b. fulfilling of any additional requirements necessary to gain admission to the master programme; c. have acquired at least 30 credits in the category "research projects".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Master research will be carried out on a theme in the chosen subject area and must be completed with a written report (Thesis) within six months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master's Examination

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1800-01L</td>
<td>Master's Examination</td>
<td>O</td>
<td>4 credits</td>
<td></td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Only students who fulfill the following criteria are admitted for the master examination: a. successful completion of the bachelor programme; b. fulfilling of any additional requirements necessary to gain admission to the master programme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In the Master’s examination a student must provide proof of general knowledge in the elective major field. Starting with a discussion based on the Master’s thesis further experiments and experimental strategies should be discussed in order to test the general understanding.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biology Master - Key for Type

O	Compulsory
W+	Eligible for credits and recommended
W	Eligible for credits
E-	Recommended, not eligible for credits
Z	Courses outside the curriculum
Dr	Suitable for doctorate
Key for Hours

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Microrobotics

Objective:
The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.

Main topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatistics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots

Lecture notes:
The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.

Prerequisites / notice:
The lecture will be taught in English.

151-0604-00L

Title: Microrobotics

Abstract: Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-course examination.

Objective:
The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.

Content:
Main topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatistics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots

Lecture notes:
The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.

Prerequisites / notice:
The lecture will be taught in English.

151-0605-00L

Title: Nanosystems

Abstract: From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures.

Objective:
Familiarize students with basic science and engineering principles governing the nano domain.

Content:
The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Familiarity with basic concepts of quantum mechanics is expected. Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled.

Topics are treated in 2 blocks:

(I) From Quantum to Continuum
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.

(II) Interaction Forces on the Micro and Nano Scale
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures.

Literature:

Prerequisites / notice:
Course format:
Lectures and Mini-Review presentations: Thursday 10-13
Homework: Mini-Review (compulsory continuous performance assessment)

Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. Each Mini-Review will be presented both orally and as a written paper.

151-0621-00L

Title: Microsystems I: Process Technology and Integration

Abstract: Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and -devices by a sequence of defined processing steps (process flow).

Objective:
Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps (= process flow).

Content:
- Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS)
- Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition.
- Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties.
- Application of selected technologies will be demonstrated on case studies.

Lecture notes:
Handouts (available online)
Introduction to Estimation and Machine Learning

W 6 credits 4G H.-A. Loeliger

Abstract
Mathematical basics of estimation and machine learning, with a view towards applications in signal processing.

Objective
Students master the basic mathematical concepts and algorithms of estimation and machine learning.

Content
Review of probability theory; basics of statistical estimation; least squares and linear learning; Hilbert spaces; Gaussian random variables; singular-value decomposition; kernel methods, neural networks, and more

Lecture notes
Lecture notes will be handed out as the course progresses.

Prerequisites / notice
Prerequisites: Physics I and II

Qubits, Electrons, Photons

W 6 credits 3V+2U T. Zambelli

Abstract
In-depth analysis of the quantum mechanics origin of nuclear magnetic resonance (qubits, two-level systems), of LASER (quantization of the electromagnetic field, photons), and of electron transfer (from electrochemistry to photosynthesis).

Objective
Beside electronics nanodevices, D-ITET is pushing its research in the fields of NMR (MRI), electrochemistry, bioelectronics, nano-optics, and quantum information, which are all rationalized in terms of quantum mechanics.

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

Content
• Lagrangian and Hamiltonian: Symmetries and Poisson Brackets
• Postulates of QM: Hilbert Spaces and Operators
• Heisenberg’s Matrix Mechanics: Hamiltonian and Time Evolution Operator
• Spin: Qubits, Bloch Equations, and NMR
• Entanglement
• Symmetries and Corresponding Operators
• Schrödinger's Wave Mechanics: Electrons in a Periodic Potential and Energy Bands
• Harmonic Oscillator: Creation and Annihilation Operators
• Identical Particles: Bosons and Fermions
• Quantization of the Electromagnetic Field: Photons, Absorption and Emission, LASER
• Electron Transfer: Marcus Theory via Born-Oppenheimer, Franck-Condon, Landau-Zener

Lecture notes
No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive!

Literature
• M. Le Bellac, "Quantum Physics", 2011, Cambridge University Press
• Supplementary material will be uploaded in Moodle.

Prerequisites / notice
The course has been intentionally conceived to be self-consistent with respect to QM for those master students not having encountered it in their track yet. Therefore, a presumably large overlapping has to be expected with a (welcome!) QM introduction course like the D-ITET “Physics II”.

A solid base of Analysis I & II as well as Linear Algebra is really helpful.

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises!). Please, look at the details in moodle!
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: not assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

227-0385-10L Biomedical Imaging W 6 credits 5G S. Kozerke, K. P. Prüssmann

Abstract
Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.

Objective
To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.

Content
- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging

Lecture notes
Lecture notes and handouts

Literature
Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011

Prerequisites / notice
Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming

227-0386-00L Biomedical Engineering W 4 credits 3G J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong

Abstract
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.

Objective
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.

Content

Practical and theoretical exercises in small groups in the laboratory.

Lecture notes
Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino

AND

https://lbb.ethz.ch/education/biomedical-engineering.html

227-0393-10L Bioelectronics and Biosensors W 6 credits 2V+2U J. Vörös, M. F. Yanik

Abstract
The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.

Objective
During this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field
The main goal of this lecture is to provide a comprehensive overview into the learning principles underlying neuronal networks as well as to introduce Deep Learning (DL). A brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods.

In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.).

The lecture slides will be provided as a PDF after each lecture.

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 330 of 2152
Prerequisites / notice
This advanced level lecture requires some basic background in machine/deep learning. Thus, students are expected to have a basic mathematical foundation, including linear algebra, multivariate calculus, and probability. The course is not to be meant as an extended tutorial of how to train deep networks in PyTorch or Tensorflow, although these tools used.

The participation in the course is subject to the following conditions:
1) The number of participants is limited to 120 students (MSc and PhDs).
2) Students must have taken the exam in Deep Learning (263-3210-00L) or have acquired equivalent knowledge.

227-0427-00L Signal Analysis, Models, and Machine Learning W 6 credits 4G H.-A. Loeliger

Abstract
Mathematical methods in signal processing and machine learning.

Objective
The course is an introduction to some basic topics in signal processing and machine learning.

Content

Lecture notes
Lecture notes.
Prerequisites / notice
- local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.)
- others: solid basics in linear algebra and probability theory

227-1037-00L Introduction to Neuroinformatics W 6 credits 2V+1U+1A V. Mante, M. Cook, B. Grewe, G. Indiveri, D. Kiper, W. von der Behrens

Abstract
The course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.

Objective
Understanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monochromes of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.

Content
This course consists of the structure and function of biological neural networks at different levels. The function of neuronal networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.

376-1714-00L Biocompatible Materials W 4 credits 3V K. Manirula, M. Rottmar, M. Zenobi-Wong

Abstract
Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.

Objective
The course covers the following topics:
1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.

Content
Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated.

Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Lecture notes
Handouts are deposited online (moodle).

Literature

(available online via ETH library)

Handouts and references therein.

402-0674-00L Physics in Medical Research: From Atoms to Cells W 6 credits 2V+1U B. K. R. Müller

Abstract
Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epithelial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.
Objective

The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematical theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

X-rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue’s anisotropies of biopsies.

Recommended Elective Courses

These courses are particularly recommended for the Bioelectronics track. Please consult your track advisor if you wish to select other subjects.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0509-00L</td>
<td>Microscale Acoustofluidics</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>J. Daul</td>
</tr>
<tr>
<td>Abstract</td>
<td>In this lecture the basics as well as practical aspects (from modelling to design and fabrication) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding acoustophoresis, the design of devices and potential applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions (both compulsory) and hand in homework.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories: assessed
 - Techniques and Technologies: assessed
- Domain B - Method-specific Competencies
 - Analytical Competencies: assessed
 - Decision-making: not assessed
 - Media and Digital Technologies: not assessed
 - Problem-solving: assessed
 - Project Management: not assessed
- Domain C - Social Competencies
 - Communication: assessed
 - Cooperation and Teamwork: assessed
 - Customer Orientation: not assessed
 - Leadership and Responsibility: not assessed
 - Self-presentation and Social Influence: assessed
 - Sensitivity to Diversity: not assessed
 - Negotiation: not assessed
- Domain D - Personal Competencies
 - Critical Thinking: assessed
 - Integrity and Work Ethics: assessed
 - Self-direction and Self-management: assessed

151-0601-00L Theory of Robotics and Mechatronics

- The course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Abstract

- Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Objective

- An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Lecture notes

- Available.

151-0905-00L Medical Technology Innovation - From Concept to Clinics

- Project-oriented learning on how to develop technological solutions to address unmet clinical needs.
After completing the course, you will be able to effectively collaborate with medical doctors in order to identify important unmet clinical needs. You will be able to ideate and develop appropriate engineering solutions and implementation strategies for real-world clinical problems. This lecture aims to prepare you for typical engineering challenges in the real-world where - in addition to the development of an elegant solution - interdisciplinary team work and effective communication play a key role.

will be available on the moodle.

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

227-1033-00L Neuromorphic Engineering I

Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots. Preference is given to students that require this class as part of their major.

Information for UZH students:

Enrolment to this course unit only possible at ETH. No enrolment to module INI404 at UZH. Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree/courses/special-students/special-students-university-of-zurich.html

Abstract

This course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.

Objective

Understanding the characteristics of neuromorphic circuit elements.

Content

Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulation of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.

Literature

S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.

Prerequisites / notice

Particular: The course is highly recommended for those who intend to take the spring semester course ‘Neuromorphic Engineering II’, that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.

227-0166-00L Analog Integrated Circuits

This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies.

Abstract

Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems.

Content

The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.

Lecture notes

Handouts of presented slides. No script but an accompanying textbook is recommended.

Literature

227-0447-00L Image Analysis and Computer Vision

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning. The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Lecture notes
Course material Script, computer demonstrations, exercises and problem solutions

Prerequisites / notice
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.

The course language is English.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>Taught by</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0468-00L</td>
<td>Analog Signal Processing and Filtering</td>
<td>6</td>
<td>2V+2U</td>
<td>H. Schmid</td>
</tr>
<tr>
<td>227-0166-00L</td>
<td>Analog Integrated Circuits</td>
<td>6</td>
<td>2V+2U</td>
<td>H. Schmid</td>
</tr>
<tr>
<td>227-0981-00L</td>
<td>Cross-Disciplinary Research and Development in Medicine and Engineering</td>
<td>4</td>
<td>2V+2A</td>
<td>V. Kurtcuoglu, D. de Julien de Zelicourt, M. Meboldt, M. Schmid Daners, O. Ulrich</td>
</tr>
</tbody>
</table>

Details: https://people.ee.ethz.ch/~haschmid/aswiki/

The graph methods are also supported with teaching videos: https://tube.switch.ch/channels/d206c96c?order=episodes , and a Python-based open-source tool to manipulate graphs is available on https://github.com/hanspi42/signalflowgrapher

Some material is protected by password; students from ETHZ who are interested can write to haschmid@ethz.ch to ask for the password etc.

Prerequisites:
Recommended (but not required): Stochastic models and signal processing, Communication Electronics, Analog Integrated Circuits, Transmission Lines and Filters.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed
Cross-disciplinary collaboration between engineers and medical doctors is indispensable for innovation in health care. This course will bring together engineering students from ETH Zurich and medical students from the University of Zurich to experience the rewards and challenges of such interdisciplinary work in a project based learning environment.

The main goal of this course is to demonstrate the differences in communication between the fields of medicine and engineering. Since such differences become the most evident during actual collaborative work, the course is based on a current project in physiology research that combines medicine and engineering. For the engineering students, the specific aims of the course are to:

- Acquire a working understanding of the anatomy and physiology of the investigated system;
- Identify the engineering challenges in the project and communicate them to the medical students;
- Develop and implement, together with the medical students, solution strategies for the identified challenges;
- Present the found solutions to a cross-disciplinary audience.

After a general introduction to interdisciplinary communication and detailed background on the collaborative project, the engineering students will team up with medical students to find solutions to a biomedical challenge. In the process, they will be supervised both by lecturers from ETH Zurich and the University of Zurich, receiving coaching customized to the project. The course will end with each team presenting their solution to a cross-disciplinary audience.

Lectures and relevant literature will be provided.

Handouts and relevant literature will be provided.

IMPORTANT: Note that a special permission from the lecturers is required to register for this course. Contact the head lecturer to that end.

Applying two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization), an analytical model is derived for a variety of biological phenomena at the molecular as well as cellular level, and critically compared with the corresponding experimental data in the literature.

Objective of this course is to show that biological phenomena despite their variety can be analytically described using only two principles from statistical mechanics: maximization of the entropy and minimization of the Gibbs free energy.

Starting point of the course is the probability theory, which enables to derive step-by-step the two pillars thermodynamics from the perspective of statistical mechanics: the maximization of entropy according to the Boltzmann’s law as well as the minimization of the Gibbs free energy. Then, an assortment of biological phenomena at the molecular and cellular level (e.g. cytoskeletal polymerization, action potential, photosynthesis, gene regulation, morphogen patterning) will be examined at the light of these two principles with the aim to derive a quantitative expression describing their behavior. Each analytical model is finally validated by comparing it with the corresponding available experimental results.

By the end of the course, students will also learn to critically evaluate the concepts of making an assumption and making an approximation.

- Basics of probability
- Boltzmann’s law
- Entropy maximization and Gibbs free energy minimization
- Ligand-receptor: two-state systems and the MWC model
- Random walks, diffusion, crowding
- Electrostatics for salty solutions
- Elasticity: fibers and membranes
- Molecular motors
- Action potential: Hodgkin-Huxley model
- Photosynthesis and vision
- Gene regulation
- Development: Turing patterns
- Sequences and evolution

Theory and corresponding exercises are merged together during the classes.

No lecture notes because the two proposed textbooks are more than exhaustive!

An extra hour (Mon 17.00 o’clock - 18.00) will be proposed via zoom to solve together the exercises of the previous week.

!!!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!!

Participants need a good command of:
- differentiation and integration of a function with one or more variables (basics of Analysis),
- Newton’s and Coulomb’s laws (basics of Mechanics and Electrostatics).

Notions of vectors in 2D and 3D are beneficial.
Domain A - Subject-specific Competencies

Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies

Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies

Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies

Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Computational Psychiatry & Computational Psychosomatics

Number of participants limited to 24.

Information for UZH students:
Enrolment to this course unit only possible at ETH Zurich.
No enrolment to module BMT20002.

Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students-university-of-zurich.html

Objective
Understanding strengths and weaknesses of current trends in the development of clinically relevant computational tools and their application to problems in psychiatry and psychosomatics.

Content
This seminar deals with the development of clinically relevant computational tools and/or their application to psychiatry and psychosomatics. The seminar includes (i) presentations by computational scientists and clinicians, (ii) group discussion with focus on methodology and clinical utility, (iii) self-study based on literature provided by presenters.

Literature
Literature for additional self-study of the topics presented in this seminar will be provided by the presenters and will be available online at https://www.ethz.ch/en/teaching

Prerequisites / notice
Participants are expected to be familiar with general principles of statistics (including Bayesian statistics) and have successfully completed the course “Computational Psychiatry” (Course number 227-0971-00L).

Domain B - Method-specific Competencies

Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies

Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies

Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Physical Modelling and Simulation

Objective
Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.

Content
The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS.

In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.

Computer Vision

Objective
The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.

Content
Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition

Prerequisites / notice
It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.

Frontiers in Nanotechnology

Objective
Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.

Techniques and Technologies

Media and Digital Technologies

Project Management

Adaptability and Flexibility

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Self-awareness and Self-reflection

Self-direction and Self-management

376-1103-00L

Frontiers in Nanotechnology

Objective
Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.

Techniques and Technologies

Media and Digital Technologies

Project Management

Adaptability and Flexibility

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Self-awareness and Self-reflection

Self-direction and Self-management

Domain B - Method-specific Competencies

Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies

Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies

Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 336 of 2152
Objective

Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nanochemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently sizzling in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.

Content

Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.

Lecture notes

All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.

376-1219-00L Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions

Abstract

Rehabilitation Engineering is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintebrate them into society. The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.

Objective

Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

Content

Introduction, problem definition, overview
- Rehabilitation of visual function
 - Anatomy and physiology of the visual sense
 - Technical aids (glasses, sensor substitution)
 - Retina and cortex implants
- Rehabilitation of hearing function
 - Anatomy and physiology of the auditory sense
 - Hearing aids
 - Cochlea Implants
- Rehabilitation and use of kinesthetic and tactile function
 - Anatomy and physiology of the kinesthetic and tactile sense
 - Tactile/haptic displays for motion therapy (incl. electrical stimulation)
 - Role of displays in motor learning
- Rehabilitation of vestibular function
 - Anatomy and physiology of the vestibular sense
 - Rehabilitation strategies and devices (e.g. BrainPort)
- Rehabilitation of vegetative Functions
 - Cardiac Pacemaker
 - Phrenic stimulation, artificial breathing aids
 - Bladder stimulation, artificial sphincter
 - Brain stimulation and recording
 - Deep brain stimulation for patients with Parkinson, epilepsy, depression
 - Brain-Computer Interfaces
Literature

Introductory Books:

Selected Journal Articles and Web Links:

Prerequisites / notice
VideoTact, ForeThought Development, LLC. http://my.execpc.com/?dwysocki/videotac.html
Target Group:
Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK, D-HEST
- Biomedical Engineering, Robotics, Systems and Control
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome
This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

376-1351-00L Micro/Nanotechnology and Microfluidics for Biomedical Applications

Abstract
This course is an introduction to techniques in micro/nanotechnology and to microfluidics. It reviews how many familiar devices are built and can be used for research and biomedical applications. Transistors for DNA sequencing, beams for patterning proteins, hard disk technology for biosensing and microfluidics for point-of-care diagnostics are just a few examples of the covered topics.

Objective
The main objective of the course is to introduce micro/nanotechnology and microfluidics to students having any technical background. The course is multi-disciplinary and covers a broad range of techniques. For each lecture, a historical perspective is given to illustrate by whom and how the techniques were invented.

The course should familiarize the students with the techniques used in micro/nanotechnology, cleanroom microfabrication, and show them how micro/nanotechnology pervades throughout life sciences. Microfluidics will be emphasized due to their increasing importance in research and for medical applications.

The second objective is to have life sciences students less intimidated by micro/nanotechnology and make them able to link instruments and techniques to specific problems that they might have in their projects/studies. This will also help students getting access to the ETHZ/IBM Nanotech Center infrastructure if needed.
We will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis.

A central component of this course is a research project. This will allow students to develop a practical understanding of the benefits of miniaturization in chemical and biological experimentation. Projects will be performed in groups of between four and six students and will include both experimental and simulation aspects. Each group, under the guidance of a mentor, will plan and execute a novel research project. The results of this activity will be disseminated through an "academic-style" research article and a "conference-style" oral presentation. Course grades will be evaluated through both a written exam and the project grade.

Content

Specific topics covered in the course include, but are not limited to:

1. Theoretical Concepts
 - Scaling laws, features of thermal/mass transport, diffusion, basic description of fluid flow in small volumes, microfluidic mixing strategies.

2. Microfluidic Device Manufacture
 - Basic principles of conventional lithography of rigid materials, ‘soft’ lithography, polymer machining (injection molding, hot embossing, and 3D-printing).

3. Electrokinetics
 - Principles of electrophoresis, electroosmosis, high performance capillary electrophoresis, electrokinetic scaling laws, chip-based electrophoresis and isoelectric focusing.

4. Mass Transfer Phenomena
 - Key features of mass transport in microfluidic systems, diffusive transport, diffusion-convection, Péclet number, Taylor-Aris diffusion, chaotic mixing and Damköhler numbers.

5. Heat Transfer Phenomena
 - Key features of thermal transport in microfluidic systems, conduction, convection, heat transfer by convection in internal flows, heat transfer processes in microfluidic devices.

6. Microfluidic Systems for Materials Synthesis
 - Microfluidic reactors for the controlled synthesis of colloidal nanomaterials, advanced automation for bespoke materials discovery & characterization.

7. Point-of-Care Diagnostics
 - Microscale tools for diagnostics, challenges associated with point-of-care (PoC) diagnostic testing, requirements for PoC devices, common PoC device formats, applications of PoC diagnostics in the developing world.

8. Microscale DNA Amplification
 - Amplification and analysis of nucleic acids using batch, continuous flow and droplet-based microfluidic reactors.

9. Small Volume Molecular Detection
 - Spectroscopic approaches for analyte detection in small volumes with a particular focus on single molecule detection.

10. Droplets and Segmented Flows
 - Formation, manipulation and use of liquid/liquid segmented flows in chemical and biological experimentation.

11. Single Cell Analysis
 - Applications of microfluidic tools in cellular analysis, flow cytometry, enzymatic assays and single cell analysis.

Prerequisites / notice

The nanotech center and labs visit at IBM would be mandatory, as well as attending the student project presentations.
Lecturers not assessed

Analytical Competencies

This course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging.

To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research.

This course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.

The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology.

RT-PCR. Each topic will be introduced, followed by practical work at the bench. Presence during the course is mandatory.

Number of participants limited to 10.

In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade.

Scripts of all lectures will be available.

Domain A - Subject-specific Competencies

Concepts and Theories

Techniques and Technologies

Domain B - Method-specific Competencies

Analytical Competencies

Decision-making

Media and Digital Technologies

Problem-solving

Domain C - Social Competencies

Communication

Cooperation and Teamwork

Customer Orientation

Leadership and Responsibility

Self-presentation and Social Influence

Sensitivity to Diversity

Negotiation

Domain D - Personal Competencies

Adaptability and Flexibility

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Self-awareness and Self-reflection

Self-direction and Self-management

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 340 of 2152
Enrollment is limited and students from the Master's programme in Biomedical Engineering (BME) have priority.

Taught competencies

Domain A - Subject-specific Competencies
- **Concepts and Theories**
- **Techniques and Technologies**

Domain B - Method-specific Competencies
- **Analytical Competencies**
- **Decision-making**
- **Media and Digital Technologies**
- **Problem-solving**

Domain C - Social Competencies
- **Communication**
- **Cooperation and Teamwork**
- **Customer Orientation**
- **Leadership and Responsibility**
- **Self-presentation and Social Influence**
- **Sensitivity to Diversity**
- **Negotiation**

Domain D - Personal Competencies
- **Adaptability and Flexibility**
- **Creative Thinking**
- **Critical Thinking**
- **Integrity and Work Ethics**
- **Self-awareness and Self-reflection**
- **Self-direction and Self-management**

Bioimaging

Track Core Courses

During the Master programme, a minimum of 12 CP must be obtained from track core courses.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0385-10L</td>
<td>Biomedical Imaging</td>
<td>W</td>
<td>6</td>
<td>5G</td>
<td>S. Kozerke, K. P. Prüssmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- X-ray imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Computed tomography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Single photon emission tomography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Positron emission tomography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Magnetic resonance imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ultrasound/Doppler imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0386-00L</td>
<td>Biomedical Engineering</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://lbb.ethz.ch/education/biomedical-engineering.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0447-00L</td>
<td>Image Analysis and Computer Vision</td>
<td>W</td>
<td>6</td>
<td>3V+1U</td>
<td>L. Van Gool, E. Konukoglu, F. Yu</td>
</tr>
<tr>
<td>Objective</td>
<td>Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 341 of 2152
This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning. The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Prerequisites

- Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.
- The course language is English.

Recommended Elective Courses

These courses are particularly recommended for the Bioimaging track. Please consult your track advisor if you wish to select other subjects.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0311-00L</td>
<td>Qubits, Electrons, Photons</td>
<td>W</td>
<td>6</td>
<td>3V+2U</td>
<td>T. Zambelli</td>
</tr>
</tbody>
</table>

Abstract

In-depth analysis of the quantum mechanics origin of nuclear magnetic resonance (qubits, two-level systems), of LASER (quantization of the electromagnetic field, photons), and of electron transfer (from electrochemistry to photosynthesis).

Objective

Beside electronics nanodevices, D-ITET is pushing its research in the fields of NMR (MRI), electrochemistry, bioelectronics, nano-optics, and quantum information, which are all rationalized in terms of quantum mechanics.

starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagrangian and Hamiltonian: Symmetries and Poisson Brackets</td>
</tr>
<tr>
<td>Postulates of QM: Hilbert Spaces and Operators</td>
</tr>
<tr>
<td>Heisenberg’s Matrix Mechanics: Hamiltonian and Time Evolution Operator</td>
</tr>
<tr>
<td>Spin: Qubits, Bloch Equations, and NMR</td>
</tr>
<tr>
<td>Entanglement</td>
</tr>
<tr>
<td>Symmetries and Corresponding Operators</td>
</tr>
<tr>
<td>Schrödinger’s Wave Mechanics: Electrons in a Periodic Potential and Energy Bands</td>
</tr>
<tr>
<td>Harmonic Oscillator: Creation and Annihilation Operators</td>
</tr>
<tr>
<td>Identical Particles: Bosons and Fermions</td>
</tr>
<tr>
<td>Quantization of the Electromagnetic Field: Photons, Absorption and Emission, LASER</td>
</tr>
<tr>
<td>Electron Transfer: Marcus Theory via Born-Oppenheimer, Franck-Condon, Landau-Zener</td>
</tr>
</tbody>
</table>

Lecture notes

No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive!

Literature

- Supplementary material will be uploaded in Moodle.

+ (as rigorous and profound presentation of the mathematical framework) G. Dell’Antonio, "Lectures on the Mathematics of Quantum Mechanics I", 2015, Springer
+ (as account of those formidable years) G. Gamow, "Thirty Years that Shook Physics", 1985, Dover Publications Inc.
Deep Learning in Artificial and Biological Neuronal Networks

Abstract
Deep-Learning (DL) a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods.

Objective
The main goal of this lecture is to provide a comprehensive overview into the learning principles neuronal networks as well as to introduce a diverse skill set (e.g., simulating a spiking neuronal network) that is required to understand learning in large, hierarchical neuronal networks. To achieve this the lectures and exercises will merge ideas, concepts and methods from machine learning and neuroscience. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas presented in today’s neuroscience papers.

Content
Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. The origins of deep hierarchical learning can be traced back to early neuroscience research by Hubel and Wiesel in the 1960s, who first described the neuronal processing of visual inputs in the mammalian neocortex. Similarly to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world. However, while on specific tasks such as playing (video) games deep ANNs outperform humans (Mnih et al., 2015, Silver et al., 2018), ANNs are still not performing on par when it comes to recognizing actions in movie data and their ability to act as generalizable problem solvers is still far behind what the human brain seems to achieve effortlessly. Moreover, biological neuronal networks can learn far more effectively with fewer training examples, they achieve a much higher performance in recognizing complex patterns in time series data (e.g. recognizing actions in movies), they dynamically adapt to new tasks without losing performance and they achieve unmatched performance to detect and integrate out-of-domain data examples (data they have not been trained with). In other words, many of the big challenges and unknowns that have emerged in the field of deep learning over the last years are already mastered exceptionally well by biological neuronal networks in our brain. On the other hand, many facets of typical ANN design and training algorithms seem biologically implausible, such as the non-local weight updates, discrete processing of time, and scalar communication between neurons. Recent evidence suggests that learning in biological systems is the result of the complex interplay of diverse error feedback signaling processes acting at multiple scales, ranging from single synapses to entire networks.

Lecture notes
The lecture slides will be provided as a PDF after each lecture.

Prerequisites / notice
This advanced level lecture requires some basic background in machine/deep learning. Thus, students are expected to have a basic mathematical foundation, including linear algebra, multivariate calculus, and probability. The course is not to be meant as an extended tutorial of how to train deep networks in PyTorch or Tensorflow, although these tools are

227-0967-00L
Computational Neuroimaging Clinic

Abstract
This seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data.

Objective
2. Acquisition of practical problem solving strategies for computational modeling of neuroimaging data.

Content
This seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data.

Prerequisites / notice
A solid base of Analysis I & II as well as of Linear Algebra is really helpful.

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises!). Please, look at the details in moodle!
The course teaches methods and models for fMRI data analysis, covering all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, statistical inference, multiple comparison corrections, event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data. Objectives:

1. To obtain in-depth knowledge of the theoretical foundations of SPM and DCM and of their practical application to empirical fMRI data.
2. To understand computation by neurons and neuronal circuits.
3. To introduce the conception, simulation, and physical layout of such circuits with chip design tools.

Content:
This course teaches state-of-the-art methods and models for fMRI data analysis in lectures and exercises. It covers all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, frequentist and Bayesian inference, multiple comparison corrections, and event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data. A particular emphasis of the course will be on methodological questions arising in the context of clinical studies in psychiatry and neurology. Practical exercises serve to consolidate the skills taught in lectures.
Content

This course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.

227-2037-00L Physical Modelling and Simulation

<table>
<thead>
<tr>
<th>W</th>
<th>6 credits</th>
<th>4G</th>
<th>J. Smajic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic/mechanical and electromagnetic-thermal analysis of MEMS. In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or choose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

151-0105-00L Quantitative Flow Visualization

<table>
<thead>
<tr>
<th>W</th>
<th>4 credits</th>
<th>3G</th>
<th>T. Rösgen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include image velocimetry, laser induced fluorescence, liquid crystal thermography and interferometry. The physical foundations and measurement configurations are explained. Image analysis algorithms are presented in detail and programmed during the exercises.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding of hardware and software requirements and solutions. Development of basic programming skills for (generic) imaging applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Fundamentals of optics, flow visualization, and electronic image acquisition. Frequently used mage processing techniques (filtering, correlation processing, FFTs, color space transforms). Image Velocimetry (tracking, pattern matching, Doppler imaging). Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography). Laser induced fluorescence. (Digital) Schlieren techniques, phase contrast imaging, interferometry, phase unwrapping. Wall shear and heat transfer measurements. Pattern recognition and feature extraction, proper orthogonal decomposition.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

151-0605-00L Nanosystems

<table>
<thead>
<tr>
<th>W</th>
<th>4 credits</th>
<th>4G</th>
<th>A. Stemmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures. Special emphasis on the emerging field of molecular electronic devices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Familiarize students with basic science and engineering principles governing the nano domain.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Content** | The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Familiarity with basic concepts of quantum mechanics is expected. Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled. Topics are treated in 2 blocks:

(I) From Quantum to Continuum
- From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.

(II) Interaction Forces on the Micro and Nano Scale
- Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures.

Literature

At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.

Prerequisites:
- Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.

The programming assignments will be in C++. This will not be taught in the class.

Enrolment to this course unit only possible at ETH Zurich.

Information for UZH students: https://www.ethz.ch/en/studies/non-degree-

Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. Each Mini-Review will be presented both orally and as a written paper.

Homework: Mini-Review
(compulsory continuous performance assessment)

Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. Each Mini-Review will be presented both orally and as a written paper.

Homework: Mini-Review
(compulsory continuous performance assessment)

Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. Each Mini-Review will be presented both orally and as a written paper.

Homework: Mini-Review
(compulsory continuous performance assessment)
Abstract
This seminar deals with the development of computationally relevant tools and their application to psychiatry and psychosomatics. It is complementary to the annual Computational Psychiatry Course and serves to build bridges between computational scientists and clinicians. It is designed to foster in-depth exchange, with ample time for discussion.

Objective
Understanding strengths and weaknesses of current trends in the development of computationally relevant tools and their application to problems in psychiatry and psychosomatics.

Content
This seminar deals with the development of computational tools (e.g. generative models, machine learning) and their application to psychiatry and psychosomatics. The seminar includes (i) presentations by computational scientists and clinicians, (ii) group discussion with focus on methodology and clinical utility, (iii) self-study based on literature provided by presenters.

Prerequisites / notice
Participants are expected to be familiar with general principles of statistics (including Bayesian statistics) and have successfully completed the course “Computational Psychiatry” (Course number 227-0971-00L).

Biology Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0399-10L</td>
<td>Physiology and Anatomy for Biomedical Engineers I</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Wyss</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- The Human Body: nomenclature, orientations, tissues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Musculoskeletal system, Muscle contraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Blood vessels, Heart, Circulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Blood, Immune system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Respiratory system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Acid-Base-Homeostasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Lecture notes and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Silbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faller A., Schuenke M. The Human Body; Thieme 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netter F. Atlas of human anatomy; Elsevier 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0945-00L</td>
<td>Cell and Molecular Biology for Engineers I</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>C. Frei</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Lectures will include the following topics (part I and II): DNA, chromosomes, genome engineering, RNA, proteins, genetics, synthetic biology, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer and stem cells.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0949-00L</td>
<td>Biological Methods for Engineers (Basic Lab)</td>
<td>W</td>
<td>3</td>
<td>5P</td>
<td>C. Frei</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course during 7 afternoons (13h to 18h) covers basic laboratory skills and safety, cell culture, protein analysis, RNA/DNA Isolation and RT-PCR. Each topic will be introduced, followed by practical work at the bench. Presence during the course is mandatory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Enrollment is limited and students from the Master's programme in Biomedical Engineering (BME) have priority.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Domain A - Subject-specific Competencies

Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed
Decision-making assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management assessed

Domain C - Social Competencies

Communication assessed
Cooperation and Teamwork assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies

Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

Biomechanics

Track Core Courses

During the Master programme, a minimum of 12 CP must be obtained from track core courses.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0385-10L</td>
<td>Biomedical Imaging</td>
<td>W</td>
<td>6 credits</td>
<td>5G</td>
<td>S. Kozerke, K. P. Prüsmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Content | - X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging |
| Lecture notes | Lecture notes and handouts |
| Literature | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 |
| Prerequisites / notice | Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming |

227-0386-00L	Biomedical Engineering	W	4 credits	3G	J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong
Abstract	Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.				
Objective	Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.				
Lecture notes	Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino				
Literature	https://lbb.ethz.ch/education/biomedical-engineering.html				

| 227-0447-00L | Image Analysis and Computer Vision | W | 6 credits | 3V+1U | L. Van Gool, E. Konukoglu, F. Yu |
| Objective | Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises. |
This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer. The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examplary and AI-based approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.
Recommended Elective Courses

These courses are particularly recommended for the Biomechanics track. Please consult your track advisor if you wish to select other subjects.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0524-00L</td>
<td>Continuum Mechanics I</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>E. Mazza, A. E. Ehret</td>
<td>assessed</td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture deals with constitutive models that are relevant for design and calculation of structures. These include anisotropic linear elasticity, linear viscoelasticity, plasticity, viscoplasticity. Homogenization theories and laminate theory are presented. Theoretical models are complemented by examples of engineering applications and experiments.</td>
<td>en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Basic theories for solving continuum mechanics problems of engineering applications, with particular attention to material models.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Anisotropic elasticity, Linear elastic and linear viscous material behavior, Viscoelasticity, Micro-macro modelling, Laminate theory, Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0601-00L</td>
<td>Theory of Robotics and Mechatronics</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>P. Korba, S. Stoeter</td>
<td>assessed</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.</td>
<td>en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0604-00L</td>
<td>Microrobotics</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>B. Nelson, N. Shamsudhin</td>
<td>assessed</td>
</tr>
<tr>
<td>Abstract</td>
<td>Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.</td>
<td>en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Main topics of the course include:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Scaling laws at micro/nano scales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Electrostatics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Electromagnetism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Low Reynolds number flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Observation tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Materials and fabrication methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Applications of biomedical microrobots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>The lecture will be taught in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0605-00L</td>
<td>Nanosystems</td>
<td>W</td>
<td>4</td>
<td>4G</td>
<td>A. Stemmer</td>
<td>assessed</td>
</tr>
<tr>
<td>Abstract</td>
<td>From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures. Special emphasis on the emerging field of molecular electronic devices.</td>
<td>en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Familiarize students with basic science and engineering principles governing the nano domain.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Familiarity with basic concepts of quantum mechanics is expected.

Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled.

Topics are treated in 2 blocks:

(I) From Quantum to Continuum
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.

(II) Interaction Forces on the Micro and Nano Scale
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.

Self-assembly and directed assembly of 2D and 3D structures.

Literature

Project-oriented learning on how to develop technological solutions to address unmet clinical needs.

After completing the course, you will be able to effectively collaborate with medical doctors in order to identify important unmet clinical needs. You will be able to ideate and develop appropriate engineering solutions and implementation strategies for real-world clinical problems. This course aims to prepare you for typical engineering challenges in the real-world where - in addition to the development of an elegant solution - interdisciplinary team work and effective communication play a key role. The immediate results reported in the paper. Each Mini-Review will be presented both orally and as a written paper.

Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond what is immediately reported in the paper. Each Mini-Review will be presented both orally and as a written paper.

text
Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.

Lecture notes
All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1219-00L</td>
<td>Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions</td>
<td>3</td>
<td>W</td>
<td>R. Riener, O. Lambercy</td>
</tr>
</tbody>
</table>

Abstract
Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society. The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.

Objective
Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

Content
Introduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
Brain stimulation and recording
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces

Selected Journal Articles and Web Links:

VideoTact, ForeThought Development, LLC. http://my.execpc.com/?dwysocki/videotac.html

Target Group:
Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK, D-HEST - Biomedical Engineering, Robotics, Systems and Control - Medical Faculty, University of Zurich - Students of other departments, faculties, courses are also welcome

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

Prerequisites / notice

Literature

Autumn Semester 2021

Page 353 of 2152
Micro/Nanotechnology and Microfluidics for Biomedical Applications

Abstract
This course is an introduction to techniques in micro/nanotechnology and to microfluidics. It reviews how many familiar devices are built and can be used for research and biomedical applications. Transistors for DNA sequencing, beamers for patterning proteins, hard-disk technology for biosensing and microfluidics for point-of-care diagnostics are just a few examples of the covered topics. The main objective of the course is to introduce micro/nanotechnology and microfluidics to students having any technical background. The course is multi-disciplinary and covers a broad range of techniques. For each lecture, a historical perspective is given to illustrate by whom and how the techniques were invented. The course should familiarize the students with the techniques used in micro/nanotechnology, cleanroom microfabrication, and show them how micro/nanotechnology pervades throughout life sciences. Microfluidics will be emphasized due to their increasing importance in research and for medical applications. The second objective is to have life sciences students less intimidated by micro/nanotechnology and make them able to link instruments and techniques to specific problems that they might have in their projects/studies. This will also help students getting access to the ETHZ/IBM Nanotech Center infrastructure if needed.

Content
Mostly formal lectures (2 × 45 min), with a 2 hour visit of the Binnig and Rohrer Nanotechnology Center (Rueschlikon) and introduction to cleanroom and micro/nanotechnology instruments, last 3 weeks would be dedicated to the presentation and evaluation of projects by students (2 to 3 students per team). For this, about 10 recent technologies are listed and each team picks a technology and makes a short report and presentation describing how it works, its strengths and weaknesses, and describes what problem it solves.

In terms of technical content, the lectures will cover:
- an overview of the microelectronic industry, Moore’s law, field-effect transistors, next-generation DNA sequencing
- liquid crystal displays, organic light emitting diodes, electrophoretic displays, micromirrors and beamers, photopatterning of proteins and cells, optogenetics, and flexible displays and electronics
- hard disk drives and the giant magnetoresistance effect, magnetic nanoparticles, photonics, magnetic sensing and optical biosensing
- cleanroom techniques and instruments, from design to microfabrication of simple devices and microfluidics, examples of DNA microarrays
- the principles of microfluidics, microfluidic functions and fabrication, from microfluidics for research to point-of-care diagnostics, and the (infamous) history of Theranos, as well as some discussions on diagnostics for COVID, R0, and (im)precision of diagnostic devices and why it matters
- hobby electronics, making a device for 10$ and controlling it using a smartphone

Prerequisites / notice
The nanotech center and labs visit at IBM would be mandatory, as well as attending the student project presentations.

Colloquium in Biomechanics

Abstract
Students will learn to import, process and graphically present experimental data using the MATLAB computing environment. Both the data and the methods of analysis will be typical for experiments in Human Movement Science (i.e. kinematics, kinetics and electromyography). Students will acquire the ability to independently load, plot, and process kinematic, kinetic and electromyographical data using the MATLAB computing environment.

Objective
Drawbacks of Excel; Possibilities in MATLAB; Import of several data formats; Plot of one and more signals; Removing of an offset and filtering of data based on self-written functions; Normalisation and parametrisation of data; Reliability; Interpolation, Differentiation and Integration in MATLAB.

Content
During the lecture, several electronically available MATLAB introductions are indicated. Course-specific scripts will be provided by the lecturer.

Prerequisites / notice
A Laptop with MATLAB installed (v2009 or higher) and wireless internet access is mandatory. Two students can share a laptop if necessary. A MATLAB student version can be obtained at Stud-IDES for free.

Biomechanics of Sports Injuries and Rehabilitation

Abstract
This lecture introduces the basic principles of injury mechanics and rehabilitation focussing on sports injuries. Within the scope of this lecture you will learn the basic principles of trauma biomechanics. Based on examples from sports, you will get to know different mechanisms that can possibly result in injury. Investigating the background and cause of injury should allow you to assess the injury risk for sports activities. Furthermore you should be able to develop measures to prevent such injury.

Objective
This lecture deals with the basic principles of injury mechanics and rehabilitation. Mechanisms that can result in injury are presented. Furthermore possibilities to prevent injuries are discussed. Thereby the lecture focuses on sports injuries.

Lecture notes
Handouts will be made available.

Literature

Prerequisites / notice
A course work is required. The mark of this course work contributes to the final credits for this lecture. Details will be given during the first lecture.

Physics in Medical Research: From Atoms to Cells

Abstract
Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitalxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.
The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxido and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultraviolet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

X-rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue's anisotropies of biopsies.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0399-10L</td>
<td>Physiology and Anatomy for Biomedical Engineers I</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Wyss</td>
</tr>
<tr>
<td>227-0945-00L</td>
<td>Cell and Molecular Biology for Engineers I</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>C. Frei</td>
</tr>
</tbody>
</table>

Biology Courses

- **Biostatistics**
 - **465-0953-00L**
 - **Title**: Does not take place this semester.
 - **Type**: W
 - **ECTS**: 4 credits
 - **Hours**: 2V+1U
 - **Lecturers**: C. Frei

- **Physiology and Anatomy for Biomedical Engineers I**
 - **Number**: 227-0399-10L
 - **Title**: This course offers an introduction into the structure and function of the human body, and how these are interlinked with one another.
 - **Abstract**: Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging.
 - **Objective**: To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research.
 - **Content**: - The Human Body: nomenclature, orientations, tissues - Musculoskeletal system, Muscle contraction - Blood vessels, Heart, Circulation - Blood, Immune system - Respiratory system - Acid-Base-Homeostasis
 - **Lecture notes**: Lecture notes and handouts

- **Cell and Molecular Biology for Engineers I**
 - **Number**: 227-0945-00L
 - **Title**: This course is part I of a two-semester course.
 - **Abstract**: The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.
 - **Objective**: After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.
 - **Content**: Lectures will include the following topics (part I and II); DNA, chromosomes, genome engineering, RNA, proteins, genetics, synthetic biology, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer and stem cells.
 - **Lecture notes**: Scripts of all lectures will be available.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: not assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

Biological Methods for Engineers (Basic Lab)

- **Number**: 227-0949-00L
- **Type**: W
- **ECTS**: 3 credits
- **Hours**: 5P
- **Lecturer**: C. Frei

Abstract
The course during 7 afternoons (13h to 18h) covers basic laboratory skills and safety, cell culture, protein analysis, RNA/DNA Isolation and RT-PCR. Each topic will be introduced, followed by practical work at the bench. Presence during the course is mandatory.

Objective
The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology. The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology.

Content
- Enrollment is limited and students from the Master's programme in Biomedical Engineering (BME) have priority.

Medical Physics

Track Core Courses

During the Master programme, a minimum of 12 CP must be obtained from track core courses.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0311-00L</td>
<td>Qubits, Electrons, Photons</td>
<td>W</td>
<td>6 credits</td>
<td>3V+2U</td>
<td>T. Zambelli</td>
</tr>
</tbody>
</table>

Abstract
In-depth analysis of the quantum mechanics origin of nuclear magnetic resonance (qubits, two-level systems), of LASER (quantization of the electromagnetic field, photons), and of electron transfer (from electrochemistry to photosynthesis).

Objective
Beside electronics nanodevices, D-ITET is pushing its research in the fields of NMR (MRI), electrochemistry, bioelectronics, nano-optics, and quantum information, which are all rationalized in terms of quantum mechanics.

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

- Lagrangian and Hamiltonian: Symmetries and Poisson Brackets
- Postulates of QM: Hilbert Spaces and Operators
- Heisenberg’s Matrix Mechanics: Hamiltonian and Time Evolution Operator
- Spin: Qubits, Bloch Equations, and NMR
- Entanglement
- Symmetries and Corresponding Operators
- Schrödinger’s Wave Mechanics: Electrons in a Periodic Potential and Energy Bands
- Harmonic Oscillator: Creation and Annihilation Operators
- Identical Particles: Bosons and Fermions
- Quantization of the Electromagnetic Field: Photons, Absorption and Emission, LASER
- Electron Transfer: Marcus Theory via Born-Oppenheimer, Franck-Condon, Landau-Zener
Lecture notes

No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive!

Literature

Supplementary material will be uploaded in Moodle.

Communication

M. Pruschy

5G

Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011

By the end of this course the participants will be able to:

To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission

Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.

No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive!

Supplementary material will be uploaded in Moodle.

Prerequisites / notice

The course has been intentionally conceived to be self-consistent with respect to QM for those master students not having encountered it in their track yet. Therefore, a presumably large overlapping has to be expected with a (welcome!) QM introduction course like the D-ITET “Physics II”.

A solid base of Analysis I & II as well as of Linear Algebra is really helpful.

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises!). Please, look at the details in moodle!

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories

Techniques and Technologies

Not assessed

Domain B - Method-specific Competencies

Analytical Competencies

Decision-making

Assessed

Media and Digital Technologies

Not assessed

Problem-solving

Assessed

Project Management

Assessed

Domain C - Social Competencies

Communication

Not assessed

Cooperation and Teamwork

Not assessed

Customer Orientation

Not assessed

Leadership and Responsibility

Not assessed

Self-presentation and Social Influence

Not assessed

Sensitivity to Diversity

Assessed

Negotiation

Not assessed

Domain D - Personal Competencies

Adaptability and Flexibility

Assessed

Creative Thinking

Assessed

Critical Thinking

Assessed

Integrity and Work Ethics

Assessed

Self-awareness and Self-reflection

Assessed

Self-direction and Self-management

Assessed

227-0385-10L

Biomedical Imaging

W 6 credits 5G S. Kozerke, K. P. Prüssmann

Abstract

Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.

Objective

To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.

Content

- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging

Lecture notes

Lecture notes and handouts

Literature

Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011

Prerequisites / notice

Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming

227-0943-00L

Radiobiology

W 2 credits 2V M. Pruschy

Abstract

The purpose of this course is to impart basic knowledge in radiobiology in order to handle ionizing radiation and to provide a basis for predicting the radiation risk.

Objective

By the end of this course the participants will be able to:

a) interpret the 5 Rs of radiation oncology in the context of the hallmarks of cancer
b) understand factors which underpin the differing radiosensitivities of different tumors
c) follow rational strategies for combined treatment modalities of ionizing radiation with targeted agents
d) understand differences in the radiation response of normal tissue versus tumor tissue
e) understand different treatment responses of the tumor and the normal tissue to differential clinical-related parameters of radiotherapy (dose rate, LET etc.).

Content

Einführung in die Strahlenbiologie ionisierender Strahlen: Allgemeine Grundlagen und Begriffsbestimmungen; Mechanismen der biologischen Strahlenwirkung: Strahlenschutz auf Zellen, Gewebe und Organe; Modifikation der biologischen Strahlenwirkung; Strahlencytogenetik: Chromosomenveränderungen, DNA-Defekte, Reparaturprozesse; Molekulare Strahlenbiologie; Bedeutung inter- und intrazellulärer Signalübermittlungsprozesse, Apoptose, Zellzyklus-Checkpoints; Strahlenrisiko; Strahlensyndrome, Krebsinduktion, Mutationsauslösung, pränatale Strahlenwirkung; Strahlenbiologische Grundlagen des Strahlenschutzes; Nutzen-Risiko-Abwägungen bei der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung.

Lecture notes

Beilagen mit zusammenfassenden Texten, Tabellen, Bild- und Grafikdarstellungen werden abgegeben
This lecture will provide a detailed introduction to radiotherapy treatment planning. The course considers the physical interactions of ionizing radiation and its physical and biological effects. The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein adsorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxodic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need for students of the MAS in Medical Physics (Specialization A) the performance assessment is offered at the earliest in the second year of the studies.

Recommended Elective Courses

These courses are particularly recommended for the Medical Physics track. Please consult your track advisor if you wish to select other subjects.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0674-00L</td>
<td>Physics in Medical Research: From Atoms to Cells</td>
<td>W</td>
<td>6</td>
<td>2+1</td>
<td>B. K. R. Müller</td>
</tr>
<tr>
<td></td>
<td>Scanning probe and diffraction techniques allow studying activated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>atomic processes during early stages of epilaxial growth. For</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>quantitative description, rate equation analysis, mean-field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nucleation and scaling theories are applied on systems ranging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from simple to complex situations. Fundamentals in dosimetry will</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be provided in order to understand the physical and biological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>effects of ionizing radiation. Deterministic as well as stochastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>effects will be discussed and fundamental knowledge about</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>radiation protection will be provided. In the second part of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lecture series, we will cover the generation of ionizing radiation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>By this means, the x-ray tube, the clinical linear accelerator, and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>different radioactive sources in radiology, radiotherapy and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nuclear medicine will be addressed. Applications in radiotherapy,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nuclear medicine and radiotherapy will be described with a special</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>focus on the physics underlying these applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The lecture series is motivated by an overview covering the skin of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the crystals, roughness analysis, contact angle measurements, protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>absorption/activity and monocyte behaviour.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0941-00L</td>
<td>Physics and Mathematics of Radiotherapy Planning (University of</td>
<td>W</td>
<td>6</td>
<td>3</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>Zurich)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UZH Module Code: PHY471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://www.uzh.ch/cmsssl/en/studies/application/deadline s.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basic Clinical Radiobiology, edited by Joiner, van der Kogel, 2018
Radiotherapy is one of the main treatment options against cancer. Today, more than 50% of cancer patients receive radiation as part of their treatment. Modern radiotherapy is a highly technology driven field.

Research and development in medical physics has improved the precision of radiotherapy substantially. Using intensity-modulated radiotherapy (IMRT), radiation can be delivered precisely to tumors while minimizing radiation exposure of healthy organs surrounding the tumor. Thereby, medical physics has provided radiation oncologists with new curative treatment approaches where previously only palliative treatments were possible. This lecture will provide a detailed introduction to radiotherapy treatment planning and will consists of three blocks:

1. The first part of the course considers the physical interactions of radiation in tissue. The physical interactions give rise to dose calculation algorithms, which are used to calculate the absorbed radiation dose based on a CT scan of the patient.

2. The second part considers the mathematical aspects of treatment planning. Mathematical optimization techniques are introduced, which are used in intensity-modulated radiotherapy to determine the external radiation fields that optimally irradiate the tumor while minimizing radiation dose to healthy organs.

3. The third part deals with additional aspects of central importance for radiotherapy planning. This includes biomedical imaging techniques for treatment planning and target delineation as well as image registration algorithms.

The lectures are followed by computational exercises where students implement the main components of a radiotherapy treatment planning systems in two dimensions in Matlab.

>>> Other Elective Courses

These courses may be suitable for the Medical Physics track. Please consult your track advisor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0447-00L</td>
<td>Image Analysis and Computer Vision</td>
<td>W</td>
<td>6</td>
<td>3V+1U</td>
<td>L. Van Gool, E. Konukoglu, F. Yu</td>
</tr>
<tr>
<td>Objective</td>
<td>Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning. The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer. The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0965-00L</td>
<td>Micro and Nano-Tomography of Biological Tissues</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>M. Stamparoni, F. Marone Welford</td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics. Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples. The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Available online</td>
<td></td>
<td></td>
<td>Will be indicated during the lecture.</td>
<td></td>
</tr>
</tbody>
</table>
- The Human Body: nomenclature, orientations, tissues
- Musculoskeletal system, Muscle contraction
- Blood vessels, Heart, Circulation
- Blood, Immune system
- Respiratory system
- Acid-Base-Homeostasis

Lecture notes: Lecture notes and handouts

Literature:
- Silbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008
- Faller A., Schuenke M. The Human Body; Thieme 2004
- Nettet F. Atlas of human anatomy; Elsevier 2014

227-0945-00L Cell and Molecular Biology for Engineers I

This course is part I of a two-semester course.

W 3 credits 2G C. Frei

Abstract:
The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.

Objective:
After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.

Content:
Lectures will include the following topics (part I and II): DNA, chromosomes, genome engineering, RNA, proteins, genetics, synthetic biology, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer and stem cells.

In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade.

Lecture notes: Scripts of all lectures will be available.

Literature:
- "Acid-Base-Homeostasis"
- "Respiratory system"
- "Blood, Immune system"
- "Blood vessels, Heart, Circulation"

Taught competencies:

- Domain A - Subject-specific Competencies: Concepts and Theories assessed
- Techniques and Technologies assessed

- Domain B - Method-specific Competencies: Analytical Competencies assessed
- Decision-making assessed
- Media and Digital Technologies not assessed
- Problem-solving assessed
- Project Management not assessed

- Domain C - Social Competencies: Communication not assessed
- Cooperation and Teamwork assessed
- Customer Orientation not assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence not assessed
- Sensitivity to Diversity not assessed
- Negotiation not assessed

- Domain D - Personal Competencies: Adaptability and Flexibility assessed
- Critical Thinking assessed
- Integrity and Work Ethics not assessed
- Self-awareness and Self-reflection not assessed
- Self-direction and Self-management not assessed

Domain D - Personal Competencies

Molecular Bioengineering

Track Core Courses

During the Master programme, a minimum of 12 CP must be obtained from track core courses.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1103-00L</td>
<td>Frontiers in Nanotechnology</td>
<td>W</td>
<td>4</td>
<td>4V</td>
<td>V. Vogel, further lecturers</td>
</tr>
</tbody>
</table>

Abstract:
Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.

Objective:
Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently sizzling in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.

Content:
Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.

Lecture notes: All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1714-00L</td>
<td>Biocompatible Materials</td>
<td>W</td>
<td>4</td>
<td>3V</td>
<td>K. Maniura, M. Rottmar, M. Zenobi-Wong</td>
</tr>
</tbody>
</table>
The course covers the following topics:
1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. Biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.

Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated.

Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explaned materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Lecture notes
Handouts are deposited online (moodle).

Literature

(available online via ETH library)
Handouts and references therin.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Teaching Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0674-00L</td>
<td>Physics in Medical Research: From Atoms to Cells</td>
<td>W</td>
<td>6 credits</td>
</tr>
<tr>
<td>B. K. R. Müller</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.

Objective
The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocye behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

X rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue's anisotropies of biopsies.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Teaching Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>465-0953-00L</td>
<td>Biostatistics</td>
<td>W</td>
<td>4 credits</td>
</tr>
</tbody>
</table>

Objective
- know the commonly used methods in biostatistics
- perform simple data analysis with R

Handouts and references therin.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Teaching Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0108-00L</td>
<td>Biological Engineering and Biotechnology</td>
<td>W</td>
<td>4 credits</td>
</tr>
<tr>
<td>M. Fussenegger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Objective
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content
The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.

Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.

After completing the course, you will be able to effectively collaborate with medical doctors in order to identify important unmet clinical needs. You will be able to ideate and develop appropriate engineering solutions and implementation strategies for real-world problems. This lecture aims to prepare you for typical engineering challenges in the real-world where - in addition to the development of an elegant solution - interdisciplinary team work and effective communication play a key role.

The lecture will be taught in English.

In-depth analysis of the quantum mechanics origin of nuclear magnetic resonance (qubits, two-level systems), of LASER (quantization of the electromagnetic field, photons), and of electron transfer (from electrochemistry to photosynthesis).

Beside electronics nanodevices, D-ITET is pushing its research in the fields of NMR (MRI), electrochemistry, bioelectronics, nano-optics, and quantum information, which are all rationalized in terms of quantum mechanics.

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and quantum information, which are all rationalized in terms of quantum mechanics.

In this way, students will work out a robust quantum mechanics (theoretical) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.

The course concludes with an end-of-semester examination.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0604-00L</td>
<td>Microrobotics</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>B. Nelson, N. Shamsudhin</td>
</tr>
<tr>
<td>Abstract</td>
<td>Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Main topics of the course include:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Scaling laws at micro/nano scales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Electrostatics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Electromagnetism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Low Reynolds number flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Observation tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Materials and fabrication methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Applications of biomedical microrobots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The lecture will be taught in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0905-00L</td>
<td>Medical Technology Innovation - From Concept to Clincs</td>
<td>W</td>
<td>4</td>
<td>3P</td>
<td>I. Herrmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>Project-oriented learning on how to develop technological solutions to address unmet clinical needs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>After completing the course, you will be able to effectively collaborate with medical doctors in order to identify important unmet clinical needs. You will be able to ideate and develop appropriate engineering solutions and implementation strategies for real-world clinical problems. This lecture aims to prepare you for typical engineering challenges in the real-world where - in addition to the development of an elegant solution - interdisciplinary team work and effective communication play a key role.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>will be available on the moodle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Techniques and Technologies assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Decision-making assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Problem-solving assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Cooperation and Teamwork assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Customer Orientation assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Leadership and Responsibility assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Self-presentation and Social Influence assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Sensitivity to Diversity assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Negotiation assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Critical Thinking assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Integrity and Work Ethics assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Self-awareness and Self-reflection assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Self-direction and Self-management assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0311-00L</td>
<td>Qubits, Electrons, Photons</td>
<td>W</td>
<td>6</td>
<td>3V+2U</td>
<td>T. Zambelli</td>
</tr>
<tr>
<td>Abstract</td>
<td>In-depth analysis of the quantum mechanics origin of nuclear magnetic resonance (qubits, two-level systems), of LASER (quantization of the electromagnetic field, photons), and of electron transfer (from electrochemistry to photosynthesis).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Beside electronics nanodevices, D-ITET is pushing its research in the fields of NMR (MRI), electrochemistry, bioelectronics, nano-optics, and quantum information, which are all rationalized in terms of quantum mechanics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

!!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!!
Literature

Supplementary material will be uploaded in Moodle.

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain A - Subject-specific Competencies</td>
</tr>
<tr>
<td></td>
<td>Concepts and Theories</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
</tr>
<tr>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
</tr>
<tr>
<td></td>
<td>Analytical Competencies</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
</tr>
<tr>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
</tr>
<tr>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
</tr>
<tr>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
</tr>
<tr>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
</tr>
<tr>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
</tr>
<tr>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
</tr>
<tr>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
</tr>
<tr>
<td></td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
</tr>
</tbody>
</table>

227-0385-10L Biomedical Imaging

<table>
<thead>
<tr>
<th>W</th>
<th>6 credits</th>
<th>5G</th>
<th>S. Kozerke, K. P. Prüssmann</th>
</tr>
</thead>
</table>

Abstract

Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.

Objective

To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.

Content

- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging

Lecture notes

Lecture notes and handouts

Literature

WEBB A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011

Prerequisites / notice

Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming

<table>
<thead>
<tr>
<th>227-0386-00L Biomedical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
</tr>
</tbody>
</table>

Abstract

Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.

Objective

Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.

Content

Lecture notes

Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino

AND

https://lbb.ethz.ch/education/biomedical-engineering.html
Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with the course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of bioelectricity and biosensors.

2V+2U

Bioelectronics and Biosensors

L1. Bioelectronics history, its applications and overview of the field
 - Volta and Galvani dispute
 - BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
 - Fundamentals of biosensing
 - Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
 - Differential equation for quartz crystal resonance
 - Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
 - Differential equation for optical waveguides
 - Optical sensors and their applications
 - Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
 - Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
 - Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
 - Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
 - Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
 - Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
 - Principles of operation of amperometric sensors
 - Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
 - MEA and CMOS based recording
 - Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning

The course requires an open attitude to the interdisciplinary approach of bioelectronics. In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.).

Micro and Nano-Tomography of Biological Tissues

2G

Micro and Nano-Tomography of Biological Tissues
The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics.

Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications.

Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Cross-Disciplinary Research and Development in Medicine and Engineering

A maximum of 12 medical degree students and 12 (biomedical) engineering degree students can be admitted, their number should be equal.

Cross-disciplinary collaboration between engineers and medical doctors is indispensable for innovation in health care. This course will bring together engineering students from ETH Zurich and medical students from the University of Zurich to experience the rewards and challenges of such interdisciplinary work in a project based learning environment.
Content

After a general introduction to interdisciplinary communication and detailed background on the collaborative project, the engineering students will team up with medical students to find solutions to a biomedical challenge. In the process, they will be supervised both by lecturers from ETH Zürich and the University of Zürich, receiving coaching customized to the project. The course will end with each team presenting their solution to a cross-disciplinary audience.

Lecture notes

Handouts and relevant literature will be provided.

Prerequisites / notice

IMPORTANT: Note that a special permission from the lecturers is required to register for this course. Contact the head lecturer to that end.

Taught competencies

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th>Analytical Competencies</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>assessed</td>
</tr>
</tbody>
</table>

327-0505-00L

Surfaces, Interfaces and their Applications I

Objective

To gain an understanding of the physical and chemical principles, as well as the tools and applications of surface science, and to be able to choose appropriate surface-analytical approaches for solving problems.

Domain B - Method-specific Competencies

- Analytical Competencies
 - Problem-solving
 - Project Management

Domain C - Social Competencies

- Communication
 - Cooperation and Teamwork
 - Customer Orientation

Literature

Prerequisites / notice

Chemistry:

- General undergraduate chemistry
 - including basic chemical kinetics and thermodynamics

Physics:

- General undergraduate physics
 - including basic theory of diffraction and basic knowledge of crystal structures

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
</tbody>
</table>

327-1101-00L

Biominalization

Objective

The course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biomineralization. The course aims to introduce the basic concepts of biomineralization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field.

Content

Biomineralization is a multidisciplinary field. Topics dealing with biology, molecular and cell biology, solid state physics, mineralogy, crystallography, organic and physical chemistry, biochemistry, dentistry, oceanography, geology, etc. are addressed. The course covers definition and general concepts of biomineralization (BM), types of biominerals and their function/crystal nucleation and growth/biological induction of BM/control of crystal morphology, habit, shape and orientation by organisms/strategies of compartmentalization/the interface between biomolecules (peptides, polysaccharides) and the mineral phase/modern experimental methods for studying BM phenomena/inter-, intra, extra- and epicellular BM/organic templates and matrices for BM/structure of bone, teeth (vertebrates and invertebrates) and mollusk shells/calcification/silification/calcium and iron storage/impact of BM on lithosphere and atmosphere/evolution/taxonomy of organisms.

- Introduction and overview
- Biominerals and their functions
- Chemical control of biomineralization
- Control of morphology: Organic templates and additives
- Modern methods of investigation of BM
- BM in matrices: bone and nacre
- Vertebrate teeth
- Invertebrate teeth
- BM within vesicles: calcite of coccoliths
- Silica
- Iron storage and mineralization
Citations from the original literature relevant to the individual lectures will be assigned weekly.

Medical Physics I

Objective

The course aims to learn how to design polymerization reactors and bioreactors to produce polymers with proteins and with specific product qualities that are required by different applications in chemical, pharmaceutical, and food industry. This includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior.

Content

We will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes. Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfactants and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials.

Lecture notes

Scripts are available on the web page of the Arosio-group: http://www.arosio-group.ethz.ch/education.html Additional handout of slides will be provided during the lectures.

Literature

H.W. Blanch, D. S. Clark, Biochemical Engineering, CRC Press, 1995

Drug Delivery and Drug Targeting

W 2 credits 1.5V J.-C. Leroux, A. Steinaker

The students gain an overview on current principles, methodologies, and systems for controlled delivery and targeting of drugs. This enables the students to understand and evaluate the field in terms of scientific criteria.

Objective

The students dispose of an overview on current principles and systems for the controlled delivery and targeting of drugs. The focus of the course lies on developing a capacity to understand the involved technologies and methods, as well as an appreciation of the chances and constraints of their therapeutic usage, with prime attention on anticancer drugs, therapeutic peptides, proteins, nucleic acids and vaccines.

Content

The course covers the following topics: drug targeting and delivery principles, macromolecular drug carriers, liposomes, micelles, micro/nanoparticles, gels, and implants, administration of vaccines, targeting at the gastrointestinal level, synthetic carriers for nucleic acid drugs, ophthalmic devices, novel trends in transdermal and nasal drug delivery and 3D printing of drug delivery systems.

Lecture notes

Selected lecture notes, documents, and supporting material will be directly provided or may be downloaded from the course website.

Literature

Further references will be provided in the course.
Synthetic Biology II

Abstract

7 months biological design project, during which the students are required to give presentations on advanced topics in synthetic biology (specifically genetic circuit design) and then select their own biological system to design. The system is subsequently modeled, analyzed, and experimentally implemented. Results are presented at an international student competition at the MIT (Cambridge).

Objective

The students are supposed to acquire a deep understanding of the process of biological design including model representation of a biological system, its thorough analysis, and the subsequent experimental implementation of the system and the related problems.

Content

Presentations on advanced synthetic biology topics (eg genetic circuit design, adaptation of systems dynamics, analytical concepts, large scale de novo DNA synthesis), project selection, modeling of selected biological system, design space exploration, sensitivity analysis, conversion into DNA sequence, (DNA synthesis external) implementation and analysis of design, summary of results in form of scientific presentation and poster, presentation of results at the iGEM international student competition (www.igem.org).

This project takes place between end of Spring Semester and beginning of Autumn Semester. Registration in April.

Please note that the number of ECTS credits and the actual work load are disconnected.

Other Elective Courses

Note: These courses may be suitable for the Molecular Bioengineering track. Please consult your track advisor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0313-00L</td>
<td>Microbiology (Part I)</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>W. D. Hardt, L. Eberl, J. Piel, M. Pilhofer</td>
</tr>
</tbody>
</table>

Abstract

Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Objective

This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Content

Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Lecture notes

Updated handouts will be provided during the class.

Literature

Current literature references will be provided during the lectures.

Prerequisites / notice

English

The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.

Biology Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0399-10L</td>
<td>Physiology and Anatomy for Biomedical Engineers I</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Wyss</td>
</tr>
</tbody>
</table>

Abstract

This course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging.

Objective

To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research.

Content

- The Human Body: nomenclature, orientations, tissues
- Musculoskeletal system, Muscle contraction
- Blood vessels, Heart, Circulation
- Blood, Immune system
- Respiratory system
- Acid-Base-Homeostasis

Lecture notes

Lecture notes and handouts

Literature

Silbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008
Faller A., Schuenke M. The Human Body; Thieme 2004
Netter F. Atlas of human anatomy; Elsevier 2014

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0945-00L</td>
<td>Cell and Molecular Biology for Engineers I</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>C. Frei</td>
</tr>
</tbody>
</table>

This course is part I of a two-semester course.
Abstract
The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.

Objective
After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.

Content
Lectures will include the following topics (part I and II): DNA, chromosomes, genome engineering, RNA, proteins, genetics, synthetic biology, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer and stem cells.

In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II).
For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade.

Lecture notes
Scripts of all lectures will be available.

Literature

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Techniques and Technologies</th>
<th>Conceptual and Theoretical</th>
<th>Problem-solving</th>
<th>Media and Digital Technologies</th>
<th>Decision-making</th>
<th>Media and Digital Technologies</th>
<th>Decision-making</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>B</td>
<td>Analytical Competencies</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>C</td>
<td>Communication</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>D</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
</tbody>
</table>

227-0949-00L Biological Methods for Engineers (Basic Lab) W 3 credits 5P C. Frei

Number of participants limited to 10.

Abstract
The course during 7 afternoons (13h to 18h) covers basic laboratory skills and safety, cell culture, protein analysis, RNA/DNA Isolation and RT-PCR. Each topic will be introduced, followed by practical work at the bench. Presence during the course is mandatory.

Objective
The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology.

Content
The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology.

Prerequisites / notice
Enrollment is limited and students from the Master's programme in Biomedical Engineering (BME) have priority.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Techniques and Technologies</th>
<th>Conceptual and Theoretical</th>
<th>Problem-solving</th>
<th>Media and Digital Technologies</th>
<th>Decision-making</th>
<th>Media and Digital Technologies</th>
<th>Decision-making</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>B</td>
<td>Analytical Competencies</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>C</td>
<td>Communication</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>D</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Projects and Laboratory Courses

Semester Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1101-00L</td>
<td>How to Write Scientific Texts</td>
<td>E-</td>
<td>0</td>
<td></td>
<td>U. Koch</td>
</tr>
</tbody>
</table>

Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME; MSc EEIT; MSc EST).

Abstract
The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training. The lecture will be thought on two afternoons. Some exercises will be built into the lecture.
Objective

Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.

Content

* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures).
* Topic 2: Power Point Presentations.
* Topic 3: Citation Rules and Citation Software.
* Topic 4: Guidelines for Research Integrity.

Literature

ETH "Citation Etiquette", see www.plagiate.ethz.ch.

Prerequisites / notice

Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1772-10L</td>
<td>Semester Project</td>
<td>O</td>
<td>12 credits</td>
<td>20A</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Registration in mystudies required!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The semester project is designed to train the students in solving specific biomedical engineering problems. This project uses the technical and social skills acquired during the master's program. The semester project is advised by a professor.

Objective

see above

Additional Projects and Laboratory Courses (ONLY for Progr. Reg. 2020)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1772-20L</td>
<td>Semester Project 2</td>
<td>W</td>
<td>12 credits</td>
<td>20A</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Only for Programme Regulations 2020.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration in mystudies required!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The semester project is designed to train the students in solving specific biomedical engineering problems. This project uses the technical and social skills acquired during the master's program. The semester project is advised by a professor.

Objective

see above

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1775-00L</td>
<td>Internship in Industry</td>
<td>W</td>
<td>12 credits</td>
<td></td>
<td>external organisers</td>
</tr>
<tr>
<td></td>
<td>Only for Biomedical Engineering MSc (Programme Regulations 2020).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The main objective of the 12-week internship is to expose master's students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institution.

Objective

see above

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1760-00L</td>
<td>Research Project (long)</td>
<td>W</td>
<td>24 credits</td>
<td>40A</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Only for Biomedical Engineering MSc (Programme Regulations 2020).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The aim of the long research project is to perform a larger (exploratory) scientific study or a larger development project in a team. The duration of this project is at least four months (full-time) and it is finished with a report and/or prototype.

Objective

see above

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1101-00L</td>
<td>How to Write Scientific Texts</td>
<td>E-</td>
<td>0 credits</td>
<td>U. Koch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training. The lecture will be thought on two afternoons. Some exercises will be built into the lecture.

Objective

Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.

Content

* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures).
* Topic 2: Power Point Presentations.
* Topic 3: Citation Rules and Citation Software.
* Topic 4: Guidelines for Research Integrity.

Literature

ETH "Citation Etiquette", see www.plagiate.ethz.ch.

Prerequisites / notice

Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1700-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30 credits</td>
<td>40D</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Admission only if all the following apply:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. bachelor program successful completed;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. any additional requirements necessary to gain admission to the master program BME have been successfully completed;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. both the semester project and (if applicable) the internship successfully completed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration in myStudies required!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 369 of 2152
Abstract

The masters program culminates in a six months research project which addresses a scientific research question on one's chosen area of specialization. The masters thesis is supervised by a program-affiliated faculty member and the topic must be approved by the track advisor.

Objective

see above

GESS Science in Perspective

see GESS Science in Perspective: Language Courses ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-ITET.

Generally Accessible Seminars and Colloquia

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0970-00L</td>
<td>Research Topics in Biomedical Engineering</td>
<td>Z</td>
<td>0</td>
<td>1K</td>
<td>K. P. Prüssmann, S. Kozerke, K. Stephan, J. Vörös</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Current topics in Biomedical Engineering presented by speakers from academia and industry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Getting insight into actual areas and problems of Biomedical Engineering an Health Care.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0980-00L</td>
<td>Seminar on Biomedical Magnetic Resonance</td>
<td>Z</td>
<td>0</td>
<td>1S</td>
<td>K. P. Prüssmann, S. Kozerke, M. Weiger Senften</td>
</tr>
<tr>
<td>Abstract</td>
<td>Current developments and problems of magnetic resonance imaging (MRI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Getting insight into advanced topics in magnetic resonance imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biomedical Engineering Master - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Core Courses

Students need to acquire a total of 6 ECTS in lectures in this category.
The list of core courses is a closed list, no other course can be added to this category.
Students need to pass both lectures offered in this category.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

This course provides an overview of modern concepts of bioengineering across different levels of complexity, from single molecules to systems, microscaled reactors to production environments, and across different fields of applications.

Objective

Students will be able to recognize major developments in bioengineering across different organisms and levels of complexity and be able to relate it to major technological and conceptual advances in the underlying sciences.

Content

Molecular and cellular engineering; Synthetic biology; Engineering strategies in biology; from single molecules to systems; downscaling bioengineering; Bioengineering in chemistry, pharmaceutical sciences, and diagnostics, personalized medicine.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0805-00L</td>
<td>Research Project</td>
<td></td>
<td>16</td>
<td>34A</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Abstract

In a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student. Research Project duration: 12 weeks, completed with a written report.

Objective

Students get acquainted with scientific working methods and deepen their knowledge in a particular research area.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0806-00L</td>
<td>Industry Internship</td>
<td></td>
<td>16</td>
<td>34A</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Abstract

Industry internship of at least 12 weeks, completed with a written report.

Objective

Students gain experience in an industrial environment and an overview of different research areas by applying concepts taught in the courses.

Prerequisites / notice

The students look for a placement themselves.

Research Project and Industry Internship

Students can choose between Research Project OR Industry Internship. Duration: 12 weeks full-time min.
Must be carried out in a different research group/company than the master's thesis.

Master's Thesis

Students can only start with their master's thesis if
a. The BSc programme has been completed successfully
b. Assigned additional requirements for the admission to the master's degree programme have been passed
c. At least 64 ECTS have been acquired for the master's degree programme, including 22 ECTS in the core course category and the 16 ECTS in the research projects and internships category

Abstract

In the Master thesis students prove their ability to independent, structured and scientific working. The Master thesis is carried out under the supervision of a professor in a research group of the D-BSSE, usually at the D-BSSE. Students are free to choose the area.

Objective

In the Master thesis students prove their ability to independent, structured and scientific working.

Master Studies (Programme Regulations 2017)

Core Courses

Students need to acquire a total of 8 ECTS in lectures in this category.
The list of core courses is a closed list, no other course can be added to this category.
Students need to pass both lectures offered in this category.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

This course provides an overview of modern concepts of bioengineering across different levels of complexity, from single molecules to systems, microscaled reactors to production environments, and across different fields of applications.
Objective Students will be able to recognize major developments in bioengineering across different organisms and levels of complexity and be able to relate it to major technological and conceptual advances in the underlying sciences.

Content Molecular and cellular engineering; Synthetic biology; Engineering strategies in biology; from single molecules to systems; downscaling bioengineering; Bioengineering in chemistry, pharmaceutical sciences, and diagnostics, personalized medicine.

Lecture notes Handouts during class

Literature Will be announced during the course

Taught competencies Domain A - Subject-specific Competencies: Concepts and Theories assessed
Techniques and Technologies assessed

Domain D - Personal Competencies: Critical Thinking assessed

Research Projects and Internship

Students need to acquire a total of 20 ECTS in this category.

Either choose Research Project I (8 ECTS) and Research Project II (12 ECTS)
Or choose Research Project I (8 ECTS) and Industry Internship (12 ECTS)
Instead of Research Project I (8 ECTS) students may also choose Synthetic Biology II (8 ECTS)

Research Projects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0802-00L</td>
<td>Research Project I ■</td>
<td>O</td>
<td>8</td>
<td>23A</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Only for Biotechnologie Master BSc, Programme Regulations 2017.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student. Research Project I duration: 8 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students get acquainted with scientific working methods and deepen their knowledge in a particular research area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>636-0803-00L</td>
<td>Research Project II ■</td>
<td>W</td>
<td>12</td>
<td>34A</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Only for Biotechnologie Master BSc, Programme Regulations 2017.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student. Research Project II duration: 12 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students get acquainted with scientific working methods and deepen their knowledge in a particular research area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>636-0507-00L</td>
<td>Synthetic Biology II ■</td>
<td>W</td>
<td>8</td>
<td>4A</td>
<td>S. Panke, Y. Benenson, J. Stelling</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester. Students in the MSc Biotechnology (Programme Regulations 2017) may select Synthetic Biology II instead of the Research Project I.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>7 months biological design project, during which the students are required to give presentations on advanced topics in synthetic biology (specifically genetic circuit design) and then select their own biological system to design. The system is subsequently modeled, analyzed, and experimentally implemented. Results are presented at an international student competition at the MIT (Cambridge).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are supposed to acquire a deep understanding of the process of biological design including model representation of a biological system, its thorough analysis, and the subsequent experimental implementation of the system and the related problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Presentations on advanced synthetic biology topics (eg genetic circuit design, adaptation of systems dynamics, analytical concepts, large scale de novo DNA synthesis), project selection, modeling of selected biological system, design space exploration, sensitivity analysis, conversion into DNA sequence, (DNA synthesis external) implementation and analysis of design, summary of results in form of scientific presentation and poster, presentation of results at the iGEM international student competition (www.igem.org).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Handouts during course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The final presentation of the project is typically at the MIT (Cambridge, US). Other competing schools include regularly Imperial College, Cambridge University, Harvard University, UC Berkeley, Princeton University, CalTech, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This project takes place between end of Spring Semester and beginning of Autumn Semester. Registration in April.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please note that the number of ECTS credits and the actual work load are disconnected.

Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0804-00L</td>
<td>Industry Internship ■</td>
<td>W</td>
<td>12</td>
<td>34A</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Only for Biotechnologie Master BSc, Programme Regulations 2017.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Industry internship of at least 12 weeks, completed with a written report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students gain experience in an industrial environment and an overview of different research areas by applying concepts taught in the courses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The students look for a placement themselves.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0900-00L</td>
<td>Master's Thesis ■</td>
<td>O</td>
<td>40</td>
<td>91D</td>
<td>Professors</td>
</tr>
<tr>
<td>Abstract</td>
<td>In the Master thesis students prove their ability to independent, structured and scientific working. The Master thesis is carried out under the supervision of a professor in a research group of the D-BSSE, usually at the D-BSSE. Students are free to choose the area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>In the Master Thesis students prove their ability to independent, structured and scientific working.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practical Training

All listed lab courses are mandatory.
For Students in Biotechnology Master, Programme Regulation 2021: 16 ECTS in this category are mandatory.
For Students in Biotechnology Master, Programme Regulation 2017: 14 ECTS in this category are mandatory.
Lab Course: Methods in Cell Analysis and Laboratory Automation

The lab course is open for MSc Biotechnology students only.

Abstract
The course Methods in Cell Analysis and Laboratory Automation introduces students to high-end cell analysis and sample preparation methods including image analysis. Students will be taught theoretical aspects and skills in Flow Cytometry, Light Microscopy, Image Analysis, and the use of Laboratory Automation.

Objective
- to understand the technical and physical principles of light microscopes and flow cytometers
- to have hands-on experience in the use of these technologies to analyze/ image real samples
- to be able to run a basic analysis of the data and images obtained with flow cytometers and microscopes
- to get introduced to liquid handling (pipetting) robotics and learn how to implement a basic workflow

Content
The practical course will have five units at 2 days each (total 10 days):

1. Flow Cytometry:
 - a. Introduction to Flow Cytometry
 - b. Practical demonstration on flow cytometry analyzers and flow cytometry cell sorters
 - c. Flow cytometry sample preparation
 - d. Learn how to use flow cytometry equipment to analyze and sort fluorescence-labeled cells

2. Light microscopy
 - a. Learn how to build a microscope and understand the underlying physical principles
 - b. Learn how to use a modern automated wide field fluorescence microscope
 - c. Use this microscope to automatically acquire images of a cell culture assay to analyze the dose-dependent effect of a drug treatment

3. Image Analysis
 - a. Introduction to the fundamentals of image analysis
 - b. Learn the basics of the image analysis software Fiji/ImageJ
 - c. Use Fiji/ImageJ to analyze the images acquired during the microscopy exercise

4. Laboratory Automation
 - a. Introduction to the basics of automated liquid handling/ lab robotics
 - b. See examples on using lab automation for plasmid library generation and cell cultivation
 - c. Learn how to program and execute a basic pipetting workflow including liquid handling and labware transfers on Tecan and Hamilton robotic systems

5. Presentations
 - a. Each student will be assigned to an individual topic of the course and will have to prepare a presentation on it.
 - b. Presentations and discussion in form of a Colloquium

Lecture notes
You will find further information on the practical course and the equipment at:

- https://www.bsse.ethz.ch/scf
- https://www.bsse.ethz.ch/lab

Literature
- *Microscopy:* Murphy and Davidson, Fundamentals of Light Microscopy and Electronic Imaging, John Wiley & Sons, 2012
- *Flow Cytometry:* Shapiro, Practical Flow Cytometry, John Wiley & Sons, 2005

Prerequisites / notice
The following knowledge is required for the course:
- basic laboratory methods
- basic physics of optics (properties of light, refraction, lenses, fluorescence)
- basic biology of cells (cell anatomy and physiology)

Lab Course: Microsystems and Microfluidics in Biology

The lab course is open for MSc Biotechnology students only.

Abstract
This practical course is an introduction to microsystems technology and microfluidics for the life sciences. It includes basic concepts of microsystem design, fabrication, and assembly into an experimental setup. Biological applications include a variety of measurements of cellular and tissue signals and subsequent analysis.

Objective
The students are introduced to the basic principles of microsystems technology. They get acquainted with practical scientific work and learn the entire workflow of (a) understanding the theoretical concept, (b) planning the experiment, (c) engineering of the needed device, (d) execution of the experiment and data acquisition, (e) data evaluation and analysis, and (f) reporting and discussion of the results.

Content
The practical course will consist of a set of 4 experiments.

Lecture notes
Notes and guidelines will be provided at the beginning of the course.

Literature

Prerequisites / notice
The practical course will consist of a set of 4 experiments. For each experiment, the student will be required to:
- understand the theoretical concept behind the experiment
- plan the experiment
- engineer the devices
- execute the experiments and acquire data
- evaluate and analyze the data
- report and discuss the results

A good quality of the final report will be expected and be an important criterion.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Communication

Domain C - Social Competencies
- Cooperation and Teamwork

Domain D - Personal Competencies
- Critical Thinking
- Self-direction and Self-management
Biomeclore-Orientated

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0103-00L</td>
<td>Microtechnology</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>A. Hierlemann</td>
</tr>
</tbody>
</table>

- **Abstract**: Students are introduced to the basics of microtechnology, cleanroom, semiconductor and silicon process technologies. They will get to know the fabrication of mostly silicon-based microdevices and -systems and all related microfabrication processes.

- **Objective**: Students are introduced to the basics of microtechnology, cleanroom, semiconductor and silicon process technologies. They will get to know the different fabrication methods for various microdevices and systems.

- **Content**: Introduction to microtechnology, semiconductors, and micro electro mechanical systems (MEMS)
 - Fundamentals of semiconductors and band model
 - Fundamentals of devices: transistor and diode.
 - Silicon processing and fabrication steps
 - Silicon crystal structure and manufacturing
 - Thermal oxidation
 - Doping via diffusion and ion implantation
 - Photolithography
 - Thin film deposition: dielectrics and metals
 - Wet etching & bulk micromachining
 - Dry etching & surface micromachining
 - Microtechnological processing and fabrication sequence
 - Optional: Packaging

- **Lecture notes**
 - Handouts in English

- **Literature**

- **Prerequisites / notice**
 - Fundamentals in physics and physicochemistry (orbital models etc.) are required, a repetitiorium of fundamental physics and quantum theory at the semester beginning can be offered.

The information on the web can be updated until the beginning of the semester.

Biophysical Methods

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0104-00L</td>
<td>Biophysical Methods</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>D. J. Müller</td>
</tr>
</tbody>
</table>

- **Abstract**: Students will be imparted knowledge in basic and advanced biophysical methods applied to problems in molecular biotechnology. The course is fundamental to applying the methods in their daily and advanced research routines. The students will learn the physical basis of the methods as well as their limitations and possibilities to address existing and future topics in molecular biotechnology.

- **Objective**: Gain of interdisciplinary competence in experimental and theoretical research, which qualifies for academic scientific work (master's or doctoral thesis) as well as for research in a biotechnology or a pharmaceutical company. The module is of general use in courses focused on modern biomolecular technologies, systems biology and systems engineering.
The students will learn basic and advanced knowledge in applying biophysical methods to address problems and overcome challenges in biotechnology, cell biology and life sciences in general. The biological and physical possibilities and limitations of the methods will be discussed and critically evaluated. By the end of the course the students will have assimilated knowledge on a portfolio of biophysical tools widening their research capabilities and aptitude.

The biophysical methods to be taught will include:

- **Light microscopy**: Resolution limit of light microscopy, fluorescence, GFP, fluorescence microscopy, DIC, phase contrast, difference between wide-field and confocal microscopy
- **Super resolution optical microscopy**: STED, PALM, STORM, other variations
- **Electron microscopy**: Scanning electron microscopy, transmission electron microscopy, cryo-electron microscopy, electron tomography, single particle analysis and averaging, tomography, sectioning, negative stain
- **X-ray, electron and neutron diffraction**
- **MRI Imaging**
- **Scanning tunnelling microscopy and atomic force microscopy**
- **Patch clamp technologies**: Principles of patch clamp analysis and application. Various patch clamp approaches used in research and industry
- **Surface plasmon resonance-based biosensors**
- **Molecular pore-based sensors and sequencing devices**
- **Mechanical molecular and cellular assembly devices**
- **Optical and magnetic tweezers**
- **CD spectroscopy**
- **Optogenetics**
- **Molecular dynamics simulations**

Lecture notes

Hand out will be given to students at lecture.

Literature

- Methods in Molecular Biophysics (5th edition), Serdyuk et al., Cambridge University Press

Prerequisites / notice

The module is composed of 3 SWS (3 hours/week): 2-hour lecture, 1-hour seminar. For the seminar, students will prepare oral presentations on specific in-depth subjects with/under the guidance of the teacher.

636-0105-00L Introduction to Biological Computers

W 4 credits 3G Y. Benenson

Abstract

Biological computers are man-made biological networks that interrogate and control cells and organisms in which they operate. Their key features, inspired by computer science, are programmability, modularity, and versatility. The course will show how to rationally design, implement and test biological computers using molecular engineering, DNA nanothechnology and synthetic biology.

Objective

The course has the following objectives:

* Familiarize students with parallels between theories in computer science and engineering and information-processing in live cells and organisms
* Introduce basic theories of computation
* Introduce approaches to creating novel biological computing systems in non-living environment and in living cells including bacteria, yeast and mammalian/human cells.

The covered approaches will include
- Nucleic acids engineering
- DNA and RNA nanotechnology
- Synthetic biology and gene circuit engineering
- High-throughput genome engineering and gene circuit assembly
* Equip the students with computer-aided design (CAD) tools for biocomputing circuit engineering. A number of tutorials will introduce MATLAB SimBiology toolbox for circuit design and simulations
* Foster creativity, research and communication skills through semester-long "Design challenge" assignment in the broad field of biological computing and biological circuit engineering.
Note: the exact subjects can change, the details below should only serve for general orientation

Lecture 1. Introduction: what is molecular computation (part I)?
* What is computing in general?
* What is computing in the biological context (examples from development, chemotaxis and gene regulation)
* The difference between natural computing and engineered biocomputing systems

Lecture 2: What is molecular computation (part II) + State machines
1st hour
* Detailed definition of an engineered biocomputing system
* Basics of characterization
* Design challenge presentation

2nd hour
* Theories of computation: state machines (finite automata and Turing machines)

Lecture 3: Additional models of computation
* Logic circuits
* Analog circuits
* RAM machines

Basic approaches to computer science notions relevant to molecular computation. (i) State machines; (ii) Boolean networks; (iii) analog computing; (iv) distributed computing. Design Challenge presentation.

Lecture 4. Classical DNA computing
* Adleman experiment
* Maximal clique problem
* SAT problem

Lecture 5: Molecular State machines through self-assembly
* Tiling implementation of state machine
* DNA-based tiling system
* DNA/RNA origami as a spin-off of self-assembling state machines

Lecture 6: Molecular State machines that use DNA-encoded tapes
* Early theoretical work
* Tape extension system
* DNA and enzyme-based finite automata for diagnostic applications

Lecture 7: Introduction to cell-based logic and analog circuits
* Computing with (bio)chemical reaction networks
* Tuning computation with ultrasensitivity and cooperativity
* Specific examples

Lecture 8: Transcriptional circuits I
* Introducing transcription-based circuits
* General features and considerations
* Guidelines for large circuit construction

Lecture 9: Transcriptional circuits II
* Large-scale distributed logic circuits in bacteria
* Toward large-scale circuits in mammalian cells

Lecture 10: RNA circuits I
* General principles of RNA-centered circuit design
* Riboswitches and sRNA regulation in bacteria
* Riboswitches in yeast and mammalian cells
* General approach to RNAi-based computing

Lecture 11: RNA circuits II
* RNAi logic circuits
* RNAi-based cell type classifiers
* Hybrid transcriptional/posttranscriptional approaches

Lecture 12: In vitro DNA-based logic circuits
* DNAzyme circuits playing tic-tac-toe against human opponents
* DNA brain

Lecture 13: Advanced topics
* Engineered cellular memory
* Counting and sequential logic
* The role of evolution
* Fail-safe design principles
636-010B-00L

Lecture notes
Lecture notes will be available online

Literature
As a way of general introduction, the following two review papers could be useful:

- Benenson, Y. Biocomputers: from test tubes to live cells. Molecular Biosystems 2009, 5:675:685

Prerequisites / notice
Basic knowledge of molecular biology is assumed.

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-010B-00L</td>
<td>Biological Engineering and Biotechnology</td>
<td>4</td>
<td>W</td>
<td>M. Fussenegger</td>
</tr>
</tbody>
</table>

Objective
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content

Lecture notes
Handout during the course.

636-010C-00L

Lecture notes
Handout during the course.

Literature
The course will use selected parts of textbooks and then original scientific publications and reviews.

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-010C-00L</td>
<td>Microbial Biotechnology</td>
<td>4</td>
<td>W</td>
<td>S. Panke, M. Jeschek</td>
</tr>
</tbody>
</table>

Objective
Students of this course know and can evaluate modern methods of microbial biotechnology and enzyme technology and understand their relation to modern applications of microbial biotechnology.

Content
Students of this course know and can evaluate modern methods of microbial biotechnology and enzyme technology and understand their relation to modern applications of microbial biotechnology.

Lecture notes
Notes will be provided in the forms of handouts.

636-0015-00L

Lecture notes
Course material will be provided in form of slides.

Literature
Will be provided during the course.

Prerequisites / notice
Basic understanding of mathematics, as taught in basic mathematics courses at the Bachelor's level.

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0015-00L</td>
<td>Data Mining I</td>
<td>4</td>
<td>W</td>
<td>K. M. Borgwardt</td>
</tr>
</tbody>
</table>

Abstract
Data Mining, the search for statistical dependencies in large databases, is of utmost important in modern society, in particular in biological and medical research. This course provides an introduction to the key problems, concepts, and algorithms in data mining, and the applications of data mining in computational biology.

Objective
The goal of this course is that the participants gain an understanding of data mining problems and algorithms to solve these problems, in particular in biological and medical applications.

Content
The course will cover its main part selected fundamental and advanced topics and methodologies in microbial molecular biotechnology. Major topics include I) Microbial physiology of microbes (prokaryotes and selected fungi), II) Applications of Microbial Biotechnology, III) Enzymes - advanced kinetics and engineering, IV) Principles of in vivo directed evolution, V) System approaches to cell engineering/metabolic engineering, and VI) Trends in Microbial Biotechnology. The course is a mix of lectures and different exercise formats.

Tentative list of topics:
1. Distance functions
2. Classification
3. Clustering
4. Feature Selection

Lecture notes
Course material will be provided in form of slides.

Literature
Will be provided during the course.

Prerequisites / notice
Basic knowledge of molecular biology is assumed.

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0015-00L</td>
<td>Data Mining II</td>
<td>4</td>
<td>W</td>
<td>K. M. Borgwardt</td>
</tr>
</tbody>
</table>

Abstract
Data Mining II will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Objective
The course will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content

Lecture notes
Handout during the course.

636-0018-00L

Abstract
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Objective
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content

Lecture notes
Handout during the course.

636-0020-00L

Abstract
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Objective
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content

Lecture notes
Handout during the course.

636-0021-00L

Abstract
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Objective
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content

Lecture notes
Handout during the course.
Literature

Representative literature:
(1) Alberts, Molecular Biology (Ch.2 Cellular chemistry).
(2) Ratner, Biomaterials Science (Ch. 2.3, 2.4 Polymers & hydrogels).
(3) Walsh, Protein Biochemistry, (Ch. 2, Protein Structure).

636-0117-00L Mathematical Modelling for Bioengineering and Systems Biology

Abstract

Basic concepts and mathematical tools to explore biochemical reaction kinetics and biological network dynamics.

Objective

The course enables students to formulate, analyse, and simulate mathematical models of biochemical networks. To this end, the course covers basic mathematical concepts and tools to explore biochemical reaction dynamics as well as basic concepts from dynamical systems theory. The exercises serve to deepen the understanding of the presented concepts and the mathematical methods, and to train students to numerically solve and simulate mathematical models.

Content

Biochemical Reaction Modelling

636-0118-00L Introduction to Dynamical Systems with Applications to Biology

Abstract

Many physical systems are dynamic and are characterized by internal variables that change with time. Describing the quantitative and qualitative features of this change is the topic of dynamical systems theory. Dynamical systems arise naturally in virtually all scientific disciplines including physics, biology, chemistry and engineering. This course is a broad introduction to the topic dynamical systems theory.

Objective

The goal of this course is to introduce the student to dynamical systems and to develop a solid understanding of their fundamental properties. The theory will be developed systematically, focusing on analytical methods for low dimensional systems, geometric intuition, and application examples from biology. Computer simulations using matlab will be used to demonstrate various concepts.

Content

A dynamical view of the world; the importance of nonlinearity; solutions of differential equations; solving equations on the computer; the phase plane; fixed points and stability; linear stability analysis; classification of linear systems; Liapunov functions and nonlinear stability; cycles and bifurcations; bifurcation and bifurcation diagrams. Many biological examples will be used through the course to demonstrate the concepts.

Lecture notes

Will be provided as needed.

Literature

Prerequisites / notice

Prerequisites: Calculus; a first course in differential equations; basic linear algebra (eigenvalues and eigenvectors). Matlab programming.

636-0109-00L Stem Cells: Biology and Therapeutic Manipulation

Abstract

Stem cells are central in tissue regeneration and repair, and hold great potential for therapy. We will discuss the role of stem cells in health and disease, and possibilities to manipulate their behavior for therapeutic application. Basic molecular and cell biology, engineering and novel technologies relevant for stem cell research and therapy will be discussed.

Objective

Understanding of current knowledge, and lack thereof, in stem cell biology, regenerative medicine and required technologies. Theoretical preparation for practical laboratory experimentation with stem cells.

Content

We will use different diseases to discuss how to potentially model, diagnose or heal them by stem cell based therapies. This will be used as a guiding framework to discuss relevant concepts and technologies in cell and molecular biology, engineering, imaging, bioinformatics, tissue engineering, that are required to manipulate stem cells for therapeutic application.

Topics will include:
- Embryonic and adult stem cells and their niches
- Induced stem cells by directed reprogramming
- Relevant basic cell biology and developmental biology
- Relevant molecular biology
- Cell culture systems
- Cell fates and their molecular control by transcription factors and signalling pathways
- Cell reprogramming
- Disease modelling
- Tissue engineering
- Bioimaging, Bioinformatics
- Single cell technologies

636-0123-00L Problem-Based Approach to Spatial Biology

Abstract

This course entails lectures in tissue physiology, spatial methodologies and grantsmanship. In the project part, small working groups will perform the entire scientific process around formulating a research proposal with the aid of tutors.

Objective

The students will understand the current state of research and novel methodologies in spatial biology and tissue physiology. They will obtain the necessary toolkits to independently open research problems in various areas of spatial biology, to address these problems with suitable experimental strategies, and to formulate their approach in a research proposal.

Content

We will use a problem-based approach to explore the way in which single cells collaborate within tissues to achieve their common functions. A thorough comprehension of these tissue components is crucial for advancing our knowledge of normal homeostasis and pathophysiology; disrupted cellular interactions can lead to decreased tissue function or even carcinogenesis.

The project work will be conducted in small groups in guidance of tutors. Each group will focus on a different topic in spatial biology and will review the corresponding literature. They will identify open problems of interest in this area and will summarize their findings in a short, written review. The students will then develop an appropriate experimental strategy to address a question of interest and write a research proposal that features their approach. The final stage of the project work enable the students to practice the presentation of their research proposals and critical evaluation.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 378 of 2152
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0101-00L</td>
<td>Microtechnology</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>A. Hierlemann</td>
</tr>
<tr>
<td>Abstract</td>
<td>Students are introduced to the basics of microtechnology, cleanroom, semiconductor and silicon process technologies. They will get to know the fabrication of mostly silicon-based microdevices and -systems and all related microfabrication processes. Students are introduced to the basics of microtechnology, cleanroom, semiconductor and silicon process technologies. They will get to know the different fabrication methods for various microdevices and systems. Content: Introduction to microtechnology, semiconductors, and micro electro mechanical systems (MEMS).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students are introduced to the basics of microtechnology, cleanroom, semiconductor and silicon process technologies. They will get to know the different fabrication methods for various microdevices and systems. Content: Introduction to microtechnology, semiconductors, and micro electro mechanical systems (MEMS).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Students are introduced to the basics of microtechnology, cleanroom, semiconductor and silicon process technologies. They will get to know the different fabrication methods for various microdevices and systems. Content: Introduction to microtechnology, semiconductors, and micro electro mechanical systems (MEMS).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0104-00L</td>
<td>Biophysical Methods</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>D. J. Müller</td>
</tr>
<tr>
<td>Abstract</td>
<td>Students will be imparted knowledge in basic and advanced biophysical methods applied to problems in molecular biotechnology. The course is fundamental to applying the methods in their daily and advanced research routines. The students will learn the physical basis of the methods as well as their limitations and possibilities to address existing and future topics in molecular biotechnology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will be imparted knowledge in basic and advanced biophysical methods applied to problems in molecular biotechnology. The course is fundamental to applying the methods in their daily and advanced research routines. The students will learn the physical basis of the methods as well as their limitations and possibilities to address existing and future topics in molecular biotechnology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Students will be imparted knowledge in basic and advanced biophysical methods applied to problems in molecular biotechnology. The course is fundamental to applying the methods in their daily and advanced research routines. The students will learn the physical basis of the methods as well as their limitations and possibilities to address existing and future topics in molecular biotechnology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0105-00L</td>
<td>Introduction to Biological Computers</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>Y. Benenson</td>
</tr>
<tr>
<td>Abstract</td>
<td>The module is composed of 3 SWS (3 hours/week): 2-hour lecture, 1-hour seminar. For the seminar, students will prepare oral presentations on specific in-depth subjects with/under the guidance of the teacher.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The module is composed of 3 SWS (3 hours/week): 2-hour lecture, 1-hour seminar. For the seminar, students will prepare oral presentations on specific in-depth subjects with/under the guidance of the teacher.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The module is composed of 3 SWS (3 hours/week): 2-hour lecture, 1-hour seminar. For the seminar, students will prepare oral presentations on specific in-depth subjects with/under the guidance of the teacher.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract

Biological computers are man-made biological networks that interrogate and control cells and organisms in which they operate. Their key features, inspired by computer science, are programmability, modularity, and versatility. The course will show how to rationally design, implement and test biological computers using molecular engineering, DNA nanothechnology and synthetic biology.

Objective

The course has the following objectives:

* Familiarize students with parallels between theories in computer science and engineering and information-processing in live cells and organisms

* Introduce basic theories of computation

* Introduce approaches to creating novel biological computing systems in non-living environment and in living cells including bacteria, yeast and mammalian/human cells.

The covered approaches will include

- Nucleic acids engineering
- DNA and RNA nanotechnology
- Synthetic biology and gene circuit engineering
- High-throughput genome engineering and gene circuit assembly

* Equip the students with computer-aided design (CAD) tools for biocomputing circuit engineering. A number of tutorials will introduce MATLAB SimBiology toolbox for circuit design and simulations

* Foster creativity, research and communication skills through semester-long "Design challenge" assignment in the broad field of biological computing and biological circuit engineering.
Lecture 1. Introduction: what is molecular computation (part I)?

* What is computing in general?
* What is computing in the biological context (examples from development, chemotaxis and gene regulation)
* The difference between natural computing and engineered biocomputing systems

Lecture 2: What is molecular computation (part II) + State machines

1st hour

* Detailed definition of an engineered biocomputing system
* Basics of characterization
* Design challenge presentation

2nd hour

* Theories of computation: state machines (finite automata and Turing machines)

Lecture 3: Additional models of computation

* Logic circuits
* Analog circuits
* RAM machines

Basic approaches to computer science notions relevant to molecular computation. (i) State machines; (ii) Boolean networks; (iii) analog computing; (iv) distributed computing. Design Challenge presentation.

Lecture 4. Classical DNA computing

* Adleman experiment
* Maximal clique problem
* SAT problem

Lecture 5: Molecular State machines through self-assembly

* Tiling implementation of state machine
* DNA-based tiling system
* DNA/RNA origami as a spin-off of self-assembling state machines

Lecture 6: Molecular State machines that use DNA-encoded tapes

* Early theoretical work
* Tape extension system
* DNA and enzyme-based finite automata for diagnostic applications

Lecture 7: Introduction to cell-based logic and analog circuits

* Computing with (bio)chemical reaction networks
* Turing computation with ultrasensitivity and cooperativity
* Specific examples

Lecture 8: Transcriptional circuits I

* Introducing transcription-based circuits
* General features and considerations
* Guidelines for large circuit construction

Lecture 9: Transcriptional circuits II

* Large-scale distributed logic circuits in bacteria
* Toward large-scale circuits in mammalian cells

Lecture 10: RNA circuits I

* General principles of RNA-centered circuit design
* Riboswitches and sRNA regulation in bacteria
* Riboswitches in yeast and mammalian cells
* General approach to RNAi-based computing

Lecture 11: RNA circuits II

* RNAi logic circuits
* RNAi-based cell type classifiers
* Hybrid transcriptional/posttranscriptional approaches

Lecture 12: In vitro DNA-based logic circuits

* DNAzyme circuits playing tic-tac-toe against human opponents
* DNA brain

Lecture 13: Advanced topics

* Engineered cellular memory
* Counting and sequential logic
* The role of evolution
* Fail-safe design principles
Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Objective

Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content

Lecture notes

Handout during the course.

Data Mining I

Abstract

Data Mining, the search for statistical dependencies in large databases, is of utmost importance in modern society, in particular in biological and medical research. This course provides an introduction to the key problems, concepts, and algorithms in data mining, and the applications of data mining in computational biology.

Objective

The goal of this course is that the participants gain an understanding of data mining problems and algorithms to solve these problems, in particular in biological and medical applications.

Content

The goal of the field of data mining is to find patterns and statistical dependencies in large databases, to gain an understanding of the underlying system from which the data were obtained. In computational biology, data mining contributes to the analysis of vast experimental data generated by high-throughput technologies, and thereby enables the generation of new hypotheses.

In this course, we will present the algorithmic foundations of data mining and its applications in computational biology. The course will feature an introduction to popular data mining problems and algorithms, reaching from classification via clustering to feature selection. This course is intended for both students who are interested in applying data mining algorithms and students who would like to gain an understanding of the key algorithmic concepts in data mining.

Tentative list of topics:

1. Distance functions
2. Classification
3. Clustering
4. Feature Selection

Literature

Course material will be provided in form of slides.

Prerequisites / notice

Basic understanding of mathematics, as taught in basic mathematics courses at the Bachelor's level.

Mathematical Modelling for Bioengineering and Systems Biology

Abstract

Basic concepts and mathematical tools to explore biochemical reaction kinetics and biological network dynamics. To this end, the course covers basic mathematical concepts and tools to explore biochemical reaction dynamics as well as basic concepts from dynamical systems theory. The exercises serve to deepen the understanding of the presented concepts and the mathematical methods, and to train students to numerically solve and simulate mathematical models.

Objective

The course enables students to formulate, analyse, and simulate mathematical models of biochemical networks. To this end, the course covers basic mathematical concepts and tools to explore biochemical reaction dynamics as well as basic concepts from dynamical systems theory.

Content

Biochemical Reaction Modelling

Introduction to Dynamical Systems with Applications to Biology

Abstract

Many physical systems are dynamic and are characterized by internal variables that change with time. Describing the quantitative and qualitative features of this change is the topic of dynamical systems theory. Dynamical systems arise naturally in virtually all scientific disciplines including physics, biology, chemistry and engineering. This course is a broad introduction to the topic dynamical s

Objective

The goal of this course is to introduce the student to dynamical systems and to develop a solid understanding of their fundamental properties. The theory will be developed systematically, focusing on analytical methods for low dimensional systems, geometric intuition, and application examples from biology. Computer simulations using matlab will be used to demonstrate various concepts

Content

A dynamical view of the world; the importance of nonlinearity; solutions of differential equations; solving equations on the computer; the phase plane; fixed points and stability; linear stability analysis; classifications of linear systems; Liapunov functions and nonlinear stability; cycles and oscillations; bifurcations and bifurcation diagrams. Many biological examples will be used through the course to demonstrate the concepts

Lecture notes

Will be provided as needed.
We will use different diseases to discuss how to potentially model, diagnose or heal them by stem cell based therapies. This will be used as a guiding framework to discuss relevant concepts and technologies in cell and molecular biology, engineering, imaging, bioinformatics, tissue engineering, that are required to manipulate stem cells for therapeutic application.

Literature

Prerequisites / Notice

Prerequisites: Calculus; a first course in differential equations; basic linear algebra (eigenvalues and eigenvectors), Matlab programming.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0109-00L</td>
<td>Stem Cells: Biology and Therapeutic Manipulation</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>T. Schroeder</td>
</tr>
<tr>
<td></td>
<td><i>Does not take place this semester.</i></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Stem cells are central in tissue regeneration and repair, and hold great potential for therapy. We will discuss the role of stem cells in health and disease, and possibilities to manipulate their behavior for therapeutic application. Basic molecular and cell biology, engineering and novel technologies relevant for stem cell research and therapy will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding of current knowledge, and lack thereof, in stem cell biology, regenerative medicine and required technologies. Theoretical preparation for practical laboratory experimentation with stem cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Content | We will use different diseases to discuss how to potentially model, diagnose or heal them by stem cell based therapies. This will be used as a guiding framework to discuss relevant concepts and technologies in cell and molecular biology, engineering, imaging, bioinformatics, tissue engineering, that are required to manipulate stem cells for therapeutic application. Topics will include:
- Embryonic and adult stem cells and their niches
- Induced stem cells by directed reprogramming
- Relevant basic cell biology and developmental biology
- Relevant molecular biology
- Cell culture systems
- Cell fates and their molecular control by transcription factors and signalling pathways
- Cell reprogramming
- Disease modelling
- Tissue engineering
- Bioimaging, Bioinformatics
- Single cell technologies |

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0123-00L</td>
<td>Problem-Based Approach to Spatial Biology</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>A. Moor</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course entails lectures in tissue physiology, spatial methodologies and grantsmanship. In the project part, small working groups will perform the entire scientific process around formulating a research proposal with the aid of tutors. The students will understand the current state of research and novel methodologies in spatial biology and tissue physiology. They will obtain the necessary tools to independently identify open research problems in various areas of spatial biology to address these problems with suitable experimental strategies, and to formulate their approach in a research proposal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The project work will be conducted in small groups in guidance of tutors. Each group will focus on a different topic in spatial biology and will review the corresponding literature. They will identify open problems in the area and will summarize their findings in a short, written report. The students will then develop an appropriate experimental strategy to address a question of interest and write a research proposal that features their approach. The final stage of the project work enable the students to practice the presentation of their research proposals and critical evaluation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>We will use a problem-based approach to explore the way in which single cells collaborate within tissues to achieve their common functions. A thorough comprehension of these tissue components is crucial for advancing our knowledge of normal homeostasis and pathophysiology; disrupted cellular interactions can lead to decreased tissue function or even carcinogenesis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electives

The electives list in the ETH course catalogue is an open list, and the courses listed in the ETH course catalogue provide just examples for possible elective courses. Students are expected to look for relevant courses in the ETH and University of Basel course catalogue and ask their mentor for approval. Courses from the advanced course category may also be taken as electives.

We particularly recommend browsing the University of Basel course catalogue for elective courses of relevant master's degree programs (using the filter "programe structure" on the course catalogue website), such as for example: Biomedical Engineering, Chemistry, Drug Sciences, Epidemiology, Infection Biology, Molecular Biology, Nanosciences.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0015-00L</td>
<td>An Introduction to Probability Theory and Stochastic Processes with Applications to Biology</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>A. Gupta</td>
</tr>
<tr>
<td>Abstract</td>
<td>Biology is becoming increasingly quantitative and mathematical modeling is now an integral part of biological research. In many biological processes, ranging from gene-expression to evolution, randomness plays an important role that can only be understood using stochastic models. This course will provide the students with a theoretical foundation for developing such stochastic models and analyzing phenomena. Throughout the course, several biological applications will be discussed and students will be encouraged to do additional reading based on their research interests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The aim of this course is to introduce certain topics in Probability Theory and Stochastic Processes that have been specifically selected with an eye on biological applications. This course will teach the tools and techniques for modeling and analyzing random phenomena. Throughout the course, several biological applications will be discussed and students will be encouraged to do additional reading based on their research interests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The first half of the course will cover the basics of Probability Theory while the second half will delve into the theory of Stochastic Processes. Below is the list of topics that will be covered in the course.

1. The mathematical representation of random phenomena: The probability space, properties of the probability measure, Independence of events, Conditional probability and Bayes formula, applications to parameter inference.

3. Convergence of Random Variables: Modes of convergence, Laws of large numbers, the central limit theorem, the law of the iterated logarithm, Applications to the analysis of cell population data.

Literature

While no specific textbook will be followed, much of the material and homework problems will be taken from the following books:

Prerequisites / notice

The course will involve a healthy balance between mathematical rigor (theorem proving) and biological applications. Students are expected to have a good grasp of Linear Algebra and Multivariable Calculus. Basic knowledge of set theory will also be needed. Students should be prepared for abstract reasoning.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0017-00L</td>
<td>Computational Biology</td>
<td>6</td>
<td>3G+2A</td>
<td>T. Vaughan</td>
</tr>
</tbody>
</table>

Abstract

The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.

Objective

Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:

* stochastic models in molecular evolution
* phylogenetic & phylodynamic inference
* maximum likelihood and Bayesian statistics

Attendees will apply these concepts to a number of applications yielding biological insight into:

* epidemiology
* pathogen evolution
* macroevolution of species

Content

The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Application of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.

Lecture notes

Lecture slides will be available on moodle.

Literature

The course is not based on any of the textbooks below, but they are excellent choices as accompanying material:

* Yang, Z. 2006. Computational Molecular Evolution.
* Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.

Prerequisites / notice

Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course „Introduction to Programming“, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date.

For the Zurich-based students without R experience, we recommend the R course http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2018W&ansicht=KATALOGDATEN&lerneinheitId=123546&lang=de, or working through the script provided as part of this R course.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0501-00L</td>
<td>Advanced Immunology</td>
<td>2</td>
<td></td>
<td>external organisers</td>
</tr>
<tr>
<td>636-0511-00L</td>
<td>Developmental Neuroscience</td>
<td>2</td>
<td></td>
<td>external organisers</td>
</tr>
<tr>
<td>636-0515-00L</td>
<td>Molecular Medicine I</td>
<td>2</td>
<td></td>
<td>external organisers</td>
</tr>
<tr>
<td>636-0706-00L</td>
<td>Spatio-Temporal Modelling in Biology</td>
<td>4</td>
<td>3G</td>
<td>D. Iber</td>
</tr>
</tbody>
</table>

Abstract

This course focuses on modeling spatio-temporal problems in biology, in particular on the cell and tissue level. The main focus is on mechanisms and concepts, but mathematical and numerical techniques are introduced as required. Biological examples discussed in the course provide an introduction to key concepts in developmental biology.
Proteomics and Drug Discovery Research

This course provides an introduction to supramolecular chemistry. Prior knowledge in supramolecular chemistry is not a prerequisite for this course.

Objective

Students will learn state-of-the-art approaches to modelling spatial effects in dynamical biological systems. The course provides an introduction to dynamical system, and covers the mathematical analysis of pattern formation in growing, developing systems, as well as the description of mechanical effects at the cell and tissue level. The course also provides an introduction to image-based modelling, i.e. the use of microscopy data for model development and testing. The course covers classic as well as current approaches and exposes students to open problems in the field. In this way, the course seeks to prepare students to conduct research in the field. The course prepares students for research in developmental biology, as well as for applications in tissue engineering, and for biomedical research.

Content

1. Introduction to Modelling in Biology
2. Morphogen Gradients
3. Dynamical Systems
4. Cell-cell Signalling (Dr Boareto)
5. Travelling Waves
6. Turing Patterns
7. Chemotaxis
8. Mathematical Description of Growing Biological Systems
9. Image-Based Modelling
10. Tissue Mechanics
11. Cell-based Tissue Simulation Frameworks
12. Plant Development (Dr Dumont)
13. Growth Control
14. Summary

Lecture notes

All lecture material will be made available online

Available on course website (Moodle):

https://moodle-app2.let.ethz.ch/course/view.php?id=15235

Literature

The lecture course is not based on any textbook. The following textbooks are related to some of its content. The textbooks may be of interest for further reading, but are not necessary to follow the course:

- Murray, Mathematical Biology; Springer
- Forgacs and Newman, Biological Physics of the Developing Embryo, CUP
- Keener and Sneyd, Mathematical Physiology, Springer
- Fall et al, Computational Cell Biology, Springer
- Szalasi et al, System Modeling in Cellular Biology, MIT Press
- Wolkenhauer, Systems Biology
- Kreyszig, Engineering Mathematics, Wiley

Prerequisites / notice

The course is self-contained. The course assumes no background in biology but a good foundation regarding mathematical and computational techniques.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Sub-Credits</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0510-00L</td>
<td>Proteomics and Drug Discovery Research</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>external organisers</td>
</tr>
<tr>
<td>636-0519-00L</td>
<td>Introduction to Statistics and R</td>
<td>W</td>
<td>6 credits</td>
<td>3G+2A</td>
<td>J. Kuipers</td>
</tr>
<tr>
<td>636-0120-00L</td>
<td>Introduction to Programming</td>
<td>Z</td>
<td>0 credits</td>
<td>1G</td>
<td>D. S. Roqueiro</td>
</tr>
<tr>
<td>636-0552-00L</td>
<td>Metals in Biology</td>
<td>W</td>
<td>3 credits</td>
<td>3G</td>
<td>external organisers</td>
</tr>
<tr>
<td>636-0553-00L</td>
<td>Chemical Biology</td>
<td>W</td>
<td>3 credits</td>
<td>3G</td>
<td>external organisers</td>
</tr>
<tr>
<td>636-0551-00L</td>
<td>Supramolecular Chemistry</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>K. Tiefenbacher</td>
</tr>
</tbody>
</table>

Objective

To acquire the statistical understanding to design an appropriate analysis and the practical skills to implement the analysis in R and present the results.

Content

Data analysis is fundamental for arriving at scientific conclusions and testing different hypotheses. This course offers a hands-on introduction to statistical analyses including: exploratory data analysis, testing differences in populations, p-values, power calculations, multiple testing, confounding, linear regression, maximum likelihood, model selection, and logistic regression, along with the fundamentals of R programming including markdown and data handling with the tidyverse.

Lecture notes

Lecture slides will be available

Prerequisites / notice

Access to Rstudio with some markdown and tidyverse packages installed.

Objective

This course offers a practical introduction to the fundamentals of data analysis and R.

Content

- Logical thinking: Translating a problem into a conceptual sequence of computational steps. For example:
 - **Problem**: What is the GC content of a given DNA string?
 - **Logical steps**:
 - i) Iterate through all nucleotides in the DNA string, one by one
 - ii) Count the Cs or Gs
 - iii) Divide the count of Cs or Gs by the length of the DNA string
 - iv) Report the result.
 - • Writing code: Full introduction to the MATLAB programming languages (R and Python will also be covered). Solutions to all exercises will be provided in MATLAB, R and Python. Creation of programming projects with an integrated development environment (IDE).
 - • Primer of Unix commands: Command-line examples on how to access servers and computing resources at the D-BSSE. Submission of jobs to the EULER cluster.

Lecture notes

Available on course website (Moodle):

https://moodle-app2.let.ethz.ch/course/view.php?id=15235

Publicly available material (links will be posted on the course website)

Literature

- Biotechnology (and MSc CBB). Other students may send a request to participate to: student-admin@bsse.ethz.ch
- Access to Rsstudio with some markdown and tidyverse packages installed.
Objective

After this course, the student is expected to understand and be able to apply the basics of supramolecular chemistry: host-guest interactions, host design, self-assembly and simple enzyme mimetics.

Content

This course provides an introduction to supramolecular chemistry. Prior knowledge in supramolecular chemistry is not a prerequisite for this course. We will first cover the basic concepts of supramolecular chemistry: non-covalent interactions, host-guest chemistry, binding constant determination and binding strength. Subsequently, we will take a closer look at how to bind different species: cations, anions and neutral organic molecules. Towards the end of the semester, we will cover self-assembly processes and applications of supramolecular structures as simple enzyme mimetics.

Lecture notes

The lecture slides are provided online via ADAM. No additional literature is required. If additional information is desired, the book “Supramolecular Chemistry” by Jonathan W. Steed and Jerry L. Atwood (John Wiley & Sons) is recommended.

▶ GESS Science in Perspective

see GESS Science in Perspective: Language Courses
ETH/UBH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-BSSE.

Biotechnology Master - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS ARC Digital

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>072-0101-00L</td>
<td>Module 1: Foundations of Digitalisation</td>
<td>O</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Digital and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Key terms: Digital transformation is more than digitisation of existing processes and information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Independently of the building industry, Module 1 initially provides information about the characteristics of digitalisation through its principles and rules, enabling the participants to independently recognise the short-term and long-term changes that are resulting from it.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The first module addresses the topic of digitalisation and digital transformation in a holistic sense. It is much more than converting documents into PDFs or using software. It is about transforming processes, resources and information into a consistent and efficient digital system to make life easier for employees and customers. This journey always involves change. From the perspective of other industries, we first build up a basic understanding and discuss the opportunities and risks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Scripts, documents, studies, dates and addresses are stored on the server of the program and accessible to students on the Miro Board.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0102-00L</td>
<td>Module 2: Behaviour for Collaboration Foundation</td>
<td>O</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Digital and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Key terms: "Behaviour for Collaboration" - Structural questions on collaboration and the patterns of behaviour.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>In Module 2, we break from the theoretical idea of a purely technology-based, better collaboration and look at the situation realistically in order to be able to understand and develop new solutions and requirements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The usual approach towards digital transformation is to train people to use new technologies. In contrary, we ask for the specific challenges and problems people have with change. We learn to understand viewpoints of different partners within building projects and new solutions to specific problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Scripts, documents, studies, dates and addresses are stored on the server of the program and accessible to students on the Miro Board.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0103-00L</td>
<td>Module 3: Foundation of Automation</td>
<td>O</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Digital and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Key terms: Managed data, semantics and file formats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Module 3 we leave behind the negative images from the early days of automation. A gloomy and misanthropic image of automation - both a bliss and a curse. We get to know the positive sides and learn to apply them. How do we become a sustainable "Formula 1"?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>What does it take to be able to work together in a digitally networked environment? How many "techie genes" are needed to work efficiently and effectively with structured data? The third module gives an insight into the principles of data architectures, data formats, attributes and platform technology. Machine readability as an important requirement but also as a clear challenge e.g. to security requirements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Scripts, documents, studies, dates and addresses are stored on the server of the program and accessible to students on the Miro Board.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0104-00L</td>
<td>Module 4: Foundation of Value Creation</td>
<td>O</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Digital and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Key terms: Added value of digital transformation, distributed data management, digital twin, logistics and robotics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Using specific examples, Module 4 illustrates the foundations and versatility of building information modeling (BIM), enabling participants to deal with the concepts, applications and mechanisms involved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>"Highway to hell or highway to haven" - the question of a clear and simple roadmap is always at the heart of a digital transformation. "Value creation" is a central goal. Digitalisation is often seen as a strategy from the productivity gap. The fourth module shows how strategic goals can be developed in a roadmap and implemented in practice and how the individual shareholders and stakeholders participate. We learn to consciously look at the topic of added value and digital transformation from different perspectives. Collision checking and quantity take-offs (QTO) are very useful. But they are only basics when it comes to real value creation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Scripts, documents, studies, dates and addresses are stored on the server of the program and accessible to students on the Miro Board.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0105-00L</td>
<td>Module 5: New Business Modelle</td>
<td>O</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Digital and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Key terms: Business models, cultural change, disruption, evolution, lean methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Module 5 focuses on cultural change, innovation, disruption or evolution? In this last model, we learn to question and discover what the 17 Sustainable Goals mean for our industry. As a final module, new business models are discussed and explored. Examples will be used to explore patterns and interfaces and to analyse what is needed today and in the future for a successful and sustainable development of the sector. How can innovative ideas move us forward? What can we learn from design thinking? Why is it important for people to have useful and understandable measurable values? How do the 17 Sustainable Goals influence our industry? We will analyse the topic on the basis of two concrete examples, familiarise ourselves with them and observe their further development as a result.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Scripts, documents, studies, dates and addresses are stored on the server of the program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Scripts, documents, studies, dates and addresses are stored on the server of the program and accessible to students on the Miro Board.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CAS ARC Digital - Key for Type

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>072-0201-00L</td>
<td>Module 1: Understanding of Roles</td>
<td>O</td>
<td>1 credit</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Project and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to understand the following terminologies, processes and competences. They are able to put them into practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Profession</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ethos and ethic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Organisational forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Role and tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Attitude and practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Please find the teaching material, the further readings and Information on our server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>www.map.arch.ethz.ch/en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0202-00L</td>
<td>Module 2: Collaboration</td>
<td>O</td>
<td>1 credit</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Project and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to understand the following terminologies, processes and competences. They are able to put them into practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Organisation charts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Project knowledge and process understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Structure of the project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Agile project management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Socio-economic viewpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Perception of demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Please find the teaching material, the further readings and Information on our server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>www.map.arch.ethz.ch/en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0203-00L</td>
<td>Module 3: Services and tasks</td>
<td>O</td>
<td>1 credit</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Project and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to understand the following terminologies, processes and competences. They are able to put them into practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Phases and services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Due diligence and duty of loyalty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Duties and tasks, liability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Working packages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Management and coordination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Please find the teaching material, the further readings and Information on our server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>www.map.arch.ethz.ch/en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0204-00L</td>
<td>Module 4: Guiding/Steering/Leading</td>
<td>O</td>
<td>1 credit</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Project and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to understand the following terminologies, processes and competences. They are able to put them into practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Management and administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Leadership</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Team performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Motivation and conflict resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Please find the teaching material, the further readings and Information on our server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>www.map.arch.ethz.ch/en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0205-00L</td>
<td>Module 5: Project</td>
<td>O</td>
<td>1 credit</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Project and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to understand the following terminologies, processes and competences. They are able to put them into practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Management of unknowns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Decision making</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Future perspectives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Micro and macro environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Strength and flexibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Please find the teaching material, the further readings and Information on our server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>www.map.arch.ethz.ch/en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Term Paper

Offered in the Spring Semester.
CAS ARC in Project Leadership - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Introductory module «Enterprise» considers the role of organizations in the economic network of markets and their identity. It presents the knowledge about type, extent and change of the building Switzerland and the main questions.

Type
Building and breaking off is understood as an energy and material flow.

The importance of a life-cycle-oriented approach has arrived in the Swiss construction and real estate sector. Cumulative management literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Scripts, documents, studies, dates and addresses are stored on the server of the program.

Introductory module «Enterprise» considers the role of organizations in the economic network of markets and their identity. It presents the knowledge about type, extent and change of the building Switzerland and the main questions.

Type
Building and breaking off is understood as an energy and material flow.

The importance of a life-cycle-oriented approach has arrived in the Swiss construction and real estate sector. Cumulative management literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Module 2: State of the Art

Content
With more than CHF 3'585 billion (excluding land), Switzerland is the largest national capital. It grows by around 4.7 per cent each year, but its value is under-invested. Is there a risk of slippage? Should more be invested in maintenance / repair or more canceled and replaced? How big is the compaction potential in the stock? Excursus on civil engineering and infrastructure construction

Lecture notes
Scripts, documents, studies, dates and addresses are stored on the server of the program.

Literature
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Module 3: Economic Interest

Content
The importance of a life-cycle-oriented approach has arrived in the Swiss construction and real estate sector. Cumulative management costs can exceed the cost of construction after just a few years. In this module, a systematic consideration of the phases and processes in the life cycle of a property takes place. Study I explores various aspects of life-cycle planning and construction.

Lecture notes
Scripts, documents, studies, dates and addresses are stored on the server of the program.

Literature
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Module 4: Course of Action

Content
The structure and nomenclature of the interventions in the stock are presented and models for the registration and calculation of the total weight of all properties in Switzerland is estimated at around 1 billion tonnes. Every year around 10 million m3 of buildings are demolished and more than 60 million t of raw materials are used in new buildings. This module examines the cycle principle and its implications for selective decommissioning, disposal, landfilling, recycling and reuse, as well as the importance of the gray matter energy of materials.

Lecture notes
Scripts, documents, studies, dates and addresses are stored on the server of the program.

Literature
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Module 5: Life Cycle and Resources

Content
The total weight of all properties in Switzerland is estimated at around 1 billion tonnes. Every year around 10 million m3 of buildings are demolished and more than 60 million t of raw materials are used in new buildings. This module examines the cycle principle and its implications for selective decommissioning, disposal, landfilling, recycling and reuse, as well as the importance of the gray matter energy of materials.

Lecture notes
Scripts, documents, studies, dates and addresses are stored on the server of the program.

Literature
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Term Paper

The term paper is offered in spring semester only.
CAS ARC in Real Estate Strategies urban-peri-urban - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
The aim is to use a snapshot in time to interpret one's own company and become able to assess opportunities and risks. Key terms: Planning, positioning and identity

Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Module 3: Marketing
1 credit
2G
The “company” module considers the role of organisations within the economic network of the markets and the nature of their identity. Scripts, documents, studies, dates and addresses are stored on the server of the program.

The aim is to become familiar with the tools used in marketing and able to use them in specific situations. Acquiring represents a separate project in entrepreneurial activity, since all the activities involved in obtaining a commission fall under this term. The “acquisition” module focuses on imparting basic knowledge of networking and professional dialogue. Both of these tools require an assessment of one’s own situation with regard to competence, resources and customer relations. The conversation is a direct interaction: everyone involved is both an addressee and also basically an equal interlocutor. Networking can be learned: situational “small talk,” social competence and a healthy ability to communicate can be learned.

Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Module 4: Financial Management
1 credit
2G
Financial management means achieving the target company output with costs that are as low as possible, and in the longer term to create secure asset and capital structures. Financial management means achieving the target company output with costs that are as low as possible, and in the longer term to create secure asset and capital structures. The tasks involved in financial management in a planning office include establishing a well-structured accounting department, careful cost accounting, sound budgeting and an effective controlling system. On the basis of a practical financial structure for architecture and engineering offices, the “financial management” module presents the information needed to carry these tasks out in a professional and responsible way.

Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Module 5: Digitalisation
1 credit
2G
IT refers on the one hand to information and data processing in a company, and on the other to the hardware and software components needed for the purpose. This “information technology” module focuses on potential strategies for company management in the IT field. The focus is not on the use of any individual programme, but on taking conscious decisions for or against IT components in one’s own company in order to obtain helpful support in one’s everyday work. The strengths, weaknesses, opportunities and risk of this strategy suggest possible potentials.

Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Term Paper
Offered in the Spring Semester.
CAS ARC in Unternehmensführung - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
CAS Module in Advanced Materials and Processes

Abstract
CAS AMaP participants are offered a MaP professor as a mentor together with whom they design their study plan along an individually-specified focus area in 'Advanced Materials and Processes'. Building on the individual expertise, interests and needs of the participants, the customised CAS AMaP module consists of the elements (i) research project, ii) courses and lectures, (iii) knowledge transfer.

Objective
The CAS AMaP module is fully customisable, building on the expertise of technical specialist professionals and aims at:
- training skills at the frontiers of the current state of research in Advanced Materials and Processes,
- deepening technical know-how with state-of-the-art knowledge in the specified focus area, and
- advancing practical competencies in the impart of expertise and knowledge transfer across disciplines and educational levels.

Content
Depending on individual interests and needs of the technical specialist professionals, the CAS AMaP module consists of the elements:
I. conducting a research project in the mentor’s group, addressing fundamental, development or applied problems, considering theoretical and/or experimental aspects,
II. individual schedule of courses and lectures with state-of-the-art knowledge, and
III. sharing of know-how in, e.g. seminars and interactive formats, thereby enhancing bidirectional knowledge transfer.

CAS in Advanced Materials and Processes - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS: European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Applied Earth Sciences

► Modules Geo-Resources
The Module Geo-Resources runs over two semesters (FS and HS) and is offered every three years.

Takes place in FS22 + HS22

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>669-0102-00L</td>
<td>Autumn Course: Utilisation of Geothermal Energy</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>M. O. Saar, to be announced</td>
</tr>
</tbody>
</table>

Does not take place this semester. Only for CAS in Angewandten Erdwissenschaften.

► Modules Geo-Constructions
The Module Geo-Constructions runs over two semesters (FS and HS) and is offered every three years.

Takes place in FS23 + HS23

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>669-0202-00L</td>
<td>Autumn Course: Engineering Geology in Underground Constructions</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>S. Löw</td>
</tr>
</tbody>
</table>

Does not take place this semester. Only for CAS in Angewandten Erdwissenschaften.

► Modules Geo-Risks
The Module Geo-Risks runs over two semesters (FS and HS) and is offered every three years.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>669-0302-00L</td>
<td>Autumn Course: Landslide Processes and Hazards</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>S. Löw, J. Aaron, A. Manconi</td>
</tr>
</tbody>
</table>

Abstract
The autumn course covers landslides in the broader sense, large slope movements and flowing mass movements in soil and rock. The course provides current and new knowledge needed for classification, determination of the relevant processes and estimation of the temporal behaviour of geological mass movements.

Objective
The participants learn which investigations and measurements can be used to improve the hazard analysis in a targeted manner, especially for more complex slope instabilities.

CAS in Applied Earth Sciences - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Applied Statistics

Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>447-0649-01L</td>
<td>Applied Statistical Regression I</td>
<td>O</td>
<td>4 credits</td>
<td>1V+1U</td>
<td>M. Tanadini</td>
</tr>
<tr>
<td></td>
<td>Only for DAS and CAS in Applied Statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Simple and multiple regression models, with emphasis on practical aspects and interpretation of results, analysis of residuals and model selection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-0625-01L</td>
<td>Applied Analysis of Variance and Experimental Design I</td>
<td>O</td>
<td>3 credits</td>
<td>1V+1U</td>
<td>L. Meier</td>
</tr>
<tr>
<td></td>
<td>Only for DAS and CAS in Applied Statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>447-0649-02L</td>
<td>Applied Statistical Regression II</td>
<td>Z</td>
<td>2 credits</td>
<td>1V+1U</td>
<td>C. Renaux</td>
</tr>
<tr>
<td></td>
<td>Only for DAS and CAS in Applied Statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Generalized linear models (GLMs) and basic ideas of more advanced regression models.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding the concept and flexibility of generalized linear models and correct interpretation of the corresponding model outputs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-0625-02L</td>
<td>Applied Analysis of Variance and Experimental Design II</td>
<td>Z</td>
<td>3 credits</td>
<td>1V+1U</td>
<td>L. Meier</td>
</tr>
<tr>
<td></td>
<td>Only for DAS and CAS in Applied Statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will be able to plan and analyze sophisticated experiments in the fields of natural sciences. They will gain practical experience by using the software R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-6221-00L</td>
<td>Nonparametric Regression</td>
<td>W</td>
<td>1 credit</td>
<td>1G</td>
<td>M. Mächler</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester. Special Students "University of Zurich (UZH)" in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course focusses on nonparametric estimation of probability densities and regression functions. These recent methods allow modelling without restrictive assumptions such as 'linear function'. These smoothing methods require a weight function and a smoothing parameter. Focus is on one dimension, higher dimensions and samples of curves are treated briefly. Exercises at the computer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Knowledge on estimation of probability densities and regression functions via various statistical methods. Understanding of the choice of weight function and of the smoothing parameter, also done automatically. Practical application on data sets at the computer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-6257-00L</td>
<td>Repeated Measures</td>
<td>W</td>
<td>1 credit</td>
<td>1G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester. Special Students "University of Zurich (UZH)" in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will gain the ability of recognizing repeated measures and to analyze them adequately. They will know how to deal with pseudoreplicates.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-6289-00L</td>
<td>Sampling Surveys</td>
<td>W</td>
<td>2 credits</td>
<td>1G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester. Special Students "University of Zurich (UZH)" in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The elements of a sample survey are explained. The most important classical sample designs (simple random sampling and stratified random sampling) with their estimation procedures and the use of auxiliary information including the Horvitz-Thompson estimator are introduced. Data preparation, non-response and its treatment, variance estimation and analysis of survey data is discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Knowledge of the Elements and the process of a sample survey. Understanding of the paradigm of random samples. Knowledge of simple random sampling and stratified random sampling and capability to apply the corresponding methods. Knowledge of further methods of sampling and estimation as well as data preparation and analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Introduction to the statistical methods of survey research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-6201-00L</td>
<td>Nonparametric and Resampling Methods</td>
<td>Z</td>
<td>2 credits</td>
<td>2G</td>
<td>L. Meier, D. Kuonen</td>
</tr>
<tr>
<td></td>
<td>Special Students "University of Zurich (UZH)" in the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spatial Statistics

Does not take place this semester.

Special Students “University of Zurich (UZH)” in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.

Abstract
In many research fields, spatially referenced data are collected. When analysing such data the focus is on exploring their structure (dependence on explanatory variables, autocorrelation) and/or on spatial prediction. The course provides an introduction to geostatistical methods that are useful for such purposes.

Objective
The course will provide an overview of the basic concepts and stochastic models that are commonly used to model geostatistical data sets. In addition, the participants will learn a number of geostatistical techniques and acquire some familiarity with software that is useful for analysing spatial data.

Content
After an introductory discussion of the types of problems and the kind of data that arise in environmental research, an introduction into linear geostatistics (models: stationary random processes, modelling large-scale spatial patterns by regression, modelling autocorrelation by variogram; kriging: mean-square prediction of spatial data) will be taught. The lectures will be complemented by data analyses that the participants have to do themselves.

Lecture notes
Slides, descriptions of the problems for the data analyses and worked-out solutions to them will be provided.

Data Mining

Does not take place this semester.

Special Students “University of Zurich (UZH)” in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.

Abstract
Block course only on prediction problems, aka "supervised learning".

Part 1, Classification: logistic regression, linear/quadratic discriminant analysis, Bayes classifier; additive and tree models; further flexible ("nonparametric") methods.

Part 2, Flexible Prediction: additive models, MARS, Y-Transformation models (ACE,AVAS); Projection Pursuit Regression (PPR), neural nets.

Content
"Data Mining" is a large field from which in this block course, we only treat so called prediction problems, aka "supervised learning".

Part 1, Classification, recalls logistic regression and linear / quadratic discriminant analysis (LDA/QDA) and extends these (in the framework of "Bayes classifier") to (generalized) additive (GAM) and tree models (CART), and further mentions other flexible ("nonparametric") methods.

Part 2, Flexible Prediction (of continuous or "class" response/target) contains additive models, MARS, Y-Transformation models (ACE, AVAS); Projection Pursuit Regression (PPR), neural nets.

Lecture notes
The block course is based on (German language) lecture notes.
Prerequisites / notice

The exercises are done exclusively with the (free, open source) software "R" (http://www.r-project.org). A final exam will also happen at the computers, using R (and your brains!).

Bayes Methods

W 2 credits 2G

Course Code: 447-6273-00L

Abstract

conditional probability; bayes inference (conjugate distributions, HPD-areas; linear and empirical bayes); determination of the a-posteriori distribution through simulation (MCMC with R2Winbugs); introduction to multilevel/hierarchical models.

Content

Bayes statistics is attractive, because it allows to make decisions under uncertainty where a classical frequentist statistical approach fails. The course provides an introduction into bayesian methods. It is moderately mathematically technical, but demands a flexibility of mind, which should not underestimated.

Literature

Kruschke, J.K., Doing Bayesian Data Analysis, Elsevier2011.

Prerequisites / notice

Prerequisite: Basic knowledge of statistics; Knowledge of R.

Statistical Analysis of Financial Data

W 2 credits 1G

Course Code: 447-6191-00L

Abstract

Objective

Getting to know the typical properties of financial data and appropriate statistical models, incl. the corresponding functions in R.

CAS in Applied Statistics - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Participants understand basic concepts of visual recognition and human-computer interaction systems.

L. E. Fässler

This module offers practical knowledge in visual information processing and human computer interactions.

ECTS

Participants will get an introduction to key computer science concepts underlying current and upcoming technology. The module in

This integration module for CAS "Applied Information Technology" links technical understanding of technology with business strategy

Recommended, not eligible for credits

Participants will explore how new information technologies change different aspects of a business, and learn how to evaluate specific risks,

3 credits

Participants learn about some important computer science concepts necessary for data science. They understand some of these concepts

Courses outside the curriculum

1. Variables, data types
2. Condition check, Loops, logics
3. Arrays
4. Functions
5. Matrices
6. Data management (SQL)

No prior knowledge is required for this course. It is based on application-oriented learning. The students spend most of their time working

Dr

- how to encode a problem into a program, test the program, and correct errors.
- to understand and improve existing code.
- to implement mathematical models as a simulation.

In the practical part of the course, students work on small programming projects with a context from natural sciences. Electronic tutorials

Prerequisites / notice

Electronic tutorials are available as preparation.

Participants will get an introduction to key computer science concepts underlying current and upcoming technology. The module in

The initial module offers a practical introduction to some basic concepts and techniques for information processing as well as practical

The following programming concepts are introduced during this module:

In this module, basic paradigms and techniques in working with data will be discussed, especially towards data security, managing data
decently, and learning from data.

Participants learn about some important computer science concepts necessary for data science. They understand some of these concepts
in detail and see the mathematics behind them.

Participants will get an introduction to key computer science concepts underlying current and upcoming technology. The module in

This module offers practical knowledge in visual information processing and human computer interactions.

Participants understand basic concepts of visual recognition and human computer interaction systems.

Participants will learn how technology affects businesses and practical issues when using new technologies in incumbent organizations
based on a set of case studies.

Participants will explore how new information technologies change different aspects of a business, and learn how to evaluate specific risks,
costs, and benefits of such technologies. The module will shed light on success factors and common pitfalls when implementing new
technologies and respective business changes, and it will specifically address the communication between technical experts and business
management. The studied cases are currently planned to focus on artificial intelligence, IoT including edge and cloud computing,
blockchain and distributed ledger technologies, as well as programming assignments; (ii) a context part that addresses the challenges and limitations encountered in practical applications.

The first part of the module will cover basic theoretical knowledge on visual recognition systems of the last two decades, mostly focusing on
the most recent advancements in deep learning and convolutional neural networks. The theoretical knowledge will be supported with
tutorials available.

Only for CAS in Applied Information Technology and MAS

This module offers practical knowledge in visual recognition and human computer interactions.

This module offers practical knowledge in visual information processing and human computer interactions.

Only for CAS in Applied Information Technology and MAS

This module offers practical knowledge in visual information processing and human computer interactions.

This module offers practical knowledge in visual recognition and human computer interaction systems.

This module offers practical knowledge in visual recognition systems of the last two decades, mostly focusing on the most recent advancements in deep learning and convolutional neural networks. The theoretical knowledge will be supported with practical sessions that will allow participants to gain hands-on experience with most commonly used tools and deepen their understanding of the key concepts. The second part provides an introduction to the field of human-computer interaction, emphasising the central role of the user in system design. Through detailed case studies, students will be introduced to different methods used to analyse the user experience and shown how these can inform the design of new interfaces, systems and technologies.

Only for CAS in Applied Information Technology and MAS

Only for CAS in Applied Information Technology and MAS

Only for CAS in Applied Information Technology and MAS

Participants understand basic concepts of visual recognition and human computer interaction systems.

Participants will learn how technology affects businesses and practical issues when using new technologies in incumbent organizations
based on a set of case studies.

Participants will explore how new information technologies change different aspects of a business, and learn how to evaluate specific risks,
costs, and benefits of such technologies. The module will shed light on success factors and common pitfalls when implementing new
technologies and respective business changes, and it will specifically address the communication between technical experts and business
management. The studied cases are currently planned to focus on artificial intelligence, IoT including edge and cloud computing,
blockchain and distributed ledger technologies, as well as programming assignments; (ii) a context part that addresses the challenges and limitations encountered in practical applications.

Cas in Applied Information Technology - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Eligible for credits</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Dr</td>
<td>Eligible for credits</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 | Autumn Semester 2021 | Page 400 of 2152
<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Applied Manufacturing Technology
The CAS takes place in Spring Semester only.
Start of the next course: FS 2022

Key for Hours

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>ECTS</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Applied Technology in Energy

The CAS takes place in Spring Semester only.

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System
 - Special students and auditors need special permission from the lecturers.
The CAS takes place in Autumn Semester only.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>247-0200-00L</td>
<td>Organization of R&D in Tech Companies</td>
<td>O</td>
<td>4 credits</td>
<td>2G</td>
<td>U. Grossner</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Applied Technology: R&D and Innovation and MAS in Applied Technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course provides an introduction to research & development, both as a general activity and as a dedicated function within a corporation. Participants will learn how to organize, conduct and manage individual R&D projects as well as groups of projects. We will also look at the various roles that R&D serves within a corporation and how choices regarding the organization of R&D align with these roles. The aim of this course is to develop the participants’ ability to articulate a coherent plan for R&D activities linked to the business needs of a corporation, including the ability to explain convincingly the rationale, structure, resources and intended outcomes of the R&D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247-0201-00L</td>
<td>Innovation Opportunity Analysis</td>
<td>O</td>
<td>4 credits</td>
<td>3G</td>
<td>J. Jaminet</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Applied Technology: R&D and Innovation and MAS in Applied Technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Innovation Opportunity Analysis course is designed as a practical introduction to evaluating technology-based innovation opportunities in a corporate setting. The course will cover several fundamental innovation frameworks and principles before diving deeper into individualized content using the principle of Guided Learning. The primary goal of the course is to develop the skills needed for identifying technology-based innovation opportunities and for planning successful innovation projects. An additional goal is to prepare participants for their Master’s thesis and for lifelong learning in technology-based innovation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247-0202-00L</td>
<td>Innovation and Technology Tools</td>
<td>O</td>
<td>2 credits</td>
<td>4G</td>
<td>U. Grossner, J. Jaminet</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Applied Technology: R&D and Innovation and MAS in Applied Technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This module will provide an introduction to some of the fundamental tools that can be used for evaluating technologies and innovation opportunities. The goal is to enable participants to use basic innovation and technology evaluation tools within their work setting.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247-0203-00L</td>
<td>Experiment Selection & Design</td>
<td>O</td>
<td>0 credits</td>
<td></td>
<td>U. Grossner</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Applied Technology: R&D and Innovation and MAS in Applied Technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This module prepares participants to conduct an experimental project in an ETH lab beginning in the following January as part of the MAS in Applied Technology programme. Participants will prepare a plan and design for the experimental project under the direction of the CAS Programme Director and the relevant ETH lab. The goal is for participants to learn standard procedures for the planning and design of experiments and to gain practical experience in planning and designing an individual experimental project.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAS in Applied Technology: R&D and Innovation - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Collaborative Decision Making Under Uncertainty

Takes place only in Spring Semester

Start of the next course: Spring Semester 2022

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Modules

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>268-0101-00L</td>
<td>Introduction to Information Security</td>
<td>O</td>
<td>5 credits</td>
<td>4G</td>
<td>P. Schaller, S. Matetic</td>
</tr>
<tr>
<td></td>
<td>Only for CAS and DAS in Cyber Security.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In this course, the goal is to introduce the fundamentals of information/cyber security from a technical point of view. Along with theory, hands-on experiments are an important building block of the course and help to deepen the students' understanding of the theory parts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Graduates of the course know the technical foundations of information security and understand the difficulty and complexity involved when trying to build secure systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>In this new course, the goal is to introduce the fundamentals of information/cyber security from a technical point of view. Along with theory, hands-on experiments are an important building block of the course and help to deepen the students' understanding of the theory parts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>268-0201-00L</td>
<td>Information Security Seminar and Project</td>
<td>O</td>
<td>2 credits</td>
<td>2S</td>
<td>S. Matetic</td>
</tr>
<tr>
<td></td>
<td>Only for CAS and DAS in Cyber Security.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Participants of the seminar are assigned a recent topic in cyber security. They are expected to become acquainted with the assigned issue and to prepare a corresponding presentation in the context of the seminar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants have understood and presented a publication or report on a present topic in information security. By attending other participants presentations students get further introduced to additional current information security related topics/incidents.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Participants of the seminar are assigned a recent topic in cyber security. They are expected to become acquainted with the assigned issue and to prepare a corresponding presentation in the context of the seminar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>268-0202-00L</td>
<td>Contemporary Topics in Cyber Security</td>
<td>O</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Matetic</td>
</tr>
<tr>
<td></td>
<td>Only for CAS and DAS in Cyber Security.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course is composed of various sub-modules related to Cyber Security taught by experts on the relevant fields.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students are expected to see behind the curtain of current research and engineering activities related to Cyber Security. At the same time students are introduced to contemporary challenges in cyber security by renowned experts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The lectures cover contemporary aspects and challenges in Cyber Security. The goal is to present current fields of research/engineering and the latest results. By way of example, Cyber Security Policy is one of sub-modules presented by researchers of the Center for Security Studies at ETH. Besides faculty members of the computer science department, there will be guest lecturers from industry presenting Cyber Security related challenges in their field of activity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Will be announced during the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAS in Cyber Security - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
CAS in Entrepreneurial Leadership in Technology Ventures

Start: Every Autumn Semester and Spring Semester.

Duration: 12 months. It is possible to join the programme at the beginning of each semester.

Core Knowledge

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>373-0100-00L</td>
<td>Entrepreneurial Strategies</td>
<td>O</td>
<td>1</td>
<td>2G</td>
<td>B. Clarysse</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Entrepreneurial Leadership in Technology Ventures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This is the first knowledge module in the CAS ELTV. In this module we (1) introduce all participants to the CAS and ETH, (2) get to know in more detail the projects of the participants and how lean innovation plays a role, and (3) discuss important considerations of strategy formation in technology ventures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This module enables participants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To understand and select from commercialization strategies available to them (e.g., licensing, partnering, and vertical integration) and respective business model choices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Assess and generate development options for key internal enabling factors such IP strategy and key resources and capabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Understand different market research and developments tools (lean start-up vs. technology broadcasting) and select appropriate methods and related KPIs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This module focuses on elements of entrepreneurial strategy formation and implementation in nascent markets and/or industries. Participants will study commercial options available to them, e.g., technology broadcasting, licensing and partnering, and vertical integration, which is complemented by a practical view on IP strategy, driven by business strategy rather than arbitrary choices. The module also includes the introduction to lean innovation methods incl. agile product development methods and core tools of the lean startup approach.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>373-0101-00L</td>
<td>Entrepreneurial Leadership and Teams</td>
<td>O</td>
<td>1</td>
<td>1G</td>
<td>J. Thiel</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Entrepreneurial Leadership in Technology Ventures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This is the second knowledge module within the CAS ELTV. During this module, we will discuss important themes concerning entrepreneurial team formation and management and practice elements in interactive workshops.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This module enables participants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To understand key requirements for new venture leadership and how to build effective governance structures for the founding team</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To select and implement approaches and methods to structure productive work relationships within an emerging firm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To understand and build the organizational foundations for successful professionalizing of venture operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This module zooms in on the design and management of new venture teams in technology- based companies as well as the role of leadership in building successful venture teams. Key contents in this module comprise founder contracts, successful governance structures, and approaches to team performance management. This module also allows participants to understand requirements for venture leadership and professionalizing venture operations as well as building productive work relationship within their emerging firm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>373-0102-00L</td>
<td>Entrepreneurial Marketing & Sales</td>
<td>O</td>
<td>1</td>
<td>1G</td>
<td>M. Gruber</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Entrepreneurial Leadership in Technology Ventures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This is the third knowledge module within the CAS ELTV. During this module, we will discuss important themes concerning entrepreneurial team formation and management and practice elements in interactive workshops. The module will be extended by intermediary project review meetings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This module enables participants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To understand customer needs and the respective markets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To practice and optimize successful communication with and towards existing and future customers (e.g., strategic selling, key account management, communication tools)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To understand and use different pricing techniques for technology products and services, both in B2C and B2B contexts,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To select appropriate strategies to build up effective sales channels and calculate and optimize respective funnel KPIs and assess the implications on the venture's business model and organization (e.g., lead management, funnel metrics, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This module exposes participants to important customer development and market research strategies, with the goal to build competencies in several customer-facing activity domains of the growing venture. Key module themes span the pricing of technology products and services, both in B2C and B2B contexts, the effective build-up of sales channels and funnels, and the successful communication to existing as well as future customers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Business & Leadership Development

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>373-0200-00L</td>
<td>Business Development of Technology Ventures I</td>
<td>O</td>
<td>2</td>
<td>2P</td>
<td>B. Clarysse</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Entrepreneurial Leadership in Technology Ventures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This module is the first part of the Business Coaching track of the CAS ELTV. The module offers a structured process through which participants develop their business projects. All projects receive regular guidance from a dedicated coach.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This module enables participants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To identify key unknowns and important progress measures for their respective business case and implement effective means and tools to further develop their business case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To understand the view of potential customers and implement their feedback to improve the business case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | - To effectively communicate and enroll other important venture constituents (mentors, advisors, employees, investors, etc.) in the venture
This module focuses on the development needs of participants' business skills and competencies. In this module, experienced business coaches and startup mentors will interact regularly with the participants, offer guidance on how to strategize and implement compelling business cases, feedback on specific challenges, and participants' activities with the goal to strengthen the ability of the participant to garner needed resources for their undertakings.

Lecture notes
See Online Platform

Literature
See Online Platform

Prerequisites / notice
This module is only for CAS ELTV participants.

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Prerequisites / Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>373-0201-00L</td>
<td>Leadership Development I</td>
<td>1 credit</td>
<td>This module is only for CAS ELTV participants.</td>
</tr>
</tbody>
</table>

Abstract
This is the first module of the Leadership Development & Coaching track of the CAS ELTV. In this module, participants take stock of their current situation and goals and develop specific action points. This process is supported by experienced leadership coaches.

Objective
- To identify current gaps in the personal management skills and competencies and develop meaningful goals and plans to fill those gaps
- To implement effective exercises and practices to improve the participants' leadership capacity
- To effectively communicate and manage key constituents, notably employees and key advisors in a venture project

Content
This module focuses on the development needs of participants' leadership competencies. In this module, experienced leadership coaches will interact regularly with the participants, coach them along a personal development plan, and feedback participants on specific challenges and activities with the goal to strengthen the participants' leadership capability and people skills.

Lecture notes
See Online Platform

Literature
See Online Platform

Prerequisites / notice
This module is only for CAS ELTV participants.

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Prerequisites / Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>373-0205-00L</td>
<td>Final Business Project Defense</td>
<td>1 credit</td>
<td>This module is only for CAS ELTV participants.</td>
</tr>
</tbody>
</table>

Abstract
This module focuses on the development needs for both the participants' presentation and resource mobilization skills. The participants are asked to bring all learnings from the CAS and defend in engaging manner their business projects. This defense is typically delivered in presence of external investors or venture stakeholders who will challenge the project and potentially offer future support.

Objective
- To reflect upon and integrate important and relevant elements from the CAS into the venture project
- To practice effective business communication and venture pitching skills
- To receive and handle challenging feedback from important ventures constituents.

Content
This module enables participants:

Key For Hours
- **V** lecture
- **G** lecture with exercise
- **U** exercise
- **S** seminar
- **K** colloquium

- **P** practical/laboratory course
- **A** independent project
- **D** diploma thesis
- **R** revision course/private study

Skills & Ecosystem Immersion
Courses are only offered in Spring Semester.

CAS in Entrepreneurial Leadership in Technology Ventures - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Module

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>865-0065-00L</td>
<td>VET between Poverty Alleviation and Economic Development</td>
<td>W</td>
<td>2</td>
<td>3G</td>
<td>K. Hartgen, F. Kehl, M. Maurer</td>
</tr>
<tr>
<td></td>
<td>Only for MAS/CAS in Development and Cooperation students, as well as specialists with at least 24 months of practical experience in international cooperation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETH doctoral students working on topics related to poverty reduction in low- and middle income countries may also be admitted.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration only through the NADEL administration office.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course aims at strengthening the capacity in portfolio management for VET, skills development and active labor market policies. It deals with basic issues and challenges of Vocational Education and Training (VET) in Developing Countries. In view of the many of school leavers VET has to place itself between the contradicting intensions of quality education and short-term training interventions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The participants are able to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Assess project proposals and ongoing project regarding their relevance and suitability in the specific country context</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Explain strengths and weaknesses of the opposing approaches "dual apprenticeship" and "competency based training" as well as synergies and incompatibilities between the two</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Describe the competent use of tools currently applied in VET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic concepts and terms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differences and commonalities between VET and neighboring systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planning, assessment of VET interventions with different objectives: economic development, poverty alleviation, creation of self-employment or systems development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VET as a cooperation system of stakeholders with different duties, interests and competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Background, potential use and limitations of (national) qualification frameworks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Half-day visit to important actors of the Swiss VET landscape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students of the course must fulfil requirements specified on the homepage of NADEL. Electronic registration may be done only after registration with NADEL secretariat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The participants are able to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Describe the processes and concepts of project planning and monitoring using the correct technical terminology, to initiate an analysis of the initial situation, to elaborate a monitoring system, and to adaptively steer the implementation of projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Basic concepts and terms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differences and commonalities between VET and neighboring systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planning, assessment of VET interventions with different objectives: economic development, poverty alleviation, creation of self-employment or systems development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VET as a cooperation system of stakeholders with different duties, interests and competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Background, potential use and limitations of (national) qualification frameworks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Half-day visit to important actors of the Swiss VET landscape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students of the course must fulfil requirements specified on the homepage of NADEL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>865-0000-01L</td>
<td>Planning and Monitoring of Projects</td>
<td>O</td>
<td>2</td>
<td>3G</td>
<td>K. Schneider</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Development and Cooperation students, as well as specialists with at least 24 months of practical experience in international cooperation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETH doctoral students working on topics related to poverty reduction in low- and middle income countries may also be admitted.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration only through the NADEL administration office.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course provides a deeper understanding of the methodological foundations of results-oriented planning and steering of development projects. Together with the participants, we reflect on the situation-specific application of instruments for project planning and the development of a monitoring system, which makes it possible to adapt and steer projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course participants are able to describe the processes and concepts of project planning and monitoring using the correct technical terminology, to initiate an analysis of the initial situation, to elaborate a monitoring system, and to adaptively steer the implementation of projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Basic concepts and terms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differences and commonalities between VET and neighboring systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planning, assessment of VET interventions with different objectives: economic development, poverty alleviation, creation of self-employment or systems development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VET as a cooperation system of stakeholders with different duties, interests and competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Background, potential use and limitations of (national) qualification frameworks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Half-day visit to important actors of the Swiss VET landscape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>'Write' and structure results-oriented Project reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students of the course must fulfil requirements specified on the homepage of NADEL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>865-0000-06L</td>
<td>Impact Evaluations in Practice</td>
<td>W</td>
<td>2</td>
<td>3G</td>
<td>I. Günther, A. Rom, K. Schneider</td>
</tr>
<tr>
<td></td>
<td>Only for MAS/CAS in Development and Cooperation students, as well as specialists with at least 24 months of practical experience in international cooperation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETH doctoral students working on topics related to poverty reduction in low- and middle income countries may also be admitted.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration only through the NADEL administration office.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course gives an introduction to the most important methods for rigorous impact analysis of development programs and projects. The course is designed to both cover the most fundamental methods of impact analysis and introduce real world case studies from national, international and non-governmental development organizations and asks how rigorous impact analysis has influenced their policies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Participants understand the most important methods of impact analysis. They are able to conduct small scale studies to evaluate the impact of their own programs as well as manage larger impact evaluations for their organizations. Participants are able to use the results of own and external impact studies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to rigorous impact analysis; Case studies and their policy implications; Introduction to the required statistical knowledge; Potentials and limitations of quantitative analysis; Experimental and quasi-experimental methods; Relevant and feasible indicators for the measurement of outcomes and impacts; Data collection and analysis; Project management of an impact analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students of the course must fulfil requirements specified on the homepage of NADEL. Electronic registration may be done only after registration with NADEL secretariat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>865-0042-00L</td>
<td>Financial Management of Projects</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>I. Günther, M. Störmer</td>
</tr>
<tr>
<td></td>
<td>Only for MAS/CAS in Development and Cooperation students, as well as specialists with at least 24 months of practical experience in international cooperation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following topics will be discussed: The political economy of the Corporate Social Responsibility discourse, voluntary governance.

The course conveys basic knowledge of methods and instruments for the financial management and the economic analysis of development projects. Case studies and exercises are used to make students familiar with methods and instruments of financial management.

Students of the course must fulfill requirements specified on the homepage of NADEL.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>W</th>
<th>G</th>
<th>Prerequisites / Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>865-0064-00L</td>
<td>Decolonizing Aid: Only for MAS/CAS in Development and Cooperation students, as well as specialists with at least 24 months of practical experience in international cooperation. Doctoral students dealing with empirical research in the area of development and cooperation (EZA) may be admitted “sur Dossier”.</td>
<td>1</td>
<td></td>
<td>3G</td>
<td>K. Schneider, L. Hensgen</td>
</tr>
<tr>
<td>865-0070-00L</td>
<td>The Private Sector and Development Organizations: Building Successful Alliances Only for MAS/CAS in Development and Cooperation students, as well as specialists with at least 24 months of practical experience in international cooperation. Doctoral students dealing with empirical research in the area of development and cooperation (EZA) may be admitted “sur Dossier”.</td>
<td>1</td>
<td></td>
<td>2G</td>
<td>F. Brugger</td>
</tr>
<tr>
<td>865-0021-00L</td>
<td>Fraud and Corruption: Prevent, Detect, Investigate, Sanction Only for MAS/CAS in Development and Cooperation students, as well as specialists with at least 24 months of practical experience in international cooperation. ETH doctoral students working on topics related to poverty reduction in low- and middle income countries may also be admitted.</td>
<td>1</td>
<td></td>
<td>2G</td>
<td>L. Hensgen, M. Schmid-Huberty</td>
</tr>
<tr>
<td>865-0006-00L</td>
<td>Leveraging Private Impact Investors in Development Cooperation Only for MAS/CAS in Development and Cooperation students, as well as specialists with at least 24 months of practical experience in international cooperation. Doctoral students dealing with empirical research in the area of development and cooperation (EZA) may be admitted “sur Dossier”.</td>
<td>1</td>
<td></td>
<td>1G</td>
<td>C. Humphrey</td>
</tr>
</tbody>
</table>

Registration only through the NADEL administration office.
Objective
This two-day course demystifies impact investing for people working in development cooperation. Impact investing—the idea that it is possible to “do good” as well as make money with certain types of investment—is changing the landscape of development cooperation. Impact investing is growing rapidly and development agencies and non-governmental organizations increasingly seek to leverage private investor resources. But many development actors are not accustomed to working with private investors, and are uneasy about their profit motivation and modes of operation. The course provides an introduction to the terminology and instruments involved in impact investing and evaluates developmental opportunities and trade-offs.

Content
Key topics
- Defining impact investing and understanding its importance for development
- Different types of impact investor and their incentives
- Overview of instruments such as loans, equity investments, syndication and impact bonds
- How to define and measure “impact”
- Techniques used by development agencies to leverage private investor resources
- Considering what impact investing can and cannot achieve for development goals

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>865-0041-00L</td>
<td>Natural Resource Governance and Development: Policies and Practice</td>
<td>W 3 credits 3S</td>
<td>F. Brugger, further speakers</td>
</tr>
</tbody>
</table>

Only for CAS in Development and Cooperation students, as well as specialists with at least 24 months of practical experience in international cooperation.

ETH doctoral students working on topics related to poverty reduction in low- and middle income countries may also be admitted.

Registration only through the NADEL administration office.

Abstract
First introductory, online phase of an advanced-level multi-stakeholder course with the main goal to introduce analytical tools of political economy to enhance understanding of the crucial impact of politics and power on policy outcomes.

Objective
The first phase of the course will be introductory, allowing participants to start interacting with their peers, access videos and other materials as well as engage in scheduled live sessions to refresh their knowledge and skills.

Content
Topics covered:
- Discovery and allocation of resource rights
- The political economy of natural resource extraction
- Fiscal regimes and taxation
- Managing natural resource revenues and investment
- StateOwned Companies governance
- Environmental and social impacts of extraction
- Corruption and accountability

Prerequisites / notice
- Live Lecture September 27 2pm CET
- Live Lecture September 28 2pm CET
- Nov 8 - Nov 19 Live Phase (each live lecture 2pm CET and additional program sessions in the morning and/or afternoon CET).

CAS in Development and Cooperation - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E- Recommended, not eligible for credits</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
New: Starting 2020, we will address contact tracing, radio link budget, location distance measurements, and Bluetooth in more depth.

Concepts of Object-Oriented Programming
Security Engineering

Lecturers

S. Krstic

Type

After this course, students will:

- Be able to apply randomized algorithms and probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.
- Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Objective

After this course students will:

- Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features. Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs. Be able to learn new languages more rapidly.
- Be aware of many subtle problems of object-oriented programming and know how to avoid them.

Content

The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages.

The topics discussed in the course include among others:

- The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing)
- The key problems of single and multiple inheritance and how different languages address them
- Generic type systems, in particular, Java generics, C# generics, and C++ templates
- The situations in which object-oriented programming does not provide encapsulation, and how to avoid them
- The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing
- How to maintain the consistency of data structures

Literature

Will be announced in the lecture.

Prerequisites / notice

- Prerequisites: Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience

Wireless Networking and Mobile Computing

Abstract

This course gives an overview about wireless standards and summarizes the state of art for Wi-Fi 802.11, Cellular 5G, and Internet-of-Things, including new topics such as contact tracing with Bluetooth, audio communication, cognitive radio, visible light communications.

The course combines lectures with a set of assignments in which students are asked to work with a JAVA simulation tool.

Content

New: Starting 2020, we will address contact tracing, radio link budget, location distance measurements, and Bluetooth in more depth.

Lecture notes

The course material will be made available by the lecturer.

Literature

(1) The course webpage (look for Stefan Mangold's site)
(2) The Java 802 protocol emulator “JEmula802” from https://bitbucket.org/lfield/jemula802

Prerequisites / notice

Students should have interest in wireless communication, and should be familiar with Java programming. Experience with GNU Octave or Matlab will help too (not required).

Randomized Algorithms and Probabilistic Methods

Abstract

Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks

Objective

After this course students will:

- Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks
- Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Content

Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Lecture notes

Prerequisites / notice

Yes.

Security Engineering

Abstract

Subject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements & risk analysis, system modeling & model-based development methods, implementation-level security, and evaluation criteria for secure systems.
Objective

Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.

Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems
Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems

Modules taught:

1. Introduction
 - Introduction of Infsec group and speakers
 - Security meets SW engineering: an introduction
 - The activities of SW engineering, and where security fits in
 - Overview of this class
2. Requirements Engineering: Security Requirements and some Analysis
 - Overview: functional and non-functional requirements
 - Use cases, misuse cases, sequence diagrams
 - Safety and security
3. Modeling in the design activities
 - Structure, behavior, and data flow
 - Class diagrams, statecharts
4. Model-driven security for access control (Part I)
 - SecureUML as a language for access control
 - Combining Design Modeling Languages with SecureUML
 - Semantics, i.e., what does it all mean,
 - Generation
 - Examples and experience
5. Model-driven security (Part II)
 - Continuation of above topics
6. Security patterns (design and implementation)
7. Implementation-level security
 - Buffer overflows
 - Input checking
 - Injection attacks
8. Code scanning
 - Static code analysis basics
 - Theoretical and practical challenges
 - Analysis algorithms
 - Common bug pattern search and specification
 - Dataflow analysis
9. Testing
 - Overview and basics
 - Model-based testing
 - Testing security properties
10. Risk analysis and management
 - "Risk": assets, threats, vulnerabilities, risk
 - Risk assessment: quantitative and qualitative
 - Safeguards
 - Generic risk analysis procedure
 - The OCTAVE approach
 - Example of qualitative risk assessment
11. Threat modeling
 - Overview
 - Safety engineering basics: FMEA and FTA
 - Security impact analysis in the design phase
 - Modeling security threats: attack trees
 - Examples and experience
12. Evaluation criteria
 - NIST special papers
 - ISO/IEC 27000
 - Common criteria
 - BSI baseline protection
13. Guest lecture
 - TBA

Literature

- Further relevant books and journal/conference articles will be announced in the lecture.

Prerequisites / notice

Prerequisite: Class on Information Security
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics
knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms
and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine
learning algorithms on real-world data.

Topics covered in the lecture include:

Fundamentals:
What is data?
Bayesian Learning
Computational learning theory

Supervised learning:
Ensembles: Bagging and Boosting
Max Margin methods
Neural networks

Unsupervised learning:
Dimensionality reduction techniques
Clustering
Mixture Models
Non-parametric density estimation
Learning Dynamical Systems

Lecture notes
No lecture notes, but slides will be made available on the course webpage.

Literature

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

L. Wasserman. All of Statistics: A Concise Course in Statistical

Prerequisites / notice
The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming
experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0543-01L</td>
<td>Computer Graphics</td>
<td>W 8 credits 3V+2U+2A</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>No lecture notes, but slides will be made available on the course webpage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Books: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting Multiple view geometry in computer vision Physically Based Rendering: From Theory to Implementation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0546-00L</td>
<td>Physically-Based Simulation in Computer Graphics</td>
<td>W 5 credits 3V+2U+1A V. da Costa de Azevedo B. Solenthaler, B. Thomaszewski</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The lecture covers topics in physically-based modeling, such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation. Fundamental of calculus and physics, basic concepts of algorithms and data structures, basic programming skills in C++. Knowledge on numerical mathematics as well as ordinary and partial differential equations is an asset, but not required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The programming assignments will be in C++. This will not be taught in the class.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-1407-00L</td>
<td>Algorithmic Game Theory</td>
<td>W 7 credits 3V+2U+1A P. Penna</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Game theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Learning the basic concepts of game theory and mechanism design, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

The Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a mathematical model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good.

This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth.

Outline:
- Introduction to classic game-theoretic concepts.
- Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity.
- Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization.
- Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy').
- Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium.
- Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange.

Lecture notes

Lecture notes will be posted on the website shortly after each lecture.

Literature

"Game Theory and Strategy", Philip D. Straffin, The Mathematical Association of America, 5th printing, 2004

Prerequisites / notice

Several copies of both books are available in the Computer Science library.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

252-1411-00L Security of Wireless Networks W 6 credits 2V+1U+2A S. Capkun, K. Kostiainen

Abstract

Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.

Objective

After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks.

Content

252-1414-00L System Security W 7 credits 2V+2U+2A S. Capkun, A. Perrig

Abstract

The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.

Objective

In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.

Content

The first part of the lecture covers individual system's aspects starting with tamperproof or tamper resistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network file system issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.

252-1425-00L Geometry: Combinatorics and Algorithms W 8 credits 3V+2U+2A B. Gärtner, E. Welzl, M. Hoffmann, M. Wettstein

Abstract

Geometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?)

Objective

The goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains. In particular, we want to prepare students for conducting independent research, for instance, within the scope of a thesis project.

Content

Planar and geometric graphs, embeddings and their representation (Whitney’s Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in Rd, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan’s Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations.

Lecture notes

yes

Literature

Prerequisites / notice

Prerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH.

Outlook: In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area.

252-3005-00L Natural Language Processing W 5 credits 2V+2U+1A R. Cotterell

Number of participants limited to 400.
Abstract
This course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

Objective
The objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.

Content
This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

Literature
Lectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.

227-2210-00L Computer Architecture
W 8 credits 6G+1A O. Mutlu
Abstract
Computer architecture is the science & art of designing and optimizing hardware components and the hardware/software interface to create a computer that meets design goals. This course covers basic components of a modern computing system (memory, processors, interconnects, accelerators). The course takes a hardware/software cooperative approach to understanding and designing computing systems.

Objective
We will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest major research topics in Industry and Academia. We will extensively cover memory systems (including DRAM and new Non-Volatile Memory technologies, memory controllers, flash memory), parallel computing systems (including multicore processors, coherence and consistency, GPUs), heterogeneous computing, processing-in-memory, interconnection networks, specialized systems for major data-intensive workloads (e.g. graph analytics, bioinformatics, machine learning), etc.

Content
The principles presented in the lecture are reinforced in the laboratory through 1) the design and implementation of a cycle-accurate simulator, where we will explore different components of a modern computing system (e.g., pipeline, memory hierarchy, branch prediction, prefetching, caches, multithreading), and 2) the extension of state-of-the-art research simulators (e.g., Ramulator) for more in-depth understanding of specific system components (e.g., memory scheduling, prefetching).

Lecture notes
All the materials (including lecture slides) will be provided on the course website: https://safarif.ethz.ch/architecture/

Literature
The video recordings of the lectures are expected to be made available after lectures.

Prerequisites / notice

263-2400-00L Reliable and Trustworthy Artificial Intelligence
W 6 credits 2V+2U+1A M. Vechev
Abstract
Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.

Objective
The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

Content
This comprehensive course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/reliableai21):

* Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
* Defenses against attacks
* Combining gradient-based optimization with logic for encoding background knowledge
* Complete Certification of deep neural networks via automated reasoning (e.g., via numerical relaxations, mixed-integer solvers).
* Probabilistic certification of deep neural networks
* Training deep neural networks to be provably robust via automated reasoning
* Fairness (different notions of fairness, certifiably fair representation learning)
* Federated Learning (introduction, security considerations)

Prerequisites / notice
While not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in "Intro to ML" classes at most institutions (e.g., "Introduction to Machine Learning" at ETH).

For solving assignments, some programming experience in Python is expected.

263-2800-00L Design of Parallel and High-Performance Computing
W 9 credits 3V+2U+3A T. Hoefler, M. Püschel
Abstract
Advanced topics in parallel and high-performance computing.

Objective
Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.

Content
We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites / notice
This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

263-3010-00L Big Data
W 10 credits 3V+2U+4A G. Fourny
Abstract
The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.
Objective

This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.

Content

This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form.

- physical storage: distributed file systems (HDFS), object storage (S3), key-value stores
- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)
- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro)
- data shapes and models (tables, trees, graphs, cubes)
- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)
- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)
- resource management (YARN)
- what a data center is made of and why it matters (racks, nodes, ...)
- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

Literature

Large scale analytics and machine learning are outside of the scope of this course.

Papers from scientific conferences and journals. References will be given as part of the course material during the semester.

This course, in the autumn semester, is only intended for:
- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

For students of all other departments interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you:
- "Information Systems for Engineers" (SQL, relational databases): this Fall
- "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists): Spring 2021

There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers.

Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data.

Prerequisites / notice

263-3210-00L Deep Learning

W 8 credits 3V+2U+2A F. Perez Cruz, A. Lucchi

Number of participants limited to 320.

Abstract

Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective

In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
Data Management Systems

Prerequisites / notice
This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:
 - Advanced Machine Learning
 https://mi2.inf.ethz.ch/courses/aml/
 - Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/
 - Introduction to Machine Learning
 https://las.inf.ethz.ch/teaching/pai-f18
 - Statistical Learning Theory
 http://mi2.inf.ethz.ch/courses/slt/
 - Computational Statistics
 https://stat.ethz.ch/lectures/ss19/comp-stats.php
 - Probabilistic Artificial Intelligence
 https://las.inf.ethz.ch/teaching/pai-f18

263-3845-00L

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>Techniques and Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Management Systems</td>
<td>W</td>
<td>8 credits</td>
</tr>
<tr>
<td>W</td>
<td>3V+1U+3A</td>
<td></td>
</tr>
<tr>
<td>G. Alonso</td>
<td>G. Alonso</td>
<td></td>
</tr>
</tbody>
</table>

263-3850-00L

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Informal Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>5 credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course will cover a range of topics, tentatively including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and derandomization.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
</table>
| This course will cover the basic concepts of efficient data processing and then expanding those concepts to modern implementations in data centers and the cloud.

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>The main source of information for the course will be articles and research papers describing the architecture of the systems discussed. The list of papers will be provided at the beginning of the course.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course requires to have completed the Data Modeling and Data Bases course at the Bachelor level as it assumes knowledge of databases and SQL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>Techniques and Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
<td>8 credits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3V+2U+3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Alonso</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Alonso</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Network Security

Prerequisites / notice

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations, E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you’re ready for this class or not, please consult the instructor.
Some of today's most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems.

This course provides an in-depth study of network attack techniques and methods to defend against them.

- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

The course will cover topics spanning four broad themes with a focus on the first two themes:
(1) network defense mechanisms such as public-key infrastructures, TLS, VPNs, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems;
(2) network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
(3) analysis and inference topics such as traffic monitoring and network forensics; and
(4) new technologies related to next-generation networks.

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.

This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L. Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

Artificial Intelligence in Education

Number of participants limited to 75.

Artificial Intelligence (AI) methods have shown to have a profound impact in educational technologies, where the great variety of tasks and data types enable us to get benefit of AI techniques in many different ways. We will review relevant methods and applications of AI in various educational technologies, and work on problem sets and projects to solve problems in education with the help of AI.

The course will be centered around exploring methodological and system-focused perspectives on designing AI systems for education and analyzing educational data using AI methods. Students will be expected to a) engage in presentations and active in-class discussion, b) work on problem-sets exemplifying the use of educational data mining techniques, and c) undertake a final course project with feedback from instructors.

The course will start with a general introduction to AI, where we will cover supervised and unsupervised learning techniques (e.g., classification and regression models, feature selection and preprocessing of data, clustering, dimensionality reduction and text mining techniques) with a focus on application of these techniques in educational data mining. After the introduction of the basic methodologies, we will continue with the most relevant applications of AI in educational technologies (e.g., intelligent tutoring and student personalization, scaffolding open-ended discovery learning, socially-aware AI and learning at scale with AI systems). In the final part of the course, we will cover challenges associated with using AI in student facing settings.

Lecture slides will be made available at the course Web site. No textbook is required, but there will be regularly assigned readings from research literature, linked to the course website.

There are no prerequisites for this class. However, it will help if the student has taken an undergraduate or graduate level class in statistics, data science or machine learning. This class is appropriate for advanced undergraduates and master students in Computer Science as well as PhD students in other departments.

Probabilistic Artificial Intelligence

Topics covered:
- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

Solid basic knowledge in statistics, algorithms and programming. The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite.
The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) systems biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

Prerequisites

- Good programming skills (C / C++ / Java etc.)
- Computer graphics/vision experience: Students should have taken, at a minimum, Visual Computing. Higher level courses are recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

636-0007-00L

Computational Systems Biology

| W | 6 credits | 3V+2U | J. Stelling |

Abstract

Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

Objective

The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.

Content

Biology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks.

We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.

Lecture notes

http://www.csb.ethz.ch/education/lectures.html
S. Capkun, Participants understand the different viewpoints for IT-decisions in practice, including technical and business aspects, can effectively
The course is not based on any of the textbooks below, but they are excellent choices as accompanying material:

Lecture slides will be available on moodle.
The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data.
Methods to analyze the cases and create final presentations. Short overview of each case.
Participants learn how to systematically approach an IT problem in practice. They work in groups of three to solve a case from a
Case Studies from Practice Seminar
4 credits
Lecturers
Participants will learn which information is contained in genetic sequencing data and how to extract information from this data using
computational tools. The main concepts introduced are:
* stochastic models in molecular evolution
* phylogenetic & phylodynamic inference
* maximum likelihood and Bayesian statistics
Attendees will apply these concepts to a number of applications yielding biological insight into:
* epidemiology
* pathogen evolution
* macroevolution of species

Computational Biology
W 6 credits 3G+2A T. Vaughan
Abstract The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data.
Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand
this information in detail are introduced.
Objective Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using
computational tools. The main concepts introduced are:
* stochastic models in molecular evolution
* phylogenetic & phylodynamic inference
* maximum likelihood and Bayesian statistics
Attendees will apply these concepts to a number of applications yielding biological insight into:
* epidemiology
* pathogen evolution
* macroevolution of species

The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments
from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS.
Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third,
we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss
methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylogeography, the aim of which is to understand and
quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a
phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and
evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution
provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application
both on paper and in silico as part of the exercises.

Lecture notes
Literature
The course is not based on any of the textbooks below, but they are excellent choices as accompanying material:
* Yang, Z. 2006. Computational Molecular Evolution.
* Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.
Prerequisites / notice
Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work
(compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn
the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to
the semester start. For the D-Bsse students, we highly recommend the voluntary course „Introduction to Programming“, which takes place
at D-Bsse from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date
http://www.cbb.ethz.ch/news-events.html
For the Zurich-based students without R experience, we recommend the R course
, or working through the script provided as part of this R course.

Seminars
Number Title Type ECTS Hours Lecturers
252-3811-00L Case Studies from Practice Seminar W 4 credits 2S M. Brandis
Number of participants limited to 24.
The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar,
will officially fail the seminar.
Abstract Participants will learn how to analyze and solve IT problems in practice in a systematic way, present findings to decision bodies, and
defend their conclusions.
Objective Participants understand the different viewpoints for IT-decisions in practice, including technical and business aspects, can effectively
analyze IT questions from the different viewpoints and facilitate decision making.
Content Participants learn how to systematically approach an IT problem in practice. They work in groups of three to solve a case from a
participating company in depth, studying provided materials, searching for additional information, analyzing all in depth, interviewing
members from the company or discussing findings with them to obtain further insights, and presenting and defending their conclusion to
company representatives, the lecturer, and all other participants of the seminar. Participants also learn how to challenge presentations from
other teams, and obtain an overview of learnings from the cases other teams worked on.
Lecture notes Successful completion of Lecture „Case Studies from Practice“.
Prerequisites / notice

252-4601-00L Current Topics in Information Security W 2 credits 2S S. Capkun, K. Paterson, A. Perrig, S. Shinde
Number of participants limited to 24.
The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar,
will officially fail the seminar.
Abstract The seminar covers various topics in information security: security protocols (models, specification & verification), trust management,
access control, non-interference, side-channel attacks, identity-based cryptography, host-based attack detection, anomaly detection in
backbone networks, key-management for sensor networks.
Objective The main goals of the seminar are the independent study of scientific literature and assessment of its contributions as well as learning and
practicing presentation techniques.

Autumn Semester 2021
Content

The seminar covers various topics in information security, including network security, cryptography and security protocols. The participants are expected to read a scientific paper and present it in a 35-40 min talk. At the beginning of the semester a short introduction to presentation techniques will be given.

Selected Topics

- security protocols: models, specification & verification
- trust management, access control and non-interference
- side-channel attacks
- identity-based cryptography
- host-based attack detection
- anomaly detection in backbone networks
- key-management for sensor networks

Literature

The reading list will be published on the course web site.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-5051-00L</td>
<td>Advanced Topics in Machine Learning</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>252-5701-00L</td>
<td>Advanced Topics in Computer Graphics and Vision</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>263-2100-00L</td>
<td>Research Topics in Software Engineering</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>263-3504-00L</td>
<td>Hardware Acceleration for Data Processing</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

In this seminar, recent papers of the pattern recognition and machine learning literature are presented and discussed. Possible topics cover statistical models in computer vision, graphical models and machine learning.

Objective

The seminar will cover a number of recent papers which have emerged as important contributions to the pattern recognition and machine learning literature. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. Frequently, papers are selected from computer vision or bioinformatics - two fields, which relies more and more on machine learning methodology and statistical models.

Literature

The papers will be presented in the first session of the seminar.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-5051-00L</td>
<td>Advanced Topics in Machine Learning</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>252-5701-00L</td>
<td>Advanced Topics in Computer Graphics and Vision</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>263-2100-00L</td>
<td>Research Topics in Software Engineering</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>263-3504-00L</td>
<td>Hardware Acceleration for Data Processing</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This seminar covers advanced topics in computer graphics, such as modeling, rendering, animation, real-time graphics, physical simulation, and computational photography. Each time the course is offered, a collection of research papers is selected and each student presents one paper to the class and leads a discussion about the paper and related topics.

Objective

The goal is to get an in-depth understanding of actual problems and research topics in the field of computer graphics as well as improve presentations and critical analysis skills.

Content

This seminar covers advanced topics in computer graphics, including both seminal research papers as well as the latest research results. Each time the course is offered, a collection of research papers are selected covering topics such as modeling, rendering, animation, real-time graphics, physical simulation, and computational photography. Each student presents one paper to the class and leads a discussion about the paper and related topics.

Literature

The publications to be presented will be announced on the seminar home page at least one week before the first session.

Organizational note: the seminar will meet only when there is a scheduled presentation. Please consult the seminar's home page for information.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 423 of 2152
Objective

The seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.

Content

The general application areas are big data and machine learning. The systems covered will include systems from computer architecture, high performance computing, data computation, and data centers.

Prerequisites / notice

Students taking this seminar should have the necessary background in systems and low level programming.

263-5156-00L

Beyond iid Learning: Causality, Dynamics, and Interactions

(paper) M. Mühlebach, A. Krause, B. Schölkopf

Number of participants limited to 60.

Abstract

Many machine learning problems go beyond supervised learning on independent data points and require an understanding of the underlying causal mechanisms, the interactions between the learning algorithms and their environment, and adaptation to temporal changes. The course highlights some of these challenges and relates them to state-of-the-art research.

Objective

The goal of this seminar is to gain experience with machine learning research and foster interdisciplinary thinking.

Content

The seminar will be divided into two parts. The first part summarizes the basics of statistical learning theory, game theory, causal inference, and dynamical systems in four lectures. This sets the stage for the second part, where distinguished speakers will present selected aspects in greater detail and link them to their current research.

Keywords: Causal inference, adaptive decision-making, reinforcement learning, game theory, meta learning, interactions with humans.

Lecture notes

Further information will be published on the course website: https://beyond-iid-learning.xyz/

Prerequisites / notice

BSc in computer science or related field (engineering, physics, mathematics). Passed at least one learning course, such as "Introduction to Machine Learning" or "Probabilistic Artificial Intelligence".

263-3713-00L

Advanced Topics in Human-Centric Computer Vision

(paper) O. Hilliges

Numbers of participants limited to 20.

Abstract

In this seminar we will discuss state-of-the-art literature on human-centric computer vision topics including but not limited to human pose estimation, hand and eye-gaze estimation as well as generative modeling of detailed human activities.

Objective

The learning objective is to analyze selected research papers published at top computer vision and machine learning venues. A key focus will be placed on identifying and discussing open problems and novel solutions in this space. The seminar will achieve this via several components: reading papers, technical presentations, writing analysis and critique summaries, class discussions, and exploration of potential research topics.

Keywords: Causal inference, adaptive decision-making, reinforcement learning, game theory, meta learning, interactions with humans.

Lecture notes

Further information will be published on the course website: https://beyond-iid-learning.xyz/

Prerequisites / notice

All other students: read the paper and submit questions they have about the paper before the presentation.

Participation will be limited subject to available topics. Furthermore, students will have to submit a motivation paragraph. Participants will be selected based on this paragraph.

Taught competencies

Domain B - Method-specific Competencies

Analytical Competencies

assessed

Domain C - Social Competencies

Communication

assessed

Domain D - Personal Competencies

Critical Thinking

assessed

CAS in Computer Science - Key for Type

O Compulsory

W Eligible for credits

E- Recommended, not eligible for credits

Z Courses outside the curriculum

W+ Eligible for credits and recommended

Dr Suitable for doctorate

Key for Hours

V lecture

A practical/laboratory course

G lecture with exercise

D independent project

S exercise

D diploma thesis

K colloquium

R revision course / private study

ECTS European Credit Transfer and Accumulation System

Suitable for doctorate

Special students and auditors need special permission from the lecturers.
CAS in International Policy and Advocacy

The CAS is offered once per year in the spring semester.
Course duration: 1 Semester, part-time

More information at: www.sspg.ethz.ch/en

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Future Transport Systems: New Business Models
The "CAS in Future Transport Systems: New Business Models" takes place only in Spring Semester

Start of the next course: Spring Semester 2022
Course duration: Six months part time
Periodicity: Every two years

CAS in Future Transport Systems: New Business Models - Key for Type

<table>
<thead>
<tr>
<th></th>
<th>Compulsory</th>
<th></th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th></th>
<th>lecture</th>
<th></th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td></td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td></td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
The "CAS in Future Transport Systems: Systemic Aspects of Future Transport" takes place only in Spring Semester.

Start of the next course: Spring Semester 2023
Course duration: Six months part time
Periodicity: Every two years

CAS in Future Transport Systems: Systemic Aspects of Future Transport - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Future Transport Systems: Technology Potential

The "CAS in Future Transport Systems: Technology Potential" takes place only in Autumn Semester.

Start of the next course: Autumn Semester 2021
Course duration: Six months part time
Periodicity: Every two years

More information at: http://www.mas-mobilitaet.mavt.ethz.ch/

Major Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>166-0200-00L</td>
<td>Technology Potential: Powertrain, Systems and Energy Carriers</td>
<td>O</td>
<td>3.5 credits</td>
<td>3G</td>
<td>C. Onder</td>
</tr>
<tr>
<td>Abstract</td>
<td>The module provides a foundation in the current situation and short- and middle-term development directions of powertrain and automotive engineering in the context of passenger & goods transport. Corresponding energy sources and resulting consequences for the energy system are addressed. Participants will be enabled to identify potentials of these technologies and apply them to concrete problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Familiarity with conventional and alternative powertrain and automotive systems for future sustainable mobility, and the ability to identify and deploy their potential to address concrete problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- Drive component efficiency rates and core fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Drive and non-drive energy flow / Vehicle "driving resistance"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Energy chains (operating power only) and CO2 emissions to primary energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Distributed at start of module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Distributed at start of module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Announced to students of the of the MAS / CAS at the beginning of the term.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

166-0201-00L	Potential of Spatial Information- and Communication Technologies	O	3 credits	3G	P. Kiefer
Abstract	The digital revolution, spatial information and communication systems in particular, have a significant influence on the development of new transport systems. Participants acquire an in-depth understanding of the functionality and application potential of spatial information systems and services and of communication technologies for deployment in future transport systems and applications.				
Objective	Familiarity with information and communication technologies (ICT) and spatial information technologies, and the ability to identify and utilise their potential to address concrete problems.				
Content	- Functionality and application of geographic information systems (GIS) to represent and analyse transport systems (acquire, model, analyse and visualise geodata)				
	- Deployment potentials of GIS and ICT for efficient transport solutions (tangible, non-tangible)				
	- Functionality and application of mobile spatial information technologies in future transport systems				
	- Methods of spatiotemporal analysis and geodata analysis				
	- Technical aspects of information and communication technologies (ICT)				
	- Modelling, simulation and assessment of traffic behaviour				
	- Basics of autonomous driving				
	- Legal aspects of geodata				
	- Applications: Traffic behaviour in Switzerland; location based services for energy-efficient behaviour; GIS for the Zurich traffic system (multimodal)				
Lecture notes	Distributed at start of module				
Literature	Distributed at start of module				
Prerequisites / notice	Announced to students of the of the MAS / CAS at the beginning of the term.				

166-0202-00L	Integrated Assessment of Technologies and Transport Systems	O	2 credits	1G	C. L. Mutel
Abstract	The module provides a solid introduction to integrated technology assessment with regard to economic, ecological and social criteria. It introduces life cycle assessment (LCA), cost assessment, risk assessment and multi-criteria decision analysis. It also presents scenario analyses based upon energy-economic models which explicitly represent transport and energy-supply technologies.				
Objective	An overview of suitable methods for analysing and evaluating technical systems (transport systems) and the ability to choose among them to address concrete problems.				
Content	(1) Introduction to and overview of integrated assessment				
	- Current status of transport in Switzerland and internationally				
	- Scope and goals of integrated assessment				
	- Sustainability: concept and practical implementation via criteria and indicators				
	- Overview of concepts and implementation methods				
	(2) Selected methods for assessing transport technologies and their application to current and future options				
	- Ecobalance / life cycle assessment (LCA)				
	- Location-specific assessment of health hazards and environmental pollution				
	- Risk analysis				
	- Internal cost assessment				
	- External cost assessment				
	(3) Integrated assessment of transport technologies				
	- Overall costs (internal and external)				
	- Multi-criteria analysis				
	(4) Analysis of transport scenarios				
	- Scenarios, influencing factors, policy and sustainability				
	- Approaches to scenario modelling				
	- Global mobility scenarios: examples				
	- Transport scenarios for Switzerland using energy system models				
Lecture notes	Distributed at start of module				
Literature	Distributed at start of module				
Prerequisites / notice	Announced to students of the of the MAS / CAS at the beginning of the term.				
Abstract
The module includes the supply of the road mobility of the future with renewable energy. The generation, transport, processing, transfer of energy to the vehicles (refueling, charging) and the energetic evaluation are presented. Electrically, hydrogen, biogenic and synthetic fuels are considered.

Objective
The aim of the module is a detailed energetic and technical understanding of the supply of road vehicles with renewable energy. Graduates know the primary energy production as well as the end energy processing of the different energy carrier concepts. In addition, they know the legal CO₂ requirements for vehicle registration and are able to qualitatively assess the impact on the Swiss energy system.

Content
- The energy system of the future; biogenic and electric renewable primary energy
- End energy processing
- Transfer from the energy system to mobility and influences on the overall energy system

Lecture notes
Distributed at start of module

Literature
Distributed at start of module

Prerequisites / notice
Announced to students of the of the MAS / CAS at the beginning of the term

CAS Thesis

CAS Thesis on Technology Potentials

Objectives
- Deal with a specific problem from the CAS Technology Potentials subject area.
- Be able to work interdisciplinary and across sectors, where appropriate together with relevant other parties.
- Communicate the results appropriately.

Lecture notes
Distributed at start of module

Literature
Distributed at start of module

Prerequisites / notice
Announced to students of the of the MAS / CAS at the beginning of the term

CAS in Future Transport Systems: Technology Potential - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>3.5</td>
<td>3G</td>
<td>C. Bach</td>
</tr>
</tbody>
</table>

Key for Hours

- V: lecture
- G: lecture with exercise
- U: exercise
- S: seminar
- K: colloquium

- P: practical/laboratory course
- A: independent project
- D: diploma thesis
- R: revision course / private study

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Nutrition for Disease Prevention and Health

Disciplinary Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-6101-00L</td>
<td>Dietary Etiologies of Chronic Disease</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>M. B. Zimmermann</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To have the student gain understanding of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the links between the diet and the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>etiology and progression of chronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>diseases, including diabetes,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gastrointestinal diseases,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kidney disease, cardiovascular disease,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>arthritis and food allergies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To examine and understand the protective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>effect of foods and food ingredients in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the maintenance of health and the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>prevention of chronic disease, as well as</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the progression of complications of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chronic diseases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course evaluates food and food</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ingredients in relation to primary and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>secondary prevention of chronic diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>including diabetes, gastrointestinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>diseases, kidney disease,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cardiovascular disease,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>arthritis and food allergies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>There is no script.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Powerpoint presentations will be</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>made available on-line to students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To be provided by the individual lecturers,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at their discretion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No compulsory prerequisites, but prior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>completion of the courses "Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to Nutritional Science" and "Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topics in Nutritional Science" is</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>strongly advised.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752-6403-00L</td>
<td>Nutrition and Performance</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>S. Mettler, M. B. Zimmermann</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course introduces basic concepts of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the interaction between nutrition and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>exercise performance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To understand the potential effects of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nutrition on exercise performance, with a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>focus on concepts and principles of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nutrition before, during and after</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>exercise.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course will cover elementary aspects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of sports nutrition physiology, including</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>carbohydrate, glycogen, fat, protein and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>energy metabolism.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A main focus will be to understand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nutritional aspects before exercise to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be prepared for intensive exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bouts, how exercise performance can be</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>supported by nutrition during exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and how recovery can be assisted by</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nutrition after exercise.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Although this is a scientific course, it</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>is a goal of the course to translate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>basic sports nutrition science into</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>practical sports nutrition examples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture slides and required handouts will</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be available on the ETH website (moodle).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information on further reading will be</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>announced during the lecture. There will</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be some mandatory as well as voluntary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>readings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General knowledge about nutrition, human</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>biology, physiology and biochemistry is</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a prerequisite for this course. The course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>builds on basic nutrition and biochemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>knowledge to address exercise and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>performance related aspects of nutrition.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course is designed for 3rd year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bachelor students, Master students and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>postgraduate students (MAS/CAS).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>It is strongly recommended to attend the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lectures. The lecture (including the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>handouts) is not designed for distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>education.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752-6301-00L</td>
<td>Nutrition-Related Physiology</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>F. von Meyenn</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gives the students background knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>necessary for a basic understanding of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>complex relationships between food</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>composition and nutrition on one hand and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the functioning, as well as the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>malfunctioning, of major organ systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on the other hand.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The aim is to give the students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>background knowledge necessary for a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>basic understanding of the complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>relationships between food composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and nutrition on one hand and the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>functioning, as well as the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>malfunctioning, of major organ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>systems on the other hand.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For students with a background in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>medicine, pharmacy or biology, the course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>is useful as a review of previously</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>acquired knowledge. Major topics are basic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>neuroanatomy and neurophysiology, general</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>endocrinology; the physiology of taste</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and smell; nutrient digestion and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>absorption; intermediary metabolism and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>energy homeostasis; and some aspects of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cardiovascular physiology and water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>balance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handouts for each lecture will be uploaded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to Moodle every week.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAS in Nutrition for Disease Prevention and Health - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Modules

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>541-0002-00L</td>
<td>Module 2: Project Management in the Pharmaceutical Industry</td>
<td>W</td>
<td>2.5 credits</td>
<td>3G</td>
<td>R. Schibli</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Pharmaceuticals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The enrolment is done by the CAS in Pharmaceuticals study administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pharma Project Management and Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Management Basics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- About projects, project management and the project environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- How to define and plan my project, how to deal with stakeholders and how to manage project risks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Managing my project team, developing the project plan and launching the project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Managing my project team, developing the project plan and launching the project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Monitoring and reporting, project close-out and project leadership</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Project evaluation and portfolio management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Budget and resource management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Workshop:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Development of a generic drug product in cross-functional project teams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Intercultural communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Negotiation skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Presentation power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-0007-00L</td>
<td>Module 7: Clinical Development</td>
<td>W</td>
<td>2.5 credits</td>
<td>3G</td>
<td>R. Furegati Hafner, R. Schibli</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Pharmaceuticals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The enrolment is done by the CAS in Pharmaceuticals study administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 7 gives an overview about the several steps that have to be followed during the process of clinical development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Preclinical bridge to clinical development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Strategy for clinical development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Regulatory aspects of clinical development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Good clinical practice (GCP) and quality assurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• First in human studies (Phase I), Proof of concept studies (Phase II), Registration studies (Phase III), Post-registration studies (Phase IV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational and financial aspects of clinical development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Portfolio and life cycle management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Data management and simulation of a clinical study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Personalized medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Essay

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>541-1000-00L</td>
<td>Essay</td>
<td>O</td>
<td>1 credit</td>
<td>2D</td>
<td>R. Furegati Hafner, R. Schibli</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAS in Pharmaceuticals - From Research to Market - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Public Governance and Administration

CAS Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>371-0100-00L</td>
<td>CAS Thesis</td>
<td>O</td>
<td>7 credits</td>
<td>13D</td>
<td>M. Ambühl, N. Meier</td>
</tr>
</tbody>
</table>

Abstract
In their CAS thesis, participants synthesize their learning and apply their insights to their own institutions or examine a relevant topic employing the course methodologies.

Objective
Practical application of course content and concepts.

CAS in Public Governance and Administration - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

V	Lecture
G	Lecture with exercise
U	Exercise
S	Seminar
K	Colloquium
P	Practical/laboratory course
A	Independent project
D	Diploma thesis
R	Revision course / private study

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Modules

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>542-0001-00L</td>
<td>Module I: Pharmacy and Legislation</td>
<td>O</td>
<td>4 credits</td>
<td>6G</td>
<td>R. Schibli, R. Furegati Hafner</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Radiopharmazeutischer Chemie, Radiopharmacy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The enrolment is done by the CAS study administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Knowledge of the fundamentals of development, preparation, testing and stability of sterile radiopharmaceutical preparations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acquisition of basic information on European legislation in Radiopharmacy including GMP and Pharmacopoeia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understanding basics of gene engineering and pharmacokinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Good manufacturing practice (GMP) of classical radiopharmaceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Molecular and cellular aspects of radiobiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pharmacopoeia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pharmaceutica – how to use it</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Design of dosage forms for pharmaceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pharmaceutical packaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Methods of preparation of sterile products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aseptic preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The role of excipients in parenteral radiopharmaceutical preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sterility testing and endotoxin determination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Particulate contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Principles of medicinal chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• An overview of modern pharmaceutical analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Genetic engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stability and shelf-life of pharmaceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• (in)stability of radiopharmaceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Legislation in radiopharmacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• European directives – GMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Specific radiopharmaceutical legislation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Clinical trials directive and related documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The small scale, non-commercial preparation of radiopharmaceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GMP of PET radiopharmaceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Quality assurance and preparation of SOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Water for pharmaceutical use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pricals: visit to hospital radiopharmacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Basic concepts of pharmokinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drug regulatory affairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Microbiology in Pharmacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Visit to pharmaceutical company</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>542-0003-00L</td>
<td>Module III: Radiopharmacology and Clinical Pharmacology and Clinical Radiopharmacy</td>
<td>O</td>
<td>4 credits</td>
<td>6G</td>
<td>R. Schibli</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Radiopharmazeutischer Chemie, Radiopharmacy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The enrolment is done by the CAS study administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will understand concepts of Pharmacology, Toxicology and Fundamentals of Nuclear Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pharmakokinetics and kinetic-modelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Statistics and practical session</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Radiotracers in biochemistry and molecular pharmacology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Selective modification of peptides and proteins to target GPCRs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Demonstration of experimental set up: Peptide and protein modification, radioactive assays in biochemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Visit ABX Radeberg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nuclear medicine: basics and therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Immunology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drug interventions/Interactions/adverse reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pharmacology basics, special aspects, clinical studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Toxicology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Testsystems in toxicology and targeted therapeutics and culeic acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nuclear medicine: clinical diagnostic applications in neurology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nuclear medicine: visit to SPECT facility and radiopharmaceutical GMP lag (Tc, Ga, therapy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Radiological imaging modalities - technology and applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nuclear medicine: clinical diagnostic applications in oncology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Radiopharmaceutical monographs in the European pharmacopoeia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Practical session, visit: cyclotron, GMP PET production and quality control, PET and PET/CT, therapy unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Radioligand-binding-assays/autoradiography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In house tours in groups: radioligand-binding-assays, autoradiography, metabolite analytics with LC-MS, cyclotron and radiochemistry, highlights in Leipzig</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Biological effects of radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Radiotracer transport and blood brain barrier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Radiotracers for neuroimaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAS in Radiopharmaceutical Chemistry, Radiopharmacy - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 433 of 2152
Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
CAS in Spatial Planning

Lectures

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-0500-00L</td>
<td>Preliminary Course: Introduction to Swiss Spatial Planning</td>
<td>O</td>
<td>3 credits</td>
<td>3G</td>
<td>D. Jerjen, A. Schneider</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Tasks of spatial planning; objectives and principles; instruments of spatial planning; federal planning; cantonal structural planning; constructing outside of building zones; communal planning; land use planning; compensation of benefits released by planning; environmental protection and spatial planning; energy and spatial planning; densification with quality; case studies and exercises.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The preliminary course introduces students to the fundamentals of formal spatial planning in Switzerland. It gives a first overview over background and context of spatial planning as well as instruments of spatial planning.</td>
</tr>
<tr>
<td>115-0502-00L</td>
<td>Lecture Week 02: Urban Planning and Urban Design I</td>
<td>W</td>
<td>2 credits</td>
<td>1G</td>
<td>S. Kretz, C. Salewski</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Contemporary urbanization phenomena and urban design methods and tools. Lectures are accompanied by urban design exercises.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Introduction to current challenges and methods in urban design, to theories of urban planning and to exemplary urban design projects.</td>
</tr>
<tr>
<td>115-0503-00L</td>
<td>Lecture Week 03: Landscape Architecture</td>
<td>W</td>
<td>2 credits</td>
<td>1G</td>
<td>G. Vogt</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Methods, tools and processes in large scale landscape architectural design. On the basis of a case study, «Basel»-, we shall discuss these themes in lectures and practical exercises. The design-led approach will be extended with a series of talks that will establish a theoretical grounding in current issues of landscape- and urban design.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>On the basis of theoretical foundations the one-week teaching block explains the possibilities and methods of design at different stages of the process. The students will become sensitive to current and future issues and approaches of landscape on a large scale, with the aim that they will engage with critical debate on the topic and take their own position.</td>
</tr>
<tr>
<td>115-0504-00L</td>
<td>Lecture Week 04: Landscape and Environmental Planning</td>
<td>W</td>
<td>2 credits</td>
<td>1G</td>
<td>A. Grêt-Regamey, U. Wissen Hayek</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Discussion of the proposition of sustainability in landscape and environmental planning; comprehending landscape development with a system dynamics approach; planning of landscape development across cantonal and communal boundaries; negotiating various stakeholder interests based on the example of current practical cases; instruments and approaches for sustainable landscape development.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Overview of tasks of landscape and environmental planning as well as essential theories; insights in planning approaches and application of new instruments related to current problems for a sustainable landscape development.</td>
</tr>
<tr>
<td>115-0501-00L</td>
<td>Lecture Week 01: Spatial Planning: Tasks and Methods</td>
<td>W</td>
<td>2 credits</td>
<td>1G</td>
<td>M. Nollert</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Current and future significant tasks of Spatial Planning in Switzerland. In addition to the existing inner development of settlements, the importance of new challenges such as climate adaptation and the implementation of the mobility turn is rising. What they have in common is the need of methods and instruments for exploring, clarifying and solving complex tasks.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The aim of the course is the acquaintance and the comprehension of tasks, methods and instruments of spatial planning in Switzerland and to discuss them in the light of future challenges. In particular, the methodological modules of the course form an essential basis for working on the two study projects of the MAS programme.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Starting point of the course are existing and future spatially significant tasks. In addition to the presentation and description of typical challenges using case studies, the focus is also on the understanding of context and relationships as well as constants and variables of spatial development. Different types of tasks and the resulting consequences for their clarification and solution are also discussed. The tasks are contrasted with a brief overview of existing spatial planning instruments in Switzerland. On the one hand, the aim is to develop a common understanding of the formal and informal procedures and instruments of spatial planning; on the other hand, these are also to be discussed with regard to their effectiveness for current and future challenges. At the centre of the teaching unit is the teaching and methodological basis for exploring, clarifying and solving complex issues. These refer to the questions and pitfalls of perceiving and dealing with complexity, to methodological elements of processes for clarifying difficult spatially significant tasks with a large number of actors involved, as well as methods of situation assessment, design and decision-making as a basis for developing solutions.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>A reader with central elements of the course and background information will be provided</td>
</tr>
</tbody>
</table>
| | **Taught competencies** | | | | **Domains:**
| | **Domain A - Subject-specific Competencies** | | | | Concepts and Theories, Analytical Competencies, Decision-making, Project Management, Communication, Negotiation, Creative Thinking, Critical Thinking, Self-awareness and Self-reflection |
| | **Domain B - Method-specific Competencies** | | | | Techniques and Technologies, Problem-solving, Management, Technologies, Technologies, Technologies |
| | **Domain C - Social Competencies** | | | | Negotiation, Negotiation, Negotiation |
| | **Domain D - Personal Competencies** | | | | Creative Thinking, Critical Thinking, Self-awareness and Self-reflection |

CAS in Spatial Planning - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 435 of 2152
Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
CAS in Robotics

Modul

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>172-0100-00L</td>
<td>CAS Module in Robotics and AI</td>
<td>O</td>
<td>12 credits</td>
<td>26A</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Abstract
In the CAS Robotics participants are offered a RobotX professor as a mentor together with whom they design their study plan along an individually-specified focus area in the area of Robotics and AI. Based on the individual expertise and interests of the participants, the customised Robotics and AI module consists of a combination of (i) research project, (ii) lectures, (iii) knowledge transfer.

Objective
The CAS Robotics and AI module offers experienced industry individuals the opportunity to undergo research-related training in Robotics and AI, to update their knowledge and to expand their area of expertise in a targeted manner and aims at:
- training skills at the frontiers of the current state of research in Robotics and AI,
- deepening technical know-how with state-of-the-art knowledge in the specified focus area, and
- advancing practical competencies in the impart of expertise and knowledge transfer across disciplines and educational levels.

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>G</th>
<th>U</th>
<th>S</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td>lecture with exercise</td>
<td>exercise</td>
<td>seminar</td>
<td>colloquium</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Seismic Evaluation and Retrofitting

Offered only in the Autumn Semester.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
The objective of this Module is to introduce the principles of Seismic Design of Structures and the Swiss Seismic Code Provisions to Civil Engineers working in Switzerland.

Objective
This module enables participants:
- To understand the critical points of the Swiss Code Provisions for the seismic design of new structures and the seismic evaluation of existing structures
- To get an overview in the dynamics and the principles of seismic design of structures

Content
1.1 Introduction to seismic hazard and seismic risk, seismic performance objectives, common structural deficiencies and observed damage patterns due to earthquake ground motion excitation
1.2 Seismic elastic and inelastic response of SDOF systems and earthquake response spectra
1.3 Seismic elastic and inelastic response of MDOF systems, Response Spectrum Analysis and Pushover Analysis
1.4 Seismic Design of structures using SIA 261: Presentation and Examples
1.5 Good practices for the seismic design of new structures
1.6 Seismic safety of non-structural components
1.7 Swiss Code Provisions for the seismic evaluation of existing structures SIA 269/8: Presentation and examples, Evaluation of commensurability of seismic retrofitting measures

Prerequisites / notice
- Anwesenheit (mind. 80% pro Präsenzwoche) und aktive Mitarbeit in den Präsenzwochen
- mindestens genügende Leistungen bei Leistungskontrollen

| 139-0102-00L| Module 2: Finite Element Modelling and Identification of the Seismic Behavior of Structures Only for CAS in Seismic Evaluation and Retrofitting. | O | 2 credits | 3G | A. Tsiavos, B. Stojadinovic |

Objective
This module enables participants:
- To use the state-of-the-art FEM software and implement the optimal FE modelling techniques for the simulation of the seismic response of existing buildings (concrete, masonry, mixed concrete-masonry) located in Switzerland
- To obtain knowledge of the FEM software and the modelling techniques for the simulation of soil-structure interaction
- To understand the current methodologies for the identification and monitoring of the vibration and the seismic behavior of structures located in Switzerland.

| 139-0103-00L| Module 3: Analysis Methods and Case Study Examples of Seismic Evaluation and Retrofitting Only for CAS in Seismic Evaluation and Retrofitting. | O | 2 credits | 3G | A. Tsiavos, B. Stojadinovic |

Abstract
The scope of this Module is to present Analysis Methods and Case Study Examples that illustrate established procedures and practical engineering solutions that are applied in the seismic evaluation and retrofitting of existing structures by Civil Engineers working in Switzerland.

Objective
This module enables participants:
- To acquire practical knowledge of the seismic retrofitting techniques commonly used in Switzerland, their implementation and their cost
- To select the appropriate analysis method for the seismic evaluation of structures located in Switzerland and understanding of the governing factors

| 139-0104-00L| Module 4: Individual Project Exercise Only for CAS in Seismic Evaluation and Retrofitting. | O | 4 credits | 2P | A. Tsiavos, B. Stojadinovic |

Objective
This modules enables participants
- To conduct independently a seismic evaluation of an existing structure located in Switzerland considering the boundary conditions that influence the seismic behavior of the structure

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>Exercise</td>
</tr>
<tr>
<td>S</td>
<td>Seminar</td>
</tr>
<tr>
<td>K</td>
<td>Colloquium</td>
</tr>
<tr>
<td>P</td>
<td>Practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>Independent project</td>
</tr>
<tr>
<td>D</td>
<td>Diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>Revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
How Markets Function (Microeconomics):

Effective management of risks and uncertainty as well as communication of scientific evidence to stakeholders and policy-makers are key objectives. How Markets Function (Microeconomics):

How Markets Function (Microeconomics):

How Economic Systems Function (Macroeconomics):

Technologies substantially affect the way we live and how our societies function. Technological change, i.e. the innovation and diffusion of new technologies, is a fundamental driver of economic growth but can also have detrimental side effects. This module introduces methods to assess technology-related policy alternatives and to analyse how policies affect technological changes and society.

Introduction: Participants understand (1) what ex ante and ex post policy impact analysis is, (2) in what forms and with what methods they can be undertaken, (3) why they are important for evidence-based policy-making.

Analysis of Policy and Technology Options: Participants understand (1) how to perform policy analyses related to technology; (2) a policy problem and the rationale for policy intervention; (3) how to select appropriate impact categories and methods to address a policy problem through policy analysis; (4) how to assess policy alternatives, using various ex ante policy analysis methods; (5) how and to communicate the results of the analysis.

Evaluation of Policy Outcomes: Participants understand (1) when and why policy outcomes can be evaluated based on observational or experimental methods, (2) basic methods for evaluating policy outcomes (e.g. causal inference methods and field experiments), (3) how to apply concepts and methods of policy outcome evaluation to specific cases of interest.

Big Data Approaches to Policy Analysis: Participants understand (1) why "big data" techniques for making policy-relevant assessments and predictions are useful, and under what conditions, (2) key techniques in this area, such as procuring big datasets; preprocessing and dimension reduction of massive datasets for tractable computation; machine learning for predicting outcomes; interpreting machine learning model predictions to understand what is going on inside the black box; data visualization including interactive web apps.

How Economic Systems Function (Macroeconomics):

Participants understand (1) the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates, (2) why national economic activity fluctuates, (3) what economic policy can do against unemployment and inflation, (4) what significance international economic relations have for specific countries, such as Switzerland.

Course materials can be found on Moodle.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only for CAS in Technology and Public Policy: Impact Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract: Markets play an important function in modern societies by allocating resources and capital. Yet, important market failures require the intervention of public policy. This module introduces the fundamentals of micro- and macro-economics and thereby lays the foundation for the economic assessment of policy interventions.

Objective: How Markets Function (Microeconomics):

Participants (1) understand basic principles, problems and approaches in microeconomics, (2) can analyse and explain simple economic principles in a market using supply and demand graphs, (3) can contrast different market structures and describe firm and consumer behaviour, (4) can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole, (5) can address utility maximization and cost minimization problems.

How Economic Systems Function (Macroeconomics):

Participants understand (1) the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates, (2) why national economic activity fluctuates, (3) what economic policy can do against unemployment and inflation, (4) what significance international economic relations have for specific countries, such as Switzerland.

Literature: Course materials can be found on Moodle.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only for CAS in Technology and Public Policy: Impact Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract: Technologies substantially affect the way we live and how our societies function. Technological change, i.e. the innovation and diffusion of new technologies, is a fundamental driver of economic growth but can also have detrimental side effects. This module introduces methods to assess technology-related policy alternatives and to analyse how policies affect technological changes and society.

Objective: Introduction: Participants understand (1) what ex ante and ex post policy impact analysis is, (2) in what forms and with what methods they can be undertaken, (3) why they are important for evidence-based policy-making.

Analysis of Policy and Technology Options: Participants understand (1) how to perform policy analyses related to technology; (2) a policy problem and the rationale for policy intervention; (3) how to select appropriate impact categories and methods to address a policy problem through policy analysis; (4) how to assess policy alternatives, using various ex ante policy analysis methods; (5) how and to communicate the results of the analysis.

Evaluation of Policy Outcomes: Participants understand (1) when and why policy outcomes can be evaluated based on observational or experimental methods, (2) basic methods for evaluating policy outcomes (e.g. causal inference methods and field experiments), (3) how to apply concepts and methods of policy outcome evaluation to specific cases of interest.

Big Data Approaches to Policy Analysis: Participants understand (1) why "big data" techniques for making policy-relevant assessments and predictions are useful, and under what conditions, (2) key techniques in this area, such as procuring big datasets; preprocessing and dimension reduction of massive datasets for tractable computation; machine learning for predicting outcomes; interpreting machine learning model predictions to understand what is going on inside the black box; data visualization including interactive web apps.

Literature: Course materials can be found on Moodle.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>876-0301-00L</td>
<td>Policy-Making in Practice</td>
<td>O</td>
<td>4 credits</td>
<td>3G</td>
<td>T. Bernauer, D. N. Bresch, T. Schmidt</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Technology and Public Policy: Impact Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract: Effective management of risks and uncertainty as well as communication of scientific evidence to stakeholders and policy-makers are essential for successful policy-advice and policy-making. Hence, this module conveys the fundamentals of risk analysis/management and of writing for policy-makers. Besides an academic perspective, it features practitioners working at the technology-policy interface.

Objective: Risk Analysis and Risk Management: Participants understand (1) the role risk and uncertainty play in decision- and policy-making, (2) common approaches to risk management, (3) how to apply methods of quantitative risk analysis, (4) how to communicate risk information clearly and effectively.

Writing for Policy-Makers: Participants understand (1) particular prerequisites for successful dissemination of scientific results to policy-makers and the wider public, (2) expectations and needs of different target groups and audiences, (3) how to effectively write policy briefs for stakeholders and policy-makers.

Literature: Course materials can be found on Moodle.

Key for Hours:

V lecture
G lecture with exercise
U exercise
S seminar
K colloquium
P practical/laboratory course
A independent project
D diploma thesis
R revision course / private study

ECTS: European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
CAS in Transport Engineering

Module

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>149-0001-00L</td>
<td>Transport Planning - Theory and Models</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>K. W. Axhausen, M. Friedrich</td>
</tr>
<tr>
<td></td>
<td>Only for CAS/DAS in Transport Engineering and MAS in Future Transport Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149-0002-00L</td>
<td>Traffic Engineering</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>M. Fellendorf</td>
</tr>
<tr>
<td></td>
<td>Only for CAS/DAS in Transport Engineering and MAS in Future Transport Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAS in Transport Engineering - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
General Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0073-00L</td>
<td>Radiochemistry</td>
<td>Z</td>
<td>2 credits</td>
<td>2V</td>
<td>to be announced</td>
</tr>
<tr>
<td>Abstract</td>
<td>Principles and phenomena around radioactivity. Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Knowledge of the most important phenomena in relation with radioactivity. Knowledge of the principles of radiation protection. Ability to judge dangerous situations in handling radioactive materials, geopolitically as well as locally at one's own working place.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Structure and properties of atomic nuclei, mathematical description of the radioactive decay, decay types, interaction of radiation with matter, detectors for ionizing radiation, radiation protection, principles of isotope separation, nuclear power plants, major nuclear accidents. Additional topics may be suggested by the students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Stress is on chemical aspects of radioactivity and on radiation protection. A script is available free of charge.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weitere Literaturangaben werden nach Bedarf in der Vorlesung abgegeben.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Institute-Seminar covering current research Topics in Physical Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture provides a journey into the molecular world of scents from the chemical secrets behind Chanel N°5 to structure-odor relationships, industrial processes, and total synthesis of terpenoids. Each subunit is centered on one odorant family and highlights a certain class of chemical reactions, illustrated by prominent perfumery examples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>After completion of this lecture module the students know all the major perfumery materials of the important odor families with their academic and industrial syntheses, their olfactory properties, their usage, their historic perspective, and today's economic importance. The students can explain the significance of important building blocks and industrial transformations, and can estimate how attractive chemical processes are on large scale. They can retrosynthetically plan academic and industrial syntheses of fragrant compounds and terpenoids, and the acquired knowledge on structure-odor relationships enables them to predict and design new odorants. The students can approximate the conformational space of odorants and especially macrocycles on the basis of simple rules, and know how olfactophore models are used. The students understand and can explain the molecular mechanism of smell, the biosynthesis of terpenes, and the basics of perfumery composition. The latter enables them to further their education in perfumery at specialized Universities such as the ISIPCA in Versailles; yet, the student also knows about the links of Fragrance Chemistry with Pharmaceutical Chemistry and the Specialty Chemicals business in general.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Safety concept: https://chab.ethz.ch/studium/bachelor1.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0688-00L</td>
<td>Safety Lecture for Assistants</td>
<td>Z</td>
<td>0 credits</td>
<td>T. Mäder</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Safety-Praxis und Riskmanagement in Laboratorien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Gute Safety-Praxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Safety-Regeln, Riskmanagement im Labor, Safety-Parcours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key for Type

- **O**: Compulsory
- **W+**: Eligible for credits and recommended
- **W**: Eligible for credits

- **E-**: Recommended, not eligible for credits
- **Z**: Courses outside the curriculum
- **Dr**: Suitable for doctorate

Key for Hours

- **V**: lecture
- **G**: lecture with exercise
- **U**: exercise
- **S**: seminar
- **K**: colloquium

- **P**: practical/laboratory course
- **A**: independent project
- **D**: diploma thesis
- **R**: revision course / private study

ECTS: European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Chemistry Bachelor

1. Semester

Compulsory Subjects First Year Examinations

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0011-02L</td>
<td>General Chemistry (Inorganic Chemistry) I</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>A. Togni</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to the chemistry of ionic equilibria: Acids and bases, redox reactions, formation of coordination complexes and precipitation reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding and describing ionic equilibria from both a qualitative and a quantitative perspective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Chemical equilibrium and equilibrium constants, mono- and polyprotic acids and bases in aqueous solution, calculation of equilibrium concentrations, acidity functions, Lewis acids, acids in non-aqueous solvents, redox reactions and equilibria, Galvanic cells, electrode potentials, Nernst equation, coordination chemistry, stepwise formation of metal complexes, solubility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Copies of the course slides as well as other documents will be provided as pdf files via the moodle platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

529-0011-03L	General Chemistry (Organic Chemistry) I	O	3	2V+1U	P. Chen
Abstract	Introduction to Organic Chemistry. Classical structure theory, stereochemistry, chemical bonds and bonding, symmetry, nomenclature, organic thermochemistry, conformational analysis, basics of chemical reactions.				
Objective	Introduction to the structures of organic compounds as well as the structural and energetic basis of organic chemistry.				
Content	Introduction to the history of organic chemistry, introduction to nomenclature, learning of classical structures and stereochemistry: isomerism, Fischer projections, CIP rules, point groups, molecular symmetry and chirality, topicality, chemical bonding: Lewis bonding model and resonance theory in organic chemistry, description of linear and cyclic conjugated molecules, aromaticity, Huckel rules, organic thermochemistry, learning of organic chemistry reactions, intermolecular interactions.				
Lecture notes	Unterlagen werden als PDF über die ILIAS-Plattform zur Verfügung gestellt				

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analytical Competences</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

529-0011-01L	General Chemistry (Physical Chemistry) I	O	3	2V+1U	H. J. Wörner
Abstract	Die Vorlesung vermittelt eine Einführung in einige physikalischen Grundlagen der Chemie, insbesondere in die Radioaktivität, die Quantenmechanik, den Aufbau der Materie und eines Atoms, des Periodensystems der Elemente und die chemische Bindung.				
Objective	Die Studierenden sind nach der Vorlesung in der Lage,				
	- mit für die Chemie wichtigen physikalischen Grössen und deren Einheiten zu rechnen,				
	- einige Eigenschaften chemisch relevanter Teilchen zu benennen und experimentelle Methoden zur Bestimmung dieser Eigenschaften vorzuschlagen,				
	- Anwendungen und Gefahren der Radioaktivität zu benennen,				
	- radioaktive Zerfallsprozesse zu kategorisieren und den zeitlichen Verlauf von einfachen Zerfallsreaktionen mathematisch wiederzugeben sowie qualitative Vorhersagen und darzustellen,				
	- Wellen- und Teilchen Eigenschaften von elektromagnetischer Strahlung und Materie zu beschreiben und experimentelle Methoden zu deren Nachweis vorzuschlagen,				
	- die Gründlagen der Quantenmechanik (Bedeutung der Wellenfunktion, Heisenberg'sche Unschärferelation, Operatoren, Kommutatoren) zu erklären und einfache Rechnungen damit auszuführen,				
	- Absorptions- und Emissionsspektren von Einkernatomaten zu analysieren und zu berechnen,				
	- die Schrödingergleichung für ein molekulares Mehrelektronensystem aufzustellen,				
	- die Schrödingergleichung für die Modellsysteme Teilchen im Kasten und harmonischer Oscillator in einer Dimension selbstständig zu lösen und auf höherdimensionale nicht-wechselwirkende Probleme zu verallgemeinern,				
	- Molekülschwingungen von zweiatomigen Molekülen mit dem Modell des harmonischen und des anharmonischen Oscillators zu modellieren,				
	- das Konzept eines Orbitals zu erklären und die qualitative Form der Orbitale des Wasserstoffatoms mathematisch und bildlich zu wiedergeben,				
	- den Aufbau des Periodensystems der Elemente mit Hilfe des Orbitalkonzepts zu erklären,				
	- Ähnlichkeiten in der elektronischen Struktur von Atomen zu erkennen und zu benutzen, um chemisch relevante Eigenschaften vorhersagen, und				
	- Termssymbole für atomare Grundzustände aufzustellen,				
Content	Atomic structure and structure of matter: atomic theory, elementary particles, atomic nuclei, radioactivity, nuclear reactions. Atomic orbitals and energy levels: ionisation energies, atomic spectroscopy, term values and symbols. Quantum mechanical atom model: wave-particle duality, the uncertainty principle, Schrödinger's equation, the hydrogen atom, construction of the periodic table of the elements. Chemical bonding: ionic bonding, covalent bonding, molecular orbitals.				
Lecture notes	See homepage of the lecture.				
Introduction to Computer Science

Prerequisites / notice

Voraussetzungen: Maturastoff. Insbesondere Integral- und Differentialrechnung.

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories

assessed

Domain B - Method-specific Competencies

Analytical Competencies

assessed

Domain C - Social Competencies

Communication

not assessed

Domain D - Personal Competencies

Adaptability and Flexibility

not assessed

Literature

See homepage of the lecture.

Prerequisites / notice

Laboratory Courses

Number	Title	Type	ECTS	Hours	Lecturers
529-0011-04L | Practical Course General Chemistry | O | 8 credits | 12P | H. V. Schönberg, E. C. Meister

Abstract

Information about the practical course will be given on the first day.

Qualitative analysis (determination of cations and anions), acid-base-equilibria (pH-values, titrations, buffer), precipitation equilibria (gravimetry, potentiometry, conductivity), redoxreactions (syntheses, redox-titrations, galvanic elements), metal complexes (syntheses, complexometric titration), analysis of measured data, vapour pressure, conductivity, calorimetry, solubility.

For more information about the lecture: www.csms.ethz.ch/education/Infol
Objective
Qualitative analysis (simple cation and anion separation process, determination of cations and anions), acid-base-equilibria (strengths of acids and bases, pH- and pKa-values, titrations, buffer systems, Kjeldahl determination), precipitation equilibria (gravimetry, potentiometry, conductivity), oxidation state and redox behaviour (syntheses), redox-titrations, galvanic elements, metal complexes (syntheses of complexes, ligand exchange reactions, complexometric titration) analysis of measured values (measuring error, average value, error analysis), states of aggregation (vapour pressure), characteristics of electrolytes (conductivity measurements), thermodynamics (calorimetry, solubility).

Content
The general aim for the students of the practical course in general chemistry is an introduction in the scientific work and to get familiar with some standard experimental procedures in a chemical laboratory. In general, first experiences with the principal reaction behaviour of a variety of different substances will be made. The chemical characteristics of these will be elucidated by a series of quantitative experiments alongside with the corresponding qualitative analyses. In order to get an overview of classes of substances as well as some general phenomena in chemistry suitable experiments have been chosen. In the second part of the practical course, i.e. physical chemistry, the behaviour of substances in their states of aggregation as well as changes of selected physical values will be recorded and discussed.

Lecture notes
http://www.gruetzmacher.ethz.ch/education/labcourses

Literature
Moodle Lernplattform

Prerequisites / notice
Compulsory: online enrolment latest one week after start of the semester
Safety concept: https://chab.ethz.ch/studium/bachelor1.html

3. Semester
Compulsory Subjects Examination Block I

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0121-00L</td>
<td>Inorganic Chemistry I</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>H. Grützmacher, P. Steinegger</td>
</tr>
</tbody>
</table>

Abstract
Discussion of syntheses, structures, and general reactivity of coordination compounds of the transition metals as well as the lanthanides and actinides. Introduction of methods of characterization, physical-chemical properties of coordination compounds as well as principles of radiochemistry.

Objective
The students will learn and understand the methodological basics of binding theory in complexes of transition metals. They will be able to explain the structure, chemical bonding, spectroscopic properties as well as general strategies for the synthesis of complexes of transition metals. The students will acquire knowledge on the fundamentals of radioactive decay and radiochemistry. Furthermore, they will be familiar with the basics of inorganic chemistry of lanthanides and actinides.

Content
This course consists of the following parts, which introduce the students to the chemistry of transition metals as well as lanthanides and actinides: 1) General definitions and terms in coordination chemistry; 2) Coordination numbers and structures; 3) Ligand types; 4) The chemical bond in coordination compounds part A: Crystal field theory and ligand field theory; 5) The chemical bond in coordination compounds part B: Qualitative MO theory; 6) Reactivity and reaction mechanisms of coordination compounds; 7) Group theory and character tables; 8) Properties and characterization of coordination compounds; 9) Introduction to radiochemistry; 10) Principles of the chemistry of the lanthanides and actinides.

Lecture notes
Eine kommentierte Foliensammlung ist im HCI-Shop erhältlich.

Literature

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

529-0221-00L Organic Chemistry I

Abstract
Chemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.

Objective
Acquisition of a basic repertoire of synthetic methods including important reactions of aldehydes, ketones, carboxylic acids and carboxylic acid derivatives, as well as eliminations and fragmentations. Particular emphasis is placed on the understanding of reaction mechanisms and the correlation between structure and reactivity. A deeper understanding of the concepts presented during the lecture is reached by solving the problems handed out each time and discussed one week later in the exercise class.

Content
Chemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.

Lecture notes
A pdf file of the printed lecture notes is provided online. Supplementary material may be provided online.

Literature
No set textbooks. Optional literature will be proposed at the beginning of the class and in the lecture notes.

529-0422-00L Physical Chemistry II: Chemical Reaction Kinetics

Abstract

Objective
Introduction to Chemical Reaction Kinetics
Content

Fundamental concepts: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics up to new developments in femtosecond kinetics. Simple chemical reaction rate theories: temperature dependence of the rate constant and Arrhenius equation, collision theory, reaction cross-section, transition state theory. Reaction mechanisms and complex kinetic systems, approximation techniques, chain reactions, explosions and detonations. Homogeneous catalysis and enzyme kinetics.

Experimental methods in reaction kinetics up to new developments in femtosecond kinetics. Simple chemical reaction rate theories: temperature dependence of the rate constant and Arrhenius equation, collision theory, reaction cross-section, transition state theory. Reaction mechanisms and complex kinetic systems, approximation techniques, chain reactions, explosions and detonations. Homogeneous catalysis and enzyme kinetics.

Literature

Prerequisites / notice

Voraussetzungen:
- Mathematik I und II
- Allgemeine Chemie I und II
- Physikalische Chemie I

529-0051-00L Analytical Chemistry I O 3 credits 3G D. Günther, M.-O. Ebert, G. Schwarz, R. Zenobi

Abstract

Introduction into the most important spectroscopical methods and their applications to gain structural information.

Objective

Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications

Content

Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:
- Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
- IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy.

Lecture notes

Script will be for the production price

Literature

- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995
- E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer Verbindungen, 4.

Prerequisites / notice

Exercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounds" (4th semester) is recommended.

401-0373-00L Mathematics III: Partial Differential Equations O 4 credits 2V+1U A. Carlotto

Abstract

Objective

Classical tools to solve the most common linear partial differential equations.

Content

1) Examples of partial differential equations
 - Classification of PDEs
 - Superposition principle

2) One-dimensional wave equation
 - D'Alembert's formula
 - Duhamel's principle

3) Fourier series
 - Representation of piecewise continuous functions via Fourier series
 - Examples and applications

4) Separation of variables
 - Solution of wave and heat equation
 - Homogeneous and inhomogeneous boundary conditions
 - Dirichlet and Neumann boundary conditions

5) Laplace equation
 - Solution of Laplace's equation on the rectangle, disk and annulus
 - Poisson formula
 - Mean value theorem and maximum principle

6) Fourier transform
 - Derivation and definition
 - Inverse Fourier transformation and inversion formula
 - Interpretation and properties of the Fourier transform
 - Solution of the heat equation

7) Laplace transform (if time allows)
 - Definition, motivation and properties
 - Inverse Laplace transform of rational functions
 - Application to ordinary differential equations

Lecture notes

See the course web site (linked under Lernmaterialien)
Literature

Additional books:

4) E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons (chapters 1,2,11,12,6)

For additional sources, see the course web site (linked under Lernmaterialien)

Prerequisites / notice

1) Multivariate functions: partial derivatives, differentiability, Jacobian matrix, Jacobian determinant

2) Multiple integrals: Riemann integrals in two or three variables, change of variables

3) Sequences and series of numbers and of functions

4) Basic knowledge of ordinary differential equations

Laboratory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0129-00L</td>
<td>Inorganic and Organic Chemistry II</td>
<td>O</td>
<td>11</td>
<td>16P</td>
<td>V. Mougel</td>
</tr>
<tr>
<td></td>
<td>Latest online enrolment is one week before the beginning of the semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Introduction to the experimental methods of Inorganic Chemistry

Objective

The teaching laboratory offers an insight into different aspects of Inorganic Chemistry, including solid state chemistry, organometallic chemistry, kinetics, etc. The synthesis, characterization and analysis of inorganic compound are a main topic. Special emphasis on experimental techniques of synthetic inorganic chemistry, in particular the safe handling of reactive and pyrophoric chemical and solvent purification and drying techniques.

Content

Emphasis is given to scientific writing (experiment reports).

Inorganic chemistry part: Synthesis and analysis of elemento-organic compounds, metal complexes, and organometallic compounds.

Introduction to Schlenk techniques, solid state synthesis, and kinetics. Introduction in the chemistry library; literature data banks and collections of spectra.

Organic synthesis with organometallic compounds and catalysts: Experiments in the framework of a selected specialised project. Possible projects: Rh catalysed asymmetric hydrogenation of enamides, Mn-catalysed epoxidation of olefins, Cu catalysed Diels-Alder reactions, synthesis of organo-boron compounds and Pd catalysed coupling with halides, Ru catalysed transfer hydrogenation.

Lecture notes

A manual is distributed in the teaching laboratory.

Prerequisites / notice

- Passed Basisprüfung
- Passed Practical Course General Chemistry (1. Semester, 529-0011-04)
- Passed Practical Course Inorg. and Org. Chemistry I (2. Sem., 529-0230)
- Continuous Attendance of Course Inorg. Chemistry 1 (3. Sem., 529-0121) and Analytical Chemistry 1 (3. Sem., 529-0051)

If necessary, access priority will be settled according to the results of the first-year examinations.

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

5. Semester

Compulsory Subjects Examination Block II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0132-00L</td>
<td>Inorganic Chemistry III: Organometallic Chemistry and Homogeneous Catalysis</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>C. Copéret, A. Togni</td>
</tr>
</tbody>
</table>

Abstract

Fundamental aspects of the organometallic chemistry of the transition elements. Mechanistic homogeneous catalysis including oxidative additions, reductive eliminations and insertion reactions. Catalytic hydrogenation, carbonylation, C-C bond-forming and related reactions.
Objective
Towards an understanding of the fundamental coordination-chemical and mechanistic aspects of transition-metal chemistry relevant to homogeneous catalysis.

Content
Fundamental aspects of the organometallic chemistry of the transition elements. Mechanistic homogeneous catalysis including oxidative additions, reductive eliminations and insertion reactions. Catalytic hydrogenation, carbonylation, C-C bond-forming and related reactions.

529-0231-00L
Title: Organic Chemistry III: Introduction to Asymmetric Synthesis

Abstract: Methods of Asymmetric Synthesis

Objective: Understanding of the basic principles of diastereoselective synthesis

Content: Conformational analysis: acyclic and cyclic systems; Diastereoselective sigmatropic rearrangements; Diastereoselective Carbonyl addition reactions; Cram- and Felkin-Anh models, carbonyl Lewis acid interactions, chelate controlled reactions; chemistry of enolates, selective formation; asymmetric enolate alkylation; aldol reactions, allyl- and crotyl-metal chemistry; cyclisations, Baldwin rules; Diastereoselective olenin functionalization: hydroboration, dihydroxylation, epoxidation.

Literature

Taught competencies
- **Domain A - Subject-specific Competencies**
 - Concepts and Theories
 - Techniques and Technologies: assessed

- **Domain B - Method-specific Competencies**
 - Analytical Competencies: assessed
 - Decision-making: not assessed
 - Media and Digital Technologies: not assessed
 - Problem-solving: assessed
 - Project Management: not assessed

- **Domain C - Social Competencies**
 - Communication: assessed
 - Cooperation and Teamwork: not assessed
 - Customer Orientation: not assessed
 - Leadership and Responsibility: not assessed
 - Self-presentation and Social Influence: not assessed
 - Sensitivity to Diversity: not assessed
 - Negotiation: not assessed

- **Domain D - Personal Competencies**
 - Adaptability and Flexibility: not assessed
 - Creative Thinking: assessed
 - Critical Thinking: assessed
 - Integrity and Work Ethics: not assessed
 - Self-awareness and Self-reflection: not assessed
 - Self-direction and Self-management: not assessed

529-0432-00L
Title: Physical Chemistry IV: Magnetic Resonance

Abstract: Theoretical foundations of magnetic resonance (NMR, EPR) and selected applications.

Objective: Introduction to magnetic resonance in isotropic and anisotropic phase.

Content: The course gives an introduction to magnetic resonance spectroscopy (NMR and EPR) in liquid, liquid crystalline and solid phase. It starts from a classical description in the framework of the Bloch equations. The implications of chemical exchange are studied and two-dimensional exchange spectroscopy is introduced. An introduction to Fourier spectroscopy in one and two dimensions is given and simple 'pulse trickery' is described. A quantum-mechanical description of magnetic resonance experiments is introduced and the spin Hamiltonian is derived. The chemical shift term as well as the scalar, dipolar and quadrupolar terms are discussed. The product-operator formalism is introduced and various experiments are described, e.g. polarization transfer. Applications in chemistry, biology, physics and medicine, e.g. determination of 3D molecular structure of dissolved molecules, determination of the structure of paramagnetic compounds and imaging (MRI) are presented.

Lecture notes
handed out in the lecture (in English)

Literature
see http://www.ssnmr.ethz.ch/education/PC_IV_Lecture

Laboratory Courses

Number 529-0449-00L
Title: Spectroscopy
Type: O
ECTS: 13
Hours: 13P
Lecturers: E. C. Meister, B. Hattendorf

Abstract
Laboratory experiments to acquire a profound knowledge of spectroscopical methods and techniques in chemistry. Evaluation and visualization of measurement data. Writing lab reports.

Objective
Laboratory experiments to acquire a profound knowledge of spectroscopical methods and techniques in chemistry. Evaluation and visualization of measurement data. Writing lab reports.

Content
Laboratory experiments: UV/VIS spectroscopy, luminescence spectroscopy, FT infrared spectroscopy, light diffraction and refraction, thermal lenses, Raman spectroscopy, reflection spectroscopy, optical polarization phenomena, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), FT nuclear magnetic resonance spectroscopy (NMR), electron paramagnetic resonance spectroscopy (EPR), atomic force microscopy (AFM), Fourier transform methods.

Lecture notes
Detailed documentations to each experiment will be handed out.

Prerequisites / notice

Safety concept: https://chab.ethz.ch/studium/bachelor1.html

Electives

Students are free to choose from a range of D-CHAB chemistry courses appropriate to their level of study (please note admission requirements). In case of doubt, contact the student administration.

Inorganic Chemistry

Number 529-0141-00L
Title: Physical Methods for Inorganic Chemistry
Type: W
ECTS: 6
Hours: 3G
Lecturers: M. D. Wörle, D. Günther, J. Koch, R. Vere1

Abstract
Introduction into the important methods for structural analysis (solid state NMR), crystal structure analysis and surface analysis techniques and their applications.
Physical Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0441-00L</td>
<td>Signal Processing</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>G. Jeschke, M. Yulikov</td>
</tr>
</tbody>
</table>

Abstract
Introduction of the basics of signal processing in spectroscopy. Fourier transformation, linear response theory, stochastic signals, digital data processing, Fourier spectroscopy.

Objective
Basics of signal processing in spectroscopy

Content

Analytical Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0041-00L</td>
<td>Modern Mass Spectrometry, Hyphenated Methods,</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>R. Zenobi, B. Hattendorf, P. Sinués Martinez-Lozano</td>
</tr>
<tr>
<td></td>
<td>and Chemometrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
Modern mass spectrometry, hyphenated analytical methods, speciation, chemometrics.

Objective
Comprehensive knowledge about the analytical methods introduced in this course and their practical applications.

Content
Hyphenation of separation with identification methods such as GC-MS, LC-MS, GC-IR, LC-IR, LC-NMR etc.; importance of speciation. Modern mass spectrometry: time-of-flight, orbitrap and ion cyclotron resonance mass spectrometry, ICP-MS. Soft ionization methods, desorption methods, ionpray methods. Mass spectrometry imaging. Use of statistical and computer-assisted methods for processing analytical data (chemometrics).

Biological Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0731-00L</td>
<td>Nucleic Acids and Carbohydrates</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>D. Hilvert, P. A. Kast, S. J. Sturla, H. Wennemers</td>
</tr>
</tbody>
</table>

Abstract
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNA; polymerses and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Objective
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNA; polymerses and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Content
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNA; polymerses and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Lecture notes
No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server).

Literature
Mainly based on original literature, a detailed list will be distributed during the lecture.
Chemical Aspects of Energy

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0559-00L</td>
<td>Electrochemistry: Fundamentals, Cells & Applications</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>L. Gubler</td>
</tr>
</tbody>
</table>

Abstract

Introduction to electrochemistry from a physical chemistry point of view, focusing on thermodynamics and kinetics of electrochemical reactions, and engineering of electrochemical cells. The topics are of generic nature yet also discussed in the context of specific applications in industrial electrochemistry, energy storage and conversion, electroanalytical techniques, sensors and corrosion.

Objective

The course establishes the fundamentals to understand and describe electrochemical reactions. The students are familiarized with key concepts and approaches in electrochemistry and selected aspects of materials science and engineering and how they are put to use in selected applications.

- Introduction: important quantities & units, terminology;
- Chapter I - redox reactions, Faraday's laws;
- Chapter II - Equilibrium electrochemistry: cells, galvanic and electrolytic cells, thermodynamic state functions, theoretical cell voltage, half-cell / electrode potential, hydrogen electrode, the electrochemical series, Nernst equation;
- Chapter III - Electrodes & interfaces: electrochemical potential, phase potentials, work function, Fermi level, the electrified interface, the electrochemical double layer, reference electrodes and laboratory cells;
- Chapter IV - Electrolytes: conductivity, aqueous electrolytes, transference effects, liquid junctions, polymer electrolytes, ion-exchange membranes, Donnan exclusion, solid state ion conductors;
- Chapter V - Dynamic electrochemistry: overpotentials, description of charge-transfer reaction, Butler-Volmer and Tafel equation, exchange current density, mass transport limitations;
- Chapter VI - Industrial electrochemistry: electrochemical engineering, process and reactor types, current density distribution, porous electrodes, chlor-alkali and HCl electrolysis, oxygen depolarized cathode;
- Chapter VII - Energy storage & conversion: important primary and secondary battery chemistries, fuel cells, polymer electrolyte fuel cells, low temperature H2 and O2 electrochemistry, electrocatalysis, triple-phase boundary, solid oxide fuel cell, conversion efficiency;
- Chapter VIII - Electroanalytical methods & sensors: potentiometry, cyclic and stripping voltammetry, rotating disc electrode studies, electrochemical sensors;
- Chapter IX - Corrosion: Pourbaix diagram, corrosion potential, passivation, corrosion protection; Historical notes

Literature

Prerequisites / notice

Students should be familiar with the fundamentals of physical chemistry.

Chemical Crystallography

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0039-00L</td>
<td>Principles of Crystal Structure Determination</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>M. D. Wörle, N. Trapp</td>
</tr>
</tbody>
</table>

Abstract

An introduction to the principles of X-ray diffraction and crystal structure determination as it relates to Chemistry

Objective

To gain an understanding of the principles of crystal structure determination by X-ray diffraction.

Content

Basic crystallographic concepts: Unit cells, Bravais lattices, Laue symmetry, crystal classes (point groups), space groups, crystal growth, instrumentation, diffraction of X-rays by crystals: physical and geometric basics, powder and single crystal methods, structure solution and modelling, interpretation of crystal structure data; internal coordinates for structure description: atom spacing, co-ordination polyhedra, bond angles, torsion angles; intermolecular interactions, absolute configuration determination. Overview of inorganic, organic and macromolecular databases.

Lecture notes

The script and exercises will be distributed weekly in loose form.
Literature

Main reference

Additional literature
(2) J.D. Dunitz, "X-ray Analysis and the Structure of Organic Molecules", 1995, Verlag HCA.

Computational Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0002-00L</td>
<td>Algorithms and Programming in C++</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>S. Riniker, G. Landrum</td>
</tr>
</tbody>
</table>

Abstract
Introduction to algorithms (special focus on chemistry):
* Design of algorithms, data structures, search and sort algorithms, graphs, numerical algorithms, algorithms in cheminformatics, machine learning and bioinformatics

Objective
Development of programming skills and craftsmanship in order to be able to deal with the complexity of computer applications in chemistry.

Content
Introduction to algorithms (special focus on chemistry):
* Design of algorithms, data structures, search and sort algorithms, graphs, numerical algorithms, algorithms in cheminformatics, machine learning and bioinformatics

Lecture notes
Script (in English) will be available

Literature

Materials Science

Offered during Spring Semester.

Environmental Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0037-01L</td>
<td>Introduction to Environmental Chemistry and Ecotoxicology</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>J. Hollender, T. Hofstetter, C. S. McArdell</td>
</tr>
</tbody>
</table>

Abstract
Anthropogenic activities related to production, use and disposal of goods cause emission of chemicals to the environment. This lecture provides an introduction to the knowledge required for assessing the risk of chemicals to human and environmental health by covering partitioning, reactivity, and toxic effects of chemicals as well as selected aspects of contemporary chemical analyses.

Objective
Students will develop a basic understanding for fate and effects of chemicals in the environment and learn how to use simple quantitative tools for the assessment of chemical behaviour and toxic effects.

Content
Part 1: Partitioning and reactivity
* Physico-chemical description of partitioning behaviour of organic compounds
* Partitioning in environmental media including soil/sediment, air, water
* Chemical and biological transformations

Part 2: Effects
* Test systems for the assessment of ecotoxicological effects of chemicals
* Bioavailability and bioaccumulation
* Metabolisms of organic compounds
* Molecular mechanisms of toxic action

Lecture notes
Handouts/lecture slides will be made available electronically

Literature

Taught competencies
Domain A - Subject-specific Competencies
* Concepts and Theories
* Techniques and Technologies

Domain D - Personal Competencies
* Critical Thinking

Stratospheric Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1233-00L</td>
<td>Stratospheric Chemistry</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>T. Peter, G. Chiado</td>
</tr>
</tbody>
</table>

Abstract
The lecture gives an overview on the manifold reactions which occur in the gas phase, in stratospheric aerosol droplets and in polar cloud particles. The focus is on the chemistry of stratospheric ozone and its influence through natural and anthropogenic effects, especially the ozone depletion caused by FCKW in mid-latitude and polar regions as well as the coupling with the greenhouse effect.
Objective
The students will understand the gas phase reactions in the stratosphere as well as reactions and processes in aerosol droplets and polar stratospheric clouds.
The students will understand the most important aspects of stratospheric dynamics and the greenhouse gas effect in troposphere and stratosphere.
The students will also acquire a good understanding of the coupling between stratospheric ozone and climate change.
Furthermore, they will practise to explain fundamental concepts in stratospheric chemistry by means of scientific paper presentations.

Content
Short presentation of thermodynamical and kinetic basics of chemical reactions: bi- and termolecular reactions, photo-dissociation.
Introduction to the chemical family concept: active species, their source gases and reservoir gases. Detailed treatment of the pure oxygen family (odd oxygen) according to the Chapman chemistry. Radical reactions of the oxygen species with nitric oxide, active halogens (chlorine and bromine) and odd hydrogen. Ozone depletion cycles. Methane depletion and ozone production in the lower stratosphere (photo-smog reactions). Heterogeneous chemistry on the background aerosol and its significance for heavy air traffic. Chemistry and dynamics of the ozone hole: Formation of polar stratospheric clouds and chlorine activation.

Lecture notes
Documents are provided in the contact hours.

Literature

Prerequisites / notice
Prerequisites: Basics in physical chemistry are required and an overview equivalent to the bachelor course in atmospheric chemistry (lecture 701-0471-01) is expected.

701-1233-00 V starts in the first week of the semester. The exercises 701-1233-00 U will start only in the 2nd week of the semester.

Economics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>351-0778-00L</td>
<td>Discovering Management</td>
<td>W</td>
<td>3</td>
<td>3G</td>
<td>B. Clarysse, G. Brusoni, E. Fleisch, L. P. Vandeweghe</td>
</tr>
</tbody>
</table>

Abstract
Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC.

Objective
The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship.

In particular, the aims of the course are to:
(1) broaden understanding of management principles and frameworks
(2) advance insights into the sources of corporate and entrepreneurial success
(3) develop skills to apply this knowledge to real-life managerial problems

Content
The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / or appreciate the challenges that entrepreneurs and managers deal with.

The course consists of a set of theory and practice sessions, which will be taught on a weekly basis. The course will cover business management knowledge in corporate as well as entrepreneurial contexts.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.

The theory sessions will follow a “lecture-style” approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.

GESS Science in Perspective

Science in Perspective

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-CHAB.

Language Courses

see GESS Science in Perspective: Language Courses
ETH/UBZH
Chemistry Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Educational Science

Course offerings in the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-06L</td>
<td>Cognitively Activating Instructions in MINT Subjects</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>R. Schumacher</td>
</tr>
<tr>
<td>851-0242-07L</td>
<td>Human Intelligence</td>
<td>W</td>
<td>1 credit</td>
<td>1S</td>
<td>E. Stern</td>
</tr>
<tr>
<td>851-0242-08L</td>
<td>Research Methods in Educational Science</td>
<td>W</td>
<td>1 credit</td>
<td>2S</td>
<td>P. Edelsbrunner, T. Braas, C. M. Thurn</td>
</tr>
<tr>
<td>851-0242-11L</td>
<td>Gender Issues In Education and STEM</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>M. Berkowitz Biran, T. Braas, C. M. Thurn</td>
</tr>
</tbody>
</table>

Subject Didactics in Chemistry

Important Notice: Enrolment in the courses of this category is only possible if no more than 12 CP of potential additional requirements have to be acquired.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0959-00L</td>
<td>Mentored Work Subject Didactics Chemistry A</td>
<td>O</td>
<td>2 credits</td>
<td>4A</td>
<td>R. Ciorciaro</td>
</tr>
</tbody>
</table>
In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.

Objective
The objective is for the students:
- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.

Content
Thematic Schwerpunkte
Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen

Lecture notes
Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.

Literature
Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.

Prerequisites / notice
Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

529-0960-00L

Mentored Work Subject Didactics Chemistry

In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.

Objective
The objective is for the students:
- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.

Content
Thematic Schwerpunkte
Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen

Lecture notes
Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.

Literature
Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.

Prerequisites / notice
Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

529-0950-00L

Subject Didactics Chemistry I

Simultaneous enrolment in Introductory Internship Chemistry - course 529-0966-00L - is compulsory.

Abstract
Implementing findings from research into teaching and learning for chemistry lessons and coverage of subject-specific teaching and learning specialities.

Objective
The students have basic subject didactic knowledge for teaching chemistry at a secondary school.

They are able to design lessons that are effective for learning, actively involve students in lessons, explain challenging concepts simply, use experiments for theory and reflect on teaching.

Content
Schwerpunkte im ersten Studiensemester bilden die folgenden Themen:
- Auswahl gymnasiumsrelevanter Lerninhalte
- Didaktische Vereinfachung
- Modellen und chemischen Formeln zur Beschreibung von Aufbau und Umwandlung der Substanzen
- Wechselspiel zwischen Beobachtung in der realen Welt und Deutung auf Modell-Ebene
- Skizzen entwerfen und zur Erklärung von Reaktionen nutzen
- Chemie im 8. Schuljahr: Das Teilchenmodell erklärt viele Phänomene im Anfangsunterricht
- Atommodelle und chemische Bindung
- Radioaktivität und Kernspaltung
- Struktur und Eigenschaft
- Auswahl, Konzeption, Vorbereitung, Durchführung, Einbettung und Auswertung von Demonstrations-Experimenten

Lecture notes
Die Unterrlagen sind auf der Plattform http://fdchemie.pbworks.com zugänglich

Literature
- E. Rossa: Chemie-Didaktik, Cornelsen Verlag, 2015
- H.-J. Bader et al: Konkrete Fachdidaktik Chemie, Oldenbourg Verlag, 2002

Prerequisites / notice
Der Chemieunterricht am Gymnasium soll einerseits grundlegende chemische Kenntnisse für den Alltag vermitteln und andererseits auf ein naturwissenschaftlich orientiertes Hochschulstudium vorbereiten. Diese beiden Ziele sind im Unterricht gleichermaßen zu berücksichtigen.

Da viele Lerninhalte sequentiell und einander benötigend strukturiert sind, ist dem logischen Aufbau des Unterrichts besonderes Augenmerk zu schenken. Dies bedingt eine feine Abstimmung von fachlichen Inhalten und didaktischen Methoden auf die kognitive Leistungsfähigkeit der Lernenden.

Anhand der Diskussion bewährter Beispiele und dem Entwurf eigener Unterrichtsbausteine soll die zukünftige Lehrperson befähigt werden, einen den spezifischen Rahmenbedingungen angepassten Unterricht zu entwickeln, der diesem hohen Qualitätsanspruch genügt.

Professional Training in Chemistry

Important Notice: Enrolment in the courses of this category is only possible if no more than 12 CP of potential additional requirements have to be acquired.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0966-00L</td>
<td>Introductory Internship Chemistry</td>
<td>O</td>
<td>3</td>
<td>6P</td>
<td>A. Baertsch</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 454 of 2152
Simultaneous enrolment in Subject Didactics Chemistry I
- course 529-0950-00L - is compulsory.

Abstract
During the introductory teaching practice, the students sit in on five lessons given by the teacher responsible for their teaching practice, and teach five lessons themselves. The students are given observation and reflection assignments by the teacher responsible for their teaching practice.

Objective

Content

Literature
Wird von der Praktikumslehrperson bestimmt.

Prerequisites / notice
Das Einführungspraktikum findet an einem Gymnasium der Deutschschweiz statt.

<table>
<thead>
<tr>
<th>529-0964-00L</th>
<th>Teaching Internship Chemistry</th>
<th>O</th>
<th>8 credits</th>
<th>17P</th>
<th>A. Baertsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The teaching practice takes in 50 lessons: 30 are taught by the students, and the students sit in on 20 lessons. The teaching practice lasts 4-6 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching. - They are able to assess the significance of tuition topics in their subject from different angles (including interdisciplinary angles) and impart these to their pupils. - They acquire the skills of the teaching trade. - They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution. - They learn to assess pupils’ work. - Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Wird von der Praktikumslehrperson bestimmt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Findet in der Regel am Schluss der Ausbildung, vor Ablegung der Prüfungslektionen statt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>529-0955-00L</th>
<th>Professional Exercises: Experiments in Teaching Chemistry</th>
<th>O</th>
<th>2 credits</th>
<th>4V</th>
<th>A. Baertsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This course unit introduces students to the technique of conducting experiments in chemistry lessons. It covers didactic, technical, safety-related and presentation aspects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students can - demonstrate experiments safely and convincingly - explain observations in a level-appropriate manner - use experiments to support theory - know why experiments need to be tested before demonstration - know some standard experiments - develop own experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Schwerpunkte bilden die folgenden Themen: - Theoretische Einführung - Merkmale für ein sicheres Experimentieren - Die Studierenden erproben und demonstrieren bereitstehende Experimente - Experimente mit einer Skizze festhalten - Auf Basis der Literatur ein Experiment selbständig ausarbeiten, dokumentieren und vorführen - Experimente in den Unterricht einbetten - Aufgaben zur Auswertung entwerfen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Die Unterlagen und die im Kurs erarbeiteten Experimente sind auf http://fdchemie.pbworks.com zugänglich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>529-0968-01L</th>
<th>Examination Lesson I Chemistry</th>
<th>O</th>
<th>1 credit</th>
<th>2P</th>
<th>A. Baertsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>On the basis of a specified topic, the candidate shows that they are in a position - to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle - to analyze the tuition they have given with regard to its strengths and weaknesses, and outline improvements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 455 of 2152
Ausgewählte Artikel aus der Primärliteratur werden vorgestellt, kommentiert und zur Lektüre empfohlen.

In this course, participants acquire extended and more in-depth knowledge of selected chemistry topics. The selection is based to a large degree on the partial aspects of chemistry that are typically taught at high school. By gaining a broader understanding, teachers are put in a position where they can comprehend the topics that are to be taught in a wider and, to some extent, unconventional context and critically process these in respect of their teachability and learnability. At the same time, interrelationships between the classical sub-disciplines of chemistry are highlighted, along with the unique features of chemistry as one of the central natural sciences.

The present examination lesson will be conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.

On the basis of a specified topic, the candidate shows that they are in a position
- to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle
- to analyse the tuition they have given with regard to its strengths and weaknesses, and outline improvements.

In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.

- to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge specialist competence in this way.
- to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle
- to analyse the tuition they have given with regard to its strengths and weaknesses, and outline improvements.

The aim is for the students/special-students-university-of-zurich.html

- to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge specialist competence in this way.
- to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle
- to analyse the tuition they have given with regard to its strengths and weaknesses, and outline improvements.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 456 of 2152
Thematische Schwerpunkte:

Lernformen:

Lecture notes
Eine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt.

Literature
Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.

Prerequisites / notice
Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

Compulsory Elective Courses

see Compulsory Elective Courses Teaching Diploma

Chemistry Teaching Diploma - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Organic Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0233-01L</td>
<td>Organic Synthesis: Methods and Strategies</td>
<td>W+</td>
<td>6</td>
<td>3G</td>
<td>E. M. Carreira</td>
</tr>
</tbody>
</table>

Abstract: The complex relation between structural analysis, methods leading to desired transformations, and insight into reaction mechanisms is exemplified. Relations between retrosynthetic analysis of target structures, synthetic methods and their combination in a synthetic strategy.

Objective: Extension and deepening of the knowledge in organic synthesis and the principles of structure and reactivity.

Literature:

Taught competencies:

1. Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies

2. Domain B - Method-specific Competencies
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Project Management

3. Domain C - Social Competencies
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity
 - Negotiation

4. Domain D - Personal Competencies
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

Advanced Methods and Strategies in Synthesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0241-10L</td>
<td>Advanced Methods and Strategies in Synthesis</td>
<td>W+</td>
<td>6</td>
<td>3G</td>
<td>J. W. Bode</td>
</tr>
</tbody>
</table>

Abstract: Knowledge of modern methods in asymmetric stereocore, enantioselective catalysis, and organic reaction mechanisms.

Objective: Current trends in methods for and approaches to synthesis of complex natural products, pharmaceuticals, and biological molecules; fragment coupling and protecting group strategies; chemical ligation and biomolecules synthesis; enantioselective catalysis including ligand design and optimization; cross coupling reactions from preactivated precursors; C-H activation and oxidation chemistry; building block synthesis with chiral auxiliaries and reagents; new concepts in asymmetric catalysis. Analysis of key primarily literature including identification of trends, key precendents, and emerging topics will be emphasized.

Lecture notes: will be provided in class and online

Literature:

Physical Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0433-01L</td>
<td>Advanced Physical Chemistry: Statistical Thermodynamics</td>
<td>W+</td>
<td>6</td>
<td>3G</td>
<td>R. Riek, J. Richardson</td>
</tr>
</tbody>
</table>

Abstract: Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.

Objective: Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.

Lecture notes: See homepage of the lecture.

Literature: See homepage of the lecture.

Prerequisites:
- Chemical Thermodynamics, Reaction Kinetics, Molecular Quantum Mechanics and Spectroscopy; Mathematical Foundations (Analysis, Combinatorial Relations, Integral and Differential Calculus)

Taught competencies:

- Domain A - Subject-specific Competencies
 - Concepts and Theories

- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Problem-solving

- Domain C - Social Competencies
 - Communication

- Domain D - Personal Competencies
 - Creative Thinking
 - Critical Thinking

Research Projects
The aim of the internship is to make students acquainted with industrial work environments. During this time, they will have the opportunity to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student.

Students are accustomed to scientific work and they get to know one specific research field.

Research Project I

Abstract

In a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to apply them for the course project and in future research endeavors. After the course, an individual report about the results obtained has to be prepared.

Objective

The necessary documents and protocols will be distributed to the participants during the course.

Literature

General literature to "Directed Evolution" and chorismate mutases, e.g.:

- www.kast.ethz.ch/teaching.html

Prerequisites / notice

Further literature will be indicated in the distributed script.

- The projects of this course are tightly linked to the ones of the Biology BSc course “529-0739-01 Biological Chemistry B: New Enzymes from Directed Evolution Experiments”, which takes place as a block course during the month of November. There will be joint lectures for the participants of both courses during that time. The teaching language is English.
- The number of participants for the laboratory class is limited. It is mandatory to sign up for the course directly with P. Kast no later than September 1, prior to the start of the fall semester. Until then it will be decided whether the course will take place.
- A valid registration is considered a commitment for attendance of the entire semester course, as involved material orders and absences. In case of an emergency, please immediately notify P. Kast.
- For more information, see also http://www.kast.ethz.ch/teaching.html or contact P. Kast directly (HCI F 333, Tel. 044 632 29 08, kast@org.chem.ethz.ch).

Taught competencies

- Domain A - Subject-specific Competencies: Concepts and Theories assessed
- Domain B - Method-specific Competencies: Analytical Competencies assessed
- Domain C - Social Competencies: Communication assessed
- Domain D - Personal Competencies: Adaptability and Flexibility assessed

Master's Thesis

Abstract

Only students who fulfill the following criteria are allowed to begin with their Master's thesis:

Table: Industry Internship or Laboratory Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0200-10L</td>
<td>Research Project I</td>
<td>W</td>
<td>13 credits</td>
<td>16A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract

In a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student.

Objective

Students are accustomed to scientific work and they get to know one specific research field.

Number

<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0201-10L</td>
<td>Research Project II</td>
<td>W</td>
<td>13 credits</td>
<td>16A</td>
</tr>
</tbody>
</table>

Abstract

In a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student.

Objective

Students are accustomed to scientific work and they get to know one specific research field.

Number

<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0202-00L</td>
<td>Industry Internship</td>
<td>W</td>
<td>13 credits</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Internship in industry with a minimum duration of 7 weeks

Objective

The aim of the internship is to make students acquainted with industrial work environments. During this time, they will have the opportunity to get involved in current projects of the host institution.

Number

<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0739-10L</td>
<td>Biological Chemistry A: Technologies for Directed Evolution of Enzymes</td>
<td>W</td>
<td>13 credits</td>
<td>16P</td>
</tr>
</tbody>
</table>

Abstract

Advanced laboratory course or internship depending on lab course Biological Chemistry B

Candidates must inquire with P. Kast no later than September 1st whether course will take place (no self-enrollment)

Further information to registration and work hours: www.kast.ethz.ch/teaching.html

Objective

All technologies used for the experiments will be explained to the students in practice with the goal that they will be able to independently apply them for the course project and in future research endeavors. After the course, an individual report about the results obtained has to be prepared.

Content

This class conducts and supports experiments for a specifically designed genuine research project. We will carry out biological-chemical enzyme evolution experiments using molecular genetic mutation technologies and in vivo selection in recombinant bacterial strains.

The relevant technologies will be taught to the students, such as the preparation of competent cells, production and isolation of DNA fragments, transformation of gene libraries, and DNA sequencing. The course participants will generate a variety of different variants of a chorismate mutase. Individual enzyme catalysts will be purified and subsequently characterized using several different spectrosopic methods. The detailed chemical-physical analyses include determination of the enzymes’ kinetic parameters, their molecular mass, and the integrity of the protein structure. The students will present the results obtained from their individual evolution experiments at the end of the semester. We expect that during this lab course we will not only generate novel enzymes, but also gain new mechanistic insights into the investigated catalyst.

Lecture notes

The the necessary documents and protocols will be distributed to the participants during the course.

Literature

Further literature will be indicated in the distributed script.

- www.kast.ethz.ch/teaching.html

Prerequisites / notice

Further literature will be indicated in the distributed script.

- This laboratory course will involve experiments that require a tight schedule and (sometimes) long (!) working days.
- The projects of this course are tightly linked to the ones of the Biology BSc course “529-0739-01 Biological Chemistry B: New Enzymes from Directed Evolution Experiments”, which takes place as a block course during the month of November. There will be joint lectures for the participants of both courses during that time. The teaching language is English.
- The number of participants for the laboratory class is limited. It is mandatory to sign up for the course directly with P. Kast no later than September 1, prior to the start of the fall semester. Until then it will be decided whether the course will take place.
- A valid registration is considered a commitment for attendance of the entire semester course, as involved material orders and experimental preparations are necessary and, once the class has started, the flow of the experiments must not be interrupted by individual absences. In case of an emergency, please immediately notify P. Kast.
- For more information, see also http://www.kast.ethz.ch/teaching.html or contact P. Kast directly (HCI F 333, Tel. 044 632 29 08, kast@org.chem.ethz.ch).
a. successful completion of the Bachelor's programme;
b. fulfilling of any additional requirements necessary to gain admission to the Master's programme.

Duration of the Master's Thesis 20 weeks.

Electives
Students are free to choose from a range of D-CHAB chemistry courses appropriate to their level of study (please note admission requirements). In case of doubt, contact the student administration.

Inorganic Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
- General bonding concepts
- AIM and ELF as descriptors of electronic structures
- GCMT model, carbenes and carbene analogues, homo and heteronuclear unsaturated bonds
- Electron precise cluster, electron deficient cluster, and special cluster
- General concepts and definitions of inorganic polymers, polysilanes, polysiloxanes, polyphosphazenes

Objective
The course starts with an introduction into general concepts allowing to understand why main group element and transition metal compounds from the higher periods show different properties when compared to their lighter congeners. The Atom in Molecule (AIM) Theory and Electron Localization Function (ELF) will be introduced as means to interpret the electron density distribution in molecules. Carbenes and carbene analogues will be discussed as building blocks for compounds with unsaturated bonds which in turn may serve as precursors to inorganic polymers. Electron counting rules allow to distinguish different type of clusters which can be divided into electron precise cluster, various electron deficient cluster (for example Wade-Mingsos-Cluster), and special cluster.

The course will also serve as an introduction to general concepts for syntheses and analyses of inorganic polymers will be given. Specifically, polysilanes, polysiloxanes, and polyphosphazenes will be discussed and possible applications of these polymers will be highlighted.

Recent literature will be provided and discussed jointly by the participants of the course (flipped classroom).

Lecture notes
A handout of the presented material will be distributed to the participants of the course. Articles from recent literature will be provided and discussed in the course.

Literature
Original literature is indicated in the course material.

Prerequisites / notice
Basis for the understanding of this lecture are the courses Allgemeine Chemie 1&2, and Anorganische Chemie 1: Übergangsmetalchemie.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

Organic Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0243-01L</td>
<td>Transition Metal Catalysis: From Mechanisms to Applications</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>B. Morandi</td>
</tr>
</tbody>
</table>

Abstract
Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint

Objective
Understanding and critical evaluation of current research in transition metal catalysis. Design of mechanistic experiments to elucidate reaction mechanisms. Synthetic relevance of transition metal catalysis. Students will also learn about writing an original research proposal during a workshop.

Content
Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint. Synthetic applications of these reactions. Introduction and application of tools for the elucidation of mechanisms. Selected examples of topics include: C-H activation, C-O activation, C-C activation, redox active ligands, main group redox catalysis, binmetallic catalysis.

Lecture notes
Lecture slides will be provided online. A Handout summarizing important concepts in organometallic and physical organic chemistry will also be provided. Useful references and handouts will also be provided during the workshop.

Slides will be uploaded 1-2 days before each lecture on http://morandi.ethz.ch/education.html
Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.

Prerequisites / notice
Special requirement: each participant will have to come up with an independent research proposal to be presented orally (or handed in in written form) at the end of the semester. A dedicated workshop will be organized in the middle of the semester to introduce the students to proposal writing and presentation.

Organic Synthesis: Methods and Strategies

Abstract
The complex relation between structural analysis, methods leading to desired transformations, and insight into reaction mechanisms is exemplified. Relations between retrosynthetic analysis of target structures, synthetic methods and their combination in a synthetic strategy.

Objective

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Advanced Methods and Strategies in Synthesis

Abstract
Advanced Modern Methods and Strategies in Synthesis

Objective
Knowledge of modern methods in asymmetric stereocontrol, enantioselective catalysis, and organic reaction mechanisms.

Content
Current trends in methods for and approaches to synthesis of complex natural products, pharmaceuticals, and biological molecules; fragment coupling and protecting group strategies; chemical ligation and biomolecules synthesis; enantioselective catalysis including ligand design and optimization; cross coupling reactions from preactivated precursors; C-H activation and oxidation chemistry; building block synthesis with chiral auxiliaries and reagents; new concepts in asymmetric catalysis. Analysis of key primarily literature including identification of trends, key precendents, and emerging topics will be emphasized.

Literature
Suggesting Textbooks

Physical Chemistry

Number
529-0043-01L

Title
Advanced Physical Chemistry: Statistical Thermodynamics

Type
W

ECTS
6

Hours
3G

Lecturers
R. Riek, J. Richardson

Abstract
Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.

Objective
Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.

Content

Literature
See homepage of the lecture.

Prerequisites / notice
Chemical Thermodynamics, Reaction Kinetics, Molecular Quantum Mechanics and Spectroscopy; Mathematical Foundations (Analysis, Combinatorial Relations, Integral and Differential Calculus)
A script which covers the topics will be distributed in the lecture and will be accessible through the course Moodle. Copies of problem sets and solutions will be distributed free of charge.

The students will be introduced to the basic concepts of the interaction of light with nano- and microparticles. The combination of basic concepts with different applications will enable students to apply their knowledge to new problems in various fields where nanoscale objects play a role.

Light interacts surprisingly differently with small particles than with bulk or with gas phase materials. The first part of the course provides a basic but rigorous introduction into the interaction of light with nano- and microparticles. The emphasis is on the classical treatment of absorption and scattering of light by small particles. The strengths and limits of this conventional approach will be discussed. The second part of the course is devoted to a broad range of applications. Here topics include: Plasmon resonances in metallic systems, metallo-dielectric nanoparticles for medical applications, the use of lasers for optical trapping and characterization of single particles, vibrational excitons in dielectric nanoparticles, interaction of light with aerosol particles and cloud droplets for the climate.

Advanced Magnetic Resonance

- **Domain A - Subject-specific Competencies**: Concepts and Theories, assessed
- **Domain B - Method-specific Competencies**: Analytical Competencies, assessed
- **Domain C - Social Competencies**: Problem-solving, assessed
- **Domain D - Personal Competencies**: Communication, not assessed

Prerequisite: A basic knowledge of Magnetic Resonance, e.g., as covered in the Lecture Physical Chemistry IV, or the book “Spin Dynamics” by Malcolm Levitt.

Applications: References will be provided during the course.

Analytical Chemistry

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**

Abstract
Problem-oriented development of analytical strategies and solutions.

Objective
Ability to create solutions for particular analytical problems.

Content
Individual development of strategies for the optimal application of chemical, biochemical, and physico-chemical methods in analytical chemistry solving predefined problems. Experts from industry and administration present particular problems in their field of activity.

Lecture notes
Copies of problem sets and solutions will be distributed free of charge.

Prerequisites
- 529-0051-00 *Analytical Chemistry I (3. Semester)"
- 529-0058-00 *Analytical Chemistry II (4. Semester)"
(or equivalent)

529-0049-00L | Analytical Methods for Characterization of Nanoparticles and Nanomaterials | W | 2 credits | 2G | to be announced

Abstract
Introduction to modern analytical methods used to fully characterize and identify nano-engineered materials and systems.

Objective
Understanding of analytical concepts used in nanotechnology. In-depth knowledge of most important methods used in industry and research. Introduction to selected industrial applications. Basic knowledge of production mechanisms of nano-engineered materials.

Content
Nanotechnology is the basis of many main technological innovations of the 21st century. After more than twenty years of research, nanotechnologies are now increasingly employed for commercial use: they are used in hundreds of everyday consumer products, such as cosmetics, food, automotive, electronics and medical products. Nanoparticles can contribute to stronger, lighter, cleaner, smarter, better, etc. products.

Besides these positive effects, relatively little is still known about potential health and environmental effects and risks of such small nano-sized particles. Therefore, a lot of different industry customers are forced nowadays to monitor and regulate the size and concentration of nanoparticles in their nano-enabled products.

Above and beyond these regulatory requirements, most industries employing nanoparticles need to be able to online measure nanoparticles to meet their requirements towards quality control and production efficiency. All these requirements demand new precise, accurate, fast and innovative analysis methods to fully characterize nanoparticles in real-time and during the manufacturing process.

Lecture notes
Lecture notes will be provided
Biological Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0733-01L</td>
<td>Enzymes</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>D. Hilvert</td>
</tr>
</tbody>
</table>

Abstract
Principles of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme-catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.

Objective
Overview of enzymes, enzyme-catalyzed reactions and metabolic processes.

Content
Principles of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.

Lecture notes / Literature
A script will not be handed out.

In addition, citations from the original literature relevant to the individual lectures will be assigned weekly.

Chemical Aspects of Energy

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0029-01L</td>
<td>Chemical Crystallography</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>M. D. Wörle, N. Trapp</td>
</tr>
</tbody>
</table>

Abstract
Advanced X-ray crystal structure analysis

Objective
To gain a deeper understanding of crystal structure determination principles and practice by X-ray diffraction and the evaluation of results.

Content
Review of principles of diffraction and instrumentation, unit cells, lattices, and symmetry. Inorganic structural chemistry: sphere packings, ionic crystals, covalent networks, intermetallic compounds. Overview of powder diffraction and application of crystal chemistry for structure analysis of polycrystalline phases. Working safely with X-rays, crystal growth, selection and mounting, data collection strategies, data reduction, corrections for absorption, extinction and Lp, advanced structure solution theory and techniques: Patterson function, heavy atom technique, Fourier methods, direct methods. Structure modeling and refinement, disorder, twinning, false symmetry, interpretation of anisotropic shift parameters. Determination of absolute configuration, interpretation of results and scope of chemically useful information, validation and publication of results, critical evaluation of published crystal structures.

Lecture notes / Literature
Main references

Additional literature

Prerequisites / notice
Students will conduct the computational exercises and examples of structure solution and refinement on personal computers.

Prerequisite: Principles of Crystal Structure Determination (529-0039-00L).

Chemical Technology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0108-00L</td>
<td>Biological Engineering and Biotechnology</td>
<td>W</td>
<td>4 credits</td>
<td>3V</td>
<td>M. Fussenegger</td>
</tr>
</tbody>
</table>

Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 463 of 2152
Objective

Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content

Lecture notes

Handout during the course.

Computational Chemistry

Objective

The aim of the course is to provide an in-depth knowledge of theory and method development in theoretical chemistry. It will be shown that this is necessary in order to be able to solve actual chemical problems on a computer with quantum chemical methods.

Content

The relativistic re-derivation of all concepts known from (nonrelativistic) quantum mechanics and quantum-chemistry lectures will finally explain the form of all operators in the molecular Hamiltonian - usually postulated rather than deduced. From this, we derive operators needed for molecular spectroscopy (like those required by magnetic resonance spectroscopy). Implications of other assumptions in standard non-relativistic quantum chemistry shall be analyzed and understood. leftover relativity are the Born-Oppenheimer approximation and the expansion of the electronic wave function in a set of pre-defined many-electron basis functions (Slater determinants). Overcoming these concepts, which are so natural to the theory of chemistry, will provide deeper insights into many-particle quantum mechanics. Also revisiting the workhorse of quantum chemistry, namely density functional theory, with an emphasis on open-shell electronic structures (radicals, transition-metal complexes) will contribute to this endeavor. It will be shown how these insights allow us to make more accurate predictions in chemistry in practice - at the frontier of research in theoretical chemistry.

Literature

2) F. Schwabl: Quantenmechanik für Fortgeschrittene (QM II), Springer-Verlag, 1997
3) R. McWeeny: Methods of Molecular Quantum Mechanics, Academic Press, 1992
8) New electron-correlation theories: Tensor network and matrix product states, the density matrix renormalization group
9) Quantum chemistry without the Born-Oppenheimer approximation

Prerequisites / notice

Strongly recommended (preparatory) courses are: quantum mechanics and quantum chemistry

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 464 of 2152
Material Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials.

Objective
A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials.

Content
This course provides a general introduction into electron microscopy of organic and inorganic materials. In the first part, the basics of transmission- and scanning electron microscopy are presented. The second part includes the most important aspects of specimen preparation, imaging and image processing. In the third part, recent applications in materials science, solid state physics, structural biology, structural geology and structural chemistry will be reported.

Lecture notes will be distributed in English

Literature
Erni: Aberration-corrected imaging in transmission electron microscopy, Imperial College Press (2010, and 2nd ed. 2015)

Environmental Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0745-01L</td>
<td>General and Environmental Toxicology</td>
<td>W</td>
<td>6</td>
<td>3V</td>
<td>M. Arand, H. Nägeli</td>
</tr>
</tbody>
</table>

Abstract
Toxicokinetic and toxicodynamic aspects of xenobiotic interactions with cellular structures and mechanisms. Toxic responses at the level of organs (immune-, neuro-, reproductive and genotoxicity) and organisms. Introduction into developmental toxicity and ecotoxicology.

Objective
Understanding of the impact of chemicals on biological systems; evaluation of the effects from different biomedical perspectives.

Content
Explanation of important interactions between xenobiotic chemicals and cellular structures such as membranes, enzymes, and nucleic acids. Relevance of intake, distribution, excretion, and biochemical transformation processes. Relevance of mixtures. Explanation of important modes of toxic action such as immuno toxicity, neurotoxicity, reproduction toxicity, genotoxicity based on examples of certain xenobiotics and their effects on important organs.

Lecture notes Course material will be handed out as the lectures progress

Literature Textbooks of pharmacology and toxicology (cf. list in course material)

Prerequisites / notice Educational basis: basic chemistry, biology and biochemistry

Economics and Technology Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0389-00L</td>
<td>Technology and Innovation Management</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>S. Brusoni, A. Zeijen</td>
</tr>
</tbody>
</table>

Abstract
This course focuses on the analysis of innovation as a pervasive process that cut across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change.

Objective
- understand the core concepts necessary to analyze how innovation happens
- master the most common methods and tools organizations deploy to innovate

Content
- develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation

This course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small. How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, guest speakers, simulations and group work.

Lecture notes Slides will be available on the Moodle page

Literature Readings will be available on the Moodle page

Prerequisites / notice The course content and methods are designed for students with some background in management and/or economics

Principles of Macroeconomics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0565-00L</td>
<td>Principles of Macroeconomics</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>J.-E. Sturm</td>
</tr>
</tbody>
</table>

Abstract
This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective
This lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems.

Content
This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.

Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.

Lecture notes The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15062) contains announcements, course information and lecture slides.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 465 of 2152
The set-up of the course will closely follow the book of N. Gregory Mankiw and Mark P. Taylor (2020), Economics, Cengage Learning, Fifth Edition. This book can also be used for the course ‘363-0503-00L Principles of Microeconomics’ (Filippini).

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain C - Social Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain D - Personal Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptable and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Principles of Microeconomics

W: 3 credits

M. Filippini

Einführung in die Mikroökonomie.

Abstract

The course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.

Objective

The learning objectives of the course are:

1. Students must be able to discuss basic principles, problems and approaches in microeconomics.
2. Students can analyse and explain simple economic principles in a market using supply and demand graphs.
3. Students can contrast different market structures and describe firm and consumer behaviour.
4. Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole.
5. Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics.
6. Students can apply simple mathematical concepts on economic problems.

Content

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture *Principles of Microeconomics* is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

Lecture notes

Lecture notes, exercises and reference material can be downloaded from Moodle.

Literature

The book can also be used for the course ‘Principles of Macroeconomics’ (Sturm)

For students taking only the course ‘Principles of Microeconomics’ there is a shorter version of the same book:

Complementary:

Prerequisites / notice

GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.
Inorganic Chemistry

Number	Title	Type	ECTS	Hours	Lecturers

Abstract

General bonding concepts
AIM and ELF as descriptors of electronic structures
GCMT model, carbenes and carbene analogues, homo and heteronuclear unsaturated bonds
Electron precise cluster, electron deficient cluster, and special cluster
General concepts and definitions of inorganic polymers, polysilanes, polysiloxanes, polyphosphazenes

Objective

The course starts with an introduction into general concepts allowing to understand why main group element and transition metal compounds from the higher periods show different properties when compared to their lighter congeners. The Atom in Molecule (AIM) Theory and Electron Localization Function (ELF) will be introduced as means to interpret the electron density distribution in molecules. Carbenes and carbene analogues will be discussed as building blocks for compounds with unsaturated bonds which in turn may serve as precursors to inorganic polymers.
Electron counting rules allow to distinguish different type of clusters which can be divided into electron precise cluster, various electron deficient cluster (for example Wade-Mingsos-Cluster), and special cluster.
An introduction into general concepts for syntheses and analyses of inorganic polymers will be given. Specifically, polysilanes, polysiloxanes, and polyphosphazenes will be discussed and possible applications of these polymers will be highlighted.

Lecture notes

A handout of the presented material will be distributed to the participants of the course. Articles from recent literature will be provided and discussed in the course.

Literature

Original literature is indicated in the course material.

Prerequisites / notice

Basis for the understanding of this lecture are the courses Allgemeine Chemie 1&2, and Anorganische Chemie 1: Übergangsmetallichemie.

Physical Chemistry

Number	Title	Type	ECTS	Hours	Lecturers
529-0443-01L | Advanced Magnetic Resonance | W+ | 6 credits | 3G | G. Jeschke, A. Barnes
Abstract
The course is for advanced students and covers selected topics from magnetic resonance spectroscopy. This semester, the lecture will introduce and discuss the dynamics of electron-nuclear spin systems and experiments based on hyperfine interactions in electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP) for sensitivity enhancement in NMR.

Objective
The course aims at enabling students to understand and design experiments that are based on hyperfine coupling between electron and nuclear spins. This includes analytical and numerical treatment of spin dynamics as well as instrumental aspects. Additionally, students will learn how to use hyperfine couplings to increase sensitivity in solid state NMR via dynamic nuclear polarization (DNP), with an emphasis on the instrumentation required to perform DNP with magic angle spinning (MAS) NMR.

Content
The course starts with a recapitulation of density operator and product operator formalism with special emphasis on electron-nuclear spin systems in the solid state. We then treat basic phenomena, such as passage effects, avoided level crossings, and hyperfine decoupling. Based on these foundations, we discuss polarization transfer from the electron to the nuclear spin and back, as well as spin diffusion as a mechanism for polarizing nuclear spins beyond the immediate vicinity of the electron spin. The second half of the course will cover dynamic nuclear polarization (DNP), with a focus on instrumentation required to perform pulsed DNP with magic angle spinning (MAS) at ultra-high magnetic fields. A review of salient interactions in the NMR solid state Hamiltonian, DNP mechanisms, and electron decoupling with MAS will motivate discussions of technology development. Specific technologies to be covered include, but are not limited to, frequency agile gyrotron oscillators, corrugated waveguides, microwave lenses, strategies for creating pulsed and frequency chirped microwaves, spherical MAS rotors and supporting stators, high temperature superconductor (HTS) based compact magnets, and radio-frequency circuits for multinuclear spin control and detection.

Prerequisite: A basic knowledge of Magnetic Resonance, e.g. as covered in the Lecture Physical Chemistry IV, or the book “Spin Dynamics” by Malcolm Levitt.

Lecture notes
A script which covers the topics will be distributed in the lecture and will be accessible through the course Moodle

529-0445-01L Advanced Optics and Spectroscopy

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0445-01L</td>
<td>Advanced Optics and Spectroscopy</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>R. Signorelli, G. David</td>
</tr>
</tbody>
</table>

Abstract
This course provides an introduction to the interaction of light with nano- and microparticles followed by an overview of applications of current interest. Examples range from nanoparticles for medical applications and sensing to the role of the interaction of solar radiation with aerosol particles and cloud droplets for the climate.

Objective
The students will be introduced to the basic concepts of the interaction of light with nano- and microparticles. The combination of basic concepts with different applications will enable students to apply their knowledge to new problems in various fields where nanoscale objects play a role.

Content
Light interacts surprisingly differently with small particles than with bulk or with gas phase materials. The first part of the course provides a basic but rigorous introduction into the interaction of light with nano- and microparticles. The emphasis is on the classical treatment of absorption and scattering of light by small particles. The strengths and limits of this conventional approach will be discussed. The second part of the course is devoted to a broad range of applications. Here topics include: Plasmon resonances in metallic systems, metallo-dielectric nanoparticles for medical applications, the use of lasers for optical trapping and characterization of single particles, vibrational excitons in dielectric nanoparticles, interaction of light with aerosol particles and cloud droplets for remote sensing applications and climate predictions, characterization of ultralight aerosol particles by photoemission using velocity map imaging.

Lecture notes
will be distributed during the course

Literature
Basics: Absorption and Scattering of Light by Small Particles, C. F. Bohren and D. R. Huffman, John Wiley & Sons, Inc.

Applications: References will be provided during the course.

➤ GESS Science in Perspective
see GESS Science in Perspective: Language Courses
ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capacity

Recommended GESS Science in Perspective (Type B) for D-CHAB.

➤ Course Units for Additional Admission Requirements
The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0051-AAL</td>
<td>Analytical Chemistry I</td>
<td>E-</td>
<td>3</td>
<td>6R</td>
<td>D. Günther, R. Zembei</td>
</tr>
</tbody>
</table>

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction into the most important spectroscopic methods and their applications to gain structural information.

Objective
Knowledge about the necessary theoretical background of spectroscopic methods and their practical applications

Content
Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:
- Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
- NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling.
- IR spectroscopy: Revisiting topics like harmonic oscillator, normal modes, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy.
- UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) and optical rotation dispersion (ORD).

Lecture notes
Script will be provided for the production price

Literature
- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995;

Prerequisites / notice
Exercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 “Instrumental analysis of organic compounds” (4th semester) is recommended.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Enhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included.

Objective
Use and applications of the elemental analysis and spectrocopical knowledge to solve relevant analytical problems.

Content
Combined application of spectrocopical methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2D and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2D gel electrophoresis, SDS-PAGE, field fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscoopy, ICP-OES, ICP-MS.

Literature

Prerequisites / notice
None.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>E-Credits</th>
<th>R-Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0432-AAL</td>
<td>Physical Chemistry IV: Magnetic Resonance</td>
<td>E-4</td>
<td>R-9</td>
<td>G. Jeschke, M. Ernst</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theoretical foundations of magnetic resonance (NMR,EPR) and selected applications.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to magnetic resonance in isotropic and anisotropic phase.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course gives an introduction to magnetic resonance spectroscopy (NMR and EPR) in liquid, liquid crystalline and solid phase. It starts from a classical description in the framework of the Bloch equations. The implications of chemical exchange are studied and two-dimensional exchange spectroscopy is introduced. An introduction to Fourier spectroscopy in one and two dimensions is given and simple ‘pulse trickery’ is described. A quantum-mechanical description of magnetic resonance experiments is introduced and the spin Hamiltonian is derived. The chemical shift term as well as the scalar, dipolar and quadrupolar terms are discussed. The product-operator formalism is introduced and various experiments are described, e.g. polarization transfer. Applications in chemistry, biology, physics and medicine, e.g. determination of 3D molecular structure of dissolved molecules, determination of the structure of paramagnetic compounds and imaging (MRI) are presented.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

529-0129-AAL	Inorganic and Organic Chemistry II	E-11	R-16	V. Mougel
	Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.			
	Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.			
	This course does not offer a lecture of its own but it is linked to the course 529-0129-00L.			
	The teaching laboratory offers an insight into different aspects of inorganic chemistry, including solid state chemistry, organometallic chemistry, kinetics, etc. The synthesis, characterization and analysis of inorganic compounds are a main topic. Emphasis is given to scientific writing (experiment reports). Inorganic chemistry part: Synthesis and analysis of elemento-organic compounds, metal complexes, and organometallic compounds. Introduction to Schlenk techniques, solid state synthesis, and kinetics. Introduction in the chemistry library: literature data banks and collections of spectra. Organic synthesis with organometallic compounds and catalysts: Experiments in the framework of a selected specialised project. Possible projects: Rh catalysed asymmetric hydrogenation of enamides, Mn-catalysed epoxidation of olefins, Cu catalysed Diels-Alder reactions, synthesis of organo-boron compounds and Pd catalysed coupling with halides, Ru catalysed transfer hydrogenation.			

	Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
	Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
	The goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others. The goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others. The focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.
	Literature
	Topic/Lecturer/Chapter/Pages:
	Analyzing cells & molecules / Gebhard Schertler/ 8/ 439-463;
	Membrane structure / Gebhard Schertler/ 10/ 565-595;
	Compartmental and Sorting/ Ulrike Kutay/12+14/6-641-694/755-758/782-783/315-320/325-333/Table 6-2/Figure6-20, 6-21, 6-32, 6-34;
	Intracellular Membrane Traffic/ Ulrike Kutay/13-695-752;
	The Cytoskeleton/ Ulrike Kutay/16-889 - 948 (only the essentials);
	Membrane Transport of Small Molecules and the Electrical Properties of Membranes /Sabine Werner/11/597 - 633;
	Mechanisms of Cell Communication / Sabine Werner/15/813-876;
	Cancer/ Sabine Werner/20/1091-1141;
	Cell Junctions and Extracellular Matrix/Ueli Suter / 1035-1081;
	Stem Cells and Tissue Renewal/Ueli Suter /1217-1262;
	Development of Multicellular organisms/ Ernst Hafeni/ 21/ 1145-1179 /1184-1198/1198-1213;
	Cell Migration/Joao Matos/591-960;
	Cell Death/Joao Matos/1021-1032;
	Cell Cycle/chromosome segregation/Cell division/Mitosis/Joao Matos/ 963-1018.

| Prerequisites / notice | none |
Chemistry Master - Key for Type

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>E-</th>
<th>Z</th>
<th>Dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>P</th>
<th>A</th>
<th>D</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS
- European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Chemical and Bioengineering Master

Core Subjects

Biochemical Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0837-01L</td>
<td>Biomicrofluidic Engineering</td>
<td>W+</td>
<td>6</td>
<td>3G</td>
<td>A. de Mello</td>
</tr>
</tbody>
</table>

Abstract
Microfluidics describes the behaviour, control and manipulation of fluids geometrically constrained within sub-uL environments. Microfluidic devices enable physical and chemical processes to be controlled with exquisite precision and in an fast and efficient manner. This course introduces the underlying concepts, features and applications of microfluidic systems in the chemical and life sciences.

Objective
We will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis.

A central component of this course is a research project. This will allow students to develop a practical understanding of the benefits of miniaturization in chemical and biological experimentation. Projects will be performed in groups of between four and six students and will include both experimental and simulation aspects. Each group, under the guidance of a mentor, will plan and execute a novel research project. The results of this activity will be disseminated through an 'academic-style' research article and a 'conference-style' oral presentation. Course grades will be evaluated through both a written exam and the project grade.

Content
Specific topics covered in the course include, but are not limited to:

1. Theoretical Concepts
 - Scaling laws, features of thermal/mass transport, diffusion, basic description of fluid flow in small volumes, microfluidic mixing strategies.

2. Microfluidic Device Manufacture
 - Basic principles of conventional lithography of rigid materials, ‘soft’ lithography, polymer machining (injection molding, hot embossing, and 3D-printing).

3. Electrokinetics
 - Principles of electrophoresis, electroosmosis, high performance capillary electrophoresis, electrokinetic scaling laws, chip-based electrophoresis and isoelectric focusing.

4. Mass Transfer Phenomena
 - Key features of mass transport in microfluidic systems, diffusive transport, diffusion-convection, Péclet number, Taylor-Aris diffusion, chaotic mixing and Damköhler numbers.

5. Heat Transfer Phenomena
 - Key features of thermal transport in microfluidic systems, conduction, convection, heat transfer by convection in internal flows, heat transfer processes in microfluidic devices.

6. Microfluidic Systems for Materials Synthesis
 - Microfluidic reactors for the controlled synthesis of colloidal nanomaterials, advanced automation for bespoke materials discovery & characterization.

7. Point-of-Care Diagnostics
 - Microscale tools for diagnostics, challenges associated with point-of-care (PoC) diagnostic testing, requirements for PoC devices, common PoC device formats, applications of PoC diagnostics in the developing world.

8. Microscale DNA Amplification
 - Amplification and analysis of nucleic acids using batch, continuous flow and droplet-based microfluidic reactors.

9. Small Volume Molecular Detection
 - Spectroscopic approaches for analyze detection in small volumes with a particular focus on single molecule detection.

10. Droplets and Segmented Flows
 - Formation, manipulation and use of liquid/liquid segmented flows in chemical and biological experimentation.

11. Single Cell Analysis
 - Applications of microfluidic tools in cellular analysis, flow cytometry, enzymatic assays and single cell analysis.

Lecture notes
Lecture handouts, background literature, problem sheets and notes will be provided electronically through the course Moodle site.

Literature
There is no set text for the course. All relevant literature will be provided electronically through the course Moodle site.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Competencies and Theories</th>
<th>Techniques and Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>Decision-making</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptable and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0615-01L</td>
<td>Biochemical and Polymer Reaction Engineering</td>
<td>W+</td>
<td>6</td>
<td>3G</td>
<td>P. Arosio</td>
</tr>
</tbody>
</table>

Abstract

Objective
The aim of the course is to learn how to design polymerization reactors and bioreactors to produce polymers and proteins with the specific product qualities that are required by different applications in chemical, pharmaceutical and food industry. This activity includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior.
We will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes, Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfactants and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials.

Lecture notes
Scripts are available on the web page of the Arosio-group: http://www.arosiogroup.ethz.ch/education.html
Additional handout of slides will be provided during the lectures.

Literature
H.W. Blanch, D. S. Clark, Biochemical Engineering, CRC Press, 1995

Products and Materials

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0619-01L</td>
<td>Chemical Product Design</td>
<td>W+</td>
<td>6</td>
<td>3G</td>
<td>W. J. Stark</td>
</tr>
</tbody>
</table>

Abstract
The 'Chemical Product Design' course teaches students quantitative concepts to analyze, select and transform theoretical concepts from chemistry and engineering into valuable real-world products. Basic chemistry and chemical engineering knowledge is required (Diffusion, Thermodynamics, Kinetics,...).

Objective
This course starts with analyzing existing chemical needs and unmet technical challenges. We then develop the skills to critically analyze a specific chemical idea for a product, to rapidly test feasibility or chance for success and to eventually realize its manufacturing. The chemical engineering basics are then used to assess performance of products or devices with non-traditional functions based on dynamic properties (e.g. responsive building materials, personal medical diagnostics on paper strips). The course teaches the interface between laboratory and market with a specific focus on evaluating the chemical value of a given process or compound, and the necessary steps to pursue the resulting project within an entrepreneurial environment. We therefore extend the questions of process design (‘how do we make something?’) to the question of ‘what should we make?’

Content
Part A: The 'Chemical Product Design' course starts with discussing questions along, 'What is a chemical product, and why do people pay for it? How does a given compound in a specific setting provide a service? We then learn how to translate new, often ill-defined wishes or ideas into quantifiable specifications.

Part B: Thermodynamic and kinetic data allow sharp selection criteria for successful products. We learn how to deal with insufficient data and development of robust case models to evaluate their technical and financial constraints. How can parameters of a running process in one industry be scaled into another industry? Can dimensionless engineering numbers be applied beyond traditional chemical processes?

Part C: Manufacturing of commodity products, devices and molecular products: Chemical reactors, separation and detection or isolation units as part of a toolbox. Planning of manufacturing and decisions based on hard data. Providing quantitative answers on potential value generated.

Students are expected to actively develop chemical products along the course. Contributions will be made individually, or in small groups, where a larger topic is studied.

Literature

Prerequisites / notice
Prerequisites: Basic chemistry and chemical engineering knowledge (Diffusion, Thermodynamics, Kinetics,...).

Process Design

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0643-01L</td>
<td>Process Design and Development</td>
<td>W+</td>
<td>6</td>
<td>3G</td>
<td>G. Guillén Gosálbez</td>
</tr>
</tbody>
</table>

Abstract
The course is focused on the design of Chemical Processes, with emphasis on the preliminary stages of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined.

Objective
The course is focused on the design of Chemical Processes, with emphasis on the preliminary stage of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined.

Content
Process creation: heuristics vs. mathematical programming.
Heuristics for reaction and separation operations, heat transfer and pressure change.
Introduction to optimization in process engineering and the modeling software GAMS.
Process economic evaluation: equipment sizing and costing, time value of money, cash flow calculations.
Process integration: sequencing of distillation columns using mixed-integer linear programming (MILP), and synthesis of heat exchanger networks using mixed-integer nonlinear programming (MINLP).
Batch processes: scheduling, sizing, and inventories.
Principles of molecular design using mixed-integer programming.

Lecture notes
no script
Overview of process simulation and flowsheeting:

6 credits

Process Simulation and Flowsheeting

G. Guillén Gosálbez

Objective

The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications.

Contents

- Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes.
- Modeling of general chemical processes and systems: students should be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior.
- Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able to develop criteria to correctly use commercial software packages and critically evaluate their results.
- Process optimization: the students will learn how to formulate optimization problems in mathematical terms, the main type of optimization problems that exist (i.e., LP, NLP, MILP and MINLP) and the fundamentals of the optimization algorithms implemented in commercial solvers.

Prerequisites / notice

A basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.

Literature

- Smith, R. Chemical process design and integration, Wiley (2005).

- Convergence, optimisation & debugging
- Solution methods for process flowsheeting
- Simultaneous methods
- Sequential methods
- Mixed-integer nonlinear programming, MINLP
- Classification of optimization problems
- Non-linear programming, NLP
- Linear programming, LP
- Mixed-integer linear programming, MILP
- Thermodynamic property methods
- Reaction and reactors
- Separation / columns

<table>
<thead>
<tr>
<th>Literature</th>
<th>Main books</th>
</tr>
</thead>
</table>

Prerequisites / notice

A basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.

Catalysis and Separation

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0927-00L</td>
<td>Rate-Controlled Separations in Fine Chemistry</td>
<td>W+</td>
<td>6 credits</td>
<td>3V+1U</td>
<td>M. Mazzotti, V. Becattini</td>
</tr>
</tbody>
</table>

Abstract

The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications.

Objective

The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology.
The class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation.

Literature

Handouts during the class

Prerequisites / notice

Requirements (recommended, not mandatory): Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00)

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories assessed
Domain B - Method-specific Competencies	Techniques and Technologies assessed
Domain C - Social Competencies	Analytical Competencies assessed
Domain D - Personal Competencies	Decision-making not assessed
	Media and Digital Technologies not assessed
	Problem-solving assessed
	Project Management not assessed
	Communication assessed
	Cooperation and Teamwork not assessed
	Customer Orientation not assessed
	Leadership and Responsibility not assessed
	Self-presentation and Social Influence not assessed
	Sensitivity to Diversity not assessed
	Negotiation not assessed
	Adaptability and Flexibility not assessed
	Creative Thinking not assessed
	Critical Thinking assessed
	Integrity and Work Ethics not assessed
	Self-awareness and Self-reflection not assessed
	Self-direction and Self-management not assessed

529-0617-01L Catalysis Engineering

Abstract
The purpose of the "Catalysis Engineering" course is to provide students with tools that enable the optimal design of catalytic materials and reactor engineering concepts favoring more sustainable manufacturing processes within the chemical industry.

Objective
The course aims at illustrating, from conception to implementation, the design of sustainable catalytic processes by integration of the microlevel (catalyst), mesolevel (reactor), and macrolevel (process). The word "sustainable" implies intensified processes with an improved exploitation of raw materials, wider use of renewable feedstocks, reduction of energy consumption, and minimized environmental impact. By the use of modern case studies of industrial relevance, aspects of catalyst preparation and characterization, kinetics, mass and heat transport, and deactivation are discussed. Emphasis is put on understanding the interaction among these basic elements in order to select the optimal catalytic process. Since no textbooks covering this area are available at this time and the intention of this course is unique, the lectures will be based on own texts and journal articles. During the course, there will be specific topics addressed by industrial contributors.

Content
The following general aspects:

- Catalyst preparation and characterization
- Kinetics
- Mass and heat transport
- Selectivity
- Deactivation

will be demonstrated for modern catalytic materials and processes of industrial relevance such as:

- Chlorine recycling
- N2O abatement
- Chemoselective hydrogenations
- Hierarchical zeolite catalysts
- Syngas conversion
- Biomass to chemicals and fuels

Lecture notes
The course material is based on an own script, journal articles, and slides.

Prerequisites / notice

It is assumed that students selecting this course are familiar with general concepts of catalysis, reactor design, and transport phenomena.

Case Study

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
The learning objective is to design, simulate and optimize a real (bio-)chemical process from a process systems perspective. Specifically, a commercial process simulation software (Aspen) will be used for the process simulation and optimization. Students have to integrate knowledge and develop engineering thinking and skills acquired in the other courses of the curriculum.

Objective
Simulate and optimize a chemical production process using commercial process simulation software.
Supervisors

The aim of the internship is to make students acquainted with industrial work environments. During this time, they will have the opportunity to create a model describing the production process.

Lecturers

Internship in industry with a minimum duration of 7 weeks
4 credits

ECTS

M. Fussenegger

Supervisors

Create a model describing the production process
- Students will apply a commercial process simulator systematically for process creation and analysis.
- Students will create a process simulation flowsheet for steady-state simulation.

Evaluate the performance of the production process
- Students will analyse and understand the degrees of freedom in modelling process units and flowsheets.
- Students will understand the role of process simulators in process creation.
- Students will make design specifications and follow the iterations implemented to satisfy them.
- Students will judge the role of process simulators in equipment sizing and costing and profitability analysis.
- Students will assess the economic performance of the process, including operating costs (OPEX), and capital investment (CAPEX), based on the outcome of the simulation model.
- Students will assess the environmental impact of the production process following the Life Cycle Assessment (LCA) methodology.

Optimize the design and operating conditions of the production process
- Students will carry out sensitivity analyses and optimizations considering technical and economic criteria.
- Students will generate process integration alternatives to improve the initial design.
- Students will optimize the production process considering economic and environmental criteria.

Before the case study week, students are encouraged to participate in the exercises of the course "Process Simulation and Flowsheeting" in order to get familiar with the Aspen Plus simulation software (this is highly recommended, but not mandatory).

The problem statement and detailed instructions are provided in the project brief made available at the beginning of the case study week.

During the case study week:
- Students work in teams of 4-6 people.
- Students have to pose and solve process equipment and system design related problems.
- Students have to coordinate the activities, the preparation of the written report and the oral presentation.
- Students get support from project assistants and the course supervisor.

The groups deliver the written report on a predefined date.

The students receive the feedback and are asked to implement some changes in their reports.

A final presentation takes place summarizing the main findings of the project.

Research Project or Industry Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0300-10L</td>
<td>Research Project</td>
<td>W</td>
<td>13 credits</td>
<td>16A</td>
<td>Supervisors</td>
</tr>
<tr>
<td>529-0301-00L</td>
<td>Industry Internship</td>
<td>W</td>
<td>13 credits</td>
<td></td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0600-10L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>25 credits</td>
<td>54D</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Duration of the Master's Thesis 20 weeks.

Electives

Biomedical Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0108-00L</td>
<td>Biological Engineering and Biotechnology</td>
<td>W</td>
<td>4 credits</td>
<td>3V</td>
<td>M. Fussenegger</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 476 of 2152
We will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In P. Arosio Biomicrofluidic Engineering 6 credits

The course covers the following topics:

K. Maniura

Literature:

J. Stelling

3G

http://www.csb.ethz.ch/education/lectures.html

Handout during the course.

A. de Mello

Computational Systems Biology

6 credits

Biocompatible Materials

3G

K. Maniura, M. Rottmar, M. Zenobi-Wong

The aim of the course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks.

We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.

Lecture notes

http://www.csb.ethz.ch/education/lectures.html

376-1714-00L

Bioconductive Materials

W 4 credits 3V K. Maniura, M. Rottmar, M. Zenobi-Wong

Abstract

Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.

Objective

The course covers the following topics:

1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.

Content

Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Lecture notes

Handouts are deposited online (moodle).

Literature:

(available online via ETH library)

Handouts and references therein.

529-0615-01L

Biophysical Polymer Reaction Engineering

W 6 credits 3G P. Arosio

Abstract

Objective

The aim of the course is to learn how to design polymerization reactors and bioreactors to produce polymers and proteins with the specific product qualities that are required by different applications in chemical, pharmaceutical and food industry. This activity includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior.

Content

We will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes, Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfaceactive and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials.

Lecture notes

Scripts are available on the web page of the Arosio-group: http://www.arosio-group.ethz.ch/education.html Additional handout of slides will be provided during the lectures.

Literature

H.W. Blanch, D. Clark, Biophysical Engineering, CRC Press, 1995

529-0837-01L

Biomicrofluidic Engineering

W 6 credits 3G A. de Mello

Number of participants limited to 25.

Abstract

Microfluidics describes the behaviour, control and manipulation of fluids geometrically constrained within sub-uL environments. Microfluidic devices enable physical and chemical processes to be controlled with exquisite precision and in an fast and efficient manner. This course introduces the underlying concepts, features and applications of microfluidic systems in the chemical and life sciences.
A central component of this course is a research project. This will allow students to develop a practical understanding of the benefits of miniaturization in chemical and biological experimentation. Projects will be performed in groups of between four and six students and will include both experimental and simulation aspects. Each group, under the guidance of a mentor, will plan and execute a novel research project. The results of this activity will be disseminated through an “academic-style” research article and a “conference-style” oral presentation. Course grades will be evaluated through both a written exam and the project grade.

Specific topics covered in the course include, but are not limited to:

1. Theoretical Concepts
 Scaling laws, features of thermal/mass transport, diffusion, basic description of fluid flow in small volumes, microfluidic mixing strategies.

2. Microfluidic Device Manufacture
 Basic principles of conventional lithography of rigid materials, ‘soft’ lithography, polymer machining (injection molding, hot embossing, and 3D-printing).

3. Electrokinetics
 Principles of electrophoresis, electroosmosis, high performance capillary electrophoresis, electrokinetic scaling laws, chip-based electrophoresis and isoelectric focusing.

4. Mass Transfer Phenomena
 Key features of mass transport in microfluidic systems, diffusive transport, diffusion-convection, Péclet number, Taylor-Aris diffusion, chaotic mixing and Damköhler numbers.

5. Heat Transfer Phenomena
 Key features of thermal transport in microfluidic systems, conduction, convection, heat transfer by convection in internal flows, heat transfer processes in microfluidic devices.

6. Microfluidic Systems for Materials Synthesis
 Microfluidic reactors for the controlled synthesis of colloidal nanomaterials, advanced automation for bespoke materials discovery & characterization.

7. Point-of-Care Diagnostics
 Microscale tools for diagnostics, challenges associated with point-of-care (PoC) diagnostic testing, requirements for PoC devices, common PoC device formats, applications of PoC diagnostics in the developing world.

8. Microscale DNA Amplification
 Amplification and analysis of nucleic acids using batch, continuous flow and droplet-based microfluidic reactors.

9. Small volume Molecular Detection
 Spectroscopic approaches for analyte detection in small volumes with a particular focus on single molecule detection.

10. Droplets and Segmented Flows
 Formation, manipulation and use of liquid/liquid segmented flows in chemical and biological experimentation.

11. Single Cell Analysis
 Applications of microfluidic tools in cellular analysis, flow cytometry, enzymatic assays and single cell analysis.

Lecture notes:
There is no set text for the course. All relevant literature will be provided electronically through the course Moodle site.

Domain A - Subject-specific Competencies
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain B - Method-specific Competencies
- Communication
- Cooperation and Teamwork
- Critical Thinking
- Creative Thinking
- Adaptability and Flexibility

Domain C - Social Competencies
- Decision-making
- Media and Digital Technologies

Domain D - Personal Competencies
- Creative Thinking
- Adaptability and Flexibility
- Critical Thinking

Objective
We will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis.

Objective
Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization. Focus is on the engineering aspects.

Objective
The course establishes the fundamentals to understand and describe electrochemical reactions. The students are familiarized with key concepts and approaches in electrochemistry and selected aspects of materials science and engineering and how they are put to use in selected applications.
- Introduction: important quantities & units, terminology;
- Chapter I - redox reactions, Faraday's laws;
- Chapter II - Equilibrium electrochemistry:
cells, galvanic and electrolytic cells, thermodynamic state functions, theoretical cell voltage, half-cell / electrode potential, hydrogen
electrode, the electrochemical series, Nernst equation;
- Chapter III - Electrodes & interfaces:
electrochemical potential, phase potentials, work function, Fermi level, the electrified interface, the electrochemical double layer, reference
electrodes and laboratory cells;
- Chapter IV - Electrolytes:
conductivity, aqueous electrolytes, transference effects, liquid junctions, polymer electrolytes, ion-exchange membranes, Donnan
exclusion, solid state ion conductors;
- Chapter V - Dynamic electrochemistry:
overpotentials, description of charge-transfer reaction, Butler-Volmer and Tafel equation, exchange current density, mass transport
limitations;
- Chapter VI - Industrial electrochemistry:
electrochemical engineering, process and reactor types, current density distribution, porous electrodes, chlor-alkali and HCl electrolysis,
oxide depolarized cathode;
- Chapter VII - Energy storage & conversion:
important primary and secondary battery chemistries, fuel cells, polymer electrolyte fuel cells, low temperature H2 and O2 electrochemistry,
electrocatalysis, triple-phase boundary, solid oxide fuel cell, conversion efficiency;
- Chapter VIII - Electroanalytical methods & sensors:
potentiometry, cyclic and stripping voltammetry, rotating disc electrode studies, electrochemical sensors;
- Chapter IX - Corrosion:
Pourbaix diagram, corrosion potential, passivation, corrosion protection; Historical notes

Lecture notes
lecture notes, exercise & solutions (PDF files) via download website

Literature

Prerequisites / notice
Students should be familiar with the fundamentals of physical chemistry.

Educatonal basis: basic chemistry, biology and biochemistry.

Systems and Process Engineering

Number Title Type ECTS Hours Lecturers
 W 3V M. Arand, H. Nägeli
529-0745-01L General and Environmental Toxicology W 6 3V
6 credits
529-0611-01L Molecular Aspects of Catalysts and Surfaces W 4G J. A. van Bokhoven, D. Ferri
6 credits

Molecular Aspects of Catalysts and Surfaces

Basic elements of surface science important for materials and catalysis research. Physical and chemical methods important for research in
surface science, material science and catalysis are considered and their application is demonstrated on practical examples.

Methods which are covered embrace: Gas adsorption and surface area analysis, IR-Spectroscopy, X-ray diffraction, X-ray photoelectron
spectroscopy, X-ray absorption, solid state NMR, Electron Microscopy and others.

Modeling and Simulations
Simulation Techniques in Materials Science

Number: 363-0565-00L
Title: Principles of Macroeconomics
Type: W
ECTS: 3 credits
Hours: 2V
Lecturers: J.-E. Sturm

Abstract: This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective: This lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems.

Content: This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions on which this course focuses, relying on a combination of lectures, case-based discussion, guest speakers, simulations and group work.

Lecture notes
The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15062) contains announcements, course information and lecture slides.

Literature
This book can also be used for the course ‘363-0503-00L Principles of Macroeconomics’ (Filippini).

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.

Technology and Innovation Management

Number: 363-0389-00L
Title: Technology and Innovation Management
Type: W
ECTS: 3 credits
Hours: 2G
Lecturers: S. Brusoni, A. Zeijen

Abstract: This course focuses on the analysis of innovation as a pervasive process that cut across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change.

Objective: This course intends to enable all students to:
- understand the core concepts necessary to analyze how innovation happens
- master the most common methods and tools organizations deploy to innovate
- develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation

Content: This course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small. How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, guest speakers, simulations and group work.

Lecture notes
Slides will be available on the Moodle page

Literature
Readings will be available on the Moodle page

Prerequisites / notice
The course content and methods are designed for students with some background in management and/or economics

Economics and Technology Management

Number: 327-0508-00L
Title: Simulation Techniques in Materials Science
Type: W
ECTS: 4 credits
Hours: 2V+2U
Lecturers: C. Ederer

Abstract: Introduction to simulation techniques that are relevant for material science. Simulation methods for continua (finite differences, finite
Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic

Objective: Introduction to classical (atomic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations.

Content: Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic

Literature
See: www.csms.ethz.ch/education/CSBMS

Prerequisites / notice
Since the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark).

For more information about the lecture: www.csms.ethz.ch/education/CSBMS
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: not assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

363-0503-00L Principles of Microeconomics
GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.

W 3 credits 2G M. Filippini

Abstract
The course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.

Objective
The learning objectives of the course are:

(1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems.

Content
The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:
- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

Lecture notes
Lecture notes, exercises and reference material can be downloaded from Moodle.

Literature
N. Gregory Mankiw and Mark P. Taylor (2020), "Economics", 5th edition, South-Western Cengage Learning. The book can also be used for the course 'Principles of Microeconomics' (Sturm)

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book: N. Gregory Mankiw and Mark P. Taylor (2020), "Microeconomics", 5th edition, South-Western Cengage Learning.

Complementary:

Prerequisites / notice
GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.
The 'Chemical Product Design' course starts with discussing questions along, 'What is a chemical product, and why do people pay for it?' How does a given compound in a specific setting provide a service? We then learn how to translate new, often ill-defined wishes or ideas into quantifiable specifications.

Students are expected to actively develop chemical products along the course. Contributions will be made individually, or in small groups, where a larger topic is studied.

The 'Chemical Product Design' course teaches students quantitative concepts to analyze, select and transform theoretical concepts from chemistry and engineering into valuable real-world products. Basic chemistry and chemical engineering knowledge is required (Diffusion, Thermodynamics, Kinetics, ...).

Process creation: heuristics vs. mathematical programming.

Prerequisites: Basic chemistry and chemical engineering knowledge (Diffusion, Thermodynamics, Kinetics, ...).

Process simulation are also examined.

Prerequisites: Basic chemistry and chemical engineering knowledge (Diffusion, Thermodynamics, Kinetics, ...).

Prerequisite: Basic chemistry and chemical engineering knowledge (Diffusion, Thermodynamics, Kinetics, ...).

The course teaches the interface between laboratory and market with a specific focus on evaluating the chemical value of a given process or compound, and the necessary steps to pursue the resulting project within an entrepreneurial environment. We therefore extend the questions of process design (how do we make something?) to the question of 'what should we make?'

Part A: The 'Chemical Product Design' course starts with discussing questions along, 'What is a chemical product, and why do people pay for it?' How does a given compound in a specific setting provide a service? We then learn how to translate new, often ill-defined wishes or ideas into quantifiable specifications.

Part B: Thermodynamic and kinetic data allow sharp selection criteria for successful products. We learn how to deal with insufficient data and development of robust case models to evaluate their technical and financial constraints. How can parameters of a running process in one industry be scaled into another industry? Can dimensionless engineering numbers be applied beyond traditional chemical processes?

Part C: Manufacturing of commodity products, devices and molecular products: Chemical reactors, separation and detection or isolation units as part of a toolbox. Planning of manufacturing and decisions based on hard data. Providing quantitative answers on potential value generated.

Prerequisites / notice

Prerequisites: Basic chemistry and chemical engineering knowledge (Diffusion, Thermodynamics, Kinetics, ...).

Prerequisite: Basic chemistry and chemical engineering knowledge (Diffusion, Thermodynamics, Kinetics, ...).

Prerequisite: Basic chemistry and chemical engineering knowledge (Diffusion, Thermodynamics, Kinetics, ...).

Process economic evaluation: equipment sizing and costing, time value of money, cash flow calculations.

Process integration: sequencing of distillation columns using mixed-integer linear programming (MILP), and synthesis of heat exchanger networks using mixed-integer nonlinear programming (MINLP).

Lecture notes no script
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications. A basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.

Literature

Main books

Other references

An exemplary literature list is provided below:
- Smith, R. Chemical process design and integration, Wiley (2005).

Literature

Process Simulation and Flowsheeting
- W 6 credits
- 3G
- G. Guillén Gosálbez

Abstract
This course encompasses the theoretical principles of chemical process simulation and optimization, as well as its practical application in process analysis. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies. Commercial software packages (Aspen) are introduced for solving process flowsheeting and optimization problems.

Objective
This course aims to develop the competency of chemical engineers in process flowsheeting, process simulation and process optimization. Specifically, students will develop the following skills:
- Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes.
- Modeling of general chemical processes and systems: students should be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior.
- Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able to develop criteria to correctly use commercial software packages and critically evaluate their results.
- Process optimization: the students will learn how to formulate optimization problems in mathematical terms, the main type of optimization problems that exist (i.e., LP, NLP, MILP and MINLP) and the fundamentals of the optimization algorithms implemented in commercial solvers.

Content
Overview of process simulation and flowsheeting:
- Definition and fundamentals
- Fields of application
- Case studies

Process simulation:
- Modeling strategies of process systems
- Mass and energy balances and degrees of freedom of process units and process systems

Process flowsheeting:
- Flowsheet partitioning and tearing
- Solution methods for process flowsheeting
- Simultaneous methods
- Sequential methods

Process optimization and analysis:
- Classification of optimization problems
- Linear programming, LP
- Non-linear programming, NLP
- Mixed-integer linear programming, MILP
- Mixed-integer nonlinear programming, MINLP

Commercial software for simulation (Aspen Plus):
- Thermodynamic property methods
- Reaction and reactors
- Separation / columns
- Convergence, optimisation & debugging

Prerequisites / notice
A basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.

Catalysis and Separation

Number
151-0927-00L

Abstract
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications.

Objective
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology.
The class covers separation techniques that are central in the purification and downstream processing of chemicals and biopharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation.

Lecture notes
Handouts during the class

Literature
Recommendations for text books will be covered in the class

Prerequisites / notice
Requirements (recommended, not mandatory): Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00)

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking not assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

529-0617-01L Catalysis Engineering W 6 credits 3G
J. Pérez-Ramírez, S. J. Mitchell

Abstract
The purpose of the "Catalysis Engineering" course is to provide students with tools that enable the optimal design of catalytic materials and reactor engineering concepts favoring more sustainable manufacturing processes within the chemical industry.

Objective
The course aims at illustrating, from conception to implementation, the design of sustainable catalytic processes by integration of the microlevel (catalyst), mesolevel (reactor), and macrolevel (process). The word "sustainable" implies intensified processes with an improved exploitation of raw materials, wider use of renewable feedstocks, reduction of energy consumption, and minimized environmental impact. By the use of modern case studies of industrial relevance, aspects of catalyst preparation and characterization, kinetics, mass and heat transport, and deactivation are discussed. Emphasis is put on understanding the interaction among these basic elements in order to select the optimal catalytic process. Since no textbooks covering this area are available at this time and the intention of this course is unique, the lectures will be based on own texts and journal articles. During the course, there will be specific topics addressed by industrial contributors.

Content
The following general aspects:
- Catalyst preparation and characterization
- Kinetics
- Mass and heat transport
- Selectivity
- Deactivation

will be demonstrated for modern catalytic materials and processes of industrial relevance such as:
- Chlorine recycling
- N2O abatement
- Chemoselective hydrogenations
- Hierarchical zeolite catalysts
- Syngas conversion
- Biomass to chemicals and fuels

Lecture notes
The course material is based on an own script, journal articles, and slides.

Prerequisites / notice
It is assumed that students selecting this course are familiar with general concepts of catalysis, reactor design, and transport phenomena.

GESS Science in Perspective
see GESS Science in Perspective: Language Courses
ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-CHAB.

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0016-AAL</td>
<td>Biology II</td>
<td>E-</td>
<td>2 credits</td>
<td>4R</td>
<td>M. Stoffel</td>
</tr>
</tbody>
</table>

Abstract
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Objective
The lecture course Biology II is a basic introductory course into biology for students who need to pass this course for admission to their MSc curriculum.

The objective of the lecture course Biology II is the understanding of form, function, and development of animals and of the basic underlying mechanisms.
The following numbers of chapters refer to the text-book "Biology" (Campbell & Reece, 7th edition, 2005) on which the course is based. Chapters 1-4 are a basic prerequisite. The sections "Structure of the Cell" (Chapters 5-10, 12, 17) and "General Genetics" (Chapters 13-16, 18, 46) are covered by the lecture Biology I.

1. Genomes, DNA Technology, Genetic Basis of Development

Chapter 19: Eukaryotic Genomes: Organization, Regulation, and Evolution
Chapter 20: DNA Technology and Genomics
Chapter 21: The Genetic Basis of Development

2. Form, Function, and Development of Animals I

Chapter 40: Basic Principles of Animal Form and Function
Chapter 41: Animal Nutrition
Chapter 44: Osmoregulation and Excretion
Chapter 47: Animal Development

3. Form, Function, and Development of Animals II

Chapter 42: Circulation and Gas Exchange
Chapter 43: The Immune System
Chapter 45: Hormones and the Endocrine System
Chapter 48: Nervous Systems
Chapter 49: Sensory and Motor Mechanisms

Literature

The following text-book is the basis for the courses Biology I and II:

Prerequisites / notice

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

The underlying lecture (529-0051-00L) is offered in autumn semester but only in German.

Lecture notes

Script will be provided for the production price

Abstract

Introduction into the most important spectroscopical methods and their applications to gain structural information.

Objective

Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications

Content

Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:

- Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
- NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling.
- IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy.

Literature

- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995

Prerequisites / notice

Exercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounds" (4th semester) is recommended.

This course content is based on the following chapters of the textbook Biochemistry (Berg, Tymoczko, Stryer, 7th edition, 2012, Freeman & Co, New York)

Chapter 1: The molecular design of life
Chapter 2: Protein composition and structure
Chapter 3: Exploring proteins and proteomes
Chapter 4: DNA, RNA and the flow of information
Chapter 5: Exploring Genes and Genomes
Chapter 7: Hemoglobin
Chapter 8: Enzymes and the basic concepts of catalysis
Chapter 11: Carbohydrates
Chapter 12: Lipids and cell membranes
Chapter 15: Metabolism: Basic concepts and design

Literature

Enrolment only for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
The goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.

Objective
The goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.

Content
The focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.

Literature

Topic/Lecturer/Chapter/Pages:
- Analyzing cells & molecules / Gebhard Schertler/8/ 439-463;
- Membrane structure / Gebhard Schertler/ 10/ 565-595;
- Compartments and Sorting/ Ulrike Kutay/12+14/ 641-694/755-758/782-783/315-320/325 -333/Table 6-2/Figure6-20, 6-21, 6-32, 6-34;
- Intracellular Membrane Traffic/ Ulrike Kutay/13/695-752;
- The Cytoskeleton/ Ulrike Kutay/16/ 889 - 948 (only the essentials);
- Membrane Transport of Small Molecules and the Electrical Properties of Membranes /Sabine Werner/11/597 - 633;
- Mechanisms of Cell Communication / Sabine Werner/15/813-876;
- Cancer/ Sabine Werner/20/1091-1141;
- Cell Junctions and Extracellular Matrix/Ueli Suter / 1035-1081;
- Stem Cells and Tissue Renewal/Ueli Suter /1217-1262;
- Development of Multicellular organisms/ Ernst Hafen/ 21/ 1145-1179 /1184-1198/1198-1213;
- Cell Migration/Joao Matos/951-960;

Prerequisites / notice
none

Chemical and Bioengineering Master - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Compulsory</th>
<th>Eligible for credits and recommended</th>
<th>Eligible for credits</th>
<th>Recommended, not eligible for credits</th>
<th>Courses outside the curriculum</th>
<th>Suitable for doctorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>E-</td>
<td>Z</td>
<td>W</td>
<td>Dr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Course Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td>P</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 486 of 2152
1. Semester

Compulsory Subjects First Year Examinations

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0011-02L</td>
<td>General Chemistry (Inorganic Chemistry) I</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>A. Togni</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to the chemistry of ionic equilibria: Acids and bases, redox reactions, formation of coordination complexes and precipitation reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding and describing ionic equilibria from both a qualitative and a quantitative perspective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Chemical equilibrium and equilibrium constants, mono- and polyprotic acids and bases in aqueous solution, calculation of equilibrium concentrations, acidity functions, Lewis acids, acids in non-aqueous solvents, redox reactions and equilibria, Galvanic cells, electrode potentials, Nernst equation, coordination chemistry, stepwise formation of metal complexes, solubility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Copies of the course slides as well as other documents will be provided as pdf files via the moodle platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

529-0011-03L	General Chemistry (Organic Chemistry) I	O	3	2V+1U	P. Chen
Abstract	Introduction to Organic Chemistry. Classical structure theory, stereochemistry, chemical bonds and bonding, symmetry, nomenclature, organic thermochemistry, conformational analysis, basics of chemical reactions.				
Objective	Introduction to the structures of organic compounds as well as the structural and energetic basis of organic chemistry.				
Content	Introduction to the history of organic chemistry, introduction to nomenclature, learning of classical structures and stereochemistry: isomerism, Fischer projections, CIP rules, point groups, molecular symmetry and chirality, topicality, chemical bonding: Lewis bonding model and resonance theory in organic chemistry, description of linear and cyclic conjugated molecules, aromatics, Huckel rules, organic thermochemistry, learning of organic chemistry reactions, intermolecular interactions.				
Taught competencies	Domain A - Subject-specific Competencies	Concepts and Theories	assessed		
	Domain B - Method-specific Competencies	Techniques and Technologies	assessed		
	Domain C - Social Competencies	Analytical Competencies	assessed		
	Domain D - Personal Competencies	Decision-making	not assessed		
		Media and Digital Technologies	not assessed		
		Problem-solving	assessed		
		Project Management	not assessed		
	Communication	not assessed			
	Cooperation and Teamwork	not assessed			
	Customer Orientation	not assessed			
	Leadership and Responsibility	not assessed			
	Self-presentation and Social Influence	not assessed			
	Sensitivity to Diversity	not assessed			
	Negotiation	not assessed			
	Adaptability and Flexibility	not assessed			
	Creative Thinking	not assessed			
	Critical Thinking	assessed			
	Integrity and Work Ethics	assessed			
	Self-awareness and Self-reflection	not assessed			
	Self-direction and Self-management	assessed			

529-0011-01L	General Chemistry (Physical Chemistry) I	O	3	2V+1U	H. J. Wörner
Abstract	Die Vorlesung vermittelt eine Einführung in einige physikalischen Grundlagen der Chemie, insbesondere in die Radioaktivität, die Quantenmechanik, den Aufbau der Materie und eines Atoms, des Periodensystems der Elemente und die chemische Bindung.				
Objective	Die Studierenden sind nach der Vorlesung in der Lage,				
	- für die Chemie wichtigen physikalischen Grössen und deren Einheiten zu rechnen,				
	- einige Eigenschaften chemisch relevanter Teilchen zu benennen und experimentelle Methoden zur Bestimmung dieser Eigenschaften vorzuschlagen,				
	- Anwendungen und Gefahren der Radioaktivität zu benennen,				
	- radioaktive Zerfallsprozesse zu kategorisieren und den zeitlichen Verlauf von einfachen Zerfallsreaktionen mathematisch wiederzugeben sowie qualitativ vorherzusagen und darzustellen,				
	- Wellen- und Teilchenegenschaften von elektromagnetischer Strahlung und Materie zu beschreiben und experimentelle Methoden zu deren Nachweis vorzuschlagen,				
	- die Grundlagen der Quantenmechanik (Bedeutung der Wellenfunktion, Heisenberg'sche Unschärferelation, Operatoren, Kommutatoren) zu erklären und einfache Rechnungen damit auszuführen,				
	- Absorptions- und Emissionsspektren von Einkleinformenatomen zu analysieren und zu berechnen,				
	- die Schrödingergleichung für ein molekulares Mehrtelchensystem aufstellen,				
	- die Schrödingergleichung für die Modellsysteme Teilchen im Kasten und harmonischer Oszillator in einer Dimension selbstständig zu lösen und auf höherdimensionale nicht-wechselwirkende Probleme zu verallgemeinern,				
	- Molekülchungen von zweiatomigen Molekülen mit dem Modell des harmonischen und des anharmonischen Oszillators zu modellieren,				
	- das Konzept eines Orbitals zu erklären und die qualitative Form der Orbitale des Wasserstoffatoms mathematisch und bildlich wiedergeben,				
	- den Aufbau des Periodensystems der Elemente mit Hilfe des Orbitalkonzepts zu erklären,				
	- Ähnlichkeiten in der elektronischen Struktur von Atomen zu erkennen und zu benutzen, um chemisch relevante Eigenschaften vorherzusagen, und				
	- Termssymbole für atomare Grundzustände aufzustellen.				
Content	Atomic structure and structure of matter: atomic theory, elementary particles, atomic nuclei, radioactivity, nuclear reactions. Atomic orbitals and energy levels: ionisation energies, atomic spectroscopy, term values and symbols. Quantum mechanical atom model: wave-particle duality, the uncertainty principle, Schrödinger’s equation, the hydrogen atom, construction of the periodic table of the elements. Chemical bonding: ionic bonding, covalent bonding, molecular orbitals.				
Lecture notes	See homepage of the lecture.				
Mathematical Foundations I: Analysis A

402-0043-00L

Introduction to the concepts and tools in physics with the help of demonstration experiments: mechanics of point-like and ridged bodies, periodic motion and mechanical waves.

Objective

The concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science.

Content

Mechanics (motion, Newton’s laws, work and energy, conservation of momentum, rotation, gravitation, fluids) Periodic Motion and Waves (periodic motion, mechanical waves, acoustics).

Lecture notes

The lecture follows the book “Physics” by Paul A. Tipler.

Literature

Paul A. Tipler and Gene P. Mosca, Physics (for Scientists and Engineers), W. H. Freeman and Company

Introduction to Computer Science

401-0271-00L

Introduction to UNIX, introduction to C++ programming, data representation and processing, computational errors, algorithms and scaling, sorting and searching, numerical algorithms, algorithmic strategies, computer simulation, operating systems, programming languages, computer networks, databases, representation of chemical structures, molecular simulation.

Domain A - Subject-specific Competencies

Concepts and Theories

Assessed

Techniques and Technologies

Assessed

Domain B - Method-specific Competencies

Analytical Competencies

Assessed

Decision-making

Not assessed

Media and Digital Technologies

Not assessed

Problem-solving

Assessed

Domain C - Social Competencies

Communication

Not assessed

Cooperation and Teamwork

Not assessed

Customer Orientation

Not assessed

Leadership and Responsibility

Not assessed

Self-presentation and Social Influence

Not assessed

Sensitivity to Diversity

Not assessed

Negotiation

Not assessed

Domain D - Personal Competencies

Adaptability and Flexibility

Not assessed

Creative Thinking

Assessed

Critical Thinking

Assessed

Integrity and Work Ethics

Assessed

Self-awareness and Self-reflection

Assessed

Self-direction and Self-management

Assessed

Introduction to Computer Science

529-0001-00L

Introduction to UNIX, introduction to C++ programming, data representation and processing, computational errors, algorithms and scaling, sorting and searching, numerical algorithms, algorithmic strategies, computer simulation, operating systems, programming languages, computer networks, databases, representation of chemical structures, molecular simulation.

Abstract

Acquire a starting package concerning the computational aspects of natural sciences; discuss fundamentals of computer architecture, languages, algorithms and programming with an eye to their application in the area of chemistry, biology and material science.

Objective

Lecture: Introduction to UNIX, introduction to C++ programming, data representation and processing, computational errors and algorithms and scaling, sorting and searching, numerical algorithms, algorithmic strategies, computer simulation, computer architecture, operating systems, programming languages, computer networks, databases, representation of chemical structures, molecular simulation; Exercises: Make students familiar with the UNIX operating system, C++ programming techniques, simple algorithms and computational applications in chemistry by means of exercise series at the computer.

Literature

Script booklet (copies of powerpoint slides, in English), distributed at first or second lecture.

Prerequisites / notice

See: www.csms.ethz.ch/education/Infol

For more information about the lecture: www.csms.ethz.ch/education/Infol

Laboratory Courses

Number

Title

Type

ECTS

Hours

Lecturers

529-0011-04L

Practical Course General Chemistry

O

8

12P

H. V. Schönberg, E. C. Meister

Information about the practical course will be given on the first day.

Abstract

Qualitative analysis (determination of cations and anions), acid-base-equilibria (pH-values, titrations, buffer), precipitation equilibria (gravimetry, potentiometry, conductivity), redoxreactions (syntheses, redox-titrations, galvanic elements), metal complexes (syntheses, complexometric titration), Analysis of measured data, vapour pressure, conductivity, calorimetry, solubility.

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 488 of 2152
Objective
Qualitative analysis (simple cation and anion separation process, determination of cations and anions), acid-base-equilibria (strengths of acids and bases, pH- and pKa- values, titrations, buffer systems, Kjeldahl determination), precipitation equilibria (gravimetry, potentiometry, conductivity), oxidation state and redox behaviour (syntheses), redox-titrations, galvanic elements, metal complexes (syntheses of complexes, ligand exchange reactions, complexometric titration) analysis of measured values (measuring error, average value, error analysis), states of aggregation (vapour pressure), characteristics of electrolytes (conductivity measurements), thermodynamics (calorimetry, solubility).

Content
The general aim for the students of the practical course in general chemistry is an introduction in the scientific work and to get familiar with simple experimental procedures in a chemical laboratory. In general, first experiences with the principal reaction behaviour of a variety of different substances will be made. The chemical characteristics of these will be elucidated by a series of quantitative experiments alongside with the corresponding qualitative analyses. In order to get an overview of classes of substances as well as some general phenomena in chemistry suitable experiments have been chosen. In the second part of the practical course, i.e. physical chemistry, the behaviour of substances in their state of aggregation as well as changes of selected physical values will be recorded and discussed.

Lecture notes
http://www.gruetzmacher.ethz.ch/education/labcourses

Literature
Moodle Lernplattform

Prerequisites / notice
Compulsory: online enrolment latest one week after start of the semester
Safety concept: https://chab.ethz.ch/studium/bachelor1.html

3. Semester

Examination Block I

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0121-00L</td>
<td>Inorganic Chemistry I</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>H. Grützma</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>r, P. Grüt</td>
</tr>
<tr>
<td></td>
<td>The students will learn and</td>
<td></td>
<td></td>
<td></td>
<td>nz</td>
</tr>
<tr>
<td></td>
<td>understand the methodological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>basics of binding theory in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>complexes of transition metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>They will be able to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>explain the structure,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chemical bonding,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>spectroscopic properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>as well as general strategies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for the synthesis of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>complexes of transition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>metals. The students will</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>acquire knowledge on the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fundamentals of radioactive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>decay and radiochemistry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Furthermore, they will</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be familiar with the basics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of inorganic chemistry of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lanthanides and actinides.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture notes
Eine kommentierte Foliensammlung ist im HCI-Shop erhältlich.

Literature

Taught competencies
Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

529-0221-00L Organic Chemistry I

Abstract
Chemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.

Objective
Acquisition of a basic repertoire of synthetic methods including important reactions of aldehydes, ketones, carboxylic acids and carboxylic acid derivatives, as well as eliminations and fragmentations. Particular emphasis is placed on the understanding of reaction mechanisms and the correlation between structure and reactivity. A deeper understanding of the concepts presented during the lecture is reached by solving the problems handed out each time and discussed one week later in the exercise class.

Content
Chemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.

Lecture notes
A pdf file of the printed lecture notes is provided online. Supplementary material may be provided online.

529-0422-00L Physical Chemistry II: Chemical Reaction Kinetics

Abstract

Objective
Introduction to Chemical Reaction Kinetics
Content
Fundamental concepts: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics up to new developments in femtosecond kinetics. Simple chemical reaction rate theories: temperature dependence of the rate constant and Arrhenius equation, collision theory, reaction cross-section, transition state theory. Reaction mechanisms and complex kinetic systems, approximation techniques, chain reactions, explosions and detonations. Homogeneous catalysis and enzyme kinetics.

Literature

Prerequisites / notice
- Voraussetzungen:
 - Mathematik I und II
 - Allgemeine Chemie I und II
 - Physikalische Chemie I

529-0051-00L Analytical Chemistry I

Abstract
Introduction into the most important spectroscopical methods and their applications to gain structural information.

Objective
Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications

Content
Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:
- Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
- NMR spectroscopy: chemical shift, spin-spin coupling.
- IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy.

Lecture notes
Script will be for the production price

Literature

Prerequisites / notice
Exercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounds" (4th semester) is recommended.

401-0373-00L Mathematics III: Partial Differential Equations

Abstract

Objective
Classical tools to solve the most common linear partial differential equations.

Content
1) Examples of partial differential equations
 - Classification of PDEs
 - Superposition principle

2) One-dimensional wave equation
 - D'Alembert's formula
 - Duhamel's principle

3) Fourier series
 - Representation of piecewise continuous functions via Fourier series
 - Examples and applications

4) Separation of variables
 - Solution of wave and heat equation
 - Homogeneous and inhomogeneous boundary conditions
 - Dirichlet and Neumann boundary conditions

5) Laplace equation
 - Solution of Laplace's equation on the rectangle, disk and annulus
 - Poisson formula
 - Mean value theorem and maximum principle

6) Fourier transform
 - Derivation and definition
 - Inverse Fourier transformation and inversion formula
 - Interpretation and properties of the Fourier transform
 - Solution of the heat equation

7) Laplace transform (if time allows)
 - Definition, motivation and properties
 - Inverse Laplace transform of rational functions
 - Application to ordinary differential equations

Lecture notes
See the course web site (linked under Lernmaterialien)
Literature

Additional books:

4) E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons (chapters 1, 2, 11, 12, 6)

For additional sources, see the course web site (linked under Lernmaterialien)

Prerequisites / notice

Required background:

1) Multivariate functions: partial derivatives, differentiability, Jacobian matrix, Jacobian determinant

2) Multiple integrals: Riemann integrals in two or three variables, change of variables

3) Sequences and series of numbers and of functions

4) Basic knowledge of ordinary differential equations

Laboratory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0129-00L</td>
<td>Inorganic and Organic Chemistry II</td>
<td>O</td>
<td>11 credits</td>
<td>16P</td>
<td>V. Mougel</td>
</tr>
</tbody>
</table>

Abstract

Introduction to the experimental methods of Inorganic Chemistry

Objective

The teaching laboratory offers an insight into different aspects of Inorganic Chemistry, including solid state chemistry, organometallic chemistry, kinetics, etc. The synthesis, characterization and analysis of inorganic compound are a main topic. Special emphasis on experimental techniques of synthetic inorganic chemistry, in particular the safe handling of reactive and pyrophoric chemical and solvent purification and drying techniques.

Content

Emphasis is given to scientific writing (experiment reports).

Organic synthesis with organometallic compounds and catalysts: Experiments in the framework of a selected specialised project. Possible projects: Rh catalysed asymmetric hydrogenation of enamides, Mn-catalysed epoxidation of olefins, Cu catalysed Diels-Alder reactions, synthesis of organo-boron compounds and Pd catalysed coupling with halides, Ru catalysed transfer hydrogenation.

Lecture notes

A manual is distributed in the teaching laboratory.

Prerequisites / notice

- Passed Basisprüfung
- Passed Practical Course General Chemistry (1. Semester, 529-0011-04)
- Passed Practical Course Inorg. and Org. Chemistry I (2. Sem., 529-0230)
- Continuous Attendance of Course Inorg. Chemistry 1 (3. Sem., 529-0121) and Analytical Chemistry 1 (3. Sem., 529-0051)

If necessary, access priority will be settled according to the results of the first-year examinations.

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

5. Semester

Compulsory Subjects

Examination Block II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0557-00L</td>
<td>Chemical Engineering Thermodynamics</td>
<td>O</td>
<td>4 credits</td>
<td>3G</td>
<td>A. de Mello, S. Stavrakis</td>
</tr>
</tbody>
</table>

Abstract

This course introduces the basic principles and concepts of chemical engineering thermodynamics. Whilst providing insights into the meaning and properties of fundamental thermodynamic quantities, the course also has a primary focus on the application of thermodynamic concepts to real chemical engineering problems.
A primary objective of the course is to present a rigorous treatment of classical thermodynamics, whilst retaining a strong engineering perspective. Accordingly, real-world engineering examples will be used to highlight how thermodynamics is applied in engineering practice. The core ideas presented and developed within the course will provide a foundation for subsequent studies in such fields as fluid mechanics, heat transfer and statistical thermodynamics.

The first part of the course introduces the basic concepts and language of chemical engineering thermodynamics. This is followed by an analysis of energy and energy transfer, with a specific focus on the concept of work and the first law of thermodynamics. Next, the notion of a pure substance is introduced, with a discussion of the physics of phase-changes being presented. The description of pure substances is further developed through an analysis of the PVT behavior of fluids, equation of states, ideal and non-ideal gas behaviour and compressibility factors.

The second part of the course begins with a discussion of the use of the energy balance relation in closed systems that involve pure substances and then develops relations for the internal energy and enthalpy of ideal gases. Next, the second law of thermodynamics is introduced, with a discussion of why processes occur in certain directions and why energy has quality as well as quantity. Applications to cyclic devices such as thermal energy reservoirs, heat engines and refrigerators are provided. Entropy changes that take place during processes for pure substances, incompressible substances and ideal gases are described.

The third part of the course establishes thermodynamic formulations for the calculation of enthalpy, internal energy and entropy as function of pressure and temperature, Gibbs energy, fugacity and chemical potential. Two-phase systems are introduced as well as the use of equations of state to construct the complete phase diagrams of pure fluid.

The final part of the course focuses on the properties of mixtures and the phase behavior of multicomponent systems. The fundamental equations of phase equilibria in terms of the chemical potential and fugacity are also discussed. The concept of an ideal solution is introduced and developed. This is followed by an assessment of non-ideal behavior and the use of activity coefficients for describing phase diagrams. Particular focus is given to phase equilibria. Finally, concepts relating to chemical equilibria are introduced with the general concepts developed being applied to reacting species. Examples here include the calculation of the Gibbs free energy and the equilibrium constant of a reaction.

Resources for the acquisition of material properties and data:

1. NIST Chemistry WebBook (https://webbook.nist.gov/chemistry/)
2. CRC Handbook of Chemistry & Physics, 99th Edition (http://hbcponline.com/)

Prerequisites / notice
A basic knowledge of chemical thermodynamics is required.

151-0917-00L
Mass Transfer

Objective
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Content
Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.

Literature

529-0636-00L
Heat Transport and Fluid Dynamics

Objective
At the end of this course students should be familiar with the basics of heat transfer and fluid dynamics, and have acquired the ability to describe these phenomena in practical processes and to perform corresponding calculations

Content
Mechanisms of heat and momentum transfer; analogy between mass, heat and momentum transfer; dimensional analysis; kinematics and continuum mechanics; steady and non-steady; laminar and turbulent flow; inviscid flows; Bernoulli equation; Navier-Stokes equations; boundary layer theory; steady and non-steady heat conduction; convective heat transfer; heat transfer correlations; radiative heat transfer

Lecture notes
Lecture notes will be handed out
Homogeneous Reaction Engineering

Objective
Provide to the students a complete methodology for the analysis and design of homogeneous reactors.

Content

Parametric sensitivity and stability in chemical reactors.

Lecture notes
Scripts are available on line on the web page of the Morbidelli group.

Literature
J. Baldyga and J.R. Bourne, Turbulent Mixing and Chemical Reactions, John Wiley, 1999
A. Varma and M. Morbidelli, Mathematical Methods in Chemical Engineering, Oxford University Press, 1997

Microbiology

Abstract
Teaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.

Objective
Teaching of basic knowledge in microbiology.

Content

Lecture notes
Wird von den jeweiligen Dozenten ausgegeben.

Literature
Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms

Statistical and Numerical Methods for Chemical Engineers

Objective
This course covers common numerical algorithms and statistical methods used by chemical engineers to solve typical problems arising in industrial and research practice. The focus is on application of these algorithms to real world problems, while the underlying mathematical principles are also explained. The MATLAB environment is adopted to integrate computation, visualization and programming.

Content
Topics covered:

Part I: Numerical Methods:
- Interpolation & Numerical Calculus
- Non-linear Equations
- Ordinary Differential Equations
- Partial Differential Equations
- Linear and Non-linear Least Squares

Part II: Statistical Methods:
- Data analysis and regression methods
- Statistical experimental design
- Multivariate analysis of spectra

Lecture notes
For the numerics part, see http://www.sam.math.ethz.ch/~karoger/numci/2020/

Literature
Recommended reading:
4) W. A. Stahel, Statistische Datenanalyse, Vieweg, 4th edition 2002

Discovering Management

Entry level course in management for BSc, MSc and PHD students at all levels not belonging to D-MTEC. This course can be complemented with Discovering Management (Exercises) 351-0778-01.

Abstract
Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC.

Objective
The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship.

In particular, the aims of the course are to:
1) broaden understanding of management principles and frameworks
2) advance insights into the sources of corporate and entrepreneurial success
3) develop skills to apply this knowledge to real-life managerial problems

The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / or appreciate the challenges that entrepreneurs and managers deal with.

Content
The course consists of a set of theory and practice sessions, which will be taught on a weekly basis. The course will cover business management knowledge in corporate as well as entrepreneurial contexts.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.

The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will be provided to make the theoretical content more vivid. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.
Lecture notes

All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle. These course materials will form the point of departure for the lectures, class discussions and team work.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Analytical Competencies
- Problem-solving

Domain B - Method-specific Competencies
- Communication
- Self-presentation and Social Influence

Domain C - Social Competencies
- Creative Thinking

Domain D - Personal Competencies
- Critical Thinking

Exam Block IV

Offered in the Spring Semester.

Exam Block V

Offered in the Spring Semester.

Laboratory Courses and Case Studies

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

The focus of part I of the case study course lies on the literature-based comparison of chemical process alternatives. Based on this compilation and selected quantitative as well as qualitative measures, a process assessment and comparison is conducted. A basic flowsheet is then generated, and mass and energy balances are performed to carry out a preliminary economic and environmental assessment.

Objective

- to obtain knowledge about different databases and sources of information
- application of the knowledge obtained in lectures to a real problem
- problem-oriented problem solving (application of different methods to the same subject)
- team work
- report writing and presentation techniques

Content

The focus of part I of the case study course lies on the literature-based comparison of chemical process alternatives. For this purpose, relevant substance data (i.e. physico-chemical, toxicological, safety, and environmental data), as well as information about synthesis routes and technical implementations (i.e. on reaction kinetics; possible separation operations; economic, safety, and environmental aspects), are collected from the literature. Based on this compilation and selected quantitative as well as qualitative measures, a process assessment and comparison is conducted and the most promising process alternative is chosen for further evaluation. For this alternative, a basic flowsheet and mass and energy balances are generated.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0639-01L</td>
<td>Chemical Engineering Laboratory</td>
<td>O</td>
<td>6 credits</td>
<td>8P</td>
<td>N. Kobert, R. Grass</td>
</tr>
</tbody>
</table>

Abstract

Introduction to various tools of chemical engineering techniques with reference to the lectures. In groups of two, students will conduct experiments in the following areas: thermodynamics and phase equilibria including electrochemistry, transport phenomena, kinetics and selectivity of complex reactions, characterisation of ideal and real reactors.

Objective

Introduction to various tools of chemical engineering techniques with reference to the running lectures.

Content

In groups of two, students will conduct selected experiments in the following areas: thermodynamics and phase equilibria including electrochemistry, transport phenomena, kinetics and selectivity of complex reactions, characterisation of ideal and real reactors.

Prerequisites / notice

Safety conceptt: https://chab.ethz.ch/studium/bachelor1.html

GESS Science in Perspective

Science in Perspective

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-CHAB

Language Courses

see GESS Science in Perspective: Language Courses ETH/UZH

Chemical Engineering Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 494 of 2152
Comparative and International Studies Master

Core Seminars

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>857-0001-00L</td>
<td>Methods I: Research Design, Qualitative Methods, and Data Collection</td>
<td>O</td>
<td>6 credits</td>
<td>2U+2S</td>
<td>S. Hegewald, F. Schimmelfennig</td>
</tr>
</tbody>
</table>

Abstract
The seminar covers basic issues of research design, small-n research, and data collection. It deals with issues of causality, conceptualization, case study design and QCA. Data collection includes interviews, surveys, text analysis, and experimental research.

Objective
This MACIS core seminar covers basic issues of research design, small-n research, and data collection. It familiarizes students with general research design problems such as defining research questions, analyzing causality, and designing single and comparative case studies. It then introduces them to basic issues in small-n research. Students acquire an understanding of the specific challenges and design problems in qualitative analysis. Finally, students are introduced to exemplary methods of data collection. By the end of the course, students should be able to use the principal methods of data collection used by political scientists, have a critical understanding of the advantages and disadvantages of the methods, and should be able to reflect on and discuss the methods in light of research questions of their interest.

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>857-0007-00L</td>
<td>Democracy</td>
<td>W</td>
<td>8 credits</td>
<td>2S</td>
<td>F. Schimmelfennig, D. Kübler</td>
</tr>
</tbody>
</table>

Abstract
The seminar focuses on seminal books and articles as well as brand new analyses on topical issues of democratic theory and practice. After reviewing theoretical models and different types of democracy, the seminar deals with core problems of democratic governance and with challenges to democracy stemming from globalization and international institutions.

Objective
At the end of the seminar, students are familiar with the relevant theoretical and empirical literature on democracy and democratization in national and international contexts. They are able to reflect on contemporary challenges to democracy, in particular those stemming from the internationalization of politics.

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>857-0009-00L</td>
<td>Political Violence</td>
<td>W</td>
<td>8 credits</td>
<td>2S</td>
<td>L.-E. Cederman, G. D. Clayton</td>
</tr>
</tbody>
</table>

Abstract
This course offers an introduction to political violence in domestic and international politics. The course covers explanations of interstate wars, theories of civil and ethnic wars and regional conflict. Other topics include new threats, including transnational terrorist networks and other non-state actors, and the relationship between conflict and nation-building and democratization processes.

Objective
This course offers an introduction to political violence in domestic and international politics. The course covers explanations of interstate wars, theories of civil and ethnic wars and regional conflict. Other topics include new threats, including transnational terrorist networks and other non-state actors, and the relationship between conflict and nation-building and democratization processes.

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>857-0091-00L</td>
<td>Methods II: Quantitative Methods</td>
<td>O</td>
<td>6 credits</td>
<td>2U+2S</td>
<td>D. Hangartner, A. Alrababa'h</td>
</tr>
</tbody>
</table>

Abstract
This course addresses the role of policy and its underlying politics in the transformation of the energy sector. It covers historical, socio-economic, and political perspectives and applies various theoretical concepts to specific aspects of governing the energy transition. On this basis, students develop their own research project and produce a research paper.

Objective
- To gain an overview of the history of the transition of large technical systems
- To recognize current challenges in the energy system to understand the theoretical frameworks and concepts for studying transitions
- To demonstrate knowledge on the role of policy and politics in energy transitions
- To develop own research question and address it in research paper

Research Seminars

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>857-0103-00L</td>
<td>Topics in Public Policy: Governing the Energy Transition</td>
<td>W</td>
<td>8 credits</td>
<td>2V+3S</td>
<td>T. Schmidt, S. Sewerin, N. Schmid</td>
</tr>
</tbody>
</table>

Abstract
This course addresses the role of policy and its underlying politics in the transformation of the energy sector. It covers historical, socio-economic, and political perspectives and applies various theoretical concepts to specific aspects of governing the energy transition. On this basis, students develop their own research project and produce a research paper.

Objective
- To gain an overview of the history of the transition of large technical systems
- To recognize current challenges in the energy system to understand the theoretical frameworks and concepts for studying transitions
- To demonstrate knowledge on the role of policy and politics in energy transitions
- To develop own research question and address it in research paper
Climate change, access to energy and other societal challenges are directly linked to the way we use and create energy. Both the recent United Nations Paris climate change agreement and the UN Sustainable Development Goals make a fast and extensive transition of the energy system necessary. This course introduces the social and environmental challenges involved in the energy sector and discusses the implications of these challenges for the rate and direction of technical change in the energy sector. It compares the current situation with historical socio-technical transitions and derives the consequences for policy-making. It then introduces theoretical frameworks and concepts for studying innovation and transitions. It then focuses on the role of public policy and policy change in governing the energy transitions, considering the role of political actors, institutions and policy feedback.

The course has a highly interactive (seminar-like) character. Students are expected to actively engage in the weekly discussions and to give a presentation (15-20 minutes) on one of the weekly topics during that particular session. In addition to weekly lectures and student presentations, students will write a research paper of approximately 6000 words.

The presentation and participation in the discussions will form one part of the final grade (20%), the final exam another (20%), with the research paper forming the rest (60%).

Slides and reading material will be made available via moodle.ethz.ch (only for registered students).

A reading list will be provided via moodle.ethz.ch at the beginning of the semester.

This course is intended for the MA Comparative International Studies programme.
This course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

Objective
The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.

Content
This course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

Lecture notes
To facilitate your planning, the course is organized in terms of weekly units.

- Assigned reading materials and slides will be available via Moodle.
- This course will take place fully online. Course units have three components:
 1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
 2. Reading assignments, available via Moodle, for a few selected course units
 3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

Lecture notes Literature Prerequisites / notice

857-0027-00L International Organizations (Field Trip) W 2 credits 1S D. Hangartner
Only for Comparative and International Studies MSc.

Abstract
A two-day field trip to international organizations in Geneva - e.g., the World Trade Organization, the World Health Organization and the International Committee of the Red Cross.

Objective
Become familiar with the work and challenges of international organizations based in Geneva.

Literature

Prerequisites / notice
Teams of 2-3 students prepare a 2-3 page background reading for the group on a specific international organization and lead the discussion with representatives of that organization during the visit.

857-0609-06L Governing the Energy Transition W 2 credits 2V T. Schmidt, N. Schmid, S. Sewerin
Primarily suited for Master and PhD level.

Abstract
This course addresses the role of policy and its underlying politics in the transformation of the energy sector. It covers historical, socio-economic, and political perspectives and applies various theoretical concepts to understand specific aspects of the governance of the energy transition.

Objective
- To gain an overview of the history of the transition of large technical systems
- To recognize current challenges in the energy system to understand the theoretical frameworks and concepts for studying transitions
- To gain knowledge on the role of policy and politics in energy transitions

Content
Climate change, access to energy and other societal challenges are directly linked to the way we use and create energy. Both the 2015 United Nations Paris climate change agreement and the UN Sustainable Development Goals make a fast and extensive transition of the energy system necessary.

This lecture introduces the social and environmental challenges involved in the energy sector and discusses the implications of these challenges for the rate and direction of technical change in the energy sector. It compares the current situation with historical socio-technical transitions and derives the consequences for policy-making. It introduces theoretical frameworks and concepts for studying innovation and transitions. It then focuses on the role of policy and policy change in governing the energy transition, considering the role of political actors, institutions and policy feedback.

The grade will be determined by a final exam.

Lecture notes Literature Prerequisites / notice

Slides and reading material will be made available via moodle.ethz.ch (only for registered students).

A reading list will be provided via moodle.ethz.ch at the beginning of the semester.

This course is particularly suited for students of the following programmes: MA Comparative International Studies; MSc Energy Science & Technology; MSc Environmental Sciences; MSc Management, Technology & Economics; MSc Science, Technology & Policy; ETH & UZH PhD programmes.

857-0609-06L Decolonizing Aid W 2 credits 3G K. Schneider, L. Hensgen

Course name
Decolonizing Aid

Course code
857-0609-06L

Credits
2

Course level
MSc

Module
Comparative and International Studies

Prerequisites
- A reading list will be provided via moodle.ethz.ch at the beginning of the semester.
- This course is particularly suited for students of the following programmes: MA Comparative International Studies; MSc Energy Science & Technology; MSc Environmental Sciences; MSc Management, Technology & Economics; MSc Science, Technology & Policy; ETH & UZH PhD programmes.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 497 of 2152
Abstract
The course focuses on how cultural perceptions and power structures have influenced society and our understanding of and practice in aid. It promotes alternatives to aid as linear and progressive Eurocentric narratives. The course draws on different theoretical perspectives and scrutinizes practical examples of aid interventions and similar initiatives.

Objective
The course goes beyond awareness raising of personal cultural characteristics and recognizing cultural values within development concepts. It unfolds traces of colonialism and power structures in day to day live and the aid industry. It promotes searching and initiating alternatives to aid as a Eurocentric narrative. Participants get familiar with different theoretical perspectives on decoloniality and scrutinize practical examples of aid interventions and similar initiatives.

Content
- Decolonialism key terms and concepts
- Conceptions of and alternatives to development (cooperation)
- Cultural (self-) awareness, diversity
- The role of culture in aid / development cooperation
- Implications of decolonialism for aid policy making and practice

865-0070-00L The Private Sector and Development Organizations: Building Successful Alliances

Only for MAS/CAS in Development and Cooperation students, as well as specialists with at least 24 months of practical experience in international cooperation.

Doctoral students dealing with empirical research in the area of development and cooperation (EZA) may be admitted "sur Dossier".

Registration only through the NADEL administration office.

Abstract
The following topics will be discussed: The political economy of the Corporate Social Responsibility discourse, voluntary governance regimes and development; theory of change and effectiveness of soft law approaches, PPPs; introducing concepts and taking stock of experience, analysis of private sector strategies from selected governance actors, engaging with the private sector.

Objective
This course seeks to increase the participants' understanding of the multifaceted and dialectic relationships between civil society, governments and private sector. It equips participants with knowledge and tools required for a strategic interaction between private sector organizations and development agencies. The course enables participants to contribute effectively to policy debates on the role of private sector actors and development.

Prerequisites / notice
Students of the course must fulfill requirements specified on the homepage of NADEL.
The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Evolution is the one theory that encompasses all of biology. It provides a single, unifying concept to understand the living systems that we observe today. We will introduce several types of mathematical models of evolution to describe gene frequency changes over time in the context of different biological systems, focusing on asexual populations. Viruses and cancer cells provide the most prominent examples of such systems and they are at the same time of great biomedical interest. The course will cover some classical mathematical population genetics and population dynamics, and also introduce several new approaches. This is reflected in a diverse set of mathematical concepts which make their appearance throughout the course, all of which are introduced from scratch. Topics covered include the quasispecies equation, evolution of HIV, evolutionary game theory, evolutionary stability, evolutionary graph theory, tumor evolution, stochastic tunneling, genetic progression of cancer, diffusion theory, fitness landscapes, branching processes, and evolutionary escape.

Lecture notes
No.

Literature

Prerequisites / notice
Prerequisites: Basic mathematics (linear algebra, calculus, probability)

Taught competencies
Domain A - Subject-specific Competencies
- Concepts and Theories
- Problem-solving

Domain B - Method-specific Competencies
- Analytical Competencies
- Cooperation and Teamwork

Domain C - Social Competencies
- Communication
- Self-direction and Self-management

Domain D - Personal Competencies
- Critical Thinking
- not assessed

Abstract
Evolutionary dynamics is concerned with the mathematical principles according to which life has evolved. This course offers an introduction to mathematical modeling of evolution, including deterministic and stochastic models, with an emphasis on tumor evolution.

Objective
The goal of this course is to understand and to appreciate mathematical models and computational methods that provide insight into the evolutionary process in general and tumor evolution in particular. Students should analyze and evaluate models and their application critically and be able to design new models.

Content
Evolution is the one theory that encompasses all of biology. It provides a single, unifying concept to understand the living systems that we observe today. We will introduce several types of mathematical models of evolution to describe gene frequency changes over time in the context of different biological systems, focusing on asexual populations. Viruses and cancer cells provide the most prominent examples of such systems and they are at the same time of great biomedical interest. The course will cover some classical mathematical population genetics and population dynamics, and also introduce several new approaches. This is reflected in a diverse set of mathematical concepts which make their appearance throughout the course, all of which are introduced from scratch. Topics covered include the quasispecies equation, evolution of HIV, evolutionary game theory, evolutionary stability, evolutionary graph theory, tumor evolution, stochastic tunneling, genetic progression of cancer, diffusion theory, fitness landscapes, branching processes, and evolutionary escape.

Lecture notes
Lecture slides will be available on moodle.

Literature

Prerequisites / notice
Prerequisites: Basic mathematics (linear algebra, calculus, probability)

Taught competencies
Domain A - Subject-specific Competencies
- Concepts and Theories
- Problem-solving

Domain B - Method-specific Competencies
- Analytical Competencies
- Cooperation and Teamwork

Domain C - Social Competencies
- Communication
- Self-direction and Self-management

Domain D - Personal Competencies
- Critical Thinking
- not assessed

Abstract
The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.

Objective
Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:

- stochastic models in molecular evolution
- phylogenetic & phylodynamic inference
- maximum likelihood and Bayesian statistics

Attendees will apply these concepts to a number of applications yielding biological insight into:

- epidemiology
- pathogen evolution
- macroevolution of species

Content
The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylodyeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.

Lecture notes
Lecture slides will be available on moodle.

Literature
The course is not based on any of the textbooks below, but they are excellent choices as accompanying material:

- Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.

Prerequisites / notice
Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course „Introduction to Programming“, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date http://www.cbb.ethz.ch/news-events.html

For the Zurich-based students without R experience, we recommend the R course http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2018W&ansicht=KATALOGDATEN&lerneinheitId=123546&lang=de, or working through the script provided as part of this R course.

262-6100-00L Evolutionary Genetics
- 6 credits
- 3G
- external organisers

262-6110-00L Bioinformatics Algorithms
- 4 credits
- 3G
- external organisers

401-6282-00L Statistical Analysis of High-Throughput Genomic and
- 5 credits
- 3G
- H. Rehrauer, M. Robinson
Gain of interdisciplinary competence in experimental and theoretical research, which qualifies for academic scientific work (master's or PhD) will be given to students at lecture.

Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).

The powerpoint slides of the lectures will be made available weekly on the website in pdf format (on the day preceding each lecture).

Students will be imparted knowledge in basic and advanced biophysical methods applied to problems in molecular biotechnology. The course is fundamental to applying the methods in their daily and advanced research routines. The students will learn the physical basis of the methods as well as their limitations and possibilities to address existing and future topics in molecular biotechnology.

The biophysical methods to be taught include:
- Light microscopy: Resolution limit of light microscopy, fluorescence, GFP, fluorescence microscopy, DIC, phase contrast, difference between wide-field and confocal microscopy
- Super resolution optical microscopy: STED, PALM, STORM, other variations
- Electron microscopy: Scanning electron microscopy, transmission electron microscopy, electron tomography, cryo-electron microscopy, single particle analysis and averaging, tomography, sectioning, negative stain
- X-ray, electron and neutron diffraction
- MRI Imaging
- Scanning tunnelling microscopy and atomic force microscopy
- Patch clamp techniques: Principles of patch clamp analysis and application. Various patch clamp approaches used in research and industry
- Surface plasmon resonance-based biosensors
- Molecular pore-based sensors and sequencing devices
- Mechanical molecular and cellular assembly devices
- Optical and magnetic tweezers
- CD spectroscopy
- Optogenetics
- Molecular dynamics simulations

The module is composed of 3 SWS (3 hours/week): 2-hour lecture, 1-hour seminar. For the seminar, students will prepare oral presentations on specific in-depth subjects with/under the guidance of the teacher.

Former course title: Statistical Methods for the Analysis of Microarray and Short-Read Sequencing Data
Biology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.

The course is self-contained. The course assumes no background in biology but a good foundation regarding mathematical and computational techniques.

For more information about the lecture: www.csms.ethz.ch/education/CSBMS

Biosystems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0007-00L</td>
<td>Computational Systems Biology</td>
<td>W</td>
<td>6</td>
<td>3V+2U</td>
<td>J. Stelling</td>
</tr>
</tbody>
</table>

Abstract

Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

Objective

The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.

Content

Biological data analysis with an emphasis on systems biology. We will cover basic concepts and tools for the analysis of biological networks. This includes the analysis of complex biological networks, the use of computational methods for the modeling, simulation and analysis of biological networks. The course also covers basic biological concepts and tools for the analysis of biological networks. This includes the analysis of complex biological networks, the use of computational methods for the modeling, simulation and analysis of biological networks.

[Lecture notes](http://www.csb.ethz.ch/education/lectures.html)

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0706-00L</td>
<td>Spatio-Temporal Modelling in Biology</td>
<td>W</td>
<td>4</td>
<td>G</td>
<td>D. Iber</td>
</tr>
</tbody>
</table>

Abstract

This course focuses on modeling spatio-temporal problems in biology, in particular on the cell and tissue level. The main focus is on mechanisms and concepts, but mathematical and numerical techniques are introduced as required. Biological examples discussed in the course provide an introduction to key concepts in developmental biology.

Objective

Students will learn state-of-the-art approaches to modelling spatial effects in dynamical biological systems. The course provides an introduction to dynamical system theory. The course covers the mathematical analysis of pattern formation in growing, developing systems, as well as the description of mechanical effects at the cell and tissue level. The course also provides an introduction to image-based modelling, i.e., the use of microscopy data for model development and testing. The course covers classic as well as current approaches and exposes students to open problems in the field. In this way, the course seeks to prepare students to conduct research in the field. The course provides students for research in developmental biology, as well as for applications in tissue engineering, and for biomedical research.

Content

1. Introduction to Modelling in Biology
2. Morphogen Gradients
3. Dynamical Systems
4. Cell-cell Signalling (Dr Boareto)
5. Travelling Waves
6. Turing Patterns
7. Chemotaxis
8. Mathematical Description of Growing Biological Systems
9. Image-Based Modelling
10. Tissue Mechanics
11. Cell-based Tissue Simulation Frameworks
12. Plant Development (Dr Dumont)
13. Growth Control
14. Summary

[Lecture notes](https://www.bsse.ethz.ch/cobi/teaching/636-0706-00L_Spatial_Modelling_in_Biology.html)

Literature

The lecture course is not based on any textbook. The following textbooks are related to some of its content. The textbooks may be of interest for further reading, but are not necessary to follow the course:

- Murray, Mathematical Biology, Springer
- F organis and Newman, Biological Physics of the Developing Embryo, CUP
- Keener and Sneyd, Mathematical Physiology, Springer
- Fall et al., Computation Cell Biology, Springer
- Szallasi et al, System Modeling in Cellular Biology, MIT Press
- Wolkenhauer, Systems Biology
- Kezrouy, Engineering Mathematics, Wiley

Prerequisites / notice

The course assumes no background in biology but a good foundation regarding mathematical and computational techniques.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0117-00L</td>
<td>Mathematical Modelling for Bioengineering and Systems Biology</td>
<td>W</td>
<td>4</td>
<td>G</td>
<td>D. Iber</td>
</tr>
</tbody>
</table>

Abstract

Basic concepts and mathematical tools to explore biochemical reaction kinetics and biological network dynamics.

Objective

The course enables students to formulate, analyse, and simulate mathematical models of biochemical networks. To this end, the course covers basic mathematical concepts and tools to explore biochemical reaction dynamics as well as basic concepts from dynamical systems theory. The exercises serve to deepen the understanding of the presented concepts and the mathematical methods, and to train students to numerically solve and simulate mathematical models.

Content

Biochemical Reaction Modelling

For more information about the lecture: www.csms.ethz.ch/education/CSBMS

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 501 of 2152
Data Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0018-00L</td>
<td>Data Mining I</td>
<td>W</td>
<td>6</td>
<td>3G+2A</td>
<td>K. M. Borgwardt</td>
</tr>
<tr>
<td>Abstract</td>
<td>Data Mining, the search for statistical dependencies in large databases, is of utmost importance in modern society, in particular in biological and medical research. This course provides an introduction to the key problems, concepts, and algorithms in data mining, and the applications of data mining in computational biology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of this course is that the participants gain an understanding of data mining problems and algorithms to solve these problems, in particular in biological and medical applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The goal of the field of data mining is to find patterns and statistical dependencies in large databases, to gain an understanding of the underlying system from which the data were obtained. In computational biology, data mining contributes to the analysis of vast experimental data generated by high-throughput technologies, and thereby enables the generation of new hypotheses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In this course, we will present the algorithmic foundations of data mining and its applications in computational biology. The course will feature an introduction to popular data mining problems and algorithms, reaching from classification via clustering to feature selection. This course is intended for both students who are interested in applying data mining algorithms and students who would like to gain an understanding of the key algorithmic concepts in data mining.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tentative list of topics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Distance functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Clustering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Feature Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0704-00L</td>
<td>Computational Biology and Bioinformatics Seminar</td>
<td>O</td>
<td>2</td>
<td>2S</td>
<td>N. Beerenwinkel, K. M. Borgwardt, D. Iber, M. H. Khammash, J. Stelling</td>
</tr>
<tr>
<td>Number of participants limited to 30</td>
<td>The seminar is addressed primarily at students enrolled in the MSc CBB programme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students of other ETH study programmes interested in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seminar

Compulsory seminar.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 502 of 2152
this course need to ask the lecturer for permission to enrol in the course.

The Seminar will be offered in autumn semester in Basel (involving professors and lecturers from the University of Basel) and in spring semester in Zurich (involving professors and lecturers from the University of Zurich). Professors and lecturers from ETH Zurich are involved in both semesters.

Abstract

Computational biology and bioinformatics aim at understanding the complexity of living systems through computation. The seminar combines student presentations and current research project presentations to review the rapidly developing field from a computer science perspective. Areas: DNA sequence analysis, proteomics, optimization and bio-inspired computing, and systems modeling, simulation and analysis.

Objective

Studying and presenting fundamental papers of Computational Biology and Bioinformatics. Learning how to make a scientific presentation and how classical methods are used or further developed in current research.

Content

Computational biology and bioinformatics aim at understanding the complexity of living systems through computation. The seminar is an overview of this rapidly developing field from a computer science perspective. In particular, it will focus on the areas of (i) DNA sequence analysis, sequence comparison and reconstruction of phylogenetic trees, (ii) protein identification from experimental data, (iii) optimization and bio-inspired computing, and (iv) systems analysis of complex biological networks. The seminar combines the discussion of selected research papers with a major impact in their domain by the students with the presentation of current active research projects / open challenges in computational biology and bioinformatics by the lecturers. Each week, the seminar will focus on a different topic related to ongoing research projects at ETHZ, University of Basel and University of Zurich, thus giving the students the opportunity of obtaining knowledge about the basic research approaches and problems as well as of gaining insight into (and getting excited about) the latest developments in the field.

Literature

Original papers to be presented by the students will be provided in the first week of the seminar.

► Advanced Courses

A total of 30 ECTS needs to be acquired in the Advanced Courses category. Thereof at least 16 ECTS in the Theory and at least 10 ECTS in the Biology category.

Note that some of the lectures are being recorded: https://video.ethz.ch/lectures.html

► Theory

At least 18 ECTS need to be acquired in this category.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0663-00L</td>
<td>Numerical Methods for Computer Science</td>
<td>W</td>
<td>7 credits</td>
<td>2V+2U+2P</td>
<td>R. Hiptmair</td>
</tr>
</tbody>
</table>

Abstract

The course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.

Objective

* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms efficiently

Content

* Computing with Matrices and Vectors
 2.1 Fundamentals
 2.2 Software and Libraries
 2.4 Computational Effort
 2.5 Machine Arithmetic and Consequences

* Direct Methods for (Square) Linear Systems of Equations
 3.1 Introduction: Linear Systems of Equations (LSE)
 3.2 Theory: Linear Systems of Equations (LSE)
 3.5 Survey: Elimination Solvers for Linear Systems of Equations
 3.7 Sparse Linear Systems

* Direct Methods for Linear Least Squares Problems
 4.1 Least Squares Solution Concepts
 4.2 Normal Equation Methods
 4.3 Orthogonal Transformation Methods
 4.3.1 Transformation Idea
 4.3.2 Orthogonal/Unitary Matrices
 4.3.3 QR-Decomposition
 4.3.4 QR-Based Solver for Linear Least Squares Problems
 4.4 Singular Value Decomposition (SVD)
 4.5 SVD-Based Optimization and Approximation

* Filtering Algorithms
 5.1 Filters and Convolutions
 5.2 Discrete Fourier Transform (DFT)
 5.3 Fast Fourier Transform (FFT)

* Machine Learning of One-Dimensional Data (Data Interpolation and Data Fitting in 1D)
 6.1 Abstract Interpolation (AI)
 6.2 Global Polynomial Interpolation
 6.4 Splines
 6.7 Least Squares Data Fitting

* Iterative Methods for Non-Linear Systems of Equations
 9.2 Iterative Methods
 9.4 Finding Zeros of Scalar Functions
 9.5 Newton's Method in Rn
 9.7 Non-linear Least Squares
Probabilistic Artificial Intelligence (W 8 credits 3V+2U+2A A. Krause)

Abstract
This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.

Objective
How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.

Content
Topics covered:
- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

Literature
- M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

Prerequisites / notice
The course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves, in case they do not know it already.

Linear System Theory (W 6 credits 5G A. Iannelli)

Abstract
The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematical properties of these systems and on understanding and constructing proofs of properties of linear control systems.

Objective
Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.

Content
- Proof techniques and practices.
- Linear spaces, normed linear spaces and Hilbert spaces.
- Ordinary differential equations, existence and uniqueness of solutions.
- Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case.
- Controllability and observability, duality. Time invariant systems treated as a special case.
- Stability and stabilization, observers, state and output feedback, separation principle.

Lecture notes
Available on the course Moodle platform.

Prerequisites / notice
Sufficient mathematical maturity, in particular in linear algebra, analysis.

Signals and Systems (W 4 credits 2V+2U A. Carron)

Abstract
Signals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals.

Objective
Master the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise.

Content

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 504 of 2152
Biology is becoming increasingly quantitative and mathematical modeling is now an integral part of biological research. In many biological problems, a deep understanding of advanced concepts of object-oriented programming and their support through various language features is crucial. Students should have a good grasp of Linear Algebra and Multivariable Calculus. Basic knowledge of set theory will also be needed. Students should be able to learn new languages more rapidly and be aware of many subtle problems of object-oriented programming and know how to avoid them. The course will involve a healthy balance between mathematical rigor (theorem proving) and biological applications. Students are expected to understand the consistency of data structures and maintain the correctness of data structures.

The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and program idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as

The topics discussed in the course include among others:

1. The mathematical representation of random phenomena: The probability space, properties of the probability measure, Independence of events, Conditional probability and Bayes formula, applications to parameter inference.
3. Convergence of Random Variables: Modes of convergence, Laws of large numbers, the central limit theorem, the law of the iterated logarithm, Applications to the analysis of cell population data.
7. Introduction to the theory of Martingales: Basic definitions, Martingale differences and Hoffding's inequality, Martingale Convergence Theorem, Crossings and convergence, Stopping times and the optional sampling theorem, Doob's maximal inequalities, Applications to the analysis of stochastic chemical reaction networks.

The course will involve a healthy balance between mathematical rigor (theorem proving) and biological applications. Students are expected to have a good grasp of Linear Algebra and Multivariable Calculus. Basic knowledge of set theory will also be needed. Students should be prepared for abstract reasoning.
This course gives an overview of database technologies and of the most important database design principles that lay the foundations of "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.

Content

This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form.

- physical storage: distributed file systems (HDFS), object storage(S3), key-value stores
- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)
- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro)
- data shapes and models (tables, trees, graphs, cubes)
- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)
- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)
- resource management (YARN)
- what a data center is made of and why it matters (racks, nodes, ...)
- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

Literature

Large scale analytics and machine learning are outside of the scope of this course.

Papers from scientific conferences and journals. References will be given as part of the course material during the semester.

This course, in the autumn semester, is only intended for:
- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

For students of all other departments interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you:
- "Information Systems for Engineers" (SQL, relational databases): this Fall
- "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists): Spring 2021

There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers.

Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data.

261-5112-00L Algorithms and Data Structures for Population Scale Genomics
- W 3 credits 2G to be announced

Abstract
Research in Biology and Medicine have been transformed into disciplines of applied data science over the past years. Not only size and inherent complexity of the data but also requirements on data privacy and complexity of search and access pose a wealth of new research questions.

Objective
This interactive course will explore the latest research on algorithms and data structures for population scale genomics applications and give insights into both the technical basis as well as the domain questions motivating it.

Content
Over the duration of the semester, the course will cover three main topics. Each of the topics will consist of 70-80% lecture content and 20-30% seminar content.

1) Algorithms and data structures for text and graph compression. Motivated through applications in compressive genomics, the course will cover succinct indexing schemes for strings, trees and general graphs, compression schemes for binary matrices as well as the efficient representation of haplotypes and genomic variants.
2) Stochastic data structures and algorithms for approximate representation of strings and graphs as well as sets in general. This includes winnowing schemes and minimizers, sketching techniques, (minimal perfect) hash families, sublinear membership query data structures.
3) Data structures supporting encryption and data privacy. As an extension to data structures discussed in the earlier topics, this will include secure indexing using homomorphic encryption as well as design for secure storage and distribution of data.

252-0834-00L Information Systems for Engineers
- W 4 credits 2V+1U G. Fourny

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form.

- physical storage: distributed file systems (HDFS), object storage(S3), key-value stores
- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)
- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro)
- data shapes and models (tables, trees, graphs, cubes)
- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)
- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)
- resource management (YARN)
- what a data center is made of and why it matters (racks, nodes, ...)
- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

Literature

Large scale analytics and machine learning are outside of the scope of this course.

Papers from scientific conferences and journals. References will be given as part of the course material during the semester.

This course, in the autumn semester, is only intended for:
- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

For students of all other departments interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you:
- "Information Systems for Engineers" (SQL, relational databases): this Fall
- "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists): Spring 2021

There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers.

Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data.
Abstract
This course provides the basics of relational databases from the perspective of the user.
We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

Objective
This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality.
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Content
Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

Literature
- Lecture material (slides).
- Book: "Database Systems: The Complete Book", H. Garcia-Molina, J.D. Ullman, J. Widom (It is not required to buy the book, as the library has it)

Prerequisites / notice
For non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logic
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

At least 12 ECTS need to be acquired in this category.
This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Microbiology (Part I)
- Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.
- The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.
- Scripts and additional material will be provided during the semester.

Immunology I
- Introduction into structural and functional aspects of the immune system.
- Basic knowledge of the mechanisms and the regulation of an immune response.
- The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.
- For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students/special-students-university-of-zurich.html
- The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.
- For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students/special-students-university-of-zurich.html
- The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.
- For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students/special-students-university-of-zurich.html
- The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.
- For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students/special-students-university-of-zurich.html
- The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.
- For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students/special-students-university-of-zurich.html
- The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.
- For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students/special-students-university-of-zurich.html
- The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.
The course has the following objectives:

* Familiarize students with parallels between theories in computer science and engineering and information-processing in live cells and organisms

* Introduce basic theories of computation

* Introduce approaches to creating novel biological computing systems in non-living environment and in living cells including bacteria, yeast and mammalian/human cells.

The covered approaches will include
- Nucleic acids engineering
- DNA and RNA nanotechnology
- Synthetic biology and gene circuit engineering
- High-throughput genome engineering and gene circuit assembly

* Equip the students with computer-aided design (CAD) tools for biocomputing circuit engineering. A number of tutorials will introduce MATLAB SimBiology toolbox for circuit design and simulations

* Foster creativity, research and communication skills through semester-long “Design challenge” assignment in the broad field of biological computing and biological circuit engineering.
Lecture 1. Introduction: what is molecular computation (part I)?
* What is computing in general?
* What is computing in the biological context (examples from development, chemotaxis and gene regulation)
* The difference between natural computing and engineered biocomputing systems

Lecture 2: What is molecular computation (part II) + State machines
1st hour
* Detailed definition of an engineered biocomputing system
* Basics of characterization
* Design challenge presentation

2nd hour
* Theories of computation: state machines (finite automata and Turing machines)

Lecture 3: Additional models of computation
* Logic circuits
* Analog circuits
* RAM machines

Basic approaches to computer science notions relevant to molecular computation. (i) State machines; (ii) Boolean networks; (iii) analog computing; (iv) distributed computing. Design Challenge presentation.

Lecture 4. Classical DNA computing
* Adleman experiment
* Maximal clique problem
* SAT problem

Lecture 5: Molecular State machines through self-assembly
* Tiling implementation of state machine
* DNA-based tiling system
* DNA/RNA origami as a spin-off of self-assembling state machines

Lecture 6: Molecular State machines that use DNA-encoded tapes
* Early theoretical work
* Tape extension system
* DNA and enzyme-based finite automata for diagnostic applications

Lecture 7: Introduction to cell-based logic and analog circuits
* Computing with (bio)chemical reaction networks
* Turing computation with ultrasensitivity and cooperativity
* Specific examples

Lecture 8: Transcriptional circuits I
* Introducing transcription-based circuits
* General features and considerations
* Guidelines for large circuit construction

Lecture 9: Transcriptional circuits II
* Large-scale distributed logic circuits in bacteria
* Toward large-scale circuits in mammalian cells

Lecture 10: RNA circuits I
* General principles of RNA-centered circuit design
* Riboswitches and sRNA regulation in bacteria
* Riboswitches in yeast and mammalian cells
* General approach to RNAi-based computing

Lecture 11: RNA circuits II
* RNAi logic circuits
* RNAi-based cell type classifiers
* Hybrid transcriptional/posttranscriptional approaches

Lecture 12: In vitro DNA-based logic circuits
* DNAzyme circuits playing tic-tac-toe against human opponents
* DNA brain

Lecture 13: Advanced topics
* Engineered cellular memory
* Counting and sequential logic
* The role of evolution
* Fail-safe design principles
Lecture notes

Lecture notes will be available online

As a way of general introduction, the following two review papers could be useful:

Basic knowledge of molecular biology is assumed.

Prerequisites / notice

<table>
<thead>
<tr>
<th>UZH Module Code</th>
<th>Lecture</th>
<th>Credits</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0510-00L</td>
<td>Proteomics and Drug Discovery Research</td>
<td>W</td>
<td>2</td>
<td>external organisers</td>
</tr>
<tr>
<td>636-0511-00L</td>
<td>Developmental Neuroscience</td>
<td>W</td>
<td>2</td>
<td>external organisers</td>
</tr>
<tr>
<td>636-0515-00L</td>
<td>Molecular Medicine I</td>
<td>W</td>
<td>2</td>
<td>external organisers</td>
</tr>
<tr>
<td>262-6170-00L</td>
<td>Molecular Mechanisms of Development</td>
<td>W</td>
<td>2</td>
<td>external organisers</td>
</tr>
<tr>
<td>262-6180-00L</td>
<td>Molecular Control of Vertebrate Development and Organogenesis</td>
<td>W</td>
<td>2</td>
<td>external organisers</td>
</tr>
<tr>
<td>262-6130-00L</td>
<td>Evolutionary Medicine: Ancient pathogens and Pathogens (University of Zurich)</td>
<td>W</td>
<td>6</td>
<td>5G</td>
</tr>
<tr>
<td>262-6101-00L</td>
<td>Antibiotic Drug Targets and Resistance</td>
<td>W</td>
<td>1</td>
<td>1V</td>
</tr>
<tr>
<td>262-6102-00L</td>
<td>Functional Organization of the Cell Nucleus</td>
<td>W</td>
<td>2</td>
<td>external organisers</td>
</tr>
<tr>
<td>262-6103-00L</td>
<td>Cellular Signalling</td>
<td>W</td>
<td>2</td>
<td>external organisers</td>
</tr>
<tr>
<td>262-6105-00L</td>
<td>Frontiers in RNA Biology</td>
<td>W</td>
<td>2</td>
<td>external organisers</td>
</tr>
<tr>
<td>636-0109-00L</td>
<td>Stem Cells: Biology and Therapeutic Manipulation</td>
<td>W</td>
<td>4</td>
<td>3G</td>
</tr>
<tr>
<td>636-0108-00L</td>
<td>Biological Engineering and Biotechnology</td>
<td>W</td>
<td>4</td>
<td>3V</td>
</tr>
</tbody>
</table>

Literature

Benenson, Y. Biocomputers: from test tubes to live cells. Molecular Biosystems 2009, 5:675:685

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmssss/en/studies/application/deadlines.html

Abstract

Stem cells are central in tissue regeneration and repair, and hold great potential for therapy. We will discuss the role of stem cells in health and disease, and possibilities to manipulate their behavior for therapeutic application. Basic molecular and cell biology, engineering and novel technologies relevant for stem cell research and therapy will be discussed.

Objective

Understanding of current knowledge, and lack thereof, in stem cell biology, regenerative medicine and required technologies. Theoretical preparation for practical laboratory experimentation with stem cells.

Content

We will use different diseases to discuss how to potentially model, diagnose or heal them by stem cell based therapies. This will be used as a guiding framework to discuss relevant concepts and technologies in cell and molecular biology, engineering, imaging, bioinformatics, tissue engineering, that are required to manipulate stem cells for therapeutic application.

Topics will include:
- Embryonic and adult stem cells and their niches
- Induced stem cells by directed reprogramming
- Relevant basic cell biology and developmental biology
- Relevant molecular biology
- Cell culture systems
- Cell fates and their molecular control by transcription factors and signalling pathways
- Cell reprogramming
- Disease modelling
- Tissue engineering
- Bioimaging, Bioinformatics
- Single cell technologies

Lecture notes

Handout during the course.
Principles of Evolution: Theory (University of Zurich)
W 6 credits 3V
University lecturers

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: BIO351

Mind the enrolment deadlines at UZH:

Abstract

"Nothing in Biology Makes Sense Except in the Light of Evolution".
Evolutionary theory and methods are essential in all branches of modern biology.

Objective

Subject specific skills:
By the end of the course, students will be able to:
o describe basic evolutionary theory and its applications
o discuss ongoing debates in evolutionary biology
o critically assess the presentation of evolutionary research in the popular media

Key skills:
By the end of the course, students will be able to:
o approach biological questions from an evolutionary perspective

Content

This course will provide a broad overview of current evolutionary thought, including the mechanisms of evolutionary change, adaptation and the history of life and will involve practical field and lab work as well as lecture material.

Molecular and Structural Biology I: Protein Structure and Function
D-BIOL students are obliged to take part I and part II (next semester) as a two-semester course

Abstract

Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology.

Objective

Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics.

Lecture notes

Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching.

Literature

Basics:
- Creighton, T.E., Proteins, Freeman, (1993)
- Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman.

Current topics: References will be given during the lectures.

Applied Mathematics and Informatics in Drug Discovery

Lab Rotations

Students starting before Autumn Semester 2021:
18 ECTS in total (262-01*).

At least two lab rotations need to be completed in two different research groups (supervisors).

Either choose Lab Rotation Short 1 (6 ECTS), Lab Rotation Short 2 (6 ECTS) and Lab Rotation Short 3 (6 ECTS)
Or choose Lab Rotation Long 1 (9 ECTS) and Lab Rotation Long 2 (9 ECTS)
Or choose Lab Rotation Short 1 (6 ECTS) and Industry Internship (12 ECTS)
Or choose Lab Rotation Short 1 (6 ECTS) and Lab Rotation Long 3 (12 ECTS)

Students starting in Autumn Semester 2021 or later:
18 ECTS in total (262-03*).

At least one lab rotation in different group/supervisor than master’s thesis.

Either choose Lab Rotation Short 1 and Lab Rotation Short 2 (each 6 weeks, 9 ECTS)
Or choose Lab Rotation Short 1 and Industry Internship Short (each 6 weeks, 9 ECTS)
Or choose Lab Rotation Long (12 weeks, 18 ECTS)
Or choose Industry Internship Long (12 weeks, 18 ECTS)

Lab Rotation Short 1
Flexible short research project of 4 weeks, completed with a written report.
Students gain an overview of different research areas by applying concepts taught in the core courses and advanced courses.

Lab Rotation Short 2
Flexible short research project of 4 weeks, completed with a written report.
Students gain an overview of different research areas by applying concepts taught in the core courses and advanced courses.

Lab Rotation Short 3
Flexible short research project of 4 weeks, completed with a written report.
Students gain an overview of different research areas by applying concepts taught in the core courses and advanced courses.

Lab Rotation Long 1
Flexible short research project of 6 weeks, completed with a written report.
Students gain an overview of different research areas by applying concepts taught in the core courses and advanced courses.

Lab Rotation Long 2
Flexible short research project of 6 weeks, completed with a written report.
Students gain an overview of different research areas by applying concepts taught in the core courses and advanced courses.

Industry Internship
Industry internship of at least 8 weeks, completed with a written report.
Lecturers

Students gain experience in an industrial environment and an overview of different research areas by applying concepts taught in the core courses and advanced courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>262-0106-00L</td>
<td>Lab Rotation Long 3</td>
<td>W</td>
<td>12</td>
<td>26A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Flexible short research project of 8 weeks, completed with a written report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students gain an overview of different research areas by applying concepts taught in the core courses and advanced courses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262-0300-00L</td>
<td>Lab Rotation Short 1</td>
<td>W</td>
<td>9</td>
<td>17A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Flexible short research project of 6 weeks, completed with a written report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students gain an overview of different research areas by applying concepts taught in the core courses and advanced courses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262-0301-00L</td>
<td>Lab Rotation Short 2</td>
<td>W</td>
<td>9</td>
<td>17A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Flexible short research project of 6 weeks, completed with a written report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students gain an overview of different research areas by applying concepts taught in the core courses and advanced courses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262-0303-00L</td>
<td>Lab Rotation Long</td>
<td>W</td>
<td>18</td>
<td>34A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Flexible research project of 12 weeks, completed with a written report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students gain an overview of different research areas by applying concepts taught in the core courses and advanced courses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262-0302-00L</td>
<td>Industry Internship Short</td>
<td>W</td>
<td>9</td>
<td>17A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Industry internship of at least 6 weeks, completed with a written report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students gain experience in an industrial environment and an overview of different research areas by applying concepts taught in the core courses and advanced courses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262-0304-00L</td>
<td>Industry Internship Long</td>
<td>W</td>
<td>18</td>
<td>34A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Industry internship of at least 12 weeks, completed with a written report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students gain experience in an industrial environment and an overview of different research areas by applying concepts taught in the core courses and advanced courses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Industry Internship Long

Students gain experience in an industrial environment and an overview of different research areas by applying concepts taught in the core courses and advanced courses. Industry internship lasts for 12 weeks, longer duration will delay the completion of studies beyond two years. Recognition of the industry internship requires a meaningful 10-page report.

GESS Science in Perspective

- See GESS Science in Perspective: Language Courses
- See GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-INFK:

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>262-0800-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30</td>
<td>64D</td>
<td>Professors</td>
</tr>
<tr>
<td>Objective</td>
<td>The Master Thesis is the result of an independent scientific research and/or constructive development project in the chosen area of specialization.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The program concludes with a Master thesis that includes a written report and an oral presentation. The topic of the thesis can be chosen according to the student's interests in the field of computational biology & bioinformatics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre requisites/notice</td>
<td>The duration for the master's thesis in the study regulation 2017 (per Autumn Semester 2021) is 24 working weeks (thereof, 2 weeks are reserved for compensation of public holidays, sick leave and other unplanned short term absences.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>262-0002-AAL</td>
<td>Data Structures and Algorithms</td>
<td>E-</td>
<td>8</td>
<td>15R</td>
<td>F. O. Friedrich Wicker</td>
</tr>
<tr>
<td>Abstract</td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course is about fundamental algorithm design paradigms (such as induction, divide-and-conquer, backtracking, dynamic programming), classic algorithmic problems (such as sorting and searching), and data structures (such as lists, hashing, search trees). Moreover, an introduction to parallel programming is provided. The programming model of C++ will be discussed in some depth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notice</td>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notice</td>
<td>An understanding of the design and analysis of fundamental algorithms and data structures. Knowledge regarding chances, problems and limits of parallel and concurrent programming. Deeper insight into a modern programming model by means of the programming language C++.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

Fundamental algorithms and data structures are presented and analyzed. Firstly, this comprises design paradigms for the development of algorithms such as induction, divide-and-conquer, backtracking and dynamic programming and classical algorithmic problems such as searching and sorting. Secondly, data structures for different purposes are presented, such as linked lists, hash tables, balanced search trees, heaps and union-find structures. The relationship and tight coupling between algorithms and data structures is illustrated with geometric problems and graph algorithms.

In the part about parallel programming, parallel architectures are discussed conceptually (multicore, vectorization, pipelining). Parallel programming concepts are presented (Amdahl’s and Gustavson’s laws, task/data parallelism, scheduling). Problems of concurrency are analyzed (Data races, bad interleavings, memory reordering). Process synchronisation and communication in a shared memory system is explained (mutual exclusion, semaphores, monitors, condition variables). Progress conditions are analysed (freedom from deadlock, starvation, lock- and wait-freedom). The concepts are underpinned with examples of concurrent and parallel programs and with parallel algorithms.

The programming model of C++ is discussed in some depth. The RAII (Resource Allocation is Initialization) principle will be explained. Exception handling, functors and lambda expression and generic programming with templates are further examples of this part. The implementation of parallel and concurrent algorithm with C++ is also part of the exercises (e.g. threads, tasks, mutexes, condition variables, promises and futures).

Prerequisites / notice

Prerequisites: Lecture Series 252-0835-00L Informatik I or equivalent knowledge in programming with C++.

Please note that this is a self study (virtual) course, which implies that (in the autumn semester) there are no physical lectures or exercise sessions offered. If you want to attend the real course, please go to 252-0002-00L in the spring semester.

252-0856-AAL

Computer Science

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Objective

Content

Ein Skript in englischer Sprache wird semesterbegleitend herausgegeben. Das Skript und die Folien werden auf der Vorlesungshomepage zum Herunterladen bereitgestellt.

Literature

Lecture notes

Bjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010

406-0603-AAL

Stochastics (Probability and Statistics)

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.

Objective

The objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".

Content

From "Statistics for research" (online)
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student’s t Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
Ch 1: Basics
Ch 2: The R Environment
Ch 3: Probability and distributions
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation
Cell and Molecular Biology for Engineers I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology. Students will also learn the principles how biological models are established, and how these models can be tested.

Objective
After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.

Content
Lectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells.

Literature

Bio V: Bioinformatics
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Literature
Pevsner J, Bioinformatics and Functional Genomics, 3rd edition, 2015, chapters 1–7

Computational Biology and Bioinformatics Master - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

V	lecture
G	lecture with exercise
U	exercise
S	seminar
K	colloquium
P	practical/laboratory course
A	independent project
D	diploma thesis
R	revision course / private study

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Cyber Security Master

Field of Specialization

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0463-00L</td>
<td>Security Engineering</td>
<td>W</td>
<td>7</td>
<td>2V+2U+2A</td>
<td>S. Krstic</td>
</tr>
</tbody>
</table>

Abstract
Subject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements & risk analysis, system modeling & model-based development methods, implementation-level security, and evaluation criteria for secure systems.

Objective
Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.

Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems
Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems

Modules taught:

1. Introduction
 - Introduction of Infsec group and speakers
 - Security meets SW engineering: an introduction
 - The activities of SW engineering, and where security fits in
 - Overview of this class

2. Requirements Engineering: Security Requirements and some Analysis
 - Overview: functional and non-functional requirements
 - Use cases, misuse cases, sequence diagrams
 - Safety and security

3. Modeling in the design activities
 - Structure, behavior, and data flow
 - Class diagrams, statecharts

4. Model-driven security for access control (Part I)
 - SecureUML as a language for access control
 - Combining Design Modeling Languages with SecureUML
 - Semantics, i.e., what does it all mean,
 - Generation
 - Examples and experience

5. Model-driven security (Part II)
 - Continuation of above topics

6. Security patterns (design and implementation)

7. Implementation-level security
 - Buffer overflows
 - Input checking
 - Injection attacks

8. Code scanning
 - Static code analysis basics
 - Theoretical and practical challenges
 - Analysis algorithms
 - Common bug pattern search and specification
 - Dataflow analysis

9. Testing
 - Overview and basics
 - Model-based testing
 - Testing security properties

10. Risk analysis and management
 - "Risk": assets, threats, vulnerabilities, risk
 - Risk assessment: quantitative and qualitative
 - Safeguards
 - Generic risk analysis procedure
 - The OCTAVE approach
 - Example of qualitative risk assessment

11. Threat modeling
 - Overview
 - Safety engineering basics: FMEA and FTA
 - Security impact analysis in the design phase
 - Modeling security threats: attack trees
 - Examples and experience

12. Evaluation criteria
 - NIST special papers
 - ISO/IEC 27000
 - Common criteria
 - BSI baseline protection

13. Guest lecture
 - TBA

Literature
- Further relevant books and journal/conference articles will be announced in the lecture.

Prerequisites / notice
Prerequisite: Class on Information Security

252-1414-00L System Security W 7 credits 2V+2U+2A S. Capkun, A. Perrig

Abstract
The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.
Objective
In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.

Content
The first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include; patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TGC, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.

263-4640-00L Network Security W 8 credits 2V+2U+3A A. Perrig, S. Frei, M. Legner, K. Paterson

Abstract
Some of today's most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them.

Objective
- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

Content
The course will cover topics spanning four broad themes with a focus on the first two themes:
(1) network defense mechanisms such as public-key infrastructures, TLS, VPNs, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems;
(2) network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
(3) analysis and inference topics such as traffic monitoring and network forensics; and
(4) new technologies related to next-generation networks.

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.

Prerequisites / notice
This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L. Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
assessed
assessed
Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management
assessed
assessed
assessed
assessed
assessed
Domain C - Social Competencies
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation
not assessed
Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management
not assessed
assessed
assessed
not assessed
not assessed
not assessed

Electives
Number Title Type ECTS Hours Lecturers
227-0575-00L Advanced Topics in Communication Networks W 6 credits 2V+2U L. Vanbever

Abstract
This course covers advanced topics and technologies in computer networks, both theoretically and practically. It is offered each Fall semester, with rotating topics. Repetition for credit is possible with consent of the instructor. In the Fall 2021, the course will cover advanced topics in Internet routing and forwarding.

Objective
The goals of this course is to provide students with a deeper understanding of the existing and upcoming Internet routing and forwarding technologies used in large-scale computer networks such as Internet Service Providers (e.g., Swisscom or Deutsche Telekom), Content Delivery Networks (e.g., Netflix) and Data Centers (e.g., Google). Besides covering the fundamentals, the course will be "hands-on" and will enable students to play with the technologies in realistic network environments, and even implement some of them on their own during labs and a final group project.
The course will cover advanced topics in Internet routing and forwarding such as:

- Tunneling
- Hierarchical routing
- Traffic Engineering and Load Balancing
- Virtual Private Networks
- Quality of Service/Queuing/Scheduling
- Fast Convergence
- Network virtualization
- Network programmability (OpenFlow, P4)
- Network measurements

The course will be divided in two main blocks. The first block (~8 weeks) will interleave classical lectures with practical exercises and labs. The second block (~6 weeks) will consist of a practical project which will be performed in small groups (~3 students). During the second block, lecture slots will be replaced by feedback sessions where students will be able to ask questions and get feedback about their project. The last week of the semester will be dedicated to student presentations and demonstrations.

Lecture notes
Lecture notes and material will be made available before each course on the course website.

Literature
Prerequisites / notice
Prerequisites: Communication Networks (227-0120-00L) or equivalents / good programming skills (in any language) are expected as both the exercises and the final project will involve coding.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking

227-0579-00L

Abstract
This course covers the security of commodity computer hardware (e.g., CPU, DRAM, etc.) with a special focus on cutting-edge hands-on research. The aim of the course is familiarizing the students with the hardware security and more specifically microarchitectural and circuit-level attacks and defenses through lectures, reviewing and discussing papers, and executing some of these advanced attacks.

Objective
By the end of the course, the students will be familiar with the art in commodity computer hardware attacks and defenses. More specifically, the students will learn about:

- security problems of commodity hardware that we use everyday and how you can defend against them.
- relevant computer architecture and operating system aspects of these issues.
- hands-on techniques for performing hardware attacks.
- writing critical reviews and constructive discussions with peers on this topic.

This is the course where you get credit points by building some of the most advanced exploits on the planet! The luckiest team will collect a Best Demo Award at the end of the course.

252-0811-00L

Abstract
Hands-on course on applied aspects of information security. Applied information security, operating system security, OS hardening, computer forensics, web application security, project work, design, implementation, and configuration of security mechanisms, risk analysis, system review.

Objective
The Applied Security Laboratory addresses four major topics: operating system security (hardening, vulnerability scanning, access control, logging), application security with an emphasis on web applications (web server setup, common web exploits, authentication, session handling, code security), computer forensics, and risk analysis and risk management.

Content
This course emphasizes applied aspects of Information Security. The students will study a number of topics in a hands-on fashion and carry out experiments in order to better understand the need for secure implementation and configuration of IT systems and to assess the effectiveness and impact of security measures. This part is based on a book and virtual machines that include example applications, questions, and answers.

The students will also complete an independent project: based on a set of functional requirements, they will design and implement a project work, design, implementation, and configuration of security mechanisms, risk analysis, system review.

Lecture notes

Literature
Recommended reading includes:
* Various: OWASP Guide to Building Secure Web Applications, available online
* O'Reilly, Loukides: Unix Power Tools, O'Reilly & Associates.
* Frisch: Essential System Administration, O'Reilly & Associates.
* NIST: Risk Management Guide for Information Technology Systems, available online as PDF
* BSI: IT-Grundschutzhandbuch, available online
Public-Key Encryption has had a significant impact by enabling remote parties to communicate securely via an insecure channel. Latest advanced encryption schemes go further by providing a fine-grained access to the encrypted data.

Seminar

Seminar

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-4601-00L</td>
<td>Current Topics in Information Security</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>S. Capkun, K. Paterson, A. Perrig, S. Shinde</td>
</tr>
</tbody>
</table>

The seminar covers various topics in information security: security protocols (models, specification & verification), trust management, access control, non-interference, side-channel attacks, identity-based cryptography, host-based attack detection, anomaly detection in backbone networks, key-management for sensor networks. The seminar covers the independent study of scientific literature and assessment of its contributions as well as learning and practicing presentation techniques. The participants are expected to read a scientific paper and present it in a 35-40 min talk. At the beginning of the semester a short introduction to presentation techniques will be given.

Selected Topics

- security protocols: models, specification & verification
- trust management, access control and non-interference
- side-channel attacks
- identity-based cryptography
- host-based attack detection
- anomaly detection in backbone networks
- key-management for sensor networks

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

Semester Project

Semester Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>260-0100-00L</td>
<td>Semester Project Only for Cyber Security MSc</td>
<td>W</td>
<td>12</td>
<td>26A</td>
<td>Professors</td>
</tr>
</tbody>
</table>

The Semester Project provides students with the opportunity to apply acquired knowledge and skills. Students can gain hands-on experience by solving independently a technical-scientific problem. Prerequisites: At least one core course in Cyber Security and one inter focus course must have been completed successfully.
This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.

The course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form.

- physical storage: distributed file systems (HDFS), object storage (S3), key-value stores
- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)
- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro)
- data shapes and models (tables, trees, graphs, cubes)
- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)
- an overview of functional, declarative programming languages across database shapes (SQL, XQuery, JSONiq, Cypher, MDX)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)
- resource management (YARN)
- what a data center is made of and why it matters (racks, nodes, ...)
- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

Large scale analytics and machine learning are outside of the scope of this course.

Papers from scientific conferences and journals. References will be given as part of the course material during the semester.

This course, in the autumn semester, is only intended for:
- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

For students of all other departments interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you:
- "Information Systems for Engineers" (SOL, relational databases): this Fall
- "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists): Spring 2021

There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers.

Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data.
Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing advanced topics in parallel and high-performance computing. We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

The main source of information for the course will be articles and research papers describing the architecture of the systems discussed. The list of papers will be provided at the beginning of the course.

The course requires to have completed the Data Modeling and Data Bases course at the Bachelor level as it assumes knowledge of databases and SQL.

Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U+4A</td>
<td>J. M. Buhmann, C. Cotrini Jimenez</td>
</tr>
</tbody>
</table>

Abstract

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Fundamentals:
 - What is data?
 - Bayesian Learning
 - Computational learning theory
- Supervised learning:
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks
- Unsupervised learning:
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

No lecture notes, but slides will be made available on the course webpage.

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-1414-00L</td>
<td>System Security</td>
<td>W</td>
<td>7 credits</td>
<td>2V+2U+2A</td>
<td>S. Capkun, A. Perrig</td>
</tr>
</tbody>
</table>

Abstract

The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.

Objective

In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.

Content

The first part of the lecture covers individual system's aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such asCapabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, OA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-2800-00L</td>
<td>Design of Parallel and High-Performance Computing</td>
<td>W</td>
<td>9 credits</td>
<td>3V+2U+3A</td>
<td>T. Hoefler, M. Püschel</td>
</tr>
</tbody>
</table>

Abstract

Advanced topics in parallel and high-performance computing.

Objective

Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.

Content

We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.
Informal Methods

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Venue</th>
<th>Credits</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3210-00L</td>
<td>Deep Learning</td>
<td>W</td>
<td>8</td>
<td>3V+2U+2A</td>
<td>F. Perez Cruz, A. Lucchi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites / notice
This course is intended for computer science students. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallel Programming (parallel programming)" and "Algorithmen und Datenstrukturen (algorithms and data structures)" or equivalent courses.

Abstract
Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective
In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is to understand why these methods work and how. There will also be a rich set of hands-on and practical projects to familiarize students with this emerging technology.

Prerequisites / notice
This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

Advanced Machine Learning
https://ml2.inf.ethz.ch/courses/aml/

Computational Intelligence Lab
http://da.inf.ethz.ch/teaching/2019/CIL/

Introduction to Machine Learning
https://las.inf.ethz.ch/teaching/introml-S19

Statistical Learning Theory
http://ml2.inf.ethz.ch/courses/slt/

Computational Statistics
https://stat.ethz.ch/lectures/ss19/comp-stats.php

Probabilistic Artificial Intelligence
https://las.inf.ethz.ch/teaching/pai-f18

263-3850-00L Informal Methods

Abstract
Formal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to design, implement, reason about, and debug computer systems.

Objective
This course is about equipping students with the insights and conceptual tools provided by formal methods, and thereby enabling them to become better systems programmers. By the end of the course, students should be able to seamlessly integrate basic concepts from formal methods into how they conceive, design, implement, reason about, and debug computer systems.

Content
The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems (who may or may not have existing background knowledge of formal methods) with a basis for applying formal methods in their work.

Instead, the majority of the course will be about how to apply these techniques to actual, practical code in real systems. We will work from real systems code written both by students taking the course, and practical systems developed using formal techniques, in particular the verified seL4 microkernel will be a key case study. We will also focus on informal, pen-and-paper arguments for correctness of programs and systems rather than using theorem provers or automated verification tools; again these latter techniques are well covered in other courses (and recommended as a complement to this one).

Machine Intelligence
Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10</td>
<td>3V+2U+4A</td>
<td>J. M. Buhmann, C. Cotrini Jimenez</td>
</tr>
<tr>
<td></td>
<td>Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objective
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistical knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
- What is data?
- Bayesian Learning
- Computational learning theory

Supervised learning:
- Ensembles: Bagging and Boosting
- Max Margin methods
- Neural networks

Unsupervised learning:
- Dimensionality reduction techniques
- Clustering
- Mixture Models
- Non-parametric density estimation
- Learning Dynamical Systems

Lecture notes: No lecture notes, but slides will be made available on the course webpage.

Literature:

Prerequisites / notice:
- The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
- Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.
- PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

263-3210-00L Deep Learning W 8 credits 3V+2U+2A F. Perez Cruz, A. Lucchi

Abstract:
Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective:
In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.

Prerequisites / notice:
- This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
- Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.
- PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

- Advanced Machine Learning
 https://ml2.inf.ethz.ch/courses/aml/

- Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/

- Introduction to Machine Learning
 https://las.inf.ethz.ch/teaching/introml-S19

- Statistical Learning Theory
 http://ml2.inf.ethz.ch/courses/slt/

- Computational Statistics
 https://stat.ethz.ch/lectures/ss19/comp-stats.php

- Probabilistic Artificial Intelligence
 https://las.inf.ethz.ch/teaching/pai-f18

263-5210-00L Probabilistic Artificial Intelligence W 8 credits 3V+2U+2A A. Krause

Abstract:
This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.

Objective:
How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.
This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on R. Cotterell. Lectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research, G. Zuzic.

Reliable and Trustworthy Artificial Intelligence

Over the past years, rapid technological advancements have transformed classical disciplines such as biology and medicine into fields of applied science. While the sheer amount of the collected data often makes computational approaches inevitable for analysis, it is the domain specific structure and close relation to research and clinic, that call for accurate, robust and efficient algorithms. In this course we will critically review central problems in Biomedicine and will discuss the technical foundations and solutions for these problems.

Topics covered:
- Computational Biomedicine
- Advanced Algorithms
- Natural Language Processing
- Reliable and Trustworthy Artificial Intelligence

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 525 of 2152
Artificial Intelligence in Education

Type
M. Sachan, F. Yu

Lecture notes will be posted on Moodle.

Title
This course aims to provide students with an advanced introduction of RL theory and algorithms as well as bring them near the frontier of computer vision, including:

- Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structuring from motion, Tracking, Object recognition, Object category recognition
- Randomized Algorithms and probabilistic methods

Objective
The course will be centered around exploring methodological and system-focused perspectives on designing AI systems for education and analyzing educational data using AI methods. Students will be expected to:

a) engage in presentations and active in-class discussion,
b) work on problem-sets exemplifying the use of educational data mining techniques, and
c) undertake a final course project with feedback from instructors.

Content
The course will start with a general introduction to AI, where we will cover supervised and unsupervised learning techniques (e.g., classification and regression models, feature selection and preprocessing of data, clustering, dimensionality reduction and text mining techniques) and then focus on applying these techniques in educational data mining. After the introduction of the basic methodologies, we will continue with the most relevant applications of AI in educational technologies (e.g., intelligent tutoring and student personalization, scaffolding open-ended discovery learning, socially-aware AI and learning at scale with AI systems). In the final part of the course, we will cover challenges associated with using AI in student-facing settings.

Literature
There is no textbook required, but there will be regularly assigned readings from research literature, linked to the course website.

Prerequisites / notice
There are no prerequisites for this class. However, it will help if the student has taken an undergraduate or graduate level class in statistics, data science or machine learning. This class is appropriate for advanced undergraduates and master students in Computer Science as well as PhD students in other departments.

Foundations of Reinforcement Learning

Type
W

Number of participants limited to 190.

Abstract
Reinforcement learning (RL) has been in the limelight of many recent breakthroughs in artificial intelligence. This course focuses on the theoretical and algorithmic foundations of reinforcement learning, through the lens of optimization, modern approximation, and learning theory. The course targets M.S. students with strong research interests in reinforcement learning, optimization, and control.

Objective
This course aims to provide students with an advanced introduction of RL theory and algorithms as well as bring them near the frontier of this active research field.

By the end of the course, the students will be able to:

- Identify the strengths and limitations of various reinforcement learning algorithms;
- Formulate and solve sequential decision-making problems by applying relevant reinforcement learning tools;
- Generalize or discover "new" applications, algorithms, or theories of reinforcement learning towards conducting independent research on the topic.

Content
Basic topics include fundamentals of Markov decision processes, approximate dynamic programming, linear programming and primal-dual perspectives of RL, model-based and model-free RL, policy gradient and actor-critic algorithms, Markov games and multi-agent RL. If time allows, we will also discuss advanced topics such as batch RL, inverse RL, causal RL, etc. The course keeps strong emphasis on in-depth understanding of the mathematical modeling and theoretical properties of RL algorithms.

Literature
Dynamic Programming and Optimal Control, Vol I & II, Dimitris Bertsekas
Algorithms for Reinforcement Learning, Csaba Szepesvári.

Prerequisites / notice
Students are expected to have strong mathematical background in linear algebra, probability theory, optimization, and machine learning.

Computer Vision

Type
W

Number of participants limited to 190.

Abstract
The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.

Objective
The objectives of this course are:

1. To introduce the fundamental problems of computer vision,
2. To introduce the main concepts and techniques used to solve these.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

Content
Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structuring from motion, Tracking, Object recognition, Object category recognition

Prerequisites / notice
It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.

Theoretical Computer Science

Core Courses

- Randomized Algorithms and Probabilistic Methods
 - Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks.

- Advanced Machine Learning
 - Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks.
Abstract

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:

- What is data?
- Bayesian Learning
- Computational learning theory

Supervised learning:

- Ensembles: Bagging and Boosting
- Max Margin methods
- Neural networks

Unsupervised learning:

- Dimensionality reduction techniques
- Clustering
- Mixture Models
- Non-parametric density estimation
- Learning Dynamical Systems

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

| 252-1425-00L | Geometry: Combinatorics and Algorithms | W | 8 credits | 3V+2U+2A | B. Gärtner, E. Welzl, M. Hoffmann, M. Wettstein |

Abstract

Geometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are planar triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?)

Objective

The goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains. In particular, we want to prepare students for conducting independent research, for instance, within the scope of a thesis project.

Content

Planar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in Rd, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations.

Lecture notes

Yes

Literature

Prerequisites / notice

Prerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH.

Outlook: In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area.

| 263-4500-00L | Advanced Algorithms | W | 9 credits | 3V+2U+3A | M. Ghaffari, G. Zuzic |

Abstract

This is a graduate-level course on algorithm design (and analysis). It covers a range of topics and techniques in approximation algorithms, sketching and streaming algorithms, and online algorithms.

Objective

This course familiarizes the students with some of the main tools and techniques in modern subareas of algorithm design.

Content

The lectures will cover a range of topics, tentatively including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms and their concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and derandomization.

Lecture notes

- https://people.inf.ethz.ch/gmohsen/AA21/

Prerequisites / notice

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you're ready for this class or not, please consult the instructor.
This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equipartition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.

Objective
The fundamentals of Information Theory including Shannon's source coding and channel coding theorems

Content
The entropy rate of a source, Typical sequences, the asymptotic equipartition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity

Literature

Prerequisites / notice
Several copies of both books are available in the Computer Science library.

Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic. Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

Outline:
- Introduction to classic game-theoretic concepts
- Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity.
- Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization.
- Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy'.
- Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium.
- Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange.

Lecture notes
Lecture notes will be usually posted on the website shortly after each lecture.

Lectures will be on the blackboard only, but there will be a set of typed lecture notes which follow the class closely.

Students are expected to have a mathematical background and should be able to write rigorous proofs.
Visual and Interactive Computing

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0543-01L</td>
<td>Computer Graphics</td>
<td>W</td>
<td>8</td>
<td>3V+2U+2A</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>The course will cover the fundamentals of computer graphics, focusing on the generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>At the end of the course the students will be able to build a rendering system. Students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>Books: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting, Physically Based Rendering: From Theory to Implementation</td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td>Prerequisites: Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td>The programming assignments will be in C++. This will not be taught in the class.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0590-00L</td>
<td>Computer Vision</td>
<td>W</td>
<td>8</td>
<td>3V+1U+3A</td>
<td>M. Pollefeys, S. Tang, F. Yu</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The objectives of this course are:</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition</td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td>It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.</td>
</tr>
</tbody>
</table>

Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0546-00L</td>
<td>Physically-Based Simulation in Computer Graphics</td>
<td>W</td>
<td>5</td>
<td>2V+1U+1A</td>
<td>V. da Costa de Azevedo, B. Solenthaler, B. Thomaszewska</td>
</tr>
</tbody>
</table>
After attending this course, students will:

1. Understand the foundations of 3D graphics, Computer Vision, and Human-Machine Interaction
2. Have a clear understanding on how to build mixed reality apps
3. Have a good overview of state-of-the-art Mixed Reality
4. Be able to critically analyze and assess current research in this area.

The course introduces latest mixed reality technology and provides introductory elements for a number of related fields including: Introduction to Mixed Reality / Augmented Reality / Virtual Reality Introduction to 3D Computer Graphics, 3D Computer Vision. This will take place in the form of short lectures, followed by student presentations discussing the current state-of-the-art. The main focus of this course are student projects on mixed reality topics, where small groups of students will work on a particular project with the goal to design, develop and deploy a mixed reality application. The project topics are flexible and can reach from proof-of-concept vision/graphics/HMI research, to apps that support teaching with interactive augmented reality, or game development. The default platform will be Microsoft HoloLens in combination with C# and Unity3D - other platforms are also possible to use, such as tablets and phones.

Prerequisites / notice
Prerequisites include:
- Good programming skills (C# / C++ / Java etc.)
- Computer graphics/vision experience: Students should have taken, at a minimum, Visual Computing. Higher level courses are recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

Interfocus Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-0006-00L</td>
<td>Algorithms Lab</td>
<td>W</td>
<td>8</td>
<td>4P+3A</td>
<td>A. Steger, E. Welzl</td>
</tr>
<tr>
<td></td>
<td>Only for master students!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students learn how to solve algorithmic problems given by a textual description (understanding problem setting, finding appropriate modeling, choosing suitable algorithms, and implementing them). Knowledge of basic algorithms and data structures is assumed; more advanced material and usage of standard libraries for combinatorial algorithms are introduced in tutorials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The objective of this course is to learn how to solve algorithmic problems given by a textual description. This includes appropriate problem modeling, choice of suitable (combinatorial) algorithms, and implementing them (using C/C++, STL, CGAL, and BGL).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263-0009-00L</td>
<td>Information Security Lab</td>
<td>W</td>
<td>8</td>
<td>2V+1U+3P+1A</td>
<td>K. Paterson, S. Capkun,</td>
</tr>
<tr>
<td></td>
<td>Only for master students!</td>
<td></td>
<td></td>
<td></td>
<td>D. Hofheinz, A. Perrig, S. Shinde</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 250.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students will be introduced to Information Security, introducing adversarial thinking and security by design as key approaches to building secure systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This InterFocus Course will provide a broad, hands-on introduction to Information Security, introducing adversarial thinking and security by design as key approaches to building secure systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course will introduce key concepts from Information Security, both from attack and defence perspectives. Students will gain an appreciation of the complexity and challenge of building secure systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course is organised in two-week segments. In each segment, a new concept from Information Security will be introduced. The overall scope will be broad, including cryptography, protocol design, network security, system security.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Will be made available during the semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public doctoral course - Tools and Jewels.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dan Boneh and Victor Shoup, A Graduate Course in Applied Cryptography.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ideally, students will have taken the D-INFK Bachelors course “Information Security” or an equivalent course at Bachelors level.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Free Electives

All Master level courses offered by ETH Zurich, EPF Lausanne and the University of Zurich may be chosen.

Course Catalogue of ETH Zurich

GESS Science in Perspective

see GESS Science in Perspective: Language Courses ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-INFK.

Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>260-0700-00L</td>
<td>Internship</td>
<td>E</td>
<td>0</td>
<td></td>
<td>external organisers</td>
</tr>
<tr>
<td></td>
<td>Only for Cyber Security MSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>An Internship provides opportunities to gain experience in an industrial environment and it creates a network of contacts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>260-0800-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30 credits</td>
<td>64D</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Only students who fulfill the following criteria are allowed to begin with their master thesis:

a. successful completion of the bachelor programme;
b. fulfilling of any additional requirements necessary to gain admission to the master programme.

Abstract

The Master’s thesis concludes the study program and demonstrates the students’ ability to use the knowledge and skills acquired during Master’s studies to solve a complex cyber security problem.

Objective

To work independently and to produce a scientifically structured work.

Cyber Security Master - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td></td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
<td></td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
For classical parametric models there exist optimal statistical estimators and test statistics whose distributions can often be determined.

Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>447-0649-01L</td>
<td>Applied Statistical Regression I</td>
<td>O</td>
<td>4</td>
<td>1V+1U</td>
<td>M. Tanadini</td>
</tr>
<tr>
<td></td>
<td>Only for DAS and CAS in Applied Statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Simple and multiple regression models, with emphasis on practical aspects and interpretation of results, analysis of residuals and model selection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-0649-02L</td>
<td>Applied Statistical Regression II</td>
<td>O</td>
<td>2</td>
<td>1V+1U</td>
<td>C. Renaux</td>
</tr>
<tr>
<td></td>
<td>Only for DAS and CAS in Applied Statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Generalized linear models (GLMs) and basic ideas of more advanced regression models.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding the concept and flexibility of generalized linear models and correct interpretation of the corresponding model outputs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-0625-01L</td>
<td>Applied Analysis of Variance and Experimental Design I</td>
<td>O</td>
<td>3</td>
<td>1V+1U</td>
<td>L. Meier</td>
</tr>
<tr>
<td></td>
<td>Only for DAS and CAS in Applied Statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-6201-00L</td>
<td>Nonparametric and Resampling Methods</td>
<td>O</td>
<td>2</td>
<td>2G</td>
<td>L. Meier, D. Kuonen</td>
</tr>
<tr>
<td></td>
<td>Special Students "University of Zurich (UZH)" in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Nonparametric tests, randomization tests, jackknife and bootstrap, as well as asymptotic properties of estimators.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>For classical parametric models there exist optimal statistical estimators and test statistics whose distributions can often be determined exactly. The methods covered in this course allow for finding statistical procedures for more general models and to derive exact or approximate distributions of complicated estimators and test statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-0990-00L</td>
<td>Workshop</td>
<td>O</td>
<td>1</td>
<td>1S</td>
<td>L. Meier</td>
</tr>
<tr>
<td></td>
<td>Only for DAS in Applied Statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In the workshop each participant gives a short talk about a recent statistical problem encountered in their daily work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Presentation of a statistical problem, getting to know different applications of statistical methodology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>447-0625-02L</td>
<td>Applied Analysis of Variance and Experimental Design II</td>
<td>W</td>
<td>3</td>
<td>1V+1U</td>
<td>L. Meier</td>
</tr>
<tr>
<td></td>
<td>Only for DAS and CAS in Applied Statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will be able to plan and analyze sophisticated experiments in the fields of natural sciences. They will gain practical experience by using the software R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-6221-00L</td>
<td>Nonparametric Regression</td>
<td>W</td>
<td>1</td>
<td>1G</td>
<td>M. Mächler</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester. Special Students "University of Zurich (UZH)" in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course focusses on nonparametric estimation of probability densities and regression functions. These recent methods allow modelling without restrictive assumptions such as 'linear function'. These smoothing methods require a weight function and a smoothing parameter. Focus is on one dimension, higher dimensions and samples of curves are treated briefly. Exercises at the computer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Knowledge on estimation of probability densities and regression functions via various statistical methods. Understanding of the choice of weight function and of the smoothing parameter, also done automatically. Practical application on data sets at the computer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447-6257-00L</td>
<td>Repeated Measures</td>
<td>W</td>
<td>1</td>
<td>1G</td>
<td>M. Mächler</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester. Special Students "University of Zurich (UZH)" in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 532 of 2152
This course introduces probabilistic deep learning (DL). DL is used for data with complex features like images. We treat DL as probabilistic.

Objective

Participants will gain the ability of recognizing repeated measures and to analyze them adequately. They will know how to deal with pseudoreplicates.

Abstract

The elements of a sample survey are explained. The most important classical sample designs (simple random sampling and stratified random sampling) with their estimation procedures and the use of auxiliary information including the Horvitz-Thompson estimator are introduced. Data preparation, non-response and its treatment, variance estimation and analysis of survey data is discussed.

Objective

Knowledge of the Elements and the process of a sample survey. Understanding of the paradigm of random samples. Knowledge of simple random sampling and stratified random sampling and capability to apply the corresponding methods. Knowledge of further methods of sampling and estimation as well as data preparation and analysis.

Lecture notes

Introduction to the statistical methods of survey research

Deep Learning: A Probabilistic Approach

This course introduces probabilistic deep learning (DL). DL is used for data with complex features like images. We treat DL as probabilistic models, as a continuation of GLMs (logistic regression, ...). The models are fitted with maximum likelihood or Bayesian learning.

You will learn about different neural network architectures (e.g. fully connected and convolutional neural networks) and how to choose the appropriate NN architecture for your task at hand.

You will learn to model different outcome distributions such as Gaussians, Poissonsians, or Multinomial for the task at hand.

You will get practical experiences in setting up probabilistic DL models, learn how to tune them, and learn how to control the training procedure.

Spatial Statistics

In many research fields, spatially referenced data are collected. When analysing such data the focus is either on exploring their structure (dependence on explanatory variables, autocorrelation) and/or on spatial prediction. The course provides an introduction to geostatistical methods that are useful for such purposes.

The course will provide an overview of the basic concepts and stochastic models that are commonly used to model geostatistical data sets. In addition, the participants will learn a number of geostatistical techniques and acquire some familiarity with software that is useful for analysis of spatial data.

Data Mining

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 533 of 2152
Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.

Abstract

Block course only on prediction problems, aka "supervised learning".

Part 1, Classification: logistic regression, linear/quadratic discriminant analysis, Bayes classifier; additive and tree models; further flexible ("nonparametric") methods.

Part 2, Flexible Prediction: additive models, MARS, Y-Transformation models (ACE, AVAS); Projection Pursuit Regression (PPR), neural nets.

Content

"Data Mining" is a large field from which in this block course, we only treat so called prediction problems, aka "supervised learning".

Part 1, Classification, recalls logistic regression and linear / quadratic discriminant analysis (LDA/QDA) and extends these (in the framework of "Bayes classifier") to (generalized) additive (GAM) and tree models (CART), and further mentions other flexible ("nonparametric") methods.

Part 2, Flexible Prediction of continuous or "class" response/target contains additive models, MARS, Y-Transformation models (ACE, AVAS); Projection Pursuit Regression (PPR), neural nets.

Lecture notes

The block course is based on (German language) lecture notes.

Prerequisites / notice

The exercises are done exclusively with the (free, open source) software "R" (http://www.r-project.org). A final exam will also happen at the computers, using R (and your brains!).

Bayes Methods

Does not take place this semester.
Special Students "University of Zurich (UZH)" in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.

Abstract

conditional probability; bayes inference (conjugate distributions, HPD-areas; linear and empirical bayes); determination of the a-posteriori distribution through simulation (MCMC with R2Winbugs); introduction to multilevel/hierarchical models.

Content

Bayes statistics is attractive, because it allows to make decisions under uncertainty where a classical frequentist statistical approach fails. The course provides an introduction into bayesian methods. It is moderately mathematically technical, but demands a flexibility of mind, which should not underestimated.

Literature

Kruschke, J.K., Doing Bayesian Data Analysis, Elsevier2011.

Prerequisites / notice

Prerequisite:Basic knowledge of statistics; Knowledge of R.

Statistical Analysis of Financial Data

Does not take place this semester.
Special Students "University of Zurich (UZH)" in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.

Abstract

Objective

Getting to know the typical properties of financial data and appropriate statistical models, incl. the corresponding functions in R.
The first part of the lecture covers individual system’s aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.

In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.

The first part of the lecture covers individual system’s aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc. In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-1414-00L</td>
<td>System Security</td>
<td>O</td>
<td>7 credits</td>
<td>2V+2U+2A</td>
<td>S. Capkun, A. Perrig</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The first part of the lecture covers individual system’s aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.

Prerequisites / notice

This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L.

Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptable and Flexible
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

268-0101-00L Introduction to Information Security

Only for CAS and DAS in Cyber Security.

Abstract

In this course, the goal is to introduce the fundamentals of information/cyber security from a technical point of view. Along with theory, hands-on experiments are an important building block of the course and help to deepen the students’ understanding of the theory parts.

Objective

Graduates of the course know the technical foundations of information security and understand the difficulty and complexity involved when trying to build secure systems.

Content

In this new course, the goal is to introduce the fundamentals of information/cyber security from a technical point of view. Along with theory, hands-on experiments are an important building block of the course and help to deepen the students’ understanding of the theory parts.

268-0102-00L Applied Security Laboratory

Only for DAS in Cyber Security.

Content

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 535 of 2152
Abstract
Hands-on course on applied aspects of information security. Applied information security, operating system security, OS hardening, computer forensics, web application security, project work, design, implementation, and configuration of security mechanisms, risk analysis, system review.

Objective
The Applied Security Laboratory addresses four major topics: operating system security (hardening, vulnerability scanning, access control, logging), application security with an emphasis on web applications (web server setup, common web exploits, authentication, session handling, code security), computer forensics, and risk analysis and risk management.

Content
This course emphasizes applied aspects of Information Security. The students will study a number of topics in a hands-on fashion and carry out experiments in order to better understand the need for secure implementation and configuration of IT systems and to assess the effectiveness and impact of security measures. This part is based on a book and virtual machines that include example applications, questions, and answers.

The students will also complete an independent project: based on a set of functional requirements, they will design and implement a prototypical IT system. In addition, they will conduct a thorough security analysis and devise appropriate security measures for their systems. Finally, they will carry out a technical and conceptual review of another system. All project work will be performed in teams and must be properly documented.

Lecture notes

Literature
Recommended reading includes:
* Various: OWASP Guide to Building Secure Web Applications, available online
* O'Reilly, Loukides: Unix Power Tools, O'Reilly & Associates.
* Frisch: Essential System Administration, O'Reilly & Associates.
* NIST: Risk Management Guide for Information Technology Systems, available online as PDF
* BSI: IT-Grundschutzhandbuch, available online

Prerequisites / notice
* The lab allows flexible working since there are only few mandatory meetings during the semester.
* The lab covers a variety of different techniques. Thus, participating students should have a solid foundation in the following areas: information security, operating system administration (especially Unix/Linux), and networking. Students are also expected to have a basic understanding of HTML, PHP, JavaScript, and MySQL because several examples are implemented in these languages.
* Students must be prepared to spend more than three hours per week to complete the lab assignments and the project. This applies particularly to students who do not meet the recommended requirements given above. Successful participants of the course receive 8 credits as compensation for their effort.
* All participants must sign the lab's charter and usage policy during the introduction lecture.

Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0463-00L</td>
<td>Security Engineering</td>
<td>W</td>
<td>7 credits</td>
<td>2V+2U+2A</td>
<td>S. Krstit</td>
</tr>
</tbody>
</table>

Abstract
Subject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements & risk analysis, system modeling & model-based development methods, implementation-level security, and evaluation criteria for secure systems.

Objective
Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include
* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems.
Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems

Modules taught:

1. Introduction
 - Introduction of Infsec group and speakers
 - Security meets SW engineering: an introduction
 - The activities of SW engineering, and where security fits in
 - Overview of this class
2. Requirements Engineering: Security Requirements and some Analysis
 - Overview: functional and non-functional requirements
 - Use cases, misuse cases, sequence diagrams
 - Safety and security
3. Modeling in the design activities
 - Structure, behavior, and data flow
 - Class diagrams, statecharts
4. Model-driven security for access control (Part I)
 - SecureUML as a language for access control
 - Combining Design Modeling Languages with SecureUML
 - Semantics, i.e., what does it all mean,
 - Generation
 - Examples and experience
5. Model-driven security (Part II)
 - Continuation of above topics
6. Security patterns (design and implementation)
7. Implementation-level security
 - Buffer overflows
 - Input checking
 - Injection attacks
8. Code scanning
 - Static code analysis basics
 - Theoretical and practical challenges
 - Analysis algorithms
 - Common bug pattern search and specification
 - Dataflow analysis
9. Testing
 - Overview and basics
 - Model-based testing
 - Testing security properties
10. Risk analysis and management
 - "Risk": assets, threats, vulnerabilities, risk
 - Risk assessment: quantitative and qualitative
 - Safeguards
 - Generic risk analysis procedure
 - The OCTAVE approach
 - Example of qualitative risk assessment
11. Threat modeling
 - Overview
 - Safety engineering basics: FMEA and FTA
 - Security impact analysis in the design phase
 - Modeling security threats: attack trees
 - Examples and experience
12. Evaluation criteria
 - NIST special papers
 - ISO/IEC 27000
 - Common criteria
 - BSI baseline protection
13. Guest lecture
 - TBA

Literature
- Further relevant books and journal/conference articles will be announced in the lecture.

Prerequisites / notice
Prerequisite: Class on Information Security

252-1411-00L Security of Wireless Networks W 6 credits 2V+1U+2A S. Capkun, K. Kostlainen
Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.
Objective

After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks.

Content

268-0201-00L Information Security Seminar and Project

Only for CAS and DAS in Cyber Security.

W 2 credits 2S S. Matetic

Abstract

Participants of the seminar are assigned a recent topic in cyber security. They are expected to become acquainted with the assigned issue and to prepare a corresponding presentation in the context of the seminar.

Objective

Participants have understood and presented a publication or report on a present topic in information security. By attending other participants presentations students get further introduced to additional current information security related topics/incidents.

Content

Participants of the seminar are assigned a recent topic in cyber security. They are expected to become acquainted with the assigned issue and to prepare a corresponding presentation in the context of the seminar.

268-0202-00L Contemporary Topics in Cyber Security

Only for CAS and DAS in Cyber Security.

W 3 credits 2G S. Matetic

Abstract

This course is composed of various sub-modules related to Cyber Security taught by experts on the relevant fields.

Objective

Students are expected to see behind the curtain of current research and engineering activities related to Cyber Security. At the same time students are introduced to contemporary challenges in cyber security by renowned experts.

Content

The lectures cover contemporary aspects and challenges in Cyber Security. The goal is to present current fields of research/engineering and the latest results. By way of example, Cyber Security Policy is one of sub-modules presented by researchers of the Center for Security Studies at ETH. Besides faculty members of the computer science department, there will be guest lecturers from industry presenting Cyber Security related challenges in their field of activity.

Literature

Will be announced during the course.

DAS in Cyber Security - Key for Type

W	Eligible for credits		
		Dr	Suitable for doctorate
E-	Recommended, not eligible for credits	O	Compulsory
Z	Courses outside the curriculum	W+	Eligible for credits and recommended

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Core Courses

Foundations Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0105-00L</td>
<td>Introduction to Estimation and Machine Learning</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>H.-A. Loeliger</td>
</tr>
</tbody>
</table>

Abstract

Mathematical basics of estimation and machine learning, with a view towards applications in signal processing.

Objective

Students master the basic mathematical concepts and algorithms of estimation and machine learning.

Content

Review of probability theory;
basics of statistical estimation;
least squares and linear learning;
Hilbert spaces;
Gaussian random variables;
singular-value decomposition;
kernel methods, neural networks, and more

Lecture notes

Lecture notes will be handed out as the course progresses.

Prerequisites / notice

solid basics in linear algebra and probability theory

Capstone Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>266-0100-00L</td>
<td>Capstone Project</td>
<td>O</td>
<td>8 credits</td>
<td>17A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract

The capstone project is part of the DAS in Data Science and is an opportunity to apply the knowledge acquired in the program in an independent, real-world project.

Objective

To apply the knowledge acquired in the program in an independent, real-world project.

Content

The capstone project can be done under the supervision of the Swiss Data Science Center, or of any core or adjunct faculty of Data Science.

The project has to be finished within 6 months. Deadline for a project the following semester conducted at the SDSC is mid June/mid December.

Specialisation Track

Hardware for Machine Learning

Offered in the Spring Semester.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0155-00L</td>
<td>Machine Learning on Microcontrollers</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>M. Magno, L. Benini</td>
</tr>
</tbody>
</table>

Abstract

Machine Learning (ML) and artificial intelligence are pervading the digital society. Today, even low power embedded systems are incorporating ML, becoming increasingly “smart”. This lecture gives an overview of ML methods and algorithms to process and extract useful near-sensor information in end-nodes of the “internet-of-things”, using low-power microcontrollers/processors (ARM-Cortex-M; RISC-V).

Objective

Learn how to Process data from sensors and how to extract useful information with low power microprocessors using ML techniques. We will analyze data coming from real low-power sensors (accelerometers, microphones, ExG bio-signals, cameras…). The main objective is to study in details how Machine Learning algorithms can be adapted to the performance constraints and limited resources of low-power microcontrollers.

Content

The final goal of the course is a deep understanding of machine learning and its practical implementation on single- and multi-core microcontrollers, coupled with performance and energy efficiency analysis and optimization. The main topics of the course include:

- Sensors and sensor data acquisition with low power embedded systems
- Machine Learning: Overview of supervised and unsupervised learning and in particular supervised learning (Bayes Decision Theory, Decision Trees, Random Forests, kNN-Methods, Support Vector Machines, Convolutional Networks and Deep Learning)
- Low-power embedded systems and their architecture. Low Power microcontrollers (ARM-Cortex M) and RISC-V-based Parallel Ultra Low Power (PULP) systems-on-chip.
- Low power smart sensor system design: hardware-software tradeoffs, analysis, and optimization. Implementation and performance evaluation of ML in battery-operated embedded systems.

The laboratory exercised will show how to address concrete design problems, like motion, gesture recognition, emotion detection, image and sound classification, using real sensors data and real MCU boards.

Presentations from Ph.D. students and the visit to the Digital Circuits and Systems Group will introduce current research topics and international research projects.

Lecture notes

Script and exercise sheets. Books will be suggested during the course.

Prerequisites / notice

Prerequisites: C language programming. Basics of Digital Signal Processing. Basics of processor and computer architecture. Some exposure to machine learning concepts is also desirable

Image Analysis & Computer Vision

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-5902-00L</td>
<td>Computer Vision</td>
<td>W</td>
<td>8 credits</td>
<td>3V+1U+3A</td>
<td>M. Pollefeys, S. Tang, F. Yu</td>
</tr>
</tbody>
</table>

Abstract

The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.
The objectives of this course are:

1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition

It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0421-00L</td>
<td>Deep Learning in Artificial and Biological Neuronal Networks</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>B. Grewé</td>
</tr>
</tbody>
</table>

Deep-learning (DL) a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods.

The main goal of this lecture is to provide a comprehensive overview into the learning principles neuronal networks as well as to introduce a diverse set, (e.g. simulating a spiking neuronal network) that is required to understand learning in large, hierarchical neuronal networks. To achieve this the lectures and exercises will merge ideas, concepts and methods from machine learning and neuroscience. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas presented in today’s neuroscience papers. After this course students will be able to:

- read and understand the main ideas and methods that are presented in today’s neuroscience papers
- explain the basic ideas and concepts of plasticity in the mammalian brain
- implement alternative ANN learning algorithms to ‘error backpropagation’ in order to train deep neuronal networks.
- use a diverse set of ANN regularization methods to improve learning
- simulate spiking neuronal networks that learn simple (e.g. digit classification) tasks in a supervised manner.

Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. The origins of deep hierarchical learning can be traced back to early neuroscience research by Hubel and Wiesel in the 1960s, who first described the neuronal processing of visual inputs in the mammalian neocortex. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world. However, while on specific tasks such as playing (video) games deep ANNs outperform humans (Minh et al., 2015, Silver et al., 2018), ANNs are still not performing on par when it comes to recognizing actions in movie data and their ability to act as generalizable problem solvers is still far behind of what the human brain seems to achieve effortlessly. Moreover, biological neuronal networks can learn far more effectively with fewer training examples, they achieve a much higher performance in recognizing complex patterns in time series data (e.g. recognizing actions in movies), they dynamically adapt to new tasks without losing performance and they achieve unmatched performance to detect and integrate out-of-domain data examples (data they have not been trained with). In other words, many of the big challenges and unknowns that have emerged in the field of deep learning over the last years are already mastered exceptionally well by biological neuronal networks in our brain. On the other hand, many facets of typical ANN design and training algorithms seem biologically implausible, such as the non-local weight updates, discrete processing of time, and scalar communication between neurons. Recent evidence suggests that learning in biological systems is the result of the complex interplay of diverse error feedback signaling processes acting at multiple scales, ranging from single synapses to entire networks.

The participation in the course is subject to the following conditions:

1) The number of participants is limited to 120 students (MSc and PhDs).
2) Students must have taken the exam in Deep Learning (263-3210-00L) or have acquired equivalent knowledge.

Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module IN4040 at UZH.

Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students-graduates-ethz.html

This course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.

Understanding of the characteristics of neuromorphic circuit elements.

Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on the physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.

S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.

Prerequisites / notice
The lecture slides will be provided as a PDF after each lecture. This advanced level lecture requires some basic background in machine/deep learning. Thus, students are expected to have a basic mathematical foundation, including linear algebra, multivariate calculus, and probability. The course is not to be meant as an extended tutorial of how to train deep networks in PyTorch or Tensorflow, although these tools used. The participation in the course is subject to the following conditions:

1) The number of participants is limited to 120 students (MSc and PhDs).
2) Students must have taken the exam in Deep Learning (263-3210-00L) or have acquired equivalent knowledge.
Prerequisites / notice: Particular: The course is highly recommended for those who intend to take the spring semester course ‘Neuromorphic Engineering II’, that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.

Statistics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0625-01L</td>
<td>Applied Analysis of Variance and Experimental Design</td>
<td>W</td>
<td>5</td>
<td>2V+1U</td>
<td>L. Meier</td>
</tr>
</tbody>
</table>

Abstract
Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.

Objective
Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.

Content
Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.

Literature

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>W</td>
<td>5</td>
<td>2V+1U</td>
<td>M. Dettling</td>
</tr>
</tbody>
</table>

Abstract
This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.

Objective
The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.

Content
The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.

Lecture notes
A script will be available.

Literature
Faraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.

Taught competencies
- **Domain A - Subject-specific Competencies**
 - Concepts and Theories: assessed
 - Techniques and Technologies: assessed
- **Domain B - Method-specific Competencies**
 - Analytical Competencies: assessed
 - Decision-making: assessed
 - Media and Digital Technologies: assessed
 - Problem-solving: assessed
 - Project Management: not assessed
- **Domain C - Social Competencies**
 - Communication: assessed
 - Cooperation and Teamwork: not assessed
 - Customer Orientation: not assessed
 - Leadership and Responsibility: not assessed
 - Self-presentation and Social Influence: not assessed
 - Sensitivity to Diversity: not assessed
 - Negotiation: not assessed
- **Domain D - Personal Competencies**
 - Adaptability and Flexibility: assessed
 - Creative Thinking: assessed
 - Critical Thinking: assessed
 - Integrity and Work Ethics: assessed
 - Self-awareness and Self-reflection: not assessed
 - Self-direction and Self-management: not assessed

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3612-00L</td>
<td>Stochastic Simulation</td>
<td>W</td>
<td>5</td>
<td>3G</td>
</tr>
</tbody>
</table>

Does not take place this semester.

Abstract
This course provides an introduction to statistical Monte Carlo methods. This includes applications of simulations in various fields (Bayesian statistics, statistical mechanics, operations research, financial mathematics), algorithms for the generation of random variables (accept-reject, importance sampling), estimating the precision, variance reduction, introduction to Markov chain Monte Carlo.

Objective
Stochastic simulation (also called Monte Carlo method) is the experimental analysis of a stochastic model by implementing it on a computer. Probabilities and expected values can be approximated by averaging simulated values, and the central limit theorem gives an estimate of the error of this approximation. The course shows examples of the many applications of stochastic simulation and explains different algorithms used for simulation. These algorithms are illustrated with the statistical software R.

Content
Examples of simulations in different fields (computer science, statistics, statistical mechanics, operations research, financial mathematics).

Machine Learning and Artificial Intelligence

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0689-00L</td>
<td>System Identification</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>R. Smith</td>
</tr>
</tbody>
</table>

Abstract

Theory and techniques for the development of dynamical models from experimentally obtained system input-output data. To provide a series of practical techniques for the development of dynamical models from experimental data, with the emphasis being on the development of models suitable for feedback control design purposes. To provide sufficient theory to enable the practitioner to understand the trade-offs between model accuracy, data quality and data quantity.
Content
Introduction to modeling: Black-box and grey-box models; Parametric and non-parametric models; ARX, ARMAX (etc.) models.
Predictive, open-loop, black-box identification methods. Time and frequency domain methods. Subspace identification methods.
Optimal experimental design, Cramer-Rao bounds, input signal design.
Parametric identification methods. On-line and batch approaches.

Literature
Additional papers will be available via the course Moodle.

Prerequisites / notice
Control systems (227-0216-00L) or equivalent.

252-0535-00L Advanced Machine Learning W 10 credits 3V+2U+4A J. M. Buhmann, C. Cotrini Jimenez
Abstract
Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
Objective
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
Content
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.
Topics covered in the lecture include:
- Fundamentals:
 - What is data?
 - Bayesian Learning
 - Computational learning theory
- Supervised learning:
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks
- Unsupervised learning:
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamic Systems
Lecture notes
No lecture notes, but slides will be made available on the course webpage.
Literature
Prerequisites / notice
The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should have followed at least “Introduction to Machine Learning” or an equivalent course offered by another institution.
PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

252-3005-00L Natural Language Processing W 5 credits 2V+2U+1A R. Cotterell
Abstract
This course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.
Objective
The objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.
Content
This course introduces an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.
Literature
Lectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.

263-2400-00L Reliable and Trustworthy Artificial Intelligence W 6 credits 2V+2U+1A M. Vechev
Abstract
Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.
Objective
The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.
To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.
This comprehensive course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/reliableai21):

* Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
* Defenses against attacks
* Combining gradient-based optimization with logic for encoding background knowledge
* Complete Certification of deep neural networks via automated reasoning (e.g., via numerical relaxations, mixed-integer solvers).
* Probabilistic certification of deep neural networks
* Training deep neural networks to be provably robust via automated reasoning
* Fairness (different notions of fairness, certifiably fair representation learning)
* Federated Learning (introduction, security considerations)

Prerequisites / notice

While not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in "Intro to ML" classes at most institutions (e.g., "Introduction to Machine Learning" at ETH).

For solving assignments, some programming experience in Python is expected.

263-3210-00L Deep Learning W 8 credits 3V+2U+2A F. Perez Cruz, A. Lucchi

Abstract

Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objectives

In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.

Prerequisites / notice

This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:

- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:
 - Advanced Machine Learning
 https://ml2.inf.ethz.ch/courses/aml/
 - Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/
 - Introduction to Machine Learning
 https://las.inf.ethz.ch/teaching/introml-S19
 - Statistical Learning Theory
 http://ml2.inf.ethz.ch/courses/slt/
 - Computational Statistics
 https://stat.ethz.ch/lectures/ss19/comp-stats.php
 - Probabilistic Artificial Intelligence
 https://las.inf.ethz.ch/teaching/pai-f18

263-5210-00L Probabilistic Artificial Intelligence W 8 credits 3V+2U+2A A. Krause

Abstract

This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.

Objectives

How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.

Content

Topics covered:
- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

Prerequisites / notice

Solid basic knowledge in statistics, algorithms and programming.

The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite.

Big Data Systems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0834-00L</td>
<td>Information Systems for Engineers</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>G. Fourny</td>
</tr>
</tbody>
</table>

This course provides the basics of relational databases from the perspective of the user.

We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).
Objective

This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Content

Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL
6. Database design theory
7. Databases and host languages
8. Indices and optimization
9. Database architecture and storage
10. Analytics on top of a relational database
11. Data cubes

Taking a relational database to the next level

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL
6. Database design theory
7. Databases and host languages
8. Indices and optimization
9. Database architecture and storage
10. Analytics on top of a relational database

Literature

- Lecture material (slides).
 (It is not required to buy the book, as the library has it)

Prerequisites / notice

For non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logic
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

263-2800-00L Design of Parallel and High-Performance Computing W 9 credits 3V+2U+3A T. Hoefler, M. Püschel

Abstract

Advanced topics in parallel and high-performance computing.

Objective

Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.

Content

We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites / notice

This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallel Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

263-3010-00L Big Data W 10 credits 3V+2U+4A G. Fourny

Abstract

The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.
Objective
This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today’s technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.

Content
This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form.

- physical storage: distributed file systems (HDFS), object storage(S3), key-value stores
- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)
- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro)
- data shapes and models (tables, trees, graphs, cubes)
- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)
- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)
- resource management (YARN)
- what a data center is made of and why it matters (racks, nodes, ...)
- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

Literature
Large scale analytics and machine learning are outside of the scope of this course.

Papers from scientific conferences and journals. References will be given as part of the course material during the semester.

This course, in the autumn semester, is only intended for:
- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

For students of all other departements interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you:
- "Information Systems for Engineers" (SQL, relational databases): this Fall
- "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists): Spring 2021

There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers.

Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data.

<table>
<thead>
<tr>
<th>DAS in Data Science - Key for Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
</tr>
<tr>
<td>W+</td>
</tr>
<tr>
<td>W</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>K</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
DAS in Information Technology and Electrical Engineering

Subjects of Specialization
Subjects are to be chosen from the courses offered in the master degree program in electrical engineering and information technology. The director of studies decides on exceptions, upon consultation with the tutor.

Course offer from the Master Program in Electrical Engineering and Information Technology

Diploma Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1101-00L</td>
<td>How to Write Scientific Texts</td>
<td>E-</td>
<td>0</td>
<td></td>
<td>U. Koch</td>
</tr>
<tr>
<td></td>
<td>Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training. The lecture will be thought on two afternoons. Some exercises will be built into the lecture.

Objective
Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.

Content
- Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the “in this paper” paragraph, the scientific part, the summary, Equations, Figures).
- Topic 2: Power Point Presentations.
- Topic 3: Citation Rules and Citation Software.
- Topic 4: Guidelines for Research Integrity.

Literature
ETH “Citation Etiquette”, see www.plagiate.ethz.ch.

Prerequisites / notice
Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-3001-00L</td>
<td>Diploma Thesis</td>
<td>O</td>
<td>12</td>
<td>36D</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Only for DAS in Information Technology and Electrical Engineering. Registration for the diploma thesis requires the successful completion of 18 credits ECTS from subjects of specialization.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
The Diploma of Advanced Studies finishes with a 3-months diploma thesis which is directed by a professor of the department ITET. Students prove their ability to conduct independent scientific research on a specific research problem, using skills and knowledge acquired during the program. The thesis includes a written report and an oral presentation.

Objective
see above

DAS in Information Technology and Electrical Engineering - Key for Type

W	Eligible for credits		
	Dr	Suitable for doctorate	
E-	Recommended, not eligible for credits	O	Compulsory
Z	Courses outside the curriculum	W+	Eligible for credits and recommended

Key for Hours

V	lecture	
	P	practical/laboratory course
G	lecture with exercise	
U	exercise	
S	seminar	
K	colloquium	

ECTS
European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
Courses Offered

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>853-0063-02L</td>
<td>Military History I (without Exercises)</td>
<td>O</td>
<td>3 credits</td>
<td>2V</td>
<td>A. Wettstein, T. Cubito, M. Olsansky</td>
</tr>
<tr>
<td>853-0047-00L</td>
<td>World Politics Since 1945: The History of International Relations</td>
<td>Only for Public Policy BA and DAS Military Sciences</td>
<td>O</td>
<td>4 credits</td>
<td>2V+1U</td>
</tr>
<tr>
<td>853-0082-00L</td>
<td>Strategic Studies I</td>
<td>O</td>
<td>3 credits</td>
<td>2V</td>
<td>M. Mantovani</td>
</tr>
<tr>
<td>853-0037-01L</td>
<td>Military Psychology and Pedagogy I (without Exercises)</td>
<td>O</td>
<td>3 credits</td>
<td>2V</td>
<td>H. Annen</td>
</tr>
</tbody>
</table>

Abstract

- The purpose of the lecture is to outline the development of the armed forces (assets regarding manpower, technology and armament), the concepts of warfare and the actual warfare in the 19th and 20th century.
- Distinguish between military history as a subject and historiography as a way of describing events.
- Analyse the modern developments regarding armed forces and warfare in the context of socio-economic changes.
- Based on the approach regarding revolution in military affairs, describe the evolution of the armed forces and of warfare.
- Exemplify the issues regarding the evolution of the combat (First and Second World War, Vietnam War and Algerian War).

Content

The lecture first examines the bases of the science of (military) history. It focuses on how military history developed from war studies to the study of warfare in the field of political science. It also discusses the specific similarities and differences between military history and general historiography, the different ways of dealing with history in Switzerland, Germany, France and in the Anglo-Saxon cultural area (different approaches) as well as on institutions which deal with military history such as universities, military academies, national and international commissions and associations etc.

The lecture is structured along the lines of the concept of "Military Revolution" and starts with the formation of modern, European armed forces after the Oranian Army reform in the 17th century.

Based on the "Military Revolution" approach, the lecture examines the structural changes regarding the armed forces and the development of warfare from the 18th to the 20th century. Special emphasis will be put on how the battlefield was revolutionized due to the Napoleonic wars, the industrialization in the 19th century, the First World War, the mechanization and totalization during the Second World War and the period of the Cold War.

Literature

Abstract

This lecture series provides students with an overview of the development of international relations since the end of World War II. The first part of the series deals with the development of and changes in Cold War security policy structures. The second part deals with the period after the transformation of 1989/91; the focus here is on current issues in international security policy.

Objective

By the end of the semester, participants should have a solid knowledge of the history and theoretical foundations of International Relations since the end of the Second World War.

Content

- Exemplify the issues regarding the evolution of the combat (First and Second World War, Vietnam War and Algerian War).
- Based on the approach regarding revolution in military affairs, describe the evolution of the armed forces and of warfare;
- Analyse the modern developments regarding armed forces and warfare in the context of socio-economic changes;
- Exemplify the possibilities of military education and deriving consequences.

Literature

- Peter Paret, Makers of Modern Strategy. From Machiavelli to the Nuclear Age, Princeton 1986.
- The lecture is held in German.

Prerequisites / notice

The lecture is being supported by a website on Moodle. If you have any questions, please contact Oliver Roos (oliver.roos@sipo.gess.ethz.ch).

Abstract

The lecture series treats high-impact strategic theory from antiquity to the present.

The lecture is held in German.

Prerequisites / notice

Passive knowledge of English and French are required.

Domain A - Subject-specific Competencies

- Concepts and Theories
- Analytical Competencies
- Creative Thinking

Domain B - Method-specific Competencies

- Problem-solving
- Critical Thinking

Domain D - Personal Competencies

- Exemplify the issues regarding the evolution of the combat (First and Second World War, Vietnam War and Algerian War).
- Based on the approach regarding revolution in military affairs, describe the evolution of the armed forces;
- Analyse the modern developments regarding armed forces and warfare in the context of socio-economic changes;
- Exemplify the possibilities of military education and deriving consequences.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 548 of 2152
Overall, the objective is to become acquainted with the basics of both scientific areas and to make references to military practice. Military sociology is a branch of applied psychology; consequently selected aspects of psychological principles will be covered. Military pedagogy hasn't yet established itself firmly as an independent scientific discipline, it nevertheless can draw on a deep-seated tradition in Switzerland. Thus, the great importance that has been attached to the discussion of education in Swiss society and academia will be taken into account.

Subjects:
- History of military psychology
- Psychological images of humanity (psychoanalysis, behaviourism, behavioural biology, humanistic psychology, cognitivism)
- Motivational theories
- Defence-, service-, operational- and combat motivation
- Swiss military pedagogy
- Education as defining feature of pedagogic thinking and acting

The lecture is supported by a virtual learning environment containing relevant documents (presentations and texts) and information to further literature.

853-0064-00L
Military Sociology I
Objective
Beside of the most important terms of sociology, demographic changes and the related value and structure change will be analysed. The second part focuses on organizational sociology. Thirdly, the course examines to which extent armed forces can be considered as organizations like any other and to which extent they constitute a special case from an organizational and normative point of view.

Content
Societal change; organizations as societal phenomena; aims, structures, environments of organizations; specifics of the military as an organization; impacts of technological and societal changes on the armed forces in modern societies.

Literature
- Stadelmann, J.: Führung unter Belastung, Huber, Frauenfeld 1998 (provided as pdf)
- Education as defining feature of pedagogic thinking and acting

Taught competencies
- Domain A - Subject-specific Competencies: Concepts and Theories
- Domain B - Method-specific Competencies: Analytical Competencies
- Domain C - Social Competencies: Leadership and Responsibility
- Domain D - Personal Competencies: Critical Thinking

853-0063-00L
Leadership I
Abstract
The lectures "Leadership I" (WS) and "Leadership II" (SS) have been designed as a two-semester lecture series, but may also be followed independently of one another or in reverse order. "Leadership I" covers the following fields: leadership basics, leadership theories and leadership styles, the concept of leadership responsibility and the role of communication in practical leadership.

Objective
The aim of this lecture is to give students an introductory overview of relevant topics regarding leadership research and practice, thus enabling them to gain a deeper understanding of the leadership phenomenon. Students should understand different concepts of leadership in the complex interaction between individuals, groups, organization, context and situation. They should be informed about the evolution of the understanding of mankind in relation to working processes and its impact on organizations and the understanding of leadership theory in the past 100 years. They should grasp the concept of leadership responsibility (leadership ethics) and be able to derive consequences for leadership in practical situations. They should recognize the fundamental importance of communication in leadership situations and receive input which enables them to communicate adequately in specific situations.

853-0061-00L
Introduction to Cybersecurity Politics
Abstract
The lecture is an introduction to global cybersecurity politics. The focus is on the strategic use of cyberspace by state and non-state actors (threats) and different answers to these new challenges (countermeasures).

Objective
Participants learn to assess the advantages and disadvantages of cyberspace as a domain for strategic military operations. They understand the technical basics of cyber operations and know how technology and politics are interlinked in this area. They understand the security challenges for and the motivations of states to be active in cyberspace offensively and defensively and they are familiar with the consequences for international politics.
We start with an overview of cybersecurity issue from 1980 to today and look at events and actors responsible for turning cybersecurity matters into a security political issue with top priority. After familiarizing ourselves with the technical basics, we look at different forms of cyberviolence and trends in cyber conflicts (technique in social and political practice). Then, we turn to countermeasures: we compare national cybersecurity strategies, examine international norms building, and scrutinize concepts such as cyber-power and cyber-deterrence (technique in social and political regulatory contexts).

A script with background information and comments on the literature will be made available at the beginning of the semester.

Literature for each session will be available on Moodle. The lecture is being supported by a website on Moodle.

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed

Domain B - Method-specific Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Sensitivity to Diversity: not assessed

Domain C - Social Competencies
- Creative Thinking: assessed
- Critical Thinking: assessed
- Self-direction and Self-management: not assessed

Domain D - Personal Competencies

853-8002-00L The Role of Technology in National and International Security Policy

Abstract
The lecture provides an introduction to the role of security and military technologies in the formulation and implementation of national and international security policies. The focus is on challenges posed by new and developing technologies, the transformation of military capabilities, and the question of regulation.

Objective
Participants will gain an in-depth overview of the many ways in which technology is becoming part of security policies and practices, in both civilian and military contexts.

Content

Literature
Literatur für die einzelnen Sitzungen wird auf Moodle bereitgestellt. The lecture is being supported by a website on Moodle. If you have any questions, please contact Oliver Roos, oliver.roos@sipo.gess.ethz.ch.

853-0101-02L Defense Economics I

Abstract
In terms of structure and content, the event follows the lecturer's book "Militärökonomie" (Military Economics), which is available in two language versions:
- German language: ISBN 978-3-658-06146-3

Objective
* Recognizing parallels and contrasts between business and military thinking;
* Recognize and analyze planned economic systems;
* Understand the link between institutions, human action and economic results.

Content
The semester program of the course is divided into 14 modules of 90 minutes each, which combine lecture (teaching of analytical techniques) and exercise (application by means of concrete case studies).

The contents correspond to sections 1 to 2.2.5 of the above book. The following will be discussed:
1. fundamental military economic problems including historical introduction to the topic
2. the institutional foundations of a military organisation
3. the modern military as a planned economy system
4. actors and stakeholders in the system

Lecture notes
Lecture slides are given to the participants before the first lecture. In addition, the above mentioned book will be handed over to the participants. Participants of the lecture who are not professional officer candidates are requested to obtain the book from the library or bookstore.

Literature
ISBN 978-3-658-06146-3

ISBN 978-3-658-25287-8

Prerequisites / notice
none.

DAS in Military Sciences - Key for Type

<table>
<thead>
<tr>
<th>Dr</th>
<th>Suitable for doctorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

W | Eligible for credits |
W+ | Eligible for credits and recommended |
Z | Courses outside the curriculum |
<table>
<thead>
<tr>
<th>Key for Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

ECTS: European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
DAS in Spatial Planning

Lectures

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-0500-00L</td>
<td>Preliminary Course: Introduction to Swiss Spatial Planning</td>
<td>O</td>
<td>3</td>
<td>3G</td>
<td>D. Jerjen, A. Schneider</td>
</tr>
<tr>
<td></td>
<td>Only for MAS, DAS and CAS in Spatial Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Tasks of spatial planning; objectives and principles; instruments of spatial planning; federal planning; cantonal structural planning; constructing outside of building zones; communal planning; land use planning; compensation of benefits released by planning; environmental protection and spatial planning; energy and spatial planning; densification with quality; case studies and exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The preliminary course introduces students to the fundamentals of formal spatial planning in Switzerland. It gives a first overview over background and context of spatial planning as well as instruments of spatial planning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115-0502-00L</td>
<td>Lecture Week 02: Urban Planning and Urban Design I</td>
<td>W</td>
<td>2</td>
<td>1G</td>
<td>S. Kretz, C. Salewski</td>
</tr>
<tr>
<td></td>
<td>Only for MAS, DAS and CAS in Spatial Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Contemporary urbanization phenomena and urban design methods and tools. Lectures are accompanied by urban design exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to current challenges and methods in urban design, to theories of urban planning and to exemplary urban design projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115-0503-00L</td>
<td>Lecture Week 03: Landscape Architecture</td>
<td>W</td>
<td>2</td>
<td>1G</td>
<td>G. Vogt</td>
</tr>
<tr>
<td></td>
<td>Only for MAS, DAS and CAS in Spatial Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Methods, tools and processes in large scale landscape architectural design. On the basis of a case study, «Basel»., we shall discuss these themes in lectures and practical exercises. The design-led approach will be extended with a series of tasks that will establish a theoretical grounding in current issues of landscape- and urban design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>On the basis of theoretical foundations the one-week teaching block explains the possibilities and methods of design at different stages of the process. The students will become sensitive to current and future issues and approaches of landscape on a large scale, with the aim that they will engage with critical debate on the topic and take their own position.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115-0504-00L</td>
<td>Lecture Week 04: Landscape and Environmental Planning</td>
<td>W</td>
<td>2</td>
<td>1G</td>
<td>A. Grèt-Regamey, U. Wissen Hayek</td>
</tr>
<tr>
<td></td>
<td>Only for MAS, DAS and CAS in Spatial Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Discussion of the proposition of sustainability in landscape and environmental planning; comprehending landscape development with a system dynamics approach: planning of landscape development across cantonal and communal boundaries; negotiating various stakeholder interests based on the example of current practical cases; instruments and approaches for sustainable landscape development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Overview of tasks of landscape and environmental planning as well as essential theories; insights in planning approaches and application of new instruments related to current problems for a sustainable landscape development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115-0501-00L</td>
<td>Lecture Week 01: Spatial Planning: Tasks and Methods</td>
<td>W</td>
<td>2</td>
<td>1G</td>
<td>M. Nollert</td>
</tr>
<tr>
<td></td>
<td>Only for MAS, DAS and CAS in Spatial Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Current and future significant tasks of Spatial Planning in Switzerland. In addition to the existing inner development of settlements, the importance of new challenges such as climate adaptation and the implementation of the mobility turn is rising. What they have in common is the need of methods and instruments for exploring, clarifying and solving complex tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The aim of the course is the acquaintance and the comprehension of tasks, methods and instruments of spatial planning in Switzerland and to discuss them in the light of future challenges. In particular, the methodological modules of the course form an essential basis for working on the two study projects of the MAS programme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The tasks are contrasted with a brief overview of existing spatial planning instruments in Switzerland. On the one hand, the aim is to develop a common understanding of the formal and informal procedures and instruments of spatial planning; on the other hand, these are also to be discussed with regard to their effectiveness for current and future challenges. At the centre of the teaching unit is the teaching and methodological basis for exploring, clarifying and solving complex issues. These refer to the questions and pitfalls of perceiving and dealing with complexity, to methodological elements of processes for clarifying difficult spatially significant tasks with a large number of actors involved, as well as methods of situation assessment, design and decision-making as a basis for developing solutions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

DAS in Spatial Planning - Key for Type

<table>
<thead>
<tr>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
<th>W+</th>
<th>Eligible for credits and recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>Key for Hours</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
DAS in Transport Engineering

Starts every second Autumn Semester.

Next start: HS21
Duration: Two years.

▶ Compulsory Modules

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>149-0001-00L</td>
<td>Transport Planning - Theory and Models</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>K. W. Axhausen, M. Friedrich</td>
</tr>
<tr>
<td></td>
<td>Only for CAS/DAS in Transport Engineering and MAS in Future Transport Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149-0002-00L</td>
<td>Traffic Engineering</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>M. Fellendorf</td>
</tr>
<tr>
<td></td>
<td>Only for CAS/DAS in Transport Engineering and MAS in Future Transport Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

▶ Elective Modules

Elective modules start from Autumn Semester HS 2022 and Spring Semester FS 2023 on.

▶ Diploma Thesis

Start of diploma thesis from Autumn Semester 2022 on.

DAS in Transport Engineering - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Pharmacology and Toxicology I

Number: 535-0521-00L
Title: Pharmacology and Toxicology I
Type: O
ECTS: 2 credits
Hours: 2V
Lecturers: U. Quitterer, J. Abd Alla

Abstract: The two-semester lecture course will provide a detailed understanding of the fundamentals of drug action and the mechanisms of action and therapeutic use of the important classes of drugs. The lectures are intended for students of pharmaceutical sciences.

Objective: The lectures will provide a comprehensive survey of pharmacology and toxicology. Special emphasis is placed on the interrelationship between pharmacological, pathophysiological and clinical aspects.

Content: Topics include disease-relevant macroscopic, microscopic, pathobiochemical and functional disturbances of specific organs and organ systems. The lectures integrate disease pathology with mechanisms of drug action, usage, metabolism, pharmacokinetics, side effects, toxicology, contraindications and dosage of relevant drug classes. Basic principles of clinical pharmacology and pharmacotherapy will be covered.

Lecture notes: A script is provided for each lecture. Scripts define important course contents but do not replace the lectures.

Literature
- The classic textbook in Pharmacology:
Goodman and Gilman’s The Pharmacological Basis of Therapeutics
Laurence Brunton, Bjorn Knollman, Randa Hilal-Dandan.
ISBN-10: 1259584739

Prerequisites / notice: Voraussetzungen: Abschluss Grundstudium

Gene Technology

Number: 535-0810-00L
Title: Gene Technology
Type: O
ECTS: 2 credits
Hours: 2G
Lecturers: K. Eyer, J. Scheuermann

Abstract: The course gives a description and summary of the field of gene technology and its pharmaceutical applications. The course focuses on important methods and technologies and their application for genomic, transcriptomic and proteomic analyses in human biology.

Objective: The course gives an overview of current state-of-the-art and advancement in the fields of gene technology. Herein, the course focuses on genomic, transcriptomic and proteomic analysis and their uses in drug discovery and biomedical applications. The course is structured into lectures and practical examples drawn from the research field. Upon completion, the students are familiar and know current state-of-the-art of methods and applications, but are also able to classify, contrast and apply different strategies and methods within the field of gene technology. The course is suited for advanced undergraduate and early graduate students in pharmaceutical sciences or related fields.

Content: I) Genomics and transcriptomics
- Methods and Techniques:
 - Recombinant DNA technology
 - Next generation sequencing methods, sequencing of genomes
 - CRISPR technology
- Application to human biology:
 - Functional genomics/transcriptomics
 - Principles of cancer, genetic diseases
 - Therapies: cell-based therapies/gene therapies/DNA and RNA vaccination

II) Proteomics
- Methods and Techniques:
 - Protein cloning and expression
 - The antibody molecule
 - Measurement and determination of biomolecular interactions
 - Protein characterization and engineering
 - Modifications and radioactive labelling
- Application to human biology:
 - Protein therapeutics
 - Proteomic approaches for identification of novel disease-related targets and biomarkers

III) Drug discovery: Protein-based libraries
- Immune repertoire mining
- Display and selection technologies
 - 1. antibody phage display
 - 2. other polypeptide display technologies
 - 3. small-molecules display: DNA-encoded chemical libraries

Lecture notes: The lecture series follows the above-described content, and the students are provided with the lecture slides and additional notes. The additional notes are needed for the in-depth study of the individual topics, and to set the frame and content of the in-class group work of the chosen examples.

Taught competencies
- Domain A - Subject-specific Competencies
 - Concepts and Theories: assessed
 - Techniques and Technologies: assessed
- Domain B - Method-specific Competencies
 - Decision-making: assessed
 - Problem-solving: assessed
- Domain D - Personal Competencies
 - Creative Thinking: assessed
 - Critical Thinking: assessed

Pharmaceutical Immunology

Number: 535-0830-00L
Title: Pharmaceutical Immunology
Type: O
ECTS: 2 credits
Hours: 2G
Lecturers: C. Halin Winter, V. Collado Diaz

Abstract: Get Students familiar with basic Immunological concepts of pharmaceutical relevance.

Objective: Get Students familiar with basic Immunological concepts of pharmaceutical relevance.
Galenic Pharmacy I

Abstract
Principles and technologies for the manufacturing of dosage forms and drug delivery systems. Knowledge of pharm. excipients, materials, containers, liquid and semi-solid dosage forms, their production, function, quality and application. Comprehension of molecular interactions in solution and colloidal systems. Comprehension of interfacial phenomena and stabilization measures in dosage forms.

Objective
Knowledge of the most important pharmaceutical excipients, materials, containers, liquid and semi-solid dosage forms, of their production, function, quality, stability and application. Comprehension of the molecular interactions in solution and colloidal systems. Comprehension of interfacial phenomena and stabilization measures in disperse dosage forms.

Content
Introduction and overview of important fundamentals, principles and technologies for the development and manufacturing of dosage forms and drug delivery systems. Overview of the most important pharmaceutical excipients and polymers, their structure, properties and processing; importance of materials properties for containers. Pharmaceutical solvents, fundamentals of solubility and solubilization of drugs. Water treatment processes, sterilization techniques and quality requirements of pharmaceutical water. Parenteral dosage forms and liquid ophthalmics. Surfactants, micelle formation and colloidal systems. Liquid suspensions and emulsions. Stabilization measures in dosage forms.

Literature

Pharmaceutical Cases

Abstract
The course places the basic pharmaceutical knowledge acquired so far in an applied therapeutic context and fosters interdisciplinary thinking in pharmaceutical sciences. Common pharmaceutical case studies, as they can occur in the professional everyday life of a pharmacist, are worked out in group works, presented and discussed.

Objective
Students
• Are able to analyse, present and discuss common case studies from the pharmacist's practice, based on their basic knowledge in pharmacology.
• deepen their knowledge of therapeutic substance classes and therapy guidelines.
• are able to analyse the pharmacological profiles of selected drugs in a therapeutic context (e.g. with regard to undesirable other effects and interactions).
• are able to compare different drugs and derive their therapy-relevant characteristics.

Content
Pharmaceutical case studies from different therapeutical fields comprehend following subject areas:
• Indication
• Adverse effects
• Interactions
• Contraindications

Lecture notes
Is made available via Moodle.

Literature
As stated in the cases.

Prerequisites / notice
The lecture Pharmacology and Toxicology I (535-0521-00L) must be attended in parallel to or prior to this course.

The course takes place weekly from 5.11.19-17.12.19. The case studies are worked on in groups of 2-3 students, submitted by e-mail, presented by one group and discussed in the plenum.
<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
<td></td>
</tr>
</tbody>
</table>

► Second Series of Courses (Group A)

★★ Compulsary Courses I

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-5512-00L</td>
<td>Triage, Diagnostics, Therapy Support</td>
<td>O</td>
<td>9 credits</td>
<td>12G</td>
<td>E. Kut Bacs, S. Emi, P. Obrist, D. Petralli-Nietlisbach, K. Prader-Schneiter, I. S. Vogel Kahmann, P. Wiedemeier</td>
</tr>
</tbody>
</table>

Abstract
This course provides basic clinical and pharmaceutical knowledge and skills for triage, diagnostics and therapy support of the most common diseases.

Objective
Students
- know and understand the pathomechanisms and clinical lead and warning symptoms (red flags) of the most common diseases in the fields listed below;
- can use this knowledge to triage patients: i.e. analyse simple symptoms and diseases, make a tentative diagnosis and recommend suitable medication or further examinations or measures;
- know the therapeutic guidelines, classes of active ingredients and selected, practice-relevant drugs (including indications and the most frequent and important dosages, adverse drug reactions, interactions and contraindications).

Content
"Pharmaceutical Care" und "Health Care";
Häufigste Erkrankungen und Therapien der
- Allergologie
- Angiologie und Hämatologie
- Dermatologie
- Endokrinologie und Diabetologie
- Gastroenterologie
- Infektiologie
- Kardiologie
- Neurologie
- Ophthalmologie
- Otorhinolaryngologie
- Pneumologie
- Psychiatrie
- Rheumatologie
- Urologie

Lecture notes
Provided via myStudies.

Literature
As stated in the lecture notes.

Prerequisites / notice

Please note that the assessment of this course must be passed (not compensable).

The performance assessment of the course takes place in two written online partial examinations. The overall grade results from the average of the grades of both partial examinations. If the overall grade is unsatisfactory, both partial examinations must be repeated.

The courses Pharmacology and Toxicology I and II and Pathobiology provide indispensable basics which students must master at the beginning of the semester in order to successfully complete the course.

Pharmacology and Toxicology III must be visited at the same time.

★★ Compulsary Courses II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0030-00L</td>
<td>Therapeutic Proteins</td>
<td>W</td>
<td>3 credits</td>
<td>3G</td>
<td>C. Halin Winter, D. Neri</td>
</tr>
</tbody>
</table>

Abstract
In this course, various topics related to the development, GMP production and application of therapeutic proteins will be discussed. Furthermore, students will expand their training in pharmaceutical immunology and will be introduced to the basics concepts of pharmaceutical product quality management.

Objective
Students know and understand:
- basic mechanisms and regulation of the immune response
- the pathogenic mechanisms of the most important immune-mediated disorders
- the most frequently used expression systems for the production of therapeutic proteins
- the use of protein engineering tools for modifying different features of therapeutic proteins
- the mechanism of action of selected therapeutic proteins and their application
- basic concepts in the GMP production of therapeutic proteins
The course consists of two parts: In a first part, students will complete their training in pharmaceutical immunology (Chapter 13 - 16 Immunobiology VIII textbook). This part particularly focuses on the pathogenic mechanisms of immune-mediated diseases. Deepen knowledge of immunology will be relevant for understanding the mechanism of action of many therapeutic proteins, as well as for understanding one major concern related to the use of protein-based drugs, namely, immunogenicity.

The second part focuses on topics related to the development and application of therapeutic proteins, such as protein expression, protein engineering, reducing immunogenicity, and GMP production of therapeutic proteins. Furthermore, selected examples of approved therapeutic proteins will be discussed.

Lecture notes
Handouts to the lectures will be available for downloading under http://www.pharma.ethz.ch/scripts/index

Literature
- Janeway’s Immunobiology, by Kenneth Murphy (9th Edition), Chapters 12-16
- Lecture Handouts
- Paper References provided in the Scripts
- EMEA Dossier for Humira

535-0041-00L Pharmacoepidemiology and Drug Safety
W 2 credits 2G M. Detmar, U. Quitterer

Abstract
The course is divided into two parts. The first part provides a detailed understanding of drugs and pharmacotherapy of infectious diseases and cancer. The second part gives an overview of the field of pharmacoepidemiology with a special focus on the role of genetic polymorphisms in disease susceptibility, drug response and adverse effects.

Objective
The course advances basic knowledge in pharmacology and toxicology. Special emphasis is placed on the interrelationship between pharmacological, pathophysiological and clinical aspects of drug therapy in the fields of infectious diseases and cancer. The course also provides an overview of the field of pharmacoepidemiology, with a special focus on the role of genetic polymorphisms in disease susceptibility, drug response and adverse effects.

Content
Topics include the pharmacoepidemiology of infectious diseases and cancer. In the field of pharmacoepidemiology, the course is focused on genetics, genome-wide association studies, genetic disease predisposition, examples of genetic variability of drug metabolism and drug responses, identification of new drug targets, relevance of pharmacoepidemiology for clinical drug development, and toxicogenomics.

Lecture notes
A script is provided for each lecture course. The scripts define important and exam-relevant contents of lectures. Scripts do not replace the lecture.

Literature
Recommended reading:
The classic textbook in Pharmacology:
Goodman and Gilman’s The Pharmacological Basis of Therapeutics
Laurence Brunton, Bjorn Knoliman, Randa Hilal-Dandan.
ISBN-10: 1259584739

or
Klaus Aktories, Ulrich Förstermann, Franz Hofmann, Klaus Starke.
Allgemeine und spezielle Pharmakologie und Toxikologie.
Urban & Fischer (Elsevier, München)

535-0050-00L Pharmacoepidemiology and Drug Safety
W 3 credits 2G A. Burden, S. Russmann

Abstract
Introduction to the principles, methods and applications of pharmacoepidemiology and drug safety. Drug safety in the pharmaceutical industry and regulatory authorities, but also for hospital and office pharmacists. Another focus is the evaluation and interpretation of pharmacoepidemiological drug safety studies in the medical literature and the evaluation of benefits vs. risks.

Objective
Objectives:
- To familiarize participants with the principle methods and applications of pharmacoepidemiology and drug safety that is relevant for industry, regulatory affairs, but also for clinical pharmacists in hospitals and office pharmacies.
- Perform independently a causality assessment of suspected adverse drug reactions in patients
- Study designs and biostatistics used for the quantitative evaluation of drug safety
- Setup of programs that can effectively reduce medication errors and improve drug safety in clinical practice, particularly in hospitals

Content
- Historical landmarks of drug safety
- Pharmacovigilance and causality assessment
- Drug safety in premarketing clinical trials
- Descriptive, cohort and case-control drug safety study designs; Data analysis and control of confounding
- Pharmacoepidemiology and regulatory decision making in drug safety; Risk management plans (RMPs)
- Medication errors, clinical pharmacology / clinical pharmacy
- Clinical Decision Support Systems, Interventional Pharmacoepidemiology
- Pharmacoepidemiological databases, 'Big Data'
- Interactive discussion of many real-life examples for each topic

Lecture notes
This course will be a combination of formal lectures, group discussions and self-directed studies. Course material will be taught through seminars, case studies in small groups.

Reading material and scripts will be provided for each week.

Literature
Recommended literature:
- Rothman: Introduction to Epidemiology
- Strom, Kimmel, Hennessy: Textbook of Pharmacoepidemiology
- Gigerenzer: Risk Savvy - How to Make Good Decisions

535-0137-00L Clinical Chemistry II
W 1 credit 1V M. Hersberger

Abstract
Detailed knowledge on particular aspects of clinical chemistry and medical laboratory diagnostics concerning quality control, point-of-care analytics, analytics of kidney stones, tumor markers, diagnosis of HIV and hepatitis, pharmacoanalytics, thyroid function, bone metabolism and laboratory diagnosis of hypertension.

Objective
Detailed knowledge on the implementation and interpretation of clinical laboratory diagnostic tests. Competence to interpret selected tests.

Content
Internal and external quality control, point-of-care analytics, analytics of kidney stones, use of tumor marker determinations, diagnosis of HIV and hepatitis, pharmacoanalytics, thyroid function, bone metabolism and laboratory diagnosis of hypertension.

Lecture notes
Documentation will be available before the lectures electronically.

Literature
- Jürgen Halbach, Klinische Chemie und Hämatologie für den Einstieg, Thieme Verlag
- Harald Renz, Praktische Labordiagnostik, de Gruyter Verlag
- Walter Guder, Das Laborbuch für Klinik und Praxis, Elsevier Verlag
- Lothar Thomas, Labor und Diagnose, TH Books
- William Marshall, Clinical Chemistry, Mosby Ltd.
- Alan H.B. Wu, Tietz, Clinical Guide to Laboratory Tests, Saunders
Second Series of Courses (Group B)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
This course provides basic clinical and pharmaceutical knowledge and skills for triage, diagnostics and therapy support of the most common diseases.

Objective
- Students know and understand the pathomechanisms and clinical lead and warning symptoms (red flags) of the most common diseases in the fields listed below.
- Students can use this knowledge to triage patients: i.e. analyse simple symptoms and diseases, make a tentative diagnosis and recommend suitable medication or further examinations or measures.
- Students know the therapeutic guidelines, classes of active ingredients and selected, practice-relevant drugs (including indications and the most frequent and important dosages, adverse drug reactions, interactions and contraindications).

Content
"Pharmaceutical Care" und "Health Care";
Häufigste Erkrankungen und Therapien der
- Allergologie
- Angiologie und Hämatologie
- Dermatologie
- Endokrinologie und Diabetologie
- Gastroenterologie
- Infektiologie
- Kardiologie
- Neurologie
- Ophthalmologie
- Otorhinolaryngologie
- Pneumologie
- Psychiatrie
- Rheumatologie
- Urologie

Grundlagen der Chiropäktischen Medizin und Physiotherapie.

Lecture notes
Provided via myStudies.

Literature
- Jürgen Hallbach, Klinische Chemie und Hämatologie für den Einstieg, Thieme Verlag
- Harald Renz, Praktische Labordiagnostik, de Gruyter Verlag
- Lothar Thomas, Labor und Diagnose, TH Books
- William Marshall, Clinical Chemistry, Mosby Ltd.
- Alan H.B. Wu, Tietz, Clinical Guide to Laboratory Tests, Saunders

Prerequisites / notice

Please note that the assessment of this course must be passed (not compensable).

The performance assessment of the course takes place in two written online partial examinations. The overall grade results from the average of the grades of both partial examinations. If the overall grade is unsatisfactory, both partial examinations must be repeated.

The courses Pharmacology and Toxicology I and II and Pathobiology provide indispensable basics which students must master at the beginning of the semester in order to successfully complete the course.

Pharmacology and Toxicology III must be visited at the same time.

Third Series of Courses (Group A and B)

Practical Pharmacy I and Compensatory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0137-00L</td>
<td>Clinical Chemistry II</td>
<td>O</td>
<td>1</td>
<td>1V</td>
<td>M. Hersberger</td>
</tr>
</tbody>
</table>

Abstract
Detailed knowledge on particular aspects of clinical chemistry and medical laboratory diagnostics concerning quality control, point-of-care analytics, analytics of kidney stones, tumor markers, diagnosis of HIV and hepatitis, pharmacogenetics, thyroid function, bone metabolism and laboratory diagnosis of hypertension.

Objective
Detailed knowledge on the implementation and interpretation of clinical laboratory diagnostic tests. Competence to interprete selected tests.

Content
Internal and external quality control, point-of-care analytics, analytics of kidney stones, use of tumor marker determinations, diagnosis of HIV and hepatitis, pharmacogenetics, thyroid function, bone metabolism and laboratory diagnosis of hypertension.

Lecture notes
Documentation will be available before the lectures electronically.

Literature
- Jürgen Hallbach, Klinische Chemie und Hämatologie für den Einstieg, Thieme Verlag
- Harald Renz, Praktische Labordiagnostik, de Gruyter Verlag
- Walter Guder, Das Labormbuch für Klinik und Praxis, Elsevier Verlag
- Lothar Thomas, Labor und Diagnose, TH Books
- William Marshall, Clinical Chemistry, Mosby Ltd.
- Alan H.B. Wu, Tietz, Clinical Guide to Laboratory Tests, Saunders

Prerequisites / notice
Requirement: basic knowledge in clinical chemistry and laboratory diagnostics

This course provides basic knowledge relevant to pharmacy and its application in nephrology, phytotherapy, complementary medicine, wound care and pharmaceutical care.

Objective
Students know and understand the therapeutic concepts of the mentioned topics and their application in practice.

(for detailed learning objectives see the guidelines)
Pharmaceutical Manufacturing in Small Quantities

Einblick in die allgemeine praktische Medizin mit ihren verschiedenen Schnittstellen und den Entscheidungsgrundlagen. Klinische Therapeutic Skills II

O 3 credits 3G

Students can understand the pathological mechanisms and the clinical lead and warning symptoms (red flags) of the most common diseases in the fields listed.

Students can triage patients by applying this knowledge: i.e. analyse simple symptoms and disease patterns, make a tentative diagnosis and recommend suitable medication or further examinations or measures.

Students are familiar with the relevant literature (Pharmaceutical and legal basis) regarding the Pharmaceutical Manufacturing relevant for the community pharmacies

As specified in the lecture notes

Therapeutic Skills II

This course provides basic clinical and pharmaceutical knowledge and its application for triage, diagnostics and therapy support for the most common diseases in geriatrics, gynaecology, oncology, paediatrics and neurology (epilepsy). In addition, the role of nutrition in special life situations and in selected health disorders is taught.

Provided via myStudies.

As specified in the lecture notes

Therapeutic Skills II

535-5522-00L

O 3 credits 3G

Practical Pharmacy II

Practical Pharmacy II

535-5524-00L

Clinical Trainings (for detailed learning objectives, see the guideline)

Clinical Trainings

Type ECTS Hours Lecturers

Clinical Trainings

3G

A. Gutzeit, D. Stämpfli, P. Wiedemeier

Pharmaceutical Manufacturing in Small Quantities

535-5502-00L

Pharmaceutical Manufacturing in Small Quantities (Compounding)

Pharmaceutical Manufacturing in Small Quantities

Type ECTS Hours Lecturers

Pharmaceutical Manufacturing in Small Quantities

3G

P. G. Tiefenböck, A. Romagna

Institutional Pharmacy

535-5503-00L

Institutional Pharmacy

Institutional Pharmacy

Type ECTS Hours Lecturers

Institutional Pharmacy

2 credits 3G

P. Wiedemeier, J. Beney, M. Lutters, I. S. Vogel Kahmann

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 560 of 2152
DAS Preparation for the Swiss Federal Examination in Pharmacy - Key for Type

<table>
<thead>
<tr>
<th>Dr</th>
<th>Suitable for doctorate</th>
<th>W</th>
<th>Eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Recommended, not eligible for credits</td>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Core Courses

Data Analysis

Information and Learning

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10</td>
<td>3V+2U+4A</td>
<td>J. M. Buhmann, C. Cottrini Jimenez</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topics covered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamental:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What is data?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bayesian Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computational learning theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supervised learning:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ensembles: Bagging and Boosting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max Margin methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neural networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unsupervised learning:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensionality reduction techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clustering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixture Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-parametric density estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning Dynamical Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No lecture notes, but slides will be made available on the course webpage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0423-00L</td>
<td>Neural Network Theory</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>H. Bölcskei</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, fundamental limits of deep neural network learning, VC dimension.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Universal approximation with single- and multi-layer networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Fundamental limits of deep neural network learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Geometry of decision surfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Separating capacity of nonlinear decision surfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Vapnik-Chervonenkis (VC) dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. VC dimension of neural networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Generalization error in neural network learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detailed lecture notes are available on the course web page: https://www.mins.ee.ethz.ch/teaching/int/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3621-00L</td>
<td>Fundamentals of Mathematical Statistics</td>
<td>W</td>
<td>10</td>
<td>4V+1U</td>
<td>S. van de Geer</td>
</tr>
</tbody>
</table>
Abstract

The course covers the basics of inferential statistics.

Data Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3010-00L</td>
<td>Big Data</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U+4A</td>
<td>G. Fourny</td>
</tr>
</tbody>
</table>

Abstract

The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.

This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.

Content

This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form.

- physical storage: distributed file systems (HDFS), object storage(S3), key-value stores
- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)
- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro)
- data shapes and models (tables, trees, graphs, cubes)
- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)
- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)
- resource management (YARN)
- what a data center is made of and why it matters (racks, nodes, ...)
- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

Literature

Large scale analytics and machine learning are outside of the scope of this course.

Papers from scientific conferences and journals. References will be given as part of the course material during the semester.

This course, in the autumn semester, is only intended for:
- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

For students of all other departements interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you:
- "Information Systems for Engineers" (SQL, relational databases): this Fall
- "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists): Spring 2021

There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers.

Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3845-00L</td>
<td>Data Management Systems</td>
<td>W</td>
<td>8 credits</td>
<td>3V+1U+3A</td>
<td>G. Alonso</td>
</tr>
</tbody>
</table>

Abstract

The course will cover the implementation aspects of data management systems using relational database engines as a starting point to cover the basic concepts of efficient data processing and then expanding those concepts to modern implementations in data centers and the cloud.

The goal of the course is to convey the fundamental aspects of efficient data management from a systems implementation perspective: storage, access, organization, indexing, consistency, concurrency, transactions, distribution, query compilation vs interpretation, data representations, etc. Using conventional relational engines as a starting point, the course will aim at providing an in depth coverage of the latest technologies used in data centers and the cloud to implement large scale data processing in various forms.
The course will first cover fundamental concepts in data management: storage, locality, query optimization, declarative interfaces, concurrency control and recovery, buffer managers, management of the memory hierarchy, presenting them in a system independent manner. The course will place an special emphasis on understanding these basic principles as they are key to understanding what problems existing systems try to address. It will then proceed to explore their implementation in modern relational engines supporting SQL to then expand the range of systems used in the cloud: key value stores, geo-replication, query as a service, serverless, large scale analytics engines, etc.

The main source of information for the course will be articles and research papers describing the architecture of the systems discussed. The list of papers will be provided at the beginning of the course.

The course requires to have completed the Data Modeling and Data Bases course at the Bachelor level as it assumes knowledge of databases and SQL.

The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two

Core Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0563-01L</td>
<td>Dynamic Programming and Optimal Control</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>R. D'Andrea</td>
</tr>
<tr>
<td>227-0101-00L</td>
<td>Discrete-Time and Statistical Signal Processing</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>H.-A. Loeliger</td>
</tr>
<tr>
<td>227-0417-00L</td>
<td>Information Theory I</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>A. Lapidoth</td>
</tr>
<tr>
<td>227-0689-00L</td>
<td>System Identification</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>R. Smith</td>
</tr>
</tbody>
</table>

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you’re ready for this class or not, please consult the instructor.
Content

Introduction to modeling: Black-box and grey-box models; Parametric and non-parametric models; ARX, ARMAX (etc.) models.

Predictive, open-loop, black-box identification methods. Time and frequency domain methods. Subspace identification methods.

Optimal experimental design, Cramer-Rao bounds, input signal design.

Parametric identification methods. On-line and batch approaches.

Literature

Prerequisites / notice

Control systems (227-0216-00L) or equivalent.

252-0417-00L

Randomized Algorithms and Probabilistic Methods

W

10 credits

3V+2U+4A

A. Steger

Abstract

Las Vegas & Monte Carlo algorithms: inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks

Objective

After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.

Content

Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Lecture notes

Yes.

Literature

252-1407-00L

Algorithmic Game Theory

W

7 credits

3V+2U+1A

P. Penna

Abstract

Game theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory.

Objective

Learning the basic concepts of game theory and mechanism design, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting.

Content

The Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a mathematical model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good.

This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth.

Outline:

- Introduction to classic game-theoretic concepts.
- Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity.
- Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization.
- Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy').
- Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium.
- Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange.

Lecture notes

Lecture notes will be usually posted on the website shortly after each lecture.

“Game Theory and Strategy”, Philip D. Straffin, The Mathematical Association of America, 5th printing, 2004

Prerequisites / notice

Several copies of both books are available in the Computer Science library.

Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

252-1414-00L

System Security

W

7 credits

2V+2U+2A

S. Capkun, A. Perrig

Abstract

The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.

Objective

In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.

Content

The first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.

252-3005-00L

Natural Language Processing

Number of participants limited to 400.

W

5 credits

2V+2U+1A

R. Cotterell
Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

This course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

For solving assignments, some programming experience in Python is expected.

This comprehensive course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of reliable and trustworthy artificial intelligence. The course covers some of the latest and most exciting advances that bring us closer to constructing such models.

The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.

Reliable and Trustworthy Artificial Intelligence

Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.

Advanced topics in parallel and high-performance computing. This course will present an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

To begin with a research project.

For solving assignments, some programming experience in Python is expected.
Reinforcement learning (RL) has been in the limelight of many recent breakthroughs in artificial intelligence. This course focuses on

Topics covered:

- Fundamentals of Markov decision processes
- Approximate dynamic programming
- Linear programming
- Primal-dual

Lecture notes will be posted on Moodle.

Deep Learning

5 credits

2V+2A

Foundations of Reinforcement Learning

This course aims to provide students with an advanced introduction of RL theory and algorithms as well as bring them near the frontier of

Prerequisites / notice

This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:

- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

 Advanced Machine Learning
 https://ml2.inf.ethz.ch/courses/aml/
 Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/
 Introduction to Machine Learning
 https://ias.inf.ethz.ch/teaching/introml-S19
 Statistical Learning Theory
 http://ml2.inf.ethz.ch/courses/slt/
 Computational Statistics
 https://stat.ethz.ch/lectures/sls19/comp-stats.php
 Probabilistic Artificial Intelligence
 https://ias.inf.ethz.ch/teaching/pai-f18

Content

Topics covered:

- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

263-5210-00L Probabilistic Artificial Intelligence

Number of participants limited to 320.

Abstract

This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.

Objective

- How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.

- Solid basic knowledge in statistics, algorithms and programming.

Prerequisites / notice

The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite.

Content

Topics covered:

- Reinforcement learning
- Multi-armed bandits and Bayesian optimization
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

263-5255-00L Foundations of Reinforcement Learning

Number of participants limited to 190.

Abstract

Reinforcement learning (RL) has been in the limelight of many recent breakthroughs in artificial intelligence. This course focuses on theoretical and algorithmic foundations of reinforcement learning, through the lens of optimization, modern approximation, and learning theory. The course targets M.S. students with strong research interests in reinforcement learning, optimization, and control.

Objective

This course aims to provide students with an advanced introduction of RL theory and algorithms as well as bring them near the frontier of this active research field.

By the end of the course, students will be able to

- Identify the strengths and limitations of various reinforcement learning algorithms;
- Formulate and solve sequential decision-making problems by applying relevant reinforcement learning tools;
- Generalize or discover "new" applications, algorithms, or theories of reinforcement learning towards conducting independent research on the topic.

Content

Basic topics include fundamentals of Markov decision processes, approximate dynamic programming, linear programming and primal-dual perspectives of RL, model-based and model-free RL, policy gradient algorithms, Markov games and multi-agent RL. If time allows, we will also discuss advanced topics such as batch RL, inverse RL, causal RL, etc. The course keeps strong emphasis on in-depth understanding of the mathematical modeling and theoretical properties of RL algorithms.

Lecture notes

Lecture notes will be posted on Moodle.

Literature

Dynamic Programming and Optimal Control, Vol I & II, Dimitris Bertsekas
Algorithms for Reinforcement Learning, Csaba Szepesvári.
Prerequisites / notice

Students are expected to have strong mathematical background in linear algebra, probability theory, optimization, and machine learning.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-5902-00L</td>
<td>Computer Vision</td>
<td>8 credits</td>
<td>3V+1U+3A M. Pollefeys, S. Tang, F. Yu</td>
</tr>
<tr>
<td>Abstract</td>
<td>The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objectives of this course are: 1. To introduce the fundamental problems of computer vision, 2. To introduce the main concepts and techniques used to solve those, 3. To enable participants to implement solutions for reasonably complex problems, 4. To enable participants to make sense of the computer vision literature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-0625-01L</td>
<td>Applied Analysis of Variance and Experimental Design</td>
<td>5 credits</td>
<td>2V+1U L. Meier</td>
</tr>
<tr>
<td>Abstract</td>
<td>Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorial and fractional designs, power.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorial and fractional designs, power.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3055-64L</td>
<td>Algebraic Methods in Combinatorics</td>
<td>6 credits</td>
<td>2V+1U B. Sudakov</td>
</tr>
<tr>
<td>Abstract</td>
<td>Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The exercises will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3601-00L</td>
<td>Probability Theory</td>
<td>10 credits</td>
<td>4V+1U W. Werner</td>
</tr>
<tr>
<td>Abstract</td>
<td>At most one of the three course units (Bachelor Core Courses) 401-3461-00L Functional Analysis I 401-3531-00L Differential Geometry I 401-3601-00L Probability Theory can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Basics of probability theory and the theory of stochastic processes in discrete time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned: Basics in measure theory, series of independent random variables, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems, Galton Watson processes, Markov chains (classification and convergence results).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lectures will be available in electronic form.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 568 of 2152
In der Regression wird die Abhängigkeit einer beobachteten quantitativen Größe von einer oder mehreren anderen (unter 4 credits)

Statistical Modelling

Prerequisites / notice
Familiarity with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.

Literature
H. Bauer, Probability Theory, de Gruyter 1996
J. Jacob and P. Protter, Probability essentials, Springer 2004
A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006
D. Williams, Probability with martingales, Cambridge University Press 1991

401-3612-00L Stochastic Simulation W 5 credits 3G

Abstract
This course provides an introduction to statistical Monte Carlo methods. This includes applications of simulations in various fields (Bayesian statistics, statistical mechanics, operations research, financial mathematics), algorithms for the generation of random variables (accept-reject, importance sampling), estimating the precision, variance reduction, introduction to Markov chain Monte Carlo.

Objective
Stochastic simulation (also called Monte Carlo method) is the experimental analysis of a stochastic model by implementing it on a computer. Probabilities and expected values can be approximated by averaging simulated values, and the central limit theorem gives an estimate of the error of this approximation. The course shows examples of the many applications of stochastic simulation and explains different algorithms used for simulation. These algorithms are illustrated with the statistical software R.

Content

Lecture notes
A script will be available in English.

Literature
P. Glasserman, Monte Carlo Methods in Financial Engineering.

Prerequisites / notice
Familiarity with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.

401-3622-00L Statistical Modelling W 8 credits 4G C. Heinze-Deml

Abstract
In regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression with one or more covariates, high-dimensional linear models, nonlinear models and generalized linear models, robust methods, model choice and nonparametric models. Several numerical examples will illustrate the theory.

Objective
Introduction into theory and practice of a broad and popular area of statistics, from a modern viewpoint.

Content

Prerequisites / notice
Credit cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).

401-3627-00L High-Dimensional Statistics W 4 credits 2V P. L. Bühlmann

Abstract
"High-Dimensional Statistics" deals with modern methods and theory for statistical inference when the number of unknown parameters is much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.

Objective
Knowledge of methods and basic theory for high-dimensional statistical inference

Content
Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and 1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling

Literature

Prerequisites / notice
Knowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics).

401-3901-00L Linear & Combinatorial Optimization W 11 credits 4V+2U R. Zenkuiyen

Abstract
Mathematical treatment of optimization techniques for linear and combinatorial optimization problems.

Objective
The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.

Content
Key topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and polyhedral techniques;
- Equivalence between optimization and separation.

Literature

Prerequisites / notice
Solid background in linear algebra.

Former course title: Mathematical Optimization.
Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies not assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making assessed
Media and Digital Technologies not assessed
Problem-solving assessed

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking not assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

401-4623-00L Time Series Analysis

W 6 credits 3G F. Balabdaoui

Does not take place this semester.

Abstract
The course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary Models, ARMA processes, Spectral Analysis, Forecasting, Nonstationary Models, ARIMA Models and an introduction to GARCH models.

Objective
The goal of the course is to have a a good overview of the different types of time series and the approaches used in their statistical analysis.

Content
This course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework, the main feature exhibited by time series is the dependence between successive observations.

The key topics which will be covered as:
- Stationarity
- Autocorrelation
- Trend estimation
- Elimination of seasonality
- Spectral analysis, spectral densities
- Forecasting
- ARMA, ARIMA, Introduction into GARCH models

Literature
The main reference for this course is the book "Introduction to Time Series and Forecasting", by P. J. Brockwell and R. A. Davis

401-4944-20L Mathematics of Data Science

W 8 credits 4G A. Bandeira

Abstract
Mostly self-contained, but fast-paced, introductory masters level course on various theoretical aspects of algorithms that aim to extract information from data.

Objective
Introduction to various mathematical aspects of Data Science.

Content
These topics lie in overlaps of (Applied) Mathematics with: Computer Science, Electrical Engineering, Statistics, and/or Operations Research. Each lecture will feature a couple of Mathematical Open Problem(s) related to Data Science. The main mathematical tools used will be Probability and Linear Algebra, and a basic familiarity with these subjects is required. There will also be some (although knowledge of these tools is not assumed) Graph Theory, Representation Theory, Applied Harmonic Analysis, among others. The topics treated will include Dimension reduction, Manifold learning, Sparse recovery, Random Matrices, Approximation Algorithms, Community detection in graphs, and several others.

Lecture notes

Prerequisites / notice
Basic knowledge in probability and statistics

402-0461-00L Quantum Information Theory

W 8 credits 3V+1U P. Kammerlander

Abstract
The goal of this course is to introduce the concepts and methods of quantum information theory. It starts with an introduction to the mathematical theory of quantum systems and then discusses the basic information-theoretic aspects of quantum mechanics. Further topics include applications such as quantum cryptography and quantum coding theory.

Objective
By the end of the course students are able to explain the basic mathematical formalism (e.g. states, channels) and the tools (e.g. entropy, distinguishability) of quantum information theory. They are able to adapt and apply these concepts and methods to analytically solve quantum information-processing problems primarily related to communication and cryptography.

Content
Mathematical formulation of quantum theory: entanglement, density operators, quantum channels and their representations. Basic tools of quantum information theory: distinguishability of states and channels, formulation as semidefinite programs, entropy and its properties. Applications of the concepts and tools: communication of classical or quantum information over noisy channels, quantitative uncertainty relations, randomness generation, entanglement distillation, security of quantum cryptography.

Lecture notes
Distributed via moodle.

Literature
Nielsen and Chuang, Quantum Information and Computation
Preskill, Lecture Notes on Quantum Computation
Wilde, Quantum Information Theory
Watrous, The Theory of Quantum Information
Lecturers

Computer architecture is the science & art of designing and optimizing hardware components and the hardware/software interface to create

6 credits

3G

Deep Learning in Artificial and Biological Neuronal

4 credits

Neuromorphic Engineering I

The course will start with a general introduction to AI, where we will cover supervised and unsupervised learning techniques (e.g. classification and regression models, feature selection and preprocessing of data, clustering, dimensionality reduction and text mining techniques) with a focus on application of these techniques in educational data mining. After the introduction of the basic methodologies, we will continue with the most relevant applications of AI in educational technologies (e.g., intelligent tutoring and student personalization, scaffolding open-ended discovery learning, socially-aware AI and learning at scale with AI systems). In the final part of the course, we will cover challenges associated with using AI in student facing settings.

Content

The course will start with a general introduction to AI, where we will cover supervised and unsupervised learning techniques (e.g. classification and regression models, feature selection and preprocessing of data, clustering, dimensionality reduction and text mining techniques) with a focus on application of these techniques in educational data mining. After the introduction of the basic methodologies, we will continue with the most relevant applications of AI in educational technologies (e.g., intelligent tutoring and student personalization, scaffolding open-ended discovery learning, socially-aware AI and learning at scale with AI systems). In the final part of the course, we will cover challenges associated with using AI in student facing settings.

Lecture notes

Lecture slides will be made available at the course Web site.

Literature

No textbook is required, but there will be regularly assigned readings from research literature, linked to the course website.

Prerequisites / notice

There are no prerequisites for this class. However, it will help if the student has taken an undergraduate or graduate level class in statistics, data science or machine learning. This class is appropriate for advanced undergraduates and master students in Computer Science as well as PhD students in other departments.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-2210-00L</td>
<td>Computer Architecture</td>
<td>W</td>
<td>8</td>
<td>6G+1A</td>
<td>O. Mutlu</td>
</tr>
<tr>
<td>Abstract</td>
<td>Computer architecture is the science & art of designing and optimizing hardware components and the hardware/software interface to create a computing platform that meets design goals. This course covers basic components of a modern computing system (memory, processors, interconnects, accelerators). The course takes a hardware/software cooperative approach to understanding and designing computing systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>We will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest major research topics in Industry and Academia. We will extensively cover memory systems (including DRAM and new Non-Volatile Memory technologies, memory controllers, flash memory), parallel computing systems (including multi-core processors, coherence and consistency, GPUs), heterogeneous computing, processing-in-memory, interconnection networks, specialized systems for major data-intensive workloads (e.g. graph analytics, bioinformatics, machine learning), etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The principles presented in the lecture are reinforced in the laboratory through 1) the design and implementation of a cycle-accurate simulator, where we will explore different components of a modern computing system (e.g., pipeline, memory hierarchy, branch prediction, prefetching, caches, multithreading), and 2) the extension of state-of-the-art research simulators (e.g., Ramulator) for more in-depth understanding of specific system components (e.g., memory scheduling, prefetching).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>All the materials (including lecture slides) will be provided on the course website: https://safari.ethz.ch/architecture/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The video recordings of the lectures are expected to be made available after lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>We will provide required and recommended readings in every lecture. They will mainly consist of research papers presented in major Computer Architecture and related conferences and journals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interdisciplinary Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1033-00L</td>
<td>Neuromorphic Engineering I</td>
<td>W</td>
<td>6</td>
<td>2V+3U</td>
<td>T. Delbrück, G. Indiveri, S.-C. Liu</td>
</tr>
<tr>
<td>Abstract</td>
<td>Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots. Preference is given to students that require this class as part of their major.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding of the characteristics of neuromorphic circuit elements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>This course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module INI404 at UZH. Please mind the ETH+ enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students/special-students-university-of-zurich.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 571 of 2152
Deep-Learning (DL) a brain-inspired weak for of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods.

The main goal of this lecture is to provide a comprehensive overview into the learning principles neuronal networks as well as to introduce a diverse skill set (e.g. simulating a spiking neuronal network) that is required to understand learning in large, hierarchical neuronal networks. To achieve this the lectures and exercises will merge ideas, concepts and methods from machine learning and neuroscience.

These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas presented in today’s neuroscience papers.

After this course students will be able to:
- read and understand the main ideas and methods that are presented in today’s neuroscience papers
- explain the basic ideas and concepts of plasticity in the mammalian brain
- implement alternative ANN learning algorithms to ‘error backpropagation’ in order to train deep neuronal networks.
- use a diverse set of ANN regularization methods to improve learning
- simulate spiking neuronal networks that learn simple (e.g. digit classification) tasks in a supervised manner.

Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. The origins of deep hierarchical learning can be traced back to early neuroscience research by Hubel and Wiesel in the 1960s, who first described the neuronal processing of visual inputs in the mammalian neocortex. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world.

However, while on specific tasks such as playing (video) games deep ANNs outperform humans (Minh et al., 2015, Silver et al., 2018), ANNs are still not performing on par when it comes to recognizing actions in movie data and their ability to act as generalizable problem solvers is still far behind of what the human brain seems to achieve effortlessly. Moreover, biological neuronal networks can learn far more effectively with fewer training examples, they achieve a much higher performance in recognizing complex patterns in time series data (e.g. recognizing actions in movies), they dynamically adapt to new tasks without losing performance and they achieve unmatched performance to detect and integrate out-of-domain data examples (data they have not been trained with). In other words, many of the big challenges and unknowns that have emerged in the field of deep learning over the last years are already mastered exceptionally well by biological neuronal networks in our brain. On the other hand, many facets of typical ANN design and training algorithms seem biologically implausible, such as the non-local weight updates, discrete processing of time, and scalar communication between neurons. Recent evidence suggests that learning in biological systems is the result of the complex interplay of diverse error feedback signaling processes acting at multiple scales, ranging from single synapses to entire networks.

The participation in the course is subject to the following conditions:

1) The number of participants is limited to 120 students (MSc and PhDs).
2) Students must have taken the exam in Deep Learning (263-3210-00L) or have acquired equivalent knowledge.

The lecture slides will be provided as a PDF after each lecture. This is an advanced level course that requires some basic background in machine/deep learning. Thus, students are expected to have a basic mathematical foundation, including linear algebra, multivariate calculus, and probability. The course is not to be meant as an extended tutorial of how to train deep networks in PyTorch or Tensorflow, although these tools used.

The participation in the course is subject to the following conditions:

1) The number of participants is limited to 120 students (MSc and PhDs).
2) Students must have taken the exam in Deep Learning (263-3210-00L) or have acquired equivalent knowledge.

In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II).

These written documents will be graded and count as 40% for the final grade.

The course critically reviews central problems in Biomedicine and discusses the technical foundations and solutions for these problems.
Objective
Over the past years, rapid technological advancements have transformed classical disciplines such as biology and medicine into fields of applied data science. While the sheer amount of the collected data often makes computational approaches inevitable for analysis, it is the domain specific structure and close relation to research and clinic, that call for accurate, robust and efficient algorithms. In this course we will critically review central problems in Biomedicine and will discuss the technical foundations and solutions for these problems.

Content
The course will consist of three topic clusters that will cover different aspects of data science problems in Biomedicine:
1) String algorithms for the efficient representation, search, comparison, composition and compression of large sets of strings, mostly originating from DNA or RNA Sequencing. This includes genome assembly, efficient index data structures for strings and graphs, alignment techniques as well as qualitative approaches.
2) Statistical models and algorithms for the assessment and functional analysis of individual genomic variations, this includes the identification of variants, prediction of functional effects, imputation and integration problems as well as the association with clinical phenotypes.
3) Models for organization and representation of large scale biomedical data. This includes ontology concepts, biomedical databases, sequence annotation and data compression.

Prerequisites / notice

261-5112-00L Algorithms and Data Structures for Population Scale Genomics

Objective
Research in Biology and Medicine have been transformed into disciplines of applied data science over the past years. Not only size and inherent complexity of the data but also requirements on data privacy and complexity of search and access pose a wealth of new research questions.

Content
This interactive course will explore the latest research on algorithms and data structures for population scale genomics applications and give insights into both the technical basis as well as the domain questions motivating it.

261-5111-00L Asset Management: Advanced Investments (University of Zurich)

Objective
Comprehension and application of advanced portfolio theory

Content
The theoretical part of the lecture consists of the topics listed below.
- Standard Markowitz Model and Extensions
- MV Optimization, with Liabilities and CAPM.
- The Crux with MV
- Resampling, regression, Black-Litterman, Bayesian, shrinkage, constrained and robust optimization.
- Downside and Coherent Risk Measures
- Definition of risk measures, MV optimization under VaR and ES constraints.
- Risk Budgeting
- Equal risk contribution, most diversified portfolio and other concentration indices
- Regime Switching and Asset Allocation
- An introduction to regime switching models and its intuition.
- Strategic Asset Allocation
- Introducing a continuous-time framework, solving the HJB equation and the classical Merton problem.

636-0017-00L Computational Biology

Objective
Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:
- stochastic models in molecular evolution
- phylogenetic & phylodynamic inference
- maximum likelihood and Bayesian statistics

Content
The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.

Lecture notes
Lecture slides will be available on moodle.
The course provides the necessary knowledge to develop models supporting and also evaluating the solution of given planning problems. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course Introduction to Programming, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date.

For the Zurich-based students without R experience, we recommend the R course http://www.cbb.ethz.ch/news-events.html

Prerequisites / notice

Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work.

Literature

The course is not based on any of the textbooks below, but they are excellent choices as accompanying material:

- *Yang, Z. 2006. Computational Molecular Evolution.*
- *Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.*

Accordingly, we will not distribute any reading material. However, in order to guide the students with the applied part of the course, we provide a complete course data set.

For the Zurich-based students without R experience, we recommend the R course http://www.cvv.ethz.ch/Vorlesungsverzeichnis/lerneinheit/view?semkez=2018W&ansicht=KATALOGDATEN&lerneinheitId=123546&lang=dde, or working through the script provided as part of this R course.

Course Data

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 574 of 2152
101-0491-00L Agent Based Modeling in Transportation W 6 credits 4G M. Balac

Abstract
This course provides an introduction to agent-based modeling in transportation. The lectures and exercises offer an opportunity to learn about agent-based models' current methodology, focusing on MATSim, how agent-based models are set up, and perform a practical case study by working in teams.

Objective
At the end of the course, the students should:
- have an understanding of agent-based modeling
- have an understanding of MATSim
- have an understanding of the process needed to set up an agent-based study
- have practical experience of using MATSim to perform practical transportation studies

Content
This course provides an introduction to agent-based models for transportation policy analysis. Four essential topics are covered:

1) Introduction of agent-based modeling and its comparison to the traditional state of practice modeling
2) Introduction of MATSim, an open-source agent-based model, developed at ETH Zurich and TU Berlin, and its various parts
3) Setting up an agent-based model simulation, where different statistical methods used in the process will be introduced and explained.
4) Conducting a transport policy study. The case study will be performed in groups and will include a paper-like report.

During the course, outside lecturers will give several lectures on using MATSim in practice (i.e., SBB).

Literature
Agent-based modeling in general

MATSim

Prerequisites / notice
Additional relevant readings, primarily scientific articles, will be recommended throughout the course.

There are no strict preconditions in terms of which lectures the students should have previously attended. However, knowledge of basic statistical theory is expected, and experience with at least one high-level programming language (Java, R, Python, or other) is recommended.

103-0227-00L Cartography III W 5 credits 4G L. Hurni

Abstract
This follow-up course proceeds to a complete Web map project and introduces in 3D and animated cartography.

Objective
This course enables students to plan, design and realize interactive Web map projects. The introduction to 3D and animated cartography also provides a general knowledge about animated 3D graphics.

Content
- Web mapping.
- Data processing.
- Interaction design.
- Graphical user interface.
- 3D cartography.
- Animated cartography.
- Video production.

Lecture notes
Handouts of the lectures and exercise documents are available on Moodle.

Prerequisites / notice
Further information at http://www.karto.ethz.ch/studium/lehrangebot.html

103-0237-00L GIS III W 5 credits 4G W. Kuhn

Abstract
The course deals with advanced topics in GIS, such as Business aspects and Legal issues; Geostatistics; Human-Computer Interaction; Cognitive Issues in GIS; Geosensors; Spatial Data Mining and Machine Learning for GIS.

Objective
Students will get a detailed overview of advanced GIS topics. They will work on a small project with geosensors in the lab and perform practical tasks relating to Geostatistics and Machine Learning.

Lecture notes
Lecture slides will be made available in digital form.

103-0717-00L Geoinformation Technologies and Analysis W 6 credits 4G W. Kuhn

Abstract
Geoinformationstechnologien und -analysen für Fortgeschrittene: Mobile GIS; Web-GIS & Geo-Web-Services; Spatial Big Data; Zeitliche Aspekte in GIS; Analyse von Bewegungsdaten; Benutzerschnittstellen

Objective

Content
- Mobile GIS
- Web-GIS & Geo-Web-Services
- Spatial Big Data
- Zeitliche Aspekte in GIS
- Analyse von Bewegungsdaten
- Benutzerschnittstellen

Lecture notes
Vorlesungspräsentationen werden digital zur Verfügung gestellt.

Literature

Prerequisites / notice
GIS GZ
The goals of this course is to provide students with a deeper understanding of the existing and upcoming Internet routing and forwarding technologies used in large-scale computer networks such as Internet Service Providers (e.g., Swisscom or Deutsche Telekom), Content Delivery Networks (e.g., Netflix) and Data Centers (e.g., Google). Besides covering the fundamentals, the course will be "hands-on" and will enable students to play with the technologies in realistic network environments, and even implement some of them on their own during labs and a final group project.

The course will cover advanced topics in Internet routing and forwarding such as:
- Tunneling
- Hierarchical routing
- Traffic Engineering and Load Balancing
- Virtual Private Networks
- Quality of Service/Queuing/Scheduling
- Fast Convergence
- Network virtualization
- Network programmability (OpenFlow, P4)
- Network measurements

The course will be divided in two main blocks. The first block (~8 weeks) will interleave classical lectures with practical exercises and labs. The second block (~6 weeks) will consist of a practical project which will be performed in small groups (~3 students). During the second block, lecture slots will be replaced by feedback sessions where students will be able to ask questions and get feedback about their project. The last week of the semester will be dedicated to student presentations and demonstrations.

Lecture notes
Lecture notes and material will be made available before each course on the course website.

Literature
Relevant references will be made available through the course website.

Prerequisites / notice
Prerequisites: Communication Networks (227-0120-00L) or equivalents / good programming skills (in any language) are expected as both the exercises and the final project will involve coding.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
 - assessed
- Techniques and Technologies
 - assessed

Domain B - Method-specific Competencies
- Analytical Competencies
 - assessed
- Decision-making
 - assessed
- Problem-solving
 - assessed

Domain C - Social Competencies
- Communication
 - assessed
- Cooperation and Teamwork
 - assessed

Domain D - Personal Competencies
- Adaptability and Flexibility
 - assessed
- Creative Thinking
 - assessed
- Critical Thinking
 - assessed

401-3920-00L

4 credits
2V
M. Koller

Life Insurance Mathematics

The classical life insurance model is presented together with the important insurance types (insurance on one and two lives, term and endowment insurance and disability). Besides that the most important terms such as mathematical reserves are introduced and calculated. The profit and loss account and the balance sheet of a life insurance company is explained and illustrated.

Prerequisites / notice
This course will be held in English and counts towards the diploma of "Aktuar SAV". For the latter, see details under www.actuaries.ch.

Prerequisites: knowledge of probability theory, statistics and applied stochastic processes.
Reinsurance Analytics

Abstract

This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and models for extreme events such as natural or man-made catastrophes. The lecture covers reinsurance contracts, Experience and Exposure pricing, natural catastrophe modelling, solvency regulation, and insurance linked securities.

Topics covered include:
- Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business.
- Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models.
- Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context.
- Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency II.
- Insurance linked securities: Alternative risk transfer techniques such as catastrophe bonds.

Objective

This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes.

Topics covered include:
- Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business.
- Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models.
- Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context.
- Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency II.
- Insurance linked securities: Alternative risk transfer techniques such as catastrophe bonds.

Content

This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes.

Topics covered include:
- Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business.
- Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models.
- Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context.
- Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency II.
- Insurance linked securities: Alternative risk transfer techniques such as catastrophe bonds.

Lecture notes

Slides and lecture notes will be made available.

An excerpt of last year's lecture notes is available here: https://sites.google.com/site/philipparbenz/reinsuranceanalytics

Prerequisites / notice

Basic knowledge in statistics, probability theory, and actuarial techniques.

Mathematical Finance

Abstract

Advanced course on mathematical finance:
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- additional topics

Objective

Advanced course on mathematical finance, presupposing good knowledge in probability theory and stochastic calculus (for continuous processes).
This is an advanced course on mathematical finance for students with a good background in probability. We want to give an overview of main concepts, questions and approaches, and we do this mostly in continuous-time models.

Topics include:
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- and probably others

Lecture notes

The course is based on different parts from different books as well as on original research literature.

Lecture notes will not be available.

Prerequisites / notice

Prerequisites are the standard courses
- Probability Theory (for which lecture notes are available)
- Brownian Motion and Stochastic Calculus (for which lecture notes are available)

Those students who already attended "Introduction to Mathematical Finance" will have an advantage in terms of ideas and concepts.

This course is the second of a sequence of two courses on mathematical finance. The first course "Introduction to Mathematical Finance" (MF I), 401-3888-00, focuses on models in finite discrete time. It is advisable that the course MF I is taken prior to the present course, MF II.

For an overview of courses offered in the area of mathematical finance, see https://www.math.ethz.ch/imsf/education/education-in-stochastic-finance/overview-of-courses.html.

401-8905-00L Financial Engineering (University of Zurich) W 6 credits 4G University lecturers

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: MFOEC200

Mind the enrolment deadlines at UZH:

Abstract

This lecture is intended for students who would like to learn more on equity derivatives modelling and pricing.

Objective

Quantitative models for European option pricing (including stochastic volatility and jump models), volatility and variance derivatives, American and exotic options.

Content

After introducing fundamental concepts of mathematical finance including no-arbitrage, portfolio replication and risk-neutral measure, we will present the main models that can be used for pricing and hedging European options e.g. Black-Scholes model, stochastic and jump-diffusion models, and highlight their assumptions and limitations. We will cover several types of derivatives such as European and American options, Barrier options and Variance-Swaps. Basic knowledge in probability theory and stochastic calculus is required. Besides attending class, we strongly encourage students to stay informed on financial matters, especially by reading daily financial newspapers such as the Financial Times or the Wall Street Journal.

Lecture notes

Script.

Prerequisites / notice

Basic knowledge of probability theory and stochastic calculus.

851-0252-13L Network Modeling W 3 credits 2V C. Stadtfeld, V. Amati

Particularly suitable for students of D-INFK and in the MSc Data Science

Students are required to have basic knowledge in inferential statistics, such as regression models.

Abstract

Network Science is a distinct domain of data science that focuses on relational systems. Various models have been proposed to describe structures and dynamics of networks. Statistical and numerical methods have been developed to fit these models to empirical data. Emphasis is placed on the statistical analysis of (social) systems and their connection to social theories and data sources.

Objective

Students will be able to develop hypotheses that relate to the structures and dynamics of (social) networks, and tests those by applying advanced statistical network methods such as exponential random graph models (ERGMs) and stochastic actor-oriented models (SAOMs). Students will be able to explain and compare various network models, and develop an understanding of how those can be fit to empirical data. This will enable students to independently address research questions from various social science fields.
The following topics will be covered:
- Introduction to network models and their applications
- Stylized models:
 * uniform random graph models
 * small world models
 * preferential attachment models
- Models for testing hypotheses while controlling for the network structure:
 * Quadratic assignment procedure regression (QAP regression)
- Models for testing hypotheses on the network structure:
 * Models for one single observation of a network: exponential random graph models (ERGMs)
 * Models for panel network data: stochastic actor-oriented models (SAOMs)
 * Models for relational event data: dynamic network actor models (DyNAMs)

The application of these models is illustrated through examples and practical sessions involving the analysis of network data using the software R.

Lecture notes
Slides and lecture notes are distributed via the associated course moodle.

Literature

Prerequisites / notice
Students are required to have basic knowledge in inferential statistics and should be familiar with linear and logistic regression models.

851-0735-09L Workshop & Lecture Series on the Law & Economics W 2 credits 2S S. Bechtold, H. Gersbach of Innovation

Abstract
This series is a joint project by ETH Zurich and the Universities of St. Gallen and Zurich. It provides an overview of interdisciplinary research on intellectual property, innovation, antitrust, privacy & technology policy. Scholars from law, economics, management and related fields present their current research. All speakers are internationally well-known experts from Europe, the U.S. & beyond.

Objective
After the workshop and lecture series, participants should be acquainted with interdisciplinary approaches towards intellectual property, innovation, antitrust, privacy and technology policy research. They should also have an overview of current topics of international research in these areas.

Content
The workshop and lecture series will present a mix of speakers who represent the wide range of current social science research methods applied to intellectual property, innovation, privacy and technology policy issues. In particular, theoretical models, empirical and experimental research as well as legal research methods will be represented.

Lecture notes
Papers discussed in the workshop and lecture series are posted in advance on the course web page.

Literature
Suzanne Scotchmer, Innovation and Incentives, 2004
Bronwyn Hall / Nathan Rosenberg (eds.), Handbook of the Economics of Innovation, 2 volumes, Amsterdam 2010
Bronwyn Hall / Dietmar Harhoff, Recent Research on the Economics of Patents, 2011

Taught competencies
Domain A - Subject-specific Competencies
 Concepts and Theories assessed
Domain B - Method-specific Competencies
 Analytical Competencies assessed
 Problem-solving assessed
Domain C - Social Competencies
 Communication assessed
Domain D - Personal Competencies
 Creative Thinking assessed
 Critical Thinking assessed

851-0252-15L Network Analysis W 3 credits 2V U. Brandes Particularly suitable for students of D-INFK, D-MATH

Abstract
Network science is a distinct domain of data science that is characterized by a specific kind of data being studied. While areas of application range from archaeology to zoology, we concern ourselves with social networks for the most part. Emphasis is placed on descriptive and analytic approaches rather than theorizing, modeling, or data collection.

Objective
Students will be able to identify and categorize research problems that call for network approaches while appreciating differences across application domains and contexts. They will master a suite of mathematical and computational tools, and know how to design or adapt suitable methods for analysis. In particular, they will be able to evaluate such methods in terms of appropriateness and efficiency.

Content
The following topics will be covered with an emphasis on structural and computational approaches and frequent reference to their suitability with respect to substantive theory:
* Empirical Research and Network Data
* Macro and Micro Structure
* Centrality
* Roles
* Cohesion

Lecture notes
Lecture notes are distributed via the associated course moodle.

Literature

851-0760-00L Building a Robot Judge: Data Science for Decision- W 3 credits 2V E. Ash
Making

Abstract
This course explores the automation of decisions in the legal system. We delve into the machine learning tools needed to predict judge decision-making and ask whether techniques in model explanation and algorithmic fairness are sufficient to address the potential risks.

Objective
This course gives a first introduction to the main modelling ideas and mathematical tools from mathematical finance. It mainly aims at non-mathematicians who want to learn some basic modelling ideas and concepts for quantitative finance (before continuing with a more advanced course) may also find this of interest. The main emphasis will be on ideas, but important results will be given with (sometimes partial) proofs.

Content
The course provides an in-depth study of network attack techniques and methods to defend against them.

- Students can implement network-security protocols based on cryptographic libraries.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

- Black-Scholes formula
- stochastic calculus: Itô’s formula, Girsanov transformation, Itô’s representation theorem
- financial market models in finite discrete time
- absence of arbitrage and martingale measures
- valuation and hedging in complete markets
- basics about Brownian motion
- stochastic integration
- stochastic calculus: Itô’s formula, Girsanov transformation, Itô’s representation theorem
- Black-Scholes formula

Literature
Lecture notes will be sold at the beginning of the course. Additional (background) references are given there.

Prerequisites / notice
Prerequisites: Results and facts from probability theory as in the book "Probability Essentials" by J. Jacod and P. Protter will be used freely. Especially participants without a direct mathematics background are strongly advised to familiarise themselves with those tools before (or very quickly during) the course. (A possible alternative to the above English textbook are the (German) lecture notes for the standard course "Wahrscheinlichkeitstheorie").

For those who are not sure about their background, we suggest to look at the exercises in Chapters 8, 9, 22-25, 28 of the Jacod/Potter book. If these pose problems, you will have a hard time during the course. So be prepared.

851-0761-00L Building a Robot Judge: Data Science for Decision-Making (Course Project)
This is the optional course project for "Building a Robot Judge: Data Science for the Law."

Please register only if attending the lecture course or with consent of the instructor.

Abstract
Some programming experience in Python is required, and some experience with text mining is highly recommended.

Objective
In a semester paper, students (individually or in groups) will conceive and implement their own research project applying natural language tools to legal texts. Some programming experience in Python is required, and some experience with NLP is highly recommended.

Content
Students investigate and implement the relevant machine learning tools for making legal predictions, including regression, classification, and deep neural networks models.

We will use these predictions to better understand the operation of the legal system. In a semester project, student groups will conceive and implement a research design for examining this type of empirical research question.

401-3913-01L Mathematical Foundations for Finance

Abstract
First introduction to main modelling ideas and mathematical tools from mathematical finance

Objective
This course introduces students to the data science tools that may provide the first building blocks for a robot judge. While building a working robot judge might be far off in the future, some of the building blocks are already here, and we will put them to work.

Content
Data science technologies have the potential to improve legal decisions by making them more efficient and consistent. On the other hand, there are serious risks that automated systems could replicate or amplify existing legal biases and rigidities. Given the stakes, these technologies force us to think carefully about notions of fairness and justice and how they should be applied.

The focus is on legal prediction problems. Given the evidence and briefs in this case, how will a judge probably decide? How likely is a criminal defendant to commit another crime? How much additional revenue will this new tax law collect? Students will investigate and implement the relevant machine learning tools for making these types of predictions, including regression, classification, and deep neural networks models.

We then use these predictions to better understand the operation of the legal system. Under what conditions do judges tend to make errors? Against which types of defendants do parole boards exhibit bias? Which jurisdictions have the most tax loopholes? Students will be introduced to emerging applied research in this vein. In a semester paper, students (individually or in groups) will conceive and implement an applied data-science research project.

263-4640-00L Network Security

Abstract
Some of today's most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them.

Objective
- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students are familiar with important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

Content
The course will cover topics spanning four broad themes with a focus on the first two themes:
1. network defense mechanisms such as public-key infrastructures, TLS, VPNs, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems.
2. network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
3. analysis and inference topics such as traffic monitoring and network forensics; and
4. new technologies related to next-generation networks.

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.
This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L. Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Type</th>
<th>Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Concepts and Theories</td>
<td>O</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>O</td>
<td>assessed</td>
</tr>
<tr>
<td>B</td>
<td>Analytical Competencies</td>
<td>O</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>O</td>
<td>assessed</td>
</tr>
<tr>
<td>C</td>
<td>Media and Digital Technologies</td>
<td>O</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>O</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>O</td>
<td>assessed</td>
</tr>
<tr>
<td>D</td>
<td>Adaptability and Flexibility</td>
<td>O</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>O</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>O</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>O</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>O</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>O</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>O</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Prerequisites / notice

Prerequisites: At least 8 KP must have been obtained under Data Analysis and at least 8 KP must have been obtained under Data Management and Processing.

Data Science Lab

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3300-00L</td>
<td>Data Science Lab</td>
<td>O</td>
<td>14</td>
<td>9P</td>
<td>C. Zhang, V. Boeva, R. Cotterell, J. Vogt, F. Yang</td>
</tr>
</tbody>
</table>

Abstract

In this class, we bring together data science applications provided by ETH researchers outside computer science and teams of computer science master’s students. Two to three students will form a team working on data science/machine learning-related research projects provided by scientists in a diverse range of domains such as astronomy, biology, social sciences etc.

Objective

The goal of this class is for students to gain experience of dealing with data science and machine learning applications “in the wild”. Students are expected to go through the full process starting from data cleaning, modeling, execution, debugging, error analysis, and quality/performance refinement.

Number of participants limited to 40.

Prerequisites / notice

Seminar

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-5051-00L</td>
<td>Advanced Topics in Machine Learning</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>J. M. Buhmann, R. Cotterell, J. Vogt, F. Yang</td>
</tr>
</tbody>
</table>

The deadline for deregistering expires at the end of the fourth week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

Abstract

In this seminar, recent papers of the pattern recognition and machine learning literature are presented and discussed. Possible topics cover statistical models in computer vision, graphical models and machine learning.

Objective

The seminar "Advanced Topics in Machine Learning" familiarizes students with recent developments in pattern recognition and machine learning. Original articles have to be presented and critically reviewed. The students will learn how to structure a scientific presentation in English which covers the key ideas of a scientific paper. An important goal of the seminar presentation is to summarize the essential ideas of the paper in sufficient depth while omitting details which are not essential for the understanding of the work. The presentation style will play an important role and should reach the level of professional scientific presentations.

Content

The seminar will cover a number of recent papers which have emerged as important contributions to the pattern recognition and machine learning literature. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. Frequently, papers are selected from computer vision or bioinformatics - two fields, which relies more and more on machine learning methodology and statistical models.

Literature

The papers will be presented in the first session of the seminar.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3504-00L</td>
<td>Hardware Acceleration for Data Processing</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>G. Alonso</td>
</tr>
</tbody>
</table>

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

Abstract

The seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.
Objective
The seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.

Content
The general application areas are big data and machine learning. The systems covered will include systems from computer architecture, high performance computing, data appliances, and data centers.

Prerequisites / notice
Students taking this seminar should have the necessary background in systems and low level programming.

<table>
<thead>
<tr>
<th>263-5156-00L</th>
<th>Beyond iid Learning: Causality, Dynamics, and Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of participants limited to 60.</td>
</tr>
<tr>
<td></td>
<td>The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.</td>
</tr>
<tr>
<td>Abstract</td>
<td>Many machine learning problems go beyond supervised learning on independent data points and require an understanding of the underlying causal mechanisms, the interactions between the learning algorithms and their environment, and adaptation to temporal changes. The course highlights some of these challenges and relates them to state-of-the-art research.</td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of this seminar is to gain experience with machine learning research and foster interdisciplinary thinking.</td>
</tr>
<tr>
<td>Content</td>
<td>The seminar will be divided into two parts. The first part summarizes the basics of statistical learning theory, game theory, causal inference, and dynamical systems in four lectures. This sets the stage for the second part, where distinguished speakers will present selected aspects in greater detail and link them to their current research.</td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Students need to be comfortable with regression models, classical estimation methods (Least squares, Maximum Likelihood estimation, etc.), rates of convergence, asymptotic normality, etc.</td>
</tr>
<tr>
<td>License notes</td>
<td>Further information will be published on the course website: https://beyond-iid-learning.xyz/</td>
</tr>
<tr>
<td>Keywords</td>
<td>Causal inference, adaptive decision-making, reinforcement learning, game theory, meta learning, interactions with humans.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>401-5680-00L</th>
<th>Foundations of Data Science Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E-0 credits</td>
</tr>
<tr>
<td></td>
<td>P. L. Bühlmann, A. Bandeira, H. Bölcskei, F. Yang</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
</tr>
<tr>
<td>Objective</td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>401-3620-20L</th>
<th>Student Seminar in Statistics: Inference in Some Non-Standard Regression Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W 4 credits 2S</td>
</tr>
<tr>
<td></td>
<td>F. Balabdaoui</td>
</tr>
<tr>
<td>Abstract</td>
<td>Review of some non-standard regression models and the statistical properties of estimation methods in such models.</td>
</tr>
<tr>
<td>Objective</td>
<td>The main goal is the students get to discover some less known regression models which either generalize the well-known linear model (for example monotone regression) or violate some of the most fundamental assumptions (as in shuffled or unlinked regression models).</td>
</tr>
<tr>
<td>Content</td>
<td>Linear regression is one of the most used models for prediction and hence one of the most understood in statistical literature. However, linearity might be too simplistic to capture the actual relationship between some response and given covariates. Also, there are many real data problems where linearity is plausible but the actual pairing between the observed covariates and responses is completely lost or at partially. In this seminar, we review some of the non-classical regression models and the statistical properties of the estimation methods considered by well-known statisticians and machine learners. This will encompass:</td>
</tr>
<tr>
<td>Literature</td>
<td>In the following is the tentative material that will be read and studied by each pair of students (all the items listed below are available through the ETH electronic library or arXiv). Some of the items might change.</td>
</tr>
</tbody>
</table>

8. "Linear regression with shuffled data: statistical and computation limits of permutation recovery" by A. Pananjady, M. Wainwright and T. A. Courtade, 2018, IEEE transactions in Information Theory, Volume 64, 3286-3300
9. "Linear regression without correspondence" by D. Hsu, K. Shi and X. Sun, 2017, NIPS
11. "Uncoupled isotonic regression via minimum Wasserstein deconvolution" by P. Rigollet and J. Weed, 2019, Information and Inference, Volume 00, 1-27

Prerequisites / notice
The students need to be comfortable with regression models, classical estimation methods (Least squares, Maximum Likelihood estimation,...), rates of convergence, asymptotic normality, etc.

GESS Science in Perspective
Data: 11.11.2021 12:40 Autumn Semester 2021 Page 583 of 2152

Master's Thesis

The minimal prerequisites for the Master's thesis registration are:

- Completed Bachelor's program
- All additional requirements completed (if any, listed in the admission decree)
- Minimum degree requirements fulfilled of the course categories Data Analysis and Data Management and overall 50 credits obtained in the course category Core Courses
- Data Science Lab (14 credits) completed

Abstract
The Master's thesis concludes the study program and demonstrates the students' ability to use the knowledge and skills acquired during Master's studies to solve a complex data science problem.

Objective
To work independently and to produce a scientifically structured work.

Data Science Master - Key for Type

<table>
<thead>
<tr>
<th>Dr</th>
<th>Suitable for doctorate</th>
<th>W</th>
<th>Eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Transdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder Engagement

Number of participants limited to 20. Priority is given to PhD students D-USYS.

All participants will be on the waiting list at first. Enrollment is possible until 15 September 2021. The waiting list is active until 17 September. All students will be informed on 19 September, if they can participate in the lecture. The lecture takes place if a minimum of 12 students register for it.

Course Catalogue of ETH Zurich

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0015-00L</td>
<td>Transdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder Engagement</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>M. Stauffacher, C. E. Pohl, B. Vienni Baptista</td>
</tr>
</tbody>
</table>

Abstract

This seminar is designed for PhD students and PostDoc researchers involved in inter- or transdisciplinary research. It addresses and discusses challenges of this kind of research using scientific literature presenting case studies, concepts, theories, methods and by testing practical tools. It concludes with a 10-step approach to make participants’ research projects more societally relevant.

Objective

Participants know specific challenges of inter- and transdisciplinary research and can address them by applying practical tools. They can tackle questions like: how to integrate knowledge from different disciplines, how to engage with societal actors, how to secure broader impact of research? They learn to critically reflect their own research project in its societal context and on their role as scientists.

Content

The seminar covers the following topics:

1. Theories and concepts of inter- and transdisciplinary research
2. The specific challenges of inter- and transdisciplinary research
3. Collaborating between different disciplines
4. Engaging with stakeholders
5. 10 steps to make participants’ research projects more societally relevant

Throughout the whole course, scientific literature will be read and discussed as well as practical tools explored in class to address concrete challenges.

Literature

Literature will be made available to the participants. The following open access article builds a core element of the course:

Further, this collection of tools will be used:

https://naturalsciences.ch/topics/co-producing_knowledge

Prerequisites / notice

Participation in the course requires participants to be working on their own research project.

Dates (Wednesdays, 8h15-12h00): 29 September, 27 October, 10 November, 24 November, 8 December

Advanced Topics in History and Theory of Architecture: Entry Points - Reading Seminar

For Architecture doctoral program only.

The seminar will consist of a series of collective readings of selected texts.

Objective

Knowledge of relevant texts in contemporary theory. Capacity to critically discuss methods and discourses.

Lecture notes

Scans of selected texts for discussion and exercises will be provided at the beginning of HS 2020 on the course website:

Prerequisites / notice

The seminar addresses the fellows of the Doctoral Program in History and Theory of Architecture. All other doctoral students of the Faculty of Architecture are welcome.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>Techniques and Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>Decision-making</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>Problem-solving</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptable and Flexible</td>
<td></td>
</tr>
</tbody>
</table>

Research Methods in the History and Theory of Architecture

Abstract

Introduction to methodological approaches in the history and theory of architecture; presentation and discussion of individual doctoral projects.
Objective

The two-semester course in the first year of the doctoral program in the history and theory of architecture has a twofold objective: First, method sessions on central approaches in the history and theory of architecture provide a methodological basis for the doctorate at the Institute gta. Secondly, in "practice" sessions, the doctoral students get support for their individual research projects and guidance for the production of the Research Plan they have to present at the end of the first year.

Content

"Again. If a thing can be done adequately by means of one, it is superfluous to do it by means of several; for we observe that nature does not employ two instruments where one suffices."

The methodological and heuristic approach of research increasingly complex with every academic generation: it presents a complex thickness of epistemological frameworks and practical strategies rather than a straightforward array of tools. In the omnivorous field of architectural history and theory, the scholar faces a yet more multi-faceted array of possible approaches to any individual research subject. This course considers the variety of available strategies for the creation of architectural historian, and theorist as an opportunity for intellectual inquiry distinctive to our discipline. Through close and prolonged study of a range of historically significant or methodologically innovative writing, we will deepen our understanding both of how other historians have structured their work as well as refine each student's developing research methodology.

The course, held over two semesters, combines a traditional doctoral theory seminar with a practical writing workshop: we will alternate reading-based discussions with working sessions directed towards the development of the research proposal to be submitted at the end of the first year.

Due to the intensive nature of the course, active class participation is required for doctoral students and all in-presence attendees. Students attending individual sessions in a listening capacity are requested to utilize the hybrid option.

The course schedule will be available at the beginning of HS 2021 on the course website: https://doctoral-program.gta.arch.ethz.ch/courses/research-methods

Lecture notes

Please note doctoral program courses begin the third week of the semester.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	not assessed
Domain B - Method-specific Competencies	Analytical Competencies	not assessed
Domain C - Social Competencies	Communication	not assessed
Domain D - Personal Competencies	Creative Thinking	not assessed

Prerequisites / notice

Participants in both cases will be expected to submit single-page abstracts of their papers in advance and to make a presentation of app. 20 minutes at the colloquium. The discussion rounds will be moderated by the organizing professor and the invited guests.

Enrolment on agreement with the lecturer only.

064-00017-21L Research Methods in Landscape and Urban Studies

|---|---|---|---|

Abstract

Advanced PhD candidates of urban studies, urban and landscape design and urban sociology report about their experiences and insights in the concrete application of methods utilized for their research and scientific publications. Discussion of ongoing individual work, methodological questions, critical perspectives on urban and landscape design and city's relation to society.

Objective

The seminar seeks to provide participants with a differentiated knowledge of methods in the field of urbanism. Furthermore, it provides a platform to exchange contemporary urban research experiences across disciplinary boundaries, drawing from different geographies of knowledge production. Possible meta-themes include modes of data assessment in urban studies, ways of progressing from hypothesis to synthesis, and research by design as method.

Content

The format will provide an overarching methodological meta-theme, to be defined prior to the event. One external guest critic will be invited. In this case, each presentation will conclude with a discussion round, providing sufficiently detailed feedback for every doctoral candidate.

Prerequisites / notice

The seminar is joint-organized by the chairs of the professors H. Klumpner, Ch. Girot, G. Vogt and M. Angéll (who in HS18 is mainly responsible for the course (one full-day event in the academic semester)).

Participants in both cases will be expected to submit single-page abstracts of their papers in advance and to make a presentation of app. 20 minutes at the colloquium. The discussion rounds will be moderated by the organizing professor and the invited guests.

Enrolment

Enrolment on agreement with the lecturer only.

064-00015-21L PhD Colloquium Theory of Information Technology for Architects

<table>
<thead>
<tr>
<th>W</th>
<th>2 credits</th>
<th>2K</th>
<th>L. Hovestadt</th>
</tr>
</thead>
</table>

Abstract

Information technology plays an increasingly important role in research. To meet this challenging development, it is not only important to acquire respective skills, but also to consider and understand information technology in what sets it apart from other gestalts of technics (like mechanics, dynamics, or thermodynamics).

Objective

The aim of this colloquium is to counter an observable tendency, that proportional to the degree in which students master practical skills in computing, they increasingly submit uncritically, in their understanding and framing of problems, to the dictation of schemata and templates implemented by technical systems.

Content

The starting point for this colloquium is to comprehend computing not in terms of skills, but as a literacy which we can experience emerging today. Like in the case of writing as well, computing cannot exhaustively be reduced to either logics, grammar, arithmetics, or analytics. Rather, computation, if comprehended as a literacy, relates to any of the established categories of learning and raises questions of an architectonic kind. This colloquium draws from the principal richness of cultural forms of knowing and learning and thematizes approaches to formulate a theoretical stance on information technology for architects which is driven by and resting on the actual reality of computability today. In this, it is complementary to those theory courses on technology offered by the historical disciplines at ETH.

Prerequisites / notice

To benefit from this course, you should have a practical affinity to technics, as well as an abstract interest in information technology in its comprehensive cultural context.

064-0025-21L Introduction to Computational Research in Architecture, Engineering, Fabrication and Construction

<table>
<thead>
<tr>
<th>W</th>
<th>2 credits</th>
<th>3K</th>
<th>P. Block</th>
</tr>
</thead>
</table>

Abstract

The PhD-level course (primarily for A&T PhDs) will introduce computational methods for architecture, engineering, fabrication & construction, incentivising computational literacy. Students learn the theoretical background and basic implementation details of fundamental data structures and algorithms, and to solve realworld problems using the COMPAS framework and other open-source libraries.
Objective
Understand the scope and relevance of computational methods for architecture and engineering research and practice, ii) the theoretical background of fundamental data structures, iii) the basic principles of algorithmic design; iv) implement basic versions of prevalent algorithms related to architectural geometry, structural design, robotic assembly, volumetric modeling, 3D printing, high-performance computation; v) use sophisticated algorithms available through open-source libraries to solve real-world problems; and, vi) use common CAD tools as interfaces to self-implemented solutions.

Content
Course consists of a few lectures, several tutorials and project-based exercises. Topics include:
- Intro Python programming
- Intro COMPAS open-source framework (https://compas-ev.github.io)
- Intro to geometry processing, data structures, topology, numerical computation
- Domain-specific case studies (e.g. on architectural geometry, structural design, robotic assembly, volumetric modeling, 3D printing, high-performance computation)

Prerequisites / notice
Priority is given to PhD students.

101-0139-00L Scientific and Deep Learning for Design and Construction in Civil Engineering

Abstract
This course will present methods of scientific machine learning (ML/DL) for applications in design and construction in civil engineering. After providing proper background on ML and the scientific ML (SciML) track, several applications of SciML together with their computational implementation during the design and construction process of the built environment are examined.

Objective
This course aims to provide graduate level introduction into Machine and especially scientific Machine Learning for applications in the design and construction phases of projects from civil engineering.

Upon completion of the course, the students will be able to:
1. understand main ML background theory and methods
2. assess a problem and apply ML and DL in a computational framework accordingly
3. Incorporating scientific domain knowledge in the SciML process
4. Define, Plan, Conduct and Present a SciML project

Content
The course will include theory and algorithms for SciML, programming assignments, as well as a final project assessment.

The topics to be covered are:
1. Fundamentals of Machine and Deep Learning (ML / DL)
2. Incorporation of Domain Knowledge into ML and DL
3. ML training, validation and testing pipelines for academic and research projects

A comprehensive series of computer/lab exercises and in-class demonstrations will take place, providing a "hands-on" feel for the course topics.

Lecture notes
The course script is composed by lecture slides, which are available online and will be continuously updated throughout the duration of the course.

Literature
Suggested Reading:
- S. Guido, A. Müller: Introduction to machine learning with python. O'Reilly Media, 2016

Prerequisites / notice
Familiarity with MATLAB and / or Python is advised.

351-0778-00L Discovering Management

Abstract
Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC.

Objective
The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship.

In particular, the aims of the course are to:
(1) broaden understanding of management principles and frameworks
(2) advance insights into the sources of corporate and entrepreneurial success
(3) develop skills to apply this knowledge to real-life managerial problems

The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / appreciate the challenges that entrepreneurs and managers deal with.

Content
The course consists of a set of theory and practice sessions, which will be taught on a weekly basis. The course will cover business management knowledge in corporate as well as entrepreneurial contexts.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.

The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.

Lecture notes
All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle. These course materials will form the point of departure for the lectures, class discussions and team work.
Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>Analytical Competencies</td>
<td>Communication</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>Self-presentation and Social Influence</td>
<td>Self-presentation and Social Influence</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Domain B - Method-specific Competencies</td>
<td>Domain C - Social Competencies</td>
<td>Domain D - Personal Competencies</td>
</tr>
<tr>
<td>Concepts and Theories</td>
<td>Analytical Competencies</td>
<td>Communication</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>Self-presentation and Social Influence</td>
<td>Self-presentation and Social Influence</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Abstract

This course will review some critical reflections on scientific epistemology, challenging prevalent notions of scientific objectivity. We will start with German critiques from the first half of the 20th century (Heidegger, Husserl, Frankfurt school), go on to French critiques from the second half (Foucault, Latour), and conclude with recent feminist and post-colonial critiques.

Objective

The students will be able to formulate and criticize arguments engaging with prevalent notions of contemporary scientific objectivity. They will be able to critically reflect on the authority of the knowledge that they learn and produce.

851-0125-76L
Critiques of Scientific Objectivity

W 3 credits

2S

R. Wagner

Number of participants limited to 30.

Abstract

This course will review some critical reflections on scientific epistemology, challenging prevalent notions of scientific objectivity. We will start with German critiques from the first half of the 20th century (Heidegger, Husserl, Frankfurt school), go on to French critiques from the second half (Foucault, Latour), and conclude with recent feminist and post-colonial critiques.

Objective

The students will be able to formulate and criticize arguments engaging with prevalent notions of contemporary scientific objectivity. They will be able to critically reflect on the authority of the knowledge that they learn and produce.

Doctoral Department of Architecture - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
There is no single textbook for this course. However, most of the lectures are based on parts of the following books:

1. *Transdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder Engagement* by C. Pohl, B. Vienni Baptista
2. *Seismic and Vibration Isolation* by M. Vassiliou
3. *Fatigue and Fracture in Materials and Structures* by M. Stauffacher

This seminar is designed for PhD students and PostDoc researchers involved in inter- or transdisciplinary research. It addresses and discusses challenges of this kind of research using scientific literature presenting case studies, concepts, theories, methods and by testing practical tools. It concludes with a 10-step approach to make participants' research projects more societally relevant.

Participants know specific challenges of inter- and transdisciplinary research and can address them by applying practical tools. They can tackle questions like: how to integrate knowledge from different disciplines, how to engage with societal actors, how to secure broader impact of research? They learn to critically reflect their own research project in its societal context and on their role as scientists.

Course Catalogue of ETH Zurich

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0015-00L</td>
<td>Transdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder Engagement</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>M. Stauffacher, C. E. Pohl, B. Vienni Baptista</td>
</tr>
</tbody>
</table>

All participants will be on the waiting list at first. Enrollment is possible until 15 September 2021. The waiting list is active until 17 September. All students will be informed on 19 September, if they can participate in the lecture. The lecture takes place if a minimum of 12 students register for it.

Prerequisites / notice

Participation in the course requires participants to be working on their own research project.

Dates (Wednesdays, 8h15-12h00): 29 September, 27 October, 10 November, 24 November, 8 December

Prerequisites

- *Seismic and Vibration Isolation* by M. Vassiliou
- *Fatigue and Fracture in Materials and Structures* by M. Stauffacher
- *Interdisciplinary and stakeholder research* by C. Pohl, B. Vienni Baptista

Further, this collection of tools will be used:

Literature

- *Design of Seismic Isolated Structures: From Theory to Practice* by Farzad Naeim and James M. Kelly, John Wiley & Sons, 1999
- *Earthquake Resistant Design with Rubber* by James M. Kelly and Dimitrios Konstantinidis, John Wiley & Sons, 2011
- *Dynamics of Structures, Theory and Applications to Earthquake Engineering* by Anil Chopra, Prentice Hall, 2017

Prerequisites / notice

- *Dynamics of Structures, Theory and Applications to Earthquake Engineering* by Anil Chopra, Prentice Hall, 2017

Lecture notes

The electronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes: reading material, and (optional) exercise problems and solutions.

Literature

- *Dynamics of Structures, Theory and Applications to Earthquake Engineering* by Anil Chopra, Prentice Hall, 2017

Prerequisites / notice

- *Dynamics of Structures, Theory and Applications to Earthquake Engineering* by Anil Chopra, Prentice Hall, 2017

Course Catalogue of ETH Zurich

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0191-00L</td>
<td>Seismic and Vibration Isolation</td>
<td>W</td>
<td>2 credits</td>
<td>1G</td>
<td>M. Vassiliou</td>
</tr>
</tbody>
</table>

Abstract

This course will cover the analysis and design of isolation systems to mitigate earthquakes and other forms of vibrations. The course will cover:

1. Conceptual basis of seismic isolation, seismic isolation types, mechanical characteristics of isolators.
3. Design approaches and code requirements

Objective

After successfully completing this course the students will be able to:

1. Understand the mechanics of and design isolator bearings.
2. Understand the dynamics of and design an isolated structure.

Content

1. Introduction: Overview of seismic isolation; review of structural dynamics and earthquake engineering principles. Viscoelastic behavior.
2. Linear theory of seismic isolation
3. Types of seismic isolation devices - Modelling of seismic isolation devices – Nonlinear response analysis of seismically isolated structures in Matlab
4. Behavior of rubber isolators under shear and compression
5. Behavior of rubber isolators under bending
6. Buckling and stability of rubber isolators
7. Code provisions for seismically isolated buildings

Lecture notes

The electronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes: reading material, and (optional) exercise problems and solutions.

Literature

There is no single textbook for this course. However, most of the lectures are based on parts of the following books:

- *Dynamics of Structures, Theory and Applications to Earthquake Engineering* by Anil Chopra, Prentice Hall, 2017
- *Design of Seismic Isolated Structures: From Theory to Practice* by Farzad Naeim and James M. Kelly, John Wiley & Sons, 1999
- *Structural Dynamics and Vibration Problems* by James M. Kelly and Dimitrios Konstantinidis, John Wiley & Sons, 2011

Prerequisites

- *Dynamics of Structures, Theory and Applications to Earthquake Engineering* by Anil Chopra, Prentice Hall, 2017
- *Design of seismic isolated structures: from theory to practice* by Farzad Naeim and James M. Kelly, John Wiley & Sons, 1999
- *Structural Dynamics and Vibration Problems* by James M. Kelly and Dimitrios Konstantinidis, John Wiley & Sons, 2011

Course Catalogue of ETH Zurich

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0121-00L</td>
<td>Fatigue and Fracture in Materials and Structures</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>E. Ghafoori, A. Taras</td>
</tr>
</tbody>
</table>

The fundamentals in fatigue and fracture mechanics, which are used in different engineering disciplines (e.g., for mechanical, aerospace, civil and material engineers) will be discussed. The focus will be on fundamental theories (based on fracture mechanics) that model fatigue damage and crack propagation.
In this course, the students will learn:

- Linear elastic and plastic-fracture mechanics.
- Modern computer-based techniques (using ABAQUS Finite Element Package) to simulate cracks in both bulk materials and bonded joints/interfaces.
- Laboratory fatigue and fracture tests on details with cracks.

The course starts with a discussion on the importance of fatigue and fracture in different engineering disciplines such as mechanical, aerospace, civil and material engineering domains. The preliminary topics that are covered in this course are:

I) Fatigue of materials:
- Mechanisms of fatigue crack initiation in (ductile and brittle) metals.
- Crack initiation under uni-axial high-cycle fatigue (HCF) loadings: Wöhler (S-N) curves, constant life diagram approach (mean-stress effects), rainfall analysis and Miner's damage rule.
- Crack initiation under multi-axial HCF loadings: multi-axial fatigue mechanisms, critical plane approach (critical distance theory), equivalent stress approach, proportional and non-proportional loading.

II) Fracture mechanics:
- Elastic fracture mechanics (LEFM): limits of LEFM, stress intensity factors, crack opening displacement, mixed-mode fracture, etc.
- Elastic-plastic fracture mechanics: Irwin and Dugdale models, plastic zone shapes, crack-tip opening displacement and J-integral.
- Fatigue crack growth (FCG): FCG models, Paris’ law, cyclic plastic zones, crack closure effects. This also includes FE modeling of the FCG and laboratory tests (at Empa).

III) Introduction to cohesive zone models (CZMs):
- Advantages and disadvantages of CZMs compared to fracture mechanics.
- Different bond-slip models for the bonded joints/interfaces.

IV) Computer laboratory to simulate cracks and debonding problems:
- Finite Element (FE) modeling of complex details with cracks.
- FE simulations of debonding problems using CZMs.
- Computer laboratory: FE training and exercises using (the student edition of) the ABAQUS FE Package.

V) Introduction to fatigue and fracture design in civil structures. Different methods for fatigue strengthening will be discussed.

VI) Visits to the Empa (Swiss Federal Laboratories for Materials Science and Technology) in Dübendorf, and “Laboratory Competition”. The students will:
- Visit different small-scale and large-scale fatigue testing equipment.
- Get to know different ongoing fatigue- and fracture-related projects.
- Witness and help to conduct a fatigue test on a steel plate with a pre-crack and a fracture test on an adhesively-bonded joint.
- Compare the experimental results with their own calculations (from the fracture theories).
- “Laboratory Competition” at Empa: the students with the closest predictions will win the “Empa Laboratory Competition” and will be awarded by a prize.

Lectures are based on the lecture slides and the handouts, which will be given to the students during the semester.

Prerequisites / notice

101-0522-10L Doctoral Seminar Data Science and Machine Learning in Civil, Env. and Geospatial Engineering

Objective

- Visit different small-scale and large-scale fatigue testing equipment.
- Get to know different ongoing fatigue- and fracture-related projects.
- Witness and help to conduct a fatigue test on a steel plate with a pre-crack and a fracture test on an adhesively-bonded joint.
- Compare the experimental results with their own calculations (from the fracture theories).
- “Laboratory Competition” at Empa: the students with the closest predictions will win the “Empa Laboratory Competition” and will be awarded by a prize.

101-0523-12L Frontiers in Machine Learning Applied to Civil, Env. and Geospatial Engineering (HS21)

Objective

- Critically read scientific papers on the recent developments in machine learning
- Put the research in context
- Present the contributions
- Discuss the validity of the scientific approach
- Evaluate the underlying assumptions
- Evaluate the transferability/adaptability of the proposed approaches to own research
- (Optionally) implement the proposed approaches.
Content

With the increasing amount of data collected in various domains, the importance of data science in many disciplines, such as infrastructure monitoring and management, transportation, spatial planning, structural and environmental engineering, has been increasing. The field is constantly developing further with numerous advances, extensions and modifications.

The course aims at discussing recent research papers in the field of machine learning and analyzing the transferability/adaptability of the proposed approaches to applications in the field of civil and environmental engineering (if possible and applicable, also implementing the adapted algorithms).

Each student will select a paper that is relevant for his/her research and present its content in the seminar, putting it into context, analyzing the assumptions, the transferability and generalizability of the proposed approaches. The students will also link the research content of the selected paper to their own research, evaluating the potential of transferring or adapting it. If possible and applicable, the students will also implement the adapted algorithms. The students will work in groups of three students, where each of the three students will be reading each other's selected papers and providing feedback to each other.

Prerequisites / notice

This doctoral seminar is intended for doctoral students affiliated with the Department of Civil, Environmental and Geomatic Engineering. Other students who work on related topics need approval by at least one of the organisers to register for the seminar.

Participants are expected to possess elementary skills in statistics, data science and machine learning, including both theory and practical modelling and implementation. The seminar targets students who are actively working on related research projects.

101-0139-00L Scientific Machine and Deep Learning for Design and Construction in Civil Engineering

Abstract

This course will present methods of scientific machine and deep learning (ML/DL) for applications in design and construction in civil engineering. After providing proper background on ML and the scientific ML (SciML) track, several applications of SciML together with their computational implementation during the design and construction process of the built environment are examined.

Objective

This course aims to provide graduate level introduction into Machine and especially scientific Machine Learning for applications in the design and construction phases of projects from civil engineering.

Upon completion of the course, the students will be able to:

1. understand main ML background theory and methods
2. assess a problem and apply ML and DL in a computational framework accordingly
3. Incorporating scientific domain knowledge in the SciML process
4. Define, Plan, Conduct and Present a SciML project

Content

The topics to be covered are:

1. Fundamentals of Machine and Deep Learning (ML/DL)
2. Incorporation of Domain Knowledge into ML and DL
3. ML training, validation and testing pipelines for academic and research projects

A comprehensive series of computer/lab exercises and in-class demonstrations will take place, providing a "hands-on" feel for the course topics.

Lecture notes

The course script is composed by lecture slides, which are available online and will be continuously updated throughout the duration of the course.

Literature

Suggested Reading:

S. Guido, A. Müller: Introduction to machine learning with python. O'Reilly Media, 2016
O. Martin: Bayesian analysis with python. Packt Publishing Ltd, 2016

Prerequisites / notice

Familiarity with MATLAB and/or Python is advised.

101-0522-11L Doctoral Seminar: Computational Science in Civil, Env. and Geomatic Engineering

Abstract

The objective is to provide insight into current research efforts in computational sciences applied to the large variety of fields related to civil, environmental and geomatic engineering. This course consists of research talks from invited experts. It will provide a platform for discussion.

Objective

- broadening knowledge of numerical methods and simulation techniques across fields
- learn about potential of numerical modeling
- develop scientific writing skills

Content

Various topics related to modeling in the field of civil, environmental, and geomatic engineering.

Doctoral Department of Civil, Environmental and Geomatic Engineering - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>Z</th>
<th>Courses outside the curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Doctoral and Post-Doctoral Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1791-00L</td>
<td>Introductory Course in Neuroscience I (University of Zurich)</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: SPV0Y005

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html

Abstract
The course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.

Objective
The course gives an introduction to the development and anatomical structure of nervous systems. Furthermore, it discusses the basics of cellular neurophysiology and neuropharmacology. Finally, the nervous system is described on a system level.

Content
1) Human Neuroanatomy I&II
2) Comparative Neuroanatomy
3) Building a central nervous system I,II
4) Synapses I,II
5) Glia and more
6) Excitability
7) Circuits underlying Emotion
8) Visual System
9) Auditory & Vestibular System
10) Somatosensory and Motor Systems
11) Learning in artificial and biological neural networks

Prerequisites / notice
For doctoral students of the Neuroscience Center Zurich (ZNZ).

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0927-00L</td>
<td>Rate-Controlled Separations in Fine Chemistry</td>
<td>W</td>
<td>6</td>
<td>3V+1U</td>
<td>M. Mazzotti, V. Becattini</td>
</tr>
</tbody>
</table>

Abstract
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications.

Objective
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology.

Content
The class covers separation techniques that are central in the purification and downstream processing of chemicals and biopharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation.

Lecture notes
Handouts during the class

Literature
Recommendations for text books will be covered in the class

Prerequisites / notice
Requirements (recommended, not mandatory): Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00)

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking not assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>W</td>
<td>5</td>
<td>2V+1U</td>
<td>M. Dettling</td>
</tr>
</tbody>
</table>

Abstract
This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning “good practice” that can be applied in every student’s own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.

Objective
The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.

Content
The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.

Lecture notes
A script will be available.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

Literature
- Faraway (2005): Linear Models with R
- Faraway (2006): Extending the Linear Model with R
- Draper & Smith (1998): Applied Regression Analysis
- Fox (2008): Applied Regression Analysis and GLMs
- Montgomery et al. (2006): Introduction to Linear Regression Analysis

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

Structural Biology
- **Course Code:** 551-1619-00L
- **Credit Points:** 1
- **Tutors:** R. Glockshuber, F. Allain, N. Ban, K. Locher, M. Pilhofer, E. Weber-Ban, K. Wüthrich
- **Abstract:** The course consists of a series of research seminars on Structural Biology, Biochemistry and Biophysics, given by both scientists of the National Center of Competence in Research (NCCR) in Structural Biology and external speakers. Information on the individual seminars is provided on the following websites:
 - http://www.structuralbiology.uzh.ch/educ002.asp
 - http://www.biol.ethz.ch/dbiol-cal/index
- **Objective:** The goal of this course is to provide doctoral and postdoctoral students with a broad overview on the most recent developments in biochemistry, structural biology and biophysics.

Research Ethics
- **Course Code:** 851-0180-00L
- **Credit Points:** 2
- **Tutors:** G. Achermann, P. Emch
- **Abstract:** Students are able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different normative perspectives and to create their own well-justified reasoning for taking decisions to the kind of ethical problems a scientist is likely to encounter during the different phases of biomedical research.
- **Objective:** Participants of the course Research Ethics will
 - Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
 - Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles), and their ability to use these skills in assessing other people's arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;
I. Introduction to Moral Reasoning

1. Ethics - the basics
 1.1 What ethics is not... 1.2 Recognising an ethical issue (awareness) 1.3 What is ethics? Personal, cultural and ethical values, principles and norms 1.4 Ethics: a classification 1.5 Research Ethics: what is it and why is it important?

2. Normative Ethics
 2.1 What is normative ethics? 2.2 Types of normative theories – three different ways of thinking about ethics: Virtue theories, duty-based theories, consequentialist theories 2.3 The plurality of normative theories (moral pluralism); 2.4 Roles of normative theories in "Research Ethics"

3. Decision making: How to solve a moral dilemma
 3.1 How (not) to approach ethical issues 3.2 What is a moral dilemma? Is there a correct method for answering moral questions? 3.3 Methods of making ethical decisions 3.4 Is there a "right" answer?

II. Research Ethics - Internal responsibilities
 1. Integrity in research and research misconduct
 1.1 What is research integrity and why is it important? 1.2 What is research misconduct? 1.3 Questionable/Detrimental Research Practice (QRP/DRP) 1.4 What is the incidence of misconduct? 1.5 What are the factors that lead to misconduct? 1.6 Responding to research wrongdoing 1.7 The process of dealing with misconduct 1.8 Approaches to misconduct prevention and for promoting integrity in research

2. Data Management
 2.1 Data collection and recordkeeping 2.2 Analysis and selection of data 2.3 The (mis)representation of data 2.4 Ownership of data 2.5 Retention of data 2.6 Sharing of data (open research data) 2.7 The ethics of big data

3. Publication ethics / Responsible publishing
 3.1 Background 3.2 Criteria for being an author 3.3 Ordering of authors 3.4 Publication practices

III. Research Ethics – External responsibilities
 1. Research involving human subjects
 1.1 History of research with human subjects 1.2 Basic ethical principles – The Belmont Report 1.3 Requirements to make clinical research ethical 1.4 Social value and scientific validity 1.5 Selection of study participants – the concept of vulnerability 1.6 Favourable risk-benefit ratio 1.7 Independent review - Ethics Committees 1.8 Informed consent 1.9 Respect for potential and enrolled participants

2. Social responsibility
 2.1 What is social responsibility? a) Social responsibility of the individual scientist b) Social responsibility of the scientific community as a whole; 2.2 Participation in public discussions: a) Debate & Dialogue b) Communicating risks & uncertainties c) Science and the media 2.3 Public advocacy (policy making)

3. Dual use research
 3.1 Introduction to Dual use research 3.2 Case study – Censuring science? 3.3 Transmission studies for avian flu (H5N1) 3.4 Synthetic biology

Lecture notes
Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.

Prerequisites / notice
What are the requirements?
First and foremost your strong willingness to seriously achieve the main learning outcomes as indicated in the Course Catalogue (specific learning outcomes for each module will be provided at the beginning of the course). For successfully completing the course Research Ethics, the following commitment is absolutely necessary (but not sufficient) (observed success factors for many years!):
1. Your regular presence is absolutely required (so please no double, parallel enrollment for courses taking place at the identical time!)
2. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more...)
4. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more...)

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Problem-solving
Domain C - Social Competencies
Communication
Cooperation and Teamwork
Domain D - Personal Competencies
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection

401-5640-00L ZüKoSt: Seminar on Applied Statistics

Abstract
About 5 talks on applied statistics.

Objective
See how statistical methods are applied in practice.

Content
There will be about 5 talks on how statistical methods are applied in practice.

Prerequisites / notice
This is no lecture. There is no exam and no credit points will be awarded. The current program can be found on the web: http://stat.ethz.ch/events/zukost
Course language is English or German and may depend on the speaker.

551-1109-00L Seminars in Microbiology
E- 0 credits 2K S. Sunagawa, W.-D. Hardt, M. Künzler, J. Piel, J. Vorholt-Zambelli

Abstract
Seminars by invited speakers covering selected microbiology themes.

Objective
Discussion of selected microbiology themes presented by invited speakers.

401-0620-00L Statistical Consulting
E- 0 credits 0.1K M. Kalisch, L. Meier
Abstract
The Statistical Consulting service is open for all members of ETH, including students, and partly also to other persons.

Objective
Advice for analyzing data by statistical methods.

Content
Students and researchers can get advice for analyzing scientific data, often for a thesis. We highly recommend to contact the consulting service when planning a project, not only towards the end of analyzing the resulting data!

Prerequisites / notice
This is not a course, but a consulting service. There are no exams nor credits.

Contact: beratung@stat.math.ethz.ch. Tel. 044 632 2223. See also http://stat.ethz.ch/consulting

Requirements: Knowledge of the basic concepts of statistics is desirable.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Semester</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0512-00L</td>
<td>Current Topics in Molecular and Cellular Neurobiology</td>
<td>W</td>
<td>2</td>
<td>1S</td>
<td>U. Suter</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course is a literature seminar or "journal club". Each Friday a student, or a member of the Suter Lab in the Institute of Molecular Health Sciences, will present a paper from the recent literature.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course introduces you to recent developments in the fields of cellular and molecular neurobiology. It also supports you to develop your skills in critically reading the scientific literature. You should be able to grasp what the authors wanted to learn i.e. their goals, why the authors chose the experimental approach they used, the strengths and weaknesses of the experiments and the data presented, and how the work fits into the wider literature in the field. You will present one paper yourself, which provides you with practice in public speaking.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>You will present one paper yourself. Give an introduction to the field of the paper, then show and comment on the main results (all the papers we present are available online, so you can show original figures with a beamer). Finish with a summary of the main points and a discussion of their significance. You are expected to take part in the discussion and to ask questions. To prepare for this you should read all the papers beforehand (they will be announced a week in advance of the presentation).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Presentations will be made available after the seminars.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>You must attend at least 80% of the journal clubs, and give a presentation of your own. At the end of the semester there will be a 30 minute oral exam on the material presented during the semester. The grade will be based on the exam (45%), your presentation (45%), and a contribution based on your active participation in discussion of other presentations (10%).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code	Ecology and Evolution: Interaction Seminar	W	2	2S	S. Bonhoeffer
Abstract	Interaction seminar. Student-mediated presentations, guests and discussions on current themes in ecology, evolutionary and population biology.				
Objective	Getting familiar with scientific arguments and discussions. Overview of current research topics. Making contacts with fellow students in other groups.				
Content	Scientific talks and discussions on changing subjects.				
Lecture notes	None				
Literature	None				
Prerequisites / notice	For information, location and details: http://www.tb.ethz.ch/education/zis.html				

Abstract	This monthly meeting is a platform for Zurich-based immunology research groups to present and discuss their ongoing research projects. At each meeting three PhD students or Postdocs from the participating research groups present an ongoing research project in a 30 min seminar followed by a plenary discussion.
Objective	The aim of this monthly meeting is to provide further education for master and doctoral students as well as Postdocs in diverse topics of immunology and to give an insight in the related research. Furthermore, this platform fosters the establishment of science- and technology-based interactions between the participating research groups.
Content	Presentation and discussion of current research projects carried out by various immunology-oriented research groups in Zurich.
Lecture notes	None

Code	NMR Methods for Studies of Biological Macromolecules	W	1	2S	A. D. Gossert
Abstract	Seminar series on technical aspects of high resolution nuclear magnetic resonance (NMR) spectroscopy with biological macromolecules. This seminar series is targeted at Master students and PhD students conducting research projects in the field of biomolecular NMR in solution.				
Objective	Introduction and discussion of advanced methods for recording and analysis of NMR data with biological macromolecules.				
Content	Seminar series on technical aspects of high-resolution nuclear magnetic resonance (NMR) spectroscopy with biological macromolecules. This seminar series is targeted at Master students and PhD students conducting research projects in the field of biomolecular NMR in solution.				
Prerequisites / notice	Basic knowledge of cell and molecular biology.				

Code	RNA Biology Lecture Series II: Non-coding RNAs: Biomedicine & Therapeutics	W	4	2V	J. Hall, M. Stoffel, further lecturers
Abstract	This course covers aspects of RNA biology related to the functions of non-coding RNAs as well as their use as drugs to treat diseases.				
Objective	The students should get familiar with the wide array of roles, which non-coding RNAs play in cellular functions.				
Content	Micro RNAs; computational approaches to miRNAs; micro RNA function in metabolism; viruses and viral RNAs; nucleic acid-based drugs; ncRNA-mediated genome regulation; epigenetic programming of genome remodelling in ciliates; telomerase and telomeres; tRNA biology. http://www.nccr-rrna-and-disease.ch/tiki-index.php?page=LectureSeries				
Prerequisites / notice	Basic knowledge of cell and molecular biology.				

Code	RNA Biology Lecture Series I: Transcription & Processing & Translation	W	4	2V	F. Allain, N. Ban, U. Kutay, further lecturers
Abstract	This course covers aspects of RNA biology related to gene expression at the posttranscriptional level. These include RNA transcription, processing, alternative splicing, editing, export and translation.				
Objective	The students should obtain an understanding of these processes, which are at work during gene expression.				
Content	Transcription & 3'end formation; splicing, alternative splicing, RNA editing; the ribosome & translation, translation regulation, RNP biogenesis & nuclear export, mRNA surveillance & mRNA turnover; signal transduction & RNA.				
701-0015-00L Transdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder Engagement

All participants will be on the waiting list at first. Enrollment is possible until 15 September 2021. The waiting list is active until 17 September. All students will be informed on 19 September, if they can participate in the lecture. The lecture takes place if a minimum of 12 students register for it.

Abstract
This seminar is designed for PhD students and PostDoc researchers involved in inter- or transdisciplinary research. It addresses and discusses challenges of this kind of research using scientific literature presenting case studies, concepts, theories, methods and by testing practical tools. It concludes with a 10-step approach to make participants’ research projects more societally relevant.

Objective
Participants know specific challenges of inter- and transdisciplinary research and can address them by applying practical tools. They can tackle questions like: how to integrate knowledge from different disciplines, how to engage with societal actors, how to secure broader impact of research? They learn to critically reflect their own research project in its societal context and on their role as scientists.

Content
The seminar covers the following topics:
1. Theories and concepts of inter- and transdisciplinary research
2. The specific challenges of inter- and transdisciplinary research
3. Collaborating between different disciplines
4. Engaging with stakeholders
5. 10 steps to make participants’ research projects more societally relevant

Throughout the whole course, scientific literature will be read and discussed as well as practical tools explored in class to address concrete challenges.

Literature
The following open access article builds a core element of the course:
available at (open access): http://www.ingentaconnect.com/content/oekom/gaia/2017/00000026/00000001/art00011
Further, this collection of tools will be used
https://naturalsciences.ch/topics/co-producing_knowledge

Prerequisites / notice
Participation in the course requires participants to be working on their own research project.
Dates (Wednesdays, 8h15-12h00): 29 September, 27 October, 10 November, 24 November, 8 December

551-1423-00L Current Topics in Metabolism and Disease

The course is a literature seminar or “journal club”. Each Friday a student, or a member of the Stoffel Lab in the Institute of Molecular Health Sciences, will present a comprehensive presentation of a recent paper published in a top ranking international peer reviewed journal that relates to metabolism and disease.

Objective
The course introduces the students to recent developments in the fields of metabolism and disease. It also supports the development of analytical skills, including critical reading of scientific literature, being able to present and critically discuss scientific experiments, point out technical limitations, and placing recent discoveries in the broader context of biology, physiology and medicine. The student should be able to grasp what the authors wanted to learn i.e. their hypothesis and their goals, why the authors chose the experimental approach and methods used, the strengths and weaknesses of the experiments, the quality of the data presented, the conclusions drawn, and how the work fits into the wider literature in the field. Furthermore, the student should discuss alternative approaches and future experiments. Each student will present one paper during the course, which provides him/her with practice in public speaking.

Content
Each student will present at least once during the semester. The presentation includes an introduction to the field of the paper, a critical description of the main results, a summary of the main points and a discussion of their significance. Every participant is expected to take part in the discussion and to ask questions. At each meeting, all students are expected to read and prepare the paper beforehand. Each paper presented will be announced one week in advance of the presentation.

Lecture notes
Presentations will be made available after the seminars.

Literature
Students will be guided to choose their papers base on recent literature published less than 1 year prior in a relevant journal.

551-0030-00L Doctoral Thesis

Abstract
Doctoral Thesis

Prerequisites / notice
Basic knowledge of cell and molecular biology.

W 2 credits 2S M. Stauffacher, C. E. Pohl, B. Vienni Baptista

Doctoral Department Biology - Key for Type

W Eligible for credits
E- Recommended, not eligible for credits
Dr Suitable for doctorate
O Compulsory
W+ Eligible for credits and recommended
Z Courses outside the curriculum

Key for Hours

V	lecture
G	lecture with exercise
U	exercise
S	seminar
K	colloquium
P	practical/laboratory course
A	independent project
D	diploma thesis
R	revision course / private study

ECTS European Credit Transfer and Accumulation System
Special students and auditors need special permission from the lecturers.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 595 of 2152
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For doctoral students only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's students cannot receive credits for the seminar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
This seminar will feature invited lectures about recent advances and developments in systems biology, including topics from biology, bioengineering, and computational biology.

Objective
To provide an overview of current systems biology research.

Content
The final list of topics will be available at https://www.bsse.ethz.ch/news-and-events/seminar-series.html

Doctoral Department of Biosystems Science and Engineering - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Doctoral Department of Chemistry and Applied Biosciences
Further information at: https://www.ethz.ch/en/doctorate.html

Doctoral and Post-Doctoral Courses

Doctoral Studies in Inorganic Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0169-00L</td>
<td>Instrumental Analysis</td>
<td>E-</td>
<td>0</td>
<td>2S</td>
<td>D. Günther</td>
</tr>
<tr>
<td>Abstract</td>
<td>Group seminar on elemental analysis and isotope ratio determinations using various plasma sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Developments in plasma mass spectrometry and alternative plasma sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0198-00L</td>
<td>Main Group Element and Coordination Chemistry</td>
<td>E-</td>
<td>0</td>
<td>2S</td>
<td>H. Grützmacher</td>
</tr>
<tr>
<td>529-0199-00L</td>
<td>Inorganic and Organometallic Chemistry</td>
<td>E-</td>
<td>0</td>
<td>2K</td>
<td>C. Copéret, H. Grützmacher, M. Kovalenko, V. Mougel</td>
</tr>
</tbody>
</table>

Laser for Micro- and Nanostructuring

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0455-00L</td>
<td>Laser for Micro- and Nanostructuring</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>T. Lippert</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to the fundamentals of lasers and their applications with an emphasis on micro- and nano-structuring. Several applications which are still in the research state, will be discussed together with industrial applications, such as microlithography and laser welding. Other aspects are the materials that are applied in these applications, e.g. photoresists, and their functioning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Introduction to lasers. Overview of micro- and nanotechnology, microlithography, photoresists: classical types and new developments, laser cutting and welding, laser cleaning, laser ablation, polymer ablation: designed polymers, lasers and surfaces, laser spectroscopy, laser chemical vapor deposition, pulsed laser deposition (PLD), special materials by PLD, alternative structuring methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The script (a copy of the slides) will be handed out during the first lecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSRM, CD-ROM: An Introduction to the World of Microsystems, Neuchatel.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doctoral Studies in Organic Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0280-00L</td>
<td>Analytical Chemistry Seminar</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>R. Zenobi</td>
</tr>
<tr>
<td>Abstract</td>
<td>Analytical Chemistry Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Presentation and discussion of current research topics in analytical chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Presentation and discussion of current research topics in analytical chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0290-00L</td>
<td>Organic Chemistry (Seminar)</td>
<td>E-</td>
<td>0</td>
<td>2S</td>
<td>E. M. Carreira, J. W. Bode, H. Wennemers, R. Zenobi</td>
</tr>
<tr>
<td>529-0299-00L</td>
<td>Organic Chemistry</td>
<td>E-</td>
<td>0</td>
<td>1.5K</td>
<td>J. W. Bode, E. M. Carreira, P. Chen, H. Wennemers, R. Zenobi</td>
</tr>
<tr>
<td>529-1100-00L</td>
<td>Fragrance Chemistry</td>
<td>W</td>
<td>1</td>
<td>1V</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture provides a journey into the molecular world of scents from the chemical secrets behind Chanel N°5 to structure-odor relationships, industrial processes, and total synthesis of terpenoids. Each subunit is centered on one odorant family and highlights a certain class of chemical reactions, illustrated by prominent perfumery examples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Doctoral Studies in Physical Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0490-00L</td>
<td>Special Topics in Theoretical Chemistry</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>M. Reiher</td>
</tr>
<tr>
<td>Abstract</td>
<td>Weekly seminar programme on special topics in theoretical and quantum chemistry. Talks delivered by PhD students and PostDocs as well as by external speakers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>advanced course for PhD students and postdoctoral fellows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>current research topics in theoretical chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0460-00L</td>
<td>Computer Simulation</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>P. H. Hünenberger, S. Riniker</td>
</tr>
<tr>
<td>Prerequisites/notice</td>
<td>Group meeting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0427-00L</td>
<td>Electron Spectroscopy</td>
<td>W</td>
<td>1</td>
<td>2S</td>
<td>F. Merkt</td>
</tr>
<tr>
<td>Abstract</td>
<td>Group seminar on electronic spectroscopy, photoelectron spectroscopy, vacuum ultraviolet spectroscopy. Group seminar on electronic spectroscopy, photoelectron spectroscopy, vacuum ultraviolet spectroscopy. Participation to this seminar must be discussed with the lecturer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0479-00L</td>
<td>Theoretical Chemistry, Molecular Spectroscopy and Dynamics</td>
<td>W</td>
<td>1</td>
<td>2S</td>
<td>F. Merkt, M. Reiher, J. Richardson, R. Signorell, H. J. Wörner</td>
</tr>
<tr>
<td>Abstract</td>
<td>Seminar on theoretical chemistry, molecular spectroscopy and dynamics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0480-00L</td>
<td>Nuclear Magnetic Resonance Seminar</td>
<td>E-</td>
<td>0</td>
<td>2S</td>
<td>B. H. Meier</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research seminar on current problems in nuclear magnetic resonance spectroscopy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0489-00L</td>
<td>Introduction to the Construction of Devices in Physical Chemistry</td>
<td>W</td>
<td>2</td>
<td>2P</td>
<td>B. H. Meier</td>
</tr>
<tr>
<td>Abstract</td>
<td>Basic concepts of the construction of instrumention in physical chemistry. Practical exercises in mechanical construction and electronic circuits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites/notice</td>
<td>Participation to this seminar must be discussed with the lecturer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Institute-Seminar covering current research Topics in Physical Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0491-00L</td>
<td>Seminar in Computational Chemistry C4</td>
<td>E-</td>
<td>0</td>
<td>2S</td>
<td>M. Reiher, J. Richardson</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research seminar with invited lecturers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0841-00L</td>
<td>Advanced High Resolution Molecular Spectroscopy</td>
<td>W</td>
<td>1</td>
<td>1V</td>
<td>S. Albert</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course teaches advanced topics in molecular spectroscopy: techniques for analysing rotationally and rovibrationally resolved spectra will be discussed, the basics of FTIR spectroscopy will be reviewed, and the sources which may be used in high resolution infrared spectroscopy will be described. The fields in which high resolution infrared /THz spectroscopy is applied will also be reviewed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students will understand how to use the tools needed to analyze simple highly resolved spectra. They will become familiar with experimental techniques in high resolution molecular spectroscopy and will understand how molecular spectroscopy can be applied to solve problems with respect to atmospheric pollutants and the detection of molecules in interstellar space.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The students will learn how to record rotationally and rovibrationally resolved spectra in the THz and IR frequency range. For that purpose state-of-the-art sources like synchrotrons, FELs and other THz sources will be discussed. In this context, the basics of Fourier transform infrared spectroscopy will also be reviewed. The analysis of such spectra with interactive programs will then be explained. Finally, applications of high resolution molecular spectroscopy in the field of atmospheric and interstellar chemistry will be discussed. The identification and the quantitative determination of atmospheric pollutants will be discussed in detail. In addition, the identification of interstellar molecules in the context of the origin of life will be reviewed. The question of the identification of the interstellar unidentified infrared bands and of the interstellar diffuse bands will also be addressed. Finally, high resolution molecular spectroscopy of chiral molecules in the context of molecular parity violation will be discussed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Will be given in the lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0470-00L</td>
<td>Literature Seminar in Theoretical Chemistry</td>
<td>Z</td>
<td>0</td>
<td>2S</td>
<td>M. Reiher</td>
</tr>
<tr>
<td>Abstract</td>
<td>Literature seminar on theoretical chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>In depth study of selected recent papers on theoretical chemistry and达到了theoretisch-oriented work with special emphasis on the interactions between chemicals and their environment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

After completion of this lecture module the students know all the major perfumery materials of the important odor families with their academic and industrial syntheses, their olfactory properties, their usage, their historic perspective, and today’s economic importance. The students can explain the significance of important building blocks and industrial transformations, and can estimate how attractive chemical processes are on large scale. They can retrosynthetically plan academic and industrial syntheses of fragrance compounds and terpenoids, and the acquired knowledge on structure-odor relationships enables them to predict and design new odors. The students can approximate the conformational space of odors and especially macrocycles on the basis of simple rules, and know how olfactophore models are used. The students understand and can explain the molecular mechanism of smell, the biosynthesis of terpenes, and the basics of perfume composition. The latter enables them to further their education in perfume at specialized Universities such as the ISIPCA in Versailles; yet, the student also knows about the links of Fragrance Chemistry with Pharmaceutical Chemistry and the Specialty Chemicals business in general.

Literature

Prerequisites / notice

Safety concept: https://chab.ethz.ch/studium/bachelor1.html
Theoretical analysis as well as issues of practical implementation of state of the art free energy methods.

Simulation: Theory and Practical Applications

Objectives
- Recognition of the concepts that underlie the different approaches devised for the determination of free energies
- A wide variety of fundamental chemical quantities such as binding or equilibrium constants, solubilities, partition coefficients, and adsorption coefficients are related to the difference in free energy between particular (non)physical states of a system. A maze of computational techniques to calculate free energies is nowadays available that differ in efficiency and accuracy. However, most of them are rooted in a few basic ideas. In the lecture state of the art methods are discussed in light of these basic ideas.

Abstract
- Handouts will be provided
- Literature
 - Variert nach aktuellem Stand der Forschung
 - Will be announced on www.reiher.ethz.ch/courses-and-seminars.html

529-0809-00L

Theoretical Chemistry Seminar

- E- 0 credits
- 2S
- M. Reiher, J. Richardson

Abstract
- Seminar on recent developments in Theoretical Chemistry presented by guest speakers.

Objective
- Doktorats- und Mitarbeiterschulung

Content
- Variert nach aktuellem Stand der Forschung

Literature
- Will be announced on http://www.reiher.ethz.ch/courses-and-seminars/theoretical-chemistry.html

Doctoral Studies in Chemical and Bioengineering

ICB Seminars on Chemical and Biochemical Engineering

- Type: W
- ECTS: 1
- Hours: 1V
- Lecturers: P. Arosio

Abstract
- The ICB seminar series covers the umbrella of diverse research activities encompassed within the institute, including catalysis, functional materials, polymer engineering, separations, microfluidics, process design, and systems engineering. This series was founded with the aim or promoting cross-disciplinary scientific discourse and interaction with other distinguished groups working worldwide.

Objective
- Students are expected to attend all seminars in one academic year, and should register at the beginning of each seminar. Additionally they must deliver a two page written report at the end of the year describing the topics covered, main conclusions, and interrelationships between the different themes.

Content
- The ICB seminar series covers the umbrella of diverse research activities encompassed within the institute, including catalysis, functional materials, polymer engineering, separations, microfluidics, process design, and systems engineering. This series was founded with the aim or promoting cross-disciplinary scientific discourse and interaction with other distinguished groups working worldwide, and is targeted at individuals who have made outstanding contributions within their fields. Each year, around 7 distinguished scientists and technologists will be invited to speak on topics of current interest in Chemical and Biochemical Engineering. PhD students are particularly encouraged to attend in order to broaden their perception and enrich their scientific horizons.

Doctoral Studies in Bioengineering

Reactivity in Micelles and Vesicles

- Type: W
- ECTS: 1
- Hours: 1V
- Lecturers: P. J. Walde

Abstract
- Discussion of different aspects of the chemical reactivity in micelles and in vesicles (liposomes) as polymolecular compartments.

Objective
- Deeper understanding of micelles and vesicles as self-organizing reaction compartments.

Content
- With a few selected recent examples, properties of micelles and vesicles will be discussed with respect to applications as reaction compartments.

Lecture notes
- no script

Doctoral Studies in Pharmaceutical Sciences

Seminar for Group Members

- Type: W
- ECTS: 0
- Hours: 2S
- Lecturers: G. Schneider

Abstract
- Does not take place this semester.

Objective
- Weekly group seminar, in which members of the research team present and discuss the results of their projects and selected reports from the current scientific literature.

Content
- Participants learn to present scientific studies and discuss own results in greater context.

Seminars on Drug Discovery and Development

- Type: E-
- ECTS: 1
- Hours: 1K

Abstract
- State-of-the-art information on drug discovery and development by experts from academia and industry.

Objective
- State-of-the-art information on drug discovery and development.

Content
- Seminar series of the Institute of Pharmaceutical Sciences. Experts from academia and industry report on relevant topics.

From A to Z in Drug Discovery and Development

- Type: Z
- ECTS: 1
- Hours: 2S

Abstract
- The lecture series takes place at the ETH Hönggerberg and covers a variety of major activities involved in drug discovery: selecting drug targets, technologies used in drug discovery, small, medium and large drugs, objectives of the medicinal chemist, assessing drug safety, principles of personalized medicine, designing clinical trials, how intellectual property is protected, as well as others.

Objective
- The objective of the course is to gain a global understanding of most of the important phases in the discovery and development of modern synthetic and biological drugs, from the first activities to clinical trials. The lecture is intended for students that have an interest in the area and/or may consider a career working in drug discovery. This lecture course complements knowledge and experience gained in the research project performed by the PhD student.

Content
- Thirteen two hour lectures for life-science PhD students and students of the Pharmaceutical Sciences Master, given by experts from the ETH, UZH, USZ and the pharmaceutical industry.

Lecture notes
- Scripts to be uploaded into ILIAS
Additional Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0195-00L</td>
<td>Scientific Information Retrieval & Management in Life Sciences and Chemistry</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>O. Renn, L. Betschart, J. Dolenc</td>
</tr>
</tbody>
</table>

Abstract

Students learn how to effectively retrieve, critically judge, analyze and manage published scientific information – important skill sets in chemistry and life sciences where scientists need to deal with vast amounts of information. The course, using practical examples, also covers scientific writing, visualizations, science communication and state-of-the-art technologies such as text mining.

Objective

Students are made aware of the wide variety of information solutions that exist today for all kinds of research processes, get an independent understanding of how they are derived and learn how to critically judge their quality. They learn how scientific communication works today and on which concepts and principles it is based. They develop the ability to select appropriate, subject-specific databases or tools for a given specific scientific question based on a sound understanding on how a tool or database has been developed and maintained, thus building the personal capacity of doing research effectively and efficiently by integrating scientific information into the research process when needed. Students learn how to evaluate information solutions, to build suitable search strategies and to integrate them in their information workflows. Also, they learn how to effectively communicate their own scientific results using various distribution channels and to measure the impact of their outreach activities. Overall, they gain the ability to perform all steps of the research cycle in a time- and cost-efficient manner, from the research strategy up to writing a first paper and their Ph.D. thesis.

Content

The course has been primarily designed for Ph.D. students, also for the Life Science Zurich Graduate School, but is also open to Master students. In a series of 12 units, which always include practical examples (for some lectures a notebook is required), the use of scientific information is taught not in a database-centric view but corresponding to the steps through which scientific research is conducted – including the dissemination of scientific results. This is particularly interesting for students who are about to write-up their first paper or thesis.

Students will learn about the different types of information resources and tools, get an insight into the numerous databases and tools that exist and how those are built and maintained, enabling them to critically judge the value and trustworthiness of an information resource. Additionally, they will learn how to communicate their own scientific results properly, using also additional measures that are reflected by alternative metrics.

The following topics are covered in twelve modules:

1. & 2. The world of scientific publishing: basics, publishing models
2. Searching and retrieving scientific information using search engines and literature databases
3. Searching and retrieving scientific information using subject-specific databases in chemistry and materials science
4. Searching and retrieving scientific information using subject-specific databases in life sciences
5. Tools for analyzing scientific information
6. Tools for managing scientific information and sharing knowledge, including pipelining tools
7. Patents
8. Text (literature) mining
9. Visualizing molecules for lab reports, presentations, posters, and publications
10. Scientific writing, good design & good scientific practice
11. Communicating & analyzing the impact of (your) science

Lecture notes

The slide deck and supplementary materials will be made available in the teaching document repository (ILIAS) after each lecture.

Literature

Additional literature and reference are provided in the course material.

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies
- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
- Domain C - Social Competencies
 - Communication
 - Self-presentation and Social Influence
- Domain D - Personal Competencies
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

Doctoral Department of Chemistry and Applied Biosciences - Key for Type

<table>
<thead>
<tr>
<th>W+</th>
<th>Eligible for credits and recommended</th>
<th>Z</th>
<th>Courses outside the curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td>O</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Key for Hours

- V lecture
- G lecture with exercise
- U exercise
- S seminar
- K colloquium
- P practical/laboratory course
- A independent project
- D diploma thesis
- R revision course / private study

Data: 11.11.2021 12:40

Autumn Semester 2021
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-0254-00L</td>
<td>Seminar Geochemistry and Petrology</td>
<td>E-</td>
<td>0</td>
<td>2S</td>
<td>O. Bachmann, M. Schönbächler, C. Chelle-Michou, M. W. Schmidt, D. Vance</td>
</tr>
</tbody>
</table>

Abstract
Seminar series with external and occasional internal speakers addressing current research topics. Changing programs announced via D-ERDW homepage (Veranstaltungskalender).

Objective
Presentations on isotopic geochemistry, cosmochemistry, fluid processes, economic geology, petrology, mineralogy and experimental studies. Mostly international speakers provide students, department members and interested guests with insight into current research topics in these fields.

Content
Wöchentliches Seminar mit Fachvorträgen eingeladener oder internen Wissenschafter, vornehmlich zu Themen der Geochemie, Isotopengeologie, Hydrothermalocheamie, Lagerstättenbildung, Petrologie, Mineralogie und experimentelle Studien.

Course Catalogue of ETH Zurich

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-1617-00L</td>
<td>Geophysical Fluid Dynamics and Numerical Modelling</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>P. Tackley, T. Gerya</td>
</tr>
</tbody>
</table>

Abstract
Seminar: Heat and Mass Transfers in Magmatology (Does not take place this semester).

Objective
This class will allow the students to learn about the modern methods and ideas on heat and mass transfers in magmatology through classic and recently published papers. Communication of scientific results to the scientific community and the public is critical. In the class, the students will read and analyse scientific papers and discuss them orally to the class. The students will also create a Wikipedia page and reformulate scientific results for the public.

Content
The class will focus mostly on 1) reading literature on topics of interests, 2) oral and written presentations of the papers, 3) exercises illustrating the topic, to allow students to work by themselves on some well-defined problems.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-1180-00L</td>
<td>Research Seminar Structural Geology and Tectonics</td>
<td>Z</td>
<td>0</td>
<td>1S</td>
<td>W. Behr</td>
</tr>
</tbody>
</table>

Abstract
A seminar series with invited speakers from both inside and outside the ETH.

Objective
The seminar series provides an opportunity to convey the latest research results to students and staff.

Content
Informal seminars with both internal and external speakers on current topics in Structural Geology, Tectonics and Rock Physics. The current program is available at: http://www.structuralgeology.ethz.ch/news-and-events/events-and-seminars.html

Doctoral Department of Earth Sciences - Key for Type

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Doctoral Department of Humanities, Social and Political Sciences

Doctoral and Post-Doctoral Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0587-01L</td>
<td>CIS PhD Colloquium</td>
<td>W</td>
<td>2</td>
<td>2K</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UZH Module Code: 615G932C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH: https://www.uzh.ch/cms/ss/en/studies/application/deadline.s.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In this internal colloquium doctoral students present their work after about 12 months of research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The aim of this colloquium is that the presenters receive feedback on their research at an important stage (a stage at which significant changes of direction, methodology, etc., may still be undertaken) in the PhD process.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presentation of doctoral research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed electronically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed electronically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dates: See http://www.cis.uzh.ch/education/index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0626-02L</td>
<td>PhD Colloquium in Development Economics</td>
<td>W</td>
<td>1</td>
<td>1K</td>
<td>I. Günther, K. Harttgen</td>
</tr>
<tr>
<td></td>
<td>PhD students working in empirical development economics will present their ongoing work, with a particular focus on the methods (to be used and challenges faced. Participants are expected to read the drafts/papers/presentations beforehand and give constructive feedback to the PhD student presenting.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PhD students learn how to present and discuss their own research questions, methods, results and problems. PhD students get familiar with the challenges of empirical economics research in low income countries.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This is a two days course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0735-10L</td>
<td>Business Law</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>P. Peyrot</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particularly suitable for students of D-ITET, D-MAVT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The students shall obtain a basic knowledge about business law. They shall be able to recognize and evaluate issues in the area of business law and suggest possible solutions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The students shall obtain the following competences:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They shall obtain a working knowledge on the legal aspects involved in setting up and managing an enterprise.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They shall be acquainted with corporate functions as contracting, negotiation, claims management and dispute resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They shall be familiar with the issues of corporate compliance, i.e. the system to ascertain that all legal and ethical rules are observed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They shall be able to contribute to the legal management of the company and to discuss legal issues.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They shall have an understanding of the law as a part of the corporate strategy and as a valuable resource of the company.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A comprehensive script will be made available online on the moodle platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0735-09L</td>
<td>Workshop & Lecture Series on the Law & Economics of Innovation</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>S. Bechtold, H. Gersbach</td>
</tr>
<tr>
<td></td>
<td>This is a joint project by ETH Zurich and the Universities of St. Gallen and Zurich. It provides an overview of interdisciplinary research on intellectual property, innovation, antitrust, privacy & technology policy. Scholars from law, economics, management and related fields present their current research. All speakers are internationally well-known experts from Europe, the U.S. & beyond.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After the workshop and lecture series, participants should be acquainted with interdisciplinary approaches towards intellectual property, innovation, antitrust, privacy and technology policy research. They should also have an overview of current topics of international research in these areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The workshop and lecture series will present a mix of speakers who represent the wide range of current social science research methods applied to intellectual property, innovation, antitrust, privacy and technology policy issues. In particular, theoretical models, empirical and experimental research as well as legal research methods will be represented.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papers discussed in the workshop and lecture series are posted in advance on the course web page.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suzanne Scotchmer, Innovation and Incentives, 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bronwyn Hall / Nathen Rosenberg (eds.), Handbook of the Economics of Innovation, 2 volumes, Amsterdam 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bronwyn Hall / Dietmar Harhoff, Recent Research on the Economics of Patents, 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Analytical Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Problem-solving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Creative Thinking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Critical Thinking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0738-00L</td>
<td>Intellectual Property: Introduction</td>
<td>W+</td>
<td>2</td>
<td>2V</td>
<td>M. Schweizer</td>
</tr>
<tr>
<td></td>
<td>Particularly suitable for students of D-CHAB, D-INFK, D- ITET, D-MAVT, D-MATEL, D-MTEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objective: The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

851-0738-01L The Role of Intellectual Property in the Engineering and Technical Sector

Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

Abstract: The lecture gives an overview of the fundamental aspects of intellectual property, which plays an important role in the daily routine of engineers and scientists. The lecture aims to make participants aware of the various methods of protection and to put them in a position to use this knowledge in the workplace.

Objective: In recent years, knowledge about intellectual property has become increasingly important for engineers and scientists. Both in production and distribution and in research and development, they are increasingly being confronted with questions concerning the patenting of technical inventions and the use of patent information.

The lecture will acquaint participants with practical aspects of intellectual property and enable them to use the acquired knowledge in their future professional life.

Topics covered during the lecture include:
- The importance of innovation in industrialised countries
- An overview of the different forms of intellectual property
- The protection of technical inventions and how to safeguard their commercialisation
- Patents as a source of technical and business information
- Practical aspects of intellectual property in day-to-day research, at the workplace and for the formation of start-ups.

Case studies will illustrate and deepen the topics addressed during the lecture.

The seminar will include practical exercises on how to use and search patent information. Basic knowledge of how to read and evaluate patent documents as well as how to use publicly available patent databases to obtain the required patent information will also be provided.

The lecture addresses students in the fields of engineering, science and other related technical fields.

851-0252-04L Behavioral Studies Colloquium

Abstract: This colloquium offers an opportunity to discuss recent and ongoing research and scientific ideas in the behavioral sciences, both at the micro- and macro-levels of cognitive, behavioral and social science.

The colloquium features invited presentations from internal and external researchers as well as presentations of doctoral students close to submitting their dissertation research plan.

Objective: Participants are informed about recent and ongoing research in different branches of the behavioral sciences. Presenting doctoral students obtain feedback on their dissertation research plan.

Content: This colloquium offers an opportunity to discuss recent and ongoing research and scientific ideas in the behavioral sciences, both at the micro- and macro-levels of cognitive, behavioral and social science. It covers a broad range of areas, including theoretical as well as empirical research in social psychology, research on higher education, sociology, modeling and simulation in sociology, decision theory and behavioral game theory, economics, research on learning and instruction, cognitive psychology and cognitive science.

The colloquium offers invited presentations from internal and external researchers as well as presentations of doctoral students close to submitting their dissertation research plan.

Prerequisites / notice: Doctoral students in D-GESS can obtain 2 credit points for presenting their dissertation research plan.

851-0252-01L Human-Computer Interaction: Cognition and Usability

Number of participants limited to 35.

Abstract: This seminar introduces theory and methods in human-computer interaction and usability. Cognitive Science provides a theoretical framework for designing user interfaces as well as a range of methods for assessing usability (user testing, cognitive walkthrough, GOMS). The seminar will provide an opportunity to experience some of the methods in applied group projects.

Objective: This seminar will introduce key topics, theories and methodology in human-computer interaction (HCI) and usability. Presentations will cover basics of human-computer interaction and selected topics like mobile interaction, adaptive systems, human error and attention. A focus of the seminar will be on getting to know evaluation techniques in HCI. Students form work groups that first familiarize themselves with a select usability evaluation method (e.g. user testing, GOMS, task analysis, heuristic evaluation, questionnaires or Cognitive Walkthrough). They will then apply the methods to a human-computer interaction setting (e.g. an existing software or hardware interface) and present the method as well as their procedure and results to the plenary. Active participation is vital for the success of the seminar, and students are expected to contribute to presentations of foundational themes, methods and results of their chosen group project. In order to obtain course credit a written essay / report will be required (details to be specified in the introductory session of the course).

851-0252-05L Research Seminar Cognitive Science

Prerequisite: Participants should be involved in research in the cognitive science group.

Abstract: The colloquium provides a forum for researchers and graduate students in cognitive science to present/discuss their ongoing projects as well as jointly discuss current publications in cognitive science and related fields. A subset of the sessions will include invited external visitors presenting their research. Participants of this colloquium are expected to be involved in active research group.

Objective: Graduate student train and improve their presentation skills based on their own project ideas, all participants stay informed on current trends in the field and have the opportunity for networking with invited scholars.

851-0585-41L Computational Social Science

Number of participants limited to 50.

Abstract: The seminar aims at three-fold integration: (1) bringing modeling and computer simulation of techno-socio-economic processes and phenomena together with related empirical, experimental, and data-driven work, (2) combining perspectives of different scientific disciplines (e.g. sociology, computer science, physics, complexity science, engineering), (3) bridging between fundamental and applied work.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 603 of 2152
Participants of the seminar should understand how tightly connected systems lead to networked risks, and why this can imply systems we do not understand and cannot control well, thereby causing systemic risks and extreme events.

They should also be able to explain how systemic instabilities can be understood by changing the perspective from a component-oriented to an interaction- and network-oriented view, and what fundamental implications this has for the proper design and management of complex dynamical systems.

Computational Social Science and Global Systems Science serve to better understand the emerging digital society with its close co-evolution of information and communication technology (ICT) and society. They make current theories of crises and disasters applicable to the solution of global-scale problems, taking a data-based approach that builds on a serious collaboration between the natural, engineering, and social sciences, i.e. an interdisciplinary integration of knowledge.

Objective

To gain an overview of the history of the transition of large technical systems

To recognize current challenges in the energy system to understand the theoretical frameworks and concepts for studying transitions

To gain knowledge on the role of policy and politics in energy transitions

To understand how systemic instabilities can be understood by changing the perspective from a component-oriented to an interaction- and network-oriented view

Content

Climate change, access to energy and other societal challenges are directly linked to the way we use and create energy. Both the 2015 United Nations Paris climate change agreement and the UN Sustainable Development Goals make a fast and extensive transition of the energy system necessary.

This lecture introduces the social and environmental challenges involved in the energy sector and discusses the implications of these challenges for the rate and direction of technical change in the energy sector. It compares the current situation with historical socio-technical transitions and derives the consequences for policy-making. It introduces theoretical frameworks and concepts for studying innovation and transitions. It then focuses on the role of policy and policy change in governing the energy transition, considering the role of political actors, institutions and policy feedback.

The grade will be determined by a final exam.

Literature

Computational Social Science

https://science.sciencemag.org/content/sci/323/5915/721.full.pdf

Manifesto of Computational Social Science

https://link.springer.com/article/10.1140/epjst/e2012-01697-8

Social Self-Organisation

How simple rules determine pedestrian behaviour and crowd disasters

https://www.pnas.org/content/108/17/6884.short

Peer review and competition in the Art Exhibition Game

https://www.pnas.org/content/113/30/8414.short

Generalized network dismantling

https://www.pnas.org/content/116/14/6554.short

Computational Social Science: Obstacles and Opportunities

https://science.sciencemag.org/content/369/6507/1060?rss%253D1=

Bit by Bit: Social Research in the Digital Age

https://www.amazon.co.uk/Bit-Social-Research-Digital-Age-ebook/dp/B072MPFXX2/

Further literature will be recommended in the lectures.

Prerequisites / notice

This course is particularly suited for students of the following programmes: MA Comparative International Studies; MSc Energy Science & Technology; MSc Environmental Sciences; MSc Management, Technology & Economics; MSc Science, Technology & Policy; ETH & UZH PhD programmes.

851-0609-06L Governing the Energy Transition

Primary suited for Master and PhD level.

This course addresses the role of policy and its underlying politics in the transformation of the energy sector. It covers historical, socio-economic, and political perspectives and applies various theoretical concepts to understand specific aspects of the governance of the energy transition.

- To gain an overview of the history of the transition of large technical systems
- To recognize current challenges in the energy system to understand the theoretical frameworks and concepts for studying transitions
- To gain knowledge on the role of policy and politics in energy transitions

Content:

Climate change, access to energy and other societal challenges are directly linked to the way we use and create energy. Both the 2015 United Nations Paris climate change agreement and the UN Sustainable Development Goals make a fast and extensive transition of the energy system necessary.

This lecture introduces the social and environmental challenges involved in the energy sector and discusses the implications of these challenges for the rate and direction of technical change in the energy sector. It compares the current situation with historical socio-technical transitions and derives the consequences for policy-making. It introduces theoretical frameworks and concepts for studying innovation and transitions. It then focuses on the role of policy and policy change in governing the energy transition, considering the role of political actors, institutions and policy feedback.

The grade will be determined by a final exam.

851-0105-00L Background Knowledge Arabic World

Primary suited for Bachelor level.

This course provides an introduction to the Arabic world, its languages, and its cultures. It covers the history, politics, economy, and society of the Arabic world.

- To understand the complex dynamics of the Arabic world
- To appreciate the cultural and linguistic diversity of the Arabic world

Content:

The course covers the history, politics, economy, and society of the Arabic world. It provides an introduction to the languages and cultures of the Arabic world.

The grade will be determined by a final exam.

Prerequisites / notice

This course is particularly suited for students of the following programmes: MA Comparative International Studies; MSc Energy Science & Technology; MSc Environmental Sciences; MSc Management, Technology & Economics; MSc Science, Technology & Policy; ETH & UZH PhD programmes.
Abstract
This lecture will discuss important topics of the Arab culture involving concepts relating to history, the role of literature, sciences and religion, concepts of 'the West', meaning of education, understanding of culture as well as current concepts and discourses relevant at the sociocultural level.

Objective
Teaching about epistemic contents relating to the Arabic world that constitute modern Arabs' self understanding and are relevant for adequate behavior in practically dealing with the Arabic world. What basic knowledge about 'their' culture are Arabs taught? What educational goals are pursued? What is the relationship they build with the West?

The topics that are discussed on the basis of a scientifically critical approach are concepts and understandings of history, the role of literature, sciences and religion, concepts of the West and relationship with the West, the role of education, understanding of culture and cultural refinement, current concepts and discourses relevant at the sociocultural level.

851-0252-10L Project in Behavioural Finance
Number of participants limited to 40

W 3 credits 2S S. Andraszewicz, C. Hölscher, A. C. Roberts

Project in Behavioural Finance

Particularly suitable for students of D-MTEC

Abstract
In this seminar, students will study cognitive processes, behaviour and the underlying biological response to financial decisions. Research methods such as asset market experiments, lottery games, risk preference assessment, psychometrics, neuroimaging and psychophysiology of decision processes will be discussed. Financial bubbles and crashes will be the core interest.

Objective
This course has four main goals:
1) To learn about the most important topics within Behavioural Finance
2) To learn how to conduct behavioural studies, design experiments, plan data collection and experimental tasks
3) To learn about causes of market crashes, factors that influence them, traders' behaviour before, during and after financial crises
4) To investigate a topic of interest, related to behaviour of traders during market crashes.

Content
The course provides an overview of the most important topics in Behavioural Finance. First part of the course involves reading scientific articles, which will be discussed during the seminar. Therefore, attendance is required to pass the course. Each week, a student volunteer will present a paper and the presentation will be followed by a discussion. After obtaining sufficient knowledge of the field, students will select a topic for a behavioural study of their own. The final assignment consists of preparing and conducting a small behavioural study/experiment, analysing the data and presenting the project in the final meeting of the class. Each student will write a scientific report of their study.

701-0015-00L Transdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder Engagement
Number of participants limited to 20.

W 2 credits 2S M. Staffacher, C. E. Pohl, B. Vienni Baptista

Transdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder Engagement

Priority is given to PhD students D-USYS.

Abstract
This seminar is designed for PhD students and PostDoc researchers involved in inter- or transdisciplinary research. It addresses and discusses challenges of this kind of research using scientific literature presenting case studies, concepts, theories, methods and by testing practical tools. It concludes with a 10-step approach to make participants' research projects more societally relevant.

Objective
Participants know specific challenges of inter- and transdisciplinary research and can address them by applying practical tools. They can tackle questions like: how to integrate knowledge from different disciplines, how to engage with societal actors, how to secure broader impact of research? They learn to critically reflect their own research project in its societal context and on their role as scientists.

Content
The seminar covers the following topics:
(1) Theories and concepts of inter- and transdisciplinary research
(2) The specific challenges of inter- and transdisciplinary research
(3) Collaborating between different disciplines
(4) Engaging with stakeholders
(5) 10 steps to make participants' research projects more societally relevant

Throughout the whole course, scientific literature will be read and discussed as well as practical tools explored in class to address concrete challenges.

Literature
Further, this collection of tools will be used
https://naturalsciences.ch/topics/co-producing_knowledge

Prerequisites / notice
Participation in the course requires participants to be working on their own research project.

Dates (Wednesdays, 8h15-12h00): 29 September, 27 October, 10 November, 24 November, 8 December

851-0252-13L Network Modeling
Data Science

W 3 credits 2V C. Stadtfeld, V. Amati

Network Modeling and in the MSc Data Science

Particularly suitable for students of D-INFK and in the MSc Data Science

Students are required to have basic knowledge in inferential statistics, such as regression models.

Abstract
Network Science is a distinct domain of data science that focuses on relational systems. Various models have been proposed to describe structures and dynamics of networks. Statistical and numerical methods have been developed to fit these models to empirical data. Emphasis is placed on the statistical analysis of (social) systems and their connection to social theories and data sources.

Objective
Students will be able to develop hypotheses that relate to the structures and dynamics of (social) networks, and tests those by applying advanced statistical network methods such as exponential random graph models (ERGMs) and stochastic actor-oriented models (SAOMs). Students will be able to explain and compare various network models, and develop an understanding of how those can be fit to empirical data. This will enable students to independently address research questions from various social science fields.
Content

The following topics will be covered:

- Introduction to network models and their applications
- Stylized models:
 - uniform random graph models
 - small world models
 - preferential attachment models
- Models for testing hypotheses while controlling for the network structure:
 - Quadratic assignment procedure regression (QAP regression)
- Models for testing hypotheses on the network structure:
 - Models for one single observation of a network: exponential random graph models (ERGMs)
 - Models for panel network data: stochastic actor-oriented models (SAOMs)
 - Models for relational event data: dynamic network actor models (DyNAMs)

The application of these models is illustrated through examples and practical sessions involving the analysis of network data using the software R.

Lecture notes

Slides and lecture notes are distributed via the associated course moodle.

Literature

Prerequisites / notice

Students are required to have basic knowledge in inferential statistics and should be familiar with linear and logistic regression models.

851-0252-15L Network Analysis

Particularly suitable for students of D-INFK, D-MATH

Abstract

Network science is a distinct domain of data science that is characterized by a specific kind of data being studied. While areas of application range from archaeology to zoology, we concern ourselves with social networks for the most part. Emphasis is placed on descriptive and analytic approaches rather than theorizing, modeling, or data collection.

Objective

Students will be able to identify and categorize research problems that call for network approaches while appreciating differences across application domains and contexts. They will master a suite of mathematical and computational tools, and know how to design or adapt suitable methods for analysis. In particular, they will be able to evaluate such methods in terms of appropriateness and efficiency.

Content

The following topics will be covered with an emphasis on structural and computational approaches and frequent reference to their suitability with respect to substantive theory:

- Empirical Research and Network Data
- Macro and Micro Structure
- Centrality
- Roles
- Cohesion

Lecture notes

Lecture notes are distributed via the associated course moodle.

Literature

851-0742-00L Contract Design I

This course is taught by Professor Alexander Stremitzer (https://laweconbusiness.ethz.ch/group/professor/stremitzer.html). Note that this is NOT a legal drafting class that focuses on contractual language. Instead, in Contract Design, you will learn what the content of a contract should be so that parties can reach their goals.

You can find all course materials and the most recent announcements on Moodle. Please log in to Moodle using your ETH or UZH credentials. Then search for "Contract Design I (851-0742-00L; Fall 2021)" and enroll. The password is "ContractDesign01".

Number of participants limited to 160. Max 80 ETHZ and 80 UZH Students

Abstract

Contract Design I aims to bridge the gap between economic contract theory, contract law, and the writing of real-world contracts. In this course, we take a systematic approach to contract design. This means we first analyze the economic environment in which a transaction takes place, and then engineer contracts that achieve the desired outcome.
Objective

Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than half a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=CvIdfG70zq0). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

Lecture notes

Handouts, prerecorded videos, slides, and other materials

Prerequisites / notice

Contract Design I is available to ETH students through the Science in Perspective (SiP) Program of D-GESS. This course is particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, DMATH, D-MTEC, D-INFK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

Abstract

This course introduces students to legal, economic, and social perspectives on the increasing economic and social importance of technology. We focus particularly on the challenges to current law posed by the increasing rate of tech innovation and adoption generally and also by case-specific features of prominent near-future technologies.

Objective

The course is intended for a wide range of engineering students, from machine learning to bioengineering to human computer interaction, as well as for law students interested in acquiring a better understanding of state-of-the-art technology.

The course will combine both an overview of major areas of law that affect the regulation of technology and also guest lectures on the state-of-the art in a variety of important technologies, ranging from autonomous vehicles to fair artificial intelligence to consumer-facing DNA technologies.

The course is open to ETH students through the Science in Perspective program of the Department of Humanities, Social and Political Sciences.
The planned course outline is below:

1. Overview of science, law, and technology
 a. Studies of law and technology
 b. Should science be regulated, and if so, how?
 c. Technology as a social problem

2. Designing technology for humans
 a. Attention fiduciaries and the digital environment
 b. Does technology weaponize known problems of bounded human rationality?
 c. Should technology be regulated as a psychotropic substance? An addictive substance?
 d. Can technology make life easier?
 e. Psychological effects of surveillance

3. Governing tech
 a. Can small governments regulate big tech?
 b. National and supranational legislation
 c. Enforcing the law with technology
 d. Can enforcement be baked into technology?

4. AI and fairness
 a. Discrimination
 b. Privacy
 c. Opacity
 d. AI and due process

5. Trade secret and technological litigation
 a. Trade secret is a long-standing tool for litigation but does it enjoy too much deference?
 b. Trade secrets and the rights of employees

6. Enforcement against tech
 a. Big tech and antitrust
 b. Consumer protection

7. The Digital Battlefield
 a. Technology for spying
 b. Spying on technology companies
 c. Race to be AI superpower
 d. Immigration policy

8. Contract law
 a. Smart contracts
 b. Modernizing contract law and practice
 c. Regulating cryptocurrencies

9. Tort law
 a. Applying existing tort law to new autonomous technologies
 b. Personhood and personal responsibility
 c. Victim entitlements

10. Self-driving cars and other autonomous robotics
 a. Legal regimes
 b. Diversity in morality judgements related to autonomous vehicles

11. Biometrics
 a. Unregulated science (biohackers)
 b. Promising technology before it can be delivered
 c. Connecting biometrics to social data
 d. Using technology to circumvent medical regulations

851-0101-86L Complex Social Systems: Modeling Agents, Learning, W and Games
 3 credits 2S N. Antulov-Fantulin, T. Asikis, D. Helbing

Number of participants limited to 100.

Prerequisites: Basic programming skills, elementary probability and statistics.

Abstract
This course introduces mathematical and computational models to study techno-socio-economic systems and the process of scientific research. Students develop a significant project to tackle techno-socio-economic challenges in application domains of complex systems. They are expected to implement a model and communicating their results through a seminar thesis and a short oral presentation.

Objective
The students are expected to know a programming language and environment (Python, Java or Matlab) as a tool to solve various scientific problems. The use of a high-level programming environment makes it possible to quickly find numerical solutions to a wide range of scientific problems. Students will learn to take advantage of a rich set of tools to present their results numerically and graphically.

The students should be able to implement simulation models and document their skills through a seminar thesis and finally give a short oral presentation.

Content
Students are expected to implement themselves models of various social processes and systems, including agent-based models, complex networks models, decision making, group dynamics, human crowds, or game-theoretical models.

Part of this course will consist of supervised programming exercises. Credit points are finally earned for the implementation of a mathematical or empirical model from the complexity science literature and the documentation in a seminar thesis.
Evidence-Based Design: Methods and Tools For Evaluating Architectural Design

Number of participants limited to 40

Abstract

Students are taught a variety of analytic techniques that can be used to evaluate architectural design. The concept of evidence-based design is introduced, and complemented with theoretical background on space syntax and spatial cognition. This is a project-oriented course, students implement a range of methods on a sample project. The course is tailored for architecture design students.

Objective

The course aims to teach students how to evaluate a design project from the perspective of the end user. The concept of evidence-based design is introduced through a series of case studies. Students are given a theoretical background in space syntax and spatial cognition, with a view to applying this knowledge during the design process. The course covers a range of methods including visibility analysis, network analysis, conducting real-world observations, and virtual reality for architectural design. Students apply these methods to a case study of their choice, which can be at building or urban scale. For students taking a B-ARCH or M-ARCH degree, this can be a completed or ongoing design studio project. The course gives students the chance to implement the methods iteratively and explore how best to address the needs of the eventual end-user during the design process.

The course is tailored for students studying for B-ARCH and M-ARCH degrees. As an alternative to obtaining D-GESS credit, architecture students can obtain course credit in "Vertiefungsfach" or "Wahlfach".

Prerequisites / notice

The number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Good programming skills and a good understanding of probability & statistics and calculus are expected.

Domain A - Subject-specific Competencies

Concepts and Theories

Domain B - Method-specific Competencies

Analytical Competencies

Domain C - Social Competencies

Communication

Domain D - Personal Competencies

Adaptability and Flexibility

851-0252-08L

Evidence-Based Design: Methods and Tools For Evaluating Architectural Design

W 3 credits 2S M. Gath Morad, C. Hölscher, L. Narvaez Zertuche, C. Veddeler

Number of participant limited to 20

Applied Network Science: Social Media Networks

W 3 credits 1S U. Brandes

Number of participant limited to 20

Consciousness Studies

W 2 credits 2V K. Stocker

Number of participants limited to 80.

Literature

The lecture slides will be presented on the course web page after each lecture.

Agent-Based Modeling

https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2

Social Self-Organization

Traffic and related self-driven many-particle systems

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

An Analytical Theory of Traffic Flow (collection of papers)

https://www.researchgate.net/publication/261629187

Pedestrian, Crowd, and Evacuation Dynamics

https://www.research-collection.ethz.ch/handle/20.500.11850/45424

The hidden geometry of complex, network-driven contagion phenomena (relevant for modeling pandemic spread)

https://science.sciencemag.org/content/342/6164/1337

Further literature will be recommended in the lectures.

Number of participants limited to 40

Autumn Semester 2021

Data: 11.11.2021 12:40
The study of consciousness involves scholars from diverse fields, such as psychology, neuroscience, cognitive science, philosophy, linguistics, computer science, medicine, religious studies, anthropology, as well as literature and art studies. While the study of consciousness is presented mainly from the point of view of psychology in this course, additional interdisciplinary viewpoints are also integrated.

Psychological consciousness studies involve research on levels and states of consciousness. Psychologically researched levels of consciousness are the conscious, preconscious, unconscious/subconscious, and nonconscious levels of mental processing. Psychological research on states of consciousness – which is the main focus of this course – takes making consciousness as the most common state (ordinary state of consciousness, OSC), using it as a baseline against which altered states of consciousness (ASCs) are compared. Some of the most prominently or promising researched ASCs in psychology will be introduced in this course and include sleeping/dreaming, hypnosis, meditation, sensory deprivation (e.g., floating tank), rhythm-induced trance, as well as ASCs induced by psychoactive drugs (classic psychedelics, dissociative anesthetics, empathogens). Furthermore, it will also be shown how a growing number of health and clinical studies investigate the therapeutic potential of being temporarily in an ASC. Finally, in this course, two mental phenomena that are also highly relevant for the scientific mind – insight and flow – are also introduced from a consciousness-studies perspective.

This workshop offers students an experience that trains their ability for critical analysis and develops awareness of responsibilities as a decision-maker. In the last 2500 years, the mind-brain relationship has been articulated in various ways. In these lectures, I will explore the scientific and philosophical aspects of this relationship in the context of relevant cultural, historical and technological processes, with a focus on the modern neurosciences, but I will also discuss works of art and literature.

Students will investigate and implement the relevant machine learning tools for making legal predictions, including regression, classification, and deep neural networks models. We then use these predictions to better understand the operation of the legal system. Under what conditions do judges tend to make errors? Against which types of defendants do parole boards exhibit bias? Which jurisdictions have the most tax loopholes? Students will be introduced to emerging applied research in this vein. In a semester paper, students (individually or in groups) will conceive and implement an applied data-science research project.

The workshop focuses on understanding and managing the ethical and social issues arising from the integration of new technologies in various aspects of daily life. We will use these predictions to better understand the operation of the legal system. In a semester project, student groups will conceive and implement their own research project applying natural language processing (NLP) tools to legal texts. Some programming experience in Python is required, and some experience with text mining is highly recommended. The workshop will begin with some fundamentals: the nature of ethics, of consent and big data, of AI ethics, public trust and health ethics. Students will then be introduced to key ethical concepts such as fairness, autonomy, trust, accountability, justice, as well different ways of reasoning about the ethics of digital technologies.

A range of practical problems and issues in the domains of education, news media, society, social media, digital health and justice will be then considered. These six domains are represented respectively by unique and interesting case studies. Each case study has been selected not only for its timely and engaging nature, but also for its relevance. Through the analysis of these case studies key ethical questions (such as fairness, accountability, explain-ability, access etc.) will be highlighted and questions of responsibility and tools for ethical practice will be explored. Throughout, the emphasis will be on learning to make sound arguments about the ethical aspects of policy, practice and research.
Objective By the end of this lecture, students should be familiar with essential positions in the scientific and philosophical treatment of questions relating the mind to the brain. It should also become clear that some of the most relevant problems in current neuroscience have a long history.

Content According to a myth, the ancient Greek philosopher Democrit dissected animals, because he was in search of the seat of the soul. Current neuropsychologists use neuroimaging techniques like functional magnetic-resonance-tomography in order to localize cognitive and emotional qualities in the brain. Between these two dates lies a history of 2500 years, in which the mind-brain connection has been defined in various ways. Starting with ancient and medieval theories, the lecture will have its focus on modern theories from the nineteenth century onward. I will discuss essential issues in the history of the neurosciences such as localization theories, the neuron doctrine, reflex theory, theories of emotions, neurocybernetics and the importance of visualizing the brain and its parts, but I will also include classical works of art and literature to illustrate these points.

851-0337-00L African Intellectual and Artistic Presence: From "Négritude" to the "Ateliers de la pensée" W 3 credits 2V 2S F. Sarr

Objective The objective of this seminar is to provide a critical overview of contemporary African thought as it is expressed in literature, philosophical discourse, social sciences, and the humanities.

Content We will explore the questions posed by contemporary thinkers from the African continent and its diasporas; and see to what extent these shed light on the political, cultural, and civilizational issues of Africa and the contemporary world.

851-0011-00L The Body in Global History W 3 credits 2S E. Valdameri

Objective Students learn the history of the body from mid-eighteenth century onwards through examples taken from the multidisciplinary scholarship on the body with a special, albeit not exclusive, focus on colonial and postcolonial contexts. More specifically, students are sensitized to the historical and cultural variabilities of the human body that challenge scientific understandings of it as an unchanging biological entity. Adopting a humanities perspective, the treatment on topics like anatomy and surgery, the treatment of disease, the body in its relation to environment, physical culture, eugenics, and body productivity, the course looks at shifting attitudes to body health and fitness and the ways these have been shaped by considerations of gender, race, and class as well as by socioeconomic circumstances of modernity. It considers how bodies have historically important considerations of gender, race, and class as well as by socioeconomic circumstances of modernity. It considers how bodies have historically important considerations of gender, race, and class as well as by socioeconomic circumstances of modernity.

Content While being the universal constant which is common to every human being in history, the body is also culturally and historically specific. In this seminar we will examine how ideas of the body have changed throughout history and how these ideas of the body can be useful to understand political, social, and cultural phenomena in particular historical settings.

851-0422-00L A Modern Utopia: Science and Visions of the Future W 3 credits 2S A. Fryxell

Abstract This course explores how science and technoscience produced utopian or dystopian visions of the future in historical context, assessing how new developments in the physical, natural, and economic sciences since c.1880 have shaped possible "futures" in Western thought.

Objective This course equips students with the skills to assess how scientific ideas diffused broader ideas of present and future societies in the West since industrialization. Students will be able to compare and contrast different developments in the relationship between science and society, identify key trends in thinking about the future, and explain how science informed ethical and social questions.

Content This course offers an overview of the history of science and technoscience since 1880 by exploring the intersection of thinking about science and society in the modern utopian tradition, starting with Darwinian evolution, capitalism, and new transport and communication technologies. Different historical cases across the 20th century where scientific and technological change played a central role in defining visions of the future will be studied in detail. We will explore case studies like the impact of new technologies on visions of future war, the atom bomb, overpopulation and ecological catastrophe, transhumanism, AI, and the significance of new digital technologies for the posthuman future. Course materials will include histories of science and technology in addition to popular science texts and science fiction.

851-0499-00L Globalization – Theories, Concepts, Aspects W 3 credits 2V S. M. Scheuzger

Abstract The course offers an introduction into theories of globalization and presents key concepts of the analysis of processes of globalization. Among the many aspects of globalization – which is dealt with in its historical dimensions – the course focuses on the interactions between these processes on the one hand and technical and scientific developments and processes of global entanglements.

Objective A) The students know central theories of globalization. B) They are familiar with different concepts of analysis of processes of globalization and are able to assess them. C) They are able to reflect, on this basis, on the interconnectedness between technical and scientific developments and processes of global entanglements.

Prerequisites / notice The Vorlesung findet im Format eines "Flipped Classroom" statt. Der Inhalt der Sitzungen wird wöchentlich in einer 45-minütigen Zoom-Sitzung vermittelt und lediglich durch Vertiefung und Diskussionen online angeboten. Die Präsenzteilnahme und das aktive Engagement sind für die Schließung der Klausurprämisse selbstverständlich.

851-0336-00L Eros: Athens, Rome, Vienna, Paris W 3 credits 2V G. Sissa

Objective Once upon a time there was natural law, the foundation of sexual relations between two people of different genders, in order to procreate. Today, new rights and new forms of life are profoundly transforming both naturalness and purpose.
E. Manea

There is a possibility that representatives from companies that were previously engaged in similar deals will visit us in class and tell you about their experience firsthand. In Contract Design I, you will receive more detailed information on the content and learning objectives of the term “Lebensreform” which also encompassed naturopathy, dress reforms, naturism, health foods and vegetarianism, youth and women’s movements, sexual liberation and intentional communities, organic farming, land reform, cooperative/free economy/garden city movements, nature conservation and homeland protection, progressive education and country boarding school movement, art education and Dalroche eurhythms, expressive dance, theatre reforms, regional literature and art, anthroposophy, the emergence of Germanic-German Christian religious communities, religious socialism and the Jewish renaissance.

This movement was clearly politically diverse, and attracted all manner of advocates, for example, those with social anarchist, jingoistic or anti-Semitic beliefs. What made them kindred spirits was their rather negative experience of modernisation: their fantasies about the era mentioned above were confirmed by existing interpretations of the human existence (Dasein) were obsolete. Amongst the fantasies was, as described by Gert Mattenklott, the idea of a dramatic shift in current thinking and the creation of a new world, the emergence of a new mankind that embodied the characteristics of youth, and a new community. Strong dichotomies like light and darkness, hot and cold, the fears of dehumanisation and a propensity for vegetarianism were also typical of life reforms.

This course presents some crucial moments of this distant past, in which knowledge, practices and representations have shaped disparate experiences of desire, pleasure and the body. Challenges for a fluid present, ideas for the near future.
Objective
1. Examine the concept of failed state within the International relations literature.
2. Take a closer look at Yemen(s) political history(ies), its/their political and social structures, and power dynamics.
3. Introduce the concept of the ‘cunning state’ and its exploitation of the discourse of failed state

Content
This seminar looks at the concept of failed states and how useful it can be in describing the situation in a country like Yemen. It will also take a closer look at Yemen(s) political history(ies) and its/their political and social structures. Students are expected to write a paper and make a presentation.

851-0062-00L Doctrinal Seminar «History of Knowledge» (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

Abstract
This doctoral seminar provides a platform for PhD projects in the history of knowledge.

Objective
We focus on the specific forms, circulations, and practices of knowledge, its discursive, cultural, and social, moreover its scientific, technological, media, and infrastructural, as well as its legal, economic, and political conditions and effects in global and transnational perspectives. Based on the participants’ research projects, the seminar introduces the methods, relevant literature and current issues in the history of knowledge.

Prerequisites / notice
Languages: German and English
For registration please write to: zwg-dp@ethz.ch

851-0125-65L A Sampler of Histories and Philosophies of Mathematics
Particularly suitable for students D-CHAB, D-INFK, D-ITET, D-MATH, D-PHYS

Abstract
This course will review several case studies from the ancient, medieval and modern history of mathematics. The case studies will be analyzed from various philosophical perspectives, while situating them in their historical and cultural contexts.

Objective
The course aims are:
1. To introduce students to the historicity of mathematics
2. To make sense of mathematical practices that appear unreasonable from a contemporary point of view
3. To develop critical reflection concerning the nature of mathematical objects
4. To introduce various theoretical approaches to the philosophy and history of mathematics
5. To open the students’ horizons to the plurality of mathematical cultures and practices

851-0125-76L Critiques of Scientific Objectivity
Number of participants limited to 30.

Abstract
This course will review some critical reflections on scientific epistemology, challenging prevalent notions of scientific objectivity. We will start with German critiques from the first half of the 20th century (Heidegger, Husserl, Frankfurt school), go on to French critiques from the second half (Foucault, Latour), and conclude with recent feminist and post-colonial critiques.

Objective
The students will be able to formulate and criticize arguments engaging with prevalent notions of contemporary scientific objectivity. They will be able to critically reflect on the authority of the knowledge that they learn and produce.

851-0197-00L Medieval and Early Modern Science and Philosophy

Abstract
The course analyses the evolution of the relation between science and philosophy during the Middle Age and the Early Modern Period.

Objective
The course aims are:
- to introduce students to the philosophical dimension of science;
- to develop a critical understanding of scientific notions;
- to acquire skills in order to read and comment on scientific texts written in the past ages.

Content
The course is focused on investigating questions of scientific thought between 1000 and 1700, that is to say the period that saw the flourishing of natural philosophy and the birth of the modern scientific method. Several case-studies, taken from different scientific fields (especially algebra, astronomy, and physics) are presented in class in order to examine the relation between science and philosophy and the shift from medieval times to the early modern world.

851-0255-00L Introduction to Methods in Learning Sciences II

Abstract
The course aims at equipping students with a suite of advanced quantitative and qualitative tools to support their existing research and develop new lines of inquiry in the Learning Sciences. By providing opportunities to analyze empirical educational data, the course will allow students to develop a appreciation for the breadth of methods that can be employed to improve the process of learning

Objective
The course will be centered around exploring methodological perspectives by focusing on conceptual aspects of datasets and experiments in the Learning Sciences. Face-to-face meetings will be held every fortnight, although students will be expected to work individually on weekly tasks (e.g., discussing relevant literature, performing data analysis, finding patterns in data and linking them to educational theory) and make a presentation.

Content
The course has the following components: a) advanced statistical methods (e.g., mediation and moderation), b) advanced qualitative methods (e.g., interaction analysis), c) computational methods (e.g., prediction and structured discovery with educational data)

Prerequisites / notice
Participation in the introductory version of this course (851-0252-14L Introduction to Methods in Learning Sciences) should be helpful, but not necessary. The class will be designed to allow students with strong STEM backgrounds to catch up and fully participate.

Taught competencies
- Domain A - Subject-specific Competencies: Techniques and Technologies
- Domain B - Method-specific Competencies: Analytical Competencies
- Domain C - Social Competencies: Communication
- Domain D - Personal Competencies: Adaptability and Flexibility

851-0256-00L Future Learning Initiative Colloquium

Abstract
The course registration targeted at students interested in learning sciences research and higher education.

Language of performance assessment will be English.

Objective
The course aims at equipping students with a suite of advanced quantitative and qualitative tools to support their existing research and develop new lines of inquiry in the Learning Sciences. By providing opportunities to analyze empirical educational data, the course will allow students to develop a appreciation for the breadth of methods that can be employed to improve the process of learning

Content
The course will be centered around exploring methodological perspectives by focusing on conceptual aspects of datasets and experiments in the Learning Sciences. Face-to-face meetings will be held every fortnight, although students will be expected to work individually on weekly tasks (e.g., discussing relevant literature, performing data analysis, finding patterns in data and linking them to educational theory) and make a presentation.

Prerequisites / notice
Participation in the introductory version of this course (851-0252-14L Introduction to Methods in Learning Sciences) should be helpful, but not necessary. The class will be designed to allow students with strong STEM backgrounds to catch up and fully participate.

Taught competencies
- Domain A - Subject-specific Competencies: Techniques and Technologies
- Domain B - Method-specific Competencies: Analytical Competencies
- Domain C - Social Competencies: Communication
- Domain D - Personal Competencies: Adaptability and Flexibility

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 613 of 2152
This colloquium offers an opportunity for students to present and discuss their ongoing projects broadly related to the science of learning. The colloquium also welcomes students from other disciplines who are interested in understanding the nature of formal and informal learning as a complex phenomenon across multiple, interacting levels: neural, cognitive, embodied, social, and cultural.

Objective

Students will have opportunities to develop their own ideas in the field of learning sciences and to communicate their ideas in oral presentations and in written papers. To achieve credit for the course, students are expected to either present their own research or provide scholarly feedback on the presented research.

Content

This colloquium offers an opportunity for students to discuss their ongoing research and scientific ideas in the learning sciences. This includes research aimed at understanding the nature of formal and informal learning as a complex phenomenon across multiple, interacting levels: neural, cognitive, embodied, social, and cultural. The colloquium also offers an opportunity for students from other disciplines to discuss their ideas in so far as they have some relation to the Future Learning Initiative at ETH or to the science of learning more broadly.

Existing Future Learning Initiative projects include productive failure and preparation for future learning, neural basis of learning, mixed reality environments, physical spaces and learning, interdisciplinarity in life sciences education, embodied learning and gaming, abstract mathematical cognition, learning of ethics, project-based learning, and assessment validity.

Abstract

This colloquium offers an opportunity for students to present and discuss their ongoing projects broadly related to the science of learning. The colloquium also welcomes students from other disciplines who are interested in understanding the nature of formal and informal learning as a complex phenomenon across multiple, interacting levels: neural, cognitive, embodied, social, and cultural.

Objective

Students will have opportunities to develop their own ideas in the field of learning sciences and to communicate their ideas in oral presentations and in written papers. To achieve credit for the course, students are expected to either present their own research or provide scholarly feedback on the presented research.

Content

This colloquium offers an opportunity for students to discuss their ongoing research and scientific ideas in the learning sciences. This includes research aimed at understanding the nature of formal and informal learning as a complex phenomenon across multiple, interacting levels: neural, cognitive, embodied, social, and cultural. The colloquium also offers an opportunity for students from other disciplines to discuss their ideas in so far as they have some relation to the Future Learning Initiative at ETH or to the science of learning more broadly.

Existing Future Learning Initiative projects include productive failure and preparation for future learning, neural basis of learning, mixed reality environments, physical spaces and learning, interdisciplinarity in life sciences education, embodied learning and gaming, abstract mathematical cognition, learning of ethics, project-based learning, and assessment validity.

Abstract

His unconditional desire for knowledge made "Faust" the symbolic figure of the modern period. Since the Renaissance, a rich Faust-literature, ranging from Marlowe, Goethe, and up to Thomas Mann, has portrayed the highly conflictual emancipation of knowledge from theology as well as the self-assertion of a modern knowledge of nature and the human being.

Objective

Learning objectives: Faust is one of the most dazzling figures in European literature and cultural history. A pact with the devil, magic, sexual desire, power and knowledge, these are the great taboos of the medieval world, which, in 1500, the graduated theologian set out to dismantle. Through this demonstrative gesture of hubris, he became the much-disputed hero of the modern period. Since the "Historia von Johann Fausten" (1587), the wide range of Faust-literature also depicts the highly conflictual emancipation from theological knowledge in favor of an unconditional knowledge of nature and the human being that hides itself behind disciplines such as medicine, astrology and magic. Faust was thereby not only transformed into the epitome of the fortuneteller, he also became the cipher for the risky undertaking of norm-transcending and boundary-breaking knowledge paradigm (among others Goethe's Faust). Finally, we shall discuss Faust-figures of the 20th century, such as Friedrich Murnau's Faust movie (1926), Thomas Mann's novel, "Doktor Faustus", written in exile in 1947, or Klaus Mann's "Mephisto" (1936).

Abstract

In the seminar we read classical texts from the field of "philosophy of war". Due to today's technological advancements and ecological controversies are linked to questions of (scientific) knowledge. This is shown by the Corona pandemic, but not only by it. How can science to understand the descriptive and critical value of texts in regard to the topic of war.

Objective

Students learn about the different types of arguments and conceptions in philosophical texts and their historical context. They should learn to understand the descriptive and critical value of texts in regard to the topic of war.

Abstract

Scientific knowledge is often provisional; it is subject to correction. That is why it cannot always satisfy the need for certainty and clarity that arises in the public as soon as political controversies are linked to questions of (scientific) knowledge. This is shown by the Corona pandemic, but not only by it.

Objective

Gaining insights into the relationship between the sciences, the public and the media, into their historical development and current problems.

Content

The feuilleton of the «Frankfurter Allgemeine Zeitung» of 27 June 2000 has gone down in the annals of recent media history. The last

Objective

The summer school is aimed at doctoral students who, in their historical research projects, investigate knowledge in social contexts. In exchange with Swiss and international professors from the field of the history of knowledge and in relation to the participants’ research projects, methods will be developed to analyze the forms, functions and circulation of knowledge in social dimensions.

Prerequisites / notices

Application: Please submit an abstract of your project or presentation (ca. 300 words) until May 31, 2021 to: zgw-dp@ethz.ch

Abstract

Writing reviews is part of academic publishing. Crucial ingredient is the evaluation of the book within the relevant research field.

Objective

Writing reviews is part of academic publishing. Crucial ingredient is the evaluation of the book within the relevant research field.
Not a few members of the elites argue that important issues in democracy like policies against climate change, free trade agreements, urban planning are too complicate for the people. Experts should have a stronger say in politics. Less democracy = more rationality? The course should give an answer to this question.

The workshop introduces the requirements of reviews in the humanities, especially in the history of knowledge and related fields (history of science, history of medicine, history of knowledge, social history, gender history, legal history etc.). The participants will learn how to publish a review in a scientific journal.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Category</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>862-0004-13L</td>
<td>Research Colloquium Philosophy for Master Students</td>
<td>W</td>
<td>2</td>
<td>1K</td>
<td>R. Wagner, M. Hampe, L. Wingert</td>
</tr>
<tr>
<td>862-0086-09L</td>
<td>Research Colloquium Science Studies (HS 2021)</td>
<td>W</td>
<td>2</td>
<td>1K</td>
<td>M. Hagner</td>
</tr>
<tr>
<td>851-0101-80L</td>
<td>Basic Problems of Environmental Ethics</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>L. Wingert</td>
</tr>
<tr>
<td>851-0096-00L</td>
<td>Science in Society</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>L. Wingert</td>
</tr>
<tr>
<td>851-0198-00L</td>
<td>Philosophy of Psychiatry</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>J. Perez Escobar</td>
</tr>
</tbody>
</table>

Literature

Psychiatry is one of the most controversial areas of medicine. All medicine involves some negotiation about assumptions and values, at the professional-patient and societal levels. For example, its clinical categories are imposed on the subject, who is interpreted according to a given physiological (but also political and economical) framework. However, because psychiatry is primarily concerned with beliefs, moods, relationships, and behaviors, this negotiation actually constitutes the bulk of its clinical endeavors. This course offers an overview of some representative topics in philosophy of psychiatry. Some of these are the character of mental disorders, the takeover of the mind by the medical model, the demarcation of normal and abnormal behavior, the influence of culture in the understanding of mental disorders, a critical understanding of the DSM and its evolution, and the interplay between psychiatry and legal responsibility.

851-0624-00L ETH4D PhD Seminar: Research for Development ■ W 1 credit 1K I. Günther, A. Rom, E. Tilley
Number of participants limited to 15.

Abstract
Doctoral candidates from all ETH departments, whose research is related to global sustainable development issues, and conducting research in low- or middle-income countries are invited to give a presentation about their on-going work and discuss their doctoral project with a diverse group of researchers.

Objective
Doctoral students are able to present their doctoral project to an interdisciplinary audience and to respond to questions within a wider global sustainable development context.

851-0367-00L Introduction to EEG Data Analysis W 2 credits 2S H. Poikonen

Abstract
We learn in a hands-on manner the basics of EEG data analysis with MATLAB and are introduced to the origin of EEG signal in the brain to understand how the electrical properties of the brain and skull may influence the signal. We learn the core factors of EEG study design and data analysis to be able to interpret the EEG results critically. Basic programming skills are required.

Objective
The objectives of the course are to learn the basics of EEG data analysis, basics of the critical interpretation of the results and to screen for the most common errors during the EEG data analysis.

Content
On the course, we go through step by step the basics of EEG data processing from raw data to preparation of the data for statistical analyses. The steps include filtering and re-referencing the data, removing eye-movement artefacts with Independent Component Analysis, setting time stamps and epoching the data. Participants also have a possibility to work with their own EEG data.

851-0008-00L Ban on Alcohol and Science: A Global History of Prohibition 1918-1939 W 3 credits 2S E. Biçer-Deveci

Abstract
The seminar deals with an overview on anti-alcohol campaigns since late 19th century. The focus is on prohibition in the interwar period in different regions. The role of scientific experts in the emergence of prohibition will be discussed from a global historical perspective. Formation of international networks and process of knowledge production on the issue of alcohol are subjects of analysis.

Objective
The reconstruction of the development of prohibitionist regimes helps to understand the process of national institution formations, for example health services. Participants analyze interactions between science, international relations and change of social political context in the process of knowledge production and in the definition of daily life norms on drinking habits.

851-0651-00L Communicating Science for Global Development ■ W 0.5 credits 1S A. Rom

Abstract
The seminar deals with an overview on anti-alcohol campaigns since late 19th century. The focus is on prohibition in the interwar period in different regions. The role of scientific experts in the emergence of prohibition will be discussed from a global historical perspective. Formation of international networks and process of knowledge production on the issue of alcohol are subjects of analysis.

Objective
• Students will get familiar with how to communicate science to the public, issues on credibility and trust building.
• Students will learn how to craft a short but simple text on scientific topics, ideally suitable for a blog or newsletter.
• Students get a broad understanding of visual language, especially applied to the use of images to complement their texts.

Content
In this introductory class on science communication and writing, students will learn about challenges related to science communication and the most recent views such as the so-called shift from one- to two-ways communication, and issues on credibility and trust of science and scientists. Students will then get an introduction to effective writing techniques, the concept of framing messages, and storytelling. They will practice writing a short, compelling text adding a visual to provide the clearest possible presentation of a scientific topic, aiming at the general public. The final product will be a potential post for a blog or a newsletter. At the end of the workshop, students should have improved their skills in dialoguing with and engaging a non-specialist audience. The course is offered by ETH4D and preference will be given to students working on global development issues.

Doctoral Department of Humanities, Social and Political Sciences - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Eligible for credits and recommended</th>
<th>Eligible for credits</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Z</td>
<td>Dr</td>
<td>O</td>
</tr>
<tr>
<td>W</td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
<td>Compulsory</td>
</tr>
<tr>
<td>E-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Recently, several start-up companies are aiming to translate basic molecular findings into new drugs/therapeutic interventions to slow age-related complications. Timely and didactically structured presentations of postgraduate students, post-docs, senior scientists, professors, as well as external guests from both academies and industry will present topics of their interest related to translational medicine.

Course Catalogue of ETH Zurich

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0305-00L</td>
<td>ETHEart Joint Scientific Colloquium (Autumn Semester)</td>
<td>W</td>
<td>1 credit</td>
<td>1K</td>
<td>N. Cesarovic, V. Falk, H. Rodriguez Cetina Biefer</td>
</tr>
<tr>
<td>376-1791-00L</td>
<td>Introductory Course in Neuroscience I (University of Zurich)</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>University lecturers</td>
</tr>
<tr>
<td>376-1151-00L</td>
<td>Translation of Basic Research Findings from Genetics and Molecular Mechanisms of Aging</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>to be announced</td>
</tr>
<tr>
<td>701-0015-00L</td>
<td>Transdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder Engagement</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>M. Stauffacher, C. E. Pohl, B. Vienni Baptista</td>
</tr>
</tbody>
</table>

Abstract

Current topics in translational medicine presented by speakers from academia and industry.

Objective

Getting insight into actual areas and problems of translational medicine.

Content

Timely and concise presentations of postgraduate students, post-docs, senior scientists, professors, as well as external guests from both academies and industry will present topics of their interest related to translational medicine.

Prerequisites / notice

No compulsory prerequisites, but student should have basic knowledge about biomedical research.

Abstract

Lectures, presentations and discussions on chosen topics in biologics, (bio-) materials, devices, sensors, robotics and data science and their relevance for cardiovascular medicine.

Objective

Deeper, mutual understanding of current medical challenges and technical solutions in cardiovascular medicine.

Content

Timely and didactically structured presentations of postgraduate students, post-docs, senior scientists and professorson topics from Zurich ETHEart / ETHEart projects, followed by lectures on chosen topics of cardiovascular medicine and research given by leading international clinical scientists in the field.

Prerequisites / notice

No compulsory prerequisites, but students should have basic knowledge about cardiovascular system, physiology and biomedical research.

Abstract

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: SPV0Y005

Mind the enrolment deadlines at UZH:

https://www.uzh.ch/cmsssl/en/studies/application/deadline.html

Objective

The course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.

Content

1) Human Neuroanatomy I & II
2) Comparative Neuroanatomy
3) Building a central nervous system I & II
4) Synapses I & II
5) Glia and more
6) Excitability
7) Circuits underlying Emotion
8) Visual System
9) Auditory & Vestibular System
10) Somatosensory and Motor Systems
11) Learning in artificial and biological neural networks

Prerequisites / notice

For doctoral students of the Neuroscience Center Zurich (ZNZ).

Abstract

Currently, several start-up companies are aiming to translate basic molecular findings into new drugs/therapeutic interventions to slow aging or post-pone age-related diseases (e.g., Google founded Calico or Craig Venter's Human Longevity, Inc.). This course will teach students the basic skill sets to formulate their own ideas, design experiments to test them and explains the next steps to translate research.

Objective

The overall goal of this course is to be able to analyse current therapeutic interventions to identify an unmet need in molecular biology of aging and apply scientific thinking to discover new mechanisms that could be used as a novel therapeutic intervention.

Learning objectives include:

1. Evaluate the current problem of our aging population, the impact of age-dependent diseases and current strategies to prevent these age-dependent diseases.
2. Analyse/compare current molecular/genetic strategies that address these aging problems.
3. Analyse case studies about biotech companies in the aging sector. Apply the scientific methods to formulate basic research problems to address these problems.
4. Generate own hypotheses (educated guess/idea), design experiments to test them, and map out the next steps to translate them.

Content

Overview of aging and age-related diseases. Key discoveries in molecular biology of aging. Case studies of biotech companies addressing age-related complications. Brief introduction from bench to bedside with focus on start-up companies.

Prerequisites / notice

No compulsory prerequisites, but student should have basic knowledge about genetics and molecular biology.
All participants will be on the waiting list at first. Enrollment is possible until 15 September 2021. The waiting list is active until 17 September. All students will be informed on 19 September, if they can participate in the lecture. The lecture takes place if a minimum of 12 students register for it.

Abstract
This seminar is designed for PhD students and PostDoc researchers involved in inter- or transdisciplinary research. It addresses and discusses challenges of this kind of research using scientific literature presenting case studies, concepts, theories, methods and by testing practical tools. It concludes with a 10-step approach to make participants’ research projects more societally relevant.

Objective
Participants know specific challenges of inter- and transdisciplinary research and can address them by applying practical tools. They can tackle questions like: how to integrate knowledge from different disciplines, how to engage with societal actors, how to secure broader impact of research? They learn to critically reflect their own research project in its societal context and on their role as scientists.

Content
The seminar covers the following topics:
(1) Theories and concepts of inter- and transdisciplinary research
(2) The specific challenges of inter- and transdisciplinary research
(3) Collaborating between different disciplines
(4) Engaging with stakeholders
(5) 10 steps to make participants’ research projects more societally relevant
Throughout the whole course, scientific literature will be read and discussed as well as practical tools explored in class to address concrete challenges.

Literature
Literature will be made available to the participants.

Further, this collection of tools will be used
https://naturalsciences.ch/topics/co-producing_knowledge

Prerequisites / notice
Participation in the course requires participants to be working on their own research project.

Dates (Wednesdays, 8h15-12h00): 29 September, 27 October, 10 November, 24 November, 8 December

Food Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-0005-00L</td>
<td>Colloquium in Food and Nutrition Science</td>
<td>E-</td>
<td>1 credit</td>
<td>2K</td>
<td>S. J. Sturla</td>
</tr>
</tbody>
</table>

Abstract
Participation in weekly seminars on a variety of topics including Food Microbiology, Food Toxicology, Food Biochemistry, Food Processing, Consumer Behavior, Food Technology, and Food Materials and Technology, and oral presentation of a selected published study in one of these areas inspired by participation in the seminars.

Objective
The objectives are to become familiar with and stimulate interest in leading-edge science related to the research topics of the Institute of Food, Nutrition and Health. Participants attend weekly seminars given by external and internal speakers, and are also required to deliver a presentation on a recent research article inspired by a topic from the semester presentations.

Course Catalogue of ETH Zurich

Doctoral Department of Health Sciences and Technology - Key for Type

W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate
E-	Recommended, not eligible for credits	O	Compulsory

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Doctoral and Post-Doctoral Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>264-5812-00L</td>
<td>Writing for Publication in Computer Science (WPCS)</td>
<td>Z</td>
<td>2</td>
<td>1G</td>
<td>S. Milligan</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 15.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Only for D-INFK doctoral students.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>This short course is designed to help junior researchers in Computer Science develop the skills needed to write their first research articles.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Participants will be expected to produce a number of short texts (e.g., draft of a conference abstract) as homework assignments; they will receive individual feedback on these texts during the course. Wherever feasible, elements of participants' future conference/journal articles can be developed as assignments within the course, so it is likely to be particularly useful for those who have i) their data and are about to begin the writing process, or ii) an MSc thesis they would like to convert for publication.</td>
</tr>
<tr>
<td>252-4202-00L</td>
<td>Seminar in Theoretical Computer Science ■</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>E. Welzl, B. Gärtner, M. Ghaffari, M. Hoffmann, J. Lengler, A. Steger, D. Steurer, B. Sudakov</td>
</tr>
<tr>
<td>252-1425-00L</td>
<td>Geometry: Combinatorics and Algorithms</td>
<td>W</td>
<td>8</td>
<td>3V+2U+2A</td>
<td>B. Gärtner, E. Welzl, M. Hoffmann, M. Wettstein</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Geometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?)</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The goal is to make students familiar with fundamental concepts, results and techniques in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area in various application domains.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Planar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in R^d, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>253-2100-00L</td>
<td>Research Topics in Software Engineering</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>P. Müller, M. Püschel</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 22.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>This seminar is an opportunity to become familiar with current research in software engineering and more generally with the methods and challenges of scientific research.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Each student will be asked to study some papers from the recent software engineering literature and review them. This is an exercise in critical review and analysis. Active participation is required (a presentation of a paper as well as participation in discussions).</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>The aim of this seminar is to introduce students to recent research results in the area of programming languages and software engineering. To accomplish that, students will study and present research papers in the area as well as participate in paper discussions. The papers will span topics in both theory and practice, including papers on program verification, program analysis, testing, programming language design, and development tools. A particular focus will be on domain-specific languages.</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>The publications to be presented will be announced on the seminar home page at least one week before the first session.</td>
</tr>
<tr>
<td></td>
<td>Only for Computer Science Ph.D. students.</td>
<td></td>
<td></td>
<td></td>
<td>This doctoral seminar is intended for PhD students affiliated with the Institute for Machine Learning. Other PhD students who work on machine learning projects or related topics need approval by at least one of the organizers to register for the seminar.</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 619 of 2152
Abstract
An essential aspect of any research project is dissemination of the findings arising from the study. Here we focus on oral communication, which includes: appropriate selection of material, preparation of the visual aids (slides and/or posters), and presentation skills.

Objective
The seminar participants should learn how to prepare and deliver scientific talks as well as to deal with technical questions. Participants are also expected to actively contribute to discussions during presentations by others, thus learning and practicing critical thinking skills.

Prerequisites / notice
This doctoral seminar of the Machine Learning Laboratory of ETH is intended for PhD students who work on a machine learning project, i.e., for the PhD students of the ML lab.

263-5255-10L Foundations of Reinforcement Learning (Only Assignments) Only for Ph.D. students! W 2 credits 4A N. He

Content
This course focuses on theoretical and algorithmic foundations of reinforcement learning, through the lens of optimization, modern approximation, and learning theory. The course targets students with strong research interests in reinforcement learning, optimization under uncertainty, and data-driven control.

Doctoral Department of Computer Science - Key for Type

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Lecture</th>
<th>Lecture with exercise</th>
<th>Exercise</th>
<th>Seminar</th>
<th>Colloquium</th>
<th>[\rightarrow]</th>
<th>Practical/laboratory course</th>
<th>Independent project</th>
<th>Diploma thesis</th>
<th>Revision course / private study</th>
<th>Courses outside the curriculum</th>
<th>Suitable for doctorate</th>
<th>Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
<td>Compulsory</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Special students and auditors need special permission from the lecturers.

Doctoral Department of Computer Science - Key for Type

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Lecture</th>
<th>Lecture with exercise</th>
<th>Exercise</th>
<th>Seminar</th>
<th>Colloquium</th>
<th>[\rightarrow]</th>
<th>Practical/laboratory course</th>
<th>Independent project</th>
<th>Diploma thesis</th>
<th>Revision course / private study</th>
<th>Courses outside the curriculum</th>
<th>Suitable for doctorate</th>
<th>Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
<td>Compulsory</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Special students and auditors need special permission from the lecturers.

Doctoral Department of Computer Science - Key for Type

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Lecture</th>
<th>Lecture with exercise</th>
<th>Exercise</th>
<th>Seminar</th>
<th>Colloquium</th>
<th>[\rightarrow]</th>
<th>Practical/laboratory course</th>
<th>Independent project</th>
<th>Diploma thesis</th>
<th>Revision course / private study</th>
<th>Courses outside the curriculum</th>
<th>Suitable for doctorate</th>
<th>Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
<td>Compulsory</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Special students and auditors need special permission from the lecturers.
Doctoral and Post-Doctoral Courses

A minimum of 12 ECTS credit points must be obtained during doctoral studies.

The courses on offer below are only a small selection out of a much larger available number of courses. Please discuss your course selection with your PhD supervisor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0371-00L</td>
<td>Advanced Model Predictive Control</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>M. Zeilinger, A. Carron, L. Hewing, J. Köhler</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 60.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model predictive control (MPC) has established itself as a powerful control technique for complex systems under state and input constraints. This course discusses the theory and application of recent advanced MPC concepts, focusing on system uncertainties and safety, as well as data-driven formulations and learning-based control.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design, implement and analyze advanced MPC formulations for robust and stochastic uncertainty descriptions, in particular with data-driven formulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topics include</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Review of Bayesian statistics, stochastic systems and Stochastic Optimal Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Nominal MPC for uncertain systems (nominal robustness)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Robust MPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Stochastic MPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Set-membership Identification and robust data-driven MPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Bayesian regression and stochastic data-driven MPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- MPC as safety filter for reinforcement learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes will be provided.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic courses in control, advanced course in optimal control, basic MPC course (e.g. 151-0660-00L Model Predictive Control) strongly recommended.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Background in linear algebra and stochastic systems recommended.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0105-00L</td>
<td>Introduction to Estimation and Machine Learning</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>H.-A. Loeliger</td>
</tr>
<tr>
<td></td>
<td>Mathematical basics of estimation and machine learning, with a view towards applications in signal processing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students master the basic mathematical concepts and algorithms of estimation and machine learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review of probability theory; basics of statistical estimation; least squares and linear learning; Hilbert spaces; Gaussian random variables; singular-value decomposition; kernel methods, neural networks, and more</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes will be handed out as the course progresses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>solid basics in linear algebra and probability theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0146-00L</td>
<td>Analog-to-Digital Converters</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td>J. Köhler, A. Iannelli</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course provides a thorough treatment of integrated data conversion systems from system level specifications and trade-offs, over architecture choice down to circuit implementation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data conversion systems are substantial sub-parts of many electronic systems, e.g. the audio conversion system of a home-cinema systems or the base-band front-end of a wireless modem. Data conversion systems usually determine the performance of the overall system in terms of dynamic range and linearity. The student will learn to understand the basic principles behind data conversion and be introduced to the different methods and circuit architectures to implement such a conversion. The conversion methods such as successive approximation or algorithmic conversion are explained with their principle of operation accompanied with the appropriate mathematical calculations, including the effects of non-idealities in some cases. After successful completion of the course the student should understand the concept of an ideal ADC, know all major converter architectures, their principle of operation and what governs their performance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Introduction: information representation and communication; abstraction, categorization and symbolic representation; basic conversion algorithms; data converter application; tradeoffs among key parameters; ADC taxonomy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dual-slope & successive approximation register (SAR) converters: dual slope principle & converter; SAR ADC operating principle; SAR implementation with a capacitive array; range extension with segmented array.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Algorithmic & pipelined A/D converters: algorithmic conversion principle; sample & hold stage; pipeline-converted; multiplying DAC; flash sub-ADC and n-bit MDAC; redundancy for correction of non-idealities, error correction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Performance metrics and non-linearity: ideal ADC; offset; gain error, differential and integral non-linearities; capacitor mismatch; impact of capacitor mismatch on SAR ADC's performance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Flash, folding an interpolating analog-to-digital converters: flash ADC principle, thermometer to binary coding, sparkle correction; limitations of flash converters; the folding principle, residue extraction; folding amplifiers; cascaded folding; interpolation for folding converters; cascaded folding and interpolation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Delta-sigma A/D-converters: linearity and resolution; from delta-modulation to delta-sigma modulation; first-order delta-sigma modulation, circuit level implementation; clock-jitter & SNR in delta-sigma modulators; second-order delta-sigma modulation, higher-order modulation, design procedure for a single-loop modulator.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slides are available online under https://lis-students.ee.ethz.ch/lectures/analog-to-digital-converters/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- M. Gustavsson et. al., CMOS Data Converters for Communications, Springer, 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>It is highly recommended to attend the course "Analog Integrated Circuits" of Prof. T. Jang as a preparation for this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0225-00L</td>
<td>Linear System Theory</td>
<td>W</td>
<td>5</td>
<td></td>
<td>A. Iannelli</td>
</tr>
<tr>
<td></td>
<td>The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Seminar Hours</td>
<td>Lecturer(s)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>---------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>227-0377-10L</td>
<td>Physics of Failure and Reliability of Electronic Devices and Systems</td>
<td>W 3</td>
<td>2V</td>
<td>I. Shorubalko, M. Held</td>
<td></td>
</tr>
<tr>
<td>227-0417-00L</td>
<td>Information Theory I</td>
<td>W 6</td>
<td>4G</td>
<td>A. Lapidoth</td>
<td></td>
</tr>
<tr>
<td>227-0427-00L</td>
<td>Signal Analysis, Models, and Machine Learning</td>
<td>W 6</td>
<td>4G</td>
<td>H.-A. Loeliger</td>
<td></td>
</tr>
<tr>
<td>227-0689-00L</td>
<td>System Identification</td>
<td>W 4</td>
<td>2V+1U</td>
<td>R. Smith</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites:/notice

- Domain A - Subject-specific Competencies: Concepts and Theories assessed
- Domain B - Method-specific Competencies: Analytical Competencies assessed
- Domain D - Personal Competencies: Critical Thinking not assessed

Abstract

Understanding the physics of failures and failure mechanisms enables reliability analysis and serves as a practical guide for electronic devices design, integration, systems development and manufacturing. The field gains additional importance in the context of managing safety, sustainability and environmental impact for continuously increasing complexity and scaling-down trends in electronics.

Objective

- Provide an understanding of the physics of failure and reliability. Introduce the degradation and failure mechanisms, basics of failure analysis, methods and tools of reliability testing.
- Summary of reliability and failure analysis terminology; physics of failure: materials properties, physical processes and failure mechanisms; failure analysis; basics and properties of instruments; quality assurance of technical systems (introduction); introduction to stochastic processes; reliability analysis; component selection and qualification; maintainability analysis (introduction); design rules for reliability, maintainability, reliability tests (introduction).

Lecture notes

Comprehensive copy of transparencies

Literature

227-0955-00L Seminar in Electromagnetics, Photonics and Terahertz

<table>
<thead>
<tr>
<th>W</th>
<th>3 credits</th>
<th>2S</th>
<th>J. Leuthold</th>
</tr>
</thead>
</table>

Abstract
Selected topics of the current research activities at the IEF and closely related institutions are discussed.

Objective
Have an overview on the research activities of the IEF institute.

227-0974-00L TNU Colloquium

<table>
<thead>
<tr>
<th>W</th>
<th>0 credits</th>
<th>2K</th>
<th>K. Stephan</th>
</tr>
</thead>
</table>

Abstract
This colloquium for MSc/PhD students at D-ITET discusses research in Translational Neuromodeling (development of mathematical models for diagnostics of brain diseases) and application to Computational Psychiatry/Psychosomatics. The range of topics is broad, incl. computational (generative) modeling, experimental paradigms (fMRI, EEG, behaviour), and clinical questions.

Objective
- Be familiar with the latest research in Translational Neuromodeling
- Discuss the application of these models in Computational Psychiatry/Psychosomatics

Content
- This colloquium for MSc/PhD students at D-ITET discusses research in Translational Neuromodeling (development of mathematical models for diagnostics of brain diseases) and application to Computational Psychiatry/Psychosomatics. The range of topics is broad, incl. computational (generative) modeling, experimental paradigms (fMRI, EEG, behaviour), and clinical questions.

252-0535-00L Advanced Machine Learning

<table>
<thead>
<tr>
<th>W</th>
<th>10 credits</th>
<th>3V+2U+4A</th>
<th>J. M. Buhmann, C. Cotrini Jimenez</th>
</tr>
</thead>
</table>

Abstract
Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective
- Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content
- The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Literature

Prerequisites / notice
The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

252-0417-00L Randomized Algorithms and Probabilistic Methods

<table>
<thead>
<tr>
<th>W</th>
<th>10 credits</th>
<th>3V+2U+4A</th>
<th>A. Steger</th>
</tr>
</thead>
</table>

Abstract
Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks.

Objective
- After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.

Content
Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Lecture notes

Literature

263-4500-00L Advanced Algorithms

<table>
<thead>
<tr>
<th>W</th>
<th>9 credits</th>
<th>3V+2U+3A</th>
<th>M. Ghaffari, G. Zuzic</th>
</tr>
</thead>
</table>

Abstract
This is a graduate-level course on algorithm design (and analysis). It covers a range of topics and techniques in approximation algorithms, sketching and streaming algorithms, and online algorithms.

Objective
- This course familiarizes the students with some of the main tools and techniques in modern subareas of algorithm design.

Content
The lectures will cover a range of topics, tentatively including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and derandomization.

Lecture notes
https://people.inf.ethz.ch/gmohsen/AA21/
This course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science, but it should also be accessible to last-year bachelor students.

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you’re ready for this class or not, please consult the instructor.

401-3055-64L Combinatorial Nullstellensatz and the Chevalley-Warning theorem

Overview

Students will obtain an overview on algebraic techniques for solving combinatorial problems. We expect them to understand the proof techniques and use them autonomously on related problems.

Focus

Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to combinatorial methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments
- Spaces of polynomials and tensor product methods
- Eigenvalues of graphs and their application
- The combinatorial Nullstellensatz and the Chevalley-Warning theorem
- Applications such as: Solution of Kakeya problem in finite fields
- Simple idea is surprisingly powerful and has many famous applications

The course website can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.

401-5680-00L Foundations of Data Science Seminar

Overview

Research colloquium

Focus

This course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science, but it should also be accessible to last-year bachelor students.

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you’re ready for this class or not, please consult the instructor.

Courses outside the curriculum

Suitable for doctorate

Compulsory

practical/laboratory course

independent project

diploma thesis

revision course / private study

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Doctoral Studies in Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>364-1013-05L</td>
<td>Organizational Behavior</td>
<td>W</td>
<td>1 credit</td>
<td>1S</td>
<td>to be announced</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 20.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Organizational behavior concerns the study of individual and group-level processes in organizations like creativity, motivation, and leadership. In this PhD course, an overview of major concepts and research insights in organizational behavior is provided. The participants are encouraged to discuss their own work situation as PhD students in relation to the OB insights covered in the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objectives of the course are:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• to provide an overview of OB research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• to discuss major research streams in OB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• to enable students to reflect their own work situation based on concepts used in OB.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>364-1013-06L</td>
<td>Marketing Theory</td>
<td>W</td>
<td>2 credits</td>
<td>1G</td>
<td>F. von Wangenheim</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 18.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The course is taught Florian Wangenheim (ETHZ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>It focuses on the theoretical foundations of marketing and marketing research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The purpose of the course is to confront students with current theoretical thinking in marketing, and currently used theories for understanding and explaining buyer and customer behavior in response to marketing action. In the following classes, various theories are discussed, particularly in light of their importance for marketing. Economic, psychological and sociological theory will be related to current marketing thought.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>364-1110-00L</td>
<td>Foundations of Innovation Studies</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Brusoni, D. Laureiro Martinez</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course will introduce some of the major theoretical threads and controversies in the broad field of innovation. During the first part of the course, the emphasis will be on the evolution of innovation studies. The final part of the course will focus on one of the directions in which those studies have evolved: the field of managerial cognition.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will learn about various perspectives, examine different methodologies, explore some original empirical research, make connections between theory and empirical research, and practice reviewing and identifying insight in research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) Be able to display some knowledge on a few major theoretical streams in the area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Be familiar with the methods, issues and current gaps in the area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Have practiced skills in finding insight and reviewing the literature.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Have practiced skills in defining research problems and proposing empirical research in this area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>364-0553-00L</td>
<td>Innovation in Digital Space</td>
<td>W</td>
<td>1 credit</td>
<td>1G</td>
<td>G. von Krogh</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The purpose of this course is to review and discuss issues in current theory and research relevant to innovation in the digital space.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Through in-depth analysis of published work, doctoral candidates will identify and appraise theoretical and empirical studies, formulate research questions, and improve the positioning of their own research within the academic debate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The Internet has a twofold impact on the way individuals and firms innovate. First, firms increasingly draw on digital technology to access and capture innovation-relevant knowledge in their environment. Second, individuals, firms, and other organizations extensively utilize the Internet to create, diffuse, and commercialize new digital products and services. During the past decade, theory and research on innovation in the digital space has flourished and generated extensive insights of relevance to both academia and management practice. This has brought us better understanding of working models, and some fundamental reasons for innovation success or failure. A host of new models and research designs have been created to explore the innovation in the digital space, but these have also brought out many open research questions. We will review some of the existing streams of work, and in the process explore a new research agenda.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course is organized in one block of 2 days. The course is a combination of pre-readings, presentations by faculty and students, and discussions. The students prepare presentations of papers in order to facilitate analysis and discussion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Open source (OS) as innovation model
This module aims to introduce major theoretical perspectives on organizational knowledge and to improve the competence of doctoral students to publish in relevant research areas. How knowledge is conceptualized and what aspects of knowledge are being studied depends on the epistemological and ontological assumptions accepted by researchers.

Objective
- to provide a basic understanding of key theoretical perspectives on organizational knowledge.
- to provide insights on the research questions, methods, findings and implications of the selected papers.
- to build skills in critically analyzing the literature.
- to identify future directions in the area.

Content
Given its prominence in the history of organization science, an impressive variety of theories have evolved that deals with organizational epistemology, the way of knowing in the organization (e.g., Brown & Duguid, 1991; Grant, 1996; Kogut & Zander, 1992; Lave & Wenger, 1991; Nonaka, 1994; Spender, 1996; Tsoukas, 1996; von Krogh et al., 1994). In this module, students will learn about various seminal contributions in the area of organizational knowledge and make connections between theory and empirical research, and identify the ongoing trends and future research directions.

Session 1: Knowledge based view of the firm.

Session 2: Knowledge sharing and transfer

Session 3: Social practice view on knowledge and knowing

Literature

Prerequisites / notice
In each session, students will have three assignments:
1) prepare for in-depth discussion of all papers. The students are supposed to read in advance all the papers that will be presented in the sessions.
2) critically review and discuss the assigned papers. Assignments will be done after participants confirm their presence.
3) submit in advance a short critique of the assigned papers - max 2 pages.

Doctoral Studies in Economics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>364-1090-00L</td>
<td>Research Seminar in Contract Theory, Banking and Money (University of Zurich)</td>
<td>W</td>
<td>3</td>
<td>2S</td>
<td>H. Gersbach, University lecturers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: DOEC0988

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmss/en/studies/application/deadline.s.html

Abstract
Recent developments in the fields of contract theory, finance, banking, money and macroeconomics.

Objective
Understanding recent developments in the fields of contract theory, finance, banking and macroeconomics.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1036-00L</td>
<td>Empirical Innovation Economics</td>
<td>W</td>
<td>3</td>
<td>1G</td>
<td>M. Wörter</td>
</tr>
</tbody>
</table>

The course focuses on important factors that drive the innovation performance of firms, like innovation capabilities, the use of digital technologies, environmental and innovation policy and it shows how innovation activities relate to firm performance and to the technological dynamics of industries. We also discuss the implications of the findings for effective economic policy-making.

The course provides students with the basic skills to understand and assess empirically the technological activities of firms and the technological dynamics of industries. In addition, the aim is to promote the understanding of the essential criteria for innovation policy-making.

Personal and social skills are also addressed during the course. In particular, there is the possibility to improve communication and presentation skills, the ability to develop arguments for the positions of political representatives, policy-makers, pressure groups, or NGOs in connection with innovation policy-making.
The course consists of two parts. Part I provides an introduction into important topics in the field of the economics of innovation. Part II consists of empirical exercises based on various firm-level data sets, e.g., the KOF Innovation data, data about digitization of firms, data about environmentally friendly innovations, or patent data. In part I we will learn about ... a) market conditions that encourage firms to invest in R&D (Research and Development) and develop new products and processes. ... b) the role of competition and market structure for the R&D activities of companies. ... c) how digital and environmentally friendly technologies diffuse among firms. ... d) how the R&D activities of firms are affected by economic crises and how firms finance their R&D activities. ... e) how we can measure the returns to R&D activities. ... f) how environmental policies and innovation policies affect the technological activities of a firm. In part II we will use the KOF Innovation Survey data, patent data, data on digitization of firms, or other longitudinal data sources, to investigate empirically the technological activities of firms in relation to the topics introduced in part I.

In this course, we will address three blocs of selected problems: (i) estimation of fixed and random effects panel data models for single equations and systems of equations; (ii) estimation of models with interdependent data (so-called spatial models); (iii) estimation of models with endogenous treatment effects or sample selection; (iii) estimation of models with endogenous treatment effects or sample selection; (ii) estimation of econometric problems with three alternative types of problems: (i) estimation of fixed and random effects panel data models for single equations and systems of equations; (ii) estimation of models with endogenous treatment effects or sample selection; (iii) estimation of models with interdependent data (so-called spatial models).

In this course, we will address three blocs of selected problems: (i) estimation of fixed and random effects panel data models for single equations and systems of equations; (ii) estimation of models with endogenous treatment effects or sample selection; (iii) estimation of models with interdependent data (so-called spatial models).

For sample selection and endogenous treatment effect analysis, I will rely on the book:

Course is directed to advanced Master-Students and PhD Students with an interest in empirical work.

This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. Students and other guests are welcome.

Objectives:
- Participants should learn to get an overview of the state of the art in the field, to present it in a well understandable way to an interdisciplinary scientific audience, to develop novel mathematical models for open problems, to analyze them with computers, and to defend their results in response to critical questions. In essence, participants should improve their scientific skills and learn to work scientifically on an internationally competitive level.

Content:
This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. For details of the program see the webpage of the colloquium. Students and other guests are welcome.

Lecture notes:
There is no script, but a short protocol of the sessions will be sent to all participants who have participated in a particular session.

Literature:
Students and other guests are welcome.

Prerequisites:
Participants should have relatively good mathematical skills and some experience of how scientific work is performed.

Literature:
- "Microeconomic Theory", by Mas-Colell, Whinston and Green (1995), as well as research articles for the most advanced parts.
- "Advanced Microeconomic Theory" by Jehle and Reny (2011) and "Microeconomic Theory", by Mas-Colell, Whinston and Green (1995), as well as research articles for the most advanced parts.

364-1025-00L Advanced Microeconomics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credit</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-</td>
<td>3</td>
<td>A. Bommier</td>
</tr>
</tbody>
</table>

Abstract:
The objective of the course is to provide students with advanced knowledge in some areas of micro economic theory. The course will focus on:
1. Individual behavior
2. Collective behavior
3. Choice under uncertainty
4. Intertemporal choice.

Content:
The following topics will be addressed:
2. Collective models. Cooperative and non cooperative models of household behavior.
3. Choice under uncertainty. The foundations of expected utility theory. Some insights on other approaches to choice under uncertainty.

Literature:
The course will be based on some chapters of the books "Advanced Microeconomic Theory" by Jehle and Reny (2011) and "Microeconomic Theory", by Mas-Colell, Whinston and Green (1995), as well as research articles for the most advanced parts.

364-1058-00L Risk Center Seminar Series

<table>
<thead>
<tr>
<th>Type</th>
<th>Credit</th>
<th>Lecturer</th>
</tr>
</thead>
</table>

Abstract:
This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. Students and other guests are welcome.

Objective:
Participants should learn to get an overview of the state of the art in the field, to present it in a well understandable way to an interdisciplinary scientific audience, to develop novel mathematical models for open problems, to analyze them with computers, and to defend their results in response to critical questions. In essence, participants should improve their scientific skills and learn to work scientifically on an internationally competitive level.

Content:
This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. For details of the program see the webpage of the colloquium. Students and other guests are welcome.

Lecture notes:
There is no script, but a short protocol of the sessions will be sent to all participants who have participated in a particular session.

Literature:
Students and other guests are welcome.

Prerequisites:
Participants should have relatively good mathematical skills and some experience of how scientific work is performed.

Literature:

364-1015-00L KOF-ETH-UZH International Economic Policy Seminar (University of Zurich)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credit</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>2</td>
<td>P. Egger, J.-E. Sturm, University lecturers</td>
</tr>
</tbody>
</table>

Abstract:
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: DOEC0584

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline s.html

Objective:
In this seminar series, which is held jointly with Prof. Dr. Wolteck and Prof. Dr. Hoffman from the University of Zurich, distinguished international researchers present their current research related to international economic policy. The participating doctoral students are expected to attend the presentations (bi-weekly). Moreover, a critical review has to be prepared for 1 of the papers presented on the one hand, participating students are exposed to research at the frontier of international economic policy research. On the other hand, skills such as critical thinking and preparing reviews are learned.

364-0513-00L Empirical Methods in Energy and Environmental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credit</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>3</td>
<td>M. Filippini, to be announced</td>
</tr>
</tbody>
</table>

Abstract:
Does not take place this semester.

Objective:
The objectives of this course are twofold: first, students will learn about the application of econometric techniques in the fields of energy and environmental economics. Second, through the presentation of their papers or the presentation and discussion of the existing literature, students will also get a sense of how critical thinking can be used to assess empirical research in energy and environmental economics.
Day 1: Thursday, January 9
09:00 – 10:30 Session 1: Multinomial choice, heterogeneity (instructor: Greene)
11:00 – 12:30 Session 2: Multinomial choice, heterogeneity (instructor: Greene)
13:30 – 15:00 Session 3: Latent class and Mixed logit (instructor: Greene)
15:30 – 16:30 Session 3: Latent class and Mixed logit (instructor: Greene)

Day 2: Friday, January 10
08:30 – 10:00 Session 1: Measurement of the energy efficiency (instructor: Filippini)
10:30 – 12:00 Session 2: Structural models (instructor: Houde)
13:00 – 14:30 Session 3: Student Presentations
15:00 – 16:30 Session 3: Student Presentations

Day 3: Saturday, January 11
08:30 – 09:30 Session 1: Seminar by Prof. Kenneth Gillingham (Yale University)
09:30 – 10:30 Session 1: Seminar by Prof. Beat Hintermann (Basel University)
10:30 – 11:30 Session 1: Seminar by Prof. Matt Kotchen (Yale University)
10:30 – 12:30 Session 2: Student Presentations
13:30 – 15:30 Session 3: Student Presentations

Lecture notes
Lecture notes will be made available to the students.

Prerequisites / notice
Students are expected to have attended courses in advanced microeconomics and in econometrics.

364-1062-00L Experimental Methods
This course introduces PhD students into the principles of experimental methods in economics and outlines how to prepare, conduct and evaluate an experiment.

Objective
This course aims to prepare PhD students for conducting their own experiment.

Content
1. Introduction: What are economic experiments and why to use them?
4. Conducting experiments: Instructions, testing, recruiting, sessions.
5. Measuring techniques: Eliciting beliefs, risk attitudes, social preferences.
7. Participants' presentations & discussion of their experimental design

Literature
Books:

Basic Articles:

A reading list with articles for each lecture will be published in Moodle.

Prerequisites / notice
Please be prepared that this course might (partially) be run via zoom, depending on the situation.

363-1136-00L Dynamic Macroeconomics, Innovation and Growth
Introducing dynamic models and workhorses in macroeconomics, understanding the role of innovation and institutions for economic development and discussing policies to foster innovation and economic growth, with a perspective on how digitization and artificial intelligence will affect our economies.

Objective
After the course, students will be familiar with dynamic general equilibrium theory and the basic workhorses in macroeconomics. Students will understand how the world has developed over the last centuries and the proximate and fundamental causes of innovation and economic growth. Students will understand and apply the basic models of economic growth and will be able to identify policies to foster innovation and growth and to reduce the large wealth differences in the world. Finally, they understand how digitization and artificial intelligence will drive the economies.

Content
1. Introduction
2. The Arrow-Debreu Approach and Sequential Markets
3. The Neoclassical Growth Model and the Representative Agent Model (with Mathematical Background)
4. Technological Progress and how the World has developed
5. Innovations and Growth (New Growth Theory)
6. Growth Policies and Fundamental Causes for Growth
7. Digitization and Artificial Intelligence

Autumn Semester 2021

14. Current Literature on Digitization and Artificial Intelligence

Prerequisites / notice
Students who have successfully completed the course "Dynamic Macroeconomics" (364-0559-00L) or "Economics of Innovation and Growth" (363-0562-01L) can not register for this course.

Additional Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>364-1064-00L</td>
<td>Inaugural Seminar - Doctoral Retreat</td>
<td>W</td>
<td>1 credit</td>
<td>1S</td>
<td>P. Schmid, S. Brusoni, R. Finger, G. Grote, T. Netland, F. von Wangenheim, to be announced</td>
</tr>
</tbody>
</table>

Abstract
This course is geared towards first and second-year doctoral candidates of MTEC. It is held as a workshop style. Students attending this seminar will benefit from interdisciplinary discussions and insights into current and future work in business and economics research.

Objective
The purpose of this course is to
- introduce doctoral candidates to the world of economics, management and systems research at MTEC
- make doctoral candidates aware of silo-thinking in the specific sub-disciplines and encourage them to go beyond those silos
- discuss current issues with regard to substantive, methodological and theoretical domains of research in the respective fields

Course Catalogue of ETH Zurich

Doctoral Department of Management, Technology, and Economics - Key for Type

<table>
<thead>
<tr>
<th>W+</th>
<th>Eligible for credits and recommended</th>
<th>Z</th>
<th>Courses outside the curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td>O</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
To be able to address all major sources of non-linearity in theory and numerics, and to apply this knowledge to the solution of relevant problems in solid mechanics.

Exchange on current internal research projects. Training of presentation skills.

Experimental Methods for Engineers

• An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
• Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
• Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
• Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
• Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
• Lecture notes

Prerequisites / notice

Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.

High Performance Computing for Science and Engineering (HPCSE) I

Abstract

This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.

Objective

With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.

Content

1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)

2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)

3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models

4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis

5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods

Lecture notes

https://www.cse-lab.ethz.ch/teaching/hpcse-i_hs21/

Class notes, handouts

Literature

- An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
- Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
- Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
- Lecture notes

Research Seminar in Fluid Dynamics

Abstract

Current research projects at the Institute of Fluid Dynamics are presented and discussed.

Objective

Exchange on current internal research projects. Training of presentation skills.

Experimental Methods for Engineers

Abstract

The course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics and process engineering) are attended by students in small groups.

Objective

Introduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic applications. Understanding of various sensing technologies and analysis procedures. Exposure to typical experiments, diagnostics hardware, data acquisition and processing. Study of applications in the laboratory. Fundamentals of scientific documentation & reporting.

Content

In-class introduction to representative measurement techniques in the research areas of the participating institutes (fluid dynamics, energy technology, process engineering) Student participation in 8–10 laboratory exercises (study groups of 3-5 students, dependent on the number of course participants and available experiments) Lab reports for all attended experiments have to be submitted by the study groups. A final exam evaluates the acquired knowledge individually.

Lecture notes

Presentations, handouts and instructions are provided for each experiment.

Literature

Prerequisites / notice

Basic understanding in the following areas:
- fluid mechanics, thermodynamics, heat and mass transfer
- electrical engineering / electronics
- numerical data analysis and processing (e.g. using MATLAB)

Computational Mechanics II: Nonlinear FEA

Abstract

The course provides an introduction to non-linear finite element analysis. The treated sources of non-linearity are related to material properties (hyperelasticity, plasticity), kinematics (large deformations, instability problems) and boundary conditions (contact).

Objective

To be able to address all major sources of non-linearity in theory and numerics, and to apply this knowledge to the solution of relevant problems in solid mechanics.

Content

1. Introduction: various sources of non-linearities and implications for FEA.

Lecture notes

Lecture notes will be provided. However, students are encouraged to take their own notes.
Obtain an overview of various topics in Robotics, Systems, and Controls from leaders in the field. Please see http://www.msrl.ethz.ch/education/distinguished-seminar-in-robotics--systems---controls--151-0623-0.html for a list of upcoming lectures.

This course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls. MSc students in Robotics, Systems, and Controls are required to attend every lecture. Attendance will be monitored. If for some reason a student cannot attend one of the lectures, the student must select another ETH or University of Zurich seminar related to the field and submit a one page description of the seminar topic. Please see http://www.msrl.ethz.ch/education/distinguished-seminar-in-robotics--systems---controls--151-0623-0.html for a suggestion of other seminars.

This course is restricted to 33 students due to limited lab infrastructure. Interested students please contact Marianne Schmid Daners (E-Mail: marischm@ethz.ch)

After your reservation has been confirmed please register online at www.mystudies.ethz.ch.

Prerequisite courses are Control Systems I and Informatics I.

Abstract
This course provides a comprehensive overview of embedded control systems. The concepts introduced are implemented and verified on a microprocessor-controlled haptic device.

Objective
Familiarize students with main architectural principles and concepts of embedded control systems.

Content
An embedded system is a microprocessor used as a component in another piece of technology, such as cell phones or automobiles. In this intensive two-week block course the students are presented the principles of embedded digital control systems using a haptic device as an example for a mechatronic system. A haptic interface allows for a human to interact with a computer through the sense of touch.

Subjects covered in lectures and practical lab exercises include:
- The application of C-programming on a microprocessor
- Digital I/O and serial communication
- Quadrature decoding for wheel position sensing
- Queued analog-to-digital conversion to interface with the analog world
- Pulse width modulation
- Timer interrupts to create sampling time intervals
- System dynamics and virtual worlds with haptic feedback
- Introduction to rapid prototyping

Lecture notes
Lecture notes, lab instructions, supplemental material

Prerequisites / notice
Prerequisite courses are Control Systems I and Informatics I.

 Detailed information can be found on the course website http://www.idsr.ethz.ch/education/lectures/embedded-control-systems.html

After completing the course, participants will be able to
- critique the jargon and terms used by the international community, i.e. “development”, “aid”, “cooperation”, “assistance” “third world” “developing” “global south” “low and middle-income” and justify their own chosen terminology
- recognize the role of racism and white-supremacy in the development of the Aid industry
- understand the political, financial, and cultural reasons why technology and infrastructure have historically failed
- debate the merits of international engineering in popular culture and media
- propose improved SDG indicators that address current shortcomings
- compare the engineering curricula of different countries to identify relative strengths and shortcomings
- explain the inherent biases of academic publishing and its impact on engineering failure
- analyse linkages between the rise of philanthropy and strategic priority areas
- recommend equitable, just funding models to achieve more sustainable outcomes
- formulate a vision for the international engineer of the future
Content
- Role of international engineering during colonialism
- Transition of international engineering following colonialism
- White saviourism and racism in international engineering
- International engineering in popular culture
- The missing role of Engineering Education
- Biases academic publishing
- The emerging role in Global Philanthropy
- The paradox of international funding

Literature

151-9901-00L Scientific Writing for Publication in Engineering
- W 2 credits 1G S. Milligan
- Only for D-MAVT doctoral students.

Abstract
Scientific Writing for Publication in Engineering is a short course (5 half-day workshops) designed to help junior researchers develop the skills needed to write their first research articles in English.

Objective
The workshop details the following:
- Fitting texts to target readerships and journals
- Managing the writing process efficiently
- Structuring each section of the text effectively
- Producing fluent and reader-focused sentences and paragraphs
- Editing the text before submission
- Revising in response to reviewers’ comments.

Content
Participants produce a number of short texts as homework assignments and receive detailed individual feedback on these during the course.

The course takes place at times and locations chosen to suit MAVT doctoral researchers. Content and materials deal specifically with the demands of writing in engineering research fields. Wherever feasible, elements of participants’ future research articles are developed as assignments within the course, so it is particularly useful for those who have their data and are about to begin the writing process.

151-9902-00L Workshop on Intellectual Property Rights
- W 1 credit 2S

Abstract
The workshop is an introduction to intellectual property rights. It informs participants about the different methods of protecting technical know-how and puts them in a position to use this knowledge for their own research. The workshop includes exercises and use cases tailored to mechanical engineers. A section on IP strategy and commercialization rounds up the program.

Objective
Knowledge about patents and other intellectual property (IP) rights has become increasingly important for scientists in the field of mechanical engineering. In fact, many PhD students disclose their first inventions here at ETH Zurich. The workshop is an excellent introduction to the fundamental aspects of intellectual property (IP) rights and prepares you well for your first patent application.

Content
Presentations and exercises on intellectual property rights (what is new? what is inventive? what is the role of a patent claim?). Patent search, invention disclosures at ETH Zurich, commercialization of an invention by an ETH spin-off.

Lecture notes
Presentation slides.

351-0778-00L Discovering Management

Entry level course in management for BSc, MSc and PHD students at all levels not belonging to D-MTEC. This course can be complemented with Discovering Management (Excercises) 351-0778-01.

Abstract
Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC.

Objective
The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship.

In particular, the aims of the course are to:
1. Broaden understanding of management principles and frameworks
2. Advance insights into the sources of corporate and entrepreneurial success
3. Develop skills to apply this knowledge to real-life managerial problems

The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / or appreciate the challenges that entrepreneurs and managers deal with.

Content
The course consists of a set of theory and practice sessions, which will be taught on a weekly basis. The course will cover business management knowledge in corporate as well as entrepreneurial contexts.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.

The theory sessions will follow a “lecture-style” approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a “pitch” with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.
This course is an introduction to the critical management skills involved in planning, organizing, leading and controlling an organization. Students will increase their knowledge of marketing, its effect on consumer behavior and its role in creating long-term value. The course focuses on the analysis of innovation as a pervasive process that cuts across organizational and functional boundaries. The content of the course will rely on different readings, cases and selected chapters of following book: Dess, G., McNamara, G., Eisner, A., & Lee, SH. 2018. Strategic Management: Text and Cases. McGraw Hill.
The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programmes. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:
- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

The course might comprise mandatory and supplemental reading material. Other literature may be assigned in class.

The structure of the course will roughly follow the different steps of the value chain, i.e., the set of activities necessary for offering valuable products to customers. First, it will introduce students to psychological theories that help explain behavior, e.g., purchase behavior. It will also familiarize students with different methods from marketing research, which can be used to identify the needs of customers. Next, the course will look at the role of the marketing mix in satisfying customer needs. For example, the class will cover new product development and pricing. A focus will be on managing profitable, long-term relationships with customers. To this end, students will gain in-depth knowledge on the use of targeted promotions and marketing data to (1) attract, (2) convert and engage and (3) retain customers.

The course is designed to be "hands-on", with opportunities to apply skills on business cases involving real-world marketing data. It will feature guest lectures from industry experts.

The class will center on the importance of marketing as an activity that creates long-term value for the benefit of organizations and their customers. It will teach concepts, frameworks and methods for marketing decision making.

The class might be taught in an in-person, remote or in a hybrid format.

Literature
The objective of this course is to provide an introduction to microeconomic thinking. Based on the fundamental principles of economic analysis (optimization and equilibrium), the focus lies on understanding key economic concepts relevant for understanding and analyzing economic behavior of firms and consumers in the context of markets. Market demand and supply are derived from the individual decision-making of economic agents and market outcomes under different assumptions about the market structure and market power (perfect competition, monopoly, oligopoly, game theory) are studied. This introductory course aims at providing essential knowledge from the fields of Economics and Management relevant for economic decision-making in the context of both the private and public sector.

This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of economic decision-makers.

This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filippini).
The main aim of this course is to analyse the goals of monetary policy and to review the instruments available to central banks in order to pursue these goals. It will focus on the transmission mechanisms of monetary policy and the differences between monetary policy rules and discretionary policy. It will also make connections between theoretical economic concepts and current real world issues.

This lecture will introduce the fundamentals of monetary economics and explain the working and impact of monetary policy. The main aim of this course is to describe and analyze the goals of monetary policy and to review the instruments available to central banks in order to pursue these goals. It will focus on the transmission mechanisms of monetary policy, the effectiveness of monetary policy actions, the differences between monetary policy rules and discretionary policy, as well as in institutional issues concerning central banks, transparency of monetary authorities and monetary policy in a monetary union framework. Moreover, we discuss the implementation of monetary policy in practice and the design of optimal policy.

For the functioning of today's economy, central banks and their policies play an important role. Monetary policy is the policy adopted by the monetary authority of a country, the central bank. The central bank controls either the interest rate payable on very short-term borrowing or the money supply, often targeting inflation or the interest rate to ensure price stability and general trust in the currency. This monetary policy course looks into today's major questions related to policies of central banks. It provides insights into the monetary policy process in practice and the design of optimal policy.

The first part of the course is devoted to financial accounting. It teaches the principles of double-entre accounting and deals with the recording of commercial transactions on accounts. It describes the work to be carried out at the closing in order to prepare the financial reports according to the generally accepted accounting principles. This type of accounting information is primarily intended for investors and shareholders.

The second part of the course describes the principles of management accounting and explains the different costing methods. It aims to determine the manufacturing cost of production of the different products and services using full and variable costing methods. The accounting information focuses on the internal needs of managers for the purpose of budget preparation and profitability analysis.

Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by highlighting and discussing real life examples and cases.

This lecture provides theory-grounded knowledge and practice-driven skills for founding, financing, and growing new technology ventures. A critical understanding of dos and don'ts is provided through highlighting and discussing real life examples and cases.

This course offers the fundamentals in theory and practice of entrepreneurship in new technology ventures. Main topics covered are management and communication of new start-ups, business models and financial strategies, fundamental concepts of finance and economics, legal issues, and networking.

This course is a prerequisite for the course Financial Management.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lecture Notes</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0790-00L</td>
<td>Technology Entrepreneurship</td>
<td>W 2</td>
<td>Lecture slides and case material</td>
<td>See course website: http://www.entrepreneurship.ethz.ch/education/fall/technology-entrepreneurship.html</td>
</tr>
</tbody>
</table>

Prerequisites
- Basic knowledge in international economics and a good background in macroeconomics.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Objective
- Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.

Content
- Technology ventures are significantly changing the global economic picture. Technological skills increasingly need to be complemented by entrepreneurial understanding.
- This course offers the fundamentals in theory and practice of entrepreneurship in new technology ventures. Main topics covered are success factors in the creation of new firms, including founding, financing and growing a venture.

Abstract
- Technology Entrepreneurship offers an introduction to financial accounting and management accounting. It provides managers with the necessary knowledge for decision making using accounting information.
Introduction into intellectual property; prosecution of patent applications; patent information; exploitation and enforcement of patents; peculiarities in pharmaceutics and medicine; social, political and ethical aspects; Trademarks.

Basic knowledge in the field of industrial property, especially of patents and trademarks, with particular emphasis on the chemical, pharmaceutical and biotech field.

1. Introduction into industrial property (patents, trademarks, industrial designs);
2. Prosecution of patent applications (patentability);
3. Patent information (patent publications, databases, searches);
4. Exploitation and enforcement of patents (possibilities of exploitation, licenses, parallel imports, scope of protection, patent infringement);
5. Peculiarities in pharmaceutics and medicine (supplementary protection certificates, experimental use exemption, therapy and diagnosis, medical indication);
6. Social, political and ethical aspects (patents and prices for medicinal products, traditional knowledge and ethnomedicine, bioprospecting and biopiracy, human DNA inventions);
7. Trademarks, types of trademarks, grounds for refusal, peculiarities of pharma-trademarks.

A script is provided in electronic form during the lecture.

Concepts and Theories

- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Prerequisites / notice

None

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Prerequisites / notice

- Handouts during course

Lecture notes

636-0507-00L Synthetic Biology II

| W | 8 credits | 4A | S. Panke, Y. Benenson, J. Stelling |

Does not take place this semester.

Students in the MSc Biotechnology (Programme Regulations 2017) may select Synthetic Biology II instead of the Research Project 1.

7 months biological design project, during which the students are required to give presentations on advanced topics in synthetic biology (specifically genetic circuit design) and then select their own biological system to design. The system is subsequently modeled, analyzed, and experimentally implemented. Results are presented at an international student competition at the MIT (Cambridge).

The students are supposed to acquire a deep understanding of the process of biological design including model representation of a biological system, its thorough analysis, and the subsequent experimental implementation of the system and the related problems.

Content

- Presentations on advanced synthetic biology topics (eg genetic circuit design, adaptation of systems dynamics, analytical concepts, large scale de novo DNA synthesis), project selection, modeling of selected biological system, design space exploration, sensitivity analysis, conversion into DNA sequence, (DNA synthesis external.) implementation and analysis of design, summary of results in form of scientific presentation and poster, presentation of results at the iGEM international student competition (www.igem.org).

The final presentation of the project is typically at the MIT (Cambridge, US). Other competing schools include regularly Imperial College, Cambridge University, Harvard University, UC Berkeley, Princeton University, CalTech, etc.

This project takes place between end of Spring Semester and beginning of Autumn Semester. Registration in April.

Please note that the number of ECTS credits and the actual work load are disconnected.

851-0180-00L Research Ethics

| W | 2 credits | 2G | G. Achermann, P. Emch |

Number of participants limited to 40

Particularly suitable for students of D-BIOL, D-CHAB, D-HEST
Students are able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different normative perspectives and to create their own well-justified reasoning for taking decisions to the kind of ethical problems a scientist is likely to encounter during the different phases of biomedical research.

Objective

Participants of the course Research Ethics will

- Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
- Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles), and their ability to use these skills in assessing other people’s arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;

Content

I. Introduction to Moral Reasoning

1. Ethics - the basics

1.1 What ethics is not... 1.2 Recognising an ethical issue (awareness) 1.3 What is ethics? Personal, cultural and ethical values, principles and norms 1.4 Ethics: a classification 1.5 Research Ethics: what is it and why is it important?

2. Normative Ethics

2.1 What is normative ethics? 2.2 Types of normative theories – three different ways of thinking about ethics: Virtue theories, duty-based theories, consequentialist theories 2.3 The plurality of normative theories (moral pluralism); 2.4 Roles of normative theories in “Research Ethics”

3. Decision making: How to solve a moral dilemma

3.1 How (not) to approach ethical issues 3.2 What is a moral dilemma? Is there a correct method for answering moral questions? 3.3 Methods of making ethical decisions 3.4 Is there a “right” answer?

II. Research Ethics - Internal responsibilities

1. Integrity in research and research misconduct

1.1 What is research integrity and why is it important? 1.2 What is research misconduct? 1.3 Questionable/Detrimental Research Practice (QRP/DRP) 1.4 What is the incidence of misconduct? 1.5 What are the factors that lead to misconduct? 1.6 Responding to research wrongdoing 1.7 The process of dealing with misconduct 1.8 Approaches to misconduct prevention and for promoting integrity in research

2. Data Management

2.1 Data collection and recordkeeping 2.2 Analysis and selection of data 2.3 The (mis)representation of data 2.4 Ownership of data 2.5 Retention of data 2.6 Sharing of data (open research data) 2.7 The ethics of big data

3. Publication ethics / Responsible publishing

3.1 Background 3.2 Criteria for being an author 3.3 Ordering of authors 3.4 Publication practices

III. Research Ethics – External responsibilities

1. Research involving human subjects

1.1 History of research with human subjects 1.2 Basic ethical principles – The Belmont Report 1.3 Requirements to make clinical research ethical 1.4 Social value and scientific validity 1.5 Selection of study participants – the concept of vulnerability 1.6 Favourable risk-benefit ratio 1.7 Independent review - Ethics Committees 1.8 Informed consent 1.9 Respect for potential and enrolled participants

2. Social responsibility

2.1 What is social responsibility? a) Social responsibility of the individual scientist b) Social responsibility of the scientific community as a whole; 2.2 Participation in public discussions: a) Debate & Dialogue b) Communicating risks & uncertainties c) Science and the media 2.3 Public advocacy (policy making)

3. Data management

3.1 Introduction to Dual use research 3.2 Case study – Censuring science? 3.3 Transmission studies for avian flu (H5N1) 3.4 Synthetic biology

Lecture notes

Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.

Prerequisites / notice

What are the requirements?

First and foremost your strong willingness to seriously achieve the main learning outcomes as indicated in the Course Catalogue (specific learning outcomes for each module will be provided at the beginning of the course). For successfully completing the course Research Ethics, the following commitment is absolutely necessary (but not sufficient) (observed success factors for many years!):

1. Your regular presence is absolutely required (so please no double, parallel enrollment for courses taking place at the identical time!)

2. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more…)

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories

Domain B - Method-specific Competencies

Analytical Competencies

Decision-making

Problem-solving

Domain C - Social Competencies

Communication

Cooperation and Teamwork

Domain D - Personal Competencies

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Self-awareness and Self-reflection

Assessed

Doctoral Department of Mechanical and Process Engineering - Key for Type

W+ Eligible for credits and recommended

W Eligible for credits

E- Recommended, not eligible for credits

Z Courses outside the curriculum

Dr Suitable for doctorate

O Compulsory
<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS | European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Doctoral and Post-Doctoral Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0710-00L</td>
<td>Polymer Physics</td>
<td>E-</td>
<td>0</td>
<td>2S</td>
<td>H. C. Öttinger, M. Kröger</td>
</tr>
<tr>
<td>Abstract</td>
<td>Group seminar in polymer physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Continued and deeper education in polymer physics, in particular, for Ph.D. students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Presentation and discussion of ongoing research projects by members of the polymer physics group and external speakers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>No script</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Irregular series of presentations (see announcements)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327-0711-00L</td>
<td>Metal Physics and Technology Seminar</td>
<td>E-</td>
<td>0</td>
<td>2S</td>
<td>J. F. Löffler</td>
</tr>
<tr>
<td>Abstract</td>
<td>Seminar for Ph.D. students and researchers in the area of metal physics and technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Detailed education of researchers in the area of metallic materials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Presentation and discussion of latest research results concerning basic principles of metals research and development of new metallic materials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>- Requirements: Involvement in research activities. - Lectures are generally in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327-0712-00L</td>
<td>Nanometallurgy</td>
<td>E-</td>
<td>0</td>
<td>2S</td>
<td>R. Spolenak</td>
</tr>
<tr>
<td>Abstract</td>
<td>Seminar for Ph.D. students and researchers in the area of nanometallurgy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Detailed education of researchers in the area of nanometallurgy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327-1300-00L</td>
<td>Joint Group Seminar</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>M. Fiebig, N. Spaldin</td>
</tr>
<tr>
<td>Abstract</td>
<td>Only for D-MATL doctoral students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Seminar for PhD students and researchers in condensed-matter physics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Improving the interaction of researchers in the participating groups.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Presentation and discussion of contemporary research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327-6100-00L</td>
<td>Materials Colloquium</td>
<td>E-</td>
<td>0</td>
<td></td>
<td>M. Fiebig, I. Herrmann, M. Luisier, L. Novotny, further lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>The Materials Colloquium is a platform for PhD students, postdoctoral researchers, group leaders, senior scientists, and professors to present their own and their group’s research to their colleagues. The E-MATL Colloquium has the purpose to stimulate discussions and to promote networking in a relaxed, more informal environment. The Colloquium is open to all who are interested.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Learn about recent research in the field of materials science.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>https://sam.mat.ethz.ch/mc2021/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327-0721-00L</td>
<td>Writing for Publication in Materials Science</td>
<td>W</td>
<td>2</td>
<td>1G</td>
<td>R. Mihalka</td>
</tr>
<tr>
<td>Abstract</td>
<td>This short course is designed to help junior researchers in Materials Science develop the skills needed to write their first research articles. The course deals with topics such as</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Writing for Publication in Materials Science is a short course (5 x 4-lesson workshops) designed to help junior researchers develop the skills needed to write their first research articles.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- identifying target readerships and selecting outlets, - managing the writing process efficiently, - structuring the text effectively, - producing logical flow in sentences and paragraphs, - editing the text before submission, and - revising the text in response to reviewers’ comments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Participants will be expected to produce a number of short texts as homework assignments and will receive individual feedback on these during the course. Wherever feasible, elements of participants' future research articles can be developed as assignments within the course, so it is likely to be particularly useful for those who have their data and are about to begin the writing process.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327-2125-00L</td>
<td>Microscopy Training SEM I - Introduction to SEM</td>
<td>W</td>
<td>2</td>
<td>3P</td>
<td>P. Zeng, A. G. Bittermann, S. Gerstl, L. Grafulha Morales, K. Kunze, J. Reuteler</td>
</tr>
<tr>
<td>Abstract</td>
<td>The number of participants is limited. In case of overbooking, the course will be repeated once. All registrations will be recorded on the waiting list.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>For PhD students, postdocs and others, a fee will be charged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further information at: https://www.ethz.ch/en/doctorate.html

Doctoral Department of Materials Science

Autumn Semester 2021
During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments.

3P

Lecture notes will be distributed.

This introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using ScopeM SEMs, students have the opportunity to study their own samples (or samples provided) and solve practical problems by applying knowledge acquired during the lectures. At the end of the course, students will be able to apply SEM for their (future) research projects.

Objective
- Set-up, align and operate a SEM successfully and safely.
- Understand important operational parameters of SEM and optimize microscope performance.
- Explain different signals in SEM and obtain secondary electron (SE) and backscatter electron (BSE) images.
- Operate the SEM in low-vacuum mode.
- Make use of EDX for semi-quantitative elemental analysis.
- Prepare samples with different techniques and equipment for imaging and analysis by SEM.

Content
During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications.

This course gives basic skills for students new to SEM. At the end of the course, students are able to align an SEM, to obtain secondary electron (SE) and backscatter electron (BSE) images and to perform energy dispersive X-ray spectroscopy (EDX) semi-quantitative analysis. Emphasis is put on procedures to optimize SEM parameters in order to best solve practical problems and deal with a wide range of materials.

Abstract
This introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using ScopeM SEMs, students have the opportunity to study their own samples (or samples provided) and solve practical problems by applying knowledge acquired during the lectures. At the end of the course, students will be able to apply SEM for their (future) research projects.

Objective
Understanding of
1. the set-up and individual components of a TEM
2. the basics of electron optics and image formation
3. the basics of electron beam – sample interactions
4. the contrast mechanism
5. various sample preparation techniques

Learning how to
1. align and operate a TEM
2. acquire data using different operation modes of a TEM instrument, i.e. Bright-field and Dark-field imaging
3. record electron diffraction patterns and index diffraction patterns
4. interpret TEM data

Content
Lectures:
- basics of electron optics and the TEM instrument set-up
- TEM imaging modes and image contrast
- STEM operation mode
- Sample preparation techniques for hard and soft materials

Practicals:
- Demo: practical demonstration of a TEM: instrument components, alignment, etc.
- Hands-on training for students: sample loading, instrument alignment and data acquisition.
- Sample preparation for different types of materials
- Practical work with TEMs
- Demonstration of advanced Transmission Electron Microscopy techniques

Lecture notes
Lecture notes will be distributed.

Literature

Prerequisites / notice
No mandatory prerequisites.

327-2126-00L Microscopy Training TEM I - Introduction to TEM
The number of participants is limited. In case of overbooking, the course will be repeated once. All registrations will be recorded on the waiting list.

For PhD students, postdocs and others, a fee will be charged
(http://www.scopem.ethz.ch/education/MTP.html).

All applicants must additionally register on this form: (link will follow)
The selected applicants will be contacted and asked for confirmation a few weeks before the course date.

Abstract
The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for beginners who are interested in using TEM for their Master or PhD thesis. TEM sample preparation techniques are also discussed. During hands-on sessions at different TEM instruments, students will have the opportunity to examine their own samples if time allows.

Objective

Understanding of
1. the set-up and individual components of a TEM
2. the basics of electron optics and image formation
3. the basics of electron beam – sample interactions
4. the contrast mechanism
5. various sample preparation techniques

Learning how to
1. align and operate a TEM
2. acquire data using different operation modes of a TEM instrument, i.e. Bright-field and Dark-field imaging
3. record electron diffraction patterns and index diffraction patterns
4. interpret TEM data

Content
Lectures:
- basics of electron optics and the TEM instrument set-up
- TEM imaging modes and image contrast
- STEM operation mode
- Sample preparation techniques for hard and soft materials

Practicals:
- Demo: practical demonstration of a TEM: instrument components, alignment, etc.
- Hands-on training for students: sample loading, instrument alignment and data acquisition.
- Sample preparation for different types of materials
- Practical work with TEMs
- Demonstration of advanced Transmission Electron Microscopy techniques

Lecture notes
Lecture notes will be distributed.

Literature

A. Sologubenko, M. Willinger

For PhD students, postdocs and others, a fee will be charged
(http://www.scopem.ethz.ch/education/MTP.html).

All applicants must additionally register on this form: (link will follow)
The selected applicants will be contacted and asked for confirmation a few weeks before the course date.

Abstract
The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for beginners who are interested in using TEM for their Master or PhD thesis. TEM sample preparation techniques are also discussed. During hands-on sessions at different TEM instruments, students will have the opportunity to examine their own samples if time allows.

Objective
Understanding of
1. the set-up and individual components of a TEM
2. the basics of electron optics and image formation
3. the basics of electron beam – sample interactions
4. the contrast mechanism
5. various sample preparation techniques

Learning how to
1. align and operate a TEM
2. acquire data using different operation modes of a TEM instrument, i.e. Bright-field and Dark-field imaging
3. record electron diffraction patterns and index diffraction patterns
4. interpret TEM data

Content
Lectures:
- basics of electron optics and the TEM instrument set-up
- TEM imaging modes and image contrast
- STEM operation mode
- Sample preparation techniques for hard and soft materials

Practicals:
- Demo: practical demonstration of a TEM: instrument components, alignment, etc.
- Hands-on training for students: sample loading, instrument alignment and data acquisition.
- Sample preparation for different types of materials
- Practical work with TEMs
- Demonstration of advanced Transmission Electron Microscopy techniques

Lecture notes
Lecture notes will be distributed.

Literature

A. Sologubenko, M. Willinger
No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551-1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.

Doctoral Department of Materials Science - Key for Type

<table>
<thead>
<tr>
<th>W+</th>
<th>Eligible for credits and recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Doctoral Department of Mathematics

The list of courses (together with the allocated credit points) eligible for doctoral students is published each semester in the newsletter of the ZGSM. www.zgsm.ch/index.php?id=260&type=2

WARNING: Do not mistake ECTS credits for credit points for doctoral studies!

Graduate School

Official website of the Zurich Graduate School in Mathematics: www.zurich-graduate-school-math.ch

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-5003-71L</td>
<td>At the Interface Between Semiclassical Analysis and Numerical Analysis of Wave-Scattering Problems</td>
<td>W</td>
<td>4 credits</td>
<td>2V</td>
<td>E. Spence</td>
</tr>
<tr>
<td></td>
<td>Postgraduate degree lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semiclassical analysis (SCA) is a branch of microlocal analysis concerned with rigorously analysing PDEs with large (or small) parameters. On the other hand, numerical analysis (NA) seeks to design numerical methods that are accurate, efficient, and robust, with theorems guaranteeing these properties. In the context of high-frequency wave scattering, both SCA and NA share the same goal – that of understanding the behaviour of the scattered wave – but these two fields have operated largely in isolation, mainly because the tools and techniques of the two fields are somewhat disjoint. This by-and-large self-contained course focuses on the Helmholtz equation, which is arguably the simplest possible model of wave propagation. Our first goal will be to show how even relatively-simple tools from semiclassical analysis can be used to prove fundamental results about the numerical analysis of finite-element method applied to the high-frequency Helmholtz equation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course will aim at being accessible both to students coming from a numerical-analysis/applied-maths background and to students coming from an analysis background.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5005-71L</td>
<td>Randomization and Dimensionality in Risk Modeling</td>
<td>W</td>
<td>0 credits</td>
<td>2V</td>
<td>H. Albrecher</td>
</tr>
<tr>
<td></td>
<td>Nachdiplom lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Over the years, randomization has proven to be a powerful tool in the modeling of risks on several levels: for computational purposes, in uncovering connections between different models, but also in the consideration and generation of physical and/or synthetic scenarios in risk management. A second, and in part connected, theme is the parsimonious and structure-preserving refinement of stochastic models using matrix-valued parameters, and related questions concerning the appropriate and effective dimension of models for a given purpose. This lecture will deal with various recent advances in these fields, and also illustrate concrete applications in insurance and finance, including the optimal design of reinsurance treaties and the probabilistic analysis of the profitability of blockchain mining.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3033-00L</td>
<td>Gödel's Theorems</td>
<td>W</td>
<td>8 credits</td>
<td>3V+1U</td>
<td>L. Halbeisen</td>
</tr>
<tr>
<td></td>
<td>Die Vorlesung besteht aus drei Teilen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teil I gibt eine Einführung in die Syntax und Semantik der Prädikatenlogik erster Stufe.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teil II behandelt den Gödel'schen Vollständigkeitssatz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teil III behandelt die Gödel'schen Unvollständigkeitssätze</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Das Ziel dieser Vorlesung ist ein fundiertes Verständnis der Grundlagen der Mathematik zu vermitteln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syntax und Semantik der Prädikatenlogik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gödel'scher Vollständigkeitssatz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gödel'sche Unvollständigkeitssätze</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3225-00L</td>
<td>Introduction to Lie Groups</td>
<td>W</td>
<td>8 credits</td>
<td>4G</td>
<td>A. Iozzi</td>
</tr>
<tr>
<td></td>
<td>Topological groups and Haar measure. Definition of Lie groups, examples of local fields and examples of discrete subgroups; basic properties; Lie subgroups. Lie algebras and relation with Lie groups: exponential map, adjoint representation. Semisimplicity, nilpotency, solvability, compactness: Killing form, Lie's and Engel's theorems. Definition of algebraic groups and relation with Lie groups.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The goal is to have a broad though foundational knowledge of the theory of Lie groups and their associated Lie algebras with an emphasis on the algebraic and topological aspects of it.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Knapp: “Lie groups beyond an Introduction” (Birkhäuser)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F. Warner: “Foundations of differentiable manifolds and Lie groups” (Springer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Samelson: “Notes on Lie algebras” (Springer, ‘90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topology and basic notions of measure theory. A basic understanding of the concepts of manifold, tangent space and vector field is useful, but could also be achieved throughout the semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course webpage: https://metaphor.ethz.ch/x/2018/hs/401-3225-00L/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3533-70L</td>
<td>Topics in Riemannian Geometry</td>
<td>W</td>
<td>6 credits</td>
<td>3V</td>
<td>U. Lang</td>
</tr>
<tr>
<td></td>
<td>Selected topics from Riemannian geometry in the large: triangle and volume comparison theorems, Milnor's results on growth of the fundamental group, Gromov-Hausdorff convergence, Cheeger's diffeomorphism finiteness theorem, the Besson-Courtois-Gallot barycenter method and the proofs of the minimal entropy theorem and the Mostow rigidity theorem for rank one locally symmetric spaces.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3001-61L</td>
<td>Algebraic Topology I</td>
<td>W</td>
<td>8 credits</td>
<td>4G</td>
<td>W. Merry</td>
</tr>
<tr>
<td></td>
<td>This is an introductory course in algebraic topology, which is the study of algebraic invariants of topological spaces. Topics covered include: singular homology, cell complexes and cellular homology, the Eilenberg-Steenrod axioms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Literature

Book can be downloaded for free at: http://www.math.cornell.edu/~hatcher/AT/ATpage.html

See also: http://www.math.cornell.edu/~hatcher/#anchor1772800

3) E. Spanier, "Algebraic topology", Springer-Verlag

You should know the basics of point-set topology.

Useful to have (though not absolutely necessary) basic knowledge of the fundamental group and covering spaces (at the level covered in the course "topology").

Some knowledge of differential geometry and differential topology is useful but not strictly necessary.

Some (elementary) group theory and algebra will also be needed.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3055-64L</td>
<td>Algebraic Methods in Combinatorics</td>
<td>6</td>
<td>Students are expected to have a mathematical background and should be able to write rigorous proofs.</td>
<td>B. Sudakov</td>
</tr>
<tr>
<td>401-4211-71L</td>
<td>Harmonic Analysis</td>
<td>4</td>
<td>I plan to write some notes of the class.</td>
<td>A. Figalli</td>
</tr>
<tr>
<td>401-4475-71L</td>
<td>Microlocal Analysis</td>
<td>6</td>
<td>There is no official textbook.</td>
<td>P. Hintz</td>
</tr>
</tbody>
</table>

Prerequisites / notice

You should know the basics of point-set topology.

Useful to have (though not absolutely necessary) basic knowledge of the fundamental group and covering spaces (at the level covered in the course "topology").

Some knowledge of differential geometry and differential topology is useful but not strictly necessary.

Some (elementary) group theory and algebra will also be needed.
Objective

Students will be able to analyze linear partial differential operators (with smooth coefficients) and their solutions in phase space, i.e. in the cotangent bundle. For various classes of operators including, but not limited to, elliptic and hyperbolic operators, they will be able to prove existence and uniqueness (possibly up to finite-dimensional obstructions) of solutions, and study the precise regularity properties of solutions.

The first goal is to construct and apply parametrices (approximate inverses) or approximate solutions of PDEs using suitable calculi of pseudodifferential operators (ps.d.o.s). This requires defining ps.d.o.s and the associated symbol calculus on Euclidean space, proving the coordinate invariance of ps.d.o.s, and defining a ps.d.o. calculus on manifolds (including mapping properties on Sobolev spaces).

The second goal is to analyze distributions and operations on them (such as: products, restrictions to submanifolds) using information about their wave front sets or other microlocal regularity information. Students will in particular be able to compute the wave front set of distributions.

The third goal is to infer microlocal properties (in the sense of wave front sets) of solutions of general linear PDEs, with a focus on elliptic, hyperbolic and certain degenerate hyperbolic PDE. For hyperbolic operators, this includes proving the Duistermaat-Hörmander theorem on the propagation of singularities. For certain degenerate hyperbolic operators, students will apply positive commutator methods to prove results on the propagation of microlocal regularity at critical or invariant sets for the Hamiltonian vector field of the principal symbol of the partial differential operator under study.

Content

Tempered distributions, Sobolev spaces, Schwartz kernel theorem.

Symbols, asymptotic summation.

Pseudodifferential operators on Euclidean space: composition, principal symbols and the symbol calculus, elliptic parametrix construction, boundedness on Sobolev spaces.

Pseudodifferential operators on manifolds, elliptic operators on compact manifolds and Fredholm theory, basic symplectic geometry.

Microlocalization: wave front set, characteristic set; pairings, products, restrictions of distributions.

Hyperbolic evolution equations: existence and uniqueness of solutions, Egorov's theorem.

Propagation of singularities: the Duistermaat-Hörmander theorem, microlocal estimates at radial sets.

Applications to general relativity: asymptotic behavior of waves on de Sitter space.

Lecture notes will be made available on the course website.

Literature

Lars Hörmander, "The Analysis of Linear Partial Differential Operators", Volumes I and III.

Alain Grigis and Johannes Sjöstrand, "Microlocal Analysis for differential operators: an introduction".

Students are expected to have a good understanding of functional analysis. Familiarity with distribution theory, the Fourier transform, and analysis on manifolds is useful but not strictly necessary; the relevant notions will be recalled in the course.

Prerequisites

- Multivariable calculus
- Linear algebra
- Differential equations
- Functional analysis

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies
- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Decision-making
- Domain C - Social Competencies
 - Communication
- Domain D - Personal Competencies
 - Adaptable and Flexibility

Lecture notes

- There will be English, typed lecture notes for registered participants in the course.

Course on numerical approximations of stochastic ordinary differential equations driven by Wiener processes.

This course teaches a decent knowledge of the different numerical methods, their underlying ideas, convergence properties and implementation issues.

Applications to general relativity: asymptotic behavior of waves on de Sitter space.

Propagation of singularities: the Duistermaat-Hörmander theorem, microlocal estimates at radial sets.

- Applications to general relativity: asymptotic behavior of waves on de Sitter space.
- Applications to mathematical finance: option valuation.

Lecture notes

- Lecture notes will be made available on the course website.
- Course on computational finance: Monte Carlo and Sampling Methods.

401-4657-00L Numerical Analysis of Stochastic Ordinary Differential Equations

- Alternative course title: "Computational Methods for Quantitative Finance: Monte Carlo and Sampling Methods"
The aim of this course is to review new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods used to address challenging problems in nanophotonics. The emphasis will be on analyzing plasmon resonant nanoparticles, super-focusing & super-resolution of electromagnetic waves, photonic crystals, electromagnetic cloaking, metamaterials, and metasurfaces.

Schramm-Loewner Evolutions

Mathematics of Data Science

These topics lie in overlaps of (Applied) Mathematics with: Computer Science, Electrical Engineering, Statistics, and/or Operations Research. Each lecture will feature a couple of Mathematical Open Problem(s) related to Data Science. The main mathematical tools used will be Probability and Linear Algebra, and a basic familiarity with these subjects is required. There will also be some (although knowledge of these tools is not assumed) Graph Theory, Representation Theory, Applied Harmonic Analysis, among others. The topics treated will include Dimension reduction, Manifold learning, Sparse recovery, Random Matrices, Approximation Algorithms, Community detection in graphs, and several others.

Lecture notes:

401-4785-00L **Mathematical and Computational Methods in Photonics**

Abstract

The field of photonics encompasses the fundamental science of light propagation and interactions in complex structures, and its technological applications.

Objective

The recent advances in nanoscience present great challenges for the applied and computational mathematics community. In nanophotonics, the aim is to control, manipulate, reshape, guide, and focus electromagnetic waves at nanometer length scales, beyond the resolution limit. In particular, one wants to break the resolution limit by reducing the focal spot and confine light to length scales that are significantly smaller than half the wavelength.

Interactions between the field of photonics and mathematics has led to the emergence of a multitude of new and unique solutions in which today's conventional technologies are approaching their limits in terms of speed, capacity and accuracy. Light can be used for detection and measurement in a fast, sensitive and accurate manner, and thus photonics possesses a unique potential to revolutionize healthcare.

Light-based technologies can be used effectively for the very early detection of diseases, with non-invasive imaging techniques or point-of-care applications. They are also instrumental in the analysis of processes at the molecular level, giving a greater understanding of the origin of diseases, and hence allowing prevention along with new treatments. Photonic technologies also play a major role in addressing the needs of our ageing society: from pace-makers to synthetic bones, and from endoscopes to the micro-cameras used in in-vivo processes. Furthermore, photonics are also used in advanced lighting technology, and in improving energy efficiency and quality. By using photonic media to control waves across a wide band of wavelengths, we have an unprecedented ability to fabricate new materials with specific microstructures.

The main objective in this course is to report on the use of sophisticated mathematics in diffractive optics, plasmonics, super-resolution, photonic crystals, and metamaterials for electromagnetic invisibility and cloaking. The book merges highly nontrivial multi-mathematics in order to make a breakthrough in the field of mathematical modelling, imaging, and optimal design of optical nanodevices and nanostructures capable of light enhancement, and of the focusing and guiding of light at a subwavelength scale. We demonstrate the power of layer potential techniques in solving challenging problems in photonics, when they are combined with asymptotic analysis and the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions.

In this course we shall consider both analytical and computational matters in photonics. The issues we consider lead to the investigation of fundamental problems in various branches of mathematics. These include asymptotic analysis, spectral analysis, mathematical imaging, optimal design, stochastic modelling, and analysis of wave propagation phenomena. On the other hand, deriving mathematical foundations, and new and efficient computational frameworks and tools in photonics, requires a deep understanding of the different scales in the wave propagation problem, an accurate mathematical modelling of the nanodevices, and fine analysis of complex wave propagation phenomena. An emphasis is put on mathematically analyzing plasmon resonant nanoparticles, diffractive optics, photonic crystals, super-resolution, and metamaterials.

401-4607-67L **Schramm-Loewner Evolutions**

Abstract

This advanced course will be an introduction to SLE (Schramm-Loewner Evolutions), which are a class of conformally invariant random curves in the plane. We will discuss their construction and some of their main properties.

Objective

Knowledge of Brownian motion and stochastic calculus and basic knowledge of complex analysis (Riemann’s mapping theorem).

Lecture notes:

401-3822-17L **Ising Model**

401-4944-20L **Mathematics of Data Science**

References

Literature

Prerequisites / notice

Mandatory: Probability and measure theory, basic numerical analysis and basics of MATLAB/Python programming.

a) mandatory courses:

Elementary Probability, Probability Theory I.

b) recommended courses:

Stochastic Processes.

Prerequisites / notice: The main mathematical tools used will be Probability, Linear Algebra (and real analysis), and a working knowledge of these subjects is required. In addition to these prerequisites, this class requires a certain degree of mathematical maturity—including abstract thinking and the ability to understand and write proofs.

We encourage students who are interested in mathematical data science to take both this course and "227-0434-10L Mathematics of Information" taught by Prof. H. Bölcskei. The two courses are designed to be complementary.

A. Bandeira and H. Bölcskei

401-3621-00L Fundamentals of Mathematical Statistics

<table>
<thead>
<tr>
<th>Credit</th>
<th>Title</th>
<th>W</th>
<th>10 credits</th>
<th>4V+1U</th>
<th>S. van de Geer</th>
</tr>
</thead>
</table>

Abstract: The course covers the basics of inferential statistics.

401-3622-00L Statistical Modelling

<table>
<thead>
<tr>
<th>Credit</th>
<th>Title</th>
<th>W</th>
<th>8 credits</th>
<th>4G</th>
<th>C. Heinze-Deml</th>
</tr>
</thead>
</table>

Abstract: In regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression with one or more covariates, high-dimensional linear models, nonlinear models and generalized linear models, robust methods, model choice and nonparametric models. Several numerical examples will illustrate the theory.

Objective: Introduction into theory and practice of a broad and popular area of statistics, from a modern viewpoint.

Prerequisites / notice: This is the course unit with former course title "Regression". Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).

401-4623-00L Time Series Analysis

<table>
<thead>
<tr>
<th>Credit</th>
<th>Title</th>
<th>W</th>
<th>6 credits</th>
<th>3G</th>
<th>F. Balabdaoui</th>
</tr>
</thead>
</table>

Abstract: The course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary Models, ARMA processes, Spectral Analysis, Forecasting, Nonstationary Models, ARIMA Models and an introduction to GARCH models.

Objective: The goal of the course is to have a good overview of the different types of time series and the approaches used in their statistical analysis.

Content: This course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework, the main feature exibited by time series is the dependence between successive observations.

The key topics which will be covered as:

- Stationarity
- Autocorrelation
- Trend estimation
- Elimination of seasonality
- Spectral analysis, spectral densities
- Forecasting
- ARMA, ARIMA, Introduction into GARCH models

Literature: The main reference for this course is the book "Introduction to Time Series and Forecasting", by P. J. Brockwell and R. A. Davis.

Prerequisites / notice: Basic knowledge in probability and statistics

401-3627-00L High-Dimensional Statistics

<table>
<thead>
<tr>
<th>Credit</th>
<th>Title</th>
<th>W</th>
<th>4 credits</th>
<th>2V</th>
<th>P. L. Bühlmann</th>
</tr>
</thead>
</table>

Abstract: "High-Dimensional Statistics" deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.

Objective: Knowledge of methods and basic theory for high-dimensional statistical inference

Content: Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling

Prerequisites / notice: Knowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics).

401-3612-00L Stochastic Simulation

<table>
<thead>
<tr>
<th>Credit</th>
<th>Title</th>
<th>W</th>
<th>5 credits</th>
<th>3G</th>
</tr>
</thead>
</table>

Abstract: Does not take place this semester.

This course provides an introduction to statistical Monte Carlo methods. This includes applications of simulations in various fields (Bayesian statistics, statistical mechanics, operations research, financial mathematics), algorithms for the generation of random variables (accept-reject, importance sampling), estimating the precision, variance reduction, introduction to Markov chain Monte Carlo.

Objective: Stochastic simulation (also called Monte Carlo method) is the experimental analysis of a stochastic model by implementing it on a computer. Probabilities and expected values can be approximated by averaging simulated values, and the central limit theorem gives an estimate of the error of this approximation. The course shows examples of the many applications of stochastic simulation and explains different algorithms used for simulation. These algorithms are illustrated with the statistical software R.

Lecture notes: A script will be available in English.

Familiarity with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.

401-3628-14L Bayesian Statistics

Abstract
Introduction to the Bayesian approach to statistics: decision theory, prior distributions, hierarchical Bayes models, empirical Bayes, Bayesian tests and model selection, empirical Bayes, Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods.

Objective
Students understand the conceptual ideas behind Bayesian statistics and are familiar with common techniques used in Bayesian data analysis.

Content
Topics that we will discuss are:
- Difference between the frequentist and Bayesian approach (decision theory, principles), priors (conjugate priors, noninformative priors, Jeffreys prior), tests and model selection (Bayes factors, hyper-g priors for regression), hierarchical models and empirical Bayes methods, computational methods (Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods)

Lecture notes
A script will be available in English.

Literature

Prerequisites / notice
Familiarity with basic concepts of frequentist statistics and with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.

401-4889-00L Mathematical Finance

Abstract
Advanced course on mathematical finance:
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- additional topics

Objective
Advanced course on mathematical finance, presupposing good knowledge in probability theory and stochastic calculus (for continuous processes)

Content
This is an advanced course on mathematical finance for students with a good background in probability. We want to give an overview of main concepts, questions and approaches, and we do this mostly in continuous-time models.

Topics include
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- and probably others

Lecture notes
The course is based on different parts from different books as well as on original research literature.

Literature
Lecture notes will not be available.

(related later)

Prerequisites / notice
Prerequisites are the standard courses
- Probability Theory (for which lecture notes are available)
- Brownian Motion and Stochastic Calculus (for which lecture notes are available)
Those students who already attended "Introduction to Mathematical Finance" will have an advantage in terms of ideas and concepts.

This course is the second of a sequence of two courses on mathematical finance. The first course "Introduction to Mathematical Finance" (MF I), 401-3888-00, focuses on models in finite discrete time. It is advisable that the course MF I is taken prior to the present course, MF II.

For an overview of courses offered in the area of mathematical finance, see https://www.math.ethz.ch/imf/education/education-in-stochastic-finance/overview-of-courses.html.

402-0861-00L Statistical Physics

Abstract
This lecture covers the concepts of classical and quantum statistical physics. Several techniques such as second quantization formalism for fermions, bosons, photons and phonons as well as mean field theory and self-consistent field approximation. These are used to discuss phase transitions, critical phenomena and superfluidity.

Objective
This lecture gives an introduction in the basic concepts and applications of statistical physics for the general use in physics and, in particular, as a preparation for the theoretical solid state physics education.

Content
Kinetic approach to statistical physics: H-theorem, detailed balance and equilibrium conditions.

- Classical statistical physics: microcanonical ensembles, canonical ensembles and grandcanonical ensembles, applications to simple systems.
- Quantum statistical physics: density matrix, ensembles, Fermi gas, Bose gas (Bose-Einstein condensation), photons and phonons.
- Identical quantum particles: many body wave functions, second quantization formalism, equation of motion, correlation functions, selected applications, e.g. Bose-Einstein condensate and coherent state, phonons in elastic media and melting.
- One-dimensional interacting systems.
- Phase transitions: mean field approach to Ising model, Gaussian transformation, Ginzburg-Landau theory (Ginzburg criterion), self-consistent field approach, critical phenomena, Peierls' arguments on long-range order.

Lecture notes
Lecture notes available in English.

Literature
No specific book is used for the course. Relevant literature will be given in the course.

402-0830-00L General Relativity

Abstract
Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations of the theory as well as the underlying physical principles and concepts. It covers selected applications, such as the Schwarzschild solution and gravitational waves.

Special Students UZH must book the module PHY511 directly at UZH.
Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves.

Objective
Basic understanding of general relativity, its mathematical foundations (in particular the relevant aspects of differential geometry), and some of the phenomena it predicts (with a focus on black holes).

Content
Suggested textbooks:
C. Misner, K. Thorne and J. Wheeler: Gravitation
S. Carroll - Gravitation and Cosmology
R. Wald - General Relativity
S. Weinberg - Gravitation and Cosmology

402-0843-00L Quantum Field Theory I

Special Students UZH must book the module PHY551 directly at UZH.

Abstract
This course discusses the quantisation of fields in order to introduce a coherent formalism for the combination of quantum mechanics and special relativity.

Topics include:
- Relativistic quantum mechanics
- Quantisation of bosonic and fermionic fields
- Interactions in perturbation theory
- Scattering processes and decays
- Elementary processes in QED
- Radiative corrections

Objective
The goal of this course is to provide a solid introduction to the formalism, the techniques, and important physical applications of quantum field theory. Furthermore it prepares students for the advanced course in quantum field theory (Quantum Field Theory II), and for work on research projects in theoretical physics, particle physics, and condensed-matter physics.

Lecture notes
Will be provided as the course progresses

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
assessed
Techniques and Technologies
assessed

Domain B - Method-specific Competencies
Analytical Competencies
assessed
Decision-making
not assessed
Media and Digital Technologies
not assessed
Problem-solving
assessed
Project Management
not assessed

Domain C - Social Competencies
Communication
not assessed
Cooperation and Teamwork
not assessed
Customer Orientation
not assessed
Leadership and Responsibility
not assessed
Self-presentation and Social Influence
not assessed
Sensitivity to Diversity
not assessed
Negotiation
not assessed

Domain D - Personal Competencies
Adaptability and Flexibility
not assessed
Creative Thinking
assessed
Critical Thinking
assessed
Integrity and Work Ethics
not assessed
Self-awareness and Self-reflection
not assessed
Self-direction and Self-management
not assessed

402-0897-00L Introduction to String Theory

Abstract
String theory is an attempt to quantise gravity and unite it with the other fundamental forces of nature. It is related to numerous interesting topics and questions in quantum field theory. In this course, an introduction to the basics of string theory is provided.

Objective
Within this course, a basic understanding and overview of the concepts and notions employed in string theory shall be given. More advanced topics will be touched upon towards the end of the course briefly in order to foster further research.

Content
- mechanics of point particles and extended objects
- string modes and their quantisation; higher dimensions, supersymmetry
- D-branes, T-duality
- supergravity as a low-energy effective theory, strings on curved backgrounds
- two-dimensional field theories (classical/quantum, conformal/non-conformal)

Literature
M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory I, CUP (1987).

Prerequisites / notice
Recommended: Quantum Field Theory I (in parallel)

252-0417-00L Randomized Algorithms and Probabilistic Methods

Abstract
Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains; convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks

Objective
After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.

Content
Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Lecture notes
Yes.

Literature
After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired

This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a

\[2V+1U \]

The fundamentals of Information Theory including Shannon's source coding and channel coding theorems

\[W \]

T.M. Cover and J. Thomas, Elements of Information Theory (second edition)

\[6 \text{ credits} \]

Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you're ready for this class or not, please consult the instructor.

Image Analysis and Computer Vision

\[227-0447-00L \]

Image Analysis and Computer Vision

\[W \]

Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Course material Script, computer demonstrations, exercises and problem solutions

Prerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux. The course language is English.

Information Theory I

\[227-0417-00L \]

Information Theory I

\[W \]

This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.

The entropy rate of a source, Typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity

T.M. Cover and J. Thomas, Elements of Information Theory (second edition)

Neural Network Theory

\[227-0423-00L \]

Neural Network Theory

\[W \]

The class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, fundamental limits of deep neural network learning, VC dimension.

1. Universal approximation with single- and multi-layer networks
2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory
3. Fundamental limits of deep neural network learning
4. Geometry of decision surfaces
5. Separating capacity of nonlinear decision surfaces
6. Vapnik-Chervonenkis (VC) dimension
7. VC dimension of neural networks
8. Generalization error in neural network learning

Detailed lecture notes are available on the course web page

https://www.mins.ee.ethz.ch/teaching/intnt/

This course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.

Dynamic Programming and Optimal Control

\[151-0563-01L \]

Dynamic Programming and Optimal Control

\[W \]

Introduction to Dynamic Programming and Optimal Control.

Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.

Requirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.
401-4570-71L Student Seminar in Symplectic vs. Contact Geometry W 4 credits 2S A. Cannas da Silva, B. Acu Bulut

Number of participants limited to 12.

Abstract
This seminar provides a glimpse of two sister geometries that have recently earned a central role in mathematics interacting with other areas. Side by side, we will discuss basics of symplectic and contact manifolds, some key submanifolds (lagrangian and legendrian) and the toric subclasses (symplectic and contact), which have gained prominence as testing grounds for other theories.

Objective
By giving half-hour talks about each geometry, typing short notes for those talks and participating in talks by others, each participant will have the opportunity to get acquainted with the landscape of symplectic and contact worlds, expand their command of geometry and topology, and develop presentation and collaboration skills.

Literature
The Seminar webpage (under learning materials) contains a list of references and further information. Prior knowledge of differential geometry and algebraic topology is required.

Details of the seminar organization will be discussed in the first meeting.

401-4600-71L Student Seminar in Probability W 4 credits 2S J. Bertoin, V. Tassion, W. Werner

Limited number of participants. Registration to the seminar will only be effective once confirmed by email from the organizers.

This Student Seminar in Probability will be at an advanced level (dealing with current research topics), and the participants will be at a doctoral level or postdocs. Of course, non-participants are welcome to attend the various talks of the seminar.

The seminar is centered around a topic in probability theory which changes each semester. The student seminar in probability is held at times at the undergraduate level (typically during the spring term) and at times at the graduate level (typically during the autumn term). The themes vary each semester.

The number of participants to the seminar is limited. Registration to the seminar will only be effective once confirmed by email from the organizers.

401-5000-00L Zurich Colloquium in Mathematics E- 0 credits 1K

R. Abgrall, M. Iacobelli, A. Bandeira, A. Iozzi, S. Mishra, R. Pandharipande, University lecturers

Abstract
The Graduate Colloquium is an informal seminar aimed at graduate students and postdocs whose purpose is to provide a forum for communicating one's interests and thoughts in mathematics.

401-5110-00L Number Theory Seminar E- 0 credits 1K

Ö. Imamoglu, E. Kowalski, R. Pink, G. Wüstholz

Abstract
Research colloquium

401-5140-11L Algebraic Geometry and Moduli Seminar E- 0 credits 2K

R. Pandharipande

Abstract
Research colloquium

401-5330-00L Analysis Seminar E- 0 credits 1K

A. Carlotto, F. Da Lio, A. Figalli, N. Hungerbühler, M. Iacobelli, T. Ilmanen, L. Keller, T. Rivière, J. Serra, University lecturers

Abstract
Research colloquium

401-5350-00L Geometry Seminar E- 0 credits 1K

M. Burger, M. Einsiedler, P. Feller, A. Iozzi, U. Lang, University lecturers

Abstract
Research colloquium

401-5530-00L Symplectic Geometry Seminar E- 0 credits 1K

P. Biran, A. Cannas da Silva

Abstract
Research colloquium

401-5580-00L Ergodic Theory and Dynamical Systems E- 0 credits 1K

M. Akka Ginosar, M. Einsiedler, University lecturers

Abstract
Research colloquium

401-5600-00L Seminar on Stochastic Processes E- 0 credits 1K

J. Bertoin, A. Nikeghbali, B. D. Schlein, V. Tassion, W. Werner

Abstract
Research colloquium

401-5620-00L Seminar on Statistics E- 0 credits 1K

Abstract
Research colloquium

401-5680-00L Foundations of Data Science Seminar E- 0 credits 1K

P. L. Bühlmann, A. Bandeira, H. Bölcskei, F. Yang

Abstract
Research colloquium
401-5660-00L Math and Data (MAD+)

Abstract
Research colloquium

Objective
Exposé graduate students to ongoing research activities (including applications) in the domain of optimization.

Content
Lectures on current topics in optimization

Prerequisites / notice
This seminar is a forum for researchers interested in optimization theory and its applications. Speakers are expected to stimulate discussions on theoretical and applied aspects of optimization and related subjects. The focus is on efficient algorithms for continuous and discrete optimization problems, complexity analysis of algorithms and associated decision problems, approximation algorithms, mathematical modeling and solution procedures for real-world optimization problems in science, engineering, industries, public sectors etc.

Course Type
W+ Eligible for credits and recommended
W Eligible for credits
E- Recommended, not eligible for credits

ECTS
European Credit Transfer and Accumulation System

401-5910-00L Talks in Financial and Insurance Mathematics

Abstract
Research colloquium

Objective
Exposed to current research activities in the domain of optimization.

Content
Lectures on current topics in optimization

Prerequisites / notice
This seminar is a forum for researchers interested in optimization theory and its applications. Speakers are expected to stimulate discussions on theoretical and applied aspects of optimization and related subjects. The focus is on efficient algorithms for continuous and discrete optimization problems, complexity analysis of algorithms and associated decision problems, approximation algorithms, mathematical modeling and solution procedures for real-world optimization problems in science, engineering, industries, public sectors etc.

Course Type
W+ Eligible for credits and recommended
W Eligible for credits
E- Recommended, not eligible for credits

401-5900-00L Optimization Seminar

Abstract
Research colloquium

Objective
Exposed to current research activities in the domain of optimization.

Content
Lectures on current topics in optimization

Prerequisites / notice
This seminar is a forum for researchers interested in optimization theory and its applications. Speakers are expected to stimulate discussions on theoretical and applied aspects of optimization and related subjects. The focus is on efficient algorithms for continuous and discrete optimization problems, complexity analysis of algorithms and associated decision problems, approximation algorithms, mathematical modeling and solution procedures for real-world optimization problems in science, engineering, industries, public sectors etc.

Course Type
W+ Eligible for credits and recommended
W Eligible for credits
E- Recommended, not eligible for credits

252-4202-00L Seminar in Theoretical Computer Science

Abstract
Presentation of recent publications in theoretical computer science, including results by diploma, masters and doctoral candidates.

Objective
The goal is to introduce students to current research, and to enable them to read, understand, and present scientific papers.

Prerequisites / notice
This seminar takes place as part of the joint research seminar of several theory groups. Intended participation is for students with excellent performance only. Formal restriction is: prior successful participation in a master level seminar in theoretical computer science.

Course Type
W+ Eligible for credits and recommended
W Eligible for credits
E- Recommended, not eligible for credits

Key for Hours

- **V** lecture
- **G** lecture with exercise
- **U** exercise
- **S** seminar
- **K** colloquium
- **P** practical/laboratory course
- **A** independent project
- **D** diploma thesis
- **R** revision course / private study

ECTS
European Credit Transfer and Accumulation System

Doctoral Department of Mathematics - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Special students and auditors need special permission from the lecturers.
Doctoral and Post-Doctoral Courses

Please note that this is an INCOMPLETE list of courses.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0317-00L</td>
<td>Semiconductor Materials: Fundamentals and Fabrication</td>
<td>W</td>
<td>6 credits</td>
<td>2V+1U</td>
<td>S. Schön, W. Wegscheider</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course gives an introduction into the fundamentals of semiconductor materials. The main focus is on state-of-the-art fabrication and characterization methods. The course will be continued in the spring term with a focus on applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic knowledge of semiconductor physics and technology. Application of this knowledge for state-of-the-art semiconductor device processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Fundamentals of Solid State Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Semiconductor materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 Band structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Carrier statistics in intrinsic and doped semiconductors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 p-n junctions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 Low-dimensional structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Bulk Material growth of Semiconductors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Czochalski method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Floating zone method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 High pressure synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Semiconductor Epitaxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.1 Fundamentals of Epitaxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2 Molecular Beam Epitaxy (MBE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3 Metal-Organic Chemical Vapor Deposition (MOCVD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4 Liquid Phase Epitaxy (LPE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. In situ characterization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.1 Pressure and temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2 Reflectometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3 Ellipsometry and RAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4 LEED, AES, XPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5 STM, AFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. The invention of the transistor - Christmas lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://moodle-app2.let.ethz.ch/course/view.php?id=15519</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The “compulsory performance element” of this lecture is a short presentation of a research paper complementing the lecture topics. Several topics and corresponding papers will be offered on the moodle page of this lecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

402-0526-00L	Ultrafast Processes in Solids	W	6 credits	2V+1U	Y. M. Acremann
	Abstract				
	Ultrafast processes in solids are of fundamental interest as well as relevant for modern technological applications. The dynamics of the lattice, the electron gas as well as the spin system of a solid are discussed. The focus is on time resolved experiments which provide insight into pico- and femtosecond dynamics.				
	Objective				
	After attending this course you understand the dynamics of essential excitation processes which occur in solids and you have an overview over state of the art experimental techniques used to study fast processes.				
	Content				
	1. Experimental techniques, an overview				
	2. Dynamics of the electron gas				
	2.1 First experiments on electron dynamics and lattice heating				
	2.2 The finite lifetime of excited states				
	2.3 Detection of lifetime effects				
	2.4 Dynamical properties of reactions and adsorbents				
	3. Dynamics of the lattice				
	3.1 Phonons				
	3.2 Non-thermal melting				
	4. Dynamics of the spin system				
	4.1 Laser induced ultrafast demagnetization				
	4.2 Ultrafast spin currents generated by lasers				
	4.3 Landau-Lifschitz-Dynamics				
	4.4 Laser induced switching				
	5. Correlated materials				
	Lecture notes				
	will be distributed				
	Literature				
	relevant publications will be cited				
	Prerequisites / notice				
	The lecture can also be followed by interested non-physics students as basic concepts will be introduced.				

402-0464-00L	Optical Properties of Semiconductors	W	8 credits	2V+2U	J. Faist, P. Anantha Murthy
	Abstract				
	This course presents a comprehensive discussion of optical processes in semiconductors.				
	Objective				
	The rich physics of the optical properties of semiconductors, as well as the advanced processing available on these material, enabled numerous applications (lasers, LEDs and solar cells) as well as the realization of new physical concepts. Systems that will be covered include quantum dots, exciton-polaritons, quantum Hall fluids and graphene-like materials.				
	Content				
	Electronic states in III-V materials and quantum structures, optical transitions, excitons and polaritons, novel two dimensional semiconductors, spin-orbit interaction and magneto-optics.				
	Prerequisites / notice				
	Prerequisites: Quantum Mechanics I, Introduction to Solid State Physics				

402-0484-00L	Experimental and Theoretical Aspects of Quantum Gases	W	6 credits	2V+1U	T. Esslinger
	Abstract				
	Quantum Gases are the most precisely controlled many-body systems in physics. This provides a unique interface between theory and experiment, which allows addressing fundamental concepts and long-standing questions. This course lays the foundation for the understanding of current research in this vibrant field.				
The lecture conveys a basic understanding for the current research on quantum gases. Emphasis will be put on the connection between theory and experimental observation. It will enable students to read and understand publications in this field.

Objectives

- Apply concepts of quantum mechanics to estimate the strength of atomic magnetic moments and their interactions
- Identify the mechanisms from which exchange interaction originates in solids (itinerant and local-moment magnetism)
- Evaluate the consequences of the interplay between competing interactions and thermal energy
- Apply general concepts of statistical physics to determine the origin of bistability in realistic magnets
- Discriminate the dynamic responses of a magnet to different external stimuli

Content

- Magnetic order at finite temperatures (Ising and Heisenberg models, low-dimensional magnetism)
- Dipolar interaction in solids (shape anisotropy, dipolar frustration, origin of magnetic domains)
- Atomic paramagnetism and diamagnetism, itinerant and local-moment interatomic coupling, magnetic order at finite temperature, spin precession, approach to equilibrium through thermal and quantum dynamics, dipolar interaction in solids.

Literature

402-0535-00L Introduction to Magnetism W 6 credits 3G A. Vindigni

Abstract

Atomic paramagnetism and diamagnetism, itinerant and local-moment interatomic coupling, magnetic order at finite temperature, spin precession, approach to equilibrium through thermal and quantum dynamics, dipolar interaction in solids.

Objective

- Apply concepts of quantum mechanics to estimate the strength of atomic magnetic moments and their interactions
- Identify the mechanisms from which exchange interaction originates in solids (itinerant and local-moment magnetism)
- Evaluate the consequences of the interplay between competing interactions and thermal energy
- Apply general concepts of statistical physics to determine the origin of bistability in realistic magnets
- Discriminate the dynamic responses of a magnet to different external stimuli

Content

The lecture "Introduction to Magnetism" is a regular course of the Physics MSc program and aims at letting students familiarize themselves with the basic principles of quantum and statistical physics that determine the behavior of real magnets. Understanding why only few materials are magnetic at finite temperature will be the leitmotiv of the course. We will see that defining in a formal way what "being magnetic" means is essential to address this question properly. Theoretical concepts will be applied to few selected nano-sized magnets, which will serve as clean reference systems.

At the end of this course students should have acquired the basic knowledge needed to develop a research project in the field of magnetism or to attend effectively more advanced courses on this topic.

Preliminary contents for the HS21:

- Magnetic order in atoms (quantum-mechanical origin of atomic magnetic moments, intra-atomic exchange interaction)
- Magnetism in solids (mechanisms producing inter-atomic exchange interaction in solids, crystal field)
- Spin resonance and relaxation (Larmor precession, resonance phenomena, quantum tunneling, Bloch equation, superparamagnetism)
- Magnetic order at finite temperatures (Ising and Heisenberg models, low-dimensional magnetism)
- Dipolar interaction in solids (shape anisotropy, dipolar frustration, origin of magnetic domains)

402-0595-00L Semiconductor Nanostructures W 6 credits 2V+1U T. M. Ihn

Abstract

The course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of quantum nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots.

Objective

- The integer quantum Hall effect
- Conductance quantization in quantum point contacts
- The Aharonov-Bohm effect
- Coulomb blockade in quantum dots

Content

1. Introduction and overview
2. Semiconductor crystals: Fabrication and molecular beam epitaxy
3. Band structures of semiconductors
4. k-p-theory, effective mass, envelope functions
5. Heterostructures and band engineering, doping
6. Surfaces and metal-semiconductor contacts, fabrication of semiconductor nanostructures
7. Heterostructures and two-dimensional electron gases
8. Drude Transport and scattering mechanisms
9. Single- and bilayer graphene
10. Electron transport in quantum point contacts; Landauer-Büttiker description, ballistic transport experiments
11. Interference effects in Aharonov-Bohm rings
12. Electron in a magnetic field, Shubnikov-de Haas effect
13. Integer quantum Hall effect
14. Coulomb blockade and quantum dots

Literature

In addition to the lecture notes, the following supplementary books can be recommended:

Low Energy Particle Physics

Low energy particle physics provides complementary information to high energy physics with colliders. In this lecture, we will concentrate on flagship experiments which have significantly improved our understanding of particle physics today, concentrating mainly on precision experiments with neutrons, muons and exotic atoms.

Objectives:
- You will be able to present and discuss:
 - the principle of the experiments
 - the underlying technique and methods
 - the context and the impact of these experiments on particle physics

Content:
Low energy particle physics provides complementary information to high energy physics with colliders. At the Large Hadron Collider one directly searches for new particles at energies up to the TeV range. In a complementary way, low energy particle physics indirectly probes the existence of such particles and provides constraints for “new physics”, making use of high precision and high intensities.

Besides the sensitivity to effects related with new physics (e.g. lepton flavor violation, symmetry violations, CPT tests, search for electric dipole moments, new low mass exchange bosons etc.), low energy physics provides the best test of QED (electron g-2), the best tests of bound-state QED (atomic physics and exotic atoms), precise determinations of fundamental constants, information about the CKM matrix, precise information on the weak and strong force even in the non-perturbative regime etc.

Starting from a general introduction on high intensity/high precision particle physics and the main characteristics of muons and neutrons and their production, we will then focus on the discussion of fundamental problems and ground-breaking experiments:
- search for rare decays and charged lepton flavor violation
- electric dipole moments and CP violation
- spectroscopy of exotic atoms and symmetries of the standard model
- what atomic physics can do for particle physics and vice versa
- neutron decay and primordial nucleosynthesis
- atomic clock
- Penning traps
- Ramsey spectroscopy
- Spin manipulation
- neutron-matter interaction
- ultra-cold neutron production
- various techniques: detectors, cryogenics, particle beams, laser cooling...

Literature:
- Golub, Richardson & Lamoreaux: “Ultra-Cold Neutrons”
- Carville & Willis: “Experimental Neutron Scattering”
- Byrne: “Neutrons, Nuclei and Matter”
- Klapdor-Kleingrothaus: “Non Accelerator Particle Physics”
- D.O. Caldwell, Current Aspects of Neutrino Physics, Springer.
- Rauch & Werner: “Neutron Interferometry”
- Klapdor-Kleingrothaus: “Non Accelerator Particle Physics”
- Einführung in die Kern- und Teilchenphysik / Introduction to Nuclear- and Particle-Physics

Prerequisites / notice:
The course is taught in English.
- Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program.
- The lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisite. Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program.

402-0715-00L

Neutrino Physics

Theoretical basis and selected experiments to determine the properties of neutrinos and their interactions (mass, spin, helicity, chirality, oscillations, interactions with leptons and quarks).

Abstract
Introduction to the physics of neutrinos with special consideration of phenomena connected with neutrino masses.

Objective
- The course gives an introduction to the development and anatomical structure of nervous systems. Furthermore, it discusses the basics of cellular neurophysiology and neuropharmacology. Finally, the nervous system is described on a system level.

Lecture notes

Literature
D.O. Caldwell, Current Aspects of Neutrino Physics, Springer.

Prerequisites / notice:
Einführung in die Kern- und Teilchenphysik / Introduction to Nuclear- and Particle-Physics

402-0767-00L

Introductory Course in Neuroscience I (University of Zurich)

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

Abstract
The course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.

Objective
The course gives an introduction to the development and anatomical structure of nervous systems. Furthermore, it discusses the basics of cellular neurophysiology and neuropharmacology. Finally, the nervous system is described on a system level.
| Content | 1) Human Neuroanatomy I&II
2) Comparative Neuroanatomy
3) Building a central nervous system I&II
4) Synapses I&II
5) Glia and more
6) Excitability
7) Circuits underlying Emotion
8) Visual System
9) Auditory & Vestibular System
10) Somatosensory and Motor Systems
11) Learning in artificial and biological neural networks |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites / notice</td>
<td>For doctoral students of the Neuroscience Center Zurich (ZNZ).</td>
</tr>
</tbody>
</table>

402-0620-00L **Current Topics in Accelerator Mass Spectrometry and Its Applicatons**
E- 0 credits
1S
M. Christli, S. Willett

| Abstract | The seminar is aimed at all students who, during their studies, are confronted with age determination methods based on long-living radionuclides found in nature. Basic methodology, the latest developments, and special examples from a wide range of applications will be discussed.
Objective | The seminar provides the participants an overview about newest trends and developments of accelerator mass spectrometry (AMS) and related applications. In their talks and subsequent discussions the participants learn intensively about the newest trends in the field of AMS thus attaining a broad knowledge on both, the physical principles and the applications of AMS, which goes far beyond the horizon of their own studies. |

402-0897-00L **Introduction to String Theory**
W 6 credits
2V+1U
J. Brödel

| Objective | Within this course, a basic understanding and overview of the concepts and notions employed in string theory shall be given. More advanced topics will be touched upon towards the end of the course briefly in order to foster further research.
Content | - mechanics of point particles and extended objects
- string modes and their quantisation; higher dimensions, supersymmetry
- D-branes, T-duality
- supergravity as a low-energy effective theory, strings on curved backgrounds
- twodimensional field theories (classical/quantum, conformal/non-conformal) |
M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory I, CUP (1987).

402-0393-00L **Theoretical Cosmology and Different Aspects of Gravity**
W 8 credits
4V
L. Heisenberg

| Objective | These lecture series will be dedicated to different advanced topics within the framework of theoretical cosmology and gravity. A detailed introduction into the successful construction of General Relativity and beyond will be given, together with their cosmological implications.
Content | - supergravity as a low-energy effective theory, strings on curved backgrounds
- two-dimensional field theories (classical/quantum, conformal/non-conformal)
- string modes and their quantisation; higher dimensions, supersymmetry
- D-branes, T-duality
- supergravity as a low-energy effective theory, strings on curved backgrounds
- twodimensional field theories (classical/quantum, conformal/non-conformal) |
M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory I, CUP (1987).

402-0465-58L **Intersubband Optoelectronics**
W 6 credits
2V+1U
G. Scalari

| Objective | The goal of this lecture is to explore both the rich physics as well as the application of these system for sources and detectors. In fact, devices based on intersubband transitions are now unlocking large area of the electromagnetic spectrum.
Content | - Introduction: intersubband optoelectronics as an example of quantum engineering
- Technological aspects
- Electronic states in semiconductor quantum wells
- Intersubband absorption and scattering processes
- Mid-In and THz ISB Detectors
- Mid-infrared and THz photonics: waveguides, resonators, metamaterials
- Quantum Cascade lasers:
- Mid-IR QCLs
- THz QCLs (direct and non-linear generation)
- further electronic confinement: interlevel Qdot transitions and magnetic field effects
- Strong light-matter coupling in Mid-IR and THz range |
<p>| Lecture notes | The reference book for the lecture is "Quantum Cascade Lasers" by Jerome Faist, published by Oxford University Press. |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture Hours</th>
<th>University Lecturers</th>
</tr>
</thead>
</table>
| 402-0845-80L| Scattering Amplitudes in Quantum Field Theories | 6 | 2V+1U | Mostly the original articles, other useful reading can be found in:
- E. Rosencher and B. Vinter, Optoelectronics, Cambridge Univ. Press
- G. Bastard, Wave mechanics applied to semiconductor heterostructures, Halsted press
Prerequisites / notice: A basic knowledge of solid-state physics and of quantum electronics. |

Abstract: This course provides a pedagogical introduction to an advanced topic in Quantum Field Theories, which has undergone a tremendous progress in the new millennium: scattering amplitudes and on-shell methods. Students that complete the course will be able to understand the basics of the modern methods to compute scattering amplitudes, to perform simple calculations and to read modern publications on this research field.

Content:

- spinor helicity formalism
- colour decompositions
- BCFW on-shell recursion relations
- BCJ colour-kinematics duality
- Feynman integrals: IBPs and differential equations
- analytic and algebraic structure of loop-level amplitudes:
 - Hopf algebras, symbols and coproducts
 - multiple polylogarithms (a.k.a. as iterated integrals on the Riemann sphere)
 - Steinmann relations
 - coaction principle
 - elliptic and modular-form integrals (a.k.a. as iterated integrals on the torus)

Lecture notes: Will be provided at the Moodle site for the course.

Literature: Will be provided at the Moodle site for the course.

Prerequisites / notice: A basic knowledge of Feynman rules in scalar field theories and in Yang-Mills theory is assumed.

402-0845-61L Effective Field Theories for Particle Physics | W | 6 credits | 2V+1U | P. Stoffer
Special Students UZH must book the module PHY578 directly at UZH.

Abstract: The focus of the course is on Effective Field Theories (EFTs) and their interplay with dispersion theory. These topics will be discussed both in general terms and with specific phenomenological applications in the context of physics beyond the Standard Model, effective description of the weak interaction, as well as the description of non-perturbative strong interaction at low energies.

Objective: This course covers the basics concepts of effective field theories (EFTs) and dispersion theory. We will start by introducing the core concept of constructing EFTs and apply them to the low-energy description of the weak interaction and the effective description of heavy physics beyond the Standard Model.

Content:

- Introduction to Effective Field Theories
- Decoupling and matching
- Renormalization group resummation
- The Standard Model Effective Field Theory (SMEFT)
- Chiral Lagrangians
- Unitarity of the S-matrix
- Analyticity and dispersion relations

Prerequisites / notice: QFT-I (mandatory) and QFT-II (highly recommended).

402-0010-00L Basics of Computing Environments for Scientists | Z | 0 credits | C. D. Herzog, C. Becker, S. Müller
Enrollment is only possible under https://www.lehrbetrieb.ethz.ch/laborpraktika
No registration required via myStudies.

Introduction:
- IT at D-PHYS (Herzog): 29.9. 1300
- IT at D-PHYS 2. Termin (Herzog): 7.10. 1300

Modules:

- Linux Basics I (Müller): 13.10. 1300
- Linux Basics II (Müller): 20.10. 1300
- Python Ecosystem I (Becker): 27.10. 1300
- Python Ecosystem II (Becker): 3.11. 1300
- System Aspects (Herzog): 10.11. 1300

Abstract: Introduce IT services at D-PHYS and offer modules covering IT-related topics for scientists.
Objective

The "IT at D-PHYS" introduction provides a good understanding of how IT works at D-PHYS and presents an overview of the IT services and their providers. It is recommended for everyone joining the department.

The remainder is structured into individual modules which can be attended separately. They give practical insights into everyday research-related IT challenges.

The "Linux Basics" modules offer an introduction to the Linux landscape and show how to work on the shell by using command line tools. The first part provides a basic understanding of Linux systems and their components. It introduces commands essential to working with local and remote machines. The second part focuses on more advanced tools and workflows and provides guidelines to scripting, automation and customization.

The "Python Ecosystem" modules present various aspects on the ecosystem around Python, without covering the programming language itself. The first part focuses on getting ready to run code. It discusses the management of Python interpreters, packages and virtual environments. The second part presents tools for writing code. From development environments (IDE, Jupyter), over code formatters and linters, to skimming selected concepts (string formatting, regular expressions).

The "System Aspects module" deals with the hardware-related side of scientific computing. To get the best performance out of your scientific code, you have to be aware of the underlying hardware and adapt to it.

Use the dedicated web page https://www.lehrbetrieb.ethz.ch/laborpraktika to register. Enrolled students are eligible for an attestation of attendance after visiting at least 3 out of the 5 modules. Refer to https://compenv.phys.ethz.ch for the detailed contents.

Content

Introduction:

IT at D-PHYS (IT service providers and IT services at D-PHYS)

Modules:

- Linux Basics I (system components, basic shell usage)
- Linux Basics II (advanced tools, scripting)
- Python Ecosystem I (interpreters, packages, virtual environments)
- Python Ecosystem II (development environments, formatter and linter, string formatting, regexp)
- System Aspects (how the hardware affects your scientific code and vice versa)

402-0442-00L Quantum Optics Dr 10 credits 3V+2U T. Esslinger

Abstract

This course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics covered include the quantum nature of light, semi-classical and quantum mechanical description of light-matter interaction, laser manipulation of atoms and ions, optomechanics and quantum computation.

Objective

The course aims to provide the knowledge necessary for pursuing research in the field of Quantum Optics. Fundamental concepts and techniques of Quantum Optics will be linked to modern experimental research. During the course the students should acquire the capability to understand currently published research in the field.

Content

This course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics that are covered include:

- coherence properties of light
- quantum nature of light: statistics and non-classical states of light
- light matter interaction: density matrix formalism and Bloch equations
- quantum description of light matter interaction: the Jaynes-Cummings model, photon blockade
- laser manipulation of atoms and ions: laser cooling and trapping, atom interferometry,
- further topics: Rydberg atoms, optomechanics, quantum computing, complex quantum systems.

Lecture notes

Selected book chapters will be distributed.

Literature

Text-books:

G. Grynberg, A. Aspect and C. Fabre, Introduction to Quantum Optics
R. Loudon, The Quantum Theory of Light
Atomic Physics, Christopher J. Foot
Advances in Atomic Physics, Claude Cohen-Tannoudji and David Guéry-Odelin
C. Cohen-Tannoudji et al., Atom-Photon-Interactions
M. Scully and M.S. Zubairy, Quantum Optics
Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics

Doctoral Department of Physics - Key for Type

<table>
<thead>
<tr>
<th>W+</th>
<th>Eligible for credits and recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
</tbody>
</table>

Z Courses outside the curriculum
Dr Suitable for doctorate
O Compulsory

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
</tbody>
</table>

P practical/laboratory course
A independent project
D diploma thesis
R revision course / private study

Special students and auditors need special permission from the lecturers.
Agricultural Sciences

Graduate Programme in Plant Sciences

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-4003-01L</td>
<td>Current Topics in Grassland Sciences (HS)</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>A. K. Gilgen</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research results in agro- and forest ecosystem sciences will be presented by experienced researchers as well as Ph.D. and graduate students. Citation classics as well as recent research results will be discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemistry to management aspects in agro- and forest ecosystems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will be able to understand and evaluate experimental design and data interpretation of on-going studies, be able to critically analyze published research results, practice to present and discuss results in the public, and gain a broad knowledge of recent research and current topics in agro- and forest ecosystem sciences.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Research results in agro- and forest ecosystem sciences will be presented by experienced researchers as well as Ph.D. and graduate students. Citation classics as well as recent research results will be discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemistry to management aspects in agro- and forest ecosystems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: Basic knowledge of plant ecophysiology, terrestrial ecology and management of agro- and forest ecosystems. Course will be taught in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

551-0205-00L	Challenges in Plant Sciences (HS)	W	2 credits	2K	S. C. Zeeman, G. Dow, M. Paschke, B. Pfister, further lecturers
Abstract	The colloquium “Challenges in Plant Sciences” is a core class of the Zurich-Basel Plant Science Center’s PhD program and the MSc module. The colloquium introduces participants to the broad spectrum of plant sciences within the network. The course offers the opportunity to approach interdisciplinary topics in the field of plant sciences.				
Objective	Objectives of the colloquium are:				
- Introduction to recent research in all fields of plant sciences					
- Working in interdisciplinary teams on the topics					
- Developing presentation and discussion skills					
Content	The topics encompass integrated knowledge on recent plant research, ranging from the molecular level to the ecosystem level, and from basic to applied science while making use of the synergies between the different research groups within the PSC. More information on the content: https://www.plantsciences.uzh.ch/en/teaching/masters/colloquium.html				
Taught competencies	Domain A - Subject-specific Competencies				
	Concepts and Theories assessed				
	Domain B - Method-specific Competencies				
	Analytical Competencies assessed				
	Domain C - Social Competencies				
	Communication assessed				
	Domain D - Personal Competencies				
	Self-direction and Self-management not assessed				

Environmental Sciences

Atmosphere and Climate

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1239-00L</td>
<td>Aerosols I: Physical and Chemical Principles</td>
<td>W</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>M. Gysel Beer, D. Bell, E. Weingartner</td>
</tr>
<tr>
<td>Abstract</td>
<td>Aerosols I deals with basic physical and chemical properties of aerosol particles. The importance of aerosols in the atmosphere and in other fields is discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Physical and chemical principles:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The students...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- know the processes and physical laws of aerosol dynamics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- understand the thermodynamics of phase equilibria and chemical equilibria.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- know the photo-chemical formation of particulate matter from inorganic and organic precursor gases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental methods:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The students...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- know the most important chemical and physical measurement instruments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- understand the underlying chemistry and physics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental impacts:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The students...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- know the major sources of atmospheric aerosols, their chemical composition and key physical properties.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- know the most important climate impacts of atmospheric aerosols.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>are aware of the health impacts of atmospheric aerosols.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>materiel is distributed during the lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes. For complementary reading: see: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html

Analytical Competencies

Analytical Competencies

- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Communications

- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Adaptability and Flexibility

- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Cloud Microphysics

- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management
- Communication
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 662 of 2152
701-1221-00L Dynamics of Large-Scale Atmospheric Flow

Abstract
This lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostrophic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course.

Objective
Understanding the dynamics of large-scale atmospheric flow.

Content
Dynamical Meteorology is concerned with the dynamical processes of the earth’s atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.

Lecture notes
Dynamics of large-scale atmospheric flow

Literature
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997

Prerequisites / notice
Physics I, II, Environmental Fluid Dynamics

701-1251-00L Land-Climate Dynamics

Abstract
The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.

Objective
The students can understand the role of land processes and associated feedbacks in the climate system.

Content
- Historical review of the scientific research.
- Variability of solar UV radiation from a solar perspective (solar cycle, solar UV variability, impact on the higher atmosphere).
- Retrieval of atmospheric trace gases from solar radiation measurements. Specific examples for retrieving atmospheric ozone, aerosols, and surface albedo.
- Modelling of Solar UV radiation using satellite-based datasets.

Lecture notes
Powerpoint slides will be made available

Literature
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997

Prerequisites / notice
Prerequisites: Introductory lectures in atmospheric and climate science

701-1237-00L Solar Ultraviolet Radiation

Abstract
The lecture will introduce the student to the thematic of solar ultraviolet radiation and its effects on the atmosphere and the biosphere, as well as the retrieval of atmospheric trace gases. The lecture will also cover the modeling and the measurement of solar ultraviolet radiation.

Objective
- Effects of solar UV radiation on the Atmosphere, Humans, and the biosphere in general.
- Measurements of solar UV radiation (ground-based, satellite-based).
- Introduction to radiative transfer modelling, specifically for UV radiation.
- Methods to retrieve atmospheric constituents such as atmospheric ozone and aerosols from solar radiation measurements.
- Modelling of Solar UV radiation using satellite-based datasets.

Content
The Lecture is composed of the following chapters:
1) Introduction and Motivation on the impact of solar UV radiation on the atmosphere, humans, and the biosphere.

2) Historical overview of the scientific research.

3) Variability of solar UV radiation from a solar perspective (solar cycle, solar UV variability, impact on the higher atmosphere).

4) Understanding the variability of ground-based solar UV radiation with respect to the parameters influencing the transfer of solar UV radiation through the atmosphere.

5) Introduction to radiative transfer modeling, with emphasis on solar UV radiation.

6) Instruments to measure solar UV radiation

7) Retrieval of atmospheric trace gases from solar radiation measurements. Specific examples for retrieving atmospheric ozone, aerosols, and surface albedo.

8) Solar UV modelling over Europe at high spatial resolution using satellite-based datasets.

Lecture notes
Lecture notes are based on the slides presented during the individual lectures. They will be handed out prior to the course via Moodle.

Literature
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997

Prerequisites / notice
- Basic mathematical concepts such as Integration of spectral quantities.
- Familiar with a mathematical package such as R, Matlab, Python is advantageous for the calculation of the exercises.
Adaptability and Flexibility
assessed
T. Peter
Water Resources and Drinking Water
assessed
not assessed
assessed
M. Berg, F. Hammes,
R. Knutti,
The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.

Colloquium Atmosphere and Climate 1
not assessed

Hours
2V+1U

W

The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zurich. Students take part of the scientific discussions.

Concepts and Theories
assessed

Analytical Competencies
assessed
Decision-making
not assessed
Media and Digital Technologies
assessed
Problem-solving
assessed
Project Management
not assessed

Communication
not assessed
Cooperation and Teamwork
not assessed
Customer Orientation
not assessed
Leadership and Responsibility
not assessed
Self-presentation and Social Influence
not assessed
Sensitivity to Diversity
not assessed
Negotiation
not assessed

Adaptability and Flexibility
not assessed
Creative Thinking
assessed
Critical Thinking
assessed
Integrity and Work Ethics
not assessed
Self-awareness and Self-reflection
not assessed
Self-direction and Self-management
not assessed

Stratospheric Chemistry
W 4 credits 2V+1U T. Peter, G. Chiodo

Abstract
The lecture gives an overview on the manifold reactions which occur in the gas phase, in stratospheric aerosol droplets and in polar cloud particles. The focus is on the chemistry of stratospheric ozone and its influence through natural and anthropogenic effects, especially the ozone depletion caused by FCKW in mid-latitude and polar regions as well as the coupling with the greenhouse effect.

Objective
The students will understand the gas phase reactions in the stratosphere as well as reactions and processes in aerosol droplets and polar stratospheric clouds.

Content
Short presentation of thermodynamical and kinetic basics of chemical reactions: bi- and termolecular reactions, photo-dissociation. Introduction to the chemical family concept: active species, their source gases and reservoir gases. Detailed treatment of the pure oxygen family (odd oxygen) according to the Chapman reaction. Radical reactions of the oxygen species with nitric oxide, active halogens (chlorine and bromine) and odd hydrogen. Ozone depletion cycles. Methane depletion and ozone production in the lower stratosphere (photo-smog reactions). Heterogeneous chemistry on the background aerosol and its significance for heavy air traffic. Chemistry and dynamics of the ozone hole: formation of polar stratospheric clouds and chlorine activation.

Prerequisites / notice
Prerequisites: Basics in physical chemistry are required and an overview equivalent to the bachelor course in atmospheric chemistry (lecture 701-0471-01) is expected.

701-1233-00L starts in the first week of the semester. The exercises 701-1233-00 U will start only in the 2nd week of the semester.

Master’s Seminar: Atmosphere and Climate 1
Target groups only:
Master Environmental Science
Master Atmospheric and Climate Science

Abstract
In this seminar, the process of writing a scientific proposal will be introduced. The essential elements of a proposal, including the peer review process, will be outlined and class exercises will train scientific writing skills. Knowledge exchange between class participants is promoted through the preparation of a master thesis proposal and evaluation of each other’s work.

Objective
Training scientific writing skills.

Content
In this seminar, the process of writing a scientific proposal will be introduced. The essential elements of a proposal, including the peer review process, will be outlined and class exercises will train scientific writing skills. Knowledge exchange between class participants is promoted through the preparation of a master thesis proposal and evaluation of each other’s work.

Prerequisites / notice
Attendance is mandatory.

Colloquium Atmosphere and Climate 1

Abstract
The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zurich. Students take part of the scientific discussions.

Objective
The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.

Biogeochemistry and Pollutant Dynamics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1341-00L</td>
<td>Water Resources and Drinking Water</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Hug, M. Berg, F. Hammes, U. von Gunten</td>
</tr>
</tbody>
</table>
The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.

The goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.

The course introduces the scientific concepts and typical applications of tracers in biogeochemistry. The course covers stable and radioactive isotopes, geochemical tracers and biomarkers and their application in biogeochemical processes as well as regional and global cycles. The course provides essential theoretical background for the lab course “Isotopic and Organic Tracers Laboratory”.

The course aims at understanding the fractionation of stable isotopes in biogeochemical processes. Students learn to know the origin and decay modes of relevant radiogenic isotopes. They discover the spectrum of possible geochemical tracers and biomarkers, their potential and limitations and get familiar with important applications

Geogenic and cosmogenic radionuclides (sources, decay chains); stable isotopes in biogeochemistry (natural abundance, fractionation); geochemical tracers for processes such as erosion, productivity, redox fronts; biomarkers for specific microbial processes.

The course aims at understanding the fractionation of stable isotopes in biogeochemical processes. Students learn to know the origin and decay modes of relevant radiogenic isotopes. They discover the spectrum of possible geochemical tracers and biomarkers, their potential and limitations and get familiar with important applications

A list of relevant books and papers will be provided

Biogeochemistry of Trace Elements

This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.

The goal of the course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences.

From the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group.

Students should have a basic knowledge of biogeochemical processes (BSc course on Biogeochemical processes in aquatic systems or equivalent)

A list of relevant books and papers will be provided

Surveyed expectations of the students will be distributed during the course.

The course addresses the addresses the biogeochemical classification and behavior of trace elements, including key processes driving the cycling of important trace elements in aquatic and terrestrial environments and the coupling of abiotic and biotic transformation processes of trace elements. Examples of the role of trace elements in natural or engineered systems will be presented and discussed in the course.

The students are familiar with the chemical characteristics, the environmental behavior and fate, and the biogeochemical reactivity of different groups of trace elements. They are able to apply their knowledge on the interaction of trace elements with geosphere components and on abiotic and biotic transformation processes of trace elements to discuss and evaluate the behavior and impact of trace elements in aquatic and terrestrial systems.

(i) Definition, importance and biogeochemical classification of trace elements. (ii) Key biogeochemical processes controlling the cycling of different trace elements (base metals, redox-sensitive and chalcophile elements, volatile trace elements) in natural and engineered environments. (iii) Abiotic and biotic processes that determine the environmental fate and impact of selected trace elements.

860-0012-00L Cooperation and Conflict Over International Water Resources

This is a research seminar at the Master level. PhD students are also welcome.

This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.

Ability to (1) understand the causes and consequences of water scarcity and water pollution problems in large international river systems; (2) understand ways and means of addressing such water challenges; and (3) analyze when and why international efforts in this respect succeed or fail.

Based on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in small teams coached by the instructors, carry out research on a case of their choice (i.e., an international river basin where riparian countries are trying to find solutions to water allocation and/or water quality problems associated with a large dam project). They will write a brief paper and present their findings towards the end of the semester.
Ecology and Evolution

Course Overview

Students of this course will discuss current topics from the field of infectious disease biology. From a list of publications, each student chooses some themes that he/she is going to explain and discuss with all other participants and under supervision. The actual topics will change from year to year corresponding to the progress and new results occurring in the field.

Literature

Papers will be assigned and downloaded from a web page announced during the lecture. Slides and reading materials will be distributed electronically. The course is open to Master and PhD students from any area of ETH. ISTP students who take this course should also register for the course 860-0012-01L - Cooperation and conflict over international water resources; In-depth case study.

Course Structure

- **Seminar in Evolutionary Ecology of Infectious Diseases (701-0263-01L)**
 - **Type:** W
 - **ECTS:** 3 credits
 - **Hours:** 2G
 - **Lecturers:** R. R. Regös, S. Bonhoeffer

- **Ecological Assessment and Evaluation (701-1453-00L)**
 - **Type:** W
 - **ECTS:** 3 credits
 - **Hours:** 3G
 - **Lecturers:** F. Knaus

- **Research Seminar: Ecological Genetics (701-1409-00L)**
 - **Type:** W
 - **ECTS:** 2 credits
 - **Hours:** 1S
 - **Lecturers:** S. Fior

- **Genetic Diversity: Techniques (701-1425-01L)**
 - **Type:** W
 - **ECTS:** 2 credits
 - **Hours:** 4P
 - **Lecturers:** A. M. Minder Pflyl

- **Genomics of Environmental Adaptation (701-1676-01L)**
 - **Type:** W
 - **ECTS:** 2 credits
 - **Hours:** 3G
 - **Lecturers:** R. Holderegger, F. Gugerli, C. Rellstab

Prerequisites

- **Minimum number of participants is 5.**
- **Active and regular participation in the discussions, together with the presentation of a scientific paper are required to successfully pass this course.**
- **No enrollment possible after October 18th, 2021.**
- **Waiting list will be deleted November 1st, 2021.**
- **Waiting list will be deleted January 20th, 2022.**
- **Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses:**
 - Pflanzen- und Vegetationsökologie
 - Systematische Botanik
 - Raum- und Regionalentwicklung
 - Naturschutz und Naturschutzbiologie

Materials

- Powerpoint slides are available on the webpage. Additional documents are handed out as copies.
- Basic literature and references are listed on the webpage.
- The course structure changes between lecture parts, seminars and discussions. The didactic atmosphere is intended as working group.

Additional Information

- **Waiting list will be deleted November 1st, 2021.**
- **Waiting list will be deleted January 20th, 2022.**
- **Prerequisites:** good knowledge in population genetics and some experience in using GIS and R is required.
This five-day winter school aims at teaching advanced Master students, PhD students and post-doctoral researchers on aspects of the genomics of environmental adaptation. It provides both theoretical background and hands-on exercises on major topics of contemporary environmental genomics such as signatures of selection, outlier analysis or environmental association analysis.

Key questions that this course seeks to answer: What are the core characteristics of environmental challenges from a policy perspective? What are the key elements of environmental governance and how legitimate and effective are these approaches in addressing persistent environmental problems? What are key elements of 'environmental governance' and how legitimate and effective are these approaches in addressing persistent environmental problems?

To analyze the evolution as well as the key elements of environmental governance.

To be able to identify the main challenges and opportunities for environmental governance and to critically discuss them with reference to various practical policy examples.

In this course, we will address both the practical aspects of as well as the scientific debate on environmental governance. The course gives future environmental experts a strong basis to position themselves in the governance debate, which does not preclude government but rather involves a spectrum from government to governance.

For information, location and details: http://www.tb.ethz.ch/education/zis.html
Science and Technology Policy is normally associated with the improvement of national competitiveness; yet, it is also an integral part of effective environmental and development policies. The course will discuss the challenges and opportunities of technological change in terms of sustainable development and show how public policy on the national and the international level is responding to this change.

In this context, students are to become familiar with the basic principles of political economy and New Growth Theory and how such theories help explain political decisions as well as political outcomes in the area of Science, Technology and Innovation. State interventions are either designed to regulate (e.g. environmental regulations, anti-trust law) or facilitate (e.g. intellectual property rights protection, public investment in R&D and technical education, technology transfer) technological change. This will be illustrated by looking at different industries and different national systems of innovation. Subsequently the positive and negative consequences for society and the natural environment will be discussed from a short-term and a long-term perspective.

The course will discuss the challenges and opportunities of technological change in terms of sustainable development and show how public policy on the national and the international level is responding to this change.

In this context, students are to become familiar with the basic principles of political economy and New Growth Theory and how such theories help explain political decisions as well as political outcomes in the area of Science, Technology and Innovation. State interventions are either designed to regulate (e.g. environmental regulations, anti-trust law) or facilitate (e.g. intellectual property rights protection, public investment in R&D and technical education, technology transfer) technological change. This will be illustrated by looking at different industries and different national systems of innovation. Subsequently the positive and negative consequences for society and the natural environment will be discussed from a short-term and a long-term perspective.

The course will discuss the challenges and opportunities of technological change in terms of sustainable development and show how public policy on the national and the international level is responding to this change.

In this context, students are to become familiar with the basic principles of political economy and New Growth Theory and how such theories help explain political decisions as well as political outcomes in the area of Science, Technology and Innovation. State interventions are either designed to regulate (e.g. environmental regulations, anti-trust law) or facilitate (e.g. intellectual property rights protection, public investment in R&D and technical education, technology transfer) technological change. This will be illustrated by looking at different industries and different national systems of innovation. Subsequently the positive and negative consequences for society and the natural environment will be discussed from a short-term and a long-term perspective.
The 2-hour course (5-7 p.m.) will be held as a series of lectures. The course materials will be available in form of an electronic Reader at the beginning of the semester.

The class will be taught in English.

Students will be asked to make a contribution in class choosing one out of three options:
(a) presentation in class (15 Minutes) based on a paper to be discussed on a particular day in class
(b) review paper based on a selected publication in the course material
(c) preparation of questions for a selected invited speaker, and subsequent submission of protocol about the content of the talk and the discussion

In addition, they will have to pass a written test at the end of the course in order to obtain 3 credit points in the ECTS System. In the final mark (a) will have a weight of 40% and (b) 60%.

701-1551-00L Sustainability Assessment 3 credits 2G P. Krüttli, D. Nef

Waiting list will be deleted October 1st, 2021.

Abstract

The course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability. The format of the course is seminar-like, interactive.

Objective

At the end of the course, students:
- know core concepts of sustainable development, main features of social justice in the context of sustainability, a selection of methodologies for the assessment of sustainable development
- have a deepened understanding of the challenges of trade-offs between the different dimensions of sustainable development and their respective impacts on individual and societal decision-making

Content

The course is structured as follows:
- overview of rationale, objectives, concepts and origins of sustainable development (approx. 15%)
- overview of the concept of social justice as guiding principle of the social dimension of sustainability (approx. 20%)
- analysis of a selection of concepts and methodologies to assess sustainable development in a variety of contexts (approx. 65%)

Lecture notes

Handouts are provided

Literature

Selected scientific articles and book-chapters

Prerequisites / notice

Students of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L)

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
 - Taught
- Techniques and Technologies
 - Taught

Domain C - Social Competencies
- Communication
 - Taught
- Cooperation and Teamwork
 - Not assessed

Domain D - Personal Competencies
- Creative Thinking
 - Not assessed
- Critical Thinking
 - Not assessed

Forest and Landscape Management

Number Title Type ECTS Hours Lecturers

701-1615-00L Advanced Forest Pathology W 3 credits 2G S. Prospero

Abstract

In-depth understanding of concepts, insight into current research and experience with methods of Forest Pathology based on selected pathosystems.

Objective

To know current biological and ecological research on selected diseases, to be able to comment on it and to understand the methods. To understand the dynamics of selected pathosystems and disturbance processes.

Content

Stress and disease, virulence and resistance, disease diagnosis and damage assessment, tree disease epidemiology, disease management, ecosystem pathology.

Systems (examples): Air pollution and trees, endophytic fungi, mycorrhiza, wood decay, conifer- root rot, Phytophthora diseases, chestnut canker and its hypoviruses, urban trees, complex diseases, emerging diseases

Lecture notes

No script, the ppt-presentations and specific articles will be made available among others:

Prerequisites / notice

The course is composed of introductory lectures, practical work, discussions and reading. The participants should have basic knowledge in forest pathology (corresponding to the course 701-0563-00 “Wald- und Baumkrankheiten, see teaching book of H. Butin: Tree diseases and disorders, Oxford University Press 1995. 252 pp.).

701-1631-00L Foundations of Ecosystem Management W 5 credits 3G J. Ghazoul, C. Garcia, J. Garcia Ulloa, A. Giger Dray

Abstract

This course introduces the broad variety of conflicts that arise in projects focusing on sustainable management of natural resources. It explores case studies of ecosystem management approaches and considers their practicability, their achievements and possible barriers to their uptake.

Objective

Students should be able to
a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales.

b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management.
Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

Lecture notes
No Script

Literature

701-1651-00L Environmental Governance W 6 credits 3G E. Lieberherr

Abstract
The course addresses environmental policies, focusing on new steering approaches, which are generally summarized as environmental governance. The course also provides students with tools to analyze environmental policy processes and assesses the key features of environmental governance by examining various practical environmental policy examples.

Objective
To understand how an environmental problem may (not) become a policy and explain political processes, using basic concepts and techniques from political science.

To analyze the evolution as well as the key elements of environmental governance.

Content
Improvements in environmental quality and sustainable management of natural resources cannot be achieved through technical solutions alone. The quality of the environment and the achievement of sustainable development strongly depend on human behavior and specifically the human uses of nature. To influence human behavior, we rely on public policies and other societal rules, which aim to steer the way humans use natural resources and their effects on the environment. Such steering can take place through government intervention alone. However, this often also involves governance, which includes the interplay between governmental and non-governmental actors, the use of diverse tools such as emission standards or financial incentives to steer actors’ behavior and can occur at the local, regional, national or international level.

In this course, we will address both the practical aspects of as well as the scientific debate on environmental governance. The course gives future environmental experts a strong basis to position themselves in the governance debate, which does not preclude government but rather involves a spectrum from government to governance.

Key questions that this course seeks to answer: What are the core characteristics of environmental challenges from a policy perspective? What are key elements of ‘environmental governance’ and how legitimate and effective are these approaches in addressing persistent environmental challenges?

Lecture notes
Lecture slides and additional course material will be provided on Moodle.

Literature
We will mostly work with readings from the following books:

Prerequisites / notice
A detailed course schedule will be made available at the beginning of the semester.
During the lecture we will work with Moodle. We ask that all students register themselves on this platform before the lecture.

We recommend that students have (a) three-years BSc education of a (technical) university; (b) successfully completed Bachelor introductory course to environmental policy (Entwicklungen nationaler Umweltpolitik (or equivalent)) and (c) familiarity with key issues in environmental policy and some fundamental knowledge of one social science or humanities discipline (political science, economics, sociology, history, psychology, philosophy).

Taught competencies

751-5125-00L Stable Isotope Ecology of Terrestrial Ecosystems W 2 credits 2G R. A. Werner, N. Buchmann, A. Gessler, M. Lehmann

Number of participants limited to 20.
I. Hajnsek

The students will be familiar with basic and advanced applications of stable isotopes in studies on plants, soils, water and trace gases, knowing the relevant approaches, concepts and recent results in stable isotope ecology, knowing how to combine classical and modern techniques to solve ecophysiological or ecological problems, learn to design, carry out and interpret a small IsoProject, practice to search and analyze literature as well as to give an oral presentation.

Content

The analyses of stable isotopes often provide insights into ecophysiological and ecological processes that otherwise would not be available with classical methods only. Stable isotopes proved useful to determine origin of pools and fluxes in ecosystems, to partition composite fluxes and to integrate processes spatially and temporally.

This course will provide an introduction to the applicability of stable isotopes to ecological research questions. Topics will focus on carbon (13C), nitrogen (15N), oxygen (18O) and hydrogen (2H) at natural isotope abundance and tracer levels. Lectures will be supplemented by intensive laboratory sessions, short presentations by students and computer exercises.

Lecture notes

Handouts will be available on the webpage of the course.

Literature

This course is based on fundamental knowledge about plant ecophysiology, soil science, and ecology in general. Course will be taught in English.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1682-00L</td>
<td>Dendroecology</td>
<td>3 credits</td>
<td>Prerequisites / notice</td>
<td>Basic knowledge of ArcGIS is assumed.</td>
</tr>
</tbody>
</table>

Waiting list will be deleted September 14th, 2021.
Content
- Overview and history of dendrochronology
- Principles of dendrochronology
- Formation and structure of wood and tree rings
- Wood anatomy and intra-seasonal tree-ring growth
- Continuous and discontinuous tree-ring characteristics
- Sampling and measuring of tree rings
- Crossdating methods (visual, skeleton plots, quantitative)
- Detrending and standardization of tree-ring series
- Development of tree-ring chronologies
- Water transport in trees
- Stable isotopes in tree rings
- Climate influences, climate-growth relationships, climate reconstructions
- Reconstruction of forest dynamics (regeneration, growth, competition, mortality)
- Disturbance ecology (fire, insects, blowdown)
- Application of tree-ring research in practice and in interdisciplinary research projects
- Field and lab day (date for one entire day or two half days will be searched together with the students in the beginning of the semester): discussion of different dendroecological questions in the forest: sampling of trees; insight into different tree-ring projects in the lab (Swiss Federal Institute for Forest, Snow and Landscape Research WSL)

Lecture notes
Lecture notes (in English) will be handed out in the class.

Literature
Literature lists will be handed out in the class.

Prerequisites / notice
Time schedule (total of 90 hours): There will be 12 lectures with each two hours (total of 24 hours presence) as well as a field and lab day (8 hours presence). In addition, the students are expected to put 18 hours into the preparation of the lectures as well as 18 hours for the exercises. 4 hours are reserved for the lab work and 18 hours for the project.

The class language is German and English, on request English only.

Requirements:
Basics of biology, ecology and forest ecology

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 672 of 2152
Objective
The course will provide students with opportunities to read, discuss, evaluate and interpret key texts that have shaped the environmental movement and, more specifically, the environmental sciences. Students will gain familiarity with the foundational texts, but also understand the historical context within which their academic and future professional work is based. More directly, the course will encourage debate and discussion of each text that is studied, from both the original context as well as the modern context. In so doing students will be forced to consider and justify the current societal relevance of their work.

Content
The course will be run as a book reading club. The first session will provide a short introduction as to how to explore a particular text (that is not a scientific paper) to identify the key points for discussion.

Thereafter, in each week a text (typically a chapter from a book or a paper) considered to be seminal or foundational will be assigned by a course lecturer. The lecturer will introduce the selected text with a brief background of the historical and cultural context in which it was written, with some additional biographical information about the author. He/she will also briefly explain the justification for selecting the particular text.

The students will read the text, with two to four students (depending on class size) being assigned to present it at the next session. Presentation of the text requires the students to prepare by, for example:

- identifying the key points made within the text
- identifying issues of particular personal interest and resonance
- considering the impact of the text at the time of publication, and its importance now
- evaluating the text from the perspective of our current societal and environmental position

Such preparation would be supported by a mid-week tutorial discussion (about 1 hour) with the assigning lecturer.

These students will then present the text (for about 15 minutes) to the rest of the class during the scheduled class session, with the lecturer facilitating the subsequent class discussion (about 45 minutes). Towards the end of the session the presenting students will summarise the emerging points (5 minutes) and the lecturer will finish with a brief discussion of how valuable and interesting the text was (10 minutes). In the remaining 15 minutes the next text will be presented by the assigning lecturer for the following week.

Literature
The specific texts selected for discussion will vary, but examples include:

- Leopold (1949) A Sand County Almanach
- Carson (1962) Silent Spring
- Jared Diamond (2005) Collapse

Discussions might also encompass films or other forms of media and communication about nature.

701-3001-00L Environmental Systems Data Science

Objective
Students are introduced to a typical data science workflow using various examples from environmental systems. They learn common methods and key aspects for each step through practical application. The course enables students to plan their own data science project in their specialization and to acquire more domain-specific methods independently or in further courses.

Content
- The data science workflow
- Access and handle (large) datasets
- Prepare and clean data
- Analysis: data exploratory steps
- Analysis: machine learning and computational methods
- Evaluate results and analyse uncertainty
- Visualisation and communication

Prerequisites / notice
252-0840-02L Anwendungsnahes Programmieren mit Python
401-0624-00L Mathematik IV: Statistik
401-0621-00L Using R for Data Analysis and Graphics (Part I)
401-0621-00L Using R for Data Analysis and Graphics (Part II)
701-0105-00L Mathematik VI: Angewandte Statistik für Umwelt- und Naturwissenschaften

851-0180-00L Research Ethics

Objective
Participants of the course Research Ethics will

- Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
- Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles), and their ability to use these skills in assessing other people’s arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;
- Particularly suitable for students of D-BIOL, D-CHAB, D-HEST

Notice
Number of participants limited to 40
Content

I. Introduction to Moral Reasoning
1. Ethics - the basics
1.1 What ethics is not… 1.2 Recognising an ethical issue (awareness) 1.3 What is ethics? Personal, cultural and ethical values, principles and norms 1.4 Ethics: a classification 1.5 Research Ethics: what is it and why is it important?

2. Normative Ethics
2.1 What is normative ethics? 2.2 Types of normative theories – three different ways of thinking about ethics: Virtue theories, duty-based theories, consequentialist theories 2.3 The plurality of normative theories (moral pluralism); 2.4 Roles of normative theories in “Research Ethics”

3. Decision making: How to solve a moral dilemma
3.1 How (not) to approach ethical issues 3.2 What is a moral dilemma? Is there a correct method for answering moral questions? 3.3 Methods of making ethical decisions 3.4 Is there a “right” answer?

II. Research Ethics - Internal responsibilities
1. Integrity in research and research misconduct
1.1 What is research integrity and why is it important? 1.2 What is research misconduct? 1.3 Questionable/Detrimental Research Practice (QRP/DRP) 1.4 What is the incidence of misconduct? 1.5 What are the factors that lead to misconduct? 1.6 Responding to research wrongdoing 1.7 The process of dealing with misconduct 1.8 Approaches to misconduct prevention and for promoting integrity in research

2. Data Management
2.1 Data collection and recordkeeping 2.2 Analysis and selection of data 2.3 The (mis)representation of data 2.4 Ownership of data 2.5 Retention of data 2.6 Sharing of data (open research data) 2.7 The ethics of big data

3. Publication ethics / Responsible publishing
3.1 Background 3.2 Criteria for being an author 3.3 Ordering of authors 3.4 Publication practices

III. Research Ethics – External responsibilities
1. Research involving human subjects
1.1 History of research with human subjects 1.2 Basic ethical principles – The Belmont Report 1.3 Requirements to make clinical research ethical 1.4 Social value and scientific validity 1.5 Selection of study participants – the concept of vulnerability 1.6 Favourable risk-benefit ratio 1.7 Independent review - Ethics Committees 1.8 Informed consent 1.9 Respect for potential and enrolled participants

2. Social responsibility
2.1 What is social responsibility? a) Social responsibility of the individual scientist b) Social responsibility of the scientific community as a whole; 2.2 Participation in public discussions: a) Debate & Dialogue b) Communicating risks & uncertainties c) Science and the media 2.3 Public advocacy (policy making)

3. Dual use research
3.1 Introduction to Dual use research 3.2 Case study – Censuring science? 3.3 Transmission studies for avian flu (H5N1) 3.4 Synthetic biology

Lecture notes
Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.

Prerequisites / notice
What are the requirements?
First and foremost your strong willingness to seriously achieve the main learning outcomes as indicated in the Course Catalogue (specific learning outcomes for each module will be provided at the beginning of the course). For successfully completing the course Research Ethics, the following commitment is absolutely necessary (but not sufficient) (observed success factors for many years!):
1. Your regular presence is absolutely required (so please no double, parallel enrollment for courses taking place at the identical time!) connected with your active participation during class, e.g. taking notes, contributing to discussions (in group as well as in plenary class), solving exercises.
2. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more…).

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Decision-making	assessed	
Problem-solving	assessed	
Domain C - Social Competencies	Communication	assessed
Cooperation and Teamwork	assessed	
Domain D - Personal Competencies	Creative Thinking	assessed
Critical Thinking	assessed	
Integrity and Work Ethics	assessed	
Self-awareness and Self-reflection	assessed	

Additional Courses

Course Catalogue of ETH Zurich

Doctoral Department of Environmental Sciences - Key for Type

Dr	Suitable for doctorate
O	Compulsory
W+	Eligible for credits
W	Eligible for credits and recommended
E-	Recommended, not eligible for credits
Z	Courses outside the curriculum
Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
Digital Circuits

Number: 227-0003-00L
Title: Digital Circuits
Type: O
ECTS: 4 credits
Hours: 2V+2U
Lecturers: M. Luisier

Abstract
Digital and analogue signals and their representation, logic gates, transistors, combinational and sequential circuits and systems, boolean algebra, Karnaugh-maps, finite state machines, memory and computing building blocks in CMOS technology.

Objective
Provide basic knowledge and methods to understand and to design digital circuits and systems.

Content
Digital and analogue signals and their representation. Boolean Algebra, circuit analysis and synthesis, the MOS transistor, CMOS logic, static and dynamic behaviour, Karnaugh-Maps, hazards, binary number systems, coding. Combinational and sequential circuits and systems (boolean algebra, K-maps, etc.). Memory building blocks and memory structures, programmable logic circuits. Finite state machines, architecture of microprocessors.

Lecture notes
Lecture notes for all lessons, assignments and solutions.

Literature

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Linear Algebra

Number: 401-0151-00L
Title: Linear Algebra
Type: O
ECTS: 5 credits
Hours: 3V+2U
Lecturers: V. C. Gradinaru

Abstract
Contents: Linear systems - the Gaussian algorithm, matrices - LU decomposition, determinants, vector spaces, least squares - QR decomposition, linear maps, eigenvalue problem, normal forms - singular value decomposition; numerical aspects; introduction to MATLAB.

Objective
Einführung in die Lineare Algebra für Ingenieure unter Berücksichtigung numerischer Aspekte
eigenes Aufschrieb und K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002

Lecture notes
K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Networks and Circuits I

Number: 227-0001-00L
Title: Networks and Circuits I
Type: O
ECTS: 4 credits
Hours: 2V+2U
Lecturers: C. Franck

Abstract
This course introduces the students into the basics of electric circuits, the underlying physical phenomena and required mathematical methods.

Objective
Voltage, current and properties of basic elements of electric circuits, i.e. capacitors, resistors and inductors should be understood in relation to electric and magnetic fields. Furthermore, the students should be able to mathematically describe, analyze and finally design technical realizations of circuit elements. Students should also be familiar with the calculation of voltage and current distributions of DC circuits. The effect and the mathematical formulation of magnetic induction should be known for technical applications.

Content
Electrostatic field; Stationary electric current flow; Basic electric circuits; current conduction mechanisms; time variant electromagnetic field.

Lecture notes
and lecture notes

Literature
Manfred Albach, Elekrotechnik
978-3-86894-398-6 (2020)
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: not assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: not assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: not assessed
- Integrity and Work Ethics: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

151-0223-10L Engineering Mechanics
- Type: O
- ECTS: 4 credits
- Hours: 2V+2U+1K
- Lecturer: P. Tiso

Abstract
Introduction to engineering mechanics: kinematics, statics and dynamics of rigid bodies and systems of rigid bodies.

Objective
Students can solve problems of elementary engineering mechanics.

Content
Basic notions: position and velocity of particles, rigid bodies, planar motion, kinematics of rigid body, force, couple, power.
Statics: static equivalence, force-couple system, center of forces, centroid, principle of virtual power, equilibrium, constraints, statics, friction.
Dynamics: acceleration, inertial forces, d'Alembert's Principle, Newton's Second Law, principles of linear and angular momentum, equations of planar motion of rigid bodies.

Lecture notes
yes, in German

Literature

First Year Examination Block B

Number Title Type ECTS Hours Lecturers
401-0231-10L Analysis 1 O 8 credits 4V+3U T. Rivière

Abstract
Reelle und komplexe Zahlen, Grenzwerte, Folgen, Reihen, Potenzreihen, stetige Abbildungen, Differential- und Integralrechnung einer Variablen, Einführung in gewöhnliche Differentialgleichungen

Objective
Einführung in die Grundlagen der Analysis

Lecture notes
Christian Blatter: Ingenieur-Analysis (Kapitel 1-4)

Literature
Konrad Koenigsberger, Analysis I.
Christian Blatter, Analysis I.

First Year Compulsory Laboratory Courses

Number Title Type ECTS Hours Lecturers
227-0005-10L Digital Circuits Laboratory O 1 credit 1P A. Emboras, M. Luisier

Abstract
Digital and analogue signals and their representation. Combinational and sequential circuits and systems, boolean algebra, Karnaugh-maps. Finite state machines. Memory and computing building blocks in CMOS technology, programmable logic circuits.

Objective
Deepen and extend the knowledge from lecture and exercises, usage of design software Quartus II as well as an oscilloscope

Content
The contents of the digital circuits laboratory will deepen and extend the knowledge of the correspondent lecture and exercises. With the help of the logic device design software Quartus II different circuits will be designed and then tested on an evaluation board. You will build up the control for a 7-digit display as well as an adder and you will create different types of latches and flip-flops. At the end of the laboratory a small synthesizer will be programmed that is able to play self-created melodies. At the same time the usage of a modern oscilloscope will be taught in order to analyse the programmed circuits through the digital and analogue inputs.

Lecture notes
Lecture notes for all experiments.
https://iis-students.ee.ethz.ch/lectures/digital-circuits/praktikum/

Prerequisites / notice
No special prerequisites
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed

Preparatory Course in Computer Science

252-0865-00L

Abstract
The course provides an elementary introduction to programming with C++. Prior programming experience is not required.

Objective
Establish an understanding of basic concepts of imperative programming and how to systematically approach programming problems. Students are able to read and write simple C++ programs.

Content
This course introduces you to the basics of programming with C++. Programming means instructing a computer to execute a series of commands that ultimately solve a particular problem.

The course comprises the following:
- General introduction to computer science: development, goals, fundamental concepts
- Interactive self-study tutorial that provides an introduction to C++ and covers the following topics: variables, data types, conditional statements and loops
- Introduction to stepwise refinement as an approach to systematically solving programming problems
- Two small programming projects, to practically apply the studied fundamentals

Lecture notes
All teaching material is available online; an online development environment is used for the programming projects.

3rd Semester: Examination Blocks

Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0353-00L</td>
<td>Analysis 3</td>
<td>O</td>
<td>4</td>
<td>2V+2U</td>
<td>M. Iacobelli</td>
</tr>
</tbody>
</table>

Abstract
In this lecture we treat problems in applied analysis. The focus lies on the solution of quasilinear first order PDEs with the method of characteristics, and on the study of three fundamental types of partial differential equations of second order: the Laplace equation, the heat equation, and the wave equation.

Objective
The aim of this class is to provide students with a general overview of first and second order PDEs, and teach them how to solve some of these equations using characteristics and/or separation of variables.

Content
1.) General introduction to PDEs and their classification (linear, quasilinear, semilinear, nonlinear / elliptic, parabolic, hyperbolic)

2.) Quasilinear first order PDEs
 - Solution with the method of characteristics
 - Conservation laws

3.) Hyperbolic PDEs
 - wave equation
 - d'Alembert formula in (1+1)-dimensions
 - method of separation of variables

4.) Parabolic PDEs
 - heat equation
 - maximum principle
 - method of separation of variables

5.) Elliptic PDEs
 - Laplace equation
 - maximum principle
 - method of separation of variables
 - variational method

Literature

Prerequisites / notice
Prerequisites: Analysis I and II, Fourier series (Complex Analysis)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0053-00L</td>
<td>Physics II</td>
<td>O</td>
<td>8</td>
<td>4V+2U</td>
<td>G. Scalari</td>
</tr>
</tbody>
</table>

Abstract
The goal of the Physics II class is an introduction to quantum mechanics

Objective
To work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated.
Content

- Wave mechanics: the old quantum theory
- Postulates and formalism of Quantum Mechanics
- First application: the quantum well and the harmonic Oscillator
- QM in three dimension: the Hydrogen atom
- Identical particles: Paul's principle
- Crystalline Systems and band structures
- Quantum statistics
- Approximation Methods
- Applications in Engineering
- Entanglement and superposition

Lecture notes

Lecture notes (hand-written) will be distributed via the Moodle interface

Literature

Prerequisites / notice

Prerequisites: Physics I.

227-0045-00L Signals and Systems I O 4 credits 2V+2U H. Bölcskei

Abstract

Objective

Introduction to mathematical signal processing and system theory.

Content

Lecture notes

Lecture notes, problem set with solutions.

252-0836-00L Computer Science II O 4 credits 2V+2U M. Schwerhoff, F. O. Friedrich Wicker

Abstract

The course provides the foundations for the design and analysis of algorithms. Classical problems ranging from sorting up to problems on graphs are used to discuss common data structures, algorithms and algorithm design paradigms.

The course also comprises an introduction to parallel and concurrent programming.

Objective

An understanding of the analysis and design of fundamental and common algorithms and data structures. Knowledge regarding chances, problems and limits of parallel and concurrent programming.

Content

Data structures and algorithms: mathematical tools for the analysis of algorithms (asymptotic function growth, recurrence equations, recurrence trees), informal proofs of algorithm correctness (invariants and code transformation), design paradigms for the development of algorithms (induction, divide-and-conquer, backtracking and dynamic programming), classical algorithmic problems (searching, selection and sorting), data structures for different purposes (linked lists, hash tables, balanced search trees, heaps, union-find), further tools for runtime analysis (generating functions, amortized analysis). The relationship and tight coupling between algorithms and data structures is illustrated with graph algorithms (traversals, topological sort, closure, shortest paths, minimum spanning trees).

Parallel programming: structure of parallel architectures (multicore, vectorization, pipelining) concepts of parallel programming (Amdahl's and Gustavson's laws, task/data parallelism, scheduling), problems of concurrency (data races, bad interleavings, memory reordering), process synchronisation and communication in a shared memory system (mutual exclusion, semaphores, monitors, condition variables).

The concepts are underpinned with examples of concurrent and parallel programs and with parallel algorithms, implemented in C++.

In general, the concepts provided in the course are motivated and illustrated with practically relevant algorithms and applications.

Exercises are carried out in Code-Expert, an online IDE and exercise management system.

All required mathematical tools above high school level are covered, including an introduction to graph theory.

Lecture notes

tba

Literature

Prerequisites / notice

Prerequisite: Computer Science I

Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0077-10L</td>
<td>Electronic Circuits</td>
<td>O</td>
<td>4</td>
<td>2V+2U</td>
<td>T. Burger</td>
</tr>
</tbody>
</table>

Abstract

Introductory lecture on electronic circuits. Transistor fundamentals, analysis and design of transistor based electronic circuits such as amplifiers and filters; operational amplifiers and circuits based thereon.

Objective

Modern, transistor-based electronics has transformed our lives and plays a crucial role in our economy since the 2nd half of last century. The main objective of this course in electronic circuits is to introduce the concept of the active device, including operational amplifiers, and their use in amplification, signal conditioning, switching and filtering to students. In addition to gaining experience with typical electronic circuits that are found in common applications, including their own Gruppenarbeit and Fachpraktikum projects, students sharpen their understanding of linear circuits based on nonlinear devices, imperfections of electronic circuits and the concept of design (as opposed to analysis). The course is a prerequisite for higher semester subjects such as analog integrated circuits, RF circuits for wireless communications, A/D and D/A converters and optoelectronics.

Content

Autumn Semester 2021

Page 679 of 2152

Data: 11.11.2021 12:40
3rd Semester: Second Year Compulsory Laboratory Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0079-10L</td>
<td>Electronic Circuits Laboratory</td>
<td>O</td>
<td>1 credit</td>
<td>1P</td>
<td>Q. Huang</td>
</tr>
</tbody>
</table>

Objective
Modern, transistor-based electronics has transformed our lives and plays a crucial role in our economy since the 2nd half of last century. The main objective of this course in electronic circuits is to introduce the concept of active device, including operational amplifiers, and their use in amplification, signal conditioning, switching and filtering to students. In addition to gaining experience with typical electronic circuits that are found in common applications, including their own Gruppenarbeit and Fachpraktikum projects, students sharpen their understanding of linear circuits based on nonlinear devices, imperfections of electronic circuits and the concept of design (as opposed to analysis). The course is a prerequisite for higher semester subjects such as analog integrated circuits, RF circuits for wireless communications, A/D and D/A converters and optoelectronics.

Content
- Get to know and understand basic transistor and op amp based electronic circuits. Build and operate simple electronic circuits including supply decoding. Carry out and understand different, principal measurement methods such as DC- and AC-analysis, time and frequency domain measurements, impedance and transfer function measurements. In the lab we will have a closer look at the following topics and circuits: characterization of a real capacitor including non-idealties; common-emitter transistor amplifier with emitter degeneration; characterization of a real operational amplifier with non-idealties; band pass filter with op amp, resistors and capacitors; data converters; oscillator and function generator based on an op amp.

Laboratory Courses, Projects, Seminars

A minimum of 18 cp (under the 2016 regulations), respectively at least 15 cp (under the 2018 regulations) must be achieved in the category "Laboratory Courses, Projects, Seminars".

General Laboratory

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0095-10L</td>
<td>General Laboratory I</td>
<td>W</td>
<td>2 credits</td>
<td>2P</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Objective
The Laboratory courses in the 5th and 6th semesters enable the students to put the the contents of the courses from the four first semesters to the test and to consolidate the acquired knowledge. Furthermore students have the possibility to gain specific knowledge in certain software packages as MATLAB.

Prerequisites / notice
Enrolment via Online-Tool (EE-Website: Studies -> Bachelor Program -> Third Year -> Laboratory Courses)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0096-10L</td>
<td>General Laboratory II</td>
<td>W</td>
<td>4 credits</td>
<td>4P</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Objective
The Laboratory courses in the 5th and 6th semesters enable the students to put the the contents of the courses from the four first semesters to the test and to consolidate the acquired knowledge. Furthermore students have the possibility to gain specific knowledge in certain software packages as MATLAB.

Prerequisites / notice
Enrolment via Online-Tool (EE-Website: Studies -> Bachelor Program -> Third Year -> Laboratory Courses)

Projects & Seminars

Enrolment is only possible for students in the BSc Electrical Engineering and Information Technology from Friday before the start of the semester. Places are allocated using the P&S application tool (https://psapp.ee.ethz.ch/). Please only enrol for P&S for which you apply via the tool.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0085-01L</td>
<td>Projects & Seminars: Amateur Radio Course</td>
<td>W</td>
<td>1.5 credits</td>
<td>1P</td>
<td>J. Leuthold</td>
</tr>
</tbody>
</table>

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract
The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
Projects & Seminars: Game Development with Unity | W | 3 credits | 3P | M. Magno

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract
The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective
Game Development is a big field and is constantly growing. A powerful tool to create cross-platform games is Unity. Unity is a cross-platform real-time game engine that uses C# as its programming language (very similar to Java). This P&S is a great chance for gaining practical experience, creating something from scratch and establishing a supporting community. Therefore, if you are eager to improve your coding skills as well as bring them to life by applying them to game development, this is the right P&S for you!

Projects & Seminars: COMSOL Design Tool – Design of Optical Components | W | 3 credits | 3P | J. Leuthold

Does not take place this semester.

Abstract
The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective
Simulation tools are becoming an essential accessory for scientists and engineers for the development of new devices and study of physical phenomena. More and more disciplines rely on accurate simulation tools to get insight and also to accurately design novel devices.

COMSOL is a powerful multiphysics simulation tool. It is used for a wide range of fields, including electromagnetics, semiconductors, thermodynamics and mechanics. In this P&S we will focus on the rapidly growing field of integrated photonics.

During hands-on exercises, you will learn how to accurately model and simulate various optical devices, which enables high-speed optical communication. At the end of the course, students will gain practical experience in simulating photonic components by picking a small project in which certain photonic devices will be optimized to achieve required specifications. These simulated devices find applications in Photonic Integrated Circuits (PICs) on chip-scale.

Course website: https://blogs.ethz.ch/ps_comsol

Prerequisites / notice
No previous knowledge of simulation tools is required. A basic understanding of electromagnetics is helpful but not mandatory.

The course will be taught in English.

Projects & Seminars: Microcontrollers for Sensors and Internet of Things | W | 4 credits | 4P | M. Magno

Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract
The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective
Ultra Low Power Microcontroller (MCU) – Firmware Programming and Sensors Interfacing using an Arm Cortex-M (STM32) Microcontroller

Microprocessors are used to execute big and generic applications, while microcontrollers are low cost and low power embedded chips with program memory and data memory built onto the system which are used to execute simple tasks within one specific application (i.e. sensor devices, wearable systems, and IoT devices). Microcontrollers demand very precise and resource-saving programming, therefore it is necessary to know the processor core, and particular importance has the investigation of the microcontroller's hardware components (ADC, clocks, serial communication, timers, interrupts, etc.).

The STM32 from STMicroelectronics has gained in popularity in recent years due to its low power and ease of use. The goal of this course is the development of understanding the internal processes in the microcontroller chip from TI. This will enable you to conduct high-level firmware-programming of microcontrollers, to learn about the STM32 MCU features, benefits, and programming and how they can be connected with sensors, acquire the data, processing them and send the information to other devices. The course will also include an introductory lecture on machine learning and artificial intelligence on the embedded system and in particular microcontrollers. The C language will be used to program the microcontroller.

The course will be taught in English.

Projects & Seminars: Fast Signal Acquisition and Processing for Quantum Experiments Using FPGA | W | 3 credits | 3P | M. Magno

Only for Electrical Engineering and Information Technology BSc.
The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

FPGAs are used in wide range of applications including video processing, machine learning, cryptography and radar signal processing, thanks to their flexibility and massive parallel processing power. Recently FPGAs have become important in quantum signal processing where high amount of data should be analyzed in a short time to use quantum setups most efficiently. In addition, FPGAs are used for quantum state detection and feedback generation, which have to be performed in the scale of hundreds of nanoseconds. The goal of this course is to understand the FPGA based signal processing for superconducting circuits based quantum experiments. The course participants will learn the implementation techniques of the modules for fast quantum signal acquisition and processing, the electronics supporting quantum experiments, and FPGA programming. You will implement quantum signal processing and quantum state detection modules using Xilinx FPGA, Verilog HDL, and high speed ADC. The course will be taught in English. No prior knowledge in quantum physics or FPGA is required, still a good knowledge in any coding language (for example C or Java) is required.

227-0085-06L

Projects & Seminars: Neural Network on Low Power

W 2 credits 2P

FPGA: A Practical Approach

Does not take place this semester.

Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

Artifical Intelligence and in particular neural networks are inspired by biological systems, such as the human brain. Through the combination of powerful computing resources and novel architectures for neurons, neural networks have achieved state-of-the-art results in many domains such as computer vision. FPGAs are one of the most powerful platform to implement neural networks as they can handle different algorithms in computing, logic, and memory resources in the same device. Faster performance comparing to competitive implementations as the user can hardcore operations into the hardware. This course will give to the student the basis of Machine Learning to understand how they work and how they can be trained and giving hand-on experiences with the training tools such as Keras. Moreover the course will focus in deploy algorithms in low power FPGA such as the Lattice sensAI platform to have energy efficient running algorithms. The course will provide to the students the tools and know-how to implement neural netwok on an FPGA, and the student will challenge theirself in a 5 weeks piratical project that they will present at the end of the course. Experience in FPGA programming is desirable but not mandatory.

The course will be taught in English.

227-0085-07L

Projects & Seminars: Deep Learning for Smartphone

W 3 credits 3P L. Van Gool

Apps (DLSA)

Does not take place this semester.

Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

Latest smartphone generations are equipped with computational capabilities (CPU, GPU, NPU, DSP) matching common PCs from a decade ago. Moreover, smartphones have several sensors that can acquire many useful information beyond audio and visual data, for instance where we are, what we are doing, with whom we are together, what is our body constitution, what are our needs. Based on this information our smartphone offers us the appropriate computational power to process them in loco without sending the sensor data to the cloud. This course focuses on giving the bases of machine (deep) learning and embedded systems. Students will learn the tools to implement machine/deep learning algorithms in their Android phones to be smarter. The course will end with a 4 weeks project where the students can target a specific application scenario.

The course will be taught in English.

227-0085-08L

Projects & Seminars: Bluetooth Low Energy Programming for IoT Sensing System

W 3 credits 3P

Does not take place this semester.

Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 682 of 2152
Objective

Bluetooth Low Energy System on Chip – Firmware Programming and sensors Interfacing using an Arm Cortex-M (Nordic nRF52838)
Microcontroller

With the introduction of the BLE 5.0 standard, Bluetooth has achieved high data bandwidth with low power consumption. This makes the technology an ideal match for many applications, i.e., IoT sensor application or audio streaming, by addressing two of the greatest bottlenecks of these devices. This course offers the chance for participants to do hands-on programming of microcontrollers. In particular, the focus will be laid on interfacing with sensors, acquisition of data, on-board event-driven data processing with ARM-Cortex-M4 processors and BLE or other wireless transmissions. The programming will be performed in C. Today’s microcontrollers offer a low power, efficient and cost-effective solution of tackling a nearly infinite number of task-specific applications. Ranging from IoT devices, wearable systems, sensor (mesh) devices, all the way to be integrated as submodules for the most complex system such as cars, planes, and rockets. Microcontrollers derive their advantages from the efficient use of resources and as such require very efficient and resource-saving programming. Therefore, it is mandatory to understand hardware components such as processor cores, ADC, clocks, serial communication, wireless communication, timers, interrupts, etc. The P&S includes five weeks project where the student will setup an IoT sensor node to monitor electric power transmission and distribution system.

The course will be taught in English by the ITET center for project based learning.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0085-09L</td>
<td>Projects & Seminars: Spiking Neural Network on Neuroromorphic Processors only for Electrical Engineering and Information Technology BSc.</td>
<td>3</td>
<td>W</td>
<td>G. Indiveri</td>
</tr>
<tr>
<td></td>
<td>The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0085-11L</td>
<td>Projects & Seminars: Deep Learning for Image Manipulation (DLIM) - only for Electrical Engineering and Information Technology BSc.</td>
<td>3</td>
<td>W</td>
<td>L. Van Gool</td>
</tr>
<tr>
<td></td>
<td>The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0085-12L</td>
<td>Projects & Seminars: Electronic Circuits & Signals Exploration Laboratory - only for Electrical Engineering and Information Technology BSc.</td>
<td>2</td>
<td>W</td>
<td>H.-A. Loeliger</td>
</tr>
<tr>
<td></td>
<td>The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0085-13L</td>
<td>Projects & Seminars: Assembling and Controlling a Tuning-Fork AFM - only for Electrical Engineering and Information Technology BSc.</td>
<td>3.5</td>
<td>W</td>
<td>T. Zambelli</td>
</tr>
</tbody>
</table>

Objective

Compared to the "traditional" artificial neural network, the spiking neural network (SNN) can provide both latency and energy efficiency. Moreover, SNN has demonstrated in previous works a better performance in processing physiological information of small sample size, and only the output layer of the spiking neural network needs to be trained, which reduces the training rate. This course focuses on giving the bases of spiking neural networks and neuromorph processors. Students will learn the tools to implement SNN algorithm in both academic processors and Intel Loihi using data from Event-based Vision camera and biomedical sensors (i.e. ECG and EEG). The course will end with a 4 week project where the students can target a specific application scenario.

The course will be taught in English.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

With the advent of deep learning tremendous advances were achieved in numerous areas from computer vision, computer graphics, and image processing. Using these techniques, an image can be automatically manipulated in various ways with high-quality results, often to the delight of the human observer. Deep learning based image processing and manipulating binary image processing is one of the most important emerging technologies, including image enhancement in smartphone cameras, automated image editing, image content creation, graphics, and autonomous driving. This course focuses on the fundamentals of deep learning and image manipulation. Students will learn the tools to implement and develop deep learning solutions for a variety of image manipulation tasks. The course will end with a 4 week project where the students can target a specific application scenario.

The course will be taught in English.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

As everyday electronic circuits have transitioned into integrated circuits, they have become increasingly difficult to examine and to tinker with. As a result, students become less exposed to basic analog electronic circuits and their fundamental operating principles. At university level, bachelor classes in analog circuits and electronics provide rigorous theoretical insights but are typically focused on linearised operating behaviour. The goal of this lab course is for the students to enhance their understanding on how basic analog electronic circuits work, or perhaps don’t work, and provide enough practical experience for the students to feel at ease using transistors, resistors, capacitors, diodes, etc., to create working circuits.

For example, students create circuits that make physical quantities audible. Students are encouraged to realise their own circuit ideas.
The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

More and more sustainable and renewable energy technologies are used for electricity generation to cope with climate change. These setups can be introduced to the capabilities of modern AFMs in biomedical sensing, you will build your own setups in groups of two. You will be introduced to an AFM’s functionality, control, and signal read-out using LabView. A signal of an oscillating tuning-fork will be used as feedback for the self-built AFM. In order to better understand the working principle of a tuning fork, you will also build your own frequency sweeper and analyze it with self-built low-pass filters.

After you have implemented your own setup, you will have the chance to characterize different biomedical samples on state-of-the-art setups. This data will then be analyzed using Python.

The course requires active participation during the practical sessions, a 10-15 min presentation and a short written report on the acquired results. The course will be given in English.

In this seminar, students have the opportunity to glance at cutting-edge research in the field of power systems. Possible research questions might be:

- How to integrate distributed energy generation like PV plants and wind turbines into the electricity grid?
- What challenges does the increasing share of electric vehicles and batteries impose on the power grid?
- How to cope for the uncertain generation capacity of renewables and how to forecast it?
- How does the electricity market work and how do the new sources of flexibility transform it?

Students will prepare a presentation and a report on their individual research question, which is based on an assigned paper. The main objectives are to practice literature review, scientific writing and presenting. Students will learn to independently understand specific research results – a crucial skill for academic research including seminar and master projects.

The language of instruction is English. Registrations for the seminar are binding.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 684 of 2152
Projects & Seminars: Machine Learning for Brain-Computer Interfaces
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Objective
The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Projects & Seminars: Building a Wireless Infrared Headphone
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Objective
A brain-computer interface (BCI) provides a communication and control channel based on the recognition of subject's intention from spatiotemporal activity of the brain. A typical method to acquire neural activity signals is electroencephalography (EEG), which is often used in BCI. In order to make these data usable and get useful information out of them, signal processing techniques play a crucial role. Moreover, feature extraction and machine learning methods are applied to obtain a highly accurate BCI.

Each student builds an infrared transmitter and receiver. During assembly, we gain hands-on experience with soldering conventional and SMD components. The finished circuits are tested and tuned and can be taken home afterwards.

Projects & Seminars: Bits on Air
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Objective
Digital communication is a part of our everyday lives, whether we are sending e-mails, watching TV, listening to the radio, or using a cell phone. In this P&S, we will familiarize ourselves with the basics of digital communication.

On conventional PCs, the students will implement their own software modems for data transmission. These modems, just like the digital communication systems used in real life, consist of a modulator, a demodulator and an algorithm to synchronize the carrier of the incoming message. Once implemented, these modems can be used to acoustically transmit any data (such as small text files) between PCs.

We use MATLAB but previous knowledge thereof is not assumed. Rather, the goal of the project is to practice programming with MATLAB in addition to learning basics of digital communication.

Projects & Seminars: Software Defined Radio
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Objective
Software Defined Radio (SDR) tools make it possible to dive into this world and "surf the waves" with relatively little effort. More powerful computers allow for increasingly complex signal processing in transmitters and receivers. At the same time, the signal processing algorithms can be adapted and changed very quickly and flexibly.

In this P&S we will take a closer look at how SDR works. In the first part we will work on the basics of frequency response, S/N ratio, nonlinear interference. The influence of modulation to suppress interference will be investigated in experiments.

In the second part we will work on different projects with SDR tools. Students can also bring their own ideas. At the end, the projects will be presented in the class.

Projects & Seminars: Quad-Rotors: Control and Estimation
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Objective
Wireless transmission of information is ubiquitous today. Depending on application and frequency range, different types of modulation are used, with digital methods having largely replaced the old analog methods. Software Defined Radio (SDR) tools make it possible to dive into this world and "surf the waves" with relatively little effort. More powerful computers allow for increasingly complex signal processing in transmitters and receivers. At the same time, the signal processing algorithms can be adapted and changed very quickly and flexibly.

In this P&S we will take a closer look at how SDR works. In the first part we will work on the basics of frequencies, spectra, modulation types, and signal processing.

In the second part we will work in groups on different projects with SDR tools. Students can also bring their own ideas. At the end, the projects will be presented in the class.
The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Projects & Seminars: Phase Change Materials and Memories

W 1 credit 1P M. Yarema

Only for Electrical Engineering and Information Technology BSc.

Abstract

The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

Many practical applications require the processing of digital signals in real time (e.g., digital communication, audio and video processing, radar, etc.). Digital Signal Processors (DSPs) are a family of microprocessors specifically designed and optimized for this purpose. In this course, students learn the basics of digital signal processing as well as how to implement them on DSPs with assembler. The relevant theory and the necessary skills in assembler programming will be acquired step by step. The course culminates in an individual small project which students carry out in groups of two.

The course uses a custom-designed board for implementation. The board features components as they are also common in industry. It has analog inputs and outputs, an analog/digital-digital/analog codec, a DSP of the “Blackfin” family by Analog Devices (BF532) as well as 32MB of memory.

Projects & Seminars: Vision and Control in RoboCup

W 3 credits 1P J. Lygeros, L. Van Gool

Only for Electrical Engineering and Information Technology BSc.

Abstract

The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
RoboCup is a tournament where teams of autonomous robots compete in soccer matches against each other. The ETH team NomadZ plays in the standard platform league with the humanoid NAO robot, where the focus lies on developing robust and efficient algorithms for vision, control, and behavior. In this course, the basic challenges we encounter in RoboCup are presented and approached in practical exercises using MATLAB and Python. The topics cover visual localization, deep learning for object detection and reinforcement learning for control.

The course is offered to students of the 5th semester.

227-0085-25L Projects & Seminars: Magnetic Resonance: From Spectrum to Image

The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

The phenomenon of nuclear magnetic resonance (NMR) and its application for spectroscopy and imaging are introduced. The course starts with a general introduction to NMR, followed by measurements on a clinical MRI scanner. The NMR experiments will be developed and programmed by the students. Starting from a simple spectroscopic experiment, the basics of imaging will be acquired step-by-step. Finally, sectional images of test objects will be obtained.

In case in-classroom teaching is not allowed, the course must be cancelled.

The course will be conducted only if at least 2 participants show up.

227-0085-26L Projects & Seminars: Biosignal Acquisition and Processing for IoT Wearable Devices

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

Biosignal acquisition and processing – Wearable sensor node design and analysis for bio-impedance sensor using an Arm Cortex-M (Nordic nRF52832) Microcontroller

Wearable smart sensor electronics has the potential to revolutionize the medical field. Various body conformal flexible sensors have been used to monitor motion and physiological electrical signals such as electrocardiography (ECG), electroencephalography (EEG) and body composition analysis via body bio-impedance measurements. Smart sensor nodes not only provide accurate and continuous data in time but also automate the process of maintaining medical records, thereby lowering the workload of the health worker or clinician. This course offers an avenue for the students to understand the interdisciplinary principles that make it possible to interpret human physiology by utilizing discreet electronic components. Most importantly, participants will get a chance to do hands-on system design specific to electronically tracking a particular physiological phenomenon. In particular, the focus will be laid on programming of micro controllers, interfacing with sensors, acquisition of data and utilizing discreet analog elements for bio-signal processing. The programming will be performed in C.

The course will be taught in English and by the ITET center for project based learning.

227-0085-27L Projects & Seminars: Android Application Development (AAD)

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

Although the App-Industry is dominated by the giant Apps right now, it is still crucial that one knows how those Apps function and how these Apps are communicating with their hardware. This course offers the opportunity for the participants to understand the development of application using Android Studio. Most importantly, participants will get a chance to do hands-on software design specific to Android smartphone and the data acquisition from sensors, GPS, google maps and other internal devices. The main goal of the course if providing the students with the basic principle and software programming for build up every android application. The course include 4-5 weeks project were the students alone or in group will build up a working demo of a target application. The course will conclude with the presentation of the students work. Previous experience in C/Java or other languages is preferable but not mandatory. The students will program their own Android Smartphone.

The course will be taught in English by the new Project-based learning centre.

227-0085-28L Projects & Seminars: iCEBreaker FPGA For IoT Sensing Systems

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
Objective

Ultra Low Lattice FPGA – High Level Programming – Peripherals Interfacing using an Lattice FPGA

Field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing, so they are also "field-programmable". The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). However, more and more nowadays producers and open source community are providing higher level tools to program them similiarly than processors. On the other side still it is important know the hardware architectures. This course will give to the students the opportunity to program FPGA in a high level way and use them to connect with external peripherals such as display, sensors, etc. In particular, the course will use the iCEBreaker FPGA boards that is specifically designed for students and engineers. They work out of the box with the latest open source FPGA development tools and next-generation open CPU architectures. The course will also iCEBreaker can be expandable through its Pmod connectors, so the students can make use of a large selection of third-party modules. The course will include a project where the students will learn how to build a full working system for the next generation of Internet of Things intelligent smart sensing.

The course will be taught in English by the new D-ITET center for Project-based learning.

Projects & Seminars: Embedded Deep Learning with Ultra Low Lattice FPGA – High Level Programming – Peripherals Interfacing using an Lattice FPGA

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

Deep Learning Intro - Python - Accelerated Embedded Computing

Deep neural networks (DNNs) have become the leading method for a wide range of data analytics tasks, after a series of major victories at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). For ILSVRC, the task was to classify images into 1000 different classes, many of which are difficult to distinguish (e.g. many classes are different breeds of dogs). All that was given were 1.2 million labelled images. Meanwhile, this recipe for success has taken over many more areas, from image-based tasks like segmenting objects in images, detecting objects, enhancing images using super-resolution and compression artifact reduction, to robotics and reinforcement learning, and a wide range of industrial applications. DNNs and their subtype convolutional neural networks (CNNs) have not been new in the 2013 when the wave of success has started, but they got this huge boost through the new availability of large-scale dataset and—at least as importantly—the availability of the necessary compute resources by using GPUs to perform the computations required during training. While GPUs were then also used to stem the high computation effort of DNNs during inference (e.g. classifying images directly using a trained DNN rather than training the DNN itself). The high demand, the need for cost efficiency, and the goal of deploying DNNs not just in data centers but pervasively in everyday devices, wearables, and low-latency industrial or interactive applications, has triggered the development of various application-specific processors which are much faster, vastly more energy efficient, and cheaper at the same time—such as the Google TPU, Graphcore, ... and Huaweis Ascend/Atlas platforms.

In this course, you will learn:

1) the basics of deep neural networks, how they work, and what challenges there are for inference,
2) how platforms with specialized hardware accelerators, specifically the Huawei Atlas 200, can be used for running DNN inference and getting a practical application running, and
3) work on your own project using DNNs and hardware accelerators based on your own ideas or on some of our proposals.

The course will be taught in English by the new D-ITET center for Project-Based Learning and a special guest lecturer from Huawei. Individual interactions/help can also be in (Swiss) German. Most sessions will be around 1 hour of lecture and 2 hours of practical computer exercises. We will start an introduction and then you will have ca. 8 weeks to work on your project, which will concluded with a final presentation of your results.

Projects & Seminars: Vision Goes Vegas

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

Computer Vision beschäftigt sich unter anderem damit, Maschinen zu befähigen ihre Umwelt zu sehen und das wahrgenommene Bild zu verstehen. In unserem Projekt soll ein System entwickelt werden, das Spielkarten erkennen kann und, einer guten Strategie folgend, eine erfolgreiche Black-Jack spielen kann. Die Teilnehmer des Projektes werden kleine Teams bilden und gemeinsam mit einem Assistenten die Aufgabe erarbeiten und eine Implementierung erstellen. Am Ende des Semesters sollen die Programme im öffentlichen Wettstreit gegeneinander antreten!

Als Voraussetzungen sollte Interesse an Computer Vision mitgebracht werden und die Bereitschaft, sich in einem Team von Mitstudierenden einzubringen. Kenntnisse in C++ sind notwendig.

Dieses P&S wird in englischer Sprache durchgeführt.

Projects & Seminars: Magnetic Fields in our Daily Life

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

- No prior knowledge in bioinformatics or genome analysis is required.
- Digital Design and Computer Architecture (or equivalent course)
- A good knowledge in C programming language is required.
- Experience in at least one of the following is highly desirable: FPGA implementation and GPU programming.
- Interest in making things efficient and solving problems

The course is conducted in English.

Learning Materials

3. An example of how to accelerate genomic sequence matching by two orders of magnitude with the help of FPGAs or GPUs: https://arxiv.org/abs/1910.09020

5. An example of using a different computing paradigm for accelerating read mapping step and improving its energy consumption: https://arxiv.org/pdf/1708.04329

6. Two examples on using software/hardware co-design to accelerate genomic sequence matching by two orders of magnitude: https://arxiv.org/abs/1809.07858

Abstract

The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
Objective

DRAM is predominantly used to build the main memory systems of modern computing devices. Simulation-based experimental studies are key for understanding the complex interactions between DRAM and modern applications.

Ramulator is an extensible DRAM simulator providing cycle-accurate performance models for a variety of commercial DRAM standards (e.g., DDR3/4, LPDDR3/4, GDDR5, HBM) and academic proposals. Ramulator has a modular design that enables easy integration of additional DRAM standards and mechanisms. Ramulator is written in C++11 and can be easily integrated to full-system simulators such as gem5.

In this P&S, you will design new DRAM and memory controller mechanisms for improving overall system performance, energy consumption, and reliability. You will extend Ramulator with these new designs and evaluate their performance, energy consumption, and reliability using modern applications. This will be the right P&S for you if you would like to learn about the state-of-the-art memory controller and DRAM designs and their interaction with modern applications. This P&S will also enable you to hands-on simulate and understand the memory system behavior of modern workloads such as machine learning, graph analytics, genome analysis.

Prerequisites of the course:
- Digital Design and Computer Architecture (or equivalent course)
- A good knowledge in C/C++ programming language.
- Interest in making things efficient and solving problems.
- Interest in understanding software development and hardware design, and their interactions.

The course is conducted in English.

Course website: https://safari.ethz.ch/projects_and_seminars/doku.php?id=ramulator

227-0085-35L Projects & Seminars: Enabling Secure, Reliable and Fast Memory with Hands-On FPGA Experiments

Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

DRAM is predominantly used to build the main memory systems of modern computing devices. To improve the performance, reliability, and security of DRAM, it is critical to perform experimental characterization and analysis of existing cutting-edge DRAM chips.

SoftMC is an FPGA-based DRAM testing infrastructure that enables the programmer to perform all low-level DRAM operations (i.e., DDR commands) in a cycle-accurate manner. SoftMC provides a simple and intuitive high-level programming interface (in C++) that completely hides the low-level details of the FPGA from programmers. Programmers implement test routines in C++, and the test routines automatically get translated into the low-level SoftMC memory controller operations in the FPGA. SoftMC developers write low-level hardware description language code to enable new and faster studies.

In this P&S, you will have the chance to learn how DRAM is organized and operates in a low-level and gain practical experience in using SoftMC while developing SoftMC programs for new DRAM characterization studies related to performance, reliability and security. You may also improve the SoftMC infrastructure itself to enable new studies. And, who knows, you might discover new security vulnerabilities like RowHammer.

This will be the right P&S for you if you are interested in DRAM technology and would like to learn more about it as well as FPGA technology and how it can be used for practical purposes such as understanding and mitigating RowHammer attacks, generating true random numbers, reducing memory latency, fingerprinting and identifying devices, and improving reliability.

Prerequisites of the course:
- Digital Design and Computer Architecture (or equivalent course)
- Familiarity with FPGA programming
- Interest in low-level hacking and memory
- Interest in discovering why things do or do not work and solving problems

The course is conducted in English.

Course website: https://safari.ethz.ch/projects_and_seminars/doku.php?id=softmc

227-0085-36L Projects & Seminars: Genome Sequencing on Mobile Devices

Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Autumn Semester 2021
Objective

Genome analysis is the foundation of many scientific and medical discoveries, and serves as a key enabler of personalized medicine. This analysis is currently limited by the inability of existing technologies to read an organism's complete genome. Instead, a dedicated machine (called sequencer) extracts a large number of shorter random fragments of an organism's DNA sequence, known as reads. Small, handheld sequencers such as ONT MinION and Flongle make it possible to sequence bacterial and viral genomes in the field, thus facilitating disease outbreak analyses such as COVID-19, Ebola, and Zika. However, large, capable computers are still needed to perform genome assembly, which tries to reassemble read fragments back into an entire genome sequence. This limits the benefits of mobile sequencing and may pose problems in rapid diagnosis of infectious diseases, tracking outbreaks, and near-patient testing. The problem is exacerbated in developing countries and during crises where access to the internet network, cloud services, or data centers is even more limited.

In this course, we will cover the basics of genome analysis to understand the speed-accuracy tradeoff in using computationally-lightweight heuristics versus accurate computationally-expensive algorithms. Such heuristic algorithms typically operate on a smaller dataset that can fit in the memory of today's mobile device. Students will experimentally evaluate different heuristic algorithms and observe their effect on the end results. This evaluation will give the students the chance to carry out a hands-on project to implement one or more of these heuristic algorithms in their smartphones and help the society by enabling on-site analysis of genomic data.

Prerequisites of the course:
- No prior knowledge in bioinformatics or genome analysis is required.
- A good knowledge in C programming language and programming is required.
- Interest in making things efficient and solving problems

The course is conducted in English.

Course website: https://safari.ethz.ch/projects_and_seminars/doku.php?id=genome_seq_mobile

Learning Materials

3. An example of how to accelerate genomic sequence matching by two orders of magnitude with the help of FPGAs or GPUs: https://arxiv.org/abs/1910.09020
5. An example of using a different computing paradigm for accelerating read mapping step and improving its energy consumption: https://arxiv.org/pdf/1708.04329
7. An example of a purely software method for fast genome sequence analysis: http://www.biomedcentral.com/content/pdf/1471-2164-14-S1-S13.pdf

Abstract

The category of ”Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
Data movement between the memory units and the compute units of current computing systems is a major performance and energy bottleneck. From large-scale servers to mobile devices, data movement costs dominate computation costs in terms of both performance and energy consumption. For example, data movement between the main memory and the processing cores accounts for 62% of the total system energy in consumer applications. As a result, the data movement bottleneck is a huge burden that greatly limits the energy efficiency and performance of modern computing systems. This phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the data movement bottleneck.

Many modern and important workloads such as machine learning, computational biology, graph processing, databases, video analytics, and real-time data analytics suffer greatly from the data movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively low data reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly exceed the main memory size. The computation in these workloads cannot usually compensate for the data movement costs. In order to alleviate this data movement bottleneck, we need a paradigm shift from the traditional processor-centric design, where all computation takes place in the compute units, to a more data-centric design where processing elements are placed closer to or inside where the data resides. This paradigm of computing is known as Processing-in-Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent "the next big thing" in Computer Architecture. You will work hands-on with the first real-world PIM architecture, explore different PIM architecture designs for important workloads, and will develop tools to enable research of future PIM systems. Projects in this course span software and hardware as well as the software/hardware interface. You can potentially work on developing and optimizing new workloads for the first real world PIM hardware or explore new PIM designs in simulators, or do something else that can forward our understanding of the PIM paradigm.

Prerequisites of the course:
- Digital Design and Computer Architecture (or equivalent course).
- Familiarity with C/C++ programming.
- Interest in future computer architectures and computing paradigms.
- Interest in discovering why things do or do not work and solving problems.
- Interest in making systems efficient and usable.

The course is conducted in English.

Course website: https://safari.ethz.ch/projects_and_seminars/doku.php?id=processing_in_memory

Learning materials

1. Summary papers about recent research in PIM:

2. Ramulator-PIM: A version of Ramulator simulator for PIM.
 https://github.com/CMU-SAIFR/ramulator-pim

3. UPMEM SDK documentation: The first real-world PIM architecture.
 https://sdk.upmem.com/2020.3.0/

4. An example recent study of 3D-stacked PIM for consumer workloads.

5. An example recent study of lightweight PIM functionality on 3D-stacked memory:

6. An example recent study of a PIM accelerator for graph processing.
 https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf

7. An example recent study of a Processing-using-Memory system.
Projects & Seminars: Python for Science & Machine Learning

Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

Abstract
The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective
This beginner course to programming with Python - with a focus on applications in science and technology - is an ideal starting point for later courses. We will start with an introduction to the dev environment and tools for effective development to get you started. Then we will learn the basics of Python with exercises, and discover popular modules for data processing and visualisation that will be useful for your later studies and career. We conclude with an introduction to popular machine learning techniques and some time for you to implement your own small free-style projects.

By the end of the semester, you will
- be familiar with your PC's command-line interface and know how to use available dev environments effectively.
- have learned the basics of Python and be able to write basic programs that do what you want (most of the time) with the help of modules.
- be able to process, visualize and analyze numerical data, e.g. lab measurements, images, etc.
- have first experience with machine learning techniques
- maintain your first git repository and know how to collaborate with others on coding projects.

Language: English / German (if necessary)

Projects & Seminars: Memory Design: From Architecture Down to Basic Cells

Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

Abstract
The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective
What is the cache memory and how much of it does a PC need? What is the difference between DRAM and SRAM? What are bit lines, word lines, column decoders and sense amplifiers? What does precharging mean and where is it used? How does a memory cell look on silicon and how is it manufactured? You will learn these and many other things in this P&S.

Memories are important components in all modern electronic devices (e.g: computer, smartphone, TV, …). Depending on the area of application, an engineer can look at the storage system from different perspectives. This P&S gives an overview of these different perspectives and explains the relationships between them. Since these different perspectives are not only available for memory but for all integrated circuits in general, this P&S will help you to classify further specialized knowledge in a broader context. During the exercise part of the seminar, you will work with various simulation programs. These include sophisticated programs used by engineers in research and development. So you are going to practice on professional software, and during the simulations (exercise part) and group work / lectures (seminar part) you are going to develop basic knowledge that you can later deepen during the specialized lectures.

According to the different perspectives, the P&S "Basic Memory Design" consists of three parts of roughly the same length:

- System Design: In this part you are going to learn the various current storage types from the system developer point of view. What can you achieve? How are they built into circuits in order to obtain a storage system that offers the right size and speed with acceptable energy consumption? Since there are many different types of storage, the participants will study data sheets individually and will discuss them with the P&S assistants as part of a lecture (seminar part). With a simple cache simulator you will examine the influence of the design parameters in a memory hierarchy.

- Circuit Design: In this part you are going to learn the memory as an electronic circuit. How the transistors have to be interconnected in order to be able to write, save and read out data? How should these transistors be dimensioned in order to achieve the desired speed or energy efficiency? With simulations you will experience how the engineer examines and optimizes such circuits.

- Physical Design: This part goes even deeper. Millions of transistors on a small silicon wafer form a modern memory chip. How are the memory cells produced on the chip? What does a memory cell look like? How is the memory cell optimized? With the help of modern simulation tools, you will get to know the design practices that are used during development today. You will also learn about the methods and technologies used to manufacture modern integrated circuits.
Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Domain D - Personal Competencies	Communication	not assessed
	Cooperation and Teamwork	assessed
	Customer Orientation	not assessed
	Leadership and Responsibility	not assessed
	Self-presentation and Social Influence	not assessed
	Sensitivity to Diversity	not assessed
	Negotiation	not assessed

Projects & Seminars: Constructing a Receive Coil for Magnetic Resonance Imaging

ID: 227-0085-42L
Credits: 1.5
Lecturer: K. P. Prüssmann
Course: Does not take place this semester.
Objective: This course is about the signal detection in magnetic resonance imaging (MRI), which is a medical imaging modality. MRI is based on the principle of magnetic resonance of atomic nuclei, with corresponding signal frequencies in the order of hundreds of MHz. To receive these signals, tuned radiofrequency coils are used. The goal of this course is for participants to build such a radiofrequency coil and use it to acquire tomographic images of fruits (e.g., Orange, kiwi fruit, …) at a 7-Tesla MRI scanner. For the course, a basic understanding of electronic circuits is necessary; previous knowledge in radiofrequency engineering is advantageous but not a requirement.

Projects & Seminars: Clean Room Technology – Fabrication and Characterization of Photonic Materials

ID: 227-0085-43L
Credits: 3
Lecturer:
Course: Does not take place this semester.
Objective: Im P&S „Clean Room Technology“ erhalten die Teilnehmer einen ersten Einblick in das BRNC Hightech-Forschungslabor der ETH und IBM Zürich („Binnig and Rohrer Nanotechnology Center“). Nach einer allgemeinen Einführung in die Nanotechnologie und das Arbeiten im Reinsaum, werden verschiedene nanophotonische Materialien abgeschieden. Im Anschluss werden mit Hilfe der sogenannte Ellipsometrie die optischen Eigenschaften der Materialien gemessen und anhand von Modellen am Computer analysiert. Abschluss des P&S ist eine Präsentation der Resultate und eine kurze schriftliche Zusammenfassung.

Projects & Seminars: Understanding and Designing Modern Solid-State Drives (SSDs)

ID: 227-0085-44L
Credits: 3
Lecturer: J. Park
Course: Does not take place this semester.
Objective: Das P&S wird für drei Gruppen á drei Teilnehmer an zehn Nachmittagen verteilt über das Semester angeboten. Wir empfehlen das P&S für Studenten im dritten Studienjahr. MATLAB Vorkenntnisse sind vorteilhaft, aber keine Voraussetzung. Das P&S findet teilweise in englischer Sprache statt.
Objective
NAND flash memory is the de facto standard in architecting a storage device in modern computing systems. As modern computing systems process a large amount of data at an unprecedented scale, a storage device needs to meet high requirements on storage capacity and I/O performance. A NAND flash-based SSD can provide an order(s) of magnitude higher I/O performance compared to traditional hard-disk drives (HDDs), with a much lower cost-per-bit value over any other SSDs based on emerging non-volatile memory (NVM) technologies.

NAND flash memory has several unique characteristics, such as the erase-before write property (i.e., a flash cell needs to be first erased before programming it), limited lifetime (i.e., a cell can reliably store data for a certain number of program/erase cycles), and large operation units (e.g., a NAND flash chip reads/writes data in a page (e.g., 16 KiB) granularity). To achieve high performance and large capacity of the storage system while hiding the unique characteristics of NAND flash memory, it is critical to design efficient SSD firmware, commonly called Flash-Translation Layer (FTL). An FTL is responsible for many critical management tasks, such as address translation, garbage collection, wear-leveling, and I/O scheduling, that significantly affect the performance, reliability, and lifetime of the SSD.

In this P&S, we will cover how a modern NAND flash-based SSD is organized and operates, from the basics of underlying NAND flash devices and various SSD-management tasks at the FTL-level. You will build a practical SSD simulator by refactoring MQSim, a state-of-the-art simulator for high-end SSDs, to support advanced features of modern NAND flash chips and essential SSD-management tasks. This will allow you to have the chance to obtain a comprehensive background of modern storage systems and research experience on system optimization with rigorous evaluation.

Prerequisites of the course:
- No prior knowledge in NAND flash-based storage systems is required.
- Digital Design and Computer Architecture (or equivalent course)
- Good knowledge in C/C++ programming language is required.
- Interest in system optimizations

The course is conducted in English.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

Abstract
The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective
Microcontroller programming (C) – Peripherals Interfacing using a MSP433 MCU – Control of a Robot in a maze

The course will focus on teaching how to build and program a Texas Instrument robotic system learning kit (TI-RSLK). It is a robot kit, which includes a 2 wheeled robot, a line sensor to determine lines on the floor as well as sensors to recognize walls. The robot is driven by a MSP432 state of the art ARM Cortex M4 processor.

This course will give the students the opportunity to learn how to program the microcontroller of this robot to navigate in a small maze. For this, the students will learn how to control the motors and, consequently the movement of the robot with the peripherals of the microcontroller. Next to the movement, also the control and readout of the attached sensors will be part of the P&S course.

Once the students are able to read sensor values and control the motors of the robot, this course will conclude with a 4-week project. Within this project the students will design their own algorithm, such that the robot can navigate autonomously within a maze. A small competition at the end of the P&S will find the fastest robot of the group.

This course will be taught in English by the new D-ITET center for Project-based learning, the programming toolchain will be installed on the student’s own laptop. Experience with microcontroller programming (C) is an advantage, however not required. A short introduction will be given during the course.

This course will be taught in English or in German if necessary.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

Project & Seminars: Robotic Maze Solving with a TIRSLK Robot (RMaze)

Objective
This course will give the students the opportunity to learn how to program the microcontroller of this robot to navigate in a small maze. For this, the students will learn how to control the motors and, consequently the movement of the robot with the peripherals of the microcontroller. Next to the movement, also the control and readout of the attached sensors will be part of the P&S course.

Abstract
The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective
Drones can be fun to use but understanding the hardware and software and building and programming them to be intelligent and autonomous is even better. This course gives the basis of the embedded systems having the drones as the primary target. The course will introduce embedded systems and, in particular, the microcontroller ARM Cortex-M, focusing on all the crucial blocks such as Interrupts, GPIO, ADC’s, Timers, and Serial communication protocols. Apart from the core topics, real-time and power-efficient algorithms for attitude and motor control are also discussed, making the drone efficient. Finally, exciting drone exercises are supported in the course to experiment with the development kit. The course will end with a 4-5 weeks project where the students will make the drone fly with some specific goal. It is not required any previous knowledge except C language.

The course will be taught in English and organized by the new Project-Based Learning center.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

227-0085-45L
Projects & Seminars: Robotic Maze Solving with a TI-RSLK Robot (RMaze)

W
3 credits
3P

Objective
This course will give the students the opportunity to learn how to program the microcontroller of this robot to navigate in a small maze. For this, the students will learn how to control the motors and, consequently the movement of the robot with the peripherals of the microcontroller. Next to the movement, also the control and readout of the attached sensors will be part of the P&S course.

Abstract
The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective
Drones can be fun to use but understanding the hardware and software and building and programming them to be intelligent and autonomous is even better. This course gives the basis of the embedded systems having the drones as the primary target. The course will introduce embedded systems and, in particular, the microcontroller ARM Cortex-M, focusing on all the crucial blocks such as Interrupts, GPIO, ADC’s, Timers, and Serial communication protocols. Apart from the core topics, real-time and power-efficient algorithms for attitude and motor control are also discussed, making the drone efficient. Finally, exciting drone exercises are supported in the course to experiment with the development kit. The course will end with a 4-5 weeks project where the students will make the drone fly with some specific goal. It is not required any previous knowledge except C language.

The course will be taught in English and organized by the new Project-Based Learning center.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

227-0085-46L
Projects & Seminars: Embedded Systems With Drones

W
4 credits
4P
M. Magno

Objective
Drones can be fun to use but understanding the hardware and software and building and programming them to be intelligent and autonomous is even better. This course gives the basis of the embedded systems having the drones as the primary target. The course will introduce embedded systems and, in particular, the microcontroller ARM Cortex-M, focusing on all the crucial blocks such as Interrupts, GPIO, ADC’s, Timers, and Serial communication protocols. Apart from the core topics, real-time and power-efficient algorithms for attitude and motor control are also discussed, making the drone efficient. Finally, exciting drone exercises are supported in the course to experiment with the development kit. The course will end with a 4-5 weeks project where the students will make the drone fly with some specific goal. It is not required any previous knowledge except C language.

The course will be taught in English and organized by the new Project-Based Learning center.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

227-0085-47L
Projects & Seminars: Machine Learning on Smart Phone

W
3 credits
3P

Objective
This course will give the students the opportunity to learn how to program the microcontroller of this robot to navigate in a small maze. For this, the students will learn how to control the motors and, consequently the movement of the robot with the peripherals of the microcontroller. Next to the movement, also the control and readout of the attached sensors will be part of the P&S course.

Abstract
The category of “Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective
Drones can be fun to use but understanding the hardware and software and building and programming them to be intelligent and autonomous is even better. This course gives the basis of the embedded systems having the drones as the primary target. The course will introduce embedded systems and, in particular, the microcontroller ARM Cortex-M, focusing on all the crucial blocks such as Interrupts, GPIO, ADC’s, Timers, and Serial communication protocols. Apart from the core topics, real-time and power-efficient algorithms for attitude and motor control are also discussed, making the drone efficient. Finally, exciting drone exercises are supported in the course to experiment with the development kit. The course will end with a 4-5 weeks project where the students will make the drone fly with some specific goal. It is not required any previous knowledge except C language.

The course will be taught in English and organized by the new Project-Based Learning center.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
Projects & Seminars: Hands-on Acceleration on Heterogeneous Computing Systems

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

Machine Learning with Smart Phone Sensors – Programming Android Phones – Neural Networks – Keras/Tensor Flow – Projects and App on smartphones

Smartphones have several sensors that can acquire much useful information, for instance where we are, what we are doing, with whom we are together, what is our constitution, what are our needs. Based on this information our 'smartphone' offers us the appropriate computational power to process them in loco without sending the sensor data to the cloud. This course focus on giving the bases of machine learning and embedded systems. The student will learn the tools to implement a machine learning algorithm, such as Tensor Flow and others in their android phones to have an advanced smartphone. The course will end with 4 weeks project where the students can target a specific application scenario. It is not required any previous experience in machine learning. Phython is a plus but the basis of phython will be given in the course to be able to complete the project.

The course will be taught in English and organized by the new Project-based Learning center.

227-0085-48L Projects & Seminars: Introduction to Program Nao Robots for Robocup Competition

W 4 credits 4P M. Magno

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

NAO robots from Softbank are the leading humanoid robot being used in research and education worldwide. Robotics is the fastest growing and most advanced technology used in education and research. The main goal of this course is to introduce and allowing the students to learn how to program an NAO humanoid robot to make him walk, talking, watching objects understanding the human, and reacting to external input. The Nao Robots used in this course are equipped with many sensors: Tactile Sensors, Ultrasonic sensors, A Gyro, An Accelerometer, Force Sensors, Infrared sensors, 2 HD Cameras, 4 Microphones, and high accuracy digital encoders on each joint. It has two processors on board: an Intel Atom 1.6Ghz (The main computer includes SSD drive, WiFi, Bluetooth, and wired network) and an additional ARM-9 processor in its chest.

The course will introduce the software package and the full SDK and API. The students will learn how to program (mainly in C and Phyton) the robot to access the full functionality. To improve the hands-on skills of students the course will end with a 5 weeks project where the students in the group will compete in a small soccer game where the robots will play the game following and kicking a red ball. It is not requested any previous knowledge but programming skills are a plus.

The course will be taught in English and organized by the new Project-based Learning center.

227-0085-49L Projects & Seminars: Smart Patch Projects

W 4 credits 4P M. Magno

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

Wearable devices, PCB Design, Firmware developing, multi-sensors, Communication.

The Smart Patch project will design autonomous, low power and mesh enabled multi-sensor wearable smart patches. They will be based on the always-on smart sensing paradigm to continuously acquire process and stream physiological data in real-time. They can be trained to autonomously detect illness symptoms or other physical conditions, such as stress. The students will work in a team to design a sub-block of the smart patch. According to the students' background, they will be associated with designing the hardware or the firmware.

Together in a team, they will learn how to structure problems and identify solutions, system analysis, and simulation, as well as presentation and documentation techniques. They will get access to D-ITET labs and state-of-the-art engineering tools (Matlab, Simulink, Firmware development IDE, PCB Design, etc.)

The projects will be done under the Smart Patches: a flagship project for D-ITET students. (pbl.ee.ethz.ch)

227-0085-51L Projects & Seminars: Hands-on Acceleration on Heterogeneous Computing Systems

W 3 credits 3P O. Mutlu, J. Gómez Luna

Abstract

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective

Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

Wearable devices, PCB Design, Firmware developing, multi-sensors, Communication.

The Smart Patch project will design autonomous, low power and mesh enabled multi-sensor wearable smart patches. They will be based on the always-on smart sensing paradigm to continuously acquire process and stream physiological data in real-time. They can be trained to autonomously detect illness symptoms or other physical conditions, such as stress. The students will work in a team to design a sub-block of the smart patch. According to the students' background, they will be associated with designing the hardware or the firmware.

Together in a team, they will learn how to structure problems and identify solutions, system analysis, and simulation, as well as presentation and documentation techniques. They will get access to D-ITET labs and state-of-the-art engineering tools (Matlab, Simulink, Firmware development IDE, PCB Design, etc.)

The projects will be done under the Smart Patches: a flagship project for D-ITET students. (pbl.ee.ethz.ch)
The increasing difficulty of scaling the performance and efficiency of CPUs every year has created the need for turning computers into heterogeneous systems, i.e., systems composed of multiple types of processors that can suit better different types of workloads or parts of them. More than a decade ago, Graphics Processing Units (GPUs) became general-purpose parallel processors, in order to make their outstanding processing capabilities available to many workloads beyond graphics. GPUs have been critical to the recent rise of Machine Learning and Artificial Intelligence, which took unrealistic training times before the use of GPUs. Field-Programmable Gate Arrays (FPGAs) are another example computing device that can deliver impressive benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of specialized accelerators (e.g., Tensor Processing Units for neural networks), and (2) near-data processing architectures (i.e., placing compute capabilities near or inside memory/storage).

Despite the great advances in the adoption of heterogeneous systems in recent years, there are still many challenges to tackle, for example:

- Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from important fields such as bioinformatics, machine learning, graph processing, medical imaging, personalized medicine, robotics, virtual reality, etc.
- Scheduling techniques for heterogeneous systems with different general-purpose processors and accelerators, e.g., kernel offloading, memory scheduling, etc.
- Workflow characterization and programming tools that enable easier and more efficient use of heterogeneous systems.

If you are enthusiastic about working hands-on with different software, hardware, and architecture projects for heterogeneous systems, this is your P&S. You will have the opportunity to program heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose algorithmic changes to important applications to better leverage the compute power of heterogeneous systems, understand different workloads and identify the most suitable device for their execution, design optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance reported for a given important application.

Prerequisites of the course:
- Digital Design and Computer Architecture (or equivalent course).
- Familiarity with C/C++ programming and strong coding skills.
- Interest in future computer architectures and computing paradigms.
- Interest in discovering why things do or do not work and solving problems
- Interest in making systems efficient and usable

The course is conducted in English.

227-0085-53L Projects & Seminars: Motion Sensing Technologies for Magnetic Resonance Imaging (MRI)
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

Objective
The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Abstract
Current MRI scans are limited by patient motion. In clinics, radiologists are often confronted with images with severe motion artefacts in their images. They either have to make a diagnosis although the image artefacts were they could miss crucial information, or they have to send the patient back into the scanner for reacquisition. Such reacquisition might inflict additional costs in the six-figure range per scanner per year. Further, in research, MRI images from ultra-high field systems are already limited by motion from the cardioblastic and respiratory movement. Resulting in subpar performance if not addressed appropriately.

The key to overcoming such motion artefacts is estimating the motion and correct for it. Preferably this is done prospective in real-time or otherwise afterwards retrospective in the image reconstruction. Such methods are instrumental in brain imaging since the brain's movement is well described by the rigid body behaviour of the skull.

To do such motion correction, one needs a motion-sensing technology to measure the movement of the human skull with high precision, accuracy and temporal resolution. All this has to be done while being integrated into an MRI machine where powerful static magnetic fields are present, kW of pulsed RF power and MVA of changing magnetic field gradients are present.

In this P&S we explore different motion sensing technologies suitable for deployment in an MRI machine. What you can expect is that we discuss the theory of multiple sensing technologies and then implement an optical, shortwave RF and NMR phase motion sensor. We will spend most of our time in the lab constructing such sensors and testing them on our robotic test bench. Finally, we would also experiment in our MRI facilities, where we would perform motion correction experiments.

227-0085-54L Projects & Seminars: Optics and Spectroscopy Lab
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

Abstract
The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.

Objective
The goal of this P&S is to learn the basics of working with optics and how to assemble optical systems. It is intended to show the practical side to the many optics lectures that are offered at D-ITET. The course will give a very brief introduction on laser safety, basic building blocks for optics and information on how to handle such elements. The following classes allow the students to test very basics properties of lenses and lasers and how the corresponding optomechanics can be used to arrange a simple setup. After this, the different student groups rotate through four different experiments where they get the chance to build and align different optical setups and perform various measurements. No prior knowledge is required.

Group Projects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0091-10L</td>
<td>Group Project I</td>
<td>W</td>
<td>6</td>
<td>5A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Students must work in groups in supervised projects for 150 to 180 hours minimum. The topics of the group work are open and can be technical of specific nature or more general in the context of engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>see above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

227-0092-10L | Group Project II | W | 6 | 5A | Lecturers |

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 697 of 2152
Students must work in groups in supervised projects for 150 to 180 hours minimum. The topics of the group work are open and can be technical of specific nature or more general in the context of engineering.

Objective
see above

Internship in Industry
Please note the conditions for internships in industry as set forward by the "Guidelines for the "Laboratory Courses - Projects - Seminars ", see https://www.ee.ethz.ch/content/dam/ethz/special-interest/itet/department/Studies/Bachelor/Regulations/Richtlinien_Praktika-Projekte-Seminare_v5_final.pdf (German only).

Number	Title	Type	ECTS	Hours	Lecturers
227-0093-10L	Internship in Industry	W	6 credits		external organisers
Only for students in the Bachelor's Programme Electrical Engineering and Information Technology, Regulations 2016. For students enrolled in the 2018 Programme Regulations, see "227-1550-10L Internship in Industry" at Master's level.					

Abstract
The main objective of the 12-week internship is to expose bachelor's students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institution.

Objective
see above

Prerequisites / notice
Please note the conditions for Internships in industry as set forward by the "Guidelines for the "Laboratory Courses - Projects - Seminars ", see https://ethz.ch/content/dam/ethz/special-interest/itet/department/Studies/Bachelor/Regulations/Richtlinien_Praktika-Projekte-Seminare_v5_final.pdf (German only).

Additional Subjects

Number	Title	Type	ECTS	Hours	Lecturers
227-0651-00L | Applied Circuit and PCB-Design | W | 2 credits | 4G | A. Blanco Fontao

Abstract
Participants learn how to design a predefined electronic circuit and how to lay out the pertaining circuit board. CAE and CAD activities for design and simulation are carried out with the aid of Altium Designer.

Objective
The goal is to become acquainted with all those practical aspects of electronic circuit and PCB design by working through a modest but complete application example. This involves analysis of specifications, the evaluation of electronic parts, efficient testing and failure search, electromagnetic compatibility (EMC), the usage of industrial CAE/CAD tools for circuit simulation and PCB layout, generating production data for the board manufacturer, board mounting, testing and start up.

Content
- Development - from the idea to the final product
- Analysis of given circuit specifications
- Searching the Internet for electronics parts
- Choosing electronic parts: avoiding mistakes
- Setting up the Altium Designer environment
- Structure of component libraries
- Preparing schematic symbols for CAE
- Preparing footprints for CAD
- Linking component libraries and databases
- Introduction to Concord Pro and Supply Chain Management
- Structure of schematic diagrams and circuits
- Assigning schematic functions to physical parts
- Capturing a predefined circuit
- Hints for improved testing and failure analysis
- Checking schematic data
- Simulation of mixed-signal circuits using Spice
- Introduction to PCB manufacturing
- Turning circuit schematics into a workable layout using Altium Designer
- Component placement on the PCB
- Manual and automatic interconnect routing
- Design for EMC and High-Speed
- Preparation of production data for the board manufacturer
- Documentation for manufacturing and assembly
- PCB assembly (component mounting and soldering)
- Final circuit testing and start-up.

Literature
All necessary documents will be available as electronic documents (PDF).

Prerequisites / notice
- The course is recommended to all students who plan to design an electronic circuit or a PCB in an upcoming term project or as part of their master thesis. Attending this course during the term before will ensure they are optimally prepared and will allow them to fully focus on their project.
- The number of participants is limited.
- For their own students and staff, the Department of Information Technology and Electrical Engineering provides electronic components and consumables free of charge. All other participants have to bear a 200 CHF fee for those items.

5th Semester: Third Year Core Courses
Can be freely combined, a list of recommendations is available under https://ee.ethz.ch/studies/bachelor/third-year/core-courses.html

Number	Title	Type	ECTS	Hours	Lecturers
227-0101-00L | Discrete-Time and Statistical Signal Processing | W | 6 credits | 4G | H.-A. Loeliger
The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.

Over the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.

In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.

Content

2. The discrete Fourier transform and its use for digital filtering.
3. The statistical perspective: probability, random variables, discrete-time stochastic processes; detection and estimation: MAP, ML, Bayesian MMSE, LMMSE; Wiener filter, LMS adaptive filter, Viterbi algorithm.

Literature

- [bertsekas] Data Networks
 Dimitri Bertsekas, Robert Gallager
- [borodin] Online Computation and Competitive Analysis
 Allan Borodin, Ran El-Yaniv.
 Cambridge University Press, 1998
- [boudec] Network Calculus
 J.-Y. Le Boudec, P. Thiran
 Springer, 2001
- [cassandras] Introduction to Discrete Event Systems
 Christos Cassandras, Stéphane Lafortune.
- [fiat] Online Algorithms: The State of the Art
 A. Fiat and G. Woeginger
 D. Hochbaum
 D. Hochbaum
- [schickinger] Diskrete Strukturen (Band 2: Wahrscheinlichkeitstheorie und Statistik)
 T. Schickinger, A. Steger
 Springer, Berlin, 2001
- [sipser] Introduction to the Theory of Computation
 Michael Sipser.
Content

Literature

Prerequisites / notice
MATLAB is used for system analysis and simulation.

227-0113-00L Power Electronics W 6 credits 4G J. W. Kolar
Objective
Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components.

Content
Fields of application and application examples of power electronic converters, basic concept of switch-mode voltage and current conversion, pulse-width modulation (PWM); derivation and operating modes (continuous and discontinuous current mode) of DC/DC converter topologies, buck / boost / buck-boost converter; extension to DC/AC conversion using differences of unipolar output voltages varying over time; single-phase diode rectifier; boost-type PWM rectifier featuring sinusoidal input current; tolerance band AC current control and cascaded output voltage control with inner constant switching frequency current control; local and global averaging of switching frequency discontinuous quantities for calculation of component stresses; three-phase AC/DC conversion, center-tap rectifier with impressed output current, thyristor function, thyristor center-tap and full-bridge converter, rectifier and inverter operation, control angle and recovery time, inverter operation limit; basics of inductors and single-phase transformers, design based on scaling laws; isolated DCDC converter, flyback and forward converter, single-switch and two-switch circuit; single-phase AC/DC conversion, four-quadrant converter, unipolar and bipolar modulation, fundamental frequency model of AC-side operating behaviour; three-phase DC/AC converter with star-connected three-phase load, zero sequence (common-mode) and current forming differential-mode output voltage components, fundamental frequency modulation and PWM with singe triangular carrier and individual carrier signals of the phases.

Lecture notes
Lecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.

Prerequisites / notice
Prerequisites: Basic knowledge of electrical engineering / electric circuit analysis and signal theory.

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies not assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving assessed

Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking not assessed
Critical Thinking not assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

227-0116-00L VLSI 1: HDL based design for FPGAs W 6 credits 5G F. K. Gürkaynak, L. Benini
Abstract
This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.

Objective
Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.
This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

Lecture notes	Textbook and all further documents in English.
Prerequisites / notice	Prerequisites: Basics of digital circuits.
Examination	In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German.
Further details	https://iis-students.ee.ethz.ch/lectures/vlsi-i/

Content	This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
Content	- Overview on design methodologies and fabrication depths.
Content	- Levels of abstraction for circuit modeling.
Content	- Organization and configuration of commercial field-programmable components.
Content	- FPGA design flows.
Content	- Dedicated and general purpose architectures compared.
Content	- How to obtain an architecture for a given processing algorithm.
Content	- Meeting throughput, area, and power goals by way of architectural transformations.
Content	- Hardware Description Languages (HDL) and the underlying concepts.
Content	- SystemVerilog
Content	- Register Transfer Level (RTL) synthesis and its limitations.
Content	- Building blocks of digital VLSI circuits.
Content	- Functional verification techniques and their limitations.
Content	- Modular and largely reusable testbenches.
Content	- Assertion-based verification.
Content	- Synchronous versus asynchronous circuits.
Content	- The case for synchronous circuits.
Content	- Periodic events and the Anceau diagram.
Content	- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

Lecture notes	227-0121-00L Communication Systems	W 6 credits 4G A. Wittneben
Lecture notes	Abstract	Information Theory, Signal Space Analysis, Baseband Transmission, Passband Transmission, Example und Channel, Data Link Layer, MAC, Example Layer 2, Layer 3, Internet
Lecture notes	Objective	Introduction into the fundamentals of digital communication systems. Selected examples on the application of the fundamental principles in existing and upcoming communication systems
Lecture notes	Content	Covered are the lower three layer of the OSI reference model: the physical, the data link, and the network layer. The basic terms of information theory are introduced. After this, we focus on the methods for the point to point communication, which may be addressed elegantly and coherently in the signal space. Methods for error detection and correction as well as protocols for the retransmission of perturbed data will be covered. Also the medium access for systems with shared medium will be discussed. Finally, algorithms for routing and flow control will be treated.
Lecture notes	The application of the basic methods will be extensively explained using existing and future wireless and wired systems.	

Lecture notes	227-0124-00L Embedded Systems	W 6 credits 4G L. Thiele, M. Magno
Lecture notes	Abstract	An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The course covers theoretical and practical aspects of embedded system design and includes a series of lab sessions.
Lecture notes	Objective	Understanding specific requirements and problems arising in embedded system applications.
Lecture notes	Content	Understanding architectures and components, their hardware-software interfaces, the memory architecture, communication between components, embedded operating systems, real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis.
Lecture notes	Using the formal models and methods in embedded system real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis.	
Lecture notes	Content	An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. For example, they are part of industrial machines, agricultural and process industry devices, automobiles, medical equipment, cameras, household appliances, airplanes, sensor networks, internet-of-things, as well as mobile devices.
Lecture notes	The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems FreeRTOS, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment.	
Lecture notes	Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis.	
Lecture notes	More information is available at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html.	

Data: 11.11.2021 12:40 Autumn Semester 2021
"Solid State Electronics" is an introductory condensed matter physics course covering crystal structure, electron models, classification of metals, semiconductors, and insulators, band structure engineering, thermal and electronic transport in solids, magnetoresistance, and optical properties of solids. Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors. Understand the fundamental physics behind the mechanical, thermal, electric, magnetic, and optical properties of materials. Recommended background: Undergraduate physics, mathematics, semiconductor devices.

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>Solid State Electronics and Optics</th>
<th>W</th>
<th>6 credits</th>
<th>4G</th>
<th>N. Yazdani, V. Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>"Solid State Electronics" is an introductory condensed matter physics course covering crystal structure, electron models, classification of metals, semiconductors, and insulators, band structure engineering, thermal and electronic transport in solids, magnetoresistance, and optical properties of solids. Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors. Understand the fundamental physics behind the mechanical, thermal, electric, magnetic, and optical properties of materials. Recommended background: Undergraduate physics, mathematics, semiconductor devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>N. Yazdani, V. Wood</td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>N. Yazdani, V. Wood</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>N. Yazdani, V. Wood</td>
<td></td>
</tr>
</tbody>
</table>

Analog Integrated Circuits

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>Analog Integrated Circuits</th>
<th>W</th>
<th>6 credits</th>
<th>2V+2U</th>
<th>T. Jang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies. Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems. The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>W</td>
<td>6 credits</td>
<td>2V+2U</td>
<td>T. Jang</td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>W</td>
<td>6 credits</td>
<td>2V+2U</td>
<td>T. Jang</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>W</td>
<td>6 credits</td>
<td>2V+2U</td>
<td>T. Jang</td>
<td></td>
</tr>
</tbody>
</table>

Qubits, Electrons, Photons

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>Qubits, Electrons, Photons</th>
<th>W</th>
<th>6 credits</th>
<th>3V+2U</th>
<th>T. Zambelli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>In-depth analysis of the quantum mechanics origin of nuclear magnetic resonance (qubits, two-level systems), of LASER (quantization of the electromagnetic field, photons), and of electron transfer (from electrochemistry to photosynthesis). Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>W</td>
<td>6 credits</td>
<td>3V+2U</td>
<td>T. Zambelli</td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>W</td>
<td>6 credits</td>
<td>3V+2U</td>
<td>T. Zambelli</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>W</td>
<td>6 credits</td>
<td>3V+2U</td>
<td>T. Zambelli</td>
<td></td>
</tr>
</tbody>
</table>

| Literature | W | 6 credits | 3V+2U | T. Zambelli |

- IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises)! Please, look at the details in moodle!

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises)! Please, look at the details in moodle!

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises)! Please, look at the details in moodle!

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises)! Please, look at the details in moodle!

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises)! Please, look at the details in moodle!

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises)! Please, look at the details in moodle!

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises)! Please, look at the details in moodle!
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: not assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

227-0385-10L Biomedical Imaging

- **Abstract**: Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.
- **Objective**: To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.
- **Content**:
 - X-ray imaging
 - Computed tomography
 - Single photon emission tomography
 - Positron emission tomography
 - Magnetic resonance imaging
 - Ultrasound/Doppler imaging
- **Lecture notes**: Lecture notes and handouts
- **Literature**: Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011

Prerequisites / notice: Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming

227-0393-10L Bioelectronics and Biosensors

- **Abstract**: The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.
- **Objective**: During this course the students will:
 - learn the basic concepts in biosensing and bioelectronics
 - be able to solve typical problems in biosensing and bioelectronics
 - learn about the remaining challenges in this field

Data: 11.11.2021 12:40

Autumn Semester 2021
L1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Flück equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning

Literature
Ploosnay and Barr, Bioelectricity: A Quantitative Approach (Third edition)

Prerequisites / notice
The course requires an open attitude to the interdisciplinary approach of bioelectronics. In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.).

5th Semester: Third Year Additional Foundation Courses
Students complete at least two of the Additional Foundation Courses available for selection. Recommendations are available under https://ee.ethz.ch/studies/bachelor/third-year/additional-foundation-courses.html

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0014-20L</td>
<td>Computational Thinking</td>
<td>W</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>R. Wattenhofer</td>
</tr>
<tr>
<td>227-0053-00L</td>
<td>High-Frequency Design Techniques</td>
<td>W</td>
<td>4 credits</td>
<td>2V+2U</td>
<td>C. Bolognesi</td>
</tr>
</tbody>
</table>

227-0122-00L Introduction to Electric Power Transmission: System W 4 credits 2V+2U C. Franck, G. Hug

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 704 of 2152
Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC.

The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship.

In particular, the aims of the course are to:
1. broaden understanding of management principles and frameworks
2. advance insights into the sources of corporate and entrepreneurial success
3. develop skills to apply this knowledge to real-life managerial problems

The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / or appreciate the challenges that entrepreneurs and managers deal with.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.

The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.

All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle. These course materials will form the point of departure for the lectures, class discussions and team work.

Students at all levels not belonging to D-MTEC. This course can be complemented with Discovering Management (Excercises) 351-0778-01.
Complementary exercises for the module Discovering Management.

Prerequisite: Participation and successful completion of the module Discovering Management (351-0778-00L) is mandatory.

Abstract
This course is offered complementary to the basis course 351-0778-00L, "Discovering Management". The course offers an additional exercise.

Objective
The general objective of Discovering Management (Exercises) is to complement the course "Discovering Management" with one larger additional exercise.

Discovering Management (Exercises) thus focuses on developing the skills and competences to apply management theory to a real-life exercise from practice.

Content
Students who are enrolled for "Discovering Management Exercises" are asked to write an essay about a particular management issue of choice, using your insights from Discovering Management.

Literature
Students have the option to either write this alone or in a group of two students.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Communication	assessed
Domain D - Personal Competencies	Creative Thinking	assessed
	Critical Thinking	assessed

363-0511-00L Managerial Economics
W 4 credits 3V V. Lohmann, P. Egger, M. Köthenbürger

Abstract
"Managerial Economics" provides an introduction to the theories and methods from Economics and Management Science to analyze economic decision-making in the context of markets. The course targets students with no prior knowledge in Economics and Management.

Objective
The objective of this course is to provide an introduction to microeconomic thinking. Based on the fundamental principles of economic analysis (optimization and equilibrium), the focus lies on understanding key economic concepts relevant for understanding and analyzing economic behavior of firms and consumers in the context of markets. Market demand and supply are derived from the individual decision-making of economic agents and market outcomes under different assumptions about the market structure and market power (perfect competition, monopoly, oligopoly, game theory) are studied. This introductory course aims at providing essential knowledge from the fields of Economics and Management relevant for economic decision-making in the context of both the private and public sector.

Literature

Prerequisites / notice
The course targets both Bachelor and Master students. No prior knowledge in the areas of Economics and Management is required.

363-1109-00L Introduction to Microeconomics
W 3 credits 2G M. Wörter, M. Beck

Abstract
The course introduces basic principles, problems and approaches of microeconomics. It describes economic decisions of households and firms, and their coordination through perfectly competitive markets.

Objective
Students acquire a deeper understanding of basic microeconomic models.

They acquire the ability to apply these models in the interpretation of real world economic contexts.

Students acquire a reflective and contextual knowledge on how societies use scarce resources to produce goods and services and distribute them among themselves.

Content
Market, budget constraint, preferences, utility function, utility maximisation, demand, technology, profit function, cost minimisation, cost functions, perfect competition, information and communication technologies

Lecture notes
Course material in e-learning environment https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php

Literature

Prerequisites / notice
This course "Einführung in die Mikroökonomie" (363-1109-00L) is intended for Bachelor students and LE 363-0503-00 "Principles of Microeconomics" for Master students.
The students shall obtain a basic knowledge about business law. They shall be able to recognize and evaluate issues in the area of business law and suggest possible solutions.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0703-00L</td>
<td>Introduction to Law</td>
<td>W</td>
<td>2</td>
<td>2V</td>
</tr>
<tr>
<td>851-0735-10L</td>
<td>Business Law</td>
<td>W</td>
<td>2</td>
<td>2V</td>
</tr>
<tr>
<td>851-0738-00L</td>
<td>Intellectual Property: Introduction</td>
<td>W</td>
<td>2</td>
<td>2V</td>
</tr>
<tr>
<td>851-0738-01L</td>
<td>The Role of Intellectual Property in the Engineering and Technical Sector</td>
<td>W</td>
<td>2</td>
<td>2V</td>
</tr>
</tbody>
</table>

Students who have attended or will attend the lecture "Introduction to Law for Civil Engineering and Architecture" (851-0703-03L) or "Introduction to Law" (851-0708-00L), cannot register for this course unit.

Particularly suitable for students of D-ARCH, D-MAVT, D-MATL

Abstract
This class introduces students into basic features of the legal system. Fundamental issues of constitutional law, administrative law, private law and the law of the EU are covered.

Objective
Students are able to identify basic structures of the legal system. They understand selected topics of public and private law and are able to apply the fundamentals in more advanced law classes.

Content
Basic concepts of law, sources of law. Private law: Contract law (particularly contract for work and services), tort law, property law. Public law: Human rights, administrative law, procurement law, procedural law. Insights into the law of the EU and into criminal law.

Lecture notes
Jaap Hage, Bram Akkermans (Eds.), Introduction to Law, Cham 2017 (Online Resource ETH Library)

Literature
Further documents will be available online (see https://moodle-app2.let.ethz.ch/course/view.php?id=15142).

Particularly suitable for students of D-ITET, D-MAVT

Abstract
The students shall obtain a basic knowledge about business law. They shall be able to recognize and evaluate issues in the area of business law and suggest possible solutions.

Objective
The students shall obtain the following competence:
- They shall obtain a working knowledge on the legal aspects involved in setting up and managing an enterprise.
- They shall be acquainted with corporate functions as contracting, negotiation, claims management and dispute resolution
- They shall be familiar with the issues of corporate compliance, i.e. the system to ascertain that all legal and ethical rules are observed.
- They shall be able to contribute to the legal management of the company and to discuss legal issues.
- They shall have an understanding of the law as a part of the corporate strategy and as a valuable resource of the company.

Lecture notes
A comprehensive script will be made available online on the moodle platform.

Particularly suitable for students of D-CHAB, D-INFK, D-ITET, D-MAVT, D-MATL, D-MTEC

Abstract
The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Objective
The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

The lecture gives an overview of the fundamental aspects of intellectual property, which plays an important role in the daily routine of engineers and scientists. The lecture aims to make participants aware of the various methods of protection and to put them in a position to use this knowledge in the workplace.
In recent years, knowledge about intellectual property has become increasingly important for engineers and scientists. Both in production and distribution and in research and development, they are increasingly being confronted with questions concerning the patenting of technical inventions and the use of patent information. The lecture will acquaint participants with practical aspects of intellectual property and enable them to use the acquired knowledge in their future professional life.

Topics covered during the lecture will include:
- The importance of innovation in industrialised countries
- An overview of the different forms of intellectual property
- The protection of technical inventions and how to safeguard their commercialisation
- Patents as a source of technical and business information
- Practical aspects of intellectual property in day-to-day research, at the workplace and for the formation of start-ups.

Case studies will illustrate and deepen the topics addressed during the lecture.

The seminar will include practical exercises on how to use and search patent information. Basic knowledge of how to read and evaluate patent documents as well as how to use publicly available patent databases to obtain the required patent information will also be provided.

The lecture addresses students in the fields of engineering, science and other related technical fields.

Engineering Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0105-00L</td>
<td>Introduction to Estimation and Machine Learning</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>H.-A. Loeliger</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students master the basic mathematical concepts and algorithms of estimation and machine learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review of probability theory; least squares and linear learning; Gaussian random variables; singular-value decomposition; kernel methods, neural networks, and more</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes will be handed out as the course progresses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites /</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>notice</td>
<td>solid basics in linear algebra and probability theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0110-00L</td>
<td>Electromagnetic Waves: Materials, Effects, and Antennas</td>
<td>W</td>
<td>6 credits</td>
<td>2V+2U</td>
<td>U. Koch</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course provides profound knowledge of electromagnetic waves. Various types of materials, nonlinear and resonant effects, and antenna applications are discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>You can describe wave propagation in classical and nonclassical materials and know the fundamental solutions. You know how waves interact with matter and about nonlinear and resonant effects. You can apply the acquired knowledge in scattering, waveguiding, radiation, and antenna problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The lecture covers the following topics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Generic time-harmonic electromagnetic fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fundamental solutions of the wave equation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Wave propagation in various types of materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Interaction of waves with matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Nonlinear effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Resonant effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Applications like scattering, waveguiding, radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Radio frequency and optical antennas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes and slides will be handed out during the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites /</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>notice</td>
<td>Remark: the lecture succeeds «Advanced Electromagnetic Waves» and reorientates itself to materials, effects, and applications with waves.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0517-10L</td>
<td>Fundamentals of Electric Machines</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>D. Bortis</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fundamentals in magnetic circuits and electromechanical energy conversion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Force and torque calculation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Complex space vector notation, rotating coordinate system (dq-transformation).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Loss components in electric machines, scaling laws of electromechanical actuators.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mechanical and thermal modelling.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes and associated exercises including correct answers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0652-00L</td>
<td>Maxwell, Einstein, and the GPS</td>
<td>W</td>
<td>6 credits</td>
<td>2V+2U</td>
<td>T. Zambelli</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maxwell's equations are reinterpreted in the framework of Einstein's special relativity theory using the Lagrangian formalism in order to discover the deep interconnection between the electric and magnetic field. Its daily relevance is emphasized by pinpointing how GPS atomic clocks in satellites and on the earth are affected by frequency shifts which can be explained only in terms of relativity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 708 of 2152
Objective

D-ITET is the repository of the Maxwell's equations, which are dissected from all perspectives in the courses Physics I, Electromagnetic Fields and Waves, and Advanced Electromagnetic Waves.

Not only its elegance, but also the daily importance of the relativity theory will be finally highlighted explaining how the GPS can work only if the relativistic view of synchronous clocks is taken into account.

Only one aspect is left over: the fact that they are not invariant with respect to the classical Galilean transformation. On the contrary, Maxwell's equations predict that the light speed is the same for every inertial frame of reference. In this new course, we will deepen how Einstein solved this clash elaborating the theory of "special relativity". Maxwell's equations are thus naturally derived in a breath-taking fashion from the principle of stationary action within the Lagrangian formalism.

Not only its elegance, but also the daily importance of the relativity theory will be finally highlighted explaining how the GPS can work only if the relativistic view of synchronous clocks is taken into account.

Content

- Galileo-Newton, the Ether, Michelson-Morley's Experiment
- Lorentz Transformations
- The Lagrangian, the Principle of Stationary Action for Particles and Fields, Noether's Theorem
- 4-Vectors in Minkowski’s Spacetime: Tensor Calculus
- Maxwell’s Equations and the Energy-Momentum Tensor
- GPS
- *E = mc²*

Lecture notes

No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive!

NOTES:

- **(on the GPS)** E.D. Kaplan, C. Hegarty, "Understanding GPS/GNSS", 2017, ARTECH HOUSE USA

Supplementary material will be uploaded in Moodle.

Prerequisites / notice

Furthermore, a solid base of Analysis I & II as well as of Linear Algebra is really helpful.

NOTES:

- **(on the GPS)** E.D. Kaplan, C. Hegarty, "Understanding GPS/GNSS", 2017, ARTECH HOUSE USA

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Method-specific Competencies</th>
<th>Social Competencies</th>
<th>Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Concepts and Theories</td>
<td>Techniques and Technologies</td>
<td>Communication</td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>B</td>
<td>Analytical Competencies</td>
<td>Decision-making</td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
<td>assessed</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>assessed</td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lecture notes
Lecture notes are handed out during the individual lessons (CHF 20.-).
The lecture is partly given by experts from industry.
It is supplemented by an excursion to one of the industry partners.

Prerequisites / notice
The lecture is partly given by experts from industry.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Problem-solving: assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: assessed

Domain D - Personal Competencies
- Creative Thinking: assessed
- Critical Thinking: assessed

151-0621-00L Microsystems I: Process Technology and Integration W 6 credits 3V+3U M. Haluska, C. Hierold

Abstract
Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and -devices by a sequence of defined processing steps (process flow).

Objective
Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps (= process flow).

Content
- Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS)
- Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition.
- Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties.

Application of selected technologies will be demonstrated on case studies.

Lecture notes
Handouts (available online)

Literature
- S.M. Sze: Semiconductor Devices, Physics and Technology
- W. Menz, J. Mohr, O.Paul: Microsystem Technology
- Hong Xiao: Introduction to Semiconductor Manufacturing Technology
- T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications

Prerequisites / notice
Prerequisites: Physics I and II

252-0834-00L Information Systems for Engineers W 4 credits 2V+1U G. Fourny

Abstract
This course provides the basics of relational databases from the perspective of the user.

We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

Objective
This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.
Content

Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

13. Outlook

Literature

- Lecture material (slides).
 (It is not required to buy the book, as the library has it)

Prerequisites / notice

For non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logic
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

376-0021-00L Materials and Mechanics in Medicine

Abstract
Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.

Objective
Understanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.

Content
Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants.

Lecture notes
course website on Moodle

Literature
Academic Press

Man-Technology-Environment Electives ("MTU")

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0227-00L Basics of Air Transport (Aviation I)</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>P. Wild</td>
<td></td>
</tr>
</tbody>
</table>

Abstract
In general the course explains the main principles of air transport and elaborates on simple interdisciplinary topics. Working on broad 14 different topics like aerodynamics, manufacturers, airport operations, business aviation, business models etc. the students get a good overview in air transportation. The program is taught in English and we provide 11 different experts/lecturers.

Objective
The goal is to understand and explain basics, principles and contexts of the broader air transport industry. Further, we provide the tools for starting a career in the air transport industry. The knowledge may also be used for other modes of transport. Ideal foundation for Aviation II - Management of Air Transport.

Content
Weekly: 1h independent preparation; 2h lectures and 1 h training with an expert in the respective field

Concept: This course will be taught as Aviation I. A subsequent course - Aviation II - covers the "Management of Air Transport".

Content: Transport as part of the overall transportation scheme; Aerodynamics; Aircraft (A/C) Designs & Structures; A/C Operations; Aviation Law; Maintenance & Manufacturers; Airport Operations & Planning; Aviation Security; ATC & Airspace; Air Freight; General Aviation; Business Jet Operations; Business models within Airline Industry; Military Aviation.

Technical visit: This course includes a guided tour at Zurich Airport and Dubendorf Airfield (baggage sorting system, apron, Tower & Radar Simulator at Skyguide Dubendorf).

Lecture notes
Preparation materials & slides are provided prior to each class

Literature
Literature will be provided by the lecturers, respectively there will be additional Information upon registration (normally available in Moodle)

Prerequisites / notice
The lecture is planned as class teaching with live-streaming and recordings.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: assessed
- Leadership and Responsibility: not assessed
- Sensitivity to Diversity: assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: assessed
- Critical Thinking: assessed

GESS Science in Perspective

see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-ITET.

Language Courses

see Science in Perspective: Language Courses ETH/UZH

Bachelor's Project

The Bachelor's Thesis is the final part of the bachelor's program and should therefore only be taken in the semester in which the bachelor's diploma is acquired.

The minimum requirement for enrollment is the successful completion of:
- basic examination (examination blocks A+B) and
- subjects of the second year (examination blocks 1-3)

Number Title Type ECTS Hours Lecturers

227-0100-00L Bachelor's Thesis O 12 credits 26D Supervisors

Abstract

The Bachelor's Thesis is the final part of the bachelor's program and should therefore only be taken in the semester in which the bachelor's diploma is acquired.

The minimum requirement for enrollment is the successful completion of:
- basic examination (examination blocks A+B) and
- subjects of the second year (examination blocks 1-3)

Supervisor must be a professor at D-ITET or associated, see a link to the lists of those at https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

Objective

see above

Prerequisites / notice

The Bachelor's Thesis is the final part of the bachelor's program and should therefore only be taken in the semester in which the bachelor's diploma is acquired.

The minimum requirement for enrollment is the successful completion of:
- basic examination (examination blocks A+B) and
- subjects of the second year (examination blocks 1-3)

Supervisor must be a professor at D-ITET or associated, see a link to the lists of those at https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

227-1101-00L How to Write Scientific Texts E- 0 credits U. Koch

Abstract

The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training.

The lecture will be thought on two afternoons. Some exercises will be built into the lecture.

Objective

Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.

Content

* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures).
* Topic 2: Power Point Presentations.
* Topic 3: Citation Rules and Citation Software.
* Topic 4: Guidelines for Research Integrity.
Prerequisites / notice

Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.

<table>
<thead>
<tr>
<th>Electrical Engineering and Information Technology Bachelor - Key for Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>O Compulsory</td>
</tr>
<tr>
<td>W+ Eligible for credits and recommended</td>
</tr>
<tr>
<td>W Eligible for credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key for Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V lecture</td>
</tr>
<tr>
<td>G lecture with exercise</td>
</tr>
<tr>
<td>U exercise</td>
</tr>
<tr>
<td>S seminar</td>
</tr>
<tr>
<td>K colloquium</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Educational Science

General course offerings in the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>This lecture is only apt for students who intend to enrol in the programs "Teaching Diploma" or "Teaching Certificate". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course looks into scientific theories and also empirical studies on human learning and relates them to the school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way humans process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers are put in a position where they can further educate themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Thematische Schwerpunkte: Lernen als Verhaltensänderung und als Informationsverarbeitung: Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information; Lernen als Wissenskonstruktion und Kompetenzerwerb unter besonderer Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und Erklärungen; Die Rolle von Emotion und Motivation beim Lernen; Interindividuelle Unterschiede in der Lernfähigkeit und ihre Ursachen: Intelligenztheorien, Geschlechtsunterschiede beim Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>This course is only apt for students who intend to enrol in the programs "Lehrdiplom" or "Didaktisches Zertifikat". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0240-22L</td>
<td>Coping with Psychosocial Demands of Teaching (EW4 W DZ) ■ □</td>
<td>2</td>
<td>3S</td>
<td></td>
<td>U. Markwalder, S. Maurer, S. Peteranderl-Rüschoff</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 20.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In this class, students will learn concepts and skills for coping with psychosocial demands of teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students possess theoretical knowledge and practical competences to be able to cope with the psychosocial demands of teaching. (1) They know relevant rules of conversation and conflict management and are able to apply them in an appropriate way in the school context (e.g. in parental talks). (2) They know core aspects of classroom management and know how to apply it concretely (e.g. promoting a positive learning atmosphere, avoiding disciplinary difficulties) and they are aware of possible contacts (e.g. illegal or psychological services).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-06L</td>
<td>Cognitively Activating Instructions in MINT Subjects ■ W DZ</td>
<td>2</td>
<td>2S</td>
<td></td>
<td>R. Schumacher</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center at the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Get to know cognitively activating instructions in MINT subjects - Get information about recent literature on learning and instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-07L</td>
<td>Human Intelligence</td>
<td>1</td>
<td>1S</td>
<td></td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Understanding of research methods used in the empirical human sciences - Getting to know intelligence tests - Understanding findings relevant for education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-08L</td>
<td>Research Methods in Educational Science</td>
<td>W</td>
<td>1</td>
<td>2S</td>
<td>P. Edelsbrunner, T. Braas, C. M. Thurn</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gender Issues in Education and STEM

Number of participants limited to 30.

Abstract

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Objective

- Understand research methods used in the empirical educational sciences
- Understand and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives
- To integrate this knowledge with teacher's work.

Content

Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisite

- Successful participation in the course 851-0240-00L Human Learning (EW1).

Didactics and Professional Training

Important: You can only enroll in the courses of this category if you have not more than 12 CP left for possible additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0857-00L</td>
<td>Didactics I for D-MAVT and D-ITET</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>Q. Lohmeyer, A. Colotti</td>
</tr>
<tr>
<td></td>
<td>Didactics I focuses on teaching techniques as building blocks of typical lessons. This is done on the basis of the findings of teaching and learning research and their implementation in practice. The aim is the planning and implementation of effective teaching sequences as well as their evaluation and reflection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>- The students can plan, conduct and critically reflect single lessons.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They orient themselves towards the academic goals and take into account existing knowledge, the professional environment and the ambitions of the students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They can apply the basic teaching principles meaningfully in their subject and suitably structure the learning phases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They can reduce and present complex technical content such that it is in a form suitable for the students to learn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They have considered examples of the common conceptual errors encountered by students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- Planning a teaching unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Opening a lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Direct Instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Blackboard writing and slide design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Develop exercises</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Practicing teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Excursion Fachhochschule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture materials are provided via Moodle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite</td>
<td>Prerequisite: Educational science course already completed or at the same time.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0859-10L</td>
<td>Teaching Internship Including Examination Lessons</td>
<td>O</td>
<td>6</td>
<td>13P</td>
<td>A. Colotti</td>
</tr>
<tr>
<td></td>
<td>The teaching internship can just be visited if all other courses of TC are completed. Repetition of the teaching internship is excluded even if the examination lessons are to be repeated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Students apply the insights, abilities and skills they have acquired within the context of an educational institution. They observe 10 lessons and teach 20 lessons independently. Two of them are as assessed as Examination Lessons.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They are able to assess the significance of tuition topics for their subject from different angles (including interdisciplinary angles) and impart these to their pupils.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They learn the skills of the teaching trade.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture notes

Dokument: schriftliche Vorbereitung für Prüfungslektionen.

Literature

Wird von der Praktikumslehrperson bestimmt.

227-0854-00L Mentored Work Subject Didactics Electrical Engineering and Information Technology

- **Prerequisites:** successful completion of FD I and FD II

Abstract

In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.

Objective

The objective is for the students:
- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.

Content

Lecture notes

Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.

Prerequisites / notice

Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

Electrical Engineering and Information Technology TC - Key for Type

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>O</th>
<th>W+</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>V</th>
<th>G</th>
<th>U</th>
<th>S</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td>P</td>
<td>practical/laboratory course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Electrical Engineering and Information Technology Master

► Master Studies (Programme Regulations 2018)

►► Communication

The core courses and specialisation courses below are a selection for students who wish to specialise in the area of "Communication". See https://www.ee.ethz.ch/studies/main-master/areas-of-specialisation.html.

The individual study plan is subject to the tutor's approval.

►►► Core Courses

These core courses are particularly recommended for the field of "Communication". You may choose core courses from other fields in agreement with your tutor.

A minimum of 24 credits must be obtained from core courses during the MSc EEIT.

►►► Foundation Core Courses

Fundamentals at bachelor level, for master students who need to strengthen or refresh their background in the area.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0121-00L</td>
<td>Communication Systems</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>A. Wittneben</td>
</tr>
</tbody>
</table>

Abstract

Information Theory, Signal Space Analysis, Baseband Transmission, Passband Transmission, Example and Channel, Data Link Layer, MAC: Example Layer 2, Layer 3, Internet

Objective

Introduction into the fundamentals of digital communication systems. Selected examples on the application of the fundamental principles in existing and upcoming communication systems

Content

Covered are the lower three layer of the OSI reference model: the physical, the data link, and the network layer. The basic terms of information theory are introduced. After this, we focus on the methods for the point to point communication, which may be addressed elegantly and coherently in the signal space. Methods for error detection and correction as well as protocols for the retransmission of perturbed data will be covered. Also the medium access for systems with shared medium will be discussed. Finally, algorithms for routing and flow control will be treated.

The application of the basic methods will be extensively explained using existing and future wireless and wired systems.

Lecture notes

Lecture Slides

Literature

227-0101-00L | Discrete-Time and Statistical Signal Processing | W | 6 | 4G | H.-A. Loeliger |

Abstract

The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.

Objective

The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.

Content

1. Discrete-time linear systems and filters:
 - state-space realizations, z-transform and spectrum,
 - decimation and interpolation, digital filter design, stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
 - probability, random variables, discrete-time stochastic processes;
 - detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
 - Wiener filter, LMS adaptive filter, Viterbi algorithm.

Lecture notes

Lecture Notes

►►► Advanced Core Courses

Advanced core courses bring students to gain in-depth knowledge of the chosen specialization. They are MSc level only.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0301-00L</td>
<td>Optical Communication Fundamentals</td>
<td>W</td>
<td>6</td>
<td>2V+1U+1P</td>
<td>J. Leuthold</td>
</tr>
</tbody>
</table>

Abstract

The path of an analog signal in the transmitter to the digital world in a communication link and back to the analog world at the receiver is discussed. The lecture covers the fundamentals of all important optical and optoelectronic components in a fiber communication system. This includes the transmitter, the fiber channel and the receiver with the electronic digital signal processing elements.

Objective

An in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societal, economical and environmental aspects related to the on-going exponential growth in the field of communications.
Content

* Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.

* Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.

* Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection techniques, Error correction coding.

* Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.

* Chapter 7: Optical Amplifiers: Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.

* Chapter 8: Applications of Optical Amplifiers: Optical fiber amplifiers, Optical fiber switches, Sagnac interferometers, Optical fiber sensors.

Lecture notes

Information Theory I

Consists of:

- Entropy and information sources
- Entropy and information channels
- Error correction coding
- Source coding

Literature

T.M. Cover and J. Thomas, Elements of Information Theory (second edition)

Prerequisites / notice

227-0417-00L

Information Theory I

<table>
<thead>
<tr>
<th>Objective</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>* This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>* The fundamentals of Information Theory including Shannon's source coding and channel coding theorems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture notes</th>
<th>Prequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture notes are handed out.</td>
<td>- local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.)</td>
</tr>
<tr>
<td></td>
<td>- others: solid basics in linear algebra and probability theory</td>
</tr>
</tbody>
</table>

227-0427-00L

Signal Analysis, Models, and Machine Learning

<table>
<thead>
<tr>
<th>Objective</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Does not take place this semester. This course was replaced by "Introduction to Estimation and Machine Learning" and "Advanced Signal Analysis, Modeling, and Machine Learning".</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
<th>Literature</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lecture notes</th>
<th>Prequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture notes.</td>
<td>Prerequisites:</td>
</tr>
<tr>
<td></td>
<td>- others: solid basics in linear algebra and probability theory</td>
</tr>
</tbody>
</table>

227-0439-00L

Wireless Access Systems

<table>
<thead>
<tr>
<th>Objective</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Does not take place this semester. The lecture course covers current and upcoming wireless systems for data communication and localization in diverse applications. Important topics are broadband data networks, indoor localization, internet-of-things, biomedical sensor networks and smart grid communications. The course consists of two tracks, the lecture part "Technology & Systems" and the group exercise part "Simulate & Practice".</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture notes</th>
<th>Prequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- others: solid basics in linear algebra and probability theory</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 718 of 2152
Introduction to discrete event systems. We start out by studying popular models of discrete event systems. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture we give an introduction to discrete event systems. We start out by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queuing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queuing.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0102-00L</td>
<td>Discrete Event Systems</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>R. Jacob, L. Vanbever, R. Wattenhofer</td>
</tr>
</tbody>
</table>

Abstract

Introduction to discrete event systems. We start out by studying popular models of discrete event systems. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.

Objective

Over the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The goal of the course is to explain and analyze modern and future wireless systems for data communication and localization. The course covers designs for generic applications (e.g. WiFi, Bluetooth) as well as systems optimized for specific applications (e.g. biomedical sensor networks, smart grid communications).

The course consists of two parallel tracks. The track "Technology&Systems" is structured as regular lecture. In the introduction, we discuss the challenges and potential of wireless access and study some fundamental limits of wireless communications and localization approaches.

The second part of this track is devoted to the most widely used wireless systems, WiFi/WLAN, Bluetooth, RFID, NFC. Furthermore, we study the potential of using existing wireless communication systems for indoor localization.

The third part follows with an introduction to the internet-of-things, where we focus on data communication and localization challenges and solutions in wireless networks with a massive number of nodes. Next, we study communication technologies for the smart grid, which combine wireless as well as power line communication approaches to optimize availability and efficiency.

The track is completed by a comprehensive survey of short-range magneto-inductive micro sensor networks for communication and localization - as a promising technology for biomedical sensor communication (in-body, out-of-body).

In the track "Simulate&Practice" we form student teams to simulate and analyze functional blocks of the physical layer of advanced wireless systems (based on MATLAB simulations). The track includes combination tasks in which different teams combine their functional blocks (e.g. transmitter, receiver) in order to simulate the complete physical layer of a wireless system. The focus is on data communication and localization. The tasks include modeling and simulating of single-carrier systems (as, e.g., used in Bluetooth), multi-carrier OFDM systems (e.g. used in WiFi or power line communication), and indoor localization approaches (e.g. relevant for IoT and sensor networks).

The course consists of two parallel tracks. The track "Technology&Systems" is structured as regular lecture. In the introduction, we discuss the challenges and potential of wireless access and study some fundamental limits of wireless communications and localization approaches.
Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.

Process automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation.

This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.

MATLAB is used for system analysis and simulation.

This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modularity and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Aneau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modularity and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Aneau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modularity and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Aneau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modularity and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Aneau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modularity and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Aneau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modularity and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Aneau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.
Prerequisites / notice

Prerequisites:
Basics of digital circuits.

Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English or German.

Further details:
https://iis-students.ee.ethz.ch/lectures/vlsi-i/

227-0148-00L
VLSI III: Test and Fabrication of VLSI Circuits
W 6 credits 4G
L. Benini

Abstract
In this course, we will cover how modern microchips are fabricated, and we will focus on methods and tools to uncover fabrication defects, if any, in these microchips. As part of the exercises, students will get to work on an industrial 1 million dollar automated test equipment.

Objective
Learn about modern IC manufacturing methodologies, understand the problem of IC testing. Cover the basic methods, algorithms and techniques to test circuits in an efficient way. Learn about practical aspects of IC testing and apply what you learn in class using a state-of-the-art tester.

Content
In this course we will deal with modern integrated circuit (IC) manufacturing technology and cover topics such as:
- Today’s nanometer CMOS fabrication processes (HKMG).
- Optical and post optical Photolithography.
- Potential alternatives to CMOS technology and MOSFET devices.
- Evolution paths for design methodology.
- Industrial roadmaps for the future evolution of semiconductor technology (ITRS).

If you want to earn money by selling ICs, you will have to deliver a product that will function properly with a very large probability. The main emphasis of the lecture will be discussing how this can be achieved. We will discuss fault models and practical techniques to improve testability of VLSI circuits. At the IIS we have a state-of-the-art automated test equipment (Advantest SoC V93000) that we will make available for in class exercises and projects. At the end of the lecture you will be able to design state-of-the-art digital integrated circuits such as to make them testable and to use automatic test equipment (ATE) to carry out the actual testing.

During the first weeks of the course there will be weekly practical exercises where you will work in groups of two. For the last 5 weeks of the class students will be able to choose a class project that can be:
- The test of their own chip developed during a previous semester thesis
- Developing new setups and measurement methods in C++ on the tester
- Helping to debug problems encountered in previous microchips by IIS.

Lecture notes
Half of the oral exam will consist of a short presentation on this class project.

Prerequisites / notice
Although this is the third part in a series of lectures on VLSI design, you can follow this course even if you have not visited VLSI I and VLSI II lectures. An interest in integrated circuit design, and basic digital circuit knowledge is required though.

Course website:
https://iis-students.ee.ethz.ch/lectures/vlsi-iii/

227-0166-00L
Analog Integrated Circuits
W 6 credits 2V+2U
T. Jang

Abstract
This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies. Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly in the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems.

The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.

Content
- Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors.
- The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurements.
- Handouts of presented slides. No script but an accompanying textbook is recommended.

Lecture notes
Course website: https://iis-students.ee.ethz.ch/lectures/vlsi-iii/

227-0301-00L
Optical Communication Fundamentals
W 6 credits 2V+1U+1P
J. Leuthold

Abstract
The path of an analog signal in the transmitter to the digital world in a communication link and back to the analog world at the receiver is discussed. The lecture covers the fundamentals of all important optical and optoelectronic components in a fiber communication system. This includes the transmitter, the fiber channel and the receiver with the electronic digital signal processing elements.

An in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societal, economical and environmental aspects related to the on-going exponential growth in the field of communications.

- Chapter 1: Introduction: Analog/Digital conversion. The communication channel, Shannon channel capacity, Capacity requirements.
- Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.
- Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection techniques, Error correction coding.
- Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.
- Chapter 7: Optical Amplifiers: Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.

Lecture notes
Lecture notes are handed out.
227-0377-10L Physics of Failure and Reliability of Electronic Devices and Systems W 3 credits 2V I. Shorubalko, M. Held

Abstract
Understanding the physics of failures and failure mechanisms enables reliability analysis and serves as a practical guide for electronic devices design, integration, systems development and manufacturing. The field gains additional importance in the context of managing safety, sustainability and environmental impact for continuously increasing complexity and scaling-down trends in electronics.

Objective
Provide an understanding of the physics of failure and reliability. Introduce the degradation and failure mechanisms, basics of failure analysis, methods and tools of reliability testing.

Content
Summary of reliability and failure analysis terminology; physics of failure: materials properties, physical processes and failure mechanisms; failure analysis; basics and properties of instruments; quality assurance of technical systems (introduction); introduction to stochastic processes; reliability analysis; component selection and qualification; maintainability analysis (introduction); design rules for reliability, maintainability, reliability tests (introduction).

Lecture notes
Comprehensive copy of transparencies

Literature

227-0423-00L Neural Network Theory W 4 credits 2V+1U H. Bölcskei

Abstract
The class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, fundamental limits of deep neural network learning, VC dimension.

Objective
After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.

Content
1. Universal approximation with single- and multi-layer networks
2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory
3. Fundamental limits of deep neural network learning
4. Geometry of decision surfaces
5. Separating capacity of nonlinear decision surfaces
6. Vapnik-Chervonenkis (VC) dimension
7. VC dimension of neural networks
8. Generalization error in neural network learning

Lecture notes
Detailed lecture notes are available on the course web page https://www.mins.ee.ethz.ch/teaching/nn/nt

Literature
Course material Script, computer demonstrations, exercises and problem solutions

227-0447-00L Image Analysis and Computer Vision W 6 credits 3V+1U L. Van Gool, E. Konukoglu, F. Yu

Abstract

Objective
Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Content
This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning. The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer. The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Lecture notes
Course material Script, computer demonstrations, exercises and problem solutions

Prerequisites
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux. The course language is English.

227-0468-00L Analog Signal Processing and Filtering W 6 credits 2V+2U H. Schmid

Abstract
Suitable for Master Students as well as Doctoral Students. This lecture provides a wide overview over analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers.

Objective
This lecture provides a wide overview over analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers. The way the exam is done allows for the different interests of the two groups.

The learning goal is that the students can apply signal-flow graphs and can understand the signal flow in such circuits and systems (including non-ideal effects) well enough to gain an understanding of further circuits and systems by themselves.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 722 of 2152
At the beginning, signal-flow graphs in general and driving-point signal-flow graphs in particular are introduced. We will use them during the whole term to analyze circuits on a system level (analog continuous-time, analog discrete-time, mixed-signal, and digital) and understand how signals propagate through them. The theory and CMOS implementation of active filters is then discussed in detail using the example of Gm-C filters and active-RC filters. The ideal and nonideal behavior of opamps, current conveyors, and inductor simulators follows. The link to the practical design of circuits and systems is done with an overview on different quality measures and figures of merit used in scientific literature and datasheets. Finally, an introduction to discrete-time and mixed-domain filters and circuits is given, including sensor read-out amplifiers, correlated double sampling, and chopping, and an introduction to sigma-delta A/D and D/A conversion on a system level.

This lecture does not go down to the details of transistor implementations. The lecture "227-0166-00L Analog Integrated Circuits" complements this lecture very well in that respect.

The graph methods are also supported with teaching videos: https://tube.switch.ch/channels/d206c96c?order=episodes, and a Python-based open-source tool to manipulate graphs is available on https://github.com/hanspi42/signalflowgrapher

Some material is protected by password; students from ETHZ who are interested can write to haschmid@ethz.ch to ask for the password even if they do not attend the lecture.

Knowledge of the Laplace transform and z transform and their interpretation (transfer functions, poles and zeros, bode diagrams, stability criteria...) and of the main properties of linear systems is necessary.

Maxwell’s equations are reinterpreted in the framework of Einstein’s special relativity theory using the Lagrangian formalism in order to understand the relativistic view of synchronous clocks is taken into account. Not only its elegance, but also the daily importance of the relativity theory will be finally highlighted explaining how the GPS can work only if the example of atomic clocks in satellites and on the earth are affected by frequency shifts which can be explained only in terms of relativity.

Only one aspect is left over: the fact that they are not invariant with respect to the classical Galilean transformation… On the contrary, Maxwell’s equations predict that the light speed is the same for every inertial frame of reference. In this new course, we will deepen how Einstein solved this clash elaborating the theory of “special relativity”. Maxwell’s equations are thus naturally derived in a breath-taking fashion from the principle of stationary action within the Lagrangian formalism.

Not only its elegance, but also the daily importance of the relativity theory will be finally highlighted explaining how the GPS can work only if the relativistic view of synchronous clocks is taken into account.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 723 of 2152
Content

- Galileo-Newton, the Ether, Michelson-Morley's Experiment
- Lorentz Transformations
- The Lagrangian, the Principle of Stationary Action for Particles and Fields, Noether's Theorem
- 4-Vectors in Minkowski's Spacetime: Tensor Calculus
- Maxwell's Equations and the Energy-Momentum Tensor
- GPS
- \(E = mc^2 \)

Lecture notes

No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive!

!!!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!!

Literature

- (Special Relativity) L. Susskind and A. Friedman, "Special Relativity and Classical Field Theory: The Theoretical Minimum", 2019, Hachette Book Group USA

Supplementary material will be uploaded in Moodle.

+ (on the GPS) E.D. Kaplan, C. Hegarty, "Understanding GPS/GNSS", 2017, ARTECH HOUSE USA

Prerequisites / notice

Notions of a course on Electromagnetism like D-ITET "Electromagnetic Fields and Waves" are indispensable.
Furthermore, a solid base of Analysis I & II as well as of Linear Algebra is really helpful.

IMPORTANT: Wed 22.9, 29.9, 3.11, 10.11, 8.12, and 22.12 are lectures (NOT exercises!). Please, look at the details in Moodle!

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	Techniques and Technologies	not assessed
Domain B - Method-specific Competencies	Analytical Competencies	Decision-making	assessed
	Media and Digital Technologies	Problem-solving	assessed
	Project Management	assessed	
Domain C - Social Competencies	Communication	not assessed	
	Cooperation and Teamwork	not assessed	
	Customer Orientation	not assessed	
	Leadership and Responsibility	not assessed	
	Self-presentation and Social Influence	not assessed	
	Sensitivity to Diversity	assessed	
	Negotiation	not assessed	
Domain D - Personal Competencies	Adaptability and Flexibility	assessed	
	Creative Thinking	assessed	
	Critical Thinking	assessed	
	Integrity and Work Ethics	assessed	
	Self-awareness and Self-reflection	assessed	
	Self-direction and Self-management	assessed	

252-0535-00L Advanced Machine Learning W 10 credits 3V+2U+4A J. M. Buhmann, C. Cotrini Jimenez

Abstract

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Fundamentals:
 - What is data?
 - Bayesian Learning
 - Computational learning theory

- Supervised learning:
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks

- Unsupervised learning:
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 724 of 2152
Lecture notes
No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice
The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

263-4640-00L Network Security W 8 credits 2V+2U+3A A. Perrig, S. Frei, M. Legner, K. Paterson

Abstract
Some of today’s most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems.
This course provides an in-depth study of network attack techniques and methods to defend against them.

Objective
- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

Content
The course will cover topics spanning four broad themes with a focus on the first two themes:
1. network defense mechanisms such as public-key infrastructures, TLS, VPNs, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems;
2. network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
(3) analysis and inference topics such as traffic monitoring and network forensics; and
(4) new technologies related to next-generation networks.

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.

Prerequisites / notice
This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L.
Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.
The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

Taught competencies
Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

401-3055-64L Algebraic Methods in Combinatorics W 6 credits 2V+1U B. Sudakov

Abstract
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.

Objective
The students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.

Students are expected to have a mathematical background and should be able to write rigorous proofs.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

This third course in our VLSI series is concerned with full-custom digital integrated circuits. The goals are to learn how to design digital circuits on the schematic, layout, gate, and register-transfer levels. The use of state-of-the-art CAD software (Cadence Virtuoso) in order to simulate, optimize, and characterize digital circuits is another important topic of this course.

Objective

At the end of this course you will
- understand how the main building blocks of state-of-the-art digital integrated circuits are designed
- be able to design and optimize digital integrated circuits on the schematic, layout, and gate levels
- be able to use standard industry software (Cadence Virtuoso) for drawing, simulating, and characterizing digital circuits
- understand the performance trade-offs between speed, area, and power consumption

Content

The third VLSI course begins with the basics of metal-oxide-semiconductor (MOS) field-effect transistors (FETs) and moves up the stack towards logic gates and increasingly complex digital circuit structures. The topics of this course include:
- Nanometer MOSFETs
- Static and dynamic behavior of complementary MOS (CMOS) inverters
- CMOS gate design, sizing, and timing
- Full-custom standard-cell design
- Wire models and parasitics
- Latch and flip-flop circuits
- Gate-level timing analysis and optimization
- Static and dynamic power consumption; low-power techniques
- Alternative logic styles (dynamic logic, pass-transistor logic, etc.)
- Arithmetic and logic circuits
- Fixed-point and floating-point arithmetic
- Memory circuits (ROM, SRAM, and DRAM)
- In- and near-memory processing architectures
- Full-custom accelerator circuits for machine learning

The exercises are concerned with schematic entry, layout, and simulation of digital integrated circuits using a disciplined standard-cell-based approach with Cadence Virtuoso.

The exercises concern with schematic entry, layout, and simulation of digital integrated circuits using a disciplined standard-cell-based approach with Cadence Virtuoso.

Students are expected to have a mathematical background and should be able to write rigorous proofs.

The individual study plan is subject to the tutor's approval.

These core courses are particularly recommended for the field of "Computers and Networks". You may choose core courses form other fields in agreement with your tutor.

A minimum of 24 credits must be obtained from core courses during the MSc EEIT.

Fundamentals at bachelor level, for master students who need to strengthen or refresh their background in the area.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0102-00L</td>
<td>Discrete Event Systems</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>R. Jacob, L. Vanbever, R. Wattenhofer</td>
</tr>
</tbody>
</table>

Abstract

Introduction to discrete event systems. We start out by studying popular models of discrete event systems. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.
Objective

Over the past few decades, the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g., hitting a keyboard key, sending a message), some not (e.g., spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture, we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course, we analyze discrete event systems. We first examine discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queuing theory for an understanding of the typical behavior of a system. In the last part of the course, we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queuing.

Content

1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus

Lecture notes

Available

Literature

[bertsekas] Data Networks
Dimitri Bertsekas, Robert Gallager

[borodin] Online Computation and Competitive Analysis
Allan Borodin, Ran El-Yaniv.
Cambridge University Press, 1998

[boudec] Network Calculus
J.-Y. Le Boudec, P. Thiran
Springer, 2001

[cassandras] Introduction to Discrete Event Systems
Christos Cassandras, Stéphane Lafortune.

[fiat] Online Algorithms: The State of the Art
A. Fiat and G. Woeginger
D. Hochbaum

T. Schickinger, A. Steger
Springer, Berlin, 2001

[sipser] Introduction to the Theory of Computation
Michael Sipser.

227-0121-00L Communication Systems

Objective

Introduction into the fundamentals of digital communication systems. Selected examples on the application of the fundamental principles in existing and upcoming communication systems

Content

Covered are the lower three layers of the OSI reference model: the physical, the data link, and the network layer. The basic terms of information theory are introduced. After this, we focus on the methods for point-to-point communication, which may be addressed elegantly and coherently in the signal space. Methods for error detection and correction as well as protocols for the retransmission of perturbed data will be covered. Also the medium access for systems with shared medium will be discussed. Finally, algorithms for routing and flow control will be treated.

The application of the basic methods will be extensively explained using existing and future wireless and wired systems.

Lecture notes

Lecture Slides

Literature

227-0124-00L Embedded Systems

Objective

Understanding specific requirements and problems arising in embedded system applications.

Understanding architectures and components, their hardware-software interfaces, the memory architecture, communication between components, embedded operating systems, real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis.

Using the formal models and methods in embedded system design in practical applications using the programming language C, the operating system FreeRTOS, a commercial embedded system platform and the associated design environment.
Content

An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. For example, they are part of industrial machines, agricultural and process industry devices, automobiles, medical equipment, cameras, household appliances, airplanes, sensor networks, internet-of-things, as well as mobile devices.

The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems FreeRTOS, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment.

Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis.

More information is available at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html.

Lecture notes

The following information will be available: Lecture material, publications, exercise sheets and laboratory documentation at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html.

Literature

Prerequisites / notice

Prerequisites: Basic knowledge in computer architectures and programming.

Advanced Core Courses

Advanced core courses bring students to gain in-depth knowledge of the chosen specialization. They are MSc level only.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-2210-00L</td>
<td>Computer Architecture</td>
<td>W</td>
<td>6 credits</td>
<td>6G+1A</td>
<td>O. Mutlu</td>
</tr>
<tr>
<td>Abstract</td>
<td>Computer architecture is the science & art of designing and optimizing hardware components and the hardware/software interface to create a computing system that meets design goals. This course covers basic components of a modern computing system (memory, processors, controllers, accelerators). The course takes a hardware/software cooperative approach to understanding and designing computing systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>We will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest major research topics in Industry and Academia. We will extensively cover memory systems (including DRAM and new Non-Volatile Memory technologies, memory controllers, flash memory), parallel computing systems (including multicore processors, coherence and consistency, GPUs), heterogeneous computing, processor-in-memory, interconnection networks, specialized systems for major data-intensive workloads (e.g. graph analytics, bioinformatics, machine learning), etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The principles presented in the lecture are reinforced in the laboratory through 1) the design and implementation of a cycle-accurate simulator, where we will explore different components of a modern computing system (e.g., pipeline, memory hierarchy, branch prediction, prefetching, caches, multithreading), and 2) the extension of state-of-the-art research simulators (e.g., Ramulator) for more in-depth understanding of specific system components (e.g., memory scheduling, prefetching).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>All the materials (including lecture slides) will be provided on the course website: https://safari.ethz.ch/architecture/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The video recordings of the lectures are expected to be made available after lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Digital Design and Computer Architecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

227-0575-00L

Advanced Topics in Communication Networks W 6 credits 2V+2U L. Vanbever

Abstract

This course covers advanced topics and technologies in computer networks, both theoretically and practically. It is offered each Fall semester, with rotating topics. Repetition for credit is possible with consent of the instructor. In the Fall 2021, the course will cover advanced topics in Internet routing and forwarding.

Objective

The goals of this course is to provide students with a deeper understanding of the existing and upcoming Internet routing and forwarding technologies used in large-scale computer networks such as Internet Service Providers (e.g., Swisscom or Deutsche Telekom), Content Delivery Networks (e.g., Netflix) and Data Centers (e.g., Google). Besides covering the fundamentals, the course will be "hands-on" and will enable students to play with the technologies in realistic network environments, and even implement some of them on their own during labs and a final group project.

Content

The course will cover advanced topics in Internet routing and forwarding such as:

- Tunneling
- Hierarchical routing
- Traffic Engineering and Load Balancing
- Virtual Private Networks
- Quality of Service/Queueing/Scheduling
- Fast Convergence
- Network virtualization
- Network programmability (OpenFlow, P4)
- Network measurements

The course will be divided in two main blocks. The first block (~8 weeks) will interleave classical lectures with practical exercises and labs. The second block (~6 weeks) will consist of a practical project which will be performed in small groups (~3 students). During the second block, lecture slots will be replaced by feedback sessions where students will be able to ask questions and get feedback about their project. The last week of the semester will be dedicated to student presentations and demonstrations.

Lecture notes

Lecture notes and material will be made available before each course on the course website. Relevant references will be made available through the course website.

Prerequisites / notice

Prerequisites: Communication Networks (227-0120-00L) or equivalents / good programming skills (in any language) are expected as both the exercises and the final project will involve coding.
The course will cover topics spanning four broad themes with a focus on the first two themes: Hardware Security and System Security.

- **Hardware Security**
 - Taught by K. Razavi
 - Taught competencies: assessed
 - Topics covered: tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems.

- **System Security**
 - Taught by S. Capkun and A. Perrig
 - Taught competencies: assessed
 - Topics covered: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

By the end of the course, the students will be familiar with the state of the art in commodity computer hardware attacks and defenses. More specifically, the students will learn about:

- Security problems of commodity hardware that we use everyday and how you can defend against them.
- Relevant computer architecture and operating system aspects of these issues.
- Hands-on techniques for performing hardware attacks.
- Writing critical reviews and constructive discussions with peers on this topic.

This is the course where you get credit points by building some of the most advanced exploits on the planet! The luckiest team will collect a Best Demo Award at the end of the course.

Some of today’s most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them.

- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites / notice</th>
<th>Credit Hours</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0579-00L</td>
<td>Hardware Security</td>
<td>W 7 credits 2V+2U+2A</td>
<td>K. Razavi</td>
<td>assessed</td>
</tr>
<tr>
<td>252-1414-00L</td>
<td>System Security</td>
<td>W 7 credits 2V+2U+2A</td>
<td>S. Capkun, A. Perrig</td>
<td>assessed</td>
</tr>
<tr>
<td>263-4640-00L</td>
<td>Network Security</td>
<td>W 8 credits 2V+2U+3A</td>
<td>A. Perrig, S. Frei, M. Legner, K. Paterson</td>
<td>assessed</td>
</tr>
</tbody>
</table>
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Media and Digital Technologies assessed
- Problem-solving assessed

Domain C - Social Competencies
- Communication not assessed
- Cooperation and Teamwork not assessed
- Customer Orientation not assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence not assessed
- Sensitivity to Diversity not assessed
- Negotiation not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility not assessed
- Creative Thinking assessed
- Critical Thinking assessed
- Integrity and Work Ethics not assessed
- Self-awareness and Self-reflection not assessed
- Self-direction and Self-management assessed

Specialisation Courses

These specialisation courses are particularly recommended for the area of "Computers and Networks", but you are free to choose courses from any other field in agreement with your tutor.

A minimum of 40 credits must be obtained from specialisation courses during the Master's Programme.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0101-00L</td>
<td>Discrete-Time and Statistical Signal Processing</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>H.-A. Loeliger</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>1. Discrete-time linear systems and filters: state-space realizations, z-transform and spectrum, decimation and interpolation, digital filter design, stable realizations and robust inversion. 2. The discrete Fourier transform and its use for digital filtering. 3. The statistical perspective: probability, random variables, discrete-time stochastic processes; detection and estimation: MAP, ML, Bayesian MMSE, LMMSE; Wiener filter, LMS adaptive filter, Viterbi algorithm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

227-0103-00L	Control Systems	W	6	2V+2U	F. Dörfler
Abstract	Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.				
Prerequisites / notice	Prerequisites: Signal and Systems Theory II. MATLAB is used for system analysis and simulation.				

227-0116-00L	VLSI 1: HDL based design for FPGAs	W	6	5G	F. K. Gürkaynak, L. Benini
Abstract	This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.				
Objective	Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.				
This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog.
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

Lecture notes
Textbook and all further documents in English.

Literature

Prerequisites
Basics of digital circuits.

Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German.

Further details:
https://isis-students.ee.ethz.ch/lectures/vlsi-i/

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0377-10L</td>
<td>Physics of Failure and Reliability of Electronic Devices and Systems</td>
<td>W</td>
<td>3</td>
<td>V</td>
<td>I. Shorubalko, M. Held</td>
</tr>
<tr>
<td>227-0447-00L</td>
<td>Image Analysis and Computer Vision</td>
<td>W</td>
<td>6</td>
<td>3V+1U</td>
<td>L. Van Gool, E. Konukoglu, F. Yu</td>
</tr>
<tr>
<td>227-0555-00L</td>
<td>Distributed Systems</td>
<td>W</td>
<td>4</td>
<td>3G+1A</td>
<td>R. Wattenhofer</td>
</tr>
</tbody>
</table>
We discuss the following concepts related to fault-tolerant distributed systems: client-server, serialization, two-phase protocols, three-phase protocols, Paxos, two generals problem, crash failures, impossibility of consensus, Byzantine failures, agreement, termination, validity, Byzantine agreement, King algorithm, asynchronous Byzantine agreement, authentication, signatures, reliable and atomic broadcast, eventual consistency, blockchain, cryptocurrencies such as Bitcoin and Ethereum, proof-of-work, proof-of-stake, smart contracts, quorum systems, fault-tolerant protocols such as pChain or PBFT, distributed storage, distributed hash tables, physical and logical clocks, causality, selfishness, game theoretic models, mechanism design.

151-0593-00L Embedded Control Systems

Abstract
This course provides a comprehensive overview of embedded control systems. The concepts introduced are implemented and verified on a microprocessor-controlled haptic device.

Objective
Familiarize students with main architectural principles and concepts of embedded control systems.

Content
An embedded system is a microprocessor used as a component in another piece of technology, such as cell phones or automobiles. In this intensive two-week block course the students are presented the principles of embedded digital control systems using a haptic device as an example for a mechatronic system. A haptic interface allows for a human to interact with a computer through the sense of touch.

Subjects covered in lectures and practical lab exercises include:
- The application of C-Programming on a microprocessor
- Digital I/O and serial communication
- Quadrature decoding for wheel position sensing
- Queued analog-to-digital conversion to interface with the analog world
- Pulse width modulation
- Timer interrupts to create sampling time intervals
- System dynamics and virtual worlds with haptic feedback
- Introduction to rapid prototyping

252-1411-00L Security of Wireless Networks

Abstract
Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.

Objective
After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks.

Content

401-3055-64L Algebraic Methods in Combinatorics

Abstract
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.

Objective
The students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.

Content
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments
- Spaces of polynomials and tensor product methods
- Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem
- Application for such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Electronics and Photonics

The core courses and specialisation courses below are a selection for students who wish to specialise in the area of "Electronics and Photonics", see https://www.ee.ethz.ch/studies/main-master/areas-of-specialisation.html.

The individual study plan is subject to the tutor's approval.

Core Courses
You can describe wave propagation in classical and nonclassical materials and know the fundamental solutions. You know how waves interact with matter and about nonlinear and resonant effects. You can apply the acquired knowledge in scattering, waveguiding, radiation, and antenna problems.

The lecture covers the following topics:
- Generic time-harmonic electromagnetic fields
- Fundamental solutions of the wave equation
- Wave propagation in various types of materials
- Interaction of waves with matter
- Nonlinear effects
- Resonant effects
- Applications like scattering, waveguiding, radiation
- Radio frequency and optical antennas

Foundation Core Courses

Fundamentals at bachelor level, for master students who need to strengthen or refresh their background in the area.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0110-00L</td>
<td>Electromagnetic Waves: Materials, Effects, and Antennas</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td>U. Koch</td>
</tr>
</tbody>
</table>

Abstract
This course provides profound knowledge of electromagnetic waves. Various types of materials, nonlinear and resonant effects, and antenna applications are discussed.

Objective
You can describe wave propagation in classical and nonclassical materials and know the fundamental solutions. You know how waves interact with matter and about nonlinear and resonant effects. You can apply the acquired knowledge in scattering, waveguiding, radiation, and antenna problems.

Content
The lecture covers the following topics:
- Generic time-harmonic electromagnetic fields
- Fundamental solutions of the wave equation
- Wave propagation in various types of materials
- Interaction of waves with matter
- Nonlinear effects
- Resonant effects
- Applications like scattering, waveguiding, radiation
- Radio frequency and optical antennas

Lecture notes
Lecture notes and slides will be handed out during the lectures.

Prerequisites / notice
Remark: the lecture succeeds «Advanced Electromagnetic Waves» and reorientates itself to materials, effects, and applications with waves.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0116-00L</td>
<td>VLSI I: HDL based design for FPGAs</td>
<td>W</td>
<td>6</td>
<td>5G</td>
<td>F. K. Gürkaynak, L. Benini</td>
</tr>
</tbody>
</table>

Abstract
This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.

Objective
Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.

Content
This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

Lecture notes
Textbook and all further documents in English.

Literature

Prerequisites / notice
Prerequisites:
Basics of digital circuits.

Examination
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German.

Further details:
https://iis-students.ee.ethz.ch/lectures/vlsi-i/

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0145-00L</td>
<td>Solid State Electronics and Optics</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>N. Yazdani, V. Wood</td>
</tr>
</tbody>
</table>

Abstract
"Solid State Electronics" is an introductory condensed matter physics course covering crystal structure, electron models, classification of metals, semiconductors, and insulators, band structure engineering, thermal and electronic transport in solids, magnetoresistance, and optical properties of solids.

Objective
Understand the fundamental physics behind the mechanical, thermal, electric, magnetic, and optical properties of materials.

Prerequisites / notice
Recommended background:
Undergraduate physics, mathematics, semiconductor devices

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0166-00L</td>
<td>Analog Integrated Circuits</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td>T. Jang</td>
</tr>
</tbody>
</table>

Abstract
This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies.
Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems.

The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.

In this course we will deal with modern integrated circuit (IC) manufacturing technology and cover topics such as:

- The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.
- Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors.
- The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurements.

Handouts of presented slides. No script but an accompanying textbook is recommended.

- L. Benini

This course provides a thorough treatment of integrated data conversion systems from system level specifications and trade-offs, over architecture choice down to circuit implementation.

Data conversion systems are substantial sub-parts of many electronic systems, e.g. the audio conversion system of a home-cinema systems or the base-band front-end of a wireless modem. Data conversion systems usually determine the performance of the overall system in terms of dynamic range and linearity. The student will learn to understand the basic principles behind data conversion and be introduced to the different methods and circuit architectures to implement such a conversion. The conversion methods such as successive approximation or algorithmic conversion are explained with their principle of operation accompanied with the appropriate mathematical calculations, including the effects of non-idealities in some cases. After successful completion of the course the student should understand the concept of an ideal ADC, know all major converter architectures, their principle of operation and what governs their performance.

- Introduction: information representation and communication; abstraction, categorization and symbolic representation; basic conversion algorithms; data converter application; tradeoffs among key parameters; ADC taxonomy.
- Dual-slope & successive approximation register (SAR) converters: dual slope principle & converter; SAR ADC operating principle; SAR implementation with a capacitive array; range extension with segmented arrays.
- Algorithmic & pipelined A/D converters: algorithmic conversion principle; sample & hold stage; single-line converter; multiplying DAC; flash sub-ADC and n-bit MDAC; redundancy for correction of non-idealities, error correction.
- Performance metrics and non-linearity: ideal ADC; offset, gain error, differential and integral non-linearities; capacitor mismatch; impact of capacitor mismatch on SAR ADC's performance.
- Flash, folding an interpolating analog-to-digital converters: flash ADC principle, thermometer to binary coding, sparkle correction; limitations of flash converters; the folding principle, residue extraction; folding amplifiers; cascaded folding; interpolation for folding converters; cascaded folding and interpolation.
- Noise in analog-to-digital converters: types of noise; noise calculation in electronic circuit, kT/C-noise, sampled noise; noise analysis in switched-capacitor circuits; aperture time uncertainty and sampling jitter.
- Delta-sigma A/D-converters: linearity and resolution; from delta-modulation to delta-sigma modulation; first-order delta-sigma modulation, circuit level implementation; clock-jitter & SNR in delta-sigma modulators; second-order delta-sigma modulation, higher-order modulation, design procedure for a single-loop modulator.

Slides are available online under https://lis-students.ee.ethz.ch/lectures/analog-to-digital-converters/

- M. Gustavsson et al., CMOS Data Converters for Communications, Springer, 2010

It is highly recommended to attend the course "Analog Integrated Circuits" of Prof. T. Jang as a preparation for this course.

- The test of their own chip developed during a previous semester thesis
- Developing new setups and measurement methods in C++ on the tester
- Helping to debug problems encountered in previous microchips by IIS.
- Half of the oral exam will consist of a short presentation on this class project.
Prerequisites / notice

Although this is the third part in a series of lectures on VLSI design, you can follow this course even if you have not visited VLSI I and VLSI II lectures. An interest in integrated circuit design, and basic digital circuit knowledge is required though.

Course website:
https://iis-students.ee.ethz.ch/lectures/vlsi-iii/

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0301-00L</td>
<td>Optical Communication Fundamentals</td>
<td>6</td>
<td>Does not take place this semester.</td>
</tr>
</tbody>
</table>

Abstract

The path of an analog signal in the transmitter to the digital world in a communication link and back to the analog world at the receiver is discussed. The lecture covers the fundamentals of all important optical and optoelectronic components in a fiber communication system. This includes the transmitter, the fiber channel and the receiver with the electronic digital signal processing elements.

Objective

An in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societal, economical and environmental aspects related to the on-going exponential growth in the field of communications.

Content

- Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.
- Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.
- Chapter 5: Digital Signal Processing Techniques: Digital signal processing Techniques in a coherent receiver, Error detection techniques, Error correction coding.
- Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/OFDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.
- Chapter 7: Optical Amplifiers: Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.

Lecture notes

Lecture notes are handed out.

Literature

Prerequisites

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0655-00L</td>
<td>Nonlinear Optics</td>
<td>6</td>
<td>Does not take place this semester.</td>
</tr>
</tbody>
</table>

Abstract

Nonlinear Optics deals with the interaction of light with material, the response of material to light and the mathematical framework to describe the phenomena. As an example we will cover fundamental phenomena such as the refractive index, the electro-optic effect, second harmonic generation, four-wave mixing or soliton propagation and others.

Objective

The important nonlinear optical phenomena are understood and can be classified. The effects can be described mathematical by means of the susceptibility.

Content

Chapter 1: The Wave Equations in Nonlinear Optics
Chapter 2: Nonlinear Effects - An Overview
Chapter 3: The Nonlinear Optical Susceptibility
Chapter 4: Second Harmonic Generation
Chapter 5: The Electro-Optic Effect and the Electro-Optic Modulator
Chapter 6: Acousto-Optic Effect
Chapter 7: Nonlinear Effects of Third Order
Chapter 8: Nonlinear Effects in Media with Gain

Literature

Lecture notes are distributed. For students enrolled in the course, additional information, lecture notes and exercises can be found on moodle (https://moodle-app2.let.ethz.ch/).

Prerequisites

Fundamentals of Electromagnetic Fields (Maxwell Equations) & Bachelor Lectures on Physics.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0663-00L</td>
<td>Nano-Optics</td>
<td>6</td>
<td>Does not take place this semester.</td>
</tr>
</tbody>
</table>

Abstract

Nano-Optics is the study of light-matter interaction at the sub-wavelength scale. It is an flourishing field of fundamental and applied research enabled by the rapid advance of nanotechnology. Nano-optics embraces topics such as plasmonics, optical antennas, optical trapping and manipulation, and high/super-resolution imaging and spectroscopy.

Objective

Understanding concepts of light localization and light-matter interactions on the sub-wavelength scale.

Content

We start with the angular spectrum representation of fields to understand the classical resolution limit. We continue with the theory of strongly focused light, the point spread function, and resolution criteria of conventional microscopy, before turning to super-resolution techniques, based on near- and far-fields. We introduce the local density of states and approaches to control spontaneous emission rates in inhomogeneous environments, including optical antennas. Finally, we touch upon optical forces and their applications in optical tweezers.

Prerequisites

- Electromagnetic fields and waves (or equivalent)
- Physics I-II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0147-10L</td>
<td>VLSI 3: Full-Custom Digital Circuit Design</td>
<td>6</td>
<td>Does not take place this semester.</td>
</tr>
</tbody>
</table>

Abstract

This third course in our VLSI series is concerned with full-custom digital integrated circuits. The goals are to learn how to design digital circuits on the schematic, layout, gate, and register-transfer levels. The use of state-of-the-art CAD software (Cadence Virtuoso) in order to simulate, optimize, and characterize digital circuits is another important topic of this course.

Objective

At the end of this course you will
- understand how the main building blocks of state-of-the-art digital integrated circuits are designed
- be able to design and optimize digital integrated circuits on the schematic, layout, and gate levels
- be able to use standard industry software (Cadence Virtuoso) for drawing, simulating, and characterizing digital circuits
- understand the performance trade-offs between speed, area, and power consumption
The third VLSI course begins with the basics of metal-oxide-semiconductor (MOS) field-effect transistors (FETs) and moves up the stack towards logic gates and increasingly complex digital circuit structures. The topics of this course include:

- Nanometer MOSFETs
- Static and dynamic behavior of complementary MOS (CMOS) inverters
- CMOS gate design, sizing, and timing
- Full-custom standard-cell design
- Wire models and parasitics
- Latch and flip-flop circuits
- Gate-level timing analysis and optimization
- Static and dynamic power consumption; low-power techniques
- Alternative logic styles (dynamic logic, pass-transistor logic, etc.)
- Arithmetic and logic circuits
- Fixed-point and floating-point arithmetic
- Memory circuits (ROM, SRAM, and DRAM)
- In- and near-memory processing architectures
- Full-custom accelerator circuits for machine learning

The exercises are concerned with schematic entry, layout, and simulation of digital integrated circuits using a disciplined standard-cell-based approach with Cadence Virtuoso.

Specialisation Courses

These specialisation courses are particularly recommended for the area of "Electronics and Photonics", but you are free to choose courses from any other field in agreement with your tutor.

A minimum of 40 credits must be obtained from specialisation courses during the Master's Programme.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0121-00L</td>
<td>Communication Systems</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>A. Wittneben</td>
</tr>
</tbody>
</table>

Abstract

Information Theory, Signal Space Analysis, Baseband Transmission, Passband Transmission, Example and Channel, Data Link Layer, MAC, Example Layer 2, Layer 3, Internet

Objective

Introduction into the fundamentals of digital communication systems. Selected examples on the application of the fundamental principles in existing and upcoming communication systems

Content

Covered are the lower three layer of the OSI reference model: the physical, the data link, and the network layer. The basic terms of information theory are introduced. After this, we focus on the methods for the point to point communication, which may be addressed elegantly and coherently in the signal space. Methods for error detection and correction as well as protocols for the retransmission of perturbed data will be covered. Also the medium access for systems with shared medium will be discussed. Finally, algorithms for routing and flow control will be treated.

Lecture notes

Lecture Slides

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>
| 227-0155-00L | Machine Learning on Microcontrollers | W | 6 credits | 3G | M. Magno, L. Benini

Abstract

Machine Learning (ML) and artificial intelligence are pervading the digital society. Today, even low power embedded systems are incorporating ML, becoming increasingly "smart". This lecture gives an overview of ML methods and algorithms to process and extract useful near-sensor information in end-nodes of the “internet-of-things”, using low-power microcontrollers/processors (ARM-Cortex-M; RISC-V).

Objective

Learn how to Process data from sensors and how to extract useful information with low power microprocessors using ML techniques. We will analyze data coming from real low-power sensors (accelerometers, microphones, ECG bio-signals, cameras...). The main objective is to study in details how Machine Learning algorithms can be adapted to the performance constraints and limited resources of low-power microcontrollers.

Content

The final goal of the course is a deep understanding of machine learning and its practical implementation on single- and multi-core microcontrollers, coupled with performance and energy efficiency analysis and optimization. The main topics of the course include:

- Sensors and sensor data acquisition with low power embedded systems
- Machine Learning: Overview of supervised and unsupervised learning and in particular supervised learning (Bayes Decision Theory, Decision Trees, Random Forests, kNN-Methods, Support Vector Machines, Convolutional Networks and Deep Learning)
- Low-power embedded systems and their architecture. Low Power microcontrollers (ARM-Cortex M) and RISC-V-based Parallel Ultra Low Power (PULP) systems-on-chip.
- Low power smart sensor system design: hardware-software tradeoffs, analysis, and optimization. Implementation and performance evaluation of ML in battery-operated embedded systems.

The laboratory exercised will show how to address concrete design problems, like motion, gesture recognition, emotion detection, image and sound classification, using real sensors data and real MCU boards.

Lecture notes

Script and exercise sheets. Books will be suggested during the course.

Prerequisites

Prerequisites: C language programming. Basics of Digital Signal Processing. Basics of processor and computer architecture. Some exposure to machine learning concepts is also desirable

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>
| 227-0157-00L | Semiconductor Devices: Physical Bases and Simulation | W | 4 credits | 3G | A. Schenk, C. I. Roman

Abstract

The course addresses the physical principles of modern semiconductor devices and the foundations of their modeling and numerical simulation. Necessary basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided. Computer simulations of the most important devices and of interesting physical effects supplement the lectures.
Objective: The course aims at the understanding of the principle physics of modern semiconductor devices, of the foundations in the physical modeling of transport and its numerical simulation. During the course also basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided.

Content: The main topics are: transport models for semiconductor devices (quantum transport, Boltzmann equation, drift-diffusion model, hydrodynamic model), physical characterization of silicon (intrinsic properties, scattering processes), mobility of cold and hot carriers, recombination (Shockley–Read–Hall statistics, Auger recombination), impact ionization, metal-semiconductor contact, metal-insulator-semiconductor structure, and heterojunctions. The exercises are focussed on the theory and the basic understanding of the operation of special devices, as single-electron transistor, resonant tunneling diode, pn-diode, bipolar transistor, MOSFET, and laser. Numerical simulations of such devices are performed with an advanced simulation package (Sentaurus-Syposys). This enables to understand the physical effects by means of computer experiments.

Lecture notes: The script (in book style) can be downloaded from: https://iis-students.ee.ethz.ch/lectures/

Literature: The script (in book style) is sufficient. Further reading will be recommended in the lecture.

227-0166-00L Analog Integrated Circuits W 6 credits 2V+2U T. Jang

Abstract: This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies.

Objective: Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems.

Content: The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.

Lecture notes: Handouts of presented slides. No script but an accompanying textbook is recommended.

227-0377-10L Physics of Failure and Reliability of Electronic Devices and Systems W 3 credits 2V I. Shorubalko, M. Held

Abstract: Understanding the physics of failures and failure mechanisms enables reliability analysis and serves as a practical guide for electronic devices design, integration, systems development and manufacturing. The field gains additional importance in the context of managing safety, sustainability and environmental impact for continuously increasing complexity and scaling-down trends in electronics.

Objective: Provide an understanding of the physics of failure and reliability. Introduce the degradation and failure mechanisms, basics of failure analysis, methods and tools of reliability testing.

Content: Summary of reliability and failure analysis terminology; physics of failure: materials properties, physical processes and failure mechanisms; failure analysis; basics and properties of instruments; quality assurance of technical systems (introduction); introduction to stochastic processes; reliability analysis; component selection and qualification; maintainability analysis (introduction); design rules for reliability, maintainability, reliability tests (introduction).

Lecture notes: Comprehensive copy of transparencies

227-0468-00L Analog Signal Processing and Filtering W 6 credits 2V+2U H. Schmid

Abstract: This lecture provides a wide overview analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers.

Objective: This lecture provides a wide overview analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers. The way the exam is done allows for the different interests of the two groups.

Content: The learning goal is that the students can apply signal-flow graphs and can understand the signal flow in such circuits and systems (including non-ideal effects) well enough to gain an understanding of further circuits and systems by themselves.

Lecture notes: Suitable for Master Students as well as Doctoral Students.

Prerequisites / notice: The lecture does not go down to the details of transistor implementations. The lecture "227-0166-00L Analog Integrated Circuits" complements This lecture very well in that respect.

The base for these lecture are lecture notes and two or three published scientific papers. From these papers we will together develop the technical content.

Details: https://people.ee.ethz.ch/~haschmid/aswiki/

The graph methods are also supported with teaching videos: https://tube.switch.ch/channels/d206c96c?order=episodes , and a Python-based open-source tool to manipulate graphs is available on https://github.com/hanspi42/signallowgrapher

Some material is protected by password; students from ETHZ who are interested can write to haschmid@ethz.ch to ask for the password even if they do not attend the lecture.

Prerequisites: Recommended (but not required): Stochastic models and signal processing, Communication Electronics, Analog Integrated Circuits, Transmission Lines and Filters.

Knowledge of the Laplace transform and z transform and their interpretation (transfer functions, poles and zeros, bode diagrams, stability criteria ...) and of the main properties of linear systems is necessary.
Simulation of Photovoltaic Devices - From Materials to Modules

Abstract
The lecture provides an introduction to the theoretical foundations and numerical approaches for the simulation of photovoltaic energy conversion, from the microscopic description of component materials to macroscopic continuum modelling of solar cells and network simulation or effective models for performance prediction of entire solar modules and large scale photovoltaic systems.

Objective
- Get an overview over the current status of photovoltaic technology.
- Understand the physics of photovoltaic energy conversion and solar cell device operation.
- Know how to obtain and assess by simulation the key material properties and device parameters.
- Be able to use standard device simulation tools to predict the performance of solar cells and modules.

Content
Photovoltaic technology: history and overview; The solar spectrum; Thermodynamics of solar energy conversion; Detailed balance models and efficiency limit; Microscopic rates of charge carrier generation and recombination; Optical simulation of solar cells; Models for charge transport in semiconductor devices; High-efficiency wafer-based (silicon) photovoltaics; Thin film photovoltaics based on disordered materials (amorphous silicon, organic PV); High-efficiency thin film photovoltaics (CIGS, CdTe, metal-halide perovskites); PV beyond the single junction detailed balance (Shockley-Queisser) limit; Simulation of photovoltaic modules; Energy yield and performance modelling for PV systems; Quantum simulation of nanomaterial-based solar cell devices (bonus lecture)

Prerequisites / notice
Undergraduate physics, mathematics, semiconductor devices

Solar Cells

Abstract
Physics, technology, characteristics and applications of photovoltaic solar cells.

Objective
- Introduction to solar radiation, physics, technology, characteristics and applications of photovoltaic solar cells and systems.
- Solar radiation characteristics, physical mechanisms for the light to electrical power conversion, properties of semiconductors for solar cells, processing and properties of conventional Si and GaAs based solar cells, technology and physics of thin film solar cells based on compound semiconductors, other solar cells including organic and dye sensitized cells, problems and new developments for power generation in space, interconnection of cells and solar module design, measurement techniques, system design of photovoltaic plants, system components such as inverters and controllers, engineering procedures with software demonstration, integration in buildings and other specific examples.

Lecture notes
Lecture reprints (in english).

Prerequisites / notice
Prerequisites: Basic knowledge of semiconductor properties.

Modeling, Characterization and Reliability of Power Semiconductors

Abstract
This lecture provides theoretical and experimental knowledge on the techniques for the characterization and numerical modeling of power semiconductors, as well on the related built-in reliability strategies.
Objective
The students shall get acquainted with the most important concepts and techniques for characterization, numerical modeling and built-in reliability of modern power semiconductor devices. This knowledge is intended to provide the future engineer with the theoretical background and tools for the design of dependable power devices and systems.

Content
This lecture consists of a theoretical part (50%) and of laboratory exercises and demonstrations (50%). The theoretical part covers the basic techniques and procedures for characterization, modeling and built-in reliability of modern power semiconductor devices with special attention to MOS and IGBT. The starting part on technology provides an overview on the main device families and includes a review of the most relevant application-oriented aspects of the device physics, thermal management, and packaging. The second section deals with the basic experimental characterization techniques for the definition of the semiconductor material properties, electrical characteristics, safe operating area, and junction temperature of the devices. The following section introduces the basic principles for electro-thermal simulation of power semiconductors by Technology Computer Aided Design (TCAD) and compact modeling. Finally, procedures are methods to implement efficient built-in reliability programs targeted on power semiconductors. They include failure physics, dedicated failure analysis techniques, accelerated testing, defect screening, and lifetime modeling.

During the laboratory activities, selections of the experimental techniques presented in the lecture are demonstrated on the base of realistic examples. Furthermore, schematic power devices will be simulated by the students with advanced TCAD tools and circuit simulators.

Lecture notes
Handouts to the lecture (approx. 250 pp.)

Literature
Eiichi Ohno: “Introduction to Power Electronics”
B. Murari et al.: “Smart Power ICs”
B. J. Baliga: “Physics Modern Power Devices”
K. Ghandi: “Semiconductor Power Devices”

227-0619-00L Charge Transport in Energy Conversion and Storage Devices

Abstract
The students will be introduced to the fundamental concepts of charge transport in solar cells, batteries, and electrolysers. Emphasizing analogies between semiconductor physics and electrochemistry, this course is designed to provide a unified modern perspective of energy conversion and storage concepts for students in electrical engineering, materials science, physics, and chemistry.

Objective
By the end of this course, the students will (1) understand the fundamentals of electronic and ionic charge transport, (2) understand the operational principles of solar cells, batteries, and electrolysers, and (3) understand fundamental limits for each device type. In addition, the students will learn how to simulate these devices during guided exercise sessions and develop an intuitive understanding on how to interpret the most important device characteristics.

Literature
R. Huggins, Advanced Batteries, DOI:10.1007/9780387764245

Prerequisites / notice
Be motivated to change the world to renewable energies! Elements of calculus will be reviewed at the beginning of the course, but we leave the hard work of solving coupled differential charge transport equations to the computer and focus on developing a strong intuition. Prior knowledge in semiconductor physics or electrochemistry is an advantage, but not a prerequisite. Students are required to bring a Windows-compatible computer with a common data analysis software to the exercises. Apps for simulating devices under different operating conditions will be made available to the students. A visit to a solar cell or battery fab will be organized during the semester if the epidemiological situation permits.

227-0652-00L Maxwell, Einstein, and the GPS

Abstract
Maxwell’s equations are reinterpreted in the framework of Einstein’s special relativity theory using the Lagrangian formalism to discover the deep interconnection between the electric and magnetic field. Its daily relevance is emphasized by pinpointing how GPS atomic clocks in satellites and on the earth are affected by frequency shifts which can be explained only in terms of relativity.

Objective
D-ITET is the depository of the Maxwell’s equations, which are dissected from all perspectives in the courses Physics I, Electromagnetic Fields and Waves, and Advanced Electromagnetic Waves. Only one aspect is left over: the fact that they are not invariant with respect to the classical Galilean transformation… On the contrary, Maxwell’s equations predict that the light speed is the same for every inertial frame of reference. In this new course, we will deepen how Einstein solved this clash elaborating the theory of “special relativity”. Maxwell’s equations are thus naturally derived in a breath-taking fashion from the principle of stationary action within the Lagrangian formalism.

Not only its elegance, but also the daily importance of the relativity theory will be finally highlighted explaining how the GPS can work only if the relativistic view of synchronous clocks is taken into account.

Content
• Galileo-Newton, the Ether, Michelson-Morley’s Experiment
• Lorentz Transformations
• The Lagrangian, the Principle of Stationary Action for Particles and Fields, Noether’s Theorem
• 4-Vectors in Minkowski’s Spacetime: Tensor Calculus
• Maxwell’s Equations and the Energy-Momentum Tensor
• Very First Notions of General Relativity: Einstein’s Equivalence Principle and Time Dilation
• GPS
• \(E = mc^2 \)

Lecture notes
No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive!

Literature

Prerequisites / notice
Notions of a course on Electromagnetism like D-ITET “Electromagnetic Fields and Waves” are indispensable.

IMPORTANT: Wed 22.9, 29.9, 3.11, 10.11, 8.12, and 22.12 are lectures (NOT exercises)!. Please, look at the details in Moodle!
The lecture starts with summarizing the relevant fundamentals of the treatment of noisy signals. We familiarize ourselves with the concept of measurement imprecision in light-based measurement systems. To this end, we consider the process of photodetection and discuss the statistical fluctuations arising from the quantization of the electromagnetic field into photons. We exemplify our insights at hand of concrete examples, such as homodyne and heterodyne photodetection. Furthermore, we focus on the process of measurement backaction, the inevitable result of the interaction of the probe with the system under investigation. The course emphasizes the connection between the taught concepts and current state-of-the-art research carried out in the field of optomechanics.

Prerequisites / notice

1. Electrodynamics
2. Physics 1.2
3. Introduction to quantum mechanics

227-0659-00L Integrated Systems Seminar

Objective

The seminar aims at instructing graduate and PhD students in the basics of presentation techniques, i.e. "how to give a professional talk". Attendees have the possibility to become acquainted with a current topic by a literature study, and to present the results thereof in a 20 minutes talk in English. The participation at the seminar gives also an overview on current problems in modern nano- and opto-electronics.

Content

The seminar topics' are simulation of nanoelectronic processes and devices, and the optical as well as electronic simulation of optoelectronic devices as lasers, photodiodes, etc.

The students learn how to find the right literature for a certain topic quickly, as well as how to prepare a talk for a scientific conference, i.e. presentation techniques.

Lecture notes

Presentation material
An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

- Sustainability and life cycle analysis of battery system innovations.
- History and review of electrochemistry & batteries, and metrics to assess future developments in electrochemical energy storage.

Limited to 30 Students. Priority given to Electrical and Mechanical Engineering students.

Mandatory - background knowledge in batteries & electrochemistry acquired in one of the following courses:
- 227-0664-00L Technology and Policy of Electrical Energy Storage
- 529-0440-00L Physical Electrochemistry and Electrocatalysis
- 529-0191-01L Renewable Energy Technologies II, Energy Storage and Conversion
- 529-0659-00L Electrochemistry

Exception given for PhD students

Prerequisites / notice

227-1033-00L Neuromorphic Engineering I

Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots. Preference is given to students that require this class as part of their major.

Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module INI404 at UZH.

Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students/special-students-university-of-zurich.html

Abstract
This course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.

Objective
Understanding of the characteristics of neuromorphic circuit elements.

Content
Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.

Literature
S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.

Prerequisites / notice

227-2037-00L Physical Modelling and Simulation

This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.

Abstract
Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.

Objective
The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetics, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations using several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagneto-thermal analysis of MEMS.

Content
In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or choose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.

151-0601-00L Theory of Robotics and Mechatronics

This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Objective
Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Content
An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Lecture notes
available.

151-0605-00L Nanosystems

This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Objective
An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Content
Available.

Prerequisites:

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 741 of 2152
Abstract
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.
Self-assembly and directed assembly of 2D and 3D structures.
Special emphasis on the emerging field of molecular electronic devices.

Objective
Familiarize students with basic science and engineering principles governing the nano domain.

Content
The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Familiarity with basic concepts of quantum mechanics is expected.

Topics are treated in 2 blocks:
(I) From Quantum to Continuum
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.

(II) Interaction Forces on the Micro and Nano Scale
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.
Self-assembly and directed assembly of 2D and 3D structures.

Literature

Prerequisites / notice
Lectures and Mini-Review presentations: Thursday 10-13
Homework: Mini-Review
(compulsory continuous performance assessment)

Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. Each Mini-Review will be presented both orally and as a written paper.

151-0620-00L

Abstract
Embedded MEMS Lab
Practical course: Students are introduced to the process steps required for the fabrication of MEMS (Micro Electro Mechanical System) and carry out the fabrication and testing steps in the clean rooms by themselves. Additionally, they learn the requirements for working in clean rooms. Processing and characterization will be documented and analyzed in a final report. Limited access

Objective
Students learn the individual process steps that are required to make a MEMS (Micro Electro Mechanical System). Students carry out the process steps themselves in laboratories and clean rooms. Furthermore, participants become familiar with the special requirements (cleanliness, safety, operation of equipment and handling hazardous chemicals) of working in the clean rooms and laboratories. The entire production, processing, and characterization of the MEMS is documented and evaluated in a final report.

Content
- Photolithography, dry etching, wet etching, sacrificial layer etching, various cleaning procedures
- Packaging and electrical connection of a MEMS device
- Testing and characterization of the MEMS device
- Written documentation and evaluation of the entire production, processing and characterization

Lecture notes
A document containing theory, background and practical course content is distributed at the introductory lecture day of the course.

The document provides sufficient information for the participants to successfully participate in the course.

Participating students are required to attend all scheduled lectures and meetings of the course.

Participating students are required to provide proof that they have personal accident insurance prior to the start of the laboratory portion of the course.

For safety and efficiency reasons the number of participating students is limited. We regret to restrict access to this course by the following rules:
Priority 1: master students of the master's program in "Micro and Nanosystems"
Priority 2: master students of the master's program in "Mechanical Engineering" with a specialization in Microsystems and Nanoscale Engineering (MAVT-tutors Profs Darai, Dual, Hierold, Koumoutsakos, Nelson, Norris, Poulikakos, Pratsinis, Stemmer), who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.
Priority 3: master students, who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.
Priority 4: all other students (PhD, bachelor, master) with a background in silicon or microsystems process technology.

If there are more students in one of these priority groups than places available, we will decide by (in following order) best achieved grade from 151-0621-00L Microsystems Technology, registration to this practicum at previous semester, and by drawing lots.

Students will be notified at the first lecture of the course (introductory lecture) as to whether they are able to participate.

The course is offered in autumn and spring semester.

151-0911-00L

Introduction to Plasmonics
Does not take place this semester.

Abstract
This course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.
Electromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has risen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.

Objective

- Develop an understanding of the fundamental principles of plasmonics
- Master the basic concepts of surface plasmon polaritons
- Explore the applications of plasmonics in various fields

Content

- Fundamentals of Plasmonics
 - Basic electromagnetic theory
 - Optical properties of metals
 - Surface plasmon polaritons on surfaces
 - Surface plasmon polariton propagation
 - Localized surface plasmons

- Applications of Plasmonics
 - Waveguides
 - Extraordinary optical transmission
 - Enhanced spectroscopy
 - Sensing
 - Metamaterials

Lecture notes

Class notes and handouts

Literature

Prerequisites / notice

Physics I, Physics II
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk’s conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at
https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Lecture notes

Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.

Prerequisites /
notice
Students are expected to have a mathematical background and should be able to write rigorous proofs.

Energy and Power Electronics

The core courses and specialisation courses below are a selection for students who wish to specialise in the area of "Energy and Power Electronics", see https://www.ee.ethz.ch/studies/main-master/areas-of-specialisation.html.

The individual study plan is subject to the tutor’s approval.

Core Courses

These core courses are particularly recommended for the field of "Energy and Power Electronics”.
You may choose core courses from other fields in agreement with your tutor.

A minimum of 24 credits must be obtained from core courses during the MSc EEIT.

Foundation Core Courses

Fundamentals at bachelor level, for master students who need to strengthen or refresh their background in the area.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0113-00L</td>
<td>Power Electronics</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>J. W. Kolar</td>
</tr>
</tbody>
</table>

Abstract
Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components.

Objective
Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components.

Content
Fields of application and application examples of power electronic converters, basic concept of switch-mode voltage and current conversion, pulse-width modulation (PWM); derivation and operating modes (continuous and discontinuous current mode) of DC/DC converter topologies, buck / boost / buck-boost converter; extension to DC/AC conversion using differences of unipolar output voltages varying over time; single-phase diode rectifier; boost-type PWM rectifier featuring sinusoidal input current; tolerance band AC current control and cascaded output voltage control with inner constant switching frequency current control; local and global averaging of switching frequency discontinuous quantities for calculation of component stresses; three-phase AC/DC conversion, center-tap rectifier with impressed output current, thyristor function, thyristor center-tap and full-bridge converter, rectifier and inverter operation, control angle and recovery time, inverter operation limit; basics of inductors and single-phase transformers, design based on scaling laws; Isolated DCDC converter, flyback and forward converter, single-switch and two-switch circuit; single-phase DC/AC conversion, four-quadrant converter, unipolar and bipolar modulation, fundamental frequency model of AC-side operating behaviour; three-phase DC/AC converter with star-connected three-phase load, zero sequence (common-mode) and current forming differential-mode output voltage components, fundamental frequency modulation and PWM with singe triangular carrier and individual carrier signals of the phases.

Lecture notes
Lecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.

Prerequisites / notice
Prerequisites: Basic knowledge of electrical engineering / electric circuit analysis and signal theory.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: not assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: not assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

227-0517-10L Fundamentals of Electric Machines W 6 credits 4G D. Bortis

Abstract
This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed.

Objective
The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts.

Content
- Fundamentals in magnetic circuits and electromechanical energy conversion.
- Force and torque calculation.
- Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine).
- Complex space vector notation, rotating coordinate system (dq-transformation).
- Loss components in electric machines, scaling laws of electromechanical actuators.
- Mechanical and thermal modelling.

Lecture notes
Lecture notes and associated exercises including correct answers

Advanced Core Courses
Advanced core courses bring students to gain in-depth knowledge of the chosen specialization. They are MSc level only.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0117-00L</td>
<td>High Voltage Engineering</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>C. Franck, U. Straumann</td>
</tr>
</tbody>
</table>

Abstract
High electric fields are used in numerous technological and industrial applications such as electric power transmission and distribution, X-ray devices, DNA sequencers, flue gas cleaning, power electronics, lasers, particle accelerators, copying machines, High Voltage Engineering is the art of gaining technological control of high electrical field strengths and high voltages. The students know the fundamental phenomena and principles associated with the occurrence of high electric field strengths. They understand the different mechanisms leading to the failure of insulation systems and are able to apply failure criteria on the dimensioning of high voltage components. They have the ability to identify of weak spots in insulation systems and to propose options for improvement. Further, they know the different insulation systems and their dimensioning in practice.

Objective

Content
- discussion of the field equations relevant for high voltage engineering,
- analytical and numerical solutions/solving of this equations, as well as the derivation of the important equivalent circuits for the description of the fields and losses in insulations
- introduction to kinetic gas theory
- mechanisms of the breakdown in gaseous, liquid and solid insulations, as well as insulation systems
- methods for the mathematical determination of the electric withstand of gaseous, liquid and solid insulations
- application of the expertise on high voltage components
- excursions to manufacturers of high voltage components

Lecture notes
Lecture Slides

Literature
Lecture notes and associated exercises including correct answers.

227-0247-00L Power Electronic Systems I

Abstract
Basics of the switching behavior, gate drive and snubber circuits of power semiconductors are discussed. Soft-switching and resonant DC/DC converters are analyzed in detail and high frequency loss mechanisms of magnetic components are explained. Space vector modulation of three-phase inverters is introduced and the main power components are designed for typical industry applications.

Objective
Detailed understanding of the principle of operation and modulation of advanced power electronics converter systems, especially of zero voltage switching and zero current switching non-isolated and isolated DC/DC converter systems and three-phase voltage DC link inverter systems. Furthermore, the course should convey knowledge on the switching frequency related losses of power semiconductors and inductive power components and introduce the concept of space vector calculus which provides a basis for the comprehensive discussion of three-phase PWM converters systems. Power Electronic Systems II.

Content
Basics of the switching behavior and gate drive circuits of power semiconductor devices and auxiliary circuits for minimizing the switching losses are explained. Furthermore, zero voltage switching, zero current switching, and resonant DC/DC converters are discussed in detail; the operating behavior of isolated full-bridge DC/DC converters is detailed for different secondary side rectifier topologies; high frequency loss mechanisms of magnetic components of converter circuits are explained and approximate calculation methods are presented; the concept of space vector calculus for analyzing three-phase systems is introduced; finally, phase-oriented space vector modulation of three-phase inverter systems are discussed related to voltage DC link inverter systems and the design of the main power components based on analytical calculations is explained.

Lecture notes
Lecture notes and associated exercises including correct answers.

Prerequisites / notice
Prerequisites: Introductory course on power electronics.

227-0517-10L Fundamentals of Electric Machines

Abstract
This course introduces different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed.

Objective
The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts.

Content
- Fundamentals in magnetic circuits and electromechanical energy conversion.
- Force and torque calculation.
- Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine).
- Complex space vector notation, rotating coordinate system (dq-transformation).
- Loss components in electric machines, scaling laws of electromechanical actuators.
- Mechanical and thermal modelling.

Lecture notes
Lecture notes and associated exercises including correct answers

227-0526-00L Power System Analysis

Abstract
The goal of this course is understanding the stationary and dynamic problems in electrical power systems. The course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power networks.

Objective
The goal of this course is understanding the stationary and dynamic problems in electrical power systems and the application of analysis tools in steady and dynamic states.

Content
The course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power grids. Approaches such as the Newton-Raphson algorithm applied to power flow equations, superposition technique for short-circuit analysis, equal area criterion and nose curve analysis are discussed as well as power flow computation techniques for distribution grids.

Lecture notes
Lecture notes.

Specialisation Courses

These specialisation courses are particularly recommended for the area of "Energy and Power Electronics", but you are free to choose courses from any other field in agreement with your tutor.

A minimum of 40 credits must be obtained from specialisation courses during the Master's Programme.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0101-00L</td>
<td>Discrete-Time and Statistical Signal Processing</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>H.-A. Loeliger</td>
</tr>
</tbody>
</table>
Abstract
The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.

Objective
The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.

Content
1. Discrete-time linear systems and filters: state-space realizations, z-transform and spectrum, decimation and interpolation, digital filter design, stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective: probability, random variables, discrete-time stochastic processes; detection and estimation: MAP, ML, Bayesian LMMSE, LMMSE; Wiener filter, LMS adaptive filter, Viterbi algorithm.

Lecture notes
Lecture Notes

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Hours</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0103-00L</td>
<td>Control Systems</td>
<td>W 6</td>
<td>2V+2U</td>
<td>F. Dörfler</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single-input single-output and multivariable systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single-input single-output and multivariable systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td>Prerequisites: Signal and Systems Theory II.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td>Lecture Slides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0121-00L</td>
<td>Communication Systems</td>
<td>W 6</td>
<td>4G</td>
<td>A. Wittneben</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>Information Theory, Signal Space Analysis, Baseband Transmission, Passband Transmission, Example und Channel, Data Link Layer, MAC, Example Layer 2, Layer 3, Internet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>Introduction into the fundamentals of digital communication systems. Selected examples on the application of the fundamental principles in existing and upcoming communication systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td>Covered are the lower three layer of the OSI reference model: the physical, the data link, and the network layer. The basic terms of information theory are introduced. After this, we focus on the methods for the point to point communication, which may be addressed elegantly and coherently in the signal space. Methods for error detection and correction as well as protocols for the retransmission of perturbed data will be covered. Also the medium access for systems with shared medium will be discussed. Finally, algorithms for routing and flow control will be treated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td>Prerequisites: Signal and Systems Theory II.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td>Lecture Slides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0225-00L</td>
<td>Linear System Theory</td>
<td>W 6</td>
<td>5G</td>
<td>A. Iannelli</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of linear properties of control systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td>Available on the course Moodle platform.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td>Available on the course Moodle platform.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concepts and Theories</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analytical Competencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Domain D - Personal Competencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Thinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
MATLAB is used for system analysis and simulation.
Abstract
This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed.

Objective
The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts.

Content
- Fundamentals in magnetic circuits and electromechanical energy conversion.
- Force and torque calculation.
- Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine).
- Complex space vector notation, rotating coordinate system (dq-transformation).
- Loss components in electric machines, scaling laws of electromechanical actuators.
- Mechanical and thermal modelling.

Lecture notes
Lecture notes and associated exercises including correct answers

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>W</th>
<th>credits</th>
<th>U</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0523-00L</td>
<td>Railway Systems I</td>
<td>6</td>
<td>4G</td>
<td>M. Meyer</td>
<td></td>
</tr>
<tr>
<td>227-0536-00L</td>
<td>Multiphysics Simulations for Power Systems</td>
<td>4</td>
<td>2V+2U</td>
<td>J. Smajic</td>
<td></td>
</tr>
</tbody>
</table>

Abstract
Basic characteristics of railway vehicles and their interfaces with the railway infrastructure:
- Transportation tasks and vehicle types
- Running dynamics
- Mechanical part of rail vehicles
- Brakes
- Traction chain and auxiliary supply
- Railway power supply
- Signalling systems
- Standards
- Availability and safety
- Traffic control and maintenance

Objective
- Overview of the technical characteristics of railway systems
- Know-how about the design and construction principles of rail vehicles
- Interrelationship between different fields of engineering sciences (mechanics, electro and information technology, transport systems)
- Understanding tasks and opportunities of engineers working in an environment which has strong economical and political boundaries
- Insight into the activities of the railway vehicle industry and railway operators in Switzerland
- Motivation of young engineers to start a career in the railway industry or with railway operators

Content
EST I (Herbstsemester) - Begriffen, Grundlagen, Merkmale

Voraussichtlich ein oder zwei Gastreferate

Geplante Exkursionen:
- Betriebszentrale SBB, Zürich Flughafen
- Reparatur und Unterhalt, SBB Zürich Altstetten
- Fahrzeugfertigung, Stadler Bussnang

Lecture notes
Abgabe der Unterlagen (gegen eine Schutzgebühr) zu Beginn des Semesters. Rechtzeitig eingeschriebene Teilnehmer können die Unterlagen auf Wunsch und gegen eine Zusatzgebühr auch in Farbe beziehen.

Prerequisites / notice
Dozent:
Dr. Markus Meyer, Emkamatik GmbH

Voraussichtlich ein oder zwei Gastvorträge von anderen Referenten.

EST I (Herbstsemester) kann als in sich geschlossene einsemestrige Vorlesung besucht werden. EST II (Frühjahrssemester) dient der weiteren Vertiefung der Fahrzeugtechnik und der Integration in die Bahnninfrastruktur.

Taught competencies
Domain A - Subject-specific Competencies assessed
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies assessed
Analytical Competencies

Domain D - Personal Competencies assessed
Critical Thinking

227-0537-00L Technology of Electric Power System Components
This course is defined so and planned to be an addition to the module “227-0537-00L Technology of Electric Power System Components”.
However, the students who are familiar with the fundamentals of electromagnetic fields could attend only
Objective
This lecture provides theoretical and experimental knowledge on the techniques for the characterization and numerical modeling of power semiconductors, as well as on the related built-in reliability strategies.

Content
This lecture consists of a theoretical part (50%) and of laboratory exercises and demonstrations (50%).

Lecture notes
Lecture notes and complementary exercises including correct answers.

Prerequisites
Prerequisites: Introductory course on power electronics.

4 credits
6 credits
4G
M. P. M. Ciappa

227-0618-00L
Modeling, Characterization and Reliability of Power Semiconductors

Abstract
The students shall get acquainted with the most important concepts and techniques for characterization, numerical modeling and built-in reliability of modern power semiconductor devices. This knowledge is intended to provide the future engineer with the theoretical background and tools for the design of dependable power devices and systems.

Objective
The students shall get acquainted with the most important concepts and techniques for characterization, numerical modeling and built-in reliability of modern power semiconductor devices. This knowledge is intended to provide the future engineer with the theoretical background and tools for the design of dependable power devices and systems.

Content
The students shall get acquainted with the most important concepts and techniques for characterization, numerical modeling and built-in reliability of modern power semiconductor devices. This knowledge is intended to provide the future engineer with the theoretical background and tools for the design of dependable power devices and systems.

Lecture notes
Handouts to the lecture (approx. 250 pp.)

Literature
Eiichi Ohno: "Introduction to Power Electronics"
B. Murari et al.: "Smart Power ICs"
B. J. Baliga: "Physics Modern Power Devices"
S. K. Ghandi: "Semiconductor Power Devices"

227-0567-00L
Design of Power Electronic Systems

Abstract
Complete design process: from given specifications to a complete power electronic system; selection / design of suitable passive power components; optimized EMI filter design; heat sink optimization; additional circuitry, e.g. gate driver; system optimization.

Objective
Basic knowledge of design and optimization of a power electronic system; furthermore, lecture and exercises thoroughly discuss key subjects of power electronics that are important with respect to a practical realization, e.g. how to select suitable power components, to understand switching operations, calculation of high frequency losses, EMI filter design and realization, thermal considerations.

Content
Complete design process: from given specifications to a complete power electronic system.
Selection and / or design of suitable passive power components: specific properties, parasitic components, tolerances, high frequency losses, thermal considerations, reliability.
Static and dynamic characteristics of power semiconductors.
Optimized design of the EMI filter.
Thermal characterization of the converter, optimized heat sink design.
Additional circuitry: gate driver, measurement, control.
Converter start up: typical sequence of events, circuitry required.
Overall system optimization: identifying couplings between different components of the considered power electronic system, optimization targets and issues.

Lecture notes
Lecture notes and complementary exercises including correct answers.

Prerequisites
Prerequisites: Introductory course on power electronics.

227-0697-00L
Industrial Process Control

Abstract
Introduction to industrial automation systems with application to the process industry, power generation as well as discrete manufacturing.

Objective
General understanding of industrial automation systems in different industries. Purpose, architecture, technologies, application examples, current and future trends.
The goal of the lecture is to get a basic understanding of international market mechanisms and their consequences for a successful enterprise. Based on these fundamentals the third part of the course explains how an innovative product portfolio of a company can be derived from considering the most important external factors and which consequences in respect of product innovation, competitive product pricing, organization and business processes emerge. Each part of the course includes practical examples to demonstrate the procedure.

Systems and Control

The core courses and specialisation courses below are a selection for students who wish to specialise in the area of “Systems and Control”, see https://www.ee.ethz.ch/studies/main-master/areas-of-specialisation.html.

The individual study plan is subject to the tutor's approval.
Core Courses
These core courses are particularly recommended for the field of “Systems and Control”. You may choose core courses form other fields in agreement with your tutor.
A minimum of 24 credits must be obtained from core courses during the MSc EEIT.

Foundation Core Courses
Fundamentals at bachelor level, for master students who need to strengthen or refresh their background in the area.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0103-00L</td>
<td>Control Systems</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td>F. Dörfler</td>
</tr>
<tr>
<td>Abstract</td>
<td>Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: Signal and Systems Theory II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advanced Core Courses
Advanced core courses bring students to gain in-depth knowledge of the chosen specialization. They are MSc level only.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0225-00L</td>
<td>Linear System Theory</td>
<td>W</td>
<td>6</td>
<td>5G</td>
<td>A. Iannelli</td>
</tr>
<tr>
<td>Abstract</td>
<td>The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- Proof techniques and practices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Linear spaces, normed linear spaces and Hilbert spaces.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ordinary differential equations, existence and uniqueness of solutions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Controllability and observability, duality. Time invariant systems treated as a special case.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Stability and stabilization, observers, state and output feedback, separation principle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Available on the course Moodle platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Sufficient mathematical maturity, in particular in linear algebra, analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies: Concepts and Theories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies: Analytical Competences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies: Critical Thinking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0697-00L</td>
<td>Industrial Process Control</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>A. Horch, M. Mercangöz</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to industrial automation systems with application to the process industry, power generation as well as discrete manufacturing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>General understanding of industrial automation systems in different industries. Purpose, architecture, technologies, application examples, current and future trends.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Introduction to process automation: system architecture, data handling, communication (fieldbuses), process visualization, and engineering. Differences and characteristics of discrete and process industries. Analysis and design of open loop control problems: discrete automata, finite state machines, decision tables, and petri-nets. Practical analysis and design of closed-loop control for the process industry. Automation Engineering; Application programming in IEC 61131-3 (ladder diagrams, function blocks, sequence control, structured text); PLC programming and simulation, process visualization and operation; engineering integration from sensors, cabling, topology design, function, visualization, diagnosis, to documentation; Industry standards (e.g. OPC, Profibus); Ergonomic design, safety (IEC61508) and availability, supervision and diagnosis. Automation standards: Communication, Architecture, Engineering, dependable systems, functional safety, automation security. Extensive practical examples from different process industries, power generation, gas compressor control, and automotive manufacturing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Slides will be available as .PDF documents, see “Learning materials” (for registered students only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>References will be given at the end of individual lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Exercises: Tuesday 15-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical exercises will illustrate some topics, e.g. some control software coding using industry standard programming tools based on IEC61131-3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0371-00L</td>
<td>Advanced Model Predictive Control</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>M. Zeilinger, A. Carron, L. Hewing, J. Köhler</td>
</tr>
<tr>
<td>Number of participants limited to 60.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract
Model predictive control (MPC) has established itself as a powerful control technique for complex systems under state and input constraints. This course discusses the theory and application of recent advanced MPC concepts, focusing on system uncertainties and safety, as well as data-driven formulations and learning-based control.

Objective
Design, implement and analyze advanced MPC formulations for robust and stochastic uncertainty descriptions, in particular with data-driven formulations.

Content
Topics include:
- Review of Bayesian statistics, stochastic systems and Stochastic Optimal Control
- Nominal MPC for uncertain systems (nominal robustness)
- Robust MPC
- Stochastic MPC
- Set-membership Identification and robust data-driven MPC
- Bayesian regression and stochastic data-driven MPC
- MPC as safety filter for reinforcement learning

Lecture notes
Lecture notes will be provided.

Prerequisites / notice
Basic courses in control, advanced course in optimal control, basic MPC course (e.g. 151-0660-00L Model Predictive Control) strongly recommended.
Background in linear algebra and stochastic systems recommended.

151-0563-01L Dynamic Programming and Optimal Control

Abstract
Introduction to Dynamic Programming and Optimal Control.

Objective
Covers the fundamental concepts of Dynamic Programming & Optimal Control.

Content
Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.

Literature

Prerequisites / notice
Requirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.

Specialisation Courses
These specialisation courses are particularly recommended for the area of “Systems and Control”, but you are free to choose courses from any other field in agreement with your tutor.

A minimum of 40 credits must be obtained from specialisation courses during the Master's Programme.

Number Title Type ECTS Hours Lecturers
227-0102-00L Discrete Event Systems W 6 credits 4G R. Jacob, L. Vanbever, R. Wattenhofer

Abstract
Introduction to discrete event systems. We start out by studying popular models of discrete event systems. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.

Objective
The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems. We first examine discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queuing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queuing.

Content
1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus

Lecture notes
Available
The course covers the following topics:
- Future PE-dominated power systems. Main applications and challenges.
- Voltage source converter review. Different structures 2L, 3L, Modular Multilevel Converters (MMC).
- 2L/3L VSCs: Main control blocks. Usual transformations.
- Voltage source converter review. Different structures 2L, 3L, Modular Multilevel Converters (MMC).
- Future PE-dominated power systems. Main applications and challenges.
- Voltage source converter review. Different structures 2L, 3L, Modular Multilevel Converters (MMC).
- MMC Applications. Control design and implementation.
- Grid forming converters. Concept definition and main structures. Different control options.
- MMC Applications. Control design and implementation.
- PE-dominated system stability and interaction analysis. Linearization of converter and power system dynamics. Eigenvalue analysis.
- Participation factors.

Lecture notes
Lecture notes will be provided in class.

Literature
Specific literature will be provided with the lecture notes.
System Identification

W 4 credits 2V+1U R. Smith

Abstract

Theory and techniques for the identification of dynamic models from experimentally obtained system input-output data.

Objective

To provide a series of practical techniques for the development of dynamical models from experimental data, with the emphasis being on the development of models suitable for feedback control design purposes. To provide sufficient theory to enable the practitioner to understand the trade-offs between model accuracy, data quality and data quantity.

Content

Introduction to modeling: Black-box and grey-box models; Parametric and non-parametric models; ARX, ARMAX (etc.) models.

Predictive, open-loop, black-box identification methods. Time and frequency domain methods. Subspace identification methods.

Optimal experimental design, Cramer-Rao bounds, input signal design.

Parametric identification methods. On-line and batch approaches.

Closed-loop identification strategies. Trade-off between controller performance and information available for identification.

Additional papers will be available via the course Moodle.

Prerequisites / notice

Control systems (227-0216-00L) or equivalent.

Cell and Molecular Biology for Engineers I

W 3 credits 2G C. Frei

Abstract

This course is part I of a two-semester course.

The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.

Objective

After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.

Content

Lectures will include the following topics (part I and II): DNA, chromosomes, genome engineering, RNA, proteins, genetics, synthetic biology, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer and stem cells.

In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade.

Lecture notes

Scripts of all lectures will be available.

Literature

Prerequisites / notice

Basic knowledge on power electronics, power systems and control systems. Basic Matlab skills as well as sufficient mathematical maturity.

Nonlinear Dynamics and Chaos I

W 4 credits 2V+2U G. Haller

Abstract

Basic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.

This course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.
An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.
(2) Near equilibrium dynamics: Linear and Lyapunov stability
(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations
(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.
(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance

Prerequisites / notice
- Prerequisites: Analysis, linear algebra and a basic course in differential equations.
- Exam: two-hour written exam in English.

151-0573-00L System Modeling W 4 credits 2V+1U L. Guzzella
Abstract
Introduction to system modeling for control. Generic modeling approaches based on first principles, Lagrangian formalism, energy approaches and experimental data. Model parametrization and parameter estimation. Basic analysis of linear and nonlinear systems.
Objective
Learn how to mathematically describe a physical system or a process in the form of a model usable for analysis and control purposes.
Content
This class introduces generic system-modeling approaches for control-oriented models based on first principles and experimental data. The class will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples.

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed
Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed
Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed
Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking not assessed
Critical Thinking not assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

151-0601-00L Theory of Robotics and Mechatronics W 4 credits 3G P. Korba, S. Stoeter
Abstract
This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.
Objective
Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.
Content
An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Lecture notes available.

151-0563-01L Dynamic Programming and Optimal Control W 4 credits 2V+1U R. D’Andrea
Abstract
Introduction to Dynamic Programming and Optimal Control.
Objective
Covers the fundamental concepts of Dynamic Programming & Optimal Control.
Content
Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.
Literature
Prerequisites / notice
Requirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.

376-1219-00L Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions W 3 credits 2V R. Rienier, O. Lamberty
Abstract
Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society. The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative systems.
Objective
Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
Introduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces

Literature
Introductory Books:

Selected Journal Articles and Web Links:

Prerequisites / notice
401-0647-00L Introduction to Mathematical Optimization W 5 credits 2V+1U D. Adjashvili

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 756 of 2152
Abstract
Introduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.

Objective
The goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.

Content
Topics covered in this course include:
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.

Literature
Information about relevant literature will be given in the lecture.

Prerequisites / notice
This course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications.

401-3901-00L Mathematical Optimization W 11 credits 4V+2U R. Zenklusen

Abstract
Mathematical treatment of optimization techniques for linear and combinatorial optimization problems.

Objective
The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.

Content
Key topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and polyhedral techniques;
- Equivalence between optimization and separation.

Literature

Prerequisites / notice
Solid background in linear algebra.

636-0007-00L Computational Systems Biology W 6 credits 3V+2U J. Stelling

Abstract
Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modelling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

Objective
The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.

Content
Biology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks.

We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.

Lecture notes
http://www.csb.ethz.ch/education/lectures.html

Literature

401-3055-64L Algebraic Methods in Combinatorics W 6 credits 2V+1U B. Sudakov

Abstract
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.
Objective

The students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.

Content

Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of a discrete structure \(A \) one maps its elements to vectors in a linear space, and shows that the set \(A \) is mapped to linearly independent vectors. It then follows that the cardinality of \(A \) is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Waring theorem.
- Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Prerequisites

Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.

Lecture notes

Students are expected to have a mathematical background and should be able to write rigorous proofs.

Signal Processing and Machine Learning

The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear systems and filters. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.

Core Courses

These core courses are particularly recommended for the field of "Signal Processing and Machine Learning". You may choose core courses from other fields in agreement with your tutor.

A minimum of 24 credits must be obtained from core courses during the MSc EEIT.

Foundation Core Courses

Fundamentals at bachelor level, for master students who need to strengthen or refresh their background in the area.

Advanced Core Courses

Advanced core courses bring students to gain in-depth knowledge of the chosen specialization. They are MSc level only.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 758 of 2152
Objective
After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.

Content
1. Universal approximation with single- and multi-layer networks
2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory
3. Fundamental limits of deep neural network learning
4. Geometry of decision surfaces
5. Separating capacity of nonlinear decision surfaces
6. Vapnik-Chervonenkis (VC) dimension
7. VC dimension of neural networks
8. Generalization error in neural network learning

Lecture notes
Detailed lecture notes are available on the course web page
https://www.mins.ee.ethz.ch/teaching/nnt/

Prerequisites / notice
This course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.

227-0427-00L Signal Analysis, Models, and Machine Learning
Objective
This course was replaced by "Introduction to Estimation and Machine Learning" and "Advanced Signal Analysis, Modeling, and Machine Learning".

Content
Mathematical methods in signal processing and machine learning.
I. Linear signal representation and approximation: Hilbert spaces, LMMSE estimation, regularization and sparsity.
II. Learning linear and nonlinear functions and filters: neural networks, kernel methods.
III. Structured statistical models: hidden Markov models, factor graphs, Kalman filter, Gaussian models with sparse events.

Prerequisites / notice
- local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.)
- others: solid basics in linear algebra and probability theory

227-0447-00L Image Analysis and Computer Vision
Objective
Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Content
This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.
The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer. The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Prerequisites / notice
Course material Script, computer demonstrations, exercises and problem solutions

252-0535-00L Advanced Machine Learning
Objective
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
Content

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
- What is data?
- Bayesian Learning
- Computational learning theory

Supervised learning:
- Ensembles: Bagging and Boosting
- Max Margin methods
- Neural networks

Unsupervised learning:
- Dimensionality reduction techniques
- Clustering
- Mixture Models
- Non-parametric density estimation
- Learning Dynamical Systems

Lecture notes

No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

263-3210-00L Deep Learning W 8 credits 3V+2U+2A F. Perez Cruz, A. Lucchi

Abstract

Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective

In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.

Prerequisites / notice

This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:
 - Advanced Machine Learning
 - Computational Intelligence Lab
 - Introduction to Machine Learning
 - Statistical Learning Theory
 - Computational Statistics
 - Probabilistic Artificial Intelligence

401-4944-20L Mathematics of Data Science W 8 credits 4G A. Bandeira

Abstract

Mostly self-contained, but fast-paced, introductory masters level course on various theoretical aspects of algorithms that aim to extract information from data.

Objective

Introduction to various mathematical aspects of Data Science.

Content

These topics lie in overlaps of (Applied) Mathematics with: Computer Science, Electrical Engineering, Statistics, and/or Operations Research. Each lecture will feature a couple of Mathematical Open Problem(s) related to Data Science. The main mathematical tools used will be Probability and Linear Algebra, and a basic familiarity with these subjects is required. There will also be some (although knowledge of these tools is not assumed) Graph Theory, Representation Theory, Applied Harmonic Analysis, among others. The topics treated will include Dimension reduction, Manifold learning, Sparse recovery, Random Matrices, Approximation Algorithms, Community detection in graphs, and several others.

Lecture notes

Prerequisites / notice

The main mathematical tools used will be Probability, Linear Algebra (and real analysis), and a working knowledge of these subjects is required. In addition to these prerequisites, this class requires a certain degree of mathematical maturity—including abstract thinking and the ability to understand and write proofs.

We encourage students who are interested in mathematical data science to take both this course and "227-0434-10L Mathematics of Information" taught by Prof. H. Bölcskei. The two courses are designed to be complementary.

A. Bandeira and H. Bölcskei

Specialisation Courses

These specialisation courses are particularly recommended for the area of "Signal Processing and Machine Learning", but you are free to choose courses from any other field in agreement with your tutor.

A minimum of 40 credits must be obtained from specialisation courses during the MSc EEIT.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0116-00L</td>
<td>VLSI 1: HDL based design for FPGAs</td>
<td>W</td>
<td>6</td>
<td>5G</td>
<td>F. K. Gürkaynak, L. Benini</td>
</tr>
</tbody>
</table>

Abstract

This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.

Objective

Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.

Content

This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

Lecture notes

Textbook and all further documents in English.

Literature

Prerequisites / notice

Prerequisites:
Basics of digital circuits.

Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German.

Further details:
https://iis-students.ee.ethz.ch/lectures/vlsi-i/

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0155-00L</td>
<td>Machine Learning on Microcontrollers</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>M. Magno, L. Benini</td>
</tr>
</tbody>
</table>

Registration in this class requires the permission of the instructors. Class size will be limited to 25.

Preference is given to students in the MSc EEIT.

Abstract

Machine Learning (ML) and artificial intelligence are pervading the digital society. Today, even low power embedded systems are incorporating ML, becoming increasingly ‘smart’. This lecture gives an overview of ML methods and algorithms to process and extract useful near-sensor information in end-nodes of the “internet-of-things”, using low-power microcontrollers/processors (ARM-Cortex-M; RISC-V).

Objective

Learn how to Process data from sensors and how to extract useful information with low power microprocessors using ML techniques. We will analyze data coming from real low-power sensors (accelerometers, microphones, ExG bio-signals, cameras…). The main objective is to study in details how Machine Learning algorithms can be adapted to the performance constraints and limited resources of low-power microcontrollers.
Content
The final goal of the course is a deep understanding of machine learning and its practical implementation on single- and multi-core microcontrollers, coupled with performance and energy efficiency analysis and optimization. The main topics of the course include:
- Sensors and sensor data acquisition with low power embedded systems
- Machine Learning: Overview of supervised and unsupervised learning and in particular supervised learning (Bayes Decision Theory, Decision Trees, Random Forests, kNN-Methods, Support Vector Machines, Convolutional Networks and Deep Learning)
- Low-power embedded systems and their architecture, Low Power microcontrollers (ARM-Cortex M) and RISC-V-based Parallel Ultra Low Power (PULP) systems-on-chip.
- Low power smart sensor system design: hardware-software tradeoffs, analysis, and optimization. Implementation and performance evaluation of ML in battery-operated embedded systems.

The laboratory exercised will show how to address concrete design problems, like motion, gesture recognition, emotion detection, image and sound classification, using real sensors data and real MCU boards.

Presentations from Ph.D. students and the visit to the Digital Circuits and Systems Group will introduce current research topics and international research projects.

Lecture notes
Script and exercise sheets. Books will be suggested during the course.

Prerequisites / notice

227-0121-00L Communication Systems
Objective
Introduction into the fundamentals of digital communication systems. Selected examples on the application of the fundamental principles in existing and upcoming communication systems
Content
Covered are the lower three layer of the OSI reference model: the physical, the data link, and the network layer. The basic terms of information theory are introduced. After this, we focus on the methods for the point to point communication, which may be addressed elegantly and coherently in the signal space. Methods for error detection and correction as well as protocols for the retransmission of perturbed data will be covered. Also the medium access for systems with shared medium will be discussed. Finally, algorithms for routing and flow control will be treated.

The application of the basic methods will be extensively explained using existing and future wireless and wired systems.

Lecture notes
Lecture Slides

Literature

227-0225-00L Linear System Theory
Objective
Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.
Content
- Proof techniques and practices.
- Linear spaces, normed linear spaces and Hilbert spaces.
- Ordinary differential equations, existence and uniqueness of solutions.
- Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case.
- Controllability and observability, duality. Time invariant systems treated as a special case.
- Stability and stabilization, observers, state and output feedback, separation principle.

Lecture notes
Available on the course Moodle platform.

Prerequisites / notice
Sufficient mathematical maturity, in particular in linear algebra, analysis.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
assessed
assessed
Domain B - Method-specific Competencies
Analytical Competencies
Problem-solving
assessed
assessed
Domain D - Personal Competencies
Creative Thinking
Critical Thinking
Integrity and Work Ethics
not assessed
not assessed

227-0417-00L Information Theory I
Objective
This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equivalence property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.
Content
The entropy rate of a source, Typical sequences, the asymptotic equivalence property, the source-channel coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity

Literature
T.M. Cover and J. Thomas, Elements of Information Theory (second edition)

227-0421-00L Deep Learning in Artificial and Biological Neuronal Networks
Abstract
Deep-Learning (DL) a brain-inspired weak for of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 762 of 2152
Objective
The main goal of this lecture is to provide a comprehensive overview into the learning principles neuronal networks as well as to introduce a diverse skill set (e.g. simulating a spiking neuronal network) that is required to understand learning in large, hierarchical neuronal networks. To achieve this the lectures and exercises will merge ideas, concepts and methods from machine learning and neuroscience. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas presented in today's neuroscience papers.

After this course students will be able to:
- read and understand the main ideas and methods that are presented in today's neuroscience papers
- explain the basic ideas and concepts of plasticity in the mammalian brain
- implement alternative ANN learning algorithms to "error backpropagation" in order to train deep neuronal networks.
- use a diverse set of ANN regularization methods to improve learning
- simulate spiking neuronal networks that learn simple (e.g. digit classification) tasks in a supervised manner.

Content
Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. The origins of deep hierarchical learning can be traced back to early neuroscience research by Hubel and Wiesel in the 1960s, who first described the neuronal processing of visual inputs in the mammalian neocortex. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world.

However, while on specific tasks such as playing (video) games deep ANNs outperform humans (Minh et al, 2015, Silver et al., 2018), ANNs are still not performing on par when it comes to recognizing actions in movie data and their ability to act as generalizable problem solvers is still far behind of what the human brain seems to achieve effortlessly. Moreover, biological neuronal networks can learn far more effectively with fewer training examples, they achieve a much higher performance in recognizing complex patterns in time series data (e.g. recognizing actions in movies), they dynamically adapt to new tasks without losing performance and they achieve unmatched performance to detect and integrate out-of-domain data examples (data they have not been trained with). In other words, many of the big challenges and unknowns that have emerged in the field of deep learning over the last years are already mastered exceptionally well by biological neuronal networks in our brain. On the other hand, many facets of typical ANN design and training algorithms seem biologically implausible, such as the non-local weight updates, discrete processing of time, and scalar communication between neurons. Recent evidence suggests that learning in biological systems is the result of the complex interplay of diverse error feedback signaling processes acting at multiple scales, ranging from single synapses to entire networks.

Lecture notes
The lecture slides will be provided as a PDF after each lecture.

Prerequisites / notice
This advanced level lecture requires some basic background in machine/deep learning. Thus, students are expected to have a basic mathematical foundation, including linear algebra, multivariate calculus, and probability. The course is not to be meant as an extended tutorial of how to train deep networks in PyTorch or Tensorflow, although these tools used.

1) The number of participants is limited to 120 students (MSc and PhDs).
2) Students must have taken the exam in Deep Learning (263-3210-00L) or have acquired equivalent knowledge.

227-0477-00L
Acoustics I

Abstract
Introduction to the fundamentals of acoustics in the field of sound field calculations, measurement of acoustical events, outdoor sound propagation and room acoustics of large and small enclosures.

Objective
Understanding of the basic acoustical concepts and methods. Ability to understand the technical and scientific literature. Confidence in the use of measuring instruments.

Content
Fundamentals of acoustics, measurement and analysis of acoustical events, anatomy and properties of the ear, outdoor sound propagation, absorption and transmission of sound, room acoustics of large and small enclosures, architectural acoustics, noise and noise control, calculation of sound fields.

Lecture notes
yes
Taught competencies
Domain A - Subject-specific Competencies Concepts and Theories assessed
Domain B - Method-specific Competencies Analytical Competencies assessed
Problem-solving assessed
Domain C - Social Competencies Communication assessed
Domain D - Personal Competencies Creative Thinking assessed
Critical Thinking assessed
Self-direction and Self-management not assessed

263-5210-00L
Probabilistic Artificial Intelligence

Abstract
This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.

Objective
How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.

Content
Topics covered:
- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

Prerequisites / notice
Solid basic knowledge in statistics, algorithms and programming.

The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite.

263-5255-00L
Foundations of Reinforcement Learning

Last cancellation/deregistration date for this graded semester performance: Thursday, 28 October 2021!
Please note that after that date no deregistration will be accepted and the course will be considered as "fail".

Abstract
Reinforcement learning (RL) has been in the limelight of many recent breakthroughs in artificial intelligence. This course focuses on theoretical and algorithmic foundations of reinforcement learning, through the lens of optimization, modern approximation, and learning theory. The course targets M.S. students with strong research interests in reinforcement learning, optimization, and control.
Objective

This course aims to provide students with an advanced introduction of RL theory and algorithms as well as bring them near the frontier of this active research field.

By the end of the course, students will be able to

- Identify the strengths and limitations of various reinforcement learning algorithms;
- Formulate and solve sequential decision-making problems by applying relevant reinforcement learning tools;
- Generalize or discover “new” applications, algorithms, or theories of reinforcement learning towards conducting independent research on the topic.

Content

Basic topics include fundamentals of Markov decision processes, approximate dynamic programming, linear programming and primal-dual perspectives of RL, model-based and model-free RL, policy gradient and actor-critic algorithms, Markov games and multi-agent RL. If time allows, we will also discuss advanced topics such as batch RL, inverse RL, causal RL, etc. The course keeps strong emphasis on in-depth understanding of the mathematical modeling and theoretical properties of RL algorithms.

Lecture notes

Lecture notes will be posted on Moodle.

Literature

Prerequisites / notice

Students are expected to have strong mathematical background in linear algebra, probability theory, optimization, and machine learning.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3055-64L</td>
<td>Algebraic Methods in Combinatorics</td>
<td>6 credits</td>
<td>4V+1U</td>
<td>B. Sudakov</td>
</tr>
<tr>
<td>401-3901-00L</td>
<td>Linear & Combinatorial Optimization</td>
<td>11 credits</td>
<td>4V+2U</td>
<td>R. Zenklusen</td>
</tr>
</tbody>
</table>

Students are expected to have a mathematical background and should be able to write rigorous proofs.

Abstract

401-3621-00L

The course covers the basics of inferential statistics.

Objective

This course provides an introduction to Combinatorics, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the course include (but are not limited to):

- Basic combinatorial arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk’s conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Lecture notes

Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.

Prerequisites / notice

Students are expected to have a solid mathematical background and should be able to write rigorous proofs.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Pre-requisites</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3055-64L</td>
<td>Algebraic Methods in Combinatorics</td>
<td>6 credits</td>
<td>4V+1U</td>
<td>B. Sudakov</td>
</tr>
<tr>
<td>401-3621-00L</td>
<td>Fundamentals of Mathematical Statistics</td>
<td>10 credits</td>
<td>4V+1U</td>
<td>S. van de Geer</td>
</tr>
<tr>
<td>401-3901-00L</td>
<td>Linear & Combinatorial Optimization</td>
<td>11 credits</td>
<td>4V+2U</td>
<td>R. Zenklusen</td>
</tr>
</tbody>
</table>

Former course title: Mathematical Optimization.
Electives

This is only a short selection. Other courses from the ETH course catalogue may be chosen in agreement with your tutor.

As an alternative to the elective courses, students may do a second semester project or an internship in industry. Please consult your tutor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0371-00L</td>
<td>Advanced Model Predictive Control</td>
<td>W</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>M. Zeilinger, A. Carron, L. Hewing, J. Köhlér</td>
</tr>
</tbody>
</table>

Abstract
Model predictive control (MPC) has established itself as a powerful control technique for complex systems under state and input constraints. This course discusses the theory and application of recent advanced MPC concepts, focusing on system uncertainties and safety, as well as data-driven formulations and learning-based control.

Objective
Design, implement and analyze advanced MPC formulations for robust and stochastic uncertainty descriptions, in particular with data-driven formulations.

Content
Topics include:
- Review of Bayesian statistics, stochastic systems and Stochastic Optimal Control
- Nominal MPC for uncertain systems (nominal robustness)
- Robust MPC
- Stochastic MPC
- Set-membership Identification and robust data-driven MPC
- Bayesian regression and stochastic data-driven MPC
- MPC as safety filter for reinforcement learning

Lecture notes
Lecture notes will be provided.

Prerequisites / notice
Basic courses in control, advanced course in optimal control, basic MPC course (e.g. 151-0660-00L Model Predictive Control) strongly recommended.

Background in linear algebra and stochastic systems recommended.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0511-00L</td>
<td>Managerial Economics</td>
<td>W</td>
<td>4 credits</td>
<td>3V</td>
<td>V. Lohmann, P. Egger, M. Köthenbürger</td>
</tr>
</tbody>
</table>

Abstract
“Managerial Economics” provides an introduction to the theories and methods from Economics and Management Science to analyze economic decision-making in the context of markets. The course targets students with no prior knowledge in Economics and Management.

Objective
The objective of this course is to provide an introduction to microeconomic thinking. Based on the fundamental principles of economic analysis (optimization and equilibrium), the focus lies on understanding key economic concepts relevant for understanding and analyzing economic behavior of firms and consumers in the context of markets. Market demand and supply are derived from the individual decision-making of economic agents and market outcomes under different assumptions about the market structure and market power (perfect competition, monopoly, oligopoly, game theory) are studied. This introductory course aims at providing essential knowledge from the fields of Economics and Management relevant for economic decision-making in the context of both the private and public sector.

Literature

Prerequisites / notice
The course targets both Bachelor and Master students. No prior knowledge in the areas of Economics and Management is required.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC.

Objective
The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship.

In particular, the aims of the course are to:
1. broaden understanding of management principles and frameworks
2. advance insights into the sources of corporate and entrepreneurial success
3. develop skills to apply this knowledge to real-life managerial problems

The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and/or appreciate the challenges that entrepreneurs and managers deal with.
Technology ventures are significantly changing the global economic picture. Technological skills increasingly need to be complemented by business skills.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.

The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.

During the course, students will learn about different design thinking methods and tools. This will enable them to:
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.
- Engage in collaborative ideation with a multidisciplinary team.
- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).
- Engage in collaborative ideation with a multidisciplinary team.
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.

The general objective of Discovering Management (Exercises) is to complement the course "Discovering Management" with one larger exercise from practice.

Discovering Management (Exercises) thus focuses on developing the skills and competences to apply management theory to a real-life exercise from practice.

Students have the option to either write this alone or in a group of two students.

Students following this course should also be enrolled for course 351-0778-00L, "Discovering Management".

Students have the option to either write this alone or in a group of two students. Students following this course should also be enrolled for course 351-0778-00L, "Discovering Management".

table

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>351-0778-00L</td>
<td>Technology Entrepreneurship</td>
<td>2</td>
<td>F. Hacklin</td>
</tr>
<tr>
<td>351-0778-01L</td>
<td>Discovering Management (Exercises)</td>
<td>1</td>
<td>B. Clarysse, L. P. T. Vandeweghe</td>
</tr>
<tr>
<td>363-1065-00L</td>
<td>Design Thinking: Human-Centred Solutions to Real World Challenges</td>
<td>5</td>
<td>S. Brusoni</td>
</tr>
</tbody>
</table>

All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle.

Lecture slides and case material

Information and application: http://sparklabs.ch/

S. Brusoni

Autumn Semester 2021

Page 766 of 2152
Content

The purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validated them through quick iterations of prototyping and testing using different tools and materials. The students will work in multidisciplinary teams on a set of challenges that are organized as a one-week, a three-week, and a final six-week project with an external project partner. In this course, the students will learn about the different Design Thinking methods and tools that are needed to generate deep insights, to engage in collaborative ideation, rapid prototyping and iterative testing.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

Prerequisites / notice

For more information and the application visit: http://sparklabs.ch/

Open mind, ability to manage uncertainty and to work with students from various background. Class attendance and active participation is crucial as much of the learning occurs through the work in teams during class. Therefore, attendance is obligatory for every session. Please also note that the group work outside class is an essential element of this course, so that students must expect an above-average workload.

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Linda Armbruster to learn about the requirements of the class.

363-1082-00L Enabling Entrepreneurship: From Science to Startup

Students should provide a brief overview (unto 1 page) of their business ideas that they would like to commercialise through the course. If they do not have an idea, they are required to provide a motivation letter stating why they would like to do this elective. If you are unsure about the readiness of your idea or technology to be converted into a startup, please drop me a line to schedule a call or meeting to discuss.

The total number of students will be limited to 40. It is preferable that the students already form teams of at least two persons, where both the team-members would like to do the course. The names of the team-members should be provided together with the business idea or the motivation letter submitted by the students.

The students should submit the necessary information until September 13 and apply to anilsethi@ethz.ch

Objective

Students have technology competence or an idea that they would like to convert into a startup. They are now in the process of evaluating the steps necessary to do so. In summary:

1. Students want to become entrepreneurs
2. The students can be from business or science & technology
3. The course will enable the students to identify the relevance of their technology or idea from the market relevance perspective and thereby create a business case to take it to market.
4. The students will have exposure to investors and entrepreneurs (with a focus on ETH spin-offs) through the course, to gain insight to commercialise their idea

Content

1. Technology excellence: this assumes that the student has achieved a certain degree of competence in the area of technology that he or she expects to bring to the market
2. Market need and market relevance: The student would then be expected to identify the possible markets that may find the technology of relevance. Market relevance implies the process of identification of how relevant the market perceives the technology, and whether this can sustain over a longer period of time
3. IP and IP strategy: Intellectual property, whether in the form of a patent or a trade secret, implies the secret ingredient that enables the student to achieve certain results that competitors are unable to copy. This enables the student (and subsequently the startup) to hold on to the market that they create with customers
4. Team including future capabilities required: a startup requires multiple people with complementary capabilities. They also need to be motivated while at the same time protecting the interests of the startup
5. Financials: There is a need of funding to achieve milestones. This includes funding for salaries and running of the company
6. Investors and funding options: There are multiple funding options for a startup. They all come with different advantages and limitations. It's important for a startup to recognise its needs and find the investors that fit these needs and are best aligned with the vision of the founders
7. Preparation of business case: The students will finally prepare the business case that can help them to articulate the link of the technology with the market need and its willingness to pay
8. Legal overview, company forms and shareholders' agreements (including pitfalls)

The seminar includes talks from invited investors, entrepreneurs and legal experts regarding the importance of the various elements being covered in content, workshops and teamwork. There is a particular emphasis on market validation on each step of the journey, to ensure relevance.

Lecture notes

Since the course will revolve around the ideas of the students, the notes will be for the sole purpose of providing guidance to the students to help convert their technologies or ideas into business cases for the purpose of forming startups. Theoretical subject matter will be kept to a minimum and is not the focus of the course.

Literature

Book
Setti, A. “From Science to Startup”
ISBN 978-3-319-30422-9
Students applying for this course are requested to submit a 1 page business idea or, in case they don't have a business idea, a brief motivation letter stating why they would like to do this course.

If you are unsure about the readiness of your idea or technology to be converted into a startup, please drop me a line to schedule a call or meeting to discuss.

Prerequisites / notice
This course is relevant for those students who aspire to become entrepreneurs.

Taught competencies
- **Domain B - Method-specific Competencies**
 - Media and Digital Technologies
 - Project Management
- **Domain C - Social Competencies**
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
- **Domain D - Personal Competencies**
 - Creative Thinking
 - Critical Thinking
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

851-0703-00L Introduction to Law
Students who have attended or will attend the lecture **"Introduction to Law for Civil Engineering and Architecture" (851-0703-03L)** or **"Introduction to Law" (851-0708-00L)**, cannot register for this course unit.

Abstract
This class introduces students into basic features of the legal system. Fundamental issues of constitutional law, administrative law, private law and the law of the EU are covered.

Objective
Students are able to identify basic structures of the legal system. They understand selected topics of public and private law and are able to apply the fundamentals in more advanced law classes.

Content
- Basic concepts of law, sources of law.
- Private law: Contract law (particularly contract for work and services), tort law, property law.
- Public law: Human rights, administrative law, procurement law, procedural law.

Literature
Jaap Hage, Bram Akkermans (Eds.), Introduction to Law, Cham 2017 (Online Resource ETH Library)

Further documents will be available online (see https://moodle-app2.let.ethz.ch/course/view.php?id=15142).

851-0735-10L Business Law

Abstract
The students shall obtain a basic knowledge about business law. They shall be able to recognize and evaluate issues in the area of business law and suggest possible solutions.

Objective
The students shall obtain the following competence:
- They shall obtain a working knowledge on the legal aspects involved in setting up and managing an enterprise.
- They shall be acquainted with corporate functions as contracting, negotiation, claims management and dispute resolution.
- They shall be familiar with the issues of corporate compliance, i.e. the system to ascertain that all legal and ethical rules are observed.
- They shall be able to contribute to the legal management of the company and to discuss legal issues.
- They shall have an understanding of the law as a part of the corporate strategy and as a valuable resource of the company.

Lecture notes
A comprehensive script will be made available online on the moodle platform.

851-0738-00L Intellectual Property: Introduction
Particularly suitable for students of D-CHAB, D-INFK, D-ITET, D-MAVT, D-MATL, D-MTEC

Abstract
The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights).

Objective
Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Lecture notes
A comprehensive script will be made available online on the moodle platform.

851-0738-01L The Role of Intellectual Property in the Engineering and Technical Sector
Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

Abstract
The lecture gives an overview of the fundamental aspects of intellectual property, which plays an important role in the daily routine of engineers and scientists. The lecture aims to make participants aware of the various methods of protection and to put them in a position to use this knowledge in the workplace.
In recent years, knowledge about intellectual property has become increasingly important for engineers and scientists. Both in production and distribution and in research and development, they are increasingly being confronted with questions concerning the patenting of technical inventions and the use of patent information.

The lecture will acquaint participants with practical aspects of intellectual property and enable them to use the acquired knowledge in their future professional life.

Topics covered during the lecture will include:
- The importance of innovation in industrialised countries
- An overview of the different forms of intellectual property
- The protection of technical inventions and how to safeguard their commercialisation
- Patents as a source of technical and business information
- Practical aspects of intellectual property in day-to-day research, at the workplace and for the formation of start-ups.

Case studies will illustrate and deepen the topics addressed during the lecture.

The seminar will include practical exercises on how to use and search patent information. Basic knowledge of how to read and evaluate patent documents as well as how to use publicly available patent databases to obtain the required patent information will also be provided.

Objective

The course provides an introduction to the theory of communication and its practical applications. It covers the fundamentals of information theory and communication theory, including Shannon's source coding and channel coding theorems.

Prerequisites

Literature

Govind P. Agrawal; "Fiber-Optic Communication Systems"; Wiley, 2010

Course Content

- Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.
- Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.
- Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection techniques, Error correction coding.
- Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.
- Chapter 7: Optical Amplifiers: Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.
- Chapter 8: Nonlinear effects in a fiber.
- Chapter 9: Fiber channel capacity and channel coding.

- Lecture notes are handed out.

Lecture notes

Govind P. Agrawal; "Fiber-Optic Communication Systems"; Wiley, 2010

Type of course

Mathematical methods in signal processing and machine learning.

- Linear and nonlinear functions and filters: neural networks, kernel methods.
- Structured statistical models: hidden Markov models, factor graphs, Kalman filter. Gaussian models with sparse events.
Objective
The course is an introduction to some basic topics in signal processing and machine learning.

Content

Lecture slides are available. Lecture notes.

Prerequisites / notice
- Prerequisites: course "Discrete-Time and Statistical Signal Processing" (S. Sem.)
- Others: solid basics in linear algebra and probability theory

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0439-00L</td>
<td>Wireless Access Systems</td>
<td>W</td>
<td>6 credits</td>
<td>2V+2U</td>
<td>A. Wittneben</td>
</tr>
</tbody>
</table>

Does not take place this semester.

Abstract
The lecture course covers current and upcoming wireless systems for data communication and localization in diverse applications. Important topics are broadband data networks, indoor localization, internet-of-things, biomedical sensor networks and smart grid communications. The course consists of two tracks, the lecture part “Technology & Systems” and the group exercise part “Simulate & Practice”.

Objective
General learning goals of the course:
- By the end of this course, students will be able to
 - understand and illustrate the physical layer and MAC layer limits and challenges of wireless systems with emphasis on data communication and localization
 - understand and explain the functioning of the most widely used wireless systems
 - model and simulate the physical layer of state-of-the-art wireless systems
 - explain challenges and solutions of indoor localization
 - understand research challenges of future wireless networks

Specific learning goals include:
- Understanding the principles of OFDM and analyzing its performance on the physical layer
- Understanding and evaluating the challenges regarding current applications of wireless networks, e.g., for the internet-of-things, smart grid communication, biomedical sensor communication
- Illustrating the characteristics of the wireless channel
- Simulation of localization and user tracking based on wireless systems
- Explaining the basics of smart grid communications approaches (including narrowband PLC, G3-PLC)

Content
- Introduction
- Wireless communication: fundamental Physical layer and MAC layer limits and challenges
- Basics of OFDM
- Wireless systems: WiFi / WLAN
- Wireless systems: Bluetooth, RFID (Radio Frequency Identification) and NFC (Near Field Communication)
- Indoor localization based on wireless systems
- Internet-of-things: Challenges and solutions regarding wireless data communication and localization
- Smart grid communications
- Biomedical sensor communication
- Next generation designs (glimpse on current research topics)

The goal of the course is to explain and analyze modern and future wireless systems for data communication and localization. The course covers designs for generic applications (e.g., WiFi, Bluetooth) as well as systems optimized for specific applications (e.g., biomedical sensor networks, smart grid communications).

The course consists of two parallel tracks. The track “Technology&Systems” is structured as regular lecture. In the introduction, we discuss the challenges and potential of wireless access and study some fundamental limits of wireless communications and localization approaches.

The second part of this track is devoted to the most widely used wireless systems, WiFi/WLAN, Bluetooth, RFID, NFC. Furthermore, we study the potential of using existing wireless communication systems for indoor localization.

The third part follows with an introduction to the internet-of-things, where we focus on data communication and localization challenges and solutions in wireless networks with a massive number of nodes. Next, we study communication technologies for the smart grid, which combine wireless as well as power line communication approaches to optimize availability and efficiency.

The track is completed by a comprehensive survey of short-range magneto-inductive micro sensor networks for communication and localization - as a promising technology for biomedical sensor communication (in-body, out-of-body).

In the track “Simulate&Practice” we form student teams to simulate and analyze functional blocks of the physical layer of advanced wireless systems (based on MATLAB simulations). The track includes combination tasks in which different teams combine their functional blocks (e.g., transmitter, receiver) in order to simulate the complete physical layer of a wireless system. The focus is on data communication and localization. The tasks include modeling and simulating of single-carrier systems (as, e.g., used in Bluetooth), multi-carrier OFDM systems (e.g. used in WiFi or power line communication), and indoor localization approaches (e.g. relevant for IoT and sensor networks).

Recommended Subjects
These courses are recommended, but you are free to choose courses from any other special field. Please consult your tutor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0102-00L</td>
<td>Discrete Event Systems</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>R. Jacob, L. Vanbever, R. Wattenhofer</td>
</tr>
</tbody>
</table>

Abstract
Introduction to discrete event systems. We start out by studying popular models of discrete event systems. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.
Objective
Over the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

Content
1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus

Lecture notes
Available

Literature
[bertsekas] Data Networks
Dimitri Bertsekas, Robert Gallager

Allan Borodin, Ran El-Yaniv.
Cambridge University Press, 1998

[boudec] Network Calculus
J.-Y. Le Boudec, P. Thiran
Springer, 2001

[cassandras] Introduction to Discrete Event Systems
Christos Cassandras, Stéphane Lafortune.

[fiat] Online Algorithms: The State of the Art
A. Fiat and G. Woeginger
D. Hochbaum

[schickinger] Diskrete Strukturen (Band 2: Wahrscheinlichkeitstheorie und Statistik)
T. Schickinger, A. Steger
Springer, Berlin, 2001

[sipser] Introduction to the Theory of Computation
Michael Sipser.

227-013-00L Control Systems

| W | 6 credits | 2V+2U | F. Dörrler |

Objective
Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.

Content

Literature

Prerequisites / notice
Prerequisites: Signal and Systems Theory II.
MATLAB is used for system analysis and simulation.

227-0116-00L VLSI 1: HDL based design for FPGAs

| W | 6 credits | 5G | F. K. Gürkaynak, L. Benini |

Abstract
This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.

Objective
Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.
VLSI III: Test and Fabrication of VLSI Circuits

227-0148-00L

<table>
<thead>
<tr>
<th>Content</th>
<th>W 6 credits</th>
<th>4G</th>
<th>L. Benini</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

In this course, we will cover how modern microchips are fabricated, and we will focus on methods and tools to uncover fabrication defects, if any, in these microchips. As part of the exercises, students will get to work on an industrial 1 million dollar automated test equipment.

Objective

Learn about modern IC manufacturing methodologies, understand the problem of IC testing. Cover the basic methods, algorithms and techniques to test circuits in an efficient way. Learn about practical aspects of IC testing and apply what you learn in class using a state-of-the-art test equipment.

Content

- Today's nanometer CMOS fabrication processes (HKMG).
- Optical and post optical Photolithography.
- Potential alternatives to CMOS technology and MOSFET devices.
- Evolution paths for design methodology.
- Industrial roadmaps for the future evolution of semiconductor technology (ITRS).

Examination:

In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English or German.

Further details:

https://iis-students.ee.ethz.ch/lectures/vlsi-iii/

Analog Integrated Circuits

227-0165-00L

<table>
<thead>
<tr>
<th>Content</th>
<th>W 6 credits</th>
<th>2V+2U</th>
<th>T. Jang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies. Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems.

The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.

Objective

- Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors.

The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurements.

Course website:

https://iis-students.ee.ethz.ch/lectures/vlsi-iii/
The class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation. This includes the transmitter, the fiber channel and the receiver with the electronic digital signal processing elements.

An in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societal, economical and environmental aspects related to the on-going exponential growth in the field of communications.

Abstract

1. Universal approximation with single- and multi-layer networks
2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory
3. Fundamental limits of deep neural network learning
4. Geometry of decision surfaces
5. Separating capacity of nonlinear decision surfaces
6. Vapnik-Chervonenkis (VC) dimension
7. VC dimension of neural networks
8. Generalization error in neural network learning

Objective

After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.

Content

- Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.
- Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.
- Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection techniques, Error correction coding.
- Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.
- Chapter 7: Optical Amplifiers: Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.

Lecture notes

Lecture notes are handed out.

Literature

Govind P. Agrawal; "Fiber-Optic Communication Systems"; Wiley, 2010

Prerequisites / notice

Objective

This lecture provides a wide overview over analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers. The way the exam is done allows for the different interests of the two groups.

The learning goal is that the students can apply signal-flow graphs and can understand the signal flow in such circuits and systems (including non-ideal effects) well enough to gain an understanding of further circuits and systems by themselves.

Content

At the beginning, signal-flow graphs in general and driving-point signal-flow graphs in particular are introduced. We will use them during the whole term to analyze circuits on a system level (analog continuous-time, analog discrete-time, mixed-signal and digital) and understand how signals propagate through them. The theory and CMOS implementation of active Filters is then discussed in detail using the example of Gm-C filters and active-RC filters. The ideal and nonideal behaviour of opamps, current conveyors, and inductor simulators follows. The link to the practical design of circuits and systems is done with an overview over different quality measures and figures of merit used in scientific literature and datasheets. Finally, an introduction to discrete-time and mixed-domain filters and circuits is given, including sensor read-out amplifiers, correlated double sampling, and chopping, and an introduction to sigma-delta A/D and D/A conversion on a system level.

This lecture does not go down to the details of transistor implementations. The lecture "227-0166-00L Analog Integrated Circuits" complements this lecture very well in that respect.

Lecture notes

The base for these lectures are lecture notes and two or three published scientific papers. From these papers we will together develop the technical content.

Details: https://people.ee.ethz.ch/~haschmid/asfwiki/

The graph methods are also supported with teaching videos: https://tube.switch.ch/channels/d206c96c?order=episodes, and a Python-based open-source tool to manipulate graphs is available on https://github.com/hanspi42/signalflowgrapher

Some material is protected by password; students from ETHZ who are interested can write to haschmid@ethz.ch to ask for the password even if they do not attend the lecture.

Prerequisites / notice

Prerequisites: Recommended (but not required): Stochastic models and signal processing, Communication Electronics, Analog Integrated Circuits, Transmission Lines and Filters.

Knowledge of the Laplace transform and z transform and their interpretation (transfer functions, poles and zeros, bode diagrams, stability criteria ...) and of the main properties of linear systems is necessary.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed

Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking not assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

227-0477-00L Acoustics I

Objective
Understanding of the basic acoustical concepts and methods. Ability to understand the technical and scientific literature. Confidence in the use of measuring instruments.

Content
Fundamentals of acoustics, measurement and analysis of acoustical events, anatomy and properties of the ear, outdoor sound propagation, absorption and transmission of sound, room acoustics of large and small enclosures, architectural acoustics, noise and noise control, calculation of sound fields.

Lecture notes

yes

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Problem-solving assessed

Domain C - Social Competencies
Communication assessed

Domain D - Personal Competencies
Creative Thinking assessed

252-0535-00L Advanced Machine Learning

Objective

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Abstract
Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

W 10 credits 3V+2U+4A J. M. Buhmann, C. Cotrini Jimenez

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 774 of 2152
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
- What is data?
- Bayesian Learning
- Computational learning theory

Supervised learning:
- Ensembles: Bagging and Boosting
- Max Margin methods
- Neural networks

Unsupervised learning:
- Dimensionality reduction techniques
- Clustering
- Mixture Models
- Non-parametric density estimation
- Learning Dynamical Systems

Lecture notes
No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice
The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

<table>
<thead>
<tr>
<th>263-4640-00L</th>
<th>Network Security</th>
<th>W 8 credits</th>
<th>2V+2U+3A</th>
<th>A. Perrig, S. Frei, M. Legner, K. Paterson</th>
</tr>
</thead>
</table>

Abstract
Some of today's most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them.

Objective
- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

Content
The course will cover topics spanning four broad themes with a focus on the first two themes:
1. network defense mechanisms such as public-key infrastructures, TLS, VPNs, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems;
2. network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
3. analysis and inference topics such as traffic monitoring and network forensics; and
4. new technologies related to next-generation networks.

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.

Prerequisites / notice
This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L. Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technics and Technologies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td>assessed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th>Communication</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain C - Social Competencies</th>
<th>Adaptability and Flexibility</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>assessed</td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40

Autumn Semester 2021
One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course will provide a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course web page can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Lecture notes
Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.

Prerequisites / notice
Students are expected to have a mathematical background and should be able to write rigorous proofs.

401-3055-64L Algebraic Methods in Combinatorics

W 6 credits 2V+1U B. Sudakova

Abstract
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.

Objective
The students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.

Content
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

Students are expected to have a mathematical background and should be able to write rigorous proofs.

227-0147-10L VLSI 3: Full-Custom Digital Circuit Design

W 6 credits 2V+3U C. Studer, O. Castañeda Fernández

Abstract
This third course in our VLSI series is concerned with full-custom digital integrated circuits. The goals are to learn how to design digital circuits on the schematic, layout, and gate levels. The use of state-of-the-art CAD software (Cadence Virtuoso) in order to simulate, optimize, and characterize digital circuits is another important topic of this course.

Objective
At the end of this course you will:
- Understand how the main building blocks of state-of-the-art digital integrated circuits are designed.
- Be able to design and optimize digital integrated circuits on the schematic, layout, and gate levels.
- Be able to use standard industry software (Cadence Virtuoso) for drawing, simulating, and characterizing digital circuits.
- Understand the performance trade-offs between speed, area, and power consumption.

Content
The third VLSI course begins with the basics of metal-oxide-semiconductor (MOS) field-effect transistors (FETs) and moves up the stack towards logic gates and increasingly complex digital circuit structures. The topics of this course include:
- Nanometer MOSFETs
- Static and dynamic behavior of complementary MOS (CMOS) inverters
- CMOS gate design, sizing, and timing
- Full-custom standard-cell design
- Wire models and parasitics
- Latch and flip-flop circuits
- Gate-level timing analysis and optimization
- Static and dynamic power consumption, low-power techniques
- Alternative logic styles (dynamic logic, pass-transistor logic, etc.)
- Arithmetic and logic circuits
- Fixed-point and floating-point arithmetic
- Memory circuits (ROM, SRAM, and DRAM)
- In- and near-memory processing architectures
- Full-custom accelerator circuits for machine learning

The exercises are concerned with schematic entry, layout, and simulation of digital integrated circuits using a disciplined standard-cell-based approach with Cadence Virtuoso.

Literature
N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and Systems Perspective (4th Ed.), Addison-Wesley

Prerequisites / notice
VL521 can be taken in parallel with "VL521: HDL based design for FPGAs" and is designed to complement the topics of this course. Basic analog circuit knowledge is required.

Computers and Networks

Core Subjects

These core subjects are particularly recommended for the field of "Computers and Networks".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-2210-00L</td>
<td>Computer Architecture</td>
<td>W</td>
<td>8 credits</td>
<td>6+1A</td>
<td>O. Mutlu</td>
</tr>
</tbody>
</table>

Abstract
Computer architecture is the science & art of designing and optimizing hardware components and the hardware/software interface to create a computer that meets design goals. This course covers basic components of a modern computing system (memory, processors, interconnects, accelerators). The course takes a hardware/software cooperative approach to understanding and designing computing systems.

Objective
We will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest major research topics in industry and academia. We will extensively cover memory systems (including DRAM and new Non-Volatile Memory technologies, memory controllers, flash memory), parallel computing systems (including multicore processors, coherence and consistency, GPUs), heterogeneous computing, processing-in-memory, interconnection networks, specialized systems for major data-intensive workloads (e.g., graph analytics, bioinformatics, machine learning), etc.

Content
The principles presented in the lecture are reinforced in the laboratory through 1) the design and implementation of a cycle-accurate simulator, where we will explore different components of a modern computing system (e.g., pipeline, memory hierarchy, branch prediction, prefetching, caches, multithreading), and 2) the extension of state-of-the-art research simulators (e.g., Ramulator) for more in-depth understanding of specific system components (e.g., memory scheduling, prefetching).

Lecture notes
All the materials (including lecture slides) will be provided on the course website: https://safari.ethz.ch/architecture/

The video recordings of the lectures are expected to be made available after lectures.
This course covers advanced topics and technologies in computer networks, both theoretically and practically. It is offered each Fall semester, with rotating topics. Repetition for credit is possible with consent of the instructor. In the Fall 2021, the course will cover advanced topics in Internet routing and forwarding.

The goals of this course is to provide students with a deeper understanding of the existing and upcoming Internet routing and forwarding technologies used in large-scale computer networks such as Internet Service Providers (e.g., Swisscom or Deutsche Telekom), Content Delivery Networks (e.g., Netflix) and Data Centers (e.g., Google). Besides covering the fundamentals, the course will be "hands-on" and will enable students to play with the technologies in realistic network environments, and even implement some of them on their own during labs and a final group project.

The course will be divided in two main blocks. The first block (~8 weeks) will interleave classical lectures with practical exercises and labs. The second block (~6 weeks) will consist of a practical project which will be performed in small groups (~3 students). During the second block, lecture slots will be replaced by feedback sessions where students will be able to ask questions and get feedback about their project.

The last week of the semester will be dedicated to student presentations and demonstrations.

Lecture notes and material will be made available before each course on the course website. Relevant references will be made available through the course website.

Prerequisites: Communication Networks (227-0120-00L) or equivalents / good programming skills (in any language) are expected as both the exercises and the final project will involve coding.

Prerequisites / notice

227-0579-00L

Hardware Security

This course covers the security of commodity computer hardware (e.g., CPU, DRAM, etc.) with a special focus on cutting-edge hands-on research. The aim of the course is familiarizing the students with hardware security and more specifically microarchitectural and circuit-level attacks and defenses through lectures, reviewing and discussing papers, and executing some of these advanced attacks.

By the end of the course, the students will be familiar with the state of the art in commodity computer hardware attacks and defenses. More specifically, the students will learn about:

- security problems of commodity hardware that we use everyday and how you can defend against them.
- relevant computer architecture and operating system aspects of these issues.
- hands-on techniques for performing hardware attacks.
- writing critical reviews and constructive discussions with peers on this topic.

This is the course where you get credit points by building some of the most advanced exploits on the planet! The luckiest team will collect a Best Demo Award at the end of the course.

The course will be divided in two main blocks. The first block (~8 weeks) will interleave classical lectures with practical exercises and labs. The second block (~6 weeks) will consist of a practical project which will be performed in small groups (~3 students). During the second block, lecture slots will be replaced by feedback sessions where students will be able to ask questions and get feedback about their project.

The last week of the semester will be dedicated to student presentations and demonstrations.

Lecture notes and material will be made available before each course on the course website. Relevant references will be made available through the course website.

Prerequisites: Communication Networks (227-0120-00L) or equivalents / good programming skills (in any language) are expected as both the exercises and the final project will involve coding.

Prerequisites / notice

252-1414-00L

System Security

The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.

In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.

The first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.

Prerequisites / notice

263-4640-00L

Network Security

The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.

Prerequisites / notice
Some of today’s most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them.

- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

The course will cover topics spanning four broad themes with a focus on the first two themes:

1. network defense mechanisms such as public-key infrastructures, TLS, VPNs, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems;
2. network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
3. analysis and inference topics such as traffic monitoring and network forensics; and
4. new technologies related to next-generation networks.

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.

This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L. Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

Some of today’s most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them.

- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

The course will cover topics spanning four broad themes with a focus on the first two themes:

1. network defense mechanisms such as public-key infrastructures, TLS, VPNs, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems;
2. network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
3. analysis and inference topics such as traffic monitoring and network forensics; and
4. new technologies related to next-generation networks.

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.

This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L. Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.
Content

Literature

Prerequisites / notice

Lecture notes

Textbook and all further documents in English.

Prerequisites:

Basics of digital circuits.

Examination:

In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English or German.

Further details:

https://lis-students.ee.ethz.ch/lectures/vlsi-i/

227-0116-00L

VLSI 1: HDL based design for FPGAs

Objective

This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.

Abstract

Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.

Content

This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

Literature

MATLAB is used for system analysis and simulation.

Lecture notes

Textbook and all further documents in English.

Prerequisites:

Basics of digital circuits.

Examination:

In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English or German.

Further details:

https://lis-students.ee.ethz.ch/lectures/vlsi-i/

227-0377-10L

Physics of Failure and Reliability of Electronic Devices and Systems

Objective

Understand the physics of failures and failure mechanisms enables reliability analysis and serves as a practical guide for electronic devices design, integration, systems development and manufacturing. The field gains additional importance in the context of managing safety, sustainability and environmental impact for continuously increasing complexity and scaling-down trends in electronics.

Abstract

Providing an understanding of the physics of failure and reliability. Introduce the degradation and failure mechanisms, basics of failure analysis, methods and tools of reliability testing.

Content

- Description of reliability and failure analysis terminology: physics of failure: materials properties, physical processes and failure mechanisms; failure analysis; basics and properties of instruments; quality assurance of technical systems (introduction); introduction to stochastic processes; reliability analysis; component selection and qualification; maintainability analysis (introduction); design rules for reliability, maintainability, reliability tests (introduction).

Literature

Prerequisites:

Basics of digital circuits.

Examination:

In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English or German.

Further details:

https://lis-students.ee.ethz.ch/lectures/vlsi-i/

227-0447-00L

Image Analysis and Computer Vision

Objective

Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Abstract

Literature

We discuss the following concepts related to fault-tolerant distributed systems: client-server, serialization, two-phase protocols, three-phase.

We will provide required and recommended readings in every lecture. They will mainly consist of research papers presented in major computer architecture conferences and journals.

This course is aimed at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.
Electronics and Photonics

Core Subjects

These core subjects are particularly recommended for the field of "Electronics and Photonics".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0146-00L</td>
<td>Analog-to-Digital Converters</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This course provides a thorough treatment of integrated data conversion systems from system level specifications and trade-offs, over architecture choice down to circuit implementation.

Objective

The course will provide a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.

Content

- Introduction: information representation and communication; abstraction, categorization and symbolic representation; basic conversion algorithms; data converter application; tradeoffs among key parameters; ADC taxonomy.

- Delta-slope & successive approximation register (SAR) converters: delta-slope principle & converter; SAR ADC operating principle; SAR implementation with a capacitor array; range extension with segmented array.

- Algorithmic & pipelined A/D converters: algorithmic conversion principle; sample & hold stage; pipelined converter; multiplying DAC; flash sub-ADC and n-bit MDAC; redundancy for correction of non-idealities, error correction.

- Performance metrics and non-linearity: ideal ADC; offset, gain error, differential and integral non-linearities; capacitor mismatch; impact of capacitor mismatch on SAR ADC's performance.

- Flash, folding an interpolating analog-to-digital converters: flash ADC principle, thermometer to binary coding, sparkline correction; limitations of flash converters; the folding principle, residue extraction; folding amplifiers; cascaded folding; interpolation for folding converters; cascaded folding and interpolation.

- Noise in analog-to-digital converters: types of noise; noise calculation in electronic circuit, kT/C-noise, sampled noise; noise analysis in switched-capacitor circuits; aperture time uncertainty and sampling jitter.

- Delta-sigma A/D-converters: linearity and resolution; from delta-modulation to delta-sigma modulation; first-order delta-sigma modulation, circuit level implementation; clock-jitter & SNR in delta-sigma modulators; second-order delta-sigma modulation, higher-order modulation, design procedure for a single-loop modulator.

Lecture notes

Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.

Prerequisites / notice

Students are expected to have a mathematical background and should be able to write rigorous proofs.

Security of Wireless Networks

Abstract

Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.

Objective

After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks.

Content

Algebraic Methods in Combinatorics

Abstract

Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.

Objective

The students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.

Content

Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic combinatorial arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

VLSI 3: Full-Custom Digital Circuit Design

Abstract

This third course in our VLSI series is concerned with full-custom digital integrated circuits. The goals are to learn how to design digital circuits on the schematic, layout, gate, and register-transfer levels. The use of state-of-the-art CAD software (Cadence Virtuoso) in order to simulate, optimize, and characterize digital circuits is another important topic of this course.
In this course we will deal with modern integrated circuit (IC) manufacturing technology and cover topics such as:

- Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.
- Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.
- Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection techniques, Error correction coding.
- Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.
- Chapter 7: Optical Amplifiers: Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.

VLSI III: Test and Fabrication of VLSI Circuits

<table>
<thead>
<tr>
<th>Objective</th>
<th>At the end of this course you will</th>
</tr>
</thead>
<tbody>
<tr>
<td>- understand how the main building blocks of state-of-the-art digital integrated circuits are designed</td>
<td></td>
</tr>
<tr>
<td>- be able to design and optimize digital integrated circuits on the schematic, layout, and gate levels</td>
<td></td>
</tr>
<tr>
<td>- be able to use standard industry software (Cadence Virtuoso) for drawing, simulating, and characterizing digital circuits</td>
<td></td>
</tr>
<tr>
<td>- understand the performance trade-offs between speed, area, and power consumption</td>
<td></td>
</tr>
</tbody>
</table>

Content

The third VLSI course begins with the basics of metal-oxide-semiconductor (MOS) field-effect transistors (FETs) and moves up the stack towards logic gates and increasingly complex digital circuit structures. The topics of this course include:

- Nanometer MOSFETs
- Static and dynamic behavior of complementary MOS (CMOS) inverters
- CMOS gate design, sizing, and timing
- Full-custom standard-cell design
- Wire models and parasitics
- Latch and flip-flop circuits
- Gate-level timing analysis and optimization
- Static and dynamic power consumption; low-power techniques
- Alternative logic styles (dynamic logic, pass-transistor logic, etc.)
- Arithmetic and logic circuits
- Fixed-point and floating-point arithmetic
- Memory circuits (ROM, SRAM, and DRAM)
- In- and near-memory processing architectures
- Custom accelerators circuits for machine learning

The exercises are concerned with schematic entry, layout, and simulation of digital integrated circuits using a disciplined standard-cell-based approach with Cadence Virtuoso.

Prerequisites / notice

VLSI3 can be taken in parallel with “VLSI1: HDL based design for FPGAs” and is designed to complement the topics of this course. Basic analog circuit knowledge is required.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Learn about modern IC manufacturing methodologies, understand the problem of IC testing. Cover the basic methods, algorithms and techniques to test circuits in an efficient way. Learn about practical aspects of IC testing and apply what you learn in class using a state-of-the-art test equipment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>In this course we will deal with modern integrated circuit (IC) manufacturing technology and cover topics such as:</td>
</tr>
<tr>
<td></td>
<td>- Today’s nanometer CMOS fabrication processes (HKMG),</td>
</tr>
<tr>
<td></td>
<td>- Optical and post optical Photolithography,</td>
</tr>
<tr>
<td></td>
<td>- Potential alternatives to CMOS technology and MOSFET devices,</td>
</tr>
<tr>
<td></td>
<td>- Evolution paths for design methodology,</td>
</tr>
<tr>
<td></td>
<td>- Industrial roadmaps for the future evolution of semiconductor technology (ITRS).</td>
</tr>
</tbody>
</table>

If you want to earn money by selling ICs, you will have to deliver a product that will function properly with a very large probability. The main emphasis of the lecture will be discussion of how this can be achieved. We will discuss fault models and practical techniques to improve testability of VLSI circuits. At the IIS we have a state-of-the-art automated test equipment (Advantest SoC V93000) that we will make available for in class exercises and projects. At the end of the lecture you will be able to design state-of-the-art digital integrated circuits such as to make them testable and to use automatic test equipment (ATE) to carry out the actual testing.

During the first weeks of the course there will be weekly practical exercises where you will work in groups of two. For the last 5 weeks of the class students will be able to choose a class project that can be:

- The test of their own chip developed during a previous semester thesis
- Developing new setups and measurement methods in C++ on the tester
- Helping to debug problems encountered in previous microchips by IIS.

Course website:

https://iis-students.ee.ethz.ch/lectures/vlsi-iii/
Nonlinear Optics deals with the interaction of light with material, the response of material to light and the mathematical framework to
understand the classical resolution limit. We continue with the theory of strongly focused light, the point spread function, and resolution criteria of conventional microscopy, before turning to super-resolution techniques, based on near- and far-fields. We introduce the local density of states and approaches to control spontaneous emission rates in inhomogeneous environments, including optical antennas. Finally, we touch upon optical forces and their applications in optical tweezers.

Nano-Optics is the study of light-matter interaction at the sub-wavelength scale. It is an flourishing field of fundamental and applied research enabled by the rapid advance of nanotechnology. Nano-optics embraces topics such as plasmonics, optical antennas, optical trapping and manipulation, and high/super-resolution imaging and spectroscopy.
Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.

Recommended Subjects
These courses are recommended, but you are free to choose courses from any other special field. Please consult your tutor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0121-00L</td>
<td>Communication Systems</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>A. Wittneben</td>
</tr>
</tbody>
</table>

Abstract
Information Theory, Signal Space Analysis, Baseband Transmission, Passband Transmission, Data Link Layer, MAC, Example Layer 2, Layer 3, Internet

Objective
Introduction into the fundamentals of digital communication systems. Selected examples on the application of the fundamental principles in existing and upcoming communication systems

Content
Covered are the lower three layer of the OSI reference model: the physical, the data link, and the network layer. The basic terms of information theory are introduced. After this, we focus on the methods for the point to point communication, which may be addressed elegantly and coherently in the signal space. Methods for error detection and correction as well as protocols for the retransmission of perturbed data will be covered. Also the medium access for systems with shared medium will be discussed. Finally, algorithms for routing and flow control will be treated.

Lecture notes
The application of the basic methods will be extensively explained using existing and future wireless and wired systems.

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0155-00L</td>
<td>Machine Learning on Microcontrollers</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>M. Magno, L. Benini</td>
</tr>
</tbody>
</table>

Registration in this class requires the permission of the instructors. Class size will be limited to 25.

Preference is given to students in the MSc EEIT.

Abstract
Machine Learning (ML) and artificial intelligence are pervading the digital society. Today, even low power embedded systems are incorporating ML, becoming increasingly “smart”. This lecture gives an overview of ML methods and algorithms to process and extract useful near-sensor information in end-nodes of the “internet-of-things”, using low-power microcontrollers/processors (ARM-Cortex-M; RISC-V).

Objective
Learn how to process data from sensors and how to extract useful information with low power microprocessors using ML techniques. We will analyze data coming from real low-power sensors (accelerometers, microphones, ExG bio-signals, cameras…). The main objective is to study in details how Machine Learning algorithms can be adapted to the performance constraints and limited resources of low-power microcontrollers.

Content
The final goal of the course is a deep understanding of machine learning and its practical implementation on single- and multi-core microcontrollers, coupled with performance and energy efficiency analysis and optimization. The main topics of the course include:

- Sensors and sensor data acquisition with low power embedded systems
- Machine Learning: Overview of supervised and unsupervised learning and in particular supervised learning (Bayes Decision Theory, Decision Trees, Random Forests, kNN-Methods, Support Vector Machines, Convolutional Networks and Deep Learning)
- Low-power embedded systems and their architecture. Low Power microcontrollers (ARM-Cortex M) and RISC-V-based Parallel Ultra Low Power (PULP) systems-on-chip.
- Low-power smart sensor system design: hardware-software tradeoffs, analysis, and optimization. Implementation and performance evaluation of ML in battery-operated embedded systems.

The laboratory exercised will show how to address concrete design problems, like motion, gesture recognition, emotion detection, image and sound classification, using real sensors data and real MCU boards.

Presentations from Ph.D. students and the visit to the Digital Circuits and Systems Group will introduce current research topics and international research projects.

Lecture notes
Script and exercise sheets. Books will be suggested during the course.

Prerequisites / notice
Prerequisites: C language programming. Basics of Digital Signal Processing. Basics of processor and computer architecture. Some exposure to machine learning concepts is also desirable

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0157-00L</td>
<td>Semiconductors Devices: Physical Bases and</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>A. Schenk, C. I. Roman</td>
</tr>
</tbody>
</table>

Simulation
The course addresses the physical principles of modern semiconductor devices and the foundations of their modeling and numerical simulation. Necessary basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided. Computer simulations of the most important devices and of interesting physical effects supplement the lectures.

Objective
The course aims at the understanding of the principle physics of modern semiconductor devices, of the foundations in the physical modeling of transport and its numerical simulation. During the course also basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided.
The main topics are: transport models for semiconductor devices (quantum transport, Boltzmann equation, drift-diffusion model, hydrodynamic model), physical characterization of silicon (intrinsic properties, scattering processes), mobility of cold and hot carriers, recombination (Shockley-Read-Hall statistics, Auger recombination), impact ionization, metal-semiconductor contact, metal-insulator-semiconductor structure, and heterojunctions.

The exercises are focused on the theory and the basic understanding of the operation of special devices, as single-electron transistor, resonant tunneling diode, pn-diode, bipolar transistor, MOSFET, and laser. Numerical simulations of such devices are performed with an advanced simulation package (Sentaurus-Synopsys). This enables to understand the physical effects by means of computer experiments.

Prerequisites / notice

Lecture notes
The script (in book style) can be downloaded from: https://iis-students.ee.ethz.ch/lectures/

Literature
Simulation of Photovoltaic Devices - From Materials to Modules

Abstract
The lecture provides an introduction to the theoretical foundations and numerical approaches for the simulation of photovoltaic energy conversion, from the microscopic description of component materials to macroscopic continuum modeling of solar cells and network simulation or effective models for performance prediction of entire solar modules and large scale photovoltaic systems.

Objective
Get an overview over the current status of photovoltaic technology. Understand the physics of photovoltaic energy conversion and solar cell device operation. Know how to obtain and assess by simulation the key material properties and device parameters. Be able to use standard device simulation tools to predict the performance of solar cells and modules.

Content
Photovoltaic technology: history and overview; The solar spectrum; Thermodynamics of solar energy conversion; Detailed balance models and efficiency limit; Microscopic rates of charge carrier generation and recombination; Optical simulation of solar cells; Models for charge transport in semiconductor devices; High-efficiency wafer-based (silicon) photovoltaics; Thin film photovoltaics based on disordered materials (amorphous silicon, organic PV); High-efficiency thin film photovoltaics (CIGS, CdTe, metal-halide perovskites); PV beyond the single junction detailed balance (Shockley-Queisser) limit; Simulation of photovoltaic modules; Energy yield and performance modelling for PV systems; Quantum simulation of nanostructure-based solar cell devices (bonus lecture).

Prerequisites / notice
Undergraduate physics, mathematics, semiconductor devices

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain B - Method-specific Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain C - Social Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

227-0617-00L Solar Cells

Abstract
Physics, technology, characteristics and applications of photovoltaic solar cells.

Objective
Introduction to solar radiation, physics, technology, characteristics and applications of photovoltaic solar cells and systems.

Content
Solar radiation characteristics, physical mechanisms for the light to electrical power conversion, properties of semiconductors for solar cells, processing and properties of conventional Si and GaAs based solar cells, technology and physics of thin film solar cells based on compound semiconductors, other solar cells including organic and dye sensitized cells, problems and new developments for power generation in space, interconnection of cells and solar module design, measurement techniques, system design of photovoltaic plants, system components such as inverters and controllers, engineering procedures with software demonstration, integration in buildings and other specific examples.

Lecture notes
Lecture reprints (in English).

Prerequisites / notice
Prerequisites: Basic knowledge of semiconductor properties.

227-0618-00L Modeling, Characterization and Reliability of Power Semiconductors

Abstract
This lecture provides theoretical and experimental knowledge on the techniques for the characterization and numerical modeling of power semiconductors, as well on the related built-in reliability strategies.
The goal of this course is to understand the fundamental limitations of measurement systems relying on electromagnetic fields. This lecture consists of a theoretical part (50%) and of laboratory exercises and demonstrations (50%).

Handouts to the lecture (approx. 250 pp.)

2V+2U

Electromagnetic Precision Measurements and Opto-

Abstract

The students will be introduced to the fundamental concepts of charge transport in solar cells, batteries, and electrolyzers. Emphasizing analogies between semiconductor physics and electrochemistry, this course is designed to provide a unified modern perspective of energy conversion and storage concepts for students in electrical engineering, materials science, physics, and chemistry.

Objective

By the end of this course, the students will (1) understand the fundamentals of electronic and ionic charge transport, (2) understand the operational principles of solar cells, batteries, and electrolyzers, and (3) understand fundamental limits for each device type. In addition, the students will learn how to simulate these devices during guided exercise sessions and develop an intuitive understanding on how to interpret the most important device characteristics.

Prerequisites /

Be motivated to change the world to renewable energies! Elements of calculus will be reviewed at the beginning of the course, but we leave the hard work of solving coupled differential charge transport equations to the computer and focus on developing a strong intuition. Prior knowledge in semiconductor physics or electrochemistry is an advantage, but not a prerequisite. Students are required to bring a windows-compatible computer with a common data analysis software to the exercises. Apps for simulating devices under different operating conditions will be made available to the students. A visit to a solar cell or battery fab will be organized during the semester if the epidemiological situation permits.

2V+2L

Electromagnetic Precision Measurements and Opto-

Abstract

The measurement process is at the heart of both science and engineering. Electromagnetic fields have proven to be particularly powerful probes. This course provides the basic knowledge necessary to understand current state-of-the-art optomechanical measurement systems operating at the precision limits set by the laws of quantum mechanics.

Objective

The goal of this course is to understand the fundamental limitations of measurement systems relying on electromagnetic fields.

Prerequisites /

1. Electrodynamics
2. Physics 1.2
3. Introduction to quantum mechanics

227-0659-00L Integrated Systems Seminar W 1 credit 1S A. Schenk

Abstract

In the "Fachseminar IS" the students learn to communicate topics, ideas or problems of scientific research by listening to more experienced authors and by presenting scientific work in a conference-like situation for a specific audience.

Objective

The seminar aims at instructing graduate and PhD students in the basics of presentation techniques, i.e. "how to give a professional talk". Attendees have the possibility to become acquainted with a current topic by a literature study, and to present the results thereof in a 20 minutes talk in English. The participation at the seminar gives also an overview on current problems in modern nano- and opto-electronics.

Content

The seminar topics are simulation of nanoelectronic processes and devices, and the optical as well as electronic simulation of optoelectronic devices as lasers, photodiodes, etc.

Lecture notes

Presentation material

227-0665-00L Battery Integration Engineering W 3 credits 2V+1U T. J. Patey

Abstract

Batteries enable sustainable mobility, renewable power integration, various power grid services, and residential energy storage. Linked with low cost PV, Li-ion batteries are positioned to shift the 19th-century centralized power grid into a 21st-century distributed one. As with battery integration, this course combines understanding of electrochemistry, heat & mass transfer, device engineering.
Objective

The learning objectives are:

- Apply critical thinking on advancements in battery integration engineering. Assessment reflects this objective and is based on review of a scientific paper, with mark weighting of 10 / 25 / 65 for a proposal / oral presentation / final report, respectively.
- Design battery system concepts for various applications in the modern power system and sustainable mobility, with a deep focus on replacing diesel buses with electric buses combined with charging infrastructure.
- Critically assess progresses in battery integration engineering: from material science of novel battery technologies to battery system design.
- Apply “lessons learned” from the history of batteries to assess progress in battery technology.
- Apply experimental and physical concepts to develop battery models in order to predict lifetime.
- Battery systems for the modern power grid and sustainable mobility.
- Battery lifetime modeling by aging, thermal, and electric sub-models.
- Electrical architecture of battery energy storage systems.
- History and review of electrochemistry & batteries, and metrics to assess future developments in electrochemical energy storage.
- Sustainability and life cycle analysis of battery system innovations.

Content

This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.

Prerequisites / notice

Limited to 30 Students. Priority given to Electrical and Mechanical Engineering students.

Mandatory - background knowledge in batteries & electrochemistry acquired in one of the following courses:
- 227-0664-00L Technology and Policy of Electrical Energy Storage
- 529-0440-00L Physical Electrochemistry and Electrocatalysis
- 529-0191-01L Renewable Energy Technologies II, Energy Storage and Conversion
- 529-0659-00L Electrochemistry

Exception given for PhD students

227-2037-00L Physical Modelling and Simulation

<table>
<thead>
<tr>
<th>Objective</th>
<th>W 6 credits</th>
<th>4G</th>
<th>J. Smajic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content

This module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS.

In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.

151-0601-00L Theory of Robotics and Mechatronics

<table>
<thead>
<tr>
<th>Objective</th>
<th>W 4 credits</th>
<th>3G</th>
<th>P. Korba, S. Stoeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content

An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

151-0605-00L Nanosystems

<table>
<thead>
<tr>
<th>Objective</th>
<th>W 4 credits</th>
<th>4G</th>
<th>A. Stemmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familiarize students with basic science and engineering principles governing the nano domain. Special emphasis on the emerging field of molecular electronic devices. The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Familiarly taught with basic concepts of quantum mechanics is expected. Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content

Topics are treated in 2 blocks:
(I) From Quantum to Continuum
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.

(II) Interaction Forces on the Micro and Nano Scale
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 788 of 2152
Embedded MEMS Lab

Prerequisites:
- Lecture and Mini-Review presentations: Thursday 10-13
- Compulsory continuous performance assessment

Course objectives:
- Students learn the individual process steps that are required for the fabrication of a MEMS (Micro Electro Mechanical System).
- Students carry out the process steps themselves in laboratories and clean rooms.
- Furthermore, participants become familiar with the special requirements of cleanliness, safety, operation of equipment and handling hazardous chemicals.
- Working in the clean rooms and laboratories.
- The entire production, processing, and characterization of the MEMS is documented and evaluated in a final report.

Content:
- Background and practical course content is distributed at the introductory lecture.
- The document provides sufficient information for the participants to successfully participate in the course.
- Participating students are required to attend all scheduled lectures and meetings of the course.
- Participating students are required to provide proof that they have personal accident insurance prior to the start of the laboratory portion of the course.

For safety and efficiency reasons the number of participating students is limited. We regret to restrict access to this course by the following rules:

Priority 1: master students of the master's program in "Micro and Nanosystems"
- Bachelor’s degree in a relevant field
- Successful completion of the bachelor course “151-0621-00L Microsystems Technology”

Priority 2: master students of the master's program in "Mechanical Engineering" with a specialization in Microsystems and Nanoscale Engineering (MVT-tutors Profs Daraio, Dual, Hierold, Koumoutsakos, Nelson, Norris, Poulikakos, Pratsinis, Stemmer), who attended the bachelor course “151-0621-00L Microsystems Technology” successfully.

Priority 3: master students, who attended the bachelor course “151-0621-00L Microsystems Technology” successfully.

Priority 4: all other students (PhD, bachelor, master) with a background in silicon or Microsystems process technology.

If there are more students in one of these priority groups than places available, we will decide by (in following order) best achieved grade from 151-0621-00L Microsystems Technology, registration to this practicum at previous semester, and drawing lots.

Students will be notified at the first lecture of the course (introductory lecture) as to whether they are able to participate.

The course is offered in autumn and spring semester.
Multifunctional Ferroic Materials: Growth and Characterisation

Abstract
The course will explore the growth of (multi-) ferroic oxide thin films. The structural characterization and ferroic state investigation by force microscopy and by laser-optical techniques will be addressed.

Objective
Oxide films with a thickness of just a few atoms can now be grown with a precision matching that of semiconductors. This opens up a whole range of fascinating phenomena that would not occur in the expanded bulk crystal. Particularly interesting phenomena occur in films showing magnetic or electric order or, even better, both of these ("multiferroics").

In this course students will obtain an overarching view on oxide thin film growth and heterostructures design, reaching from their growth by pulsed laser deposition to an understanding of their magnetoelectric functionality from advanced characterization techniques. Students will therefore understand how to fabricate and characterize highly oriented films with magnetic and electric properties not found in nature.

Content
Types of ferroic order, multiferroics, oxide films, thin-film growth by pulsed laser deposition, magnetic beam epitaxy, RF sputtering, structural characterization (reciprocal space - basics-, XRD for thin films, RHEED epitaxial strain related effects, scanning probe microscopy techniques, laser-optical characterization, oxide thin film based devices and examples.

Technology and Innovation Management

Abstract
This course focuses on the analysis of innovation as a pervasive process that cut across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technological change.

Objective
This course intends to enable all students to:

- understand the core concepts necessary to analyze how innovation happens
- master the most common methods and tools organizations deploy to innovate
- develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation

Content
This course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small.

How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, guest speakers, simulations and group work.

Lecture notes
Slides will be available on the Moodle page

Literature
Readings will be available on the Moodle page

Prerequisites / notice
The course content and methods are designed for students with some background in management and/or economics

Algebraic Methods in Combinatorics

Abstract
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.

Objective
The students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.

Content
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments. Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Lecture notes
Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.

Prerequisites / notice
Students are expected to have a mathematical background and should be able to write rigorous proofs.

Energy and Power Electronics

Core Subjects
These core subjects are particularly recommended for the field of "Energy and Power Electronics".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0117-00L</td>
<td>High Voltage Engineering</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>C. Franck, U. Straumann</td>
</tr>
</tbody>
</table>

Abstract
High electric fields are found in numerous technological and industrial applications such as electric power transmission and distribution, X-ray devices, DNA sequencers, flue gas cleaning, power electronics, lasers, particle accelerators, copying machines, ... High Voltage Engineering is the art of gaining technological control of high electrical field strengths and high voltages.

Objective
The students know the fundamental phenomena and principles associated with the occurrence of high electric field strengths. They understand the different mechanisms leading to the failure of insulation systems and are able to apply failure criteria on the dimensioning of high voltage components. They have the ability to identify of weak spots in insulation systems and to propose options for improvement. Further, they know the different insulation systems and their dimensioning in practice.
Power System Analysis

- introduction to kinetic gas theory
- mechanisms of the breakdown in gaseous, liquid and solid insulations, as well as insulation systems
- methods for the mathematical determination of the electric withstand of gaseous, liquid and solid insulations
- application of the expertise on high voltage components
- excursions to manufacturers of high voltage components

Lecture Slides

Literature

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies

- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving

- Domain C - Social Competencies
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity
 - Negotiation

- Domain D - Personal Competencies
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

Lecture notes

Prerequisites / notice
Prerequisites: Introductory course on power electronics.

227-0247-00L

Power Electronic Systems I

Abstract
Basics of the switching behavior, gate drive and snubber circuits of power semiconductors are discussed. Soft-switching and resonant DC/DC converters are analyzed in detail and high frequency loss mechanisms of magnetic components are explained. Space vector modulation of three-phase inverters is introduced and the main power components are designed for typical industry applications. Furthermore, the course should convey knowledge on the switching frequency related losses of power semiconductors and inductive power components and introduce the concept of space vector calculus which provides a basis for the comprehensive discussion of three-phase PWM converters systems in the lecture Power Electronic Systems II.

Objective
Detailed understanding of the principle of operation and modulation of advanced power electronics converter systems, especially of zero voltage switching and zero current switching non-isolated and isolated DC/DC converter systems and three-phase voltage DC link inverter systems. Furthermore, the course should convey knowledge on the switching frequency related losses of power semiconductors and inductive power components and introduce the concept of space vector calculus which provides a basis for the comprehensive discussion of three-phase PWM converters systems in the lecture Power Electronic Systems II.

Content
Basics of the switching behavior and gate drive circuits of power semiconductor devices and auxiliary circuits for minimizing the switching losses are explained. Furthermore, zero voltage switching, zero current switching, and resonant DC/DC converters are discussed in detail; the operating behavior of isolated full-bridge DC/DC converters is detailed for different secondary side rectifier topologies; high frequency loss mechanisms of magnetic components of converter circuits are explained and approximate calculation methods are presented; the concept of space vector calculus for analyzing three-phase systems is introduced; finally, phase-oriented and space vector modulation of three-phase inverter systems are discussed related to voltage DC link inverter systems and the design of the main power components based on analytical calculations is explained.

Lecture notes
Lecture notes and associated exercises including correct answers.

227-0526-00L

Power System Analysis

Abstract
The goal of this course is understanding the stationary and dynamic problems in electrical power systems and the application of analysis tools in steady and dynamic states.

Objective
The goal of this course is understanding the stationary and dynamic problems in electrical power systems and the application of analysis tools in steady and dynamic states.

Content
The course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power networks. Approaches such as the Newton-Raphson algorithm applied to power flow equations, superposition technique for short-circuit analysis, equal area criterion and nose curve analysis are discussed as well as power flow computation techniques for distribution grids.

Lecture notes
Lecture notes.

Recommended Subjects
These courses are recommended, but you are free to choose courses from any other special field. Please consult your tutor.

Number Title Type ECTS Hours Lecturers
227-0101-00L Discrete-Time and Statistical Signal Processing W 6 credits 4G H. - A. Loeliger

Abstract
The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.

Objective
The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.
Content
1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
declimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.

Lecture notes
Communication Systems

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Group</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0121-00L</td>
<td>Communication Systems</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>A. Wittneben</td>
</tr>
<tr>
<td>Abstract</td>
<td>Information Theory, Signal Space Analysis, Baseband Transmission, Passband Transmission, Example and Channel, Data Link Layer, MAC, Example Layer 2, Layer 3, Internet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction into the fundamentals of digital communication systems. Selected examples on the application of the fundamental principles in existing and upcoming communication systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Covered are the lower three layer of the OSI reference model: the physical, the data link, and the network layer. The basic terms of information theory are introduced. After this, we focus on the methods for the point to point communication, which may be addressed elegantly and coherently in the signal space. Methods for error detection and correction as well as protocols for the retransmission of perturbed data will be covered. Also the medium access for systems with shared medium will be discussed. Finally, algorithms for routing and flow control will be treated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture Slides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Available on the course Moodle platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taught competencies
- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies
- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Problem-solving
- Domain D - Personal Competencies
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics

Fundamentals of Electric Machines

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Group</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0517-10L</td>
<td>Fundamentals of Electric Machines</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>D. Bortis</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course introduces different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- Fundamentals in magnetic circuits and electromechanical energy conversion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Force and torque calculation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Complex space vector notation, rotating coordinate system (dq-transformation).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Loss components in electric machines, scaling laws of electromechanical actuators.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mechanical and thermal modelling.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes and associated exercises including correct answers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Railway Systems I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Group</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0523-00L</td>
<td>Railway Systems I</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>M. Meyer</td>
</tr>
<tr>
<td>Abstract</td>
<td>Basic characteristics of railway vehicles and their interfaces with the railway infrastructure:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transportation tasks and vehicle types</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Running dynamics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mechanical part of rail vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Brakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Traction chain and auxiliary supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Railway power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Signalling systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Availability and safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Traffic control and maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objective
- Overview of the technical characteristics of railway systems
- Know-how about the design and construction principles of rail vehicles
- Interrelationship between different fields of engineering sciences (mechanics, electro and information technology, transport systems)
- Understanding tasks and opportunities of engineers working in an environment which has strong economical and political boundaries
- Insight into the activities of the railway vehicle industry and railway operators in Switzerland
- Motivation of young engineers to start a career in the railway industry or with railway operators

Content
EST I (Herbstsemester) - Begriffen, Grundlagen, Merkmale

1. Einführung:
 1.1 Geschichte und Struktur des Bahnsystems
 1.2 Fahrdynamik

2. Vollbahnfahrzeuge:
 2.1 Mechanik: Kasten, Drehgestelle, Lauftechnik, Adhäsion
 2.2 Bremsen
 2.3 Traktionsantriebsysteme
 2.4 Hilfsbetriebe und Komfortanlagen
 2.5 Steuerung und Regelung

3. Infrastruktur:
 3.1 Fahrweg
 3.2 Bahnstromversorgung
 3.3 Sicherungsanlagen

4. Betrieb:
 4.1 Interoperabilität, Normen und Zulassung
 4.2 RAMS, LCC
 4.3 Anwendungsbeispiele

Voraussichtlich ein oder zwei Gastreferate

Geplante Exkursionen:
- Betriebszentrale SBB, Zürich Flughafen
- Reparatur und Unterhalt, SBB Zürich Altstetten
- Fahrzeugfertigung, Stadler Bussnang

Lecture notes
Abgabe der Unterlagen (gegen eine Schutzgebühr) zu Beginn des Semesters. Rechtzeitig eingeschriebene Teilnehmer können die Unterlagen auf Wunsch und gegen eine Zusatzgebühr auch in Farbe beziehen.

Prerequisites / notice
Dozent:
Dr. Markus Meyer, Emkamatik GmbH

Voraussichtlich ein oder zwei Gastvorträge von anderen Referenten.

EST I (Herbstsemester) kann als in sich geschlossene einsemestrige Vorlesung besucht werden. EST II (Frühjahrssemester) dient der weiteren Vertiefung der Fahrzeugtechnik und der Integration in die Bahninfrastruktur.

227-0536-00L Multiphysics Simulations for Power Systems
This course is defined so and planned to be an addition to the module "227-0537-00L Technology of Electric Power System Components". However, the students who are familiar with the fundamentals of electromagnetic fields could attend only this course without its 227-0537-00L-complement.

Abstract
The goals of this course are a) understanding the fundamentals of the electromagnetic, thermal, mechanical, and coupled field simulations and b) performing effective simulations of primary equipment of electric power systems. The course is understood complementary to 227-0537-00L "Technology of Electric Power System Components", but can also be taken separately.

Objective
The student should learn the fundamentals of the electromagnetic, thermal, mechanical, and coupled fields simulations necessary for modern product development and research based on virtual prototyping. She / he should also learn the theoretical background of the finite element method (FEM) and its application to low- and high-frequency electromagnetic field simulation problems. The practical exercises of the course should be done by using one of the commercially available field simulation software (Infolytica, ANSYS, and / or COMSOL). After completing the course the student should be able to properly and efficiently use the software to simulate practical design problems and to understand and interpret the obtained results.

Content
1. Elektromagnetic Fields and Waves: Simulation Aspects (1 lecture, 2 hours)
 a. Short review of the governing equations
 b. Boundary conditions
 c. Initial conditions
 d. Linear and nonlinear material properties
 e. Coupled fields (electro-mechanical and electro-thermal coupling)

2. Finite Element Method for electromagnetic simulations (5 lectures and 3 exercises, 16 hours)
 a. Scalar-FEM in 2-D (electrostatic, magnetostatic, eddy-currents, etc.)
 b. Vector-FEM in 3-D (3-D eddy-currents, wave propagation, etc.)
 c. Numerical aspects of the analysis (convergence, linear solvers, preconditioning, mesh quality, etc.)
 d. Matlab code for 2-D FEM for learning and experimenting

3. Practical applications (5 lectures and 5 exercises, 20 hours)
 a. Dielectric analysis of high-voltage equipment
 b. Nonlinear quasi-electrostatic analysis of surge arresters
 c. Eddy-currents analysis of power transformers
 d. Electromagnetic analysis of electric machines
 e. Very fast transients in gas insulated switchgears (GIS)
 f. Electromagnetic compatibility (EMC)

227-0567-00L Design of Power Electronic Systems
This course is defined so and planned to be an addition to the module "227-0537-00L Technology of Electric Power System Components". However, the students who are familiar with the fundamentals of electromagnetic fields could attend only this course without its 227-0537-00L-complement.

Abstract
The goals of this course are a) understanding the fundamentals of the electromagnetic, thermal, mechanical, and coupled field simulations and b) performing effective simulations of primary equipment of electric power systems. The course is understood complementary to 227-0537-00L "Technology of Electric Power System Components", but can also be taken separately.

Objective
The student should learn the fundamentals of the electromagnetic, thermal, mechanical, and coupled fields simulations necessary for modern product development and research based on virtual prototyping. She / he should also learn the theoretical background of the finite element method (FEM) and its application to low- and high-frequency electromagnetic field simulation problems. The practical exercises of the course should be done by using one of the commercially available field simulation software (Infolytica, ANSYS, and / or COMSOL). After completing the course the student should be able to properly and efficiently use the software to simulate practical design problems and to understand and interpret the obtained results.

Content
1. Electromagnetic Fields and Waves: Simulation Aspects (1 lecture, 2 hours)
 a. Short review of the governing equations
 b. Boundary conditions
 c. Initial conditions
 d. Linear and nonlinear material properties
 e. Coupled fields (electro-mechanical and electro-thermal coupling)

2. Finite Element Method for electromagnetic simulations (5 lectures and 3 exercises, 16 hours)
 a. Scalar-FEM in 2-D (electrostatic, magnetostatic, eddy-currents, etc.)
 b. Vector-FEM in 3-D (3-D eddy-currents, wave propagation, etc.)
 c. Numerical aspects of the analysis (convergence, linear solvers, preconditioning, mesh quality, etc.)
 d. Matlab code for 2-D FEM for learning and experimenting

3. Practical applications (5 lectures and 5 exercises, 20 hours)
 a. Dielectric analysis of high-voltage equipment
 b. Nonlinear quasi-electrostatic analysis of surge arresters
 c. Eddy-currents analysis of power transformers
 d. Electromagnetic analysis of electric machines
 e. Very fast transients in gas insulated switchgears (GIS)
 f. Electromagnetic compatibility (EMC)
Abstract

Complete design process: from given specifications to a complete power electronic system; selection / design of suitable passive power components; static and dynamic properties of power semiconductors; optimized EMI filter design; heat sink optimization; additional circuitry, e.g. gate driver; system optimization.

Objective

Basic knowledge of design and optimization of a power electronic system; furthermore, lecture and exercises thoroughly discuss key subjects of power electronics that are important with respect to a practical realization, e.g. how to select suitable power components, to understand switching operations, calculation of high frequency losses, EMI filter design and realization, thermal considerations.

Content

Complete design process: from given specifications to a complete power electronic system.
Selection and / or design of suitable passive power components: specific properties, parasitic components, tolerances, high frequency losses, thermal considerations, reliability.
Static and dynamic characteristics of power semiconductors.
Optimized design of the EMI filter.
Thermal characterization of the converter, optimized heat sink design.
Additional circuitry: gate driver, measurement, control.
Converter start up: typical sequence of events, circuitry required.
Overall system optimization: identifying couplings between different components of the considered power electronic system, optimization targets and issues.

Lecture notes / notice

Lecture notes and complementary exercises including correct answers.

Prerequisites / notice

Prerequisites: Introductory course on power electronics.

227-0618-00L Modeling, Characterization and Reliability of Power Semiconductors

W 6 credits 4G M. P. M. Ciappa

Abstract

This lecture provides theoretical and experimental knowledge on the techniques for the characterization and numerical modeling of power semiconductors, as well as on the related built-in reliability strategies.

Objective

The students shall get acquainted with the most important concepts and techniques for characterization, numerical modeling and built-in reliability of modern power semiconductor devices. This knowledge is intended to provide the future engineer with the theoretical background and tools for the design of dependable power devices and systems.

Content

This lecture consists of a theoretical part (50%) and of laboratory exercises and demonstrations (50%).

Theoretical part covers the basic techniques and procedures for characterization, modeling and built-in reliability of modern power semiconductor devices with special attention to MOS and IGBT. The starting part on technology provides an overview on the main device families and includes a review of the most relevant application-oriented aspects of the device physics, thermal management, and packaging. The second section deals with the basic experimental characterization techniques for the definition of the semiconductor material properties, electrical characteristics, safe operating area, and junction temperature of the devices. The following section introduces the basic principles for electrical, thermal, and electro-thermal simulation of power semiconductors by Technology Computed Aided Design (TCAD) and compact modeling. Finally, procedures are methods presented to implement efficient built-in reliability programs targeted on power semiconductors. They include failure physics, dedicated failure analysis techniques, accelerated testing, defect screening, and lifetime modeling.

During the laboratory activities, selections of the experimental techniques presented in the lecture are demonstrated on the base of realistic examples. Furthermore, schematic power devices will be simulated by the students with advanced TCAD tools and circuit simulators.

Lecture notes

Handouts to the lecture (approx. 250 pp.)

Literature

Eiichi Ohno: "Introduction to Power Electronics"
B. Murari et al.: "Smart Power ICs"
B. J. Baliga: "Physics Modern Power Devices"
S. K. Ghani: "Semiconductor Power Devices"

227-0697-00L Industrial Process Control

W 4 credits 3G A. Horch, M. Mercangöz

Abstract

Introduction to industrial automation systems with application to the process industry, power generation as well as discrete manufacturing. General understanding of industrial automation systems in different industries. Purpose, architecture, technologies, application examples, current and future trends.

Objective

Introduction to process automation: system architecture, data handling, communication (fieldbuses), process visualization, and engineering. Differences and characteristics of discrete and process industries.

Analysis and design of open loop control problems: discrete automata, finite state machines, decision tables, and petri-nets. Practical analysis and design of closed-loop control for the process industry.

Automation Engineering: Application programming in IEC 61131-3 (ladder diagrams, function blocks, sequence control, structured text); PLC programming and simulation, process visualization and operation; engineering integration from sensors, cabling, topology design, function, visualization, diagnosis, to documentation; Industry standards (e.g. OPC, Profibus); Ergonomic design, safety (IEC61508) and availability, supervision and diagnosis.

Automation standards: Communication, Architecture, Engineering, dependable systems, functional safety, automation security.

Extensive practical examples from different process industries, power generation, gas compressor control, and automotive manufacturing.

Lecture notes

Slides will be available as .PDF documents, see "Learning materials" (for registered students only)

Literature

References will be given at the end of individual lectures.

Prerequisites / notice

Exercises: Tuesday 15-16

Practical exercises will illustrate some topics, e.g. some control software coding using industry standard programming tools based on IEC61131-3.

227-0731-00L Power Market I - Portfolio and Risk Management

W 6 credits 4G D. Reichelt, G. A. Koeppele

Abstract

Portfolio and risk management in the electrical power business, Pan-European power market and trading, futures and forward contracts, hedging, options and derivatives, performance indicators for the risk management, modelling of physical assets, cross-border trading, ancillary services, balancing power market, Swiss market model.

Objective

Content
1. Pan-European power market and trading
 1.1. Power trading
 1.2. Development of the European power markets
 1.3. Energy economics
 1.4. Spot and OTC trading
 1.5. European energy exchange EEX

2. Market model
 2.1. Market place and organisation
 2.2. Balance groups / balancing energy
 2.3. Ancillary services
 2.4. Market for ancillary services
 2.5. Cross-border trading
 2.6. Capacity auctions

3. Portfolio and Risk management
 3.1. Portfolio management 1 (introduction)
 3.2. Forward and futures contracts
 3.3. Risk management 1 (m2m, VaR, hpf, volatility, cVaR)
 3.4. Risk management 2 (PaR)
 3.5. Contract valuation (HPFC)
 3.6. Portfolio management 2

4. Energy & Finance I
 4.1. Options 1 basics
 4.2. Options 2 hedging with options
 4.3. Introduction to derivatives (swaps, cap, floor, collar)
 4.4. Financial modelling of physical assets
 4.5. Trading and hydro power
 4.6. Incentive regulation

Lecture notes
Handouts of the lecture
Prerequisites / notice
1 excursion per semester, 2 case studies, guest speakers for specific topics.
Course Moodle: https://moodle-app2.let.ethz.ch/enrol/index.php?id=11636

227-0759-00L International Business Management for Engineers
W 3 credits 2V W. Hofbauer

Abstract
Globalization of markets increases global competition and requires enterprises to continuously improve their performance to sustainably survive. Engineers substantially contribute to the success of an enterprise provided they understand and follow fundamental international market forces, economic basics and operational business management.

Objective
The goal of the lecture is to get a basic understanding of international market mechanisms and their consequences for a successful enterprise. Students substantially contribute to the success of an enterprise provided they understand and follow fundamental international market forces, economic basics and operational business management.

Content
The first part of the course provides an overview about the development of international markets, the expected challenges and the players in the market. The second part is focusing on the economic aspects of an enterprise, their importance for the long term success and how to effectively manage an international business. Based on these fundamentals the third part of the course explains how an innovative product portfolio of a company can be derived from considering the most important external factors and which consequences in respect of product innovation, competitive product pricing, organization and business processes emerge. Each part of the course includes practical examples to demonstrate the procedure.

Lecture notes
A script is provided for this lecture.
Prerequisites / notice
The lecture will be held in three blocks each of them on a Saturday (starts on September 19, 2020). Each block will focus on one of the three main topics of the course. Between the blocks the students will work on specific case studies to deepen the subject matter. About two weeks after the third block a written examination will be conducted.

Systems and Control
Core Subjects
These core subjects are particularly recommended for the field of “Systems and Control”.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0225-00L</td>
<td>Linear System Theory</td>
<td>W</td>
<td>6</td>
<td>5G</td>
<td>A. Iannelli</td>
</tr>
<tr>
<td>Abstract</td>
<td>Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Proof techniques and practices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- Linear spaces, normed linear spaces and Hilbert spaces.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ordinary differential equations, existence and uniqueness of solutions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Controllability and observability, duality. Time invariant systems treated as a special case.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Stability and stabilization, observers, state and output feedback, separation principle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Available on the course Moodle platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Sufficient mathematical maturity, in particular in linear algebra, analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

227-0697-00L Industrial Process Control
W 4 credits 3G A. Horch, M. Mercangöz
Abstract

Introduction to industrial automation systems with application to the process industry, power generation as well as discrete manufacturing.

Objective

General understanding of industrial automation systems in different industries. Purpose, architecture, technologies, application examples, current and future trends.

Content

Introduction to process automation: system architecture, data handling, communication (fieldbuses), process visualization, and engineering. Differences and characteristics of discrete and process industries. Analysis and design of open loop control problems: discrete automata, finite state machines, decision tables, and petri-nets. Practical analysis and design of closed-loop control for the process industry. Automation Engineering: Application programming in IEC 61131-3 (ladder diagrams, function blocks, sequence control, structured text); PLC programming and simulation, process visualization and operation; engineering integration from sensors, cabling, topology design, function, visualization, diagnosis, to documentation; Industry standards (e.g. OPC, Profibus); Ergonomic design, safety (IEC61508) and availability, supervision and diagnosis. Automation standards: Communication, Architecture, Engineering, dependable systems, functional safety, automation security. Extensive practical examples from different process industries, power generation, gas compressor control, and automotive manufacturing.

Lecture notes

Slides will be available as .PDF documents, see “Learning materials” (for registered students only)

Literature

References will be given at the end of individual lectures.

Prerequisites / notice

Exercises: Tuesday 15-16

Practical exercises will illustrate some topics, e.g. some control software coding using industry standard programming tools based on IEC61131-3.

151-0563-01L Dynamic Programming and Optimal Control W 4 credits 2V+1U R. D'Andrea

Abstract

Introduction to Dynamic Programming and Optimal Control.

Objective

Covers the fundamental concepts of Dynamic Programming & Optimal Control.

Content

Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.

Literature

Prerequisites / notice

Requirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.

Recommended Subjects

These courses are recommended, but you are free to choose courses from any other special field. Please consult your tutor.

Number Title Type ECTS Hours Lecturers
227-0102-00L Discrete Event Systems W 6 credits 4G R. Jacob, L. Vanbever, R. Wattenhofer

Abstract

Introduction to discrete event systems. We start out by studying popular models of discrete event systems. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.

Objective

Over the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems. We first examine discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queueing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queueing.

Content

1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus

Lecture notes

Available
The course covers the following topics:

- **Data Networks**
 - [bertsekas] Data Networks
 - Dimitri Bertsekas, Robert Gallager

- **Network Calculus**
 - [boudec] Network Calculus
 - J.-Y. Le Boudec, P. Thiran
 - Springer, 2001

- **Introduction to Discrete Event Systems**
 - Christos Cassandras, Stéphane Lafortune

- **Online Algorithms: The State of the Art**
 - A. Fiat and G. Woeginger

- **Approximation Algorithms for NP-hard Problems (Chapter 13 by S. Irani, A. Karlin)**
 - D. Hochbaum

- **Diskrete Strukturen (Band 2: Wahrscheinlichkeitstheorie und Statistik)**
 - T. Schickinger, A. Steiger
 - Springer, Berlin, 2001

- **Introduction to the Theory of Computation**
 - Michael Sipser

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0447-00L</td>
<td>Image Analysis and Computer Vision</td>
<td>W 6 credits 3V+1U</td>
<td>L. Van Gool, E. Konukoglu, F. Yu</td>
</tr>
<tr>
<td>227-0526-00L</td>
<td>Power System Analysis</td>
<td>W 6 credits</td>
<td>G. Hug</td>
</tr>
<tr>
<td>227-0531-00L</td>
<td>Control of Power-Electronics-Dominated Power Systems</td>
<td>W 3 credits 2V+2U</td>
<td>E. Prieto Araujo</td>
</tr>
</tbody>
</table>

Abstract

Image Analysis and Computer Vision

Objective

Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Content

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

- The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.
- The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Lecture notes

Course material, Script, computer demonstrations, exercises and problem solutions

Prerequisites / notice

Prerequisites:
- Basic concepts of mathematical analysis and linear algebra.
- The computer exercises are based on Python and Linux.
- The course language is English.

Abstract

Power System Analysis

The goal of this course is understanding the stationary and dynamic problems in electrical power systems. The course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power networks.

Objective

The goal of this course is understanding the stationary and dynamic problems in electrical power systems and the application of analysis tools in steady and dynamic states.

Content

The course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power grids. Approaches such as the Newton-Raphson algorithm applied to power flow equations, superposition technique for short-circuit analysis, equal area criterion and nose curve analysis are discussed as well as power flow computation techniques for distribution grids.

Lecture notes

Lecture notes.

Abstract

Control of Power-Electronics-Dominated Power Systems

The penetration of renewable energy, storage systems, EVs and DC systems in combination with the phase-out of synchronous generation, is leading to a power electronics (PE)-dominated power system, implying relevant challenges at network operation and control levels. The course covers modeling, analysis and control design aspects for future PE-dominated networks.

Objective

The course objectives are:
- Understand the fundamentals of PE-dominated power systems
- Learn how to model, analyze and control grid-connected power converters
- Apply the acquired modelling, analysis and control design techniques to real application power converters
- Acquire techniques to assess the impact of PE devices within the power network.

Content

The course covers the following topics:
- Future PE-dominated power systems. Main applications and challenges.
- Voltage source converter review. Different structures 2L, 3L, Modular Multilevel Converters (MMC).
- 2L/3L VSCs: Main control blocks. Usual transformations.
- Grid forming converters. Concept definition and main structures. Different control options.
- MMC Applications. Control design and process implementation.

Lecture notes

Lecture notes will be provided in class.

Literature

Specific literature will be provided with the lecture notes.
The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.

Lectures will include the following topics (part I and II): DNA, chromosomes, genome engineering, RNA, proteins, genetics, synthetic biology, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer and stem cells.

In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade.

Scripts of all lectures will be available.

Basic knowledge on power electronics, power systems and control systems. Basic Matlab skills as well as sufficient mathematical maturity.

Concepts and Theories
Techniques and Technologies
Analytical Competencies
Media and Digital Technologies
Problem-solving
Cooperation and Teamwork
Leadership and Responsibility
Adaptability and Flexibility
Self-direction and Self-management

System Identification

Abstract
Theory and techniques for the identification of dynamic models from experimentally obtained system input-output data.

Objective
To provide a series of practical techniques for the development of dynamical models from experimental data, with the emphasis being on the development of models suitable for feedback control design purposes. To provide sufficient theory to enable the practitioner to understand the trade-offs between model accuracy, data quality and data quantity.

Content
Introduction to modeling: Black-box and grey-box models; Parametric and non-parametric models; ARX, ARMAX (etc.) models.

Optimal experimental design, open-loop, black-box identification methods. Time and frequency domain methods. Subspace identification methods.

Parametric identification methods. On-line and batch approaches.

Closed-loop identification strategies. Trade-off between controller performance and information available for identification.

Additional papers will be available via the course Moodle.

Control systems (227-0216-00L) or equivalent.

Nonlinear Dynamics and Chaos I

Abstract
Basic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.

Objective
This course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.

Basic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.

For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade.

Scripts of all lectures will be available.

Content

(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.
(2) Near equilibrium dynamics: Linear and Lyapunov stability
(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations
(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.

Lecture notes

The class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.

Prerequisites / notice

- Prerequisites: Analysis, linear algebra and a basic course in differential equations.
- Exam: two-hour written exam in English.

- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.

151-0573-00L System Modeling W 4 credits 2V+1U L. Guzzella

Abstract

Introduction to system modeling for control. Generic modeling approaches based on first principles, Lagrangian formalism, energy approaches and experimental data. Model parametrization and parameter estimation. Basic analysis of linear and nonlinear systems.

Objective

Learn how to mathematically describe a physical system or a process in the form of a model usable for analysis and control purposes.

Content

This class introduces generic system-modeling approaches for control-oriented models based on first principles and experimental data. The class will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples.

Lecture notes

The handouts in English will be available in digital form.

Literature

A list of references is included in the handouts.

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies

- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies

- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: not assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

151-0601-00L Theory of Robotics and Mechatronics W 4 credits 3G P. Korba, S. Stoeter

Abstract

This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Objective

Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Content

An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Lecture notes

available.

151-0563-01L Dynamic Programming and Optimal Control W 4 credits 2V+1U R. D’Andrea

Abstract

Introduction to Dynamic Programming and Optimal Control. Covers the fundamental concepts of Dynamic Programming & Optimal Control.

Objective

Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.

Content

Literature

Prerequisites / notice

not assessed

376-1219-00L Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions W 3 credits 2V R. Rieder, O. Lambercy

Abstract

Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society. The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative systems.

Objective

Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
Content
Introduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
Brain stimulation and recording
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces

Literature
Introductory Books:

Selected Journal Articles and Web Links:

Prerequisites / notice
401-0647-00L Introduction to Mathematical Optimization W 5 credits 2V+1U D. Adjashvili

Data: 11.11.2021 12:40 Autumn Semester 2021
Abstract
Introduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.

Objective
The goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.

Content
Topics covered in this course include:
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.

Literature
Information about relevant literature will be given in the lecture.

Prerequisites / notice
This course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications.

401-3901-00L

Mathematical Optimization

Objective
The goal of the course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.

Content
Key topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and polyhedral techniques;
- Equivalence between optimization and separation.

Literature
- Alexander Schrijver: Combinatorial Optimization; Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes.

Prerequisites / notice
Solid background in linear algebra.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
- assessed
Techniques and Technologies
- not assessed

Domain B - Method-specific Competencies
Analytical Competencies
- assessed
Decision-making
- assessed
Media and Digital Technologies
- not assessed
Problem-solving
- assessed
Project Management
- not assessed

Domain C - Social Competencies
Communication
- assessed
Leadership and Responsibility
- not assessed
Self-presentation and Social Influence
- not assessed
Sensitivity to Diversity
- not assessed
Negotiation
- not assessed

Domain D - Personal Competencies
Adaptability and Flexibility
- not assessed
Creative Thinking
- assessed
Critical Thinking
- not assessed
Integrity and Work Ethics
- not assessed
Self-awareness and Self-reflection
- not assessed
Self-direction and Self-management
- not assessed

636-0007-00L
Computational Systems Biology

Objective
The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.

Content
Biological has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks.

Lecture notes
http://www.csb.ethz.ch/education/lectures html

Literature

401-3055-64L

Algebraic Methods in Combinatorics

Abstract
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.
Objective
The students will get an overview of various combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.

Content
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Waring theorem.
- Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Lecture notes
Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.

Prerequisites / notice
Students are expected to have a mathematical background and should be able to write rigorous proofs.

Signal Processing and Machine Learning

Core Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0105-00L</td>
<td>Introduction to Estimation and Machine Learning</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>H.-A. Loeliger</td>
</tr>
<tr>
<td>Objective</td>
<td>Mathematical basics of estimation and machine learning, with a view towards applications in signal processing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Students master the basic mathematical concepts and algorithms of estimation and machine learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review of probability theory; basics of statistical estimation; least squares and linear learning; Hilbert spaces; Gaussian random variables; singular-value decomposition; kernel methods, neural networks, and more</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes will be handed out as the course progresses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>solid basics in linear algebra and probability theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0423-00L</td>
<td>Neural Network Theory</td>
<td>W</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>H. Bölcskei</td>
</tr>
<tr>
<td>Abstract</td>
<td>The class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, fundamental limits of deep neural network learning, VC dimension.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>1. Universal approximation with single- and multi-layer networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Fundamental limits of deep neural network learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Geometry of decision surfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Separating capacity of nonlinear decision surfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Vapnik-Chervonenkis (VC) dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. VC dimension of neural networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Generalization error in neural network learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Detailed lecture notes are available on the course web page</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>https://www.mins.ee.ethz.ch/teaching/nnl/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0427-00L</td>
<td>Signal Analysis, Models, and Machine Learning</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>H.-A. Loeliger</td>
</tr>
<tr>
<td>Abstract</td>
<td>Mathematical methods in signal processing and machine learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. Linear signal representation and approximation: Hilbert spaces, LMMSE estimation, regularization and sparsity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II. Learning linear and nonlinear functions and filters: neural networks, kernel methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III. Structured statistical models: hidden Markov models, factor graphs, Kalman filter, Gaussian models with sparse events.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course is an introduction to some basic topics in signal processing and machine learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part I - Linear Signal Representation and Approximation: Hilbert spaces, least squares and LMMSE estimation, projection and estimation by linear filtering, learning linear functions and filters, L2 regularization, L1 regularization and sparsity, singular-value decomposition and pseudo-inverse, principal-component analysis.

Part II - Learning Nonlinear Functions: fundamentals of learning, neural networks, kernel methods.

Part III - Structured Statistical Models and Message Passing Algorithms: hidden Markov models, factor graphs, Gaussian message passing, Kalman filter and recursive least squares, Monte Carlo methods, parameter estimation, expectation maximization, linear Gaussian models with sparse events.

Lecture notes

- **Lecture notes.
- **Prerequisites / notice
 - Prerequisites:
 - local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.)
 - others: solid basics in linear algebra and probability theory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0447-00L</td>
<td>Image Analysis and Computer Vision</td>
<td>W</td>
<td>6</td>
<td>3V+1U</td>
<td>L. Van Gool, E. Konukoglu, F. Yu</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning. The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer. The next part describes necessary pre-processing steps that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course material Script, computer demonstrations, exercises and problem solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10</td>
<td>3V+2U+4A</td>
<td>J. M. Buhmann, C. Cotrini Jimenez</td>
</tr>
<tr>
<td></td>
<td>Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topics covered in the lecture include:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fundamentals: What is data? Bayesian Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Computational learning theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Supervised learning: Ensembles: Bagging and Boosting Max Margin methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Unsupervised learning: Dimensionality reduction techniques Clustering Mixture Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Non-parametric density estimation Learning Dynamic Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No lecture notes, but slides will be made available on the course webpage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.</td>
</tr>
</tbody>
</table>

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points. |

Recommended Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0101-00L</td>
<td>Discrete-Time and Statistical Signal Processing</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>H.-A. Loeliger</td>
</tr>
</tbody>
</table>
The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMS algorithm. Applications in communications.

Objective

The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMS filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.

Content

1. Discrete-time linear systems and filters:
 - state-space realizations, z-transform and spectrum, decimation and interpolation, digital filter design, stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
 - probability, random variables, discrete-time stochastic processes, detection and estimation: MAP, ML, Bayesian MMSE, LMMSE, Wiener filter, LMS adaptive filter, Viterbi algorithm.

Lecture notes

Lecture Notes

227-0116-00L VLSI 1: HDL based design for FPGAs W 6 credits 5G F. K. Gürkaynak, L. Benini

Abstract

This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.

Objective

Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.

Content

This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

Lecture notes

Textbook and all further documents in English.

Literature

Prerequisites

- Basics of digital circuits.
- Principles of electronic design automation.

Further details:
https://iis-students.ee.ethz.ch/lectures/vlsi-i/

227-0155-00L Machine Learning on Microcontrollers W 6 credits 3G M. Magno, L. Benini

Abstract

Registration in this class requires the permission of the instructors. Class size will be limited to 25.

Preference is given to students in the MSc EEIT.

Objective

Machine Learning (ML) and artificial intelligence are pervading the digital society. Today, even low power embedded systems are incorporating ML, becoming increasingly "smart". This lecture gives an overview of ML methods and algorithms to process and extract useful near-sensor information in end-nodes of the "internet-of-things", using low-power microcontrollers: processors (ARM-Cortex-M; RISC-V).

Learn how to process data from sensors and how to extract useful information with low power microprocessors using ML techniques. We will analyze data coming from real low-power sensors (accelerometers, microphones, ExG bio-signals, cameras...). The main objective is to study in details how Machine Learning algorithms can be adapted to the performance constraints and limited resources of low-power microcontrollers.
The main goal of this lecture is to provide a comprehensive overview into the learning principles of neuronal networks as well as to introduce the main principles of machine learning. The final goal of the course is a deep understanding of machine learning and its practical implementation on single- and multi-core systems.

The laboratory exercises will show how to address concrete design problems, like motion, gesture recognition, emotion detection, image and sound classification, using real sensors data and real MCU boards.

Presentations from Ph.D. students and the visit to the Digital Circuits and Systems Group will introduce current research topics and international research projects.

The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.

Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.

This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, typical sequences, the asymptotic equipartition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.

The entropy rate of a source, Typical sequences, the asymptotic equi-partition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity.

After this course students will be able to:
- Implement alternative ANN learning algorithms to 'error backpropagation' in order to train deep neuronal networks.
- Explain the basic ideas and concepts of plasticity in the mammalian brain.
- Implement alternative ANN learning algorithms to 'error backpropagation' in order to train deep neuronal networks.
- Use a diverse set of ANN regularization methods to improve learning.
- Simulate spiking neuronal networks that learn simple (e.g., digit classification) tasks in a supervised manner.

Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods.

The main goal of this lecture is to provide a comprehensive overview into the learning principles of neuronal networks as well as to introduce a diverse skill set (e.g., simulating a spiking neuronal network) that is required to understand learning in large, hierarchical neuronal networks. To achieve this the lectures and exercises will merge ideas, concepts and methods from machine learning and neuroscience. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas presented in today's neuroscience papers.

After this course students will be able to:
- Read and understand the main ideas and methods that are presented in today's neurosciences papers.
- Explain the basic ideas and concepts of plasticity in the mammalian brain.
- Implement alternative ANN learning algorithms to 'error backpropagation' in order to train deep neuronal networks.
- Use a diverse set of ANN regularization methods to improve learning.
- Simulate spiking neuronal networks that learn simple (e.g., digit classification) tasks in a supervised manner.

Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. The origins of deep hierarchical learning can be traced back to early neuroscience research by Hubel and Wiesel in the 1960s, who first described the neuronal processing of visual inputs in the mammalian neocortex. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world.

However, while on specific tasks such as playing (video) games deep ANNs outperform humans (Minh et al., 2015, Silver et al., 2018), ANNs are still not performing on par when it comes to recognizing actions in movie data and their ability to act as generalizable problem solvers is still far behind of what the human brain seems to achieve effortlessly. Moreover, biological neuronal networks can learn far more effectively with fewer training examples, they achieve a much higher performance in recognizing complex patterns in time series data (e.g., recognizing actions in movies), they dynamically adapt to new tasks without losing performance and they achieve unmatched performance to detect and integrate out-of-domain data examples (data they have not been trained with). In other words, many of the big challenges and unknowns that have emerged in the field of deep learning over the last years are already mastered exceptionally well by biological neuronal networks in our brain. On the other hand, many facets of typical ANN design and training algorithms seem biologically implausible, such as the non-local weight updates, discrete processing of time, and scalar communication between neurons. Recent evidence suggests that learning in biological systems is the result of the complex interplay of diverse error feedback signaling processes acting at multiple scales, ranging from single synapses to entire networks.
The lecture slides will be provided as a PDF after each lecture.

This advanced level lecture requires some basic background in machine/deep learning. Thus, students are expected to have a basic mathematical foundation, including linear algebra, multivariate calculus, and probability. The course is not to be meant as an extended tutorial of how to train deep networks in PyTorch or Tensorflow, although these tools used. The participation in the course is subject to the following conditions:

1) The number of participants is limited to 120 students (MSc and PhDs).

2) Students must have taken the exam in Deep Learning (263-3210-00L) or have acquired equivalent knowledge.
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has not assessed

Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes.

Solid background in linear algebra.

The course covers the basics of inferential statistics.

Key topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and polyhedral techniques;
- Equivalence between optimization and separation.

Concepts and Theories
Techniques and Technologies

Analytical Competencies
Decision-making

Media and Digital Technologies
Problem-solving

Project Management

Communication

Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 807 of 2152
Supervisors
Creative Thinking
Introduction into Virtual Reality; basics of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of assessed

Hours
2V

The handout is available in German and English.

Communication
Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a

Internship in Industry
This course provides theory-grounded knowledge and practice-driven skills for founding, financing, and growing new technology ventures.

Semester Project (Nr 1)
The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific assessed

Lecturers
Concepts and Theories
Visualization, Simulation and Interaction - Virtual Reality I: Concepts and Theories

Title
Visualization, Simulation and Interaction - Virtual Reality II

Abstract
This lecture provides deeper knowledge on the possible applications of virtual reality, its basic technology, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes.

Objective
Virtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technology for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems. The goal of the lecture is to provide a deeper knowledge of today's VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.

Content
Introduction into Virtual Reality; basics of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of simulation; compression procedures of image-, audio-, and video signals; new materials for force feedback devices; introduction into data security; cryptography; definition of free-form surfaces; digital factory; new research fields of virtual reality

Lecture notes
The handout is available in German and English.

Prerequisites / notice
Prerequisites: "Visualization, Simulation and Interaction - Virtual Reality I" is recommended, but not mandatory.

Didactical concept:
The course consists of lectures and exercises.

Taught competencies
Domain A - Subject-specific Competencies

Concepts and Theories
assessed

Domain B - Method-specific Competencies

Techniques and Technologies
assessed

Analytical Competencies
assessed

Domain C - Social Competencies

Media and Digital Technologies
assessed

Communication
assessed

Domain D - Personal Competencies

Creative Thinking
assessed

Critical Thinking
assessed

Internship in Industry
The main objective of the 12-week internship is to expose master's students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institution.

Semester Projects

How to Write Scientific Texts

Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST).

Abstract
The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training. The lecture will be thought on two afternoons. Some exercises will be built into the lecture.

Objective
Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.

Content
* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the “in this paper” paragraph, the scientific part, the summary, Equations, Figures).

* Topic 2: Power Point Presentations.

* Topic 3: Citation Rules and Citation Software.

* Topic 4: Guidelines for Research Integrity.

Literature
ETH "Citation Etiquette", see www plagiate.ethz.ch.

ETH Guidelines on "Guidelines for Research Integrity", see www ee.ethz.ch > Education > > Contacts, links & documents > Forms and documents > Brochures / guides.

Prerequisites / notice
Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.

Semester Project (Nr 1)
Registration in myStudies required!
Supervisor must be a professor at D-ITET or associated, see https://www ee.ethz.ch/studies/main-master/projects-and-master-thesis.html
The first semester project is compulsory both for students enrolled in the MSc EEIT under the 2008 regulations and for students enrolled under the 2018 regulations.

Abstract

Semester projects are designed to train the students for independent scientific work. A project uses the student's technical and social skills acquired during the master's program. The semester project comprises 280 hours of work and is supervised by a professor.

Prerequisites / notice

Supervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

227-1572-02L
Semester Project (Nr 2)
Registration in myStudies required!
Supervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

The second semester project is compulsory for students enrolled in the MSc EEIT under the 2008 regulations, it is optional for students enrolled under the 2018 regulations.

Students enrolled in the MSc EEIT under the 2018 regulations must consult their tutor before enrolling for semester project 2.

Abstract

Semester projects are designed to train the students for independent scientific work. A project uses the student's technical and social skills acquired during the master's program. The semester project comprises 280 hours of work and is supervised by a professor.

Objective

see above

Prerequisites / notice

Supervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

► GESS Science in Perspective

see Science in Perspective: Language Courses ETH/UZH

see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-ITET

► Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1101-00L</td>
<td>How to Write Scientific Texts</td>
<td>E-</td>
<td>0</td>
<td></td>
<td>U. Koch</td>
</tr>
</tbody>
</table>

Abstract

The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training. The lecture will be thought on two afternoons. Some exercises will be built into the lecture.

Objective

Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.

Content

* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the “in this paper” paragraph, the scientific part, the summary, Equations, Figures).

 * Topic 2: Power Point Presentations.

 * Topic 3: Citation Rules and Citation Software.

 * Topic 4: Guidelines for Research Integrity.

Literature

ETH "Citation Etiquette", see www.plagiate.ethz.ch.

Prerequisites / notice

Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.

227-1501-00L
Master's Thesis
Admission only if ALL of the following apply:

 a) bachelor program successfully completed;

 b) acquired (if applicable) all credits from additional requirements for admission to master program;

 c) successfully completed both semester projects.

Note: the conditions above are not applicable to incoming exchange students.

Registration in myStudies required!

Supervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

Abstract

The Master Program finishes with a 6-months Master Thesis which is directed by a Professor of the Department or a Professor of another Department who is associated with the D-ITET. Students gain the ability to conduct independent scientific research on a specific research problem.

Prerequisites / notice

Supervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

► Generally Accessible Seminars and Colloquia
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0919-00L</td>
<td>Knowledge-Based Image Interpretation</td>
<td>Z</td>
<td>0</td>
<td>2S</td>
<td>L. Van Gool</td>
</tr>
<tr>
<td>Abstract</td>
<td>With the lecture series on special topics of Knowledge based image interpretation we sporadically offer special talks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>To become acquainted with selected, recent results in image analysis and interpretation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0920-00L</td>
<td>Seminar in Systems and Control</td>
<td>Z</td>
<td>0</td>
<td>1S</td>
<td>F. Dörfler, R. D’Andrea, E. Frazzoli, M. H. Khammash, J. Lygeros, R. Smith</td>
</tr>
<tr>
<td>Abstract</td>
<td>Current topics in Systems and Control presented mostly by external speakers from academia and industry see above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Current topics in the research activities at the IEF and closely related institutions are discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Have an overview on the research activities of the IEF institute.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0955-00L</td>
<td>Seminar in Electromagnetics, Photonics and Terahertz</td>
<td>Z</td>
<td>3</td>
<td>2S</td>
<td>J. Leuthold</td>
</tr>
<tr>
<td>Abstract</td>
<td>Selected topics of the current research activities at the IEF and closely related institutions are discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Getting insight into actual areas and problems of Biomedical Engineering an Health Care.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0970-00L</td>
<td>Research Topics in Biomedical Engineering</td>
<td>Z</td>
<td>0</td>
<td>1K</td>
<td>K. P. Prüssmann, S. Kozerke, M. Stampanoni, K. Stephan, J. Vörds</td>
</tr>
<tr>
<td>Abstract</td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Current topics in Biomedical Engineering presented by speakers from academia and industry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Getting insight into actual areas and problems of Biomedical Engineering an Health Care.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0980-00L</td>
<td>Seminar on Biomedical Magnetic Resonance</td>
<td>Z</td>
<td>0</td>
<td>1S</td>
<td>K. P. Prüssmann, S. Kozerke, M. Weiger Senften</td>
</tr>
<tr>
<td>Abstract</td>
<td>Current developments and problems of magnetic resonance imaging (MRI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Getting insight into advanced topics in magnetic resonance imaging.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5680-00L</td>
<td>Foundations of Data Science Seminar</td>
<td>Z</td>
<td>0</td>
<td></td>
<td>P. L. Bühmann, A. Bandeira, H. Bölcskei, F. Yang</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0101-AAL</td>
<td>Discrete-Time and Statistical Signal Processing</td>
<td>E-</td>
<td>6</td>
<td>8R</td>
<td>H.-A. Loeliger</td>
</tr>
<tr>
<td>Abstract</td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>1. Discrete-time linear systems and filters: stable realizations, z-transform and spectrum, state-space realizations and robust inversion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. The discrete Fourier transform and its use for digital filtering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. The statistical perspective: probability, random variables, discrete-time stochastic processes; detection and estimation: MAP, ML, Bayesian MMSE, LMMSE; Wiener filter, LMS adaptive filter, Viterbi algorithm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture Notes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0103-AAL</td>
<td>Control Systems</td>
<td>E-</td>
<td>6</td>
<td>8R</td>
<td>F. Dörfler</td>
</tr>
<tr>
<td>Abstract</td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 810 of 2152
Courses outside the curriculum

Analog Integrated Circuits

Concepts and Theories

not assessed

not assessed

not assessed

not assessed

Compulsory

8R

Analytical Competencies

This course provides a foundation in analog integrated circuit design based on CMOS technologies.

not assessed

Lecture Slides

T. Jang

Eligible for credits

not assessed

Suitable for doctorate

Understanding of the fundamental phenomena and principles connected with the occurrence of extensive electric field strengths. This knowledge is applied to the dimensioning of high-voltage equipment. Methods of computer-modeling in use today are presented and applied within a workshop in the framework of the exercises.

not assessed

Lecture Slides

C. Franck

Communication

Eligible for credits and recommended

not assessed

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories

not assessed

Domain B - Method-specific Competencies

Analytical Competencies

Decision-making

not assessed

not assessed

Problem-solving

not assessed

Project Management

not assessed

Domain C - Social Competencies

Communication

not assessed

Customer Orientation

not assessed

Leadership and Responsibility

not assessed

Self-presentation and Social Influence

not assessed

Sensitivity to Diversity

not assessed

Negotiation

not assessed

Domain D - Personal Competencies

Adaptability and Flexibility

not assessed

Creative Thinking

not assessed

Critical Thinking

not assessed

Integrity and Work Ethics

not assessed

Self-awareness and Self-reflection

not assessed

Self-direction and Self-management

not assessed

Electrical Engineering and Information Technology Master - Key for Type

O Compulsory

W+ Eligible for credits and recommended

W Eligible for credits

E- Recommended, not eligible for credits

Z Courses outside the curriculum

Dr Suitable for doctorate
Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Energy Science and Technology Master

Core Courses

At least two core courses must be passed in each area.
All students must participate in the course offered in the area "Interdisciplinary Energy Management"

Electrical Power Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0122-00L</td>
<td>Introduction to Electric Power Transmission: System & Technology</td>
<td>W</td>
<td>4 credits</td>
<td>2V+2U</td>
<td>C. Franck, G. Hug</td>
</tr>
</tbody>
</table>

Objective
At the end of this course, the student will be able to: describe the structure of electric power systems, name the most important components and describe what they are needed for, apply models for transformers and overhead power lines, explain the technology of transformers and lines, calculate stationary power flows and other basic parameters in simple power systems.

Content
Structure of electric power systems, transformer and power line models, analysis of and power flow calculation in basic systems, technology and principle of electric power systems.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Domain B - Method-specific Competencies

<table>
<thead>
<tr>
<th>Concepts and Theories</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>not assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Domain C - Social Competencies

<table>
<thead>
<tr>
<th>Communication</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Domain D - Personal Competencies

<table>
<thead>
<tr>
<th>Adaptability and Flexibility</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Electric Circuits

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1635-00L</td>
<td>Electric Circuits</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>M. Zima, D. Shchetinin</td>
</tr>
</tbody>
</table>

Abstract
Introduction to analysis methods and network theorems to describe operation of electric circuits. Theoretical foundations are essential for the analysis of the electric power transmission and distribution grids as well as many modern technological devices – consumer electronics, control systems, computers and communications.

Objective
At the end of this course, the student will be able to: understand variables in electric circuits, evaluate possible approaches and analyse simple electric circuits with RLC elements, apply circuit theorems to simple meshed circuits, analyze AC circuits in a steady state and understand the connection of the explained principles to the modelling of the 3-phase electric power systems.

Content
Course will introduce electric circuits variables, circuit elements (resistive, inductive, capacitive), nodal and mesh analysis, superposition principle; it will continue by discussing the complete response circuits (RLC), sinusoidal analysis – ac steady state (complex power, reactive, active power) and conclude with the introduction to 3-phase analysis;

Mathematical foundations of the circuit analysis, such as matrix operations and complex numbers will be briefly reviewed.

This course is targeting students who have no prior background in electrical engineering.

Lecture notes
Lecture and exercises slides will be distributed after each lecture via moodle platform; additional materials to be accessed online (wileyplus)

Literature
Richard C. Dorf, James A. Svoboda
Introduction to Electric Circuits, 9th Edition
Online materials: https://www.wileyplus.com/
Lecture slides and exercises slides

Prerequisites / notice
This course is intended for students outside of D-ITET. No prior course in electrical engineering is required.

Energy Flows and Processes

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0293-00L</td>
<td>Combustion and Reactive Processes in Energy and Materials Technology</td>
<td>W</td>
<td>4 credits</td>
<td>2V+1U+2A</td>
<td>N. Noiray, F. Ernst, C. E. Frouzakis</td>
</tr>
</tbody>
</table>

Abstract
The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials.

Objective
The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus "Energy, Flows & Processes" on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering.

Content
The learning objectives of the course are:

1. Students must be able to discuss basic principles, problems and approaches in microeconomics.
2. Students can analyse and explain simple economic principles in a market using supply and demand graphs.
3. Students can contrast different market structures and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.

The course also gives introduction to refrigeration cycles, combustion and refrigeration. The course compactly covers the standard course of thermodynamics for engineers, with additional topics of a general physics interest (nonideal gas equation of state and Joule-Thomson effect) also included.

This course is intended for students outside of D-MAVT.

Thermodynamics is key to understanding and use of energy conversion processes in Nature and technology. Main objective of this course is to give a compact introduction into basics of Thermodynamics: Thermodynamic states and thermodynamic processes; Work and Heat; First and Second Laws of Thermodynamics. Students shall learn how to use energy balance equation in the analysis of power cycles and shall be able to evaluate efficiency of internal combustion engines, gas turbines and steam power plants. The course shall extensively use thermodynamic charts to building up students’ intuition about opportunities and restrictions to increase useful work output of energy conversion. Thermodynamic functions such as entropy, enthalpy and free enthalpy shall be used to understand chemical and phase equilibrium. The course also gives introduction to refrigeration cycles, combustion and refrigeration. The course compactly covers the standard course of thermodynamics for engineers, with additional topics of a general physics interest (nonideal gas equation of state and Joule-Thomson effect) also included.

These courses are intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

Students are assumed to have an adequate background in calculus, physics, and engineering mechanics.

Lecture notes
No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed:

Teaching language, assignments and lecture slides in English

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0503-00L</td>
<td>Principles of Microeconomics</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Filippini</td>
</tr>
</tbody>
</table>

Energy Economics and Policy

Number

- 363-0503-00L: Principles of Microeconomics

Type

- Assessed

ECTS

- 3

Hours

- 2G

Lecturers

- M. Filippini
The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture “Principles of Microeconomics” is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

Lecture notes
Lecture notes, exercises and reference material can be downloaded from Moodle.

Literature
The book can also be used for the course ‘Principles of Macroeconomics’ (Sturm)

For students taking only the course ‘Principles of Microeconomics’ there is a shorter version of the same book:

Complementary:

Prerequisites / notice
GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competencies</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptable and Flexibility</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interdisciplinary Energy Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Only for Energy Science and Technology MSc.

Abstract
This course will allow the students to get an interdisciplinary overview of the “Energy” topic. It will explore the challenges to build a sustainable energy system for the future. This will be done through the means of case studies that the students have to work on. These case studies will be provided by industry partners.

Objective
The students will understand the different aspects involved in designing solutions for a sustainable future energy system. They will have experience in collaborating in interdisciplinary teams. They will have an understanding on how industry is approaching new solutions.

Lecture notes
Descriptions of case studies.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: not assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-presentation and Social Influence: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

► Industrial Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1650-10L</td>
<td>Internship in Industry</td>
<td>O</td>
<td>12</td>
<td></td>
<td>external organisers</td>
</tr>
</tbody>
</table>

Abstract
The main objective of the 12-week internship is to expose master's students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institution.

► Semester Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1101-00L</td>
<td>How to Write Scientific Texts</td>
<td>E</td>
<td>0</td>
<td></td>
<td>U. Koch</td>
</tr>
</tbody>
</table>

Abstract
The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training. The lecture will be thought on two afternoons. Some exercises will be built into the lecture.

Objective
Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.

Content
* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures).
* Topic 2: Power Point Presentations.
* Topic 3: Citation Rules and Citation Software.
* Topic 4: Guidelines for Research Integrity.

Literature
ETH "Citation Etiquette", see www.plagiate.ethz.ch.

Prerequisites / notice
Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.

► Electives

These courses are particularly recommended, other ETH-courses from the field of Energy Science and Technology at large may be chosen in accordance with your tutor.

► Electrical Power Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0113-00L</td>
<td>Power Electronics</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>J. W. Kolar</td>
</tr>
</tbody>
</table>

Abstract
Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components.

Objective
Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components.
Content

Fields of application and application examples of power electronic converters, basic concept of switch-mode voltage and current conversion, pulse-width modulation (PWM); derivation and operating modes (continuous and discontinuous current mode) of DC/DC converter topologies, buck / boost / buck-boost converter; extension to DC/AC conversion using differences of unipolar output voltages varying over time; single-phase diode rectifier; boost-type PWM rectifier featuring sinusoidal input current; tolerance band AC current control and cascaded output voltage control with constant switching frequency current control; local and global averaging of switching frequency discontinuous quantities for calculation of component stresses; three-phase AC/DC conversion, center-tap rectifier with impressed output current, thyristor function, thyristor center-tap and full-bridge converter, rectifier and inverter operation, control angle and recovery time, inverter operation limit; basics of inductors and single-phase transformers, design based on scaling laws; isolated DCDC converter, flyback and forward converter, single-switch and two-switch circuit; single-phase DC/AC conversion, four-quadrant converter, unipolar and bipolar modulation, fundamental frequency model of AC-side operating behaviour; three-phase DC/AC converter with star-connected three-phase load, zero sequence (common-mode) and current forming differential-mode output voltage components, fundamental frequency modulation and PWM with singe triangular carrier and individual carrier signals of the phases.

Prerequisites / notice

Lecture notes

Taught competencies

Domain A - Subject-specific Competencies	Techniques and Technologies	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
	Decision-making	not assessed
	Media and Digital Technologies	not assessed
	Problem-solving	not assessed
	Project Management	not assessed
Domain C - Social Competencies	Communication	not assessed
	Cooperation and Teamwork	not assessed
	Customer Orientation	not assessed
	Leadership and Responsibility	not assessed
	Self-presentation and Social Influence	not assessed
	Sensitivity to Diversity	not assessed
	Negotiation	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed
	Creative Thinking	not assessed
	Critical Thinking	not assessed
	Integrity and Work Ethics	not assessed
	Self-awareness and Self-reflection	not assessed
	Self-direction and Self-management	not assessed

227-0117-00L High Voltage Engineering

<table>
<thead>
<tr>
<th>W</th>
<th>6 credits</th>
<th>4G</th>
<th>C. Franck, U. Straumann</th>
</tr>
</thead>
</table>

Abstract

High electric fields are used in numerous technological and industrial applications such as electric power transmission and distribution, X-ray devices, DNA sequencers, flue gas cleaning, power electronics, lasers, particle accelerators, copying machines, …. High Voltage Engineering is the art of gaining technological control of high electrical field strengths and high voltages.

Objective

The students know the fundamental phenomena and principles associated with the occurrence of high electric field strengths. They understand the different mechanisms leading to the failure of insulation systems and are able to apply failure criteria on the dimensioning of high voltage components. They have the ability to identify of weak spots in insulation systems and to propose options for improvement. Further, they know the different insulation systems and their dimensioning in practice.

- discussion of the field equations relevant for high voltage engineering,
- analytical and numerical solutions/solving of these equations, as well as the derivation of the important equivalent circuits for the description of the fields and losses in insulations
- introduction to kinetic gas theory
- mechanisms of the breakdown in gaseous, liquid and solid insulations, as well as insulation systems
- methods for the mathematical determination of the electric withstand of gaseous, liquid and solid insulations
- application of the expertise on high voltage components
- excursions to manufacturers of high voltage components

Lecture notes

Lecture Slides

Literature

227-0247-00L Power Electronic Systems I

<table>
<thead>
<tr>
<th>W</th>
<th>6 credits</th>
<th>4G</th>
<th>J. Biela, F. Krismer</th>
</tr>
</thead>
</table>

Lecture Slides

Power Electronic Systems I
Abstract
Basics of the switching behavior, gate drive and snubber circuits of power semiconductors are discussed. Soft-switching and resonant DC/DC converters are analyzed in detail and high frequency loss mechanisms of magnetic components are explained. Space vector modulation of three-phase inverters is introduced and the main power components are designed for typical industry applications.

Objective
Detailed understanding of the principle of operation and modulation of advanced power electronics converter systems, especially of zero voltage switching and zero current switching non-isolated and isolated DC/DC converter systems and three-phase voltage DC link inverter systems. Furthermore, the course should convey knowledge on the switching frequency related losses of power semiconductors and inductive power components and introduce the concept of space vector calculus which provides a basis for the comprehensive discussion of three-phase PWM converters systems in the lecture Power Electronic Systems II.

Content
Basics of the switching behavior and gate drive circuits of power semiconductor devices and auxiliary circuits for minimizing the switching losses are explained. Furthermore, zero voltage switching, zero current switching, and resonant DC/DC converters are discussed in detail; the operating behavior of isolated full-bridge DC/DC converters is detailed for different secondary side rectifier topologies; high frequency loss mechanisms of magnetic components of converter circuits are explained and approximate calculation methods are presented; the concept of space vector calculus for analyzing three-phase systems is introduced; finally, phase-oriented and space vector modulation of three-phase inverter systems are discussed related to voltage DC link inverter systems and the design of the main power components based on analytical calculations is explained.

Lecture notes
Lecture notes and associated exercises including correct answers.

Prerequisites / notice
Prerequisites: Introductory course on power electronics.

227-0311-00L Qubits, Electrons, Photons W 6 credits 3V+2U T. Zambelli

Abstract
In-depth analysis of the quantum mechanics origin of nuclear magnetic resonance (qubits, two-level systems), of LASER (quantization of the electromagnetic field, photons), and of electron transfer (from electrochemistry to photosynthesis).

Objective
Beside electronics nanodevices, D-ITET is pushing its research in the fields of NMR (MRI), electrochemistry, bioelectronics, nano-optics, and quantum information, which are all rationalized in terms of quantum mechanics.

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

Content
- Lagrangian and Hamiltonian: Symmetries and Poisson Brackets
- Postulates of QM: Hilbert Spaces and Operators
- Heisenberg’s Matrix Mechanics: Hamiltonian and Time Evolution Operator
- Spin: Qubits, Bloch Equations, and NMR
- Entanglement
- Symmetries and Corresponding Operators
- Schrödinger’s Wave Mechanics: Electrons in a Periodic Potential and Energy Bands
- Harmonic Oscillator: Creation and Annihilation Operators
- Identical Particles: Bosons and Fermions
- Quantization of the Electromagnetic Field: Photons, Absorption and Emission, LASER
- Electron Transfer: Marcus Theory via Born-Oppenheimer, Franck-Condon, Landau-Zener

Lecture notes
No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive!

Literature

Supplementary material will be uploaded in Moodle.

- + (as rigorous and profound presentation of the mathematical framework) G. Dell’Antonio, “Lectures on the Mathematics of Quantum Mechanics I”, 2015, Springer
- + (as account of those formidable years) G. Gamow, “Thirty Years that Shook Physics”, 1985, Dover Publications Inc.

Prerequisites / notice
The course has been intentionally conceived to be self-consistent with respect to QM for those master students not having encountered it in their track yet. Therefore, a presumably large overlapping has to be expected with a (welcome!) QM introduction course like the D-ITET “Physics II”.

A solid base of Analysis I & II as well as of Linear Algebra is really helpful.

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises!). Please, look at the details in moodle!
227-0523-00L Railway Systems I W 6 credits 4G M. Meyer

Abstract
Basic characteristics of railway vehicles and their interfaces with the railway infrastructure:
- Transportation tasks and vehicle types
- Running dynamics
- Mechanical part of rail vehicles
- Brakes
- Traction chain and auxiliary supply
- Railway power supply
- Signalling systems
- Standards
- Availability and safety
- Traffic control and maintenance

Objective
- Overview of the technical characteristics of railway systems
- Know-how about the design and construction principles of rail vehicles
- Interrelationship between different fields of engineering sciences (mechanics, electro and information technology, transport systems)
- Understanding tasks and opportunities of engineers working in an environment which has strong economical and political boundaries
- Insight into the activities of the railway vehicle industry and railway operators in Switzerland
- Motivation of young engineers to start a career in the railway industry or with railway operators

Content
EST I (Herbstsemester) - Begriffen, Grundlagen, Merkmale

1 Einführung:
1.1 Geschichte und Struktur des Bahnsystems
1.2 Fahrdynamik

2 Vollbahnfahrzeuge:
2.3 Mechanik: Kasten, Drehgestelle, Lauftechnik, Adhäsion
2.2 Bremsen
2.3 Traktionsantriebssysteme
2.4 Hilfsbetriebe und Komfortanlagen
2.5 Steuerung und Regelung

3 Infrastruktur:
3.1 Fahrweg
3.2 Bahnstromversorgung
3.3 Sicherungsanlagen

4 Betrieb:
4.1 Interoperabilität, Normen und Zulassung
4.2 RAMS, LCC
4.3 Anwendungsbeispiele

Voraussichtlich ein oder zwei Gastvorträge

Geplante Exkursionen:
- Betriebszentrale SBB, Zürich Flughafen
- Reparatur und Unterhalt, SBB Zürich Altstetten
- Fahrzeugfertigung, Stadler Bussnang

Lecture notes
Abgabe der Unterlagen (gegen eine Schutzgebühr) zu Beginn des Semesters. Rechtzeitig eingeschriebene Teilnehmer können die Unterlagen auf Wunsch und gegen eine Zusatzgebühr auch in Farbe beziehen.

Prerequisites / notice
Dozent:
Dr. Markus Meyer, Emkamatik GmbH

Voraussichtlich ein oder zwei Gastvorträge von anderen Referenten.

EST I (Herbstsemester) kann als in sich geschlossene einsemestrige Vorlesung besucht werden. EST II (Frühjahrssemester) dient der weiteren Vertiefung der Fahrzeugtechnik und der Integration in die Bahninfrastruktur.

227-0526-00L Power System Analysis W 6 credits 4G G. Hug
Abstract
The goal of this course is understanding the stationary and dynamic problems in electrical power systems. The course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power networks.

Objective
The goal of this course is understanding the stationary and dynamic problems in electrical power systems and the application of analysis tools in steady and dynamic states.

Content
The course includes the development of stationary models of the electrical network, their mathematical representation and special characteristics and solution methods of large linear and non-linear systems of equations related to electrical power grids. Approaches such as the Newton-Raphson algorithm applied to power flow equations, superposition technique for short-circuit analysis, equal area criterion and nose curve analysis are discussed as well as power flow computation techniques for distribution grids.

Lecture notes
Lecture notes.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0531-00L</td>
<td>Control of Power-Electronics-Dominated Power Systems</td>
<td>W 3</td>
<td>2V+2U</td>
<td>E. Prieto Araujo</td>
</tr>
<tr>
<td>Abstract</td>
<td>The penetration of renewable energy, storage systems, EVs and DC systems in combination with the phase-out of synchronous generation, is leading to a power electronics (PE)-dominated power system, implying relevant challenges at network operation and control levels. The course covers modeling, analysis and control design aspects for future PE-dominated networks.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course objectives are: - Understand the fundamentals of PE-dominated power systems - Learn how to model, analyze and control grid-connected power converters - Apply the acquired modelling, analysis and control design techniques to real application power converters - Acquire techniques to assess the impact of PE devices within the power network.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Lecture notes will be provided in class. Specific literature will be provided with the lecture notes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / note</td>
<td>Basic knowledge on power electronics, power systems and control systems. Basic Matlab skills as well as sufficient mathematical maturity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0536-00L</td>
<td>Multiphysics Simulations for Power Systems</td>
<td>W 4</td>
<td>2V+2U</td>
<td>J. Smajic</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course is defined so and planned to be an addition to the module "227-0537-00L Technology of Electric Power System Components". However, the students who are familiar with the fundamentals of electromagnetic fields could attend only this course without its 227-0537-00-complement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goals of this course are a) understanding the fundamentals of the electromagnetic, thermal, mechanical, and coupled field simulations and b) performing effective simulations of primary equipment of electric power systems. The course is understood complementary to 227-0537-00L "Technology of Electric Power System Components", but can also be taken separately.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0731-00L</td>
<td>Power Market I - Portfolio and Risk Management</td>
<td>W 6</td>
<td>4G</td>
<td>D. Reichelt, G. A. Koeppele</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course is defined so and planned to be an addition to the module "227-0537-00L Technology of Electric Power System Components". However, the students who are familiar with the fundamentals of electromagnetic fields could attend only this course without its 227-0537-00-complement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course is intended to provide the participants with the knowledge necessary to develop power market portfolio and risk management strategies for power and energy trading companies. It covers the fundamental concepts of power market analysis, risk assessment, and portfolio optimization.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- Concepts and theories - Numerical methods - Case studies and applications - Final project</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The lecture provides an introduction to the theoretical foundations and numerical approaches for the simulation of photovoltaic energy conversion, R. Carron, A. N. Tiwari, Y. Romanyuk.

Objective

Content
1. Pan-European power market and trading
 1.1. Power trading
 1.2. Development of the European power markets
 1.3. Energy economics
 1.4. Spot and OTC trading
 1.5. European energy exchange EEX

2. Market model
 2.1. Market place and organisation
 2.2. Balance groups / balancing energy
 2.3. Ancillary services
 2.4. Market for ancillary services
 2.5. Cross-border trading
 2.6. Capacity auctions

3. Portfolio and Risk management
 3.1. Portfolio management 1 (introduction)
 3.2. Forward and futures contracts
 3.3. Risk management 1 (m2m, VaR, hpfc, volatility, cVaR)
 3.4. Risk management 2 (PaR)
 3.5. Contract valuation (HPFC)
 3.6. Portfolio management 2
 3.8. Risk Management 3 (enterprise wide)

4. Energy & Finance I
 4.1. Options 1 basics
 4.2. Options 2 hedging with options
 4.3. Introduction to derivatives (swaps, cap, floor, collar)
 4.4. Financial modelling of physical assets
 4.5. Trading and hydro power
 4.6. Incentive regulation

Lecture notes
Handouts of the lecture
Course Moodle: https://moodle-app2.let.ethz.ch/enrol/index.php?id=11636

227-0617-00L Simulation of Photovoltaic Devices - From Materials to Modules

Objective
The lecture provides an introduction to the theoretical foundations and numerical approaches for the simulation of photovoltaic energy conversion, from the microscopic description of component materials to macroscopic continuum modelling of solar cells and network simulation or effective models for performance prediction of entire solar modules and large scale photovoltaic systems.

Content
Photovoltaic technology: history and overview; The solar spectrum; Thermodynamics of solar energy conversion; Detailed balance models for solar cell operation. Know how to obtain and assess by simulation the key material properties and device parameters. Be able to use standard device simulation tools to predict the performance of solar cells and modules.

Prerequisites / notice
Undergraduate physics, mathematics, semiconductor devices

4 credits
W 4 credits 3G
A. N. Tiwari, R. Carron, Y. Romanyuk

227-0615-00L Portfolio and Risk management in the electrical power business, Pan-European power market and trading, futures and forward contracts, hedging, options and derivatives, performance indicators for the risk management, modelling of physical assets, cross-border trading, ancillary services, balancing power market, Swiss market model.

Abstract
Portfolio and risk management in the electrical power business, Pan-European power market and trading, futures and forward contracts, hedging, options and derivatives, performance indicators for the risk management, modelling of physical assets, cross-border trading, ancillary services, balancing power market, Swiss market model.
Content

Solar radiation characteristics, physical mechanisms for the light to electrical power conversion, properties of semiconductors for solar cells, processing and properties of conventional Si and GaAs based solar cells, technology and physics of thin film solar cells based on compound semiconductors, other solar cells including organic and dye sensitized cells, problems and new developments for power generation in space, interconnection of cells and solar module design, measurement techniques, system design of photovoltaic plants, system components such as inverters and controllers, engineering procedures with software demonstration, integration in buildings and other specific examples.

Lecture notes
Lecture reprints (in english).

Prerequisites / notice
Prerequisites: Basic knowledge of semiconductor properties.

Energy Flows and Processes

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0123-00L</td>
<td>Experimental Methods for Engineers</td>
<td>W</td>
<td>4</td>
<td>2V+2</td>
<td>T. Rüsgen, B. Schuermans, M. Tibbet</td>
</tr>
<tr>
<td>151-0163-00L</td>
<td>Nuclear Energy Conversion</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>A. Manera</td>
</tr>
<tr>
<td>151-0185-00L</td>
<td>Radiation Heat Transfer</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>A. Steinfield, P. Pozivil</td>
</tr>
<tr>
<td>151-0209-00L</td>
<td>Renewable Energy Technologies</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>A. Steinfeld, E. I. M. Casati</td>
</tr>
</tbody>
</table>

Abstract

Experimental Methods for Engineers
The course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics and process engineering) are attended by students in small groups.

Objective
Introduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic applications.

Content
In-class introduction to representative measurement techniques in the research areas of the participating institutes (fluid dynamics, energy technology, process engineering). Student participation in 8-10 laboratory experiments (study groups of 3-5 students, dependent on the number of course participants and available experiments).

Lecture notes
Presentations, handouts and instructions are provided for each experiment. A final exam evaluates the acquired knowledge individually.

Literature

Prerequisites / notice
Basic understanding in the following areas:
- fluid mechanics, thermodynamics, heat and mass transfer
- electrical engineering / electronics
- numerical data analysis and processing (e.g. using MATLAB)

Nuclear Energy Conversion

Does not take place this semester.

Abstract
Physical fundamentals of the fission reaction and the sustainable chain reaction, thermal design, construction, function and operation of nuclear reactors and power plants, light water reactors and other reactor types, conversion and breeding

Objective
Students get an overview on energy conversion in nuclear power plants, on construction and function of the most important types of nuclear reactors with special emphasis to light water reactors. They obtain the mathematical/physical basis for quantitative assessments concerning most relevant aspects of design, dynamic behaviour as well as material and energy flows.

Content
Nuclear physics of fission and chain reaction. Thermochemistry of nuclear reactors. Design of the reactor core. Introduction into the dynamic behaviour of nuclear reactors. Overview on types of nuclear reactors, difference between thermal reactors and fast breeders. Construction and operation of nuclear power plants with pressurized and boiling water reactors, role and function of the most important safety systems, special features of the energy conversion. Development tendencies of reactor technology.

Lecture notes

Literature

R. L. Murray; Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier

Radiation Heat Transfer

Advanced course in radiation heat transfer

Abstract
Fundamentals of radiative heat transfer and its applications. Examples are combustion and solar thermal/thermochemical processes, and other applications in the field of energy conversion and material processing.

Lecture notes
Lecture Notes containing copies of the presented slides.

Literature

Renewable Energy Technologies

Renewable energy technologies: solar PV, solar thermal, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects.

Abstract
Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization.

Objective
Lecture Notes containing copies of the presented slides.

Prerequisites / notice
Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT.
151-0216-00L Wind Energy

Abstract
The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics.

Objective
The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy.

Content
This mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines.

151-0221-00L Introduction to Modeling and Optimization of Sustainable Energy Systems

Abstract
This course introduces the fundamentals of energy system modeling for the analysis and the optimization of the energy system design and operations.

Objective
At the end of this course, students will be able to:
- define and quantify the key performance indicators of sustainable energy systems;
- select and apply appropriate models for conversion, storage and transport of energy;
- develop mathematical models for the analysis, design and operations of multi-energy systems and solve them with appropriate mathematical tools;
- select and apply methodologies for the uncertainty analysis on energy systems models;
- apply the acquired knowledge to tackle the challenges of the energy transition.

Content
The global energy transition; Key performance indicators of sustainable energy systems; Optimization models; Heat integration and heat exchangers; Life-cycles assessment; Models for conversion, storage and transport technologies; Multi-energy systems, Design, operations and analysis of energy systems; Uncertainties in energy system modeling.

151-0251-00L Principles, Efficiency Optimization and Future Applications of IC Engines

Note: previous course title until HS20 "IC-Engines: Principles, Thermodynamic Optimization and Future Applications".

Abstract

Objective
The students get familiar with operating characteristics and efficiency maximization methods of IC engines for propulsion and decentralized energy. The focus is on fundamental as well as applied knowledge on engine design and operation and assessment in a combination of lectures and exercises.

Content
This lecture aims at introducing the students to the working principles and efficiency optimization methods for Internal Combustion (IC) engines which are expected to continue to play a very important role in transportation (long-haul heavy-duty, marine) and decentralized combined heat and power generation. Following an overview of different applications and powertrains, the course will focus on the following topics: First, a generic overview of the history of IC-Engines is given, and the basic dimensions and specific engine-relevant terminology is introduced. Next, operating maps for different duty cycles are discussed, highlighting the benefits of individual powertrain configurations for different usage scenarios. The high-pressure thermodynamic process and combustion-induced heat release are analyzed in detail and the design of the combustion processes is discussed in view of further optimization of the energy conversion efficiency. The concept of boosting, its challenges and potential are also presented. In addition, flow field characteristics, convective and radiative heat transfer and combustion modes (Otto, Diesel and “multi-mode” cycles) will be discussed along with possible simulation methods. The course consists of lectures combined with exercises. In addition, several invited guest talks will be held by representatives from Swiss industrial companies active in this field.

Prerequisites / notice
This course provides background for the course 151-0254-00L “Environmental Aspects of Future Mobility” held in the Spring Semester, where the focus is on emission formation and minimization, exhaust gas after treatment systems and potentials of future synthetic/e-fuels in IC engines; all given in the broader context of a future mobility/transportation options (battery electric, hybrids, fuel cells etc.) and transformation pathways towards sustainability.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed
Analytical Competencies assessed

151-0293-00L Combustion and Reactive Processes in Energy and Materials Technology

Abstract
The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion in particular) as well as the synthesis of new materials.

Objective
The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus “Energy, Flows & Processes” on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering.

Content

Lecture notes
No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed:
Teaching language, assignments and lecture slides in English

Literature
Abstract
Introduction to current and future engine systems and their control systems.

Objective
Introduction to methods of control and optimization of dynamic systems. Application to real engines. Understand the structure and behavior of drive train systems and their quantitative descriptions.

Content
Physical description and mathematical models of components and subsystems (mixture formation, load control, supercharging, emissions, drive train components, etc.). Case studies of model-based optimal design and control of engine systems with the goal of minimizing fuel consumption and emissions.

Lecture notes
Introduction to Modeling and Control of Internal Combustion Engine Systems
Guzzella Lino, Onder Christopher H.
ISBN: 978-3-642-10774-0

Prerequisites / notice
Combined homework and testbench exercise (air-to-fuel-ratio control or idle-speed control) in groups.

Abstract
Introduction to current and future propulsion systems and the electronic control of their longitudinal behavior.

Objective
Introduction to methods of system optimization and controller design for vehicles. Understanding the structure and working principles of conventional and new propulsion systems. Quantitative descriptions of propulsion systems.

Content
Understanding of physical phenomena and mathematical models of components and subsystems (manual, automatic and continuously variable transmissions, energy storage systems, electric drive trains, batteries, hybrid systems, fuel cells, road/wheel interaction, automatic braking systems, etc.). Presentation of mathematical methods, CAE tools and case studies for the model-based design and control of propulsion systems with the goal of minimizing fuel consumption and emissions.

Lecture notes
Vehicle Propulsion Systems -- Introduction to Modeling and Optimization
Guzzella Lino, Sciarretta Antonio
ISBN: 978-3-642-35912-5

Prerequisites / notice
Lectures of Prof. Dr. Ch. Onder and Dr. Ph. Elbert are also possible to be held in German.

Abstract
This course encompasses the theoretical principles of chemical process simulation and optimization, as well as its practical application in process analysis. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies. Commercial software packages (Aspen) are introduced for solving process flowsheeting and optimization problems.

Objective
This course aims to develop the competency of chemical engineers in process flowsheeting, process simulation and process optimization. Specifically, students will develop the following skills:
- Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes.
- Modeling of general chemical processes and systems: students should be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior.
- Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able to develop criteria to correctly use commercial software packages and critically evaluate their results.
- Process optimization: the students will learn how to formulate optimization problems in mathematical terms, the main type of optimization problems that exist (i.e., LP, NLP, MILP and MINLP) and the fundamentals of the optimization algorithms implemented in commercial solvers.

Content
Overview of process simulation and flowsheeting:
- Definition and fundamentals
- Fields of application
- Case studies

Process simulation:
- Modeling strategies of process systems
- Mass and energy balances and degrees of freedom of process units and process systems

Process flowsheeting:
- Flowsheet partitioning and tearing
- Solution methods for process flowsheeting
- Simultaneous methods
- Sequential methods

Process optimization and analysis:
- Classification of optimization problems
- Linear programming, LP
- Non-linear programming, NLP
- Mixed-integer linear programming, MILP
- Mixed-integer nonlinear programming, MINLP

Commercial software for simulation (Aspen Plus):
- Thermodynamic property methods
- Reaction and reactors
- Separation / columns
- Convergence, optimisation & debugging

Autumn Semester 2021
An exemplary literature list is provided below:
- Smith, R. Chemical process design and integration, Wiley (2005).

Prerequisites / notice
A basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.

Energy Economics and Policy

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0577-00L</td>
<td>An Introduction to Sustainable Development in the Built Environment</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>G. Habert, D. Kaushal</td>
</tr>
</tbody>
</table>

Objective
At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmental aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focusing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.

Content
The following topics give an overview of the themes that are to be worked on during the lecture.

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world

- Synthesis: Transition to sustainable development

Lecture notes
All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.

Literature
A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.

Advanced Environmental Assessments

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0317-00L</td>
<td>Advanced Environmental Assessments</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Pfister, R. Frischknecht</td>
</tr>
</tbody>
</table>

Abstract
This course deepens students' knowledge of the environmental assessment methodologies and their various applications.

Objective
This course has the aim of deepening students' knowledge of the environmental assessment methodologies and their various applications. In particular, students completing the course should have the
- Ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- Knowledge about the current state of the scientific discussion and new research developments
- Ability to properly plan, conduct and interpret environmental assessment studies
- Knowledge of how to use LCA as a decision support tool for companies, public authorities, and consumers
<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Inventory developments, transparency, data quality, data completeness, and data exchange formats</td>
</tr>
<tr>
<td>- Allocation (multiooutput processes and recycling)</td>
</tr>
<tr>
<td>- Hybrid LCA methods.</td>
</tr>
<tr>
<td>- Consequential and marginal analysis</td>
</tr>
<tr>
<td>- Recent development in impact assessment</td>
</tr>
<tr>
<td>- Spatial differentiation in Life Cycle Assessment</td>
</tr>
<tr>
<td>- Workplace and indoor exposure in Risk and Life Cycle Assessment</td>
</tr>
<tr>
<td>- Uncertainty analysis</td>
</tr>
<tr>
<td>- Subjectivity in environmental assessments</td>
</tr>
<tr>
<td>- Multicriteria analysis</td>
</tr>
<tr>
<td>- Case Studies</td>
</tr>
</tbody>
</table>

Lecture notes	No script. Lecture slides and literature will be made available on Moodle.
Literature	Literature will be made available on Moodle.
Prerequisites / notice	Basic knowledge of environmental assessment tools is a prerequisite for this class. Students that have not done classwork in this topic before are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. 2016: Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0317-03L</td>
<td>Advanced Environmental Assessment (Computer Lab I)</td>
</tr>
<tr>
<td>W</td>
<td>1 credit</td>
</tr>
<tr>
<td></td>
<td>S. Pfister</td>
</tr>
<tr>
<td>Abstract</td>
<td>Different tools and software used for environmental assessments, such as LCA are introduced. The students will have hands-on exercises in the computer rooms and will gain basic knowledge on how to apply the software and other resources in practice</td>
</tr>
<tr>
<td>Objective</td>
<td>Become acquainted with various software programs for environmental assessment including Life Cycle Assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0317-04L</td>
<td>Advanced Environmental Assessment (Computer Lab II)</td>
</tr>
<tr>
<td>W</td>
<td>2 credits</td>
</tr>
<tr>
<td></td>
<td>S. Pfister</td>
</tr>
<tr>
<td>Abstract</td>
<td>Technical systems are investigated in projects, based on the software and tools introduced in the course 102-0317-03L Advanced Env. Assessment (Computer Lab I). The projects are created around a complete but simplified LCA study, where the students will learn how to answer a given question with target oriented methodologies using various software programs and data sources for env. assessment</td>
</tr>
<tr>
<td>Objective</td>
<td>Become acquainted with utilizing various software programs for environmental assessment to perform a Life Cycle Assessment and learn how to address the challenges when analyzing a complex system with available data and software limitations.</td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisite is enrolment of 102-0317-00 Advanced Environmental Assessments and of 102-0317-03 Advanced Environmental Assessments (Computer Lab I) in parallel or in advance (both courses in HS).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0327-01L</td>
<td>Implementation of Environmental and Other Sustainability Goals</td>
</tr>
<tr>
<td>W</td>
<td>2 credits</td>
</tr>
<tr>
<td></td>
<td>A. E. Braunschweig</td>
</tr>
<tr>
<td>Abstract</td>
<td>Master students in Environmental Engineering choosing module Ecological Systems Design are not allowed to enrol 102-0327-01 Advanced Environmental Assessments (2KP) as already included in 102-0307-01 Advanced Environmental, Social and Economic Assessments (5KP).</td>
</tr>
<tr>
<td>Objective</td>
<td>This course deepens students' knowledge of environmental, economic, and social assessment methodologies and their various applications. In particular, students completing the course should have the ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors. In the course element "Implementation of Environmental and other Sustainability Goals", students will learn to describe key sustainability problems of the current economic system and measuring units, describe the management system of an organisation and how to develop a sustainability orientation, discuss approaches to measure environmental performance of an organisation, including 'organisation LCA' (Ecobalance), explain the pros and cons of single score environmental assessment methods, demonstrate life cycle costing, interpret stakeholder relations of an organisation, and (if time allows) describe sustainable supply chain management and stakeholder management.</td>
</tr>
</tbody>
</table>

| Prerequisites / notice | Prerequisite is enrolment of 102-0317-00 Advanced Environmental Assessments and of 102-0317-03 Advanced Environmental Assessments (Computer Lab I) in parallel or in advance (both courses in HS). |

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 826 of 2152
The goal of the lecture is to get a basic understanding of international market mechanisms and their consequences for a successful

2V

A successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and

Globalization of markets increases global competition and requires enterprises to continuously improve their performance to sustainably

Part I: Slides and background reading material will be available on lecture homepage

L. Bretschger

Resource and Environmental Economics

Relationship between economy and environment, market failures, external effects and public goods, contingent valuation, internalisation of

Part I (Advanced Environmental Assessments)

Will be made available.

This course should only be elected by students of environmental engineering with a with a Module in Ecological Systems Design. All other

students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other

Sustainability goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic

are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. (2016). Environmental Life Cycle

Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).

Part II (Implementation of Environmental and other Sustainability Goals):

- Sustainability problems of the current economic system and its measuring units;
- The structure of a management system, and elements to integrate environmental management (ISO 14001) and social management (SA8000 as well as ISO 26000), especially into strategy development, planning, controlling and communication;
- Sustainability Opportunities and Innovation
- The concept of 'Continuous Improvement'
- Life Cycle Costing, Life Cycle Management
- environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance), based on practical examples of companies and new concepts
- single score env. assessment methods (Swiss ecopoints)
- stakeholder management and sustainability oriented communication
- an intro into sustainability issues of supply chain management

Students will get small exercises related to course issues.

Lecture notes

Part I: Slides and background reading material will be available on lecture homepage

Part II: Documents will be available on Ilias

Literature

Prerequisites / notice

This course is only offered to students of environmental engineering with a with a Module in Ecological Systems Design. All other

students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other

Sustainability goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic

are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. (2016). Environmental Life Cycle

Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).

227-0759-00L

International Business Management for Engineers

W

3 credits

2V

W. Hofbauer

Abstract

Globalization of markets increases global competition and requires enterprises to continuously improve their performance to sustainably

survive. Engineers substantially contribute to the success of an enterprise provided they understand and follow fundamental international

market forces, economic basics and operational business management.

Objective

The goal of the lecture is to get a basic understanding of international market mechanisms and their consequences for a successful

enterprise. Students will learn by practical examples how to analyze international markets, competition as well as customer needs and how

they convert to a successful portfolio an enterprise offers to the global market. They will understand the basics of international business

management, why efficient organizations and effective business processes are crucial for the successful survival of an enterprise and how

all this can be implemented.

Content

The first part of the course provides an overview about the development of international markets, the expected challenges and the players

in the market. The second part is focusing on the economic aspects of an enterprise, their importance for the long term success and how to

effectively manage an international business. Based on these fundamentals the third part of the course explains how an innovative product

portfolio of a company can be derived from considering the most important external factors and which consequences in respect of product

innovation, competitive product pricing, organization and business processes emerge. Each part of the course includes practical examples

to demonstrate the procedure.

Lecture notes

A script is provided for this lecture.

Prerequisites / notice

The lecture will be held in three blocks each of them on a Saturday (starts on September 19, 2020). Each block will focus on one of the

three main topics of the course. Between the blocks the students will work on specific case studies to deepen the subject matter. About two

weeks after the third block a written examination will be conducted.

363-0537-00L

Resource and Environmental Economics

W

3 credits

2G

L. Bretschger

Abstract

Relationship between economy and environment, market failures, external effects and public goods, contingent valuation, internalisation of externals, economics of non-renewable resources, economics of renewable resources, environmental cost-benefit analysis, sustainability economics, and international resource and environmental problems.

Objective

A successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and environmental economics and the ability to solve typical problems using appropriate tools consisting of concise verbal explanations, diagrams or mathematical expressions. Concrete goals are first of all the acquisition of knowledge about the main questions of resource and environmental economics and about the foundation of the theory with different normative concepts in terms of efficiency and fairness. Secondly, students should be able to deal with environmental externalities and internalisation through appropriate policies or private negotiations, including knowledge of the available policy instruments and their relative strengths and weaknesses. Thirdly, the course will allow for in-depth economic analysis of renewable and non-renewable resources, including the role of stock constraints, regeneration functions, market power, property rights and the impact of technology. A fourth objective is to successfully use the well-known tool of cost-benefit analysis for environmental policy problems, which requires knowledge of the benefits of an improved natural environment. The last two objectives of the course are the acquisition of sufficient knowledge about the economics of sustainability and the application of environmental economic theory and policy at international level, e.g. to the problem of climate change.

Content

The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider economics and public goods, efficiency levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of common-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.
The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training.

The lecture explores current challenges of corporate sustainability and prepares students to become champions for sustainable business practices. In the beginning, traditional lectures are complemented by e-modules that allow students to train critical thinking skills. In the 2nd half of the semester, students work on teams on sustainability challenges related to water, energy, mobility, and food.

Students - assess the limits and the potential of corporate sustainability for sustainable development
- develop critical thinking skills (argumentation, communication, evaluative judgment) that are useful in the context of corporate sustainability using an innovative writing and peer review method.
- recognize and realize opportunities through team work for corporate sustainability in a business environment
- present strategic recommendations in teams with different output formats (tv-style debate, consultancy pitch, technology model walk-through, campaign video)

In the first part of the semester, Prof. Volker Hoffmann and Dr. Johannes Meuer will share their insights on corporate sustainability with you through a series of lectures. They introduce you to a series of critical thinking exercises and build a foundation for your group work. In the second part of the semester, you participate in one of four tracks in which SusTec researchers will coach your groups through a seven-step program. Our ambition is that you improve your analytic and organizational skills and that you can confidently stand up for corporate sustainability in a professional setting. You will share the final product of your work with fellow students in a final puzzle session at the end of the semester.

http://www.sustec.ethz.ch/teaching/lectures/corporate-sustainability.html

Prerequisites

- admission to the master program EST have been successfully completed;
- b. any additional requirements necessary to gain admission to the master program EST have been successfully completed;
- c. both the semester project and the internship have been successfully completed;
- a successful completion of the bachelor program;
- b. any additional requirements necessary to gain admission to the master program EST have been successfully completed;
- c. both the semester project and the internship have been successfully completed.

Only students who fulfill the following criteria are allowed to enroll for and start with their master thesis:

Registration in mystudies required!

The master program in Energy Science and Technology culminates in a six months research project which addresses a scientific research question on one's chosen area of specialization. The masters thesis is supervised by a program-affiliated faculty member and the topic must be approved in advance by the tutor.

Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.

TEACHING FORMAT/ ATTENDANCE: Please note that we aim to offer you the course in-class and online, but at this point we cannot guarantee that a purely online participation is possible. Irrespective of the format (in-class or online), the course includes several mandatory sessions that participants must attend to successfully earn credit points.

see GESS Science in Perspective: Language Courses
ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-ITET

GESS Science in Perspective: Type B: Enhancement of Reflection Capability

- develop critical thinking skills (argumentation, communication, evaluative judgment) that are useful in the context of corporate sustainability using an innovative writing and peer review method.
- recognize and realize opportunities through team work for corporate sustainability in a business environment
- present strategic recommendations in teams with different output formats (tv-style debate, consultancy pitch, technology model walk-through, campaign video)

In the first part of the semester, Prof. Volker Hoffmann and Dr. Johannes Meuer will share their insights on corporate sustainability with you through a series of lectures. They introduce you to a series of critical thinking exercises and build a foundation for your group work. In the second part of the semester, you participate in one of four tracks in which SusTec researchers will coach your groups through a seven-step program. Our ambition is that you improve your analytic and organizational skills and that you can confidently stand up for corporate sustainability in a professional setting. You will share the final product of your work with fellow students in a final puzzle session at the end of the semester.

http://www.sustec.ethz.ch/teaching/lectures/corporate-sustainability.html

Prerequisites

- admission to the master program EST have been successfully completed;
- b. any additional requirements necessary to gain admission to the master program EST have been successfully completed;
- c. both the semester project and the internship have been successfully completed;
- a successful completion of the bachelor program;
- b. any additional requirements necessary to gain admission to the master program EST have been successfully completed;
- c. both the semester project and the internship have been successfully completed.

Only students who fulfill the following criteria are allowed to enroll for and start with their master thesis:

Registration in mystudies required!

The master program in Energy Science and Technology culminates in a six months research project which addresses a scientific research question on one's chosen area of specialization. The masters thesis is supervised by a program-affiliated faculty member and the topic must be approved in advance by the tutor.

Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.

TEACHING FORMAT/ ATTENDANCE: Please note that we aim to offer you the course in-class and online, but at this point we cannot guarantee that a purely online participation is possible. Irrespective of the format (in-class or online), the course includes several mandatory sessions that participants must attend to successfully earn credit points.

see GESS Science in Perspective: Language Courses
ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-ITET

GESS Science in Perspective: Type B: Enhancement of Reflection Capability

- develop critical thinking skills (argumentation, communication, evaluative judgment) that are useful in the context of corporate sustainability using an innovative writing and peer review method.
- recognize and realize opportunities through team work for corporate sustainability in a business environment
- present strategic recommendations in teams with different output formats (tv-style debate, consultancy pitch, technology model walk-through, campaign video)

In the first part of the semester, Prof. Volker Hoffmann and Dr. Johannes Meuer will share their insights on corporate sustainability with you through a series of lectures. They introduce you to a series of critical thinking exercises and build a foundation for your group work. In the second part of the semester, you participate in one of four tracks in which SusTec researchers will coach your groups through a seven-step program. Our ambition is that you improve your analytic and organizational skills and that you can confidently stand up for corporate sustainability in a professional setting. You will share the final product of your work with fellow students in a final puzzle session at the end of the semester.

http://www.sustec.ethz.ch/teaching/lectures/corporate-sustainability.html

Prerequisites

- admission to the master program EST have been successfully completed;
- b. any additional requirements necessary to gain admission to the master program EST have been successfully completed;
- c. both the semester project and the internship have been successfully completed;
- a successful completion of the bachelor program;
- b. any additional requirements necessary to gain admission to the master program EST have been successfully completed;
- c. both the semester project and the internship have been successfully completed.

Only students who fulfill the following criteria are allowed to enroll for and start with their master thesis:

Registration in mystudies required!

The master program in Energy Science and Technology culminates in a six months research project which addresses a scientific research question on one's chosen area of specialization. The masters thesis is supervised by a program-affiliated faculty member and the topic must be approved in advance by the tutor.

Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.
Energy Science and Technology Master - Key for Type

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td>O</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
<td>W+</td>
</tr>
</tbody>
</table>

Key for Hours

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td>P</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Chemistry I

Type: O
ECTS: 4 credits
Hours: 2V+2U
Lecturers: J. Cvengros, J. E. E. Buschmann, P. Funck, E. C. Meister, R. Verel

Abstract
General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium.

Objective
Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.

Content
1. Stoichiometry
 Amount of substance and mass. Composition of chemical compounds. Reaction equation. Ideal gas law.
2. Atoms
 Elementary particles and atoms. Electron configuration of the elements. Periodic system.
4. Basics of chemical thermodynamics
 System and surroundings. Description of state and change of state of chemical systems.
5. First law of thermodynamics
6. Second law of thermodynamics
 Entropy. Change of entropy in chemical systems and universe. Reaction entropy.
7. Gibbs energy and chemical potential.
8. Chemical equilibrium
 Law of mass action. Reaction quotient and equilibrium constant. Phase transition equilibrium.
9. Acids and bases
10. Dissolution and precipitation.
Heterogeneous equilibrium. Dissolution and solubility product. Carbon dioxide-carbonic acid carbonate equilibrium.

Lecture notes
Online-Skript mit durchgerechneten Beispielen.

Literature
Weiterführende Literatur:

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competency</th>
<th>Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>
Dynamic Earth I

Title: Understanding basic geological and geophysical processes

Course Description:
This course aims to provide an individual experience of the physical phenomena and the basic principles of the experiment. By conducting simple physical experiments, the student will learn how to properly use physical instruments and how to evaluate the results correctly. The experiments cover a wide range of analytic and synthetic techniques, including analytical and synthetic techniques (e.g., investigation of soil and water samples or the preparation of simple compounds). Furthermore, the handling of gaseous substances is practised.

Prerequisites and Conditions:
Enrollment is only possible under specific topics in earth sciences will be discussed using examples and case studies. Hand samples of the major rock types will be described and interpreted. Short excursions in the region of Zurich will permit direct experience with earth science processes (e.g., earth surface processes) and recognition of earth science problems and solutions relevant for modern society (e.g., building materials, water resources). Working in small groups will allow for discussion and examination of actual earth science themes.

Literature:

Lecture notes:
The script will be published on the web. Details will be provided on the first day of the semester.

Prerequisites / notice:
A thorough study of all script materials is requested before the course starts. Safety concept: https://chab.ethz.ch/studium/bachelor1.html
The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.

Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0023-00L</td>
<td>Atmosphere</td>
<td>O</td>
<td>3</td>
<td>2V</td>
<td>E. M. Fischer, T. Peter</td>
</tr>
<tr>
<td></td>
<td>Basic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understanding of basic physical and chemical processes in the atmosphere. Understanding of mechanisms of and interactions between: weather - climate, atmosphere - ocean - continents, troposphere - stratosphere. Understanding of environmentally relevant structures and processes on vastly differing scales. Basis for the modelling of complex interrelations in the atmosphere.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>651-3400-00L</td>
<td>Geochemistry I</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>M. Schönbächler, D. Vance</td>
</tr>
<tr>
<td></td>
<td>Introduction to geochemistry and its application to the study of the origin and evolution of the Earth and planets.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gain an overview of geochemical methods used in various fields of Earth Sciences and how they can be applied to study geological processes in the Earths mantle, crust, oceans and atmosphere.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course is an introduction into geochemistry with a special focus on the basic concepts used in this rapidly evolving field. The course deals with the geochemist's toolbox: the basic chemical and nuclear properties of elements from the periodic table and how these elements can be used to ask fundamental questions in Earth Sciences. The important concepts used in solid-solution-gas equilibria are introduced. The concepts of chemical reservoirs and geochemical cycles are discussed with examples from the carbon cycle in the Earth. The course also addresses geological applications in low- and high-temperature geochemistry, including the formation of continents, the differentiation of the Earth, the geochemistry of ocean and continental waters.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The slides are available online.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The slides are available online.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites / notice

Prerequisite: chemical thermodynamics, basic inorganic chemistry and physics.

Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0071-00L</td>
<td>Mathematics III: Systems Analysis</td>
<td>O</td>
<td>4</td>
<td>2V+1U</td>
<td>L. Brunner, R. Knutti, S. Schemm, H. Wernli, P. Zschenderlein</td>
</tr>
<tr>
<td></td>
<td>The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General knowledge of seismology.

To understand and describe the basic principles of the hydrologic cycle and water flow in streams and aquifers.

T. I. Eglinton
D. Giardini

The course will allow you to ask questions about the origin and the evolution of life on Earth, to understand contemporary hypotheses and create new methods of developing them further. Theory is supplemented with observations in the field, exercises and the application of simple mathematical models. The course will enable you to integrate geological knowledge into topics that will be taught in subsequent earth science courses and into the current understanding of Earth history. You will learn to better understand modern geological settings and, if necessary, to recommend biogeochemically well-founded and responsible interventions or protective measures.

Objective

Learning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance.

Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.

Content

https://iac.ethz.ch/edu/courses/bachelor/vorbereitung/systemanalyse.html

Lecture notes

Overhead slides will be made available through the course website.

Literature

<table>
<thead>
<tr>
<th>Objective</th>
<th>Abstract</th>
<th>Content</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-3543-00L</td>
<td>Geophysik I</td>
<td>General knowlede of seismology.</td>
<td>Available</td>
</tr>
<tr>
<td>651-3507-00L</td>
<td>Introduction to Oceanography and Hydrogeology</td>
<td>General knowlede of seismology.</td>
<td>Available</td>
</tr>
</tbody>
</table>

Abstract

This course is designed to provide an introduction to hydrogeology and oceanography for all Earth Science students at ETH. It provides an overview of the chemical processes on water flow in streams, aquifers, and the oceans. It also deals with the basics of groundwater chemistry, biogeochemical cycling in the oceans, the role of the oceans as carbon reservoirs and their dynamic redox state.

Objective

To understand contemporary hypotheses and create new methods of developing them further. Theory is supplemented with observations in the field, exercises and the application of simple mathematical models. The course will enable you to integrate geological knowledge into topics that will be taught in subsequent earth science courses and into the current understanding of Earth history. You will learn to better understand modern geological settings and, if necessary, to recommend biogeochemically well-founded and responsible interventions or protective measures.

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 833 of 2152
The course focuses on (a) geobiochemical cycles that play major roles in Earth history in aquatic and terrestrial ecosystems, (b) biosynthetic and metabolic processes, which are essential for life, (c) organisms which regulate and maintain geochemochemical cycling, and (d) chemical signals of past life in the geological record. Accordingly, we must understand

- how biological cells and its components are built from essential elements and molecules,
- how cells function and which life styles organisms developed,
- where organisms can exist and which factors select for their presence,
- where biologically useful forms of energy come from, and under which conditions they can be exploited,
- how biological changes can transform environmental conditions and composition,
- which biological products can lead to signals preserved in the rock record, and how biomolecules and elements are altered in sedimentary deposits,
- how organic and inorganic components are cycled through the biosphere, and how biogeochemical cycles function,
- how "biological innovations" evolved and changed in response to environmental changes.

Applied Case Studies, which supplement and illustrate the contents:

Scientific applications of geobiological knowledge are found in fields like Microbial Ecology, Geochemistry, Palaeontology, Sedimentology, Petrology, Ocean Research, Environmental Sciences, Astrobiology and Archaeology.

Prerequisites

- Practical applications of geobiological knowledge are needed in fields like stabilisation of existing and design of safe waste repositories, surveilling ground water resources, sewage treatment, exploitation of and prospecting for fossil carbon sources, soil remediation, mineral exploration and leaching, forensic science and medicine.

As integral Bestandteil der Vorlesung wird eine Exkursion durchgeführt.

Mit der Belegung akzeptieren die Studierenden die Allgemeinen Geschäftsbedingungen für Exkursionen und Feldkurse des D-ERDW: https://www.ethz.ch/content/dam/ethz/special-interest/erdw/department/dokumente/studium/exkursionen/AGB_ERDW_Exkursionen_dt.pdf

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credit Points</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-3301-00L</td>
<td>Crystals and Minerals</td>
<td>O</td>
<td>4 credits</td>
</tr>
<tr>
<td>651-4271-00L</td>
<td>Data Analysis and Visualisation with Matlab in Earth Sciences</td>
<td></td>
<td>3 credits</td>
</tr>
<tr>
<td>651-3402-00L</td>
<td>Magmatism and Metamorphose I</td>
<td>O</td>
<td>4 credits</td>
</tr>
</tbody>
</table>

Course Notes

- Lecture notes and homework are provided and additional material is made available on Moodle.

Integrated Earth Systems

Number	Title	Type	ECTS	Hours	Lecturers
651-4180-02L | Integrated Earth Systems II | O | 5 credits | 4G+1U | H. Stoll, D. Vance, S. Willett

Abstract
The surface Earth is often thought of as a set of interacting systems, often with feedbacks between them. These interacting systems control the tectonics, geomorphology, climate, and biology of the surface Earth. To fully understand the nature of the Earth System, including the controls on its past evolution, its present state, and its future, an integrated perspective is required.

Objective
To introduce students to an integrated view of the surface Earth, uniting perspectives from different disciplines of the earth sciences.

Content
To encourage students in the critical analysis of data and models in Earth Science.

Planet Earth has had a complex history since its formation ~4.6 billion years ago. The surface Earth is often thought of as a set of interacting systems, often with positive and negative feedbacks between them. These interacting systems control the tectonics, geomorphology, climate, and biology of the surface Earth. To fully understand the nature of the Earth System, including the controls on its past evolution, its present state, and its future, an integrated perspective is required. This is a subject that pulls in observations and models from many areas of the Earth Sciences, including geochemistry, geophysics, geology and biology. The main goal of the course is to convey this integrated view of the surface of our planet.

We will achieve this integrated view through a series of lectures, exercises, and tutorials. We take as our framework some of the key events in Earth history, encouraging understanding of the controlling processes through integrated observations, ideas and models from disciplines across science.

Majors

Major: Geology and Geophysics
Advisors of the major in Geology and Geophysics are Dr. Vincenzo Picotti (Geology) and Dr. Jérôme Noir (Geophysics).

Methods

Number	Title	Type	ECTS	Hours	Lecturers
651-3527-00L | Earth Science Mapping Exercises II | W+ | 2 credits | 2P | J. Ruh

Abstract
Reading and interpretation of geological maps.

Objective
All participants are able to:

- Read and understand complex geological maps;
- Assess, select, and project information from real case studies;
- Make tectonic overview sketches and construct meaningful cross-sections;

Content
Advanced analysis of geological maps and construction of geological sections. Special points: normal faults of the Rheintal graben, Val de Ruz, Helvetic nappes of the Säntis area. Reconstruction of the geological history of the map areas. References to the Geology of Switzerland.

Lecture notes
Exercises and instructions are handed out.

Literature

Prerequisites / notice
Requirement: Earth science mapping exercises I

401-0624-00L | Mathematics IV: Statistics | W+ | 4 credits | 2V+1U | J. Ernest

Abstract
Introduction to basic methods and fundamental concepts of statistics and probability theory for practitioners in natural sciences. The concepts will be illustrated with some real data examples and applied using the statistical software R.

Objective
Capability to learn from data; good practice when dealing with data and recognizing possible fraud in statistics; basic knowledge about the laws of randomness and stochastic thinking (thinking in probabilities); application simple methods in inferential statistics (e.g., several hypothesis tests will be introduced), i.a. also using the statistical software R. The lecture will be held in German.

Content

Lecture notes
Ausführliches Skript zur Vorlesung ist erhältlich.

Literature

Prerequisites / notice
Die Übungen (ca. die Hälfte der Kontaktstunden; einschliesslich Computerrübungen) sind ein wichtiger Bestandteil der Lehrveranstaltung.

Voraussetzungen: Mathematik I, II

651-4031-00L | Geographic Information Systems | W+ | 3 credits | 4G | A. Baltensweiler, M. Hägeli-Golay

Abstract
Number of participants limited to 60.

Introduction to the architecture and data processing capabilities of geographic information systems (GIS). Practical application of spatial data modeling and geoprocessing functions to a selected project from the earth sciences.

Objective
Knowledge of the basic architecture and spatial data handling capabilities of geographic information systems.

Content
Theoretical introduction to the architecture, modules, spatial data types and spatial data handling functions of geographic information systems (GIS). Application of data modeling principles and geoprocessing capabilities using ArcGIS: Data design and modeling, data acquisition, data integration, spatial analysis of vector and raster data, particular functions for digital terrain modeling and hydrology, map generation and 3D-visualization.

Lecture notes
Introduction to Geographic Information Systems, Tutorial: Introduction to ArcGIS Pro

Literature

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 835 of 2152
Plate tectonic framework: Earth cooling and mantle-plate interaction, three kinds of plate boundaries and their roles and characteristics.

To teach students the basics of observational seismology, earthquake source seismology, seismotectonics and the principle of seismic...
Observational seismology, earthquake source seismology, seismotectonics and the principle of seismic tomography. Mantle convection over Earth history, structure of the oceanic and continental lithosphere, plate tectonics, hotspots, global heat flux. Dynamo operation and magnetic field generation in Earth, planets, the Sun and stars; electromagnetism to probe the mantle.

Applied

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-3525-00L</td>
<td>Introduction to Engineering Geology</td>
<td>W+</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>S. Löw, L. de Palézieux dit Falconnet, M. Ziegler</td>
</tr>
</tbody>
</table>

Abstract
This introductory course starts from a descriptions of the behavior and phenomena of soils and rocks under near surface loading conditions and their key geotechnical properties. Lab and field methods for the characterization of soils, rocks and rock masses are introduced. Finally practical aspects of ground engineering, including tunneling and landslide hazards are presented.

Objective
Understanding the basic geotechnical and geomechanical properties and processes of rocks and soils. Understanding the interaction of rock and soil masses with technical systems. Understanding the fundamentals of geological hazards.

Content

Literature

Electives

The electives listed are recommended. Additional courses can be chosen from the complete offerings of the ETH Zurich and University of Zurich.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-3541-00L</td>
<td>Exploration and Environmental Geophysics</td>
<td>W+</td>
<td>4 credits</td>
<td>3V</td>
<td>P. Edme, H. Maurer, A. Shakas</td>
</tr>
</tbody>
</table>

Abstract
Overview and understanding of the most important geophysical methods: Potential field methods (Gravimetrics and Magnetics), Electrical and electromagnetic methods, Refraction and reflection seismics, Georadar. Discussion of survey design, sources and receivers and data processing.

Objective
Overview and understanding of the most important geophysical methods. Proposed solutions to assess and observe problems relevant to exploration and environmental geophysics in soil, ice and lithosphere at different scales. Getting familiar with measuring- and interpretation procedures. Pointing out the possibilities and limitations of geophysical methods.

Content

Literature
Additional material will be provided by the lecturers.

Electives

The electives listed are recommended. Additional courses can be chosen from the complete offerings of the ETH Zurich and University of Zurich.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4903-00L</td>
<td>Quaternary Geology and Geomorphology</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Ivy Ochs, M. Luetscher, H. Stoll</td>
</tr>
</tbody>
</table>

Abstract
In this course the student is familiarized with the manner in which glacial, periglacial, fluvial, gravitational, karst, coastal and aeolian processes produce characteristic landforms and sedimentary deposits. The student is introduced to subdivisions of the Quaternary, with a focus on climatic changes in the Alps. Competency in these themes is gained through practical exercises and discussion.

Literature
Additional material will be provided by the lecturers.
Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies assessed
Problem-solving assessed
Project Management not assessed

Domain C - Social Competencies

Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies

Adaptability and Flexibility assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

Course 701-0565-00L: Fundamentals of Natural Hazards Management

Abstract
Risks to life and human assets result when settlement areas and infrastructure overlap regions where natural hazard processes occur. This course utilizes case studies to teach how a future natural hazards-specialist should analyze, assess and manage risks.

Objective
Concepts will be explained step-by-step through a set of case studies, and applied in lab by the students. The following principal steps are used when coping with natural hazard-risks. At each step, students will learn and apply the following skills:
- Risk analysis - What can happen?
 - Characterize the processes and environmental measures that lead to a natural hazard and integrate modeling results of these processes.
 - Identify threats to human life and assets exposed to natural hazards and estimate possible drawbacks or damages.
- Risk assessment - What are the acceptable levels of risk?
 - Apply principles to determine acceptable risks to human life and assets in order to identify locations which should receive added protection.
 - Explain causes for conflicts between risk perception and risk analysis.
- Risk management - What steps should be taken to manage risks?
 - Explain how various hazard mitigation approaches reduce risk.
 - Describe hazard scenarios as a base for adequate dimensioning of control measures.
 - Identify the best alternative from a set of thinkable measures based on an evaluation scheme.
 - Explain the principles of risk-governance.

Content
Die Vorlesung besteht aus folgenden Blöcken:
1) Einführung ins Vorgehenskonzept (1W)
2) Risikoanalyse (6W + Exkursion) mit:
 - Systemabgrenzung
 - Gefahrenbeurteilung
 - Expositions- und Folgenanalyse
3) Risikobewertung (2W)
4) Risikomanagement (2W + Exkursion)
5) Abschlussbesprechung (1W)

Choice of courses from the complete offerings of ETH.

Bachelor's Seminar
The Bachelor's Seminar is only offered in the spring semester.

Number Title Type ECTS Hours Lecturers
651-3597-00L Bachelor's Seminar I O 2 credits 2S W. Schatz, J. D. Rickli

Abstract
In this seminar, students learn to search efficiently for scientific literature and to present scientific findings orally and in written form.

Objective
The students learn the principles of presenting scientific material orally. They become acquainted with the structure of scientific publications, and learn how to find, read and evaluate scientific literature. Furthermore, the course will introduce basic aspects of scientific writing.

Major: Climate and Water
Advisor of the BSc-major "Climate and Water" is Dr. Hanna Joos, Institute for climate and atmosphere (IAC).

Advanced

Number Title Type ECTS Hours Lecturers
701-0471-01L Atmospheric Chemistry W 3 credits 2G M. Ammann, T. Peter

Abstract
The lecture provides an introduction to atmospheric chemistry at bachelor level. It introduces the fundamentals of gas phase reactions, the concept of solubility and reactions in aerosols and in clouds. It explains the chemical and physical processes responsible for global (e.g. stratospheric ozone depletion) as well as regional (e.g. urban air pollution) environmental problems.

Objective
The students will understand the basics of gas phase reactions and of reactions and processes in aerosols and clouds. The students will understand the most important chemical processes in the troposphere and the stratosphere. The students will also acquire a good understanding of atmospheric environmental problems including air pollution, tropospheric ozone formation, stratospheric ozone destruction and the relationship between air pollution and climate change.
The course starts with introducing selected concepts of thermodynamics for atmospheric processes: The students learn the concept of the assessed

M. Huss
Communication
Analytical Competencies
Lohmann, U., Lüönd, F. and Mahrt, F., An Introduction to Clouds:
Powerpoint slides and chapters from the textbook will be made available on moodle: https://moodle-2V
Students are able
Critical Thinking
Cryosphere
assessed
This course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation especially prediction of thunderstorm development, aerosol physics as well as artificial weather modification.

Webpage for course: https://iac.ethz.ch/edu/courses/bachelor/vertiefung/atmospheric-physics.html

Students are able
- to explain the mechanisms of thunderstorm formation using knowledge of thermodynamics and cloud microphysics.
- to evaluate the significance of clouds and aerosol particles for artificial weather modification.

The course starts with introducing selected concepts of thermodynamics for atmospheric processes: The students learn the concept of the thermodynamic equilibrium and derive the Clausius-Clayperon equation from the first law of thermodynamics. This equation is central for the phase transitions in clouds.

Students also learn to classify radiosondes with the help the thermodynamic charts (tephigrams) and to identify cloud base, cloud top, available convective energy in them. Atmospheric mixing processes are introduced for fog formation. The concept of the air parcel is used to understand convection.

Aerosol particles are introduced in terms of their physical properties and their role in cloud formation based on Köhler theory. Thereafter cloud microphysical processes including ice nucleation are discussed.

With these basics, the different forms of precipitation formation (convective vs. stratiform) is discussed as well as the formation and different stages of severe convective storms.

The concepts are applied to understand and judge the validity of different proposed artificial weather modification ideas.

Powerpoint slides and chapters from the textbook will be made available on moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=15367

Lohmann, U., Lüönd, F. and Mahrt, F., An Introduction to Clouds:
From the Microscale to Climate, Cambridge Univ. Press, 391 pp., 2016.

50% of the time we use the concept of "flipped classroom" (en.wikipedia.org/wiki/Flipped_classroom), which we introduce at the beginning.

We offer a lab tour, in which we demonstrate how some of the processes discussed in the lectures are measured with instruments.

There is an additional tutorial right after each lecture to give you the chance to ask further questions and discuss the exercises. The participation is recommended but voluntary.

Domain A - Subject-specific Competencies
- Concepts and Theories
Domain B - Method-specific Competencies
- Analytical Competencies
- Problem-solving
Domain C - Social Competencies
- Communication
Domain D - Personal Competencies
- Critical Thinking
- Self-direction and Self-management

The course introduces the different components of the cryosphere - snow, glaciers, ice sheets, sea ice and lake ice, and permafrost - and their respective roles in the climate system. For each subsystem, essential physical aspects are emphasized, and their dynamics are described quantitatively and using examples.

Students are able to
- qualitatively explain relevant processes, feedbacks and relationships between the different components of the cryosphere,
- quantify and interpret physical processes, which determine the state of the cryospheric components, with simple calculations.

The course provides an introduction into the various components of the cryosphere: snow, glaciers, ice sheets, sea ice and lake ice, permafrost, and their roles in the climate system. Essential physical aspects are emphasized for each subsystem: e.g. the material properties of ice, mass balance and dynamics of glaciers, or the energy balance of sea ice.

Handouts will be distributed during the teaching semester

Further literature will be indicated during the lecture.
Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

701-0461-00L Numerical Methods in Environmental Sciences

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>W</td>
<td>5 credits</td>
<td>2G</td>
<td>M. Detting</td>
</tr>
</tbody>
</table>

Abstract

This lecture imparts the mathematical basis necessary for the development and application of numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.

Objective

This lecture imparts the mathematical basis necessary for the development and application of numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.

Content

Classification of numerical problems, introduction to finite-difference methods, time integration schemes, non-linearity, conservative numerical techniques, an overview of spectral and finite-element methods. Examples and exercises from a diverse cross-section of Environmental Science.

Three obligatory exercises, each two hours in length, are integrated into the lecture. The implementation language is Python (previous experience not necessary: a Python introduction is given). Example programs and graphics tools are supplied.

Lecture notes

Literature

List of literature is provided.

701-0473-00L Weather Systems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0473-00L</td>
<td>Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-Atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>M. A. Sprenger, F. Scholder-Aemisegger</td>
</tr>
</tbody>
</table>

Abstract

Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-Atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer

Objective

The students are able to:

- explain basic measurement and analysis techniques that are relevant in atmospheric dynamics
- to discuss the mathematical basics of atmospheric dynamics, based on selected atmospheric flow phenomena
- to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
- to explain how mountains influence the atmospheric flow on different scales
- basic understanding of the role of moist adiabatic processes for weather systems and why stable water isotopes are useful in this context.

Content

Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-Atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer

Lecture notes

Lecture notes and slides

Literature

Atmospheric Science, An Introductory Survey
John M. Wallace and Peter V. Hobbs, Academic Press

Electives

The electives listed are recommended.

Additional courses can be chosen from the complete offerings of the ETH Zurich and University of Zurich.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>W</td>
<td>5 credits</td>
<td>2V+1U</td>
<td>M. Detting</td>
</tr>
</tbody>
</table>

Abstract

This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.

Objective

The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.

Content

The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.

Lecture notes

A script will be available.

Literature

Faraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis
Students are able to
- characterize porous media at different scales
- parameterize structural, flow and transport properties of partially-saturated porous media
- quantify driving forces and resulting fluxes of water, solute, and heat in soils

Content
Week 1: Introduction, soil and vadose zone, units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil water content; soil texture; particle size distributions;

Week 2: Pore scale consideration, pore sizes, shapes and connectivity, coordination number, continuity and percolation, surface area, soil structure

Week 3: Capillarity – capillary rise, surface tension, Young-Laplace equation; Washburn equation; numerical lab

Week 4: Soil Water Potential - the energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); units and calculations and measurement of equilibrium soil water potential components

Week 5: Soil water characteristics - definitions and measurements; parametric models, fitting and interpretation, hysteresis; demo lab

Week 6: Saturated water flow in soils - laminar flow in tubes (Poiseuille's Law); Darcy’s Law, conditions and states of flow; permeability and hydraulic conductivity, measurement and theoretical concepts (Kozeny-Carman)

Week 7: Unsaturated water flow in soils - unsaturated hydraulic conductivity models and applications; Richards equation, approximations of Richards equation for steady state; approximate solutions to infiltration (Green-Ampt, Philip); outlook on unstable and preferential flow

Week 8: Numerical solution of Richards equation – using Hydrus1D for simulation of unsaturated flow; choosing class project

Week 9: Energy balance and land atmosphere interactions - radiation and energy balance; evapotranspiration, definitions and estimation; evaporation stages and characteristic length; soil thermal properties; steady state heat flow; non-steady heat flow

Week 10: Root water uptake and transpiration

Week 11: Solute and gas transport in soils; transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion equation; solutions for pulse and step solute application; parameter estimation; salt balance.

Week 12: Summary of lectures; solution of old exam

Week 13: Written semester-end exam

Week 14: Short presentations of Hydrus class projects; discussion of written exam

Supplemental textbook (not mandatory) - Introduction to Environmental Soil Physics, by: D. Hillel

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
ECTS
Will be presented in class.

Type
1st week: course organisation and presentation of the institute

Documents are offered via the course's web page.

Hours
This course covers the basic physical concepts and mathematical equations used to describe environmental fluid systems on the rotating Earth. Fundamental concepts (e.g. vorticity dynamics and waves) are formally introduced, applied quantitatively and illustrated using examples. Exercises help to deepen knowledge of the material.

Objective
Students are able
- to name the bases, concepts and methods of environmental fluid dynamics,
- to understand and discuss the components of the basic physical equations in fluid dynamics
- to apply basic mathematical equations to simple problems of environmental fluid dynamics

Content
Basic physical terminology and mathematical laws:
Continuum hypothesis, forces, constitutive laws, state equations and basic principles of thermodynamics, kinematics, laws of mass and momentum on rotating earth.
Concepts and illustrative flow systems: vorticity dynamics, boundary layers, instability, turbulence - with respect to environmental fluid systems.
Scale analysis: dimensionless variables and dynamical similarity, simplification of the fluid system, e.g. shallow water assumption, geostrophic flow.
Waves in environmental fluid systems.

Lecture notes
In english language

Literature
Will be presented in class.
See also: web-site.

401-6215-00L
Using R for Data Analysis and Graphics (Part I) W 1.5 credits 1G M. Mächler

Abstract
The course provides the first part an introduction to the statistical software R (https://www.r-project.org/) for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.

Objective
The students will be able to use the software R for simple data analysis and graphics.

Content
The course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part I of the course covers the following topics:
- What is R?
- R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics;
- Types of data: numeric, character, logical and categorical data, missing values;
- Simple (statistical) functions: summary, mean, var, etc., simple statistical tests;
- Writing simple functions;
- Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots.

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org

Note: Part I of UsingR is complemented and extended by Part II, which is offered during the second part of the semester and which can be taken independently from Part I.

Lecture notes
An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf

Prerequisites / notice
The course resources will be provided via the Moodle web learning platform.
As from FS 2019, subscribing via Mystudies should “automatically” make you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=15518

Lab Course
The practical takes place in spring semester.

Bachelor’s Seminar

Number
Title
Type
ECTS
Hours
Lecturers
701-0459-00L
Seminar for Bachelor Students: Atmosphere and Climate
0
3 credits
2S
R. Knutti, H. Joos, O. Stebler

Abstract
In this seminar all students in the realm of atmospheric and climate science from D-ERDW and D-USYS convene to train presentation techniques (talks, posters) by means of classic and modern scientific articles.

Objective
In this seminar, students learn how to read scientific publications and how to transfer the scientific knowledge to a broader audience by means of oral and poster presentations. Students also get insight into the different research areas at the Institute for Atmospheric and Climate Science.

Content
1st week: course organisation and presentation of the institute
2nd and 3rd week: introduction to oral presentation technique
week 4 to 10: students talks
11th week: introduction to poster presentation technique
12th and 13th week: poster design
14th week: concluding poster presentation

Lecture notes
Documents are offered via the course’s web page.

Literature
Documents are offered via the course’s web page.

Prerequisites / notice
This course can only be offered to a limited number of students, however, in any case for everybody having to attend it compulsory. We beg you to sign in to this course early.

GESS Science in Perspective

Science in Perspective
see Science in Perspective: Type A: Enhancement of Reflection Capability
Language Courses

See Science in Perspective: Language Courses ETH/UZH

Bachelor's Thesis

The Bachelor Thesis and Bachelor-Seminar are offered once per year in the 6th semester, in the spring semester.

<table>
<thead>
<tr>
<th>Earth and Climate Sciences Bachelor - Key for Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+ Eligible for credits and recommended</td>
</tr>
<tr>
<td>W Eligible for credits</td>
</tr>
<tr>
<td>E- Recommended, not eligible for credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key for Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V lecture</td>
</tr>
<tr>
<td>G lecture with exercise</td>
</tr>
<tr>
<td>U exercise</td>
</tr>
<tr>
<td>S seminar</td>
</tr>
<tr>
<td>K colloquium</td>
</tr>
<tr>
<td>P practical/laboratory course</td>
</tr>
<tr>
<td>A independent project</td>
</tr>
<tr>
<td>D diploma thesis</td>
</tr>
<tr>
<td>R revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Earth Sciences Master

Major in Geology

Compulsory Module in Analytical Methods in Earth Sciences

Students have to complete 6 credits in part A, and 6 credits in part B.

Part A: Microscopy Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4045-00L</td>
<td>Microscopy of Metamorphic Rocks</td>
<td>W+</td>
<td>2</td>
<td>2G</td>
<td>A. Galli</td>
</tr>
</tbody>
</table>

Abstract

- Repetition of methods using optic properties of crystals and the polarizing microscope.
- Identification of minerals and metamorphic parageneses.
- Description and interpretation of microstructures.
- Age relationship of crystallisation and deformation.
- Estimation of metamorphic grade.

Objective

- Advanced knowledge in optical mineralogy
- Application of methods to determine minerals in thin sections
- Identification and characterisation of metamorphic minerals
- Description of rocks. Derive correct petrographic rock name, based on modal abundance and microstructure/texture
- Interpretation of rock fabric/microstructure, parageneses and mineral reactions

Content

- Repetition of principal optical properties and of microscopic methods to identify minerals. Emphasis on interpretation of interference figures.
- Study typical metamorphic rocks in thin sections
- Description and interpretation of parageneses and texture/microstructures. Study the age relationship of crystallisation and deformation.
- Estimation of metamorphic grade
- Quantification: To determine volume percentage of rock components
- Scientific documentation: Descriptions, drawings, photomicrography using different kinds of illumination and using plane- or circular-polarised light.

Lecture notes

- Handouts with additional information on theory and for exercises, in English.
- To brush up knowledge in optical mineralogy read the relevant chapters in the book of W.D. Nesse (2004).
- Also available in the D-ERDW library, NO building, on D-floor.

Prerequisites / notice

- Participants should have basic knowledge in crystallography, mineralogy and petrology, and have taken practical courses in microscopy of thin sections, as well as lectures in metamorphic petrology and structural geology!

Other microscopy courses at department D-ERDW are on:

- magmatic rocks, following this course in second half of semester (P. Ulmer, IGP; Inst. for Geochemistry and Petrology)
- sedimentary rocks (Geol. Institute)
- ore minerals (reflected light microscopy, Th. Driesner, IGP)
- microstructures, deformed rocks (Geol. Institute)

Number of participants 24.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4047-00L</td>
<td>Microscopy of Magmatic Rocks</td>
<td>W+</td>
<td>2</td>
<td>2G</td>
<td>P. Ulmer</td>
</tr>
</tbody>
</table>

Abstract

- This course provides basic knowledge in microscopy of igneous rocks. Apart from the identification of common igneous minerals in thin sections, mineral assemblages, textures and structures will be investigated and the results of microscopy will be combined with igneous phase equilibria to understand generation, differentiation and emplacement of igneous rocks.

Objective

- The principal goal of this course is to acquire expertise in:
 - (1) optical determination of minerals in igneous rocks using the polarizing microscope
 - (2) Identification of igneous rocks basing on modal mineralogy, structure and texture;
 - (3) interpretation of textures and structures and associated igneous processes;
 - (4) Application of phase diagrams to natural rocks.

Content

- This practical course bases on the course ‘Microscopy of metamorphic rocks’ (A. Galli), that is taught immediately before this course, where basic knowledge in optical mineralogy and the use of the polarizing microscope is acquired.
- In this course, the most important (common) igneous minerals and rocks are studied in thin sections under the polarizing microscope.
- Mineral assemblages, structures, textures and crystalization sequences are determined and utilized to understand the generation, differentiation and emplacement of igneous rocks.
- In addition, we will apply igneous phase equilibria that have been introduced in other lectures (such as magmatism and metamorphism I&II at ETH or an equivalent igneous petrology course) to natural rock samples in order to constrain qualitatively parental magma compositions and crystallization conditions.
- The range of investigated rocks encompasses mantle rocks, tholeiitic, calc-alkaline and alkaline plutonic and volcanic rocks that contain the most common igneous minerals.

Lecture notes

- Basis of the optical determinations of (igneous) minerals using the polarizing microscope are the tables of Tröger (‘Optische Bestimmung der gesteinsbildenden Minerale’, Optical determination of rock-forming minerals, 1982) that are available in sufficient number in the class room.
- Additional notes will be distributed during the lecture
- Furthermore, I recommend the lecture notes of H.-G. Stoch (University of Karlsruhe, in German) that can be provided in printed form upon request.

Literature

- There are several good textbooks on the subject of ‘mineralogy in thin sections’ that I can suggest upon request.

Prerequisites / notice

- This course does not include an introduction in optical mineralogy and the use of a polarizing microscope and, therefore, bases on the course ‘Microscopy of metamorphic rocks’ taught by A. Galli immediately before this course where these basic principles are provided. Alternatively, e.g. for external students, an equivalent course is required to follow this practical course.

- The delivery of 3 acceptably solved homework assignments is acknowledged with an increase of the final grade by 0.25.

- Other microscopy courses taught at ETH Zurich at the D-ERDW are:
 - Basics of optical mineralogy and petrography (M.W. Schmidt, BSc-course in German)
 - Microscopy of metamorphic rocks (A. Galli, prerequisite for this course)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4051-00L</td>
<td>Reflected Light Microscopy and Ore Deposits Practical</td>
<td>W+</td>
<td>2</td>
<td>2P</td>
<td>T. Driesner</td>
</tr>
</tbody>
</table>

Abstract

- Study typical metamorphic rocks in thin sections
- Description and interpretation of parageneses and texture/microstructures. Study the age relationship of crystallisation and deformation.
- Estimation of metamorphic grade
- Quantification: To determine volume percentage of rock components
- Scientific documentation: Descriptions, drawings, photomicrography using different kinds of illumination and using plane- or circular-polarised light.

Lecture notes

- Handouts with additional information on theory and for exercises, in English.
- To brush up knowledge in optical mineralogy read the relevant chapters in the book of W.D. Nesse (2004).
- Also available in the D-ERDW library, NO building, on D-floor.

Prerequisites / notice

- Participants should have basic knowledge in crystallography, mineralogy and petrology, and have taken practical courses in microscopy of thin sections, as well as lectures in metamorphic petrology and structural geology!

Other microscopy courses at department D-ERDW are on:

- magmatic rocks, following this course in second half of semester (P. Ulmer, IGP; Inst. for Geochemistry and Petrology)
- sedimentary rocks (Geol. Institute)
- ore minerals (reflected light microscopy, Th. Driesner, IGP)
- microstructures, deformed rocks (Geol. Institute)
Part B: Methods

651-4113-00L Sedimentary Petrography and Microscopy W+ 2 credits 2G V. Picotti, M. G. Fellin

Abstract: Recognition of the most important ore minerals in polished section, interpretation of mineral textures in geological context.

Objective: To be handed out in class.

Prerequisites / notice: Credits and mark based on independent description of selected sample(s) towards the end of the course.

651-4055-00L Analytical Methods in Petrology and Geology W+ 3 credits 2G J. Allaz, S. Bernasconi, M. Guillong, L. Zehnder

Abstract: Knowledge of some analytical methods used in Earth sciences, introduction to data interpretation, writing of a scientific report.

Objective: Domain A - Subject-specific Competencies

Content: Microscopy of carbonate and siliciclastic rocks, siliceous and phosphatic rocks, their origin and classification. Microscopy of carbonate and siliciclastic rocks, siliceous and phosphatic rocks, their origin and classification. Diagenesis.

Lecture notes: Short handouts for each analytical method.

Taught competencies: Domain A - Subject-specific Competencies, Domain B - Method-specific Competencies, Domain C - Social Competencies, Domain D - Personal Competencies.

651-4117-00L Sediment Analysis W+ 3 credits 2G M. G. Fellin, A. Gilli, V. Picotti

Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).

Abstract: Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis)

Objective: Interpretation of powder diffraction data

Content: Interpretation of powder diffraction data

Lecture notes: Selected handouts will be made available in the lecture

Literature: Handouts will be made available in the lecture

651-4063-00L X-Ray Powder Diffraction W+ 3 credits 2G M. Plötze

Number of participants limited to 18.

Abstract: In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters.

Objective: Upon successful completion of this course students are able to:

- describe the principle of X-ray diffraction analysis
- carry out a qualitative and quantitative mineralogical analysis independently,
- critically assess the data,
- communicate the results in a scientific report.

Content: Fundamental principles of X-ray diffraction

Lecture notes: Selected handouts will be made available in the lecture

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 845 of 2152
The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, and hydrological cycle, with predictions for climate changes over the next century to millennia.

Objective
- describe possible applications using digital mapping devices in geosciences
- apply selected digital mapping tools in the office and in the field
- visualize field data
- evaluate 2D and 3D geodata for the development of a geological model

Content
- Sensor specifications of tablets and smartphones
- Field apps and databases used in digital mapping
- Access to spatial geodata in Switzerland, but also worldwide
- Visualization of 2D and 3D data
- Several case studies on digital mapping
- 1 day excursion with practical training underground and with surface geology

Prerequisites / notice
- 651-4031-00 Geographic Information Systems or an equivalent course
- 651-3482-00 Geological Field Course II: Sedimentary Rocks or an equivalent course

The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data. Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential. Software will be provided for future use on own Laptop.

Introduction to Digital Mapping

Does not take place this semester.
Number of participants limited to 20.

Abstract
This course gives an introduction to digital mapping in geosciences from data collection to the final map/model construction. The course focuses on the practical application of different digital mapping tools.

Objective
The students are able to
- describe possible applications using digital mapping devices in geosciences
- apply selected digital mapping tools in the office and in the field
- visualize field data
- evaluate 2D and 3D geodata for the development of a geological model

Content
The following topics are covered
- Sensor specifications of tablets and smartphones
- Field apps and databases used in digital mapping
- Access to spatial geodata in Switzerland, but also worldwide
- Visualization of 2D and 3D data
- Several case studies on digital mapping
- 1 day excursion with practical training underground and with surface geology

Prerequisites / notice
- 651-4031-00 Geographic Information Systems or an equivalent course
- 651-3482-00 Geological Field Course II: Sedimentary Rocks or an equivalent course

 Restricted Choice Modules Geology
A minimum of two restricted choice modules must be completed for the major Geology.

Biogeochemistry

The compulsory courses of the module take place in spring semester.

Biogeochemistry: Courses of Choice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4043-00L</td>
<td>Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll</td>
</tr>
</tbody>
</table>

Abstract
The course will focus on biological and chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography.

Objective
- You will understand chemistry and biology of the marine carbonate system
- You will be able to relate carbonate mineralogy with facies and environmental conditions
- You will be familiar with cool-water and warm-water carbonates
- You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle
- You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth)
- You will be able to use geological archives as source of information on global change
- You will have an overview of marine sedimentation through time

Content
- carbonates, chemistry, mineralogy, biology
- carbonate sedimentation from the shelf to the deep sea
- carbonate facies
- cool-water and warm-water carbonates
- organic-carbon and black shales
- C-cycle, carbonates, Corg: CO2 sources and sink
- Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr
- marine sediments through geological time
- carbonates and evaporites
- lacustrine carbonates
- economic aspects of limestone

Literature
We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems"

The grading of students is based on in-class exercises and end-semester examination.

Climate History and Palaeoclimatology

Climate history and palaeoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport.

Objective
The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.
Content

1. Overview of elements of the climate system and earth energy balance
2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Pliocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene?
3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future?
4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?

 brut:// Palaeoclimatology

 brut:// Palaeoclimatology: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4057-00L</td>
<td>Climate History and Palaeoclimatology</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>H. Stoll, I. Hernández Almeida, H. Zhang</td>
</tr>
</tbody>
</table>

Abstract
Climate history and palaeoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport.

Objectives
The student will be able to:
- Describe the natural factors that lead to changes in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes.
- Interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records.
- Use data from climate proxy records to test if a given hypothesis for the mechanism of the climate change is supported or refuted.
- Be able to compare the magnitudes and rates of past climate changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate change over the next century to millennia.

Content
1. Overview of elements of the climate system and earth energy balance
2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Pliocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene?
3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future?
4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?

 brut:// Palaeoclimatology: Courses of Choice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4043-00L</td>
<td>Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll</td>
</tr>
</tbody>
</table>

Abstract
The course will focus on biological and chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deepsea. The use of stable isotopes, palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography.

Objectives
- You will understand chemistry and biology of the marine carbonate system
- You will be able to relate carbonate mineralogy with facies and environmental conditions
- You will be familiar with cool-water and warm-water carbonates
- You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle
- You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth)
- You will be able to use geological archives as source of information on global change
- You will have an overview of marine sedimentation through time

Content
- carbonates; chemistry, mineralogy, biology
- carbonate sedimentation from the shelf to the deep sea
- carbonate facies
- cool-water and warm-water carbonates
- organic-carbon and black shales
- C-cycle, carbonates, Corg : CO2 sources and sink
- Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr
- marine sediments through geological time
- carbonates and evaporites
- lacustrine carbonates
- economic aspects of limestone

Lecture notes
no script. scientific articles will be distributed during the course

Literature
We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems"

Prerequisites / notice
The grading of students is based on in-class exercises and end-semester examination.

 brut:// Sedimentology

 brut:// Sedimentology: Compulsory Courses

 brut:// Sedimentology: Courses of Choice

 brut:// Sedimentology: Compulsory Courses
Sedimentology I: Physical Processes and Sedimentary Systems

Abstract
Sediments preserved a record of past landscapes. This course focuses on understanding the processes that modify sedimentary landscapes with time and how we can read these changes in the sedimentary record.

Objective
The students learn basic concepts of modern sedimentology and stratigraphy in the context of sequence stratigraphy and sea level change. They discuss the advantages and pitfalls of the method and look beyond. In particular we pay attention to introducing the importance of considering entire sediment routing systems and understanding their functioning.

Content
Details on the program will be handed out during the first lecture.

Literature
The sedimentary record of sea-level change
Angela Coe, the Open University.
Cambridge University Press

Prerequisites / notice
The grading of students is based on in-class exercises and end-semester examination.

Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems

Prerequisite: Successful completion of the MSc-course
"Sedimentology I" (651-4041-00L)

Abstract
The course will focus on biological and chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography.

Objective
- You will understand chemistry and biology of the marine carbonate system
- You will be able to relate carbonate mineralogy with facies and environmental conditions
- You will be familiar with cool-water and warm-water carbonates
- You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle
- You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth)
- You will be able to use geological archives as source of information on global change
- You will have an overview of marine sedimentation through time

Content
- carbonates, chemistry, mineralogy, biology
- carbonate sedimentation from the shelf to the deep sea
- carbonate facies
- cool-water and warm-water carbonates
- organic-carbon and black shales
- C-cycle, carbonates, Corp : CO2 sources and sink
- Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr
- marine sediments through geological time
- carbonates and evaporites
- lacustrine carbonates
- economic aspects of limestone

Lecture notes
no script. scientific articles will be distributed during the course

Literature
We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems"

Prerequisites / notice
The grading of students is based on in-class exercises and end-semester examination.

Sedimentology: Courses of Choice

Number 651-4041-00L
Title Sedimentology I: Physical Processes and Sedimentary Systems
Type W+
ECTS 3 credits
Hours 2G
Lecturers V. Picotti

Number 651-4043-00L
Title Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems
Type W+
ECTS 3 credits
Hours 2G
Lecturers V. Picotti, I. Hernández Almeida, H. Stoll

Number 651-4901-00L
Title Quaternary Dating Methods
Type W
ECTS 3 credits
Hours 2G
Lecturers I. Hajdas, M. Christl, S. Ivy Ochs

Abstract
Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range.

Objective
At the end of the course students will:
1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies.
2. be able to calculate an age based on data of the six methods studied.
3. choose which dating method (or combination of methods) is suitable for a certain field problem.
4. critically read and evaluate the application of dating methods in scientific publications.

Content
1. Introduction: Time scales for the Quaternary, Isotopes and decay
2. Radiocarbon dating: principles and applications
3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl
4. U-series disequilibrium dating
5. Luminescence dating
6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies
7. Cs-137 and Pb-210 (soil, sediments, ice core)
8. Summary and comparison of results from several dating methods at specific sites

Prerequisites / notice
Visit to radionucler lab, cosmogenic nuclide lab, accelerator (AMS) facility.

Required
- attending the lecture, visiting laboratories, handling back solutions for problem sets (Exercises)
- number of participants limited to 18.

Number 651-4063-00L
Title X-Ray Powder Diffraction
Type W
ECTS 3 credits
Hours 2G
Lecturers M. Pölte

Abstract
In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters.
Objective Upon successful completion of this course students are able to:
- describe the principle of X-ray diffraction analysis
- carry out a qualitative and quantitative mineralogical analysis independently,
- critically assess the data,
- communicate the results in a scientific report.

Content Fundamental principles of X-ray diffraction
Setup and operation of X-ray diffractometers
Interpretation of powder diffraction data
Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis)

Lecture notes Selected handouts will be made available in the lecture

Prerequisites / notice The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data.

Software will be provided for future use on own Laptop.

Structural Geology

Structural Geology: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4132-00L</td>
<td>Field Course IV: Non Alpine Field Course</td>
<td>W+</td>
<td>3 credits</td>
<td>6P</td>
<td>W. Behr</td>
</tr>
</tbody>
</table>

Does not take place this semester.
Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.
No registration through myStudies. The registration for excursions and field courses goes through http://exkursionen.erdw.ethz.ch only.

Prerequisites / notice Students who want to participate hand in a short motivation letter (max. 1 page A4). The final selection will be based on this motivation letter.
Deadline for motivation letter: 31 October 2018
Final decision 20 November 2018

Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW https://www.erdw.ethz.ch/content/dam/erdw/special-interest/erdw/department/dokumente/studium/exkursionen/AGB_ERDW_Exkursionen_en.pdf

Structural Geology: Courses of Choice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4111-00L</td>
<td>Experimental Rock Physics and Deformation</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>A. S. Zappone, C. Madonna, L. Tokle</td>
</tr>
</tbody>
</table>

Abstract We illustrate some physical properties, deformation mechanisms, and define flow laws. We show the fundamental techniques for the measurement in laboratory of density, permeability, elastic properties and deformation. We presented actual case studies and discuss upscaling from laboratory to field.

Objective The objective of this course is to introduce rock physics and rock deformation, and discuss the aid of laboratory tests to interpretation at large scale.

Rock Physics provides the understanding to connect geomechanical and geophysical data to the intrinsic properties of rocks, such as mineral composition and texture. Rock Physics is a key component in geo-resources exploration and exploitation, and in geo-hazard assessment.

For rock deformation we will illustrate how to determined flow-laws of rocks from experiments and how to extrapolate to natural conditions.
Since the time scale of laboratory experiments is several orders of magnitude faster than nature, we will compare the microstructure of natural rocks with that produced during the experiments to prove that the same mechanisms are operating.

For this purpose, the fundamental techniques of experimental rock deformation will be illustrated and test on natural rock samples in the plastic deformation regime (high temperature) as well in the brittle regime (room temperature) will be presented. We will perform tests in the lab, to acquire the data, to correct for calibration and to process the data and finally to interpret the data.

The course is at Master student level, but will be useful for PhDs students who want to begin to work in experimental deformation or who want to know the meaning and the limitation of laboratory flow-laws for geodynamic modelling.

Content The course will focus on research-based term project, lectures will alternate with laboratory demonstrations.

We will illustrate how intrinsic properties of rocks (mineral composition, porosity, pore fluids, crystallographic orientation, microstructures) are connected to the following physical properties:
- permeability;
- elastic properties for seismic interpretations;
- anisotropy of the above physical properties.

We will measure some of those parameters in laboratory and discuss real case studies and applications.

Principles of deformation mechanics, flow laws, and deformation mechanism maps will be presented in lectures.
In laboratory we will show:
- Experimental deformation rigs (gas, fluid and solid confining media);
- Main part of the apparatus (mechanical, hydraulic, heating system, data logging);
- Calibration of an apparatus (distortion of the rig; transducers calibration);
- Various types of tests (axial deformation; diagonal cut and torsion; deformation; constant strain rate tests; creep tests; stepping tests);
The course of Structural Geology (651-3422-00L) is highly recommended before attending this course. Moreover the students should have basic knowledge in geophysics and mineralogy/crystallography.

In doubt, please contact the course responsible beforehand.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4341-00L</td>
<td>Source to Sink Sedimentary Systems</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>T. I. Eglinton, J. Hemingway, S. Willett</td>
</tr>
</tbody>
</table>

Open Choice Modules Geology

Basin Analysis

Basin Analysis: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4342-00L</td>
<td>Seismic Stratigraphy and Facies</td>
<td>W</td>
<td>2</td>
<td>3G</td>
<td>G. Eberli</td>
</tr>
</tbody>
</table>

The course teaches the techniques of seismic interpretation for solving geological and environmental problems. A special focus is given to the seismic facies analysis and seismic sequence stratigraphy of different depositional systems. In addition, examples are presented how seismic data can be integrated into research projects in basin analysis, paleoceanography and paleoclimatology.

objectives

1. Acquire techniques for a comprehensive interpretation of seismic sections for solving geologic, stratigraphic and environmental problems
2. Correlation of seismic facies and seismic attributes to lithologic facies in different sedimentary systems
3. Learn the principles and techniques of seismic sequence stratigraphy and the differences between biostratigraphy and sequence stratigraphy
4. Learn to integrate seismic data into paleoceanographic and paleoclimatic research.
This course is a general introduction to the methods of seismic hazard analysis. It provides an overview of the input data and the tools in deterministic and probabilistic seismic hazard assessment, and discusses the related uncertainties. The course includes the discussion related to intensity and macroseismic scales, and models. SEPM Special Publication v. 63.

Earthquake Seismology

Earthquake Seismology: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4021-00L</td>
<td>Engineering Seismology</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>D. Fäh, V. Perron</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course is a general introduction to the methods of seismic hazard analysis. It provides an overview of the input data and the tools in deterministic and probabilistic seismic hazard assessment, and discusses the related uncertainties.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course is a general introduction to the methods of seismic hazard analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>In the course it is explained how the disciplines of seismology, geology, strong-motion geophysics, and earthquake engineering contribute to the evaluation of seismic hazard. It provides an overview of the input data and the tools in deterministic and probabilistic seismic hazard assessment, and discusses the related uncertainties. The course includes the discussion related to intensity and macroseismic scales, historical seismicity and earthquake catalogues, ground motion parameters used in earthquake engineering, definitions of the seismic source, ground motion attenuation, site effects and microzonation, and the use of numerical tools to estimate ground motion parameters, both in a deterministic and probabilistic sense. During the course recent earthquakes and their impacts are discussed and related to existing hazard assessments for the areas of interest.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

651-4015-00L	Earthquakes I: Seismotectonics	O	3	2G	A. P. Rinaldi, T. Diehl
Abstract	If you're interested in knowing more about the relationship between seismicity and plate tectonics, this is the course for you. (If you're not that interested, but your program of study requires that you complete this course, this is also the course for you.)				
Objective	The aim of the course is to obtain a basic understanding of the physical process behind earthquakes and their basic mathematical description. By the conclusion of this course, we hope that you will be able to:				
	- describe the relationship between earthquakes and plate tectonics in a more sophisticated and complete way				
	- explain earthquake source representations of varying complexity;				
	- address earthquakes in the context of different tectonic settings;				
	- explain the statistical behaviour of global earthquakes				
	- describe and connect the ingredients for a seismotectonic study				
The course features a series of 14 meetings, in which we review some fundamentals of continuum mechanics and tensor analysis required for a complete understanding of the relation between earthquakes and plate tectonics. Our goal is to help you understand deformation from the small scale (fault) to the scale of plate tectonics. We will tell you about several ways to represent an earthquake source; we'll present these in order of increasing sophistication. You will enjoy (at least) a computer/class exercise and a guest lecture.

Topics covered in the course include:
- Review of stress and deformation in the Earth, stress and strain tensors, rheology and failure criteria, fault stresses, friction and effects of fluids
- Earthquake focal mechanisms; relationship between stress fields and focal mechanisms;
- Seismic moment and moment tensors;
- Crustal deformation from seismic, geologic, and geodetic observations;
- Earthquake stress drop, scaling, and source parameters;
- Global earthquake distribution; current global earthquake activity;
- Different seismotectonic regions; examples of earthquake activity in different tectonic settings.

Lecture notes
Course notes will be made available on a designated course web site. Most of the topics discussed in the course are available in the book mentioned below.

Literature

Prerequisites / notice
Basic knowledge of continuum mechanics and rock mechanics, as well as notion of tensor analysis is strongly suggested. We recommend to have taken the course Continuum Mechanics (generally taught during the Fall semester).

This course will be taught in fall 2017 and it will be followed by Earthquakes 2: Source Physics in Spring 2018.

The course will be evaluated in a final written test covering the topics discussed during the lectures.

The course will be worth 3 credit points, and a satisfactory total grade (4 or better) is needed to obtain 3 ECTS.

The course will be given in English.

Earthquake Seismology: Compulsory Courses
One additional elective course of at least 3KP has to be completed for this Module according to prior agreement with the Subject Advisor (Autumn or Spring Semester).

Geographic Information Systems
The courses of this module are offered by UZH and must be registered at UZH.

Geographic Information Systems: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4267-00L</td>
<td>Specializing in Geographic Information Science V (University of Zürich)</td>
<td>W+</td>
<td>5 credits</td>
<td>2V+2U</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/admission.html

Geographic Information Systems: Courses of Choice

The Courses of Choice are offered by UZH and must be approved by the subject advisor.

Geomagnetics

Quaternary Dating Methods
Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range.

At the end of the course students will:
1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies.
2. be able to calculate an age based on data of the six methods studied.
3. choose which dating method (or combination of methods) is suitable for a certain field problem.
4. critically read and evaluate the application of dating methods in scientific publications.

Content
1. Introduction: Time scales for the Quaternary, Isotopes and decay
2. Radiocarbon dating: principles and applications
3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl
4. U-series disequilibrium dating
5. Luminescence dating
6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies
7. Cs-137 and Pb-210 (soil, sediments, ice cores)
8. Summary and comparison of results from several dating methods at specific sites

Prerequisites / notice
Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility.

Visit to Limno Lab and sampling a sediment core
Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggereebrg

Geomagnetics: Courses of Choice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4901-00L</td>
<td>Quaternary Dating Methods</td>
<td>O</td>
<td>3 credits</td>
<td>2G</td>
<td>I. Hajdas, M. Christl, S. Ivy Ochs</td>
</tr>
</tbody>
</table>
Additional elective courses of at least 6KP have to be completed for this Module according to prior agreement with the Subject Advisor (Autumn or Spring Semester).

Glaciology

Glaciology: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-3561-00L</td>
<td>Cryosphere</td>
<td>W+</td>
<td>3 credits</td>
<td>2V</td>
<td>M. Huss, A. Bauder, D. Farinotti</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course introduces the different components of the cryosphere - snow, glaciers, ice sheets, sea ice and lake ice, and permafrost - and their respective roles in the climate system. For each subsystem, essential physical aspects are emphasized, and their dynamics are described quantitatively and using examples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students are able to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- qualitatively explain relevant processes, feedbacks and relationships between the different components of the cryosphere,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- quantify and interpret physical processes, which determine the state of the cryospheric components, with simple calculations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course provides an introduction into the various components of the cryosphere: snow, glaciers, ice sheets, sea ice and lake ice, permafrost, and their roles in the climate system. Essential physical aspects are emphasized for each subsystem: e.g. the material properties of ice, mass balance and dynamics of glaciers, or the energy balance of sea ice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handouts will be distributed during the teaching semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further literature will be indicated during the lecture.

Taught competencies

- **Domain A - Subject-specific Competencies**
 - Concepts and Theories: assessed
 - Techniques and Technologies: assessed

- **Domain B - Method-specific Competencies**
 - Analytical Competencies: assessed
 - Decision-making: not assessed
 - Media and Digital Technologies: assessed
 - Problem-solving: assessed
 - Project Management: not assessed

- **Domain C - Social Competencies**
 - Communication: not assessed
 - Cooperation and Teamwork: not assessed
 - Customer Orientation: not assessed
 - Leadership and Responsibility: not assessed
 - Self-presentation and Social Influence: not assessed
 - Sensitivity to Diversity: not assessed
 - Negotiation: not assessed

- **Domain D - Personal Competencies**
 - Adaptability and Flexibility: assessed
 - Creative Thinking: assessed
 - Critical Thinking: assessed
 - Integrity and Work Ethics: not assessed
 - Self-awareness and Self-reflection: not assessed
 - Self-direction and Self-management: not assessed

Glaciology: Courses of Choice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-1581-00L</td>
<td>Seminar in Glaciology</td>
<td>W</td>
<td>3 credits</td>
<td>2S</td>
<td>A. Bauder</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to classic and modern literature of research in Glaciology. Active participation is expected and participants are mentored by PhD students of Glaciology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In-depth knowledge of selected topics of research in Glaciology. Introduction to different types of scientific presentation. Improve ability of the discussion of scientific topics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected topics of scientific research in Glaciology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copies/pdf of scientific papers will be distributed during the course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active participation is expected with presence at the sessions. Only a limited number of participants can be accepted. One of the following courses should be taken as preparation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 651-3561-00L Kryosphäre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 101-0289-00L Applied Glaciology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 651-4100-00L Physics of Glaciers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>651-4077-00L</td>
<td>Quantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich)</td>
<td>W</td>
<td>3 credits</td>
<td>1V</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overview of the most important earth surface processes and landforms in cold regions (regions with glaciers and intense frost) with emphasis on high-mountain aspects. Discussion of present research challenges.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge of the most prominent climate-related geomorphological processes and phenomena in high-mountain regions, understanding of primary research challenges.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erosion and sedimentation by glaciers as a function of topography, englacial temperature, sediment balance, sliding and melt water runoff. Processes and landforms in regions of seasonal and perennial frost (frost weathering, rock falls, debris cones/talus, solifluction, permafrost creep/rock glaciers, debris flows).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 pages.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>references in skript</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physics of Glaciers

Understanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of the ice sheets of Greenland and Antarctica.

After the course the students are able understand and interpret measurements of ice flow, subglacial water pressure and ice temperature. They will have an understanding of glaciology-related physical concepts sufficient to understand most of the contemporary literature on the topic. The students will be well equipped to work on glacier-related problems by numerical modeling, remote sensing, and field work.

The dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydraulics. The specific dynamics of tide water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate).

Prerequisites / notice

Basic knowledge about geomorphology and glaciers/permafrost from corresponding courses at ETH/UZH or from the related lecture notes will be provided.

Objectives

- Discussion of the exercises performed during the semester
- Field excursion to Jungfraujoch
- Lake ice and ice bearing capacity
- Glacier hydrology and glacier lake outbursts
- Gravitational glacier instabilities
- Glacier mechanics and ice flow
- Glacier hydrology and glacier lake outbursts
- Lake ice and ice bearing capacity
- How glaciology became a scientific discipline
- Glaciology and hydropower

Lecturers

M. Lüthi, F. T. Walter, M. Werder

ECTS

3

Domain A - Subject-specific Competencies

Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies

Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies

Project Management
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies

Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

S. Willett

http://people.ee.ethz.ch/~luethim/teaching.html

Applied Glaciology

The course transmits fundamental knowledge for treating applied glaciological problems. Topics include climate-glacier interactions, glacier ice flow, glacier hydrology, ice avalanches, and lake ice.

The course will develop along the following outline:

- How glaciology became a scientific discipline
- Glaciology and hydropower
- Glacier mechanics and ice flow
- Gravitational glacier instabilities
- Glacier hydrology and glacier lake outbursts
- Lake ice and ice bearing capacity
- Field excursion to Jungfraujoch
- Discussion of the exercises performed during the semester

Prerequisites / notice

Completed BSc studies. Basic knowledge in computer scripting in any language (e.g. Python, R, Julia, Matlab, IDL, ...) will be advantageous for solving the exercises. The exercises will be performed in groups. A minimal level of fitness is required for the field excursion.

Lecture notes

Digital lecture handouts will be distributed prior to each class.

Literature

Links to relevant literature will be provided during the classes.

Taught competencies

Concepts and Theories
Techniques and Technologies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Lithosphere Structure and Tectonics

Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.

Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Assessment of mechanisms responsible for plate movements (the Earth as a heat transfer machine, dynamics of earth mantle, plate driving forces) and subsequent large-scale structures (oceanic basins and cycle of the oceanic lithosphere, convergence and mountain systems and continental growth, etc) through theoretical and experimental information. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.

Completed BSc studies. Basic knowledge in computer scripting in any language (e.g. Python, R, Julia, Matlab, IDL, ...) will be advantageous for solving the exercises. The exercises will be performed in groups. A minimal level of fitness is required for the field excursion.

Lecture notes

Digital lecture handouts will be distributed prior to each class.

Literature

Links to relevant literature will be provided during the classes.

Taught competencies

Concepts and Theories
Techniques and Technologies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Lithosphere Structure and Tectonics

Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.

Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Assessment of mechanisms responsible for plate movements (the Earth as a heat transfer machine, dynamics of earth mantle, plate driving forces) and subsequent large-scale structures (oceanic basins and cycle of the oceanic lithosphere, convergence and mountain systems and continental growth, etc) through theoretical and experimental information. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.

Completed BSc studies. Basic knowledge in computer scripting in any language (e.g. Python, R, Julia, Matlab, IDL, ...) will be advantageous for solving the exercises. The exercises will be performed in groups. A minimal level of fitness is required for the field excursion.

Lecture notes

Digital lecture handouts will be distributed prior to each class.

Literature

Links to relevant literature will be provided during the classes.

Taught competencies

Concepts and Theories
Techniques and Technologies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Lithosphere Structure and Tectonics

Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.

Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Assessment of mechanisms responsible for plate movements (the Earth as a heat transfer machine, dynamics of earth mantle, plate driving forces) and subsequent large-scale structures (oceanic basins and cycle of the oceanic lithosphere, convergence and mountain systems and continental growth, etc) through theoretical and experimental information. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.

Completed BSc studies. Basic knowledge in computer scripting in any language (e.g. Python, R, Julia, Matlab, IDL, ...) will be advantageous for solving the exercises. The exercises will be performed in groups. A minimal level of fitness is required for the field excursion.

Lecture notes

Digital lecture handouts will be distributed prior to each class.

Literature

Links to relevant literature will be provided during the classes.

Taught competencies

Concepts and Theories
Techniques and Technologies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management
Palaeontology

Palaeontology: Compulsory Courses

The compulsory courses take place in spring semester.

Palaeontology: Courses of Choice

The courses of choice are offered by UZH and must be registered at UZH.

Quaternary Geology and Geomorphology

At the end of the course students will:
1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies.
2. be able to calculate an age based on data of the six methods studied.
3. choose which dating method (or combination of methods) is suitable for a certain field problem.
4. critically read and evaluate the application of dating methods in scientific publications.

Content
Plate tectonic frame work: earth cooling and mantle-plate interaction, three kinds of plate boundaries and their roles and characteristics, cycle of oceanic lithosphere, longfidelity and growth of continents, supercontinents.
Rheology of layered lithosphere and upper mantle.
Obduction systems
Collisions systems
Extensional systems
Basin evolution
Passive and active continental margin evolution

Literature
Abstract
Overview of the most important earth surface processes and landforms in cold regions (regions with glaciers and intense frost) with emphasis on high-mountain aspects. Discussion of present research challenges.

Objective
Knowledge of the most prominent climate-related geomorphological processes and phenomena in high-mountain regions, understanding of primary research challenges.

Content
Erosion and sedimentation by glaciers as a function of topography, englacial temperature, sediment balance, sliding and melt water runoff. Processes and landforms in regions of seasonal and perennial frost (frost weathering, rock falls, debris cones/talus, solifluction, permafrost creep/rock glaciers, debris flows).

Lecture notes
Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 pages.

Literature
references in skript

Prerequisites / notice
Basic knowledge about geomorphology and glaciers/permafrost from corresponding courses at ETH/UZH or from the related lecture notes

Remote Sensing
The courses of this module are offered by UZH and must be registered at UZH.

Remote Sensing: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4263-00L</td>
<td>Remote Sensing and Geographic Information Science</td>
<td>W+</td>
<td>5</td>
<td>2V+2U</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: GEO371

Mind the enrolment deadlines at UZH:

Remote Sensing: Courses of Choice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4269-00L</td>
<td>Specialisation in Remote Sensing: Spectroscopy of the Earth System (University of Zurich)</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: GEO442

Prerequisite: Remote Sensing Methods (UZH Module Code: GEO371)

Mind the enrolment deadlines at UZH:

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4257-00L</td>
<td>Specialisation in Remote Sensing: SAR and LIDAR (University of Zurich)</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: GEO443

Prerequisite: Remote Sensing Methods (UZH Module Code: GEO371)

Mind the enrolment deadlines at UZH:

Shallow Earth Geophysics
Courses are only offered in spring semester.

Modules from the Engineering Geology Major
Choice from Engineering Geology Required Modules

Modules from the Geophysics Major
Choice from Geophysics Compulsory Modules
Choice from Geophysics Restricted Choice Modules

Modules from the Mineralogy and Geochemistry Major
Choice from the Mineralogy and Geochemistry Restricted Choice Modules

Modules from the Major Geology Restricted Choice Modules
Choice from the Geology Restricted Choice Modules

Major in Engineering Geology

Compulsory Modules Engineering Geology

Engineering Geology: Fundamentals
Rock Mechanics and Rock Engineering

651-4025-00L

O. Moradian, Q. Lei

Abstract

This course focuses on the principles (fundamentals) and basic concepts of rock mechanics and rock engineering (e.g. tunnelling, rock slope stability).

Objective

The course aims to introduce the fundamentals and basic concepts of rock mechanics and generic rock engineering. The student shall understand how rocks behave at different scales, under various artificial loads and in the shallow subsurface (a few km below ground). The link between rock mechanics, geology, hydrogeology and tectonics (i.e. the conditions under which the rock formed) will be clearly established.

The student shall understand basic principles of rock mechanics and rock engineering. In addition, the student shall learn how to apply the results from lab and field investigations to simple engineering problems. This knowledge is required for subsequent integration courses (Landslide Analysis and Hazard Mitigation; Engineering Geology of Underground Excavations).

Content

This course focuses on the principles (fundamentals) and basic concepts of rock mechanics and generic rock engineering. The course is compulsory for the MSc Eng Geol. The applications of rock mechanical principles and rock engineering methods are extensively covered in subsequent courses.

Lecture notes

Written course documentation available on our homepage: https://www.ethz.ch/content/specialinterest/erdw/geological-institute/engineering-geology/en/teaching/msc/fall/rock_mechanics.html

Soil Mechanics and Foundation Engineering

651-4033-00L

M. Stolz, Q. Lei

Abstract

The course presents the principles of soil mechanics and soil behaviour characteristics and its applications in geotechnical structures and systems. It is based on more descriptive courses on Engineering Geology within the BSc Geol. Program and is a compulsory prerequisite for other courses within the MSc Eng. Geol. program.

Objective

Understanding the principles of soil behaviour and the fundamentals of geotechnical practices in soils.

Ability to communicate with geotechnical engineers.

Content

Soil Mechanics:
- Fundamental concepts of strength and deformation of different soils. Introduction to geotechnical calculations
- Significance of (ground)water
- Geotechnical Engineering in Soils:
 - Evaluation of geotechnical scenarios, handling of forecast uncertainties, relation of soil properties and soil composition, interactions between soil and building,
 - standard construction methods in soils (foundations, slopes, dams and levees),
- requirements for the geotechnical prognosis

Geotechnical Engineering in Soils:
- Evaluation of geotechnical scenarios, handling of forecast uncertainties, relation of soil properties and soil composition, interactions between soil and building,
- standard construction methods in soils (foundations, slopes, dams and levees),
- requirements for the geotechnical prognosis

Lecture notes

This lecture is supported by the textbook: "Geotechnical Engineering" by Donald P. Coduto, 2nd edition, 2011; ISBN-13: 978-0-13-135425-8

Prerequisites / notice

Courses must be completed:
- Introduction to Engineering Geology (BSc level)
- Introduction to Groundwater
- Sedimentology and Quaternary deposits
- Principles of Physics

Courses recommended:
- Eng Geol Site Investigations
- Eng Geol Field Course I (soils)
- Clay Mineralogy

Groundwater

651-4023-00L

X.-Z. Kong, B. Marti

Abstract

The course provides an introduction into quantitative analysis of groundwater flow and solute transport. It is focussed on understanding, formulating, and solving groundwater flow and solute transport problems.

Objective

a) Students understand the basic concepts of groundwater flow and solute transport processes, and boundary conditions.

b) Students are able to formulate simple, practical groundwater flow and solute transport problems.

c) Students are able to understand and apply simple analytical and/or numerical solutions to fluid flow and solute transport problems.

Content

1. Introduction to groundwater problems. Concepts to quantify properties of aquifers.

2. Flow equation. The generalised Darcy law.

3. The water balance equation and basic concepts of poroelasticity.

5. Analytical solutions to flow problems

6. Finite difference scheme solution for simple flow problems.

10. Analytical solutions to transport problems.

11. Fractured and karst aquifers.

12. The unsaturated zone and capillary pressure.

13. Examples of applied hydrogeology from Switzerland and around the world. (Given by Dr. Beatrice Marti from Hydrosolutions Ltd.)

Lecture notes

Handouts of slides.
The industry practical is supervised both from the industry partner and ETH and consists of technically and/or scientifically challenging work.

Title: Geological Site Investigations

This course introduces students to the methods used in characterising, developing or monitoring geotechnical engineering project sites. Measurements, tools and analyses are described that are relevant to determining the geologic conditions at a site as well as deformations that occur under natural or construction conditions.

Abstract

This course aims at introducing the general procedures taken during an engineering geological site investigation. Students who complete the course should be able to design a site investigation program of measurements based on information from initial desk studies, and to analyse, integrate and interpret data from the measurement program.

Content

The methods that are routinely employed in site investigations will be described focusing on their applicability in different geologic environments. The limitations of the data in constraining the parameters of interest will be addressed together with problems of interpretation and cost-versus-information value. Specific topics addressed include drilling, coring, sampling, borehole testing, geophysical methods used in engineering geology, satellite, air- and ground-based surface and displacement monitoring (photogrammetry, LIDAR and Radar), and in-situ deformation measurement methods.

Lecturers

M. Ziegler

Lecture notes

Lecture notes will be available for download 1-2 days before each class.

Literature

Supplemental literature will be suggested and made available during the course.

Title: Rock and Soil Mechanical Lab Practical

In this course, students will gain hands on experience performing laboratory and index tests commonly used in Rock and Soil Mechanics. The course is divided into two modules, with half the semester devoted to rock mechanic testing, and half to soil mechanics testing.

Abstract

In this course, students will gain hands on experience performing laboratory and index tests commonly used in Rock and Soil Mechanics. The course is divided into two modules, with half the semester devoted to rock mechanic testing, and half to soil mechanics testing.

Objective

This course introduces the fundamentals of laboratory testing of rock and soil. Students will learn how to interpret laboratory data, the expected accuracy and limitations of common laboratory tests and the most appropriate testing method(s) for a given problem.

Content

In the Rock Mechanics lab, the following laboratory tests are performed: Ultrasonic velocity measurements, Point load test, Brazilian tensile test, Uniaxial compression test, Triaxial compression test. Through performing these tests, students will get familiar with stress-strain curves, tensile, unconfined, and confined strength of rocks, Young’s modulus and Poisson ratio, and finally cohesion and friction angle of intact rocks.

In the Soil Mechanics Lab, the following seven laboratory tests are performed: Sieve Analysis, Hydrometer Analysis, Atterberg Limits, Proctor Compaction, Direct Shear Test, Falling Head Permeability and Consolidation Test. Through performing these tests, students gain an understanding of the relationship between index properties and soil behavior, as well as the strength, deformability and hydraulic characteristics of soils.

Lecture notes

Course materials are available in: https://www.ethz.ch/content/specialinterest/erdw/geological-institute/engineering-geology/en/teaching/msc/fall/rock-and-soil-mechanical-lab-practical.html

Title: Industrial Internship

Prerequisites: successful participation in all 3 compulsory modules of the Major in Engineering Geology (Fundamentals, Methods and Integration).

Abstract

The Industrial Internship of the Eng Geol Major takes place in the second MSc year after consultation with Dr. Ernst Kreuzer. Detailed regulations of this practical are published on the Engineering Geology Website.

Objective

The industry practical is supervised both from the industry partner and ETH and consists of technically and/or scientifically challenging work in the engineering geology domain. The regular duration of the practical is 10 weeks. The practical is pre-defined in a work plan and concluded with a report written by the student.

The industry practical is supervised both from the industry partner and ETH and consists of technically and/or scientifically challenging work in the engineering geology domain. The regular duration of the practical is 10 weeks. The practical is pre-defined in a work plan and concluded with a report written by the student.

The goals of the industry practical are to become familiar with technical, economic, legal and communication issues of real-life work in private industry or technical administration.

Literature

de Marsily G., Quantitative Hydrogeology, Academic Press, 1986
4G Geophysical Data Processing

Abstract
This course presents fundamental digital signal processing and filter theory with a focus on geophysical applications.

Objective
The goal of the course is to provide an understanding of the principles of digital signal processing and filter theory. Form: two hours lecture with two hours of computer based exercises per week over 7 weeks.

Content
Analog-digital conversion: dynamic range and resolution; Dirac-impulse, step function; Laplace transformation; Z-transformation; Differential equations of linear time-invariant systems; Examples: seismometer and RC-filter; Impulse response and transfer function; Frequency selective filters: example Butterworth filters; Digital filters: impulse invariance and bilinear transformation; Inverse filters; Response spectra.

Lecture notes
Lecture notes will be made available for download from the website of the course.

Literature
The class follows no single book. A list of relevant texts will be given in class.

Prerequisites / notice
Assumed existing knowledge:
(a) time series, discrete systems, Fourier transform, convolution, power spectrum, correlation, stochastic time series (a course dealing with these topics is "Analysis of Time Series in Environmental Physics and Geophysics");
(b) Matlab.

Students must bring their own laptop in class for Matlab exercises.

651-4241-00L Numerical Modelling I and II: Theory and Applications

W+ 6 credits 4G T. Gerya

Abstract
In this 13-week sequence, students learn how to write programs from scratch to solve partial differential equations that are useful for Earth science applications. Programming will be done in MATLAB and will use the finite-difference method and marker-in-cell technique. The course will emphasise a hands-on learning approach rather than extensive theory.

Objective
The goal of this course is for students to learn how to program numerical applications from scratch. By the end of the course, students should be able to write state-of-the-art MATLAB codes that solve systems of partial-differential equations relevant to Earth and Planetary Science applications using finite-difference method and marker-in-cell technique. Applications include Poisson equation, buoyancy driven variable viscosity flow, heat diffusion and advection, and state-of-the-art thermomechanical code programming. The emphasis will be on commonality, i.e., using a similar approach to solve different applications, and modularity, i.e., re-use of code in different programs. The course will emphasise a hands-on learning approach rather than extensive theory, and will begin with an introduction to programming in MATLAB.

Content
A provisional week-by-week schedule (subject to change) is as follows:

- **Week 1:** Introduction to the finite difference approximation to differential equations. Introduction to programming in Matlab. Solving of 1D Poisson equation.
- **Week 2:** Direct and iterative methods for obtaining numerical solutions. Solving of 2D Poisson equation with direct method. Solving of 2D Poisson equation with Gauss-Seidel and Jacobi iterative methods.
- **Week 3:** Solving momentum and continuity equations in case of constant viscosity with stream function/vorticity formulation.
- **Weeks 4:** Staggered grid for formulating momentum and continuity equations. Indexing of unknowns. Solving momentum and continuity equations in case of constant viscosity using pressure-velocity formulation with staggered grid.
- **Weeks 5:** Conservative finite differences for the momentum equation. "Free slip" and "no slip" boundary conditions. Solving momentum and continuity equations in case of variable viscosity using pressure-velocity formulation with staggered grid.
- **Week 6:** Advection in 1-D. Eulerian methods. Marker-in-cell method. Comparison of different advection methods and their accuracy.
- **Week 7:** Advection in 2-D with Marker-in-cell method. Combining flow calculation and advection for buoyancy driven flow.
- **Week 8:** "Free surface" boundary condition and "sticky air" approach. Free surface stabilization. Runge-Kutta schemes. Continuity-based velocity interpolation.
- **Week 9:** Solving 2D heat conservation equation in case of constant thermal conductivity with explicit and implicit approaches.
- **Week 10:** Solving 2D heat conservation equation in case of variable thermal conductivity with implicit approach. Temperature advection with markers. Creating thermomechanical code by combining mechanical solution for 2D buoyancy driven flow with heat diffusion and advection based on marker-in-cell approach.
- **Week 11:** Implementation of radioactive, adiabatic and shear heating to the thermomechanical code.
- **Week 12:** Programming of solution of coupled solid-fluid momentum and continuity equations for the case of melt percolation in a rising mantle plume.
- **Week 13:** Subgrid diffusion of temperature and its implementation. Implementation of temperature-, pressure- and strain rate-dependent viscosity, temperature- and pressure-dependent density and temperature-dependent thermal conductivity to the thermomechanical code. Final project description for slab breakoff modeling.

GRADING will be based on weekly programming homeworks (50%) and a term project (50%) to develop an application of their choice to a more advanced level.

Literature

Geophysics: Methods II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4005-00L</td>
<td>Geophysical Fluid Dynamics</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>J. A. R. Noir</td>
</tr>
</tbody>
</table>

Abstract
Fluid mechanics is one of the fundamental building blocks of modern geophysics. This course aims to provide the students with the basic tools used in fluid dynamics studies of geophysical-astrophysical problems. The course is a combination of lectures, exercises and demo experiments.

Objective
The goal of this course is to introduce you to some fundamental concepts of fluid dynamics, dimensional analysis and scaling laws. A particular attention is given to the assumptions and approximations underlying the derivations of the equations in various situations. The lectures are a mix of table top experiments, everyday observations and theoretical derivations.
The goal of this course is to learn and understand few principal partial differential equations (conservation laws) that are applicable for
M. Rieutord, Springer 2015, Fluid dynamics - An Introduction: The book is available as a pdf for ETH student
A provisional week-by-week schedule (subject to change) is as follows:

Weeks 1,2: The continuity equation
Exercise: Computing the divergence of velocity field.

Weeks 3.4: Density and gravity
Exercises: Computing density, thermal expansion and compressibility from an equation of state. Derivation of gravitational acceleration and its divergence from gravitational potential.

Weeks 5,6: Stress and strain
Exercises: Analysing strain rate tensor for solid body rotation. Computing stress invariants

Weeks 7,8: The momentum equation

Week 9: Viscous rheology of rocks
Theory: Solid-state creep of minerals and rocks as the major mechanism of deformation of the Earth's interior. Dislocation and diffusion creep mechanisms. Rheological equations for minerals and rocks. Effective viscosity and its dependence on temperature, pressure and strain rate. Formulation of the effective viscosity from empirical flow laws.
Exercise: Deriving viscous rheological equations for computing effective viscosities from empirical flow laws.

Weeks 10,11: The heat conservation equation

Week 12,13: Elasticity and plasticity
Exercise: Compute viscoelastic stress evolution.

Exercise: Deriving viscous rheological equations for computing effective viscosities from empirical flow laws.

Exercise: Deriving momentum equation. Computing velocity for magma flow in a channel.

GRADING will be based on homework (1/3) and oral exam (2/3).

Lecture notes
Script and Exam questions are available by request tgerya@ethz.ch

Lecture notes
Current lecture notes and homeworks will be found during the course at www.polybox.ethz.ch
Earthquakes I: Seismotectonics

This course provides an overview of the most widely used seismotectonic methods to image the Earth’s interior with a focus on crustal and upper-mantle structures. Topics include controlled source methods such as refraction and wide-angle reflection, as well as passive body-wave and surface-wave based methods. The course will discuss the strengths and weaknesses of each method.

Objective
Understand the strengths and weaknesses of various active and passive tomographic methods to image the structure of the Earth.

Literature

Prerequisites / notice
Basic knowledge of continuum mechanics and rock mechanics, as well as notion of tensor analysis is strongly suggested. We recommend to have taken the course Continuum Mechanics (generally taught during the Fall semester).

This course will be taught in fall 2017 and it will be followed by Earthquakes 2: Source Physics in Spring 2018.

The course will be evaluated in a final written test covering the topics discussed during the lectures.

The course will be worth 3 credit points, and a satisfactory total grade (4 or better) is needed to obtain 3 ECTS.

The course will be given in English.
Abstract
This course aims to give a physical understanding of the formation, structure, dynamics and evolution of planetary bodies in our solar system and also apply it to ongoing discoveries regarding planets around other stars.

Objective
The goal of this course is to enable students to understand current knowledge and uncertainties regarding the formation, structure, dynamics and evolution of planets and moons in our solar system, as well as ongoing discoveries regarding planets around other stars. Students will practice making quantitative calculations relevant to various aspects of these topics through weekly homeworks.

Lecture notes
Slides and scripts will be posted on Moodle.

Literature
It is recommended but not mandatory to buy one of these books:

Applied Geophysics

Applied Geophysics: Compulsory Courses

The compulsory courses take place in spring semester.

Applied Geophysics: Courses of Choice

The compulsory courses take place in spring semester.

Major in Mineralogy and Geochemistry

Compulsory Module in Analytical Methods in Earth Sciences

Students have to complete 6 credits in part A (microscopy courses), and 6 credits in part B (methods).

Microscopy Courses

Compulsory Module in Analytical Methods in Earth Sciences: Microscopy Courses

Analytical Methods Courses

Compulsory Module in Analytical Methods in Earth Sciences: Analytical Methods Courses

Restricted Choice Modules Mineralogy and Geochemistry

A minimum of two restricted choice modules must be completed in the major Mineralogy and Geochemistry.

Mineralogy and Petrology

Mineralogy and Petrology: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4028-00L</td>
<td>Physical Properties of Minerals</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>S. Petitgirard, G. Spiekermann</td>
</tr>
</tbody>
</table>

Abstract
Physical properties of minerals, e.g. electrical properties, elasticitcal properties are discussed. The effect of the crystal symmetry on the symmetry of physical properties as well as the mathematical formulation of the physical properties are major topics.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4039-00L</td>
<td>Thermodynamics Applied to Earth Materials</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>J. Connolly</td>
</tr>
</tbody>
</table>

Abstract
This course develops the thermodynamic concepts necessary to predict phase equilibria and to compute physical properties from thermodynamic data.

Objective
To provide students with the conceptual and practical skills necessary to implement thermodynamic models and data as provided in the earth science literature. The computer software package Maple is relied upon to allow students to solve realistic problems without the distraction of mathematical details.

Content
Elementary concepts (1st and 2nd Laws; composition, state and extent); stability criteria; Legendre transforms; Maxwell relations and other manipulations of thermodynamic functions; calculation of Gibbs energy for a pure solid; simple solution models; order-disorder solution models; reciprocal solution models; equations of state for molecular fluids; free energy minimization.

This course is neither an introduction to computer methods for calculating petrological phase equilibria nor an introduction to phase diagram methods.

Prerequisites / notice
The grade for the course is based on exercises assigned as homework.

Some familiarity with elementary thermodynamics (phase rule, reactions) and mathematics (differentiation, integration) is assumed. Experience with Maple or comparable programs such as Mathematica is helpful.

Mineralogy and Petrology: Courses of Choice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4063-00L</td>
<td>X-Ray Powder Diffraction</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Plötze</td>
</tr>
</tbody>
</table>

Abstract
In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters.

Objective
Upon successful completion of this course students are able to:
- describe the principle of X-ray diffraction analysis
- carry out a qualitative and quantitative mineralogical analysis independently,
- critically assess the data,
- communicate the results in a scientific report.

Content
Fundamental principles of X-ray diffraction
Setup and operation of X-ray diffractometers
Interpretation of powder diffraction data
Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis)

Lecture notes
Selected handouts will be made available in the lecture
The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data.

Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential. Software will be provided for future use on own Laptop.

651-4233-00L Geotectonic Environments and Deep Global Cycles W 3 credits 2V M. W. Schmidt P. Ulmer

Abstract
This course addresses master students interested in an integral view of processes operating in various tectonic environments, most specifically divergent and convergent plate margins

651-4097-00L Applied Mineralogy and Non-Metallic Resources I W 3 credits 2G R. Kündig

Abstract
Geological and mineralogical aspects to important non-metallic mineral resources. Industrial use of specific mineral resources as well as economic, strategic and environmental aspects are discussed. Examples from all over the world with a specific focus on the non-mineral mineral resources potential in Switzerland.

Objective
Students will learn to understand the use of non-mineralic mineral resources from a geological and mineralogical point of view as well as from an industrial, technical and strategic (political) point of view. Environmental aspects on the worldwide use of non-mineralic mineral resources are discussed. A special focus will be given on the situation in Switzerland.

Content
Teaching, case-studies and excursions (e.g. raw-material industry).

Course "Applied mineralogy and non-metallic resources I" (autumn/winter semester):
Non-metallic resources. Occurrences, geology, extraction, properties, fabrication and use. Industrial aspects, (new) technologies, market, stock, situation, reserves & resources, trends and development, environmental aspects, law.

Chapters: e.g. coal/coal, graphite, diamond, fullerenes; oil/gas (oil- and tarsands, oil-shists); phosphates/nitrates; aluminum (bauxite, corundum); salt; carbonates; titanium; clay and clay minerals; sulphur; gypsum/anhdyrite; fluoride; asbestos; talc; micas; rare earth elements.

Course "Applied mineralogy and non-metallic resources II" (fall/summer semester):

Chapters: e.g. Stone industry - technical aspects of building stones, properties, weathering, treatment, quarries, products. Crushed stones - quarries, products, planning, environment. Gravel an sand - resources/reserves, environment (protection/law), alternative products (substitution). Cement and concrete (geological resources, prospect, fabrication, environment).

Lecture notes
Will be given according to the lessons. Partially integration of e-learning tools.

Literature

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 863 of 2152
Mineral Resources

Mineral Resources: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4097-00L</td>
<td>Applied Mineralogy and Non-Metallic Resources I</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>R. Kündig</td>
</tr>
<tr>
<td>Abstract</td>
<td>Geological and mineralogical aspects to important non-metallic mineral resources. Industrial use of specific mineral resources as well as economic, strategic and environmental aspects are discussed. Examples from all over the world with a specific focus on the non-mineral mineral resources potential in Switzerland.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will learn to understand the use of non-metallic mineral resources from a geological and mineralogical point of view as well as from industrial, technical and strategic (political) point of view. Environmental aspects on the worldwide use of non-metallic mineral resources are discussed. A special focus will be given on the situation in Switzerland.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Course “Applied mineralogy and non-metallic resources I” (autumn/winter semester): Non-metallic resources. Occurrences, geology, extraction, properties, fabrication and use. Industrial aspects, (new) technologies, market, stock, situation, reserves & resources, trends and development, environmental aspects, law. Chapters: e.g. coal/carbon (coal, graphite, diamond, fullerien); oil/gas (oil- and tarsands, oil-shirts); phosphates/nitrates; aluminum (bauxite, corundum); salt; carbonates; titanium; clay and clay minerals; sulphur; gypsum/anhydrite; fluoride; asbestos; talc; micas; rare earth elements. Course “Applied mineralogy and non-metallic resources II” (fall/summer semester): Stone and earth industry (gravel, sand, crushed stones, stones), natural stone, building stone, cement, cement-industry. New perception on raw materials. Case studies in applied mineralogy. Chapters: e.g. Stone industry - technical aspects of building stones, properties, weathering, treatment, quarries, products. Crushed stones - quarries, products, planning, environment. Gravel an sand - resources/reserves, environment (protection/law), alternative products (substitution). Cement and concrete (geological resources, prospection, fabrication, environment). Lecture notes Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>651-4037-00L</td>
<td>Mineral Resources I</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>C. Chelle-Michou, P. Tollan</td>
</tr>
<tr>
<td>Abstract</td>
<td>Can be chosen as an elective course within the Bachelor. Prospective MSC-Students attending the module "Mineral Resources" should attend Mineral Resources I and II in the first year of their MSC studies. Principles of hydrothermal ore formation, using base metal deposits (Cu, Pb, Zn) in sedimentary basins to explain the interplay of geological, chemical and physical factors from global scale to sample scale. Introduction to orthomagmatic ore formation (mostly Cr, Ni, PGE). Introduction to supergene residual deposits (Ni, Al). Understanding the fundamental processes of hydrothermal, magmatic and supergene ore formation, recognising and interpreting mineralised rocks in geological context. (a) Principles of hydrothermal ore formation: base metal deposits in sedimentary basins. Practical classification of sample suites by genetic ore deposit types. Mineral solubility and ore deposition, principles & thermodynamic prediction using activity diagrams. Driving forces and structural focussing of hydrothermal fluid flow. (b) Introduction to orthomagmatic ore formation. Chromite, Ni-Cu sulphides and PGE in layered mafic intrusions. Distribution coefficients between silicate and sulphide melts. Carbonatites and pegmatite deposits. (c) Introduction to supergene residual deposits with emphasis on Ni laterites and bauxites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Principles of hydrothermal ore formation, using base metal deposits (Cu, Pb, Zn) in sedimentary basins to explain the interplay of geological, chemical and physical factors from global scale to sample scale. Introduction to orthomagmatic ore formation (mostly Cr, Ni, PGE). Introduction to supergene residual deposits (Ni, Al)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Understanding the fundamental processes of hydrothermal, magmatic and supergene ore formation, recognising and interpreting mineralised rocks in geological context. (a) Principles of hydrothermal ore formation: base metal deposits in sedimentary basins. Practical classification of sample suites by genetic ore deposit types. Mineral solubility and ore deposition, principles & thermodynamic prediction using activity diagrams. Driving forces and structural focussing of hydrothermal fluid flow. (b) Introduction to orthomagmatic ore formation. Chromite, Ni-Cu sulphides and PGE in layered mafic intrusions. Distribution coefficients between silicate and sulphide melts. Carbonatites and pegmatite deposits. (c) Introduction to supergene residual deposits with emphasis on Ni laterites and bauxites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Notes handed out during lectures Extensive literature list distributed in course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>2 contact hours per lecture / week including lectures, exercises and practical study of samples, and small literature-based student presentations. Supplementary contact for sample practicals and exercises as required. Credits and mark based on participation in course (exercises, 50%) and 1h30 written exam in the last lecture of the semester (50%).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 864 of 2152
Introduction to computer tools for the simulation of hydrothermal fluid flow and hydrothermal reactions. The computer programs are not assessed.

Title
T. Driesner, to be announced

Block course involving lectures, exercises and practical application of inclusion petrography, microthermometry, Raman and LA-ICPMS

Communication
Resource Economics and Mineral Exploration

Objective
Global mineral economics and the strategies of mineral exploration -- including geological, geochemical and geophysical methods, but also non-geological factors such as organisational, political and environmental aspects. Changing external lecturers.

Abstract
Block course involving lectures, exercises and practical application of inclusion petrography, microthermometry, Raman and LA-ICPMS microanalysis

Objective
Practical ability to carry out a meaningful fluid or melt inclusion study in the fields of geochemistry, petrology or resource geology, involving problem definition, research planning, quantitative measurements using a combination of techniques, critical interpretation and correct documentation of results.

Lecture notes
Handouts with extensive list of primary literature available

Literature
Goldstein and Reynolds (1994): CD available for in-house use

Number
651-4069-00L

Title
Fluid and Melt Inclusions: Theory and Practice

Type
W

ECTS
3 credits

Hours
3P

Lecturers
T. Driesner

Abstract
Block course involving lectures, exercises and practical application of inclusion petrography, microthermometry, Raman and LA-ICPMS microanalysis

Objective
Practical ability to carry out a meaningful fluid or melt inclusion study in the fields of geochemistry, petrology or resource geology, involving problem definition, research planning, quantitative measurements using a combination of techniques, critical interpretation and correct documentation of results.

Lecture notes
Handouts with extensive list of primary literature available

Literature
Goldstein and Reynolds (1994): CD available for in-house use

Number
651-4221-00L

Title
Numerical Modelling of Ore Forming Hydrothermal Processes

Type
W

ECTS
3 credits

Hours
2G

Lecturers
T. Driesner

Abstract
Introduction to computer tools for the simulation of hydrothermal fluid flow and hydrothermal reactions. The computer programs are handed out to the students and can be run on normal laptop PCs (Windows operating system; MAC or Linux users will have to install a virtual machine or team up with a colleague with a Window computer). No programming knowledge is necessary.

Objective
Learn how to use the simulation programs HYDROTHERM and Geochemist's Workbench to explore how hydrothermal or deposition works.

Content
Introduction to computer tools for the simulation of hydrothermal processes: HYDROTHERM for fluid flow simulations, Geochemist's Workbench for thermodynamic modeling. While learning the respective computer programs is an essential part of the course, the emphasis will be on using these tools to learn how the physics and chemistry of hydrothermal system actually work.

Lecture notes
Computer programs and course material will be distributed during the course.

Literature

Number
651-4034-00L

Title
Resource Economics and Mineral Exploration

Type
W

ECTS
3 credits

Hours
3P

Lecturers
G. Beaudoin, C. Chelle-Michou

Abstract
Restricted participation with priority for MSc Earth Science students taking the Module 'Mineral Resources and Applied Mineralogy'. Interested ETH students please register through myStudies by second semester week.

Objective
Global mineral economics and the strategies of mineral exploration -- including geological, geochemical and geophysical methods, but also non-geological factors such as organisational, political and environmental aspects. Changing external lecturers.

Content
This block course in will comprise 4 half-day lectures and a series of practical exercises from selection of a mineral property to discovery of mineral resources and their valuation. Teams are formed as Limited Partnership companies that have to select and bid for a mineral property offered during an auction. Each company has the same nominal budget. The highest bidder purchases the selected property, others need to purchase the remaining properties during an auction. Justification for selecting the property is justified in a report. The companies must interpret the geology of their mineral property to prepare a diamond drill program to discover and, eventually, delineate the mineral resources. This drill program is presented in a report prior to drilling. Drilling in the tri-dimensional matrix of the property is simulated using the software FOREUR, until budget lapse. The companies must select drill intervals for chemical analysis to document the extent and composition of the discovered mineralization. Portions of the mineral rights can be traded for capital between the companies. An estimate of the tonnage and grade of the discovered resource is prepared using geometric methods and GIS software (ex. Arc GIS). The ground value of the resource is estimated by a computation of the Net Smelter Return at current metal prices. The results of the exploration program are presented in a comprehensive report.

Lecture notes
Handouts for background information and a computer simulation program for the case-study exercise will be provided. Participants must bring a Windows-based laptop computer.
Geochemistry

11.1.2023

Prerequisites / notice

Prerequisites: Knowledge of mineral deposit-type characteristics is useful (orogenic gold, Cu-Zn VMS, Ni-Cu-PGE); at least “Integrierte Erdsysteme”, “Ore Deposit 1”, or adequate knowledge of mineral deposits acquired by preparatory reading. Basic knowledge of ArcGIS software is important to produce maps and sections required in reports. Training exercises and tutorials will be provided in advance to prepare for the course. Taught biennially in collaboration with University of Geneva.

This course is co-organised by ETH Zurich (Prof. C. Chelle-Michau) and University of Geneva (Prof. R. Moritz)

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Geochemistry: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4049-00L</td>
<td>Conceptual and Quantitative Methods in Geochemistry</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>O. Bachmann, G. De Souza, B. J. Peters</td>
</tr>
</tbody>
</table>

Abstract

This course will introduce some of the main quantitative methods available for the quantitative treatment of geochemical data, as well as the main modelling tools. Emphasis will be on conceptual understanding of these methods as well as on their practical application, using key software packages to analyse real geochemical datasets.

Objective

Development of a basic knowledge and understanding of the main tools available for the quantitative analysis of geochemical data.

Content

The following approaches will be discussed in detail: major and trace element modelling of magmas, with application to igneous systems; major and trace element modelling of ore deposits; oxygen isotope studies of fluids; redox speciation in aqueous (hydrothermal, fresh water sea water) fluids; lead isotope systematics of continental crust and mantle; chemical and geochronological dating of magmatic (igneous) rocks; lead isotope studies of meteorites; radiogenic Sr-Nd-Pb-O isotope studies of continental crust and mantle; modelling speciation in aqueous (hydrothermal, fresh water sea water) fluids.

We will discuss how these methods are applied in a range of Earth Science fields, from cosmochemistry, through mantle and crustal geochemistry, volcanology and igneous petrology, to chemical oceanography.

A special emphasis will be put on dealing with geochemical problems through modeling. Where relevant, software packages will be introduced and applied to real geochemical data.

Lecture notes

Slides of lectures will be available.

Pre-requisite: Geochemie I and II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4227-00L</td>
<td>Planetary Geochemistry</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>M. Schönächler, H. Busemann, A. Hunt</td>
</tr>
</tbody>
</table>

Abstract

To understand the formation and evolution of the solar system and its planets from a geochemical perspective.

Objective

The Sun and solid objects in the solar system (planets, comets, asteroids, meteorites, interplanetary dust) are discussed from a geochemical perspective. What does their present-day composition tell us about the origin, formation and evolution of the solar system?

Content

The lectures introduce the basics of the terrestrial and giant planets, comets and asteroids, gained from modern space missions and the study of extraterrestrial materials. The chemical and isotopic composition of meteorites, being the most primitive material available for study, is a further major topic.

Lecture notes

Slides and additional materials are available electronically.

Geochemistry: Courses of Choice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4233-00L</td>
<td>Geotectonic Environments and Deep Global Cycles</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>M. W. Schmidt, P. Ulmer</td>
</tr>
</tbody>
</table>

Does not take place this semester.

Abstract

This course addresses master students interested in in integral view of processes operating in various tectonic environments, most specifically divergent and convergent plate margins.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4057-00L</td>
<td>Climate History and Palaeoclimatology</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>H. Stoll, I. Hernández Almeida, H. Zhang</td>
</tr>
</tbody>
</table>

Abstract

Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport.
In this course we present and discuss advanced topics in geochemistry based on the critical reading of research papers. Themes include

1. Overview of elements of the climate system and earth energy balance
2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drives and feedbacks of transient perturbations like at the latest Pliocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene?
3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future?
4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturining Circulation to collapse? When and why has this happened before?

The course aims to give a physical understanding of the formation, structure, dynamics and evolution of planetary bodies in our solar system and also apply it to ongoing discoveries regarding planets around other stars.

The main topics covered are: Orbital dynamics and Tides, Solar heating and Energy transport, Planetary atmospheres, Planetary surfaces, Planetary interiors, Asteroids and Meteorites, Comets, Planetary rings, Magnetic fields and Magnetospheres, The Sun and Stars, Planetary formation, Exoplanets and Exobiology

Students will practice making quantitative calculations relevant to various aspects of these topics through weekly homeworks.

The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturining Circulation to collapse? When and why has this happened before?

Content

1. Introduction and overview. Data visualization and statistics in IsotopFR, Principles of U-Pb geochronology
2. High-precision ID-TIMS U-Pb geochronology (principles and applications)
Open Choice Modules Mineralogy and Geochemistry

Modules from the Geology Major

Choice from the Geology Restricted Choice Modules

Choice from the Geology Open Choice Modules

Modules from the Engineering Geology Major

Modules from the Geophysics Major

Modules from the Geophysics Composite Modules

Modules from the Geophysics Restricted Choice Modules

Restricted Choice Module of Mineralogy and Geochemistry

Choice from Mineralogy and Geochemistry Restricted Choice Modules

Choice from Mineralogy and Geochemistry Open Choice Modules

Electives

Courses can be chosen from the complete offerings of the ETH Zurich and University of Zurich (according to prior agreement with the subject advisor).

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-0046-00L</td>
<td>Electron Microprobe Course 2 - Practice</td>
<td>Dr</td>
<td>2 credits</td>
<td>2G</td>
<td>J. Allaz, L. Grafulha Morales</td>
</tr>
</tbody>
</table>

Abstract

Theory on scanning electron microscope (SEM) and on electron microprobe analysis (EPMA) applied to geological materials. Complete understanding of the instrument, interaction of electron with matter, principles of electron imaging (SE, BSE and CL), of electron backscatter diffraction (EBSD), and of X-ray analysis for the chemical characterisation of solid material at the micron-scale.

Objective

Understand how the instrument works, why it is used, and how the different signals are being generated and analysed. Ability to treat and present analytical results, such as calculating a mineral formula from a mineral analysis.

Content

Physical principles of electron optics, interaction of electrons with matter, production of X-rays, detection and analysis. The course includes some live demonstrations on the instrument (remotely).

Lecture notes

Script will be provided.

Prerequisites / notice

The Theory course is a prerequisite for 651-0048-00L Electron Microprobe Course 2 - Practice.

Taught competencies

Domain A - Subject-specific Competencies

Techniques and Technologies

Analytical Competencies

Decision-making

Problem-solving

Domain B - Method-specific Competencies

Analytical Competencies

Problem-solving

Domain C - Social Competencies

Cooperation and Teamwork

Domain D - Personal Competencies

Critical Thinking

Electron Microprobe Course 2 - Practice

W Dr 2 credits 2G J. Allaz

Abstract

Objective

Ability to operate the Electron Microscope with minimal assistance, optimise the analysis setup in order to obtain excellent results, identify possible source of error (troubleshooting) and fix them, data treatment (and interpretation).

Content

Physical principles of electron optics, interaction of electrons with matter, production of X-rays, interaction of X-rays with matter. Detection of X-rays. Laboratory work in the field of Earth sciences.

Lecture notes

Script and User Manual will be provided.

Literature

Overview and understanding of the most important geophysical methods: Potential field methods (Gravimetrics and Magnetics), Electrical and electromagnetic methods, Refraction and reflection seismics, Georadar. Discussion of survey design, sources and receivers and data processing.

Prerequisites / notice

- Full day block course after the end of HS
- 4 full days.
- Prerequisite: Analytical methods in Petrology and Geology (651-4055-00L) and 651-0046-00 Electron Microprobe Course 1 - Theory
- Restricted attendance, max. 8 students (incl. Doctoral students and external participants). Contact J. Allaz.

Taught competencies

Domain A - Subject-specific Competencies	Techniques and Technologies	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
	Decision-making	assessed
	Problem-solving	assessed
	Project Management	assessed
Domain C - Social Competencies	Cooperation and Teamwork	assessed
Domain D - Personal Competencies	Creative Thinking	assessed
	Critical Thinking	assessed

651-1851-00L Introduction to Scanning Electron Microscopy
W 1 credit 2G

Abstract
Introduction to Scanning Electron Microscopy and Microanalysis including Practical training.

Objective
Introduction in scanning electron microscopy and microanalysis. Obtain practical experience in operating a SEM.

Content
Functional principles and operation modes of a scanning electron microscope. Methods and application fields for imaging (SE, BSE, FSE, AE, CL), X-ray spectroscopy (EDX)

- Electron diffraction (EBSD, Channeling, Orientation Imaging)

Methods for sample preparation

Practical exercises.

Lecture notes
Scripts and operation manuals are provided during the course.

Literature

327-0703-00L Electron Microscopy in Material Science
W 4 credits 2V+2U

Abstract
A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials.

Objective
A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials.

Content
This course provides a general introduction into electron microscopy of organic and inorganic materials. In the first part, the basics of transmission- and scanning electron microscopy are presented. The second part includes the most important aspects of specimen preparation, imaging and image processing. In the third part, recent applications in materials science, solid state physics, structural biology, structural geology and structural chemistry will be reported.

Prerequisites / notice

651-3541-00L Exploration and Environmental Geophysics
W 4 credits 3V

P. Edme, H. Maurer, A. Shakas

Abstract
Overview and understanding of the most important geophysical methods: Potential field methods (Gravimetrics and Magnetics), Electrical and electromagnetic methods, Refraction and reflection seisms, Georadar. Discussion of survey design, sources and receivers and data processing.

Objective
Overview and understanding of the most important geophysical methods. Proposed solutions to assess and observe problems relevant to exploration and environmental geophysics in soil, ice and lithosphere at different scales. Getting familiar with measuring- and interpretation procedures. Pointing out the possibilities and limitations of geophysical methods.

Content

Lecture notes
Available through eDoz/ILIAS.

Additional material will be provided by the lecturers.

Literature

651-4086-00L Experimental Methods in Petrology
W 3 credits 2P

C. Liebske, P. A. Sossi

Abstract
Overview of the most common experimental methods employed in petrology to determine thermodynamic and physical properties and phase equilibria of minerals, mineral assemblages, magmas and fluids. The basic principals of low, moderate, high and ultrahigh pressure devices are discussed combined with an introduction into the synthesis of starting materials and the evaluation of run products.
This course shall provide the basics of experimental petrology. The principal goals are the acquisition of basic knowledge about experimental equipment employed in petrology and the design and setup of an experimental study targeted to obtain quantitative data on phase relations, thermodynamic, kinetic and rheologic properties of earth materials as well as the examination, analysis and evaluation of experiments. At the end of the course, the participants should be able to evaluate experimental data independently and design appropriate experiments on their own.

Objective

This course gives an introduction to programming in Fortran, and is suitable for students who have only minimal programming experience.

Content

(1) Introduction and historical summary of experimental petrology
(2) Experimental methods at ambient pressure (1 bar) with practical exercise to determine the free energy of formation of wustite (FeO)
(3) Experimental buffering techniques (phase rule, buffering of partial pressures of gases and supercritical fluids, buffering of mixed volatile phases at elevated pressures, buffering of activities and solid-solid solutions in solid phases
(4) Experimental methods at moderate pressures: externally (cold seal) and internally (HIPV) heated gas-pressure apparatus with practical demonstration/exercise
(5) High-pressure solid-media experimental techniques (piston cylinders)
(6) Ultrahigh-pressure experimental techniques (multi-anvil apparatus, diamond-anvil-cells (DAC)
(7) Evaluation of petrologic experiments (preparation of run products, analytical and spectroscopic methods of examination and quantification)

The practical work in the laboratories are conducted (with the exception of exercise #1) on a small research project where the various techniques and equipment are demonstrated and the practical use is trained.

Lecture notes

A summary of the material presented in the lectures are distributed weekly.

Literature

Currently, there is no comprehensive book available that summarizes the most important aspects of experimental petrology; publications relating to individual subjects are referred during the lectures.

Prerequisites / notice

This course addresses to a public (master and PhD students) that is interested in an introduction to experimental research in petrology, but does not require basic knowledge in experimental methods. However, basic knowledge in petrology and physical chemistry (thermodynamics) is required to follow the course.

651-4114-00L Illustrations in Natural History (University of Zürich)

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: BIO271

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline.html

Abstract

We offer the opportunity to develop drawing skills which can be applied for scientific studies and publications. We emphasis the reproduction of natural objects with and without interpretations. Technical and 3D-drawings as well as descriptive geometry are not dealt with in this course.

Objective

- the most important drawing techniques commonly applied in science
- accurate observation
- basic knowledge in image processing with Photoshop

Content

In this course, both classic and computer-based drawing and illustration techniques are presented. We begin with sketches with the pencil and continue with Indian ink which we use for drawings using hatchings and dots. Finally, one drawing is carried out in detail with a pencil.

This drawing will then be scanned and processed in Photoshop. The emphasis is on practicing the methods.

Lecture notes

- not mandatory!

Literature

Prerequisites / notice

Please bring pencils (HB and 2H) as well as Indian ink-pens or fine black markers. In the second half of the semester, the students may bring their own laptops with Photoshop because usually, we do not have enough computers in the lecture hall for all.

651-4273-00L Numerical Modelling in Fortran

This course gives an introduction to programming in Fortran, and is suitable for students who have only minimal programming experience. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts.

Objective

Fortran is a modern programming language that is updated every few years (most recently in 2018) and is specifically designed for scientific and engineering applications. This course gives an introduction to programming in this language, and is suitable for students who have only minimal programming experience, for example with MATLAB scripts. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts, using example scientific problems relevant to Earth science.

Lecture notes

See http://jupiter.ethz.ch/~pjt/SHARE/ShareCourse/numerical_modelling.html

Taught competencies

Domain A - Subject-specific Competencies

Techniques and Technologies: assessed

Domain B - Method-specific Competencies

Media and Digital Technologies: assessed

Problem-solving: assessed

651-4273-01L Numerical Modelling in Fortran (Project)

This course gives an introduction to programming in Fortran, and is suitable for students who have only minimal programming experience. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts.

Objective

Fortran is a modern programming language that is updated every few years (most recently in 2018) and is specifically designed for scientific and engineering applications. This course gives an introduction to programming in this language, and is suitable for students who have only minimal programming experience, for example with MATLAB scripts. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts, using example scientific problems relevant to Earth science.

Content

The project consists of writing a Fortran program to solve a problem agreed upon between the instructor and student; the topic is often related to (and helps to advance) the student's Masters or PhD research. The project is typically started towards the end of the end of the main Fortran class when the student has acquired sufficient programming skills, and is due by the end of Semesterprüfung week.

Lecture notes

See http://jupiter.ethz.ch/~pjt/SHARE/ShareCourse/numerical_modelling.html

651-1392-00L Palaeontological Colloquium (University of Zurich)

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
Understanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of the ice sheets of Greenland and Antarctica. After the course the students are able to understand and interpret measurements of ice flow, subglacial water pressure and ice temperature. They will have an understanding of glaciology-related physical concepts sufficient to understand most of the contemporary literature on the topic. The students will be well equipped to work on glacier-related problems by numerical modeling, remote sensing, and field work.

The dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydromechanics. The specific dynamics of ice water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate).

The dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydromechanics. The specific dynamics of lde water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate).

The dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydromechanics. The specific dynamics of lde water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate).
Module Code: GEO102

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline s.html

Abstract
This re-search-oriented course enables students to think through and about difference in a geographically (multi-scalar, critical, space-bound) manner, by elaborating on multiple concepts from postcolonial, intersectional and other disciplinary debates, and by applying these to specific topical domains.

Objective
- Understand basic concepts and empirical manifestations of difference in human geography
- Deepen knowledge on how difference works in one specific topic of human geography

Skills
- Learn to independently digest, assess, and present basic academic texts
- Conduct discussions in English or German (online and offline) - Be able to write a short research paper about a human geography topic

651-2601-00L Human Geography I: One Earth - Many Worlds (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
UZH Module Code: GEO112

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline s.html

Abstract
Imparting of research questions and basic principles in Human Geography

Objective
To get an overview about basic research questions and principles of Human Geography

Content
(1) Society and space (2) Society and development (structure and dynamic of population, urbanisation, disparities (3) Society and natural environment (natural resources; food security, sustainability)

Lecture notes
PowerPoint-slides (German)

Literature

651-4088-03L Physical Geography III (Geomorphology and Glaciology) (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
UZH Module Code: GEO231

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline s.html

Abstract
Das Modul bietet eine kurze Einführung in einige Komponenten und Prozesse des hydrologischen Kreislaufes. Dabei werden einzelne Wasserspeicher (Schnee-, Boden und Grundwasser) und Flüsse zwischen den Speichern (Verdunstung, Niederschlag und Abfluss) betrachtet. Übungen ergänzen die Vorlesung.

651-1617-00L Geophysical Fluid Dynamics and Numerical Modelling Seminar
E- Dr 0 credits 1S P. Tackley, T. Gerya

651-4931-00L Seminar I: Heat and Mass Transfers in Magmatology
W Dr 1 credit 1S O. Bachmann, C. Chelle-Michou

Abstract
Heat and mass transfers from the mantle to the crust control many aspects of the differentiation of our planet, including (1) primitive melt chemistry, (2) layering of the crust, (3) type of volcanic eruption, (4) formation of mineral deposits. This year, we will focus on processes in crystal mushes (formation, crystallization, remobilization, degassing).

Objective
This class will allow the students to learn about the modern methods and ideas on heat and mass transfers in magmatology through classic and recently published papers.
Communication of scientific results to the scientific community and the public is critical. In the class, the students will read and analyse scientific papers and discuss them orally to the class. The students will also create a Wikipedia page and reformulate scientific results for the public.

Content
The class will focus mostly on 1) reading literature on topics of interests, 2) oral and written presentations of the papers, 3) exercises illustrating the topic, to allow students to work by themselves on some well-defined problems.

651-1091-02L Geological Colloquium
E- Dr 0 credits 2K S. Bernasconi

Abstract
Invited speakers from the entire range of Earth Sciences.

Objective
Selected themes in sedimentology, tectonics, paläontologie, geophysics, mineralogy, paleoclimate and engineering geology on a regional and global scale.

Content
According to variable program.

Lecture notes
No

Literature
No

Prerequisites / notice
The presentations are held in German. Membership of the Geological Society in Zurich is not required.

651-3280-00L Earth Science Excursions
W 1 credit 2P I. Stössel

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 872 of 2152
Only for MSc and doctorate students of D-ERDW. Only for excursions that are not part of the BSc excursion program 2.-6. semester.

With the registration for an excursion or a field course students acknowledge having read and understood the General Terms and Conditions for Field Trips and Excursions [link]

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-2001-00L</td>
<td>Semester Research Project ★</td>
<td>W</td>
<td>3</td>
<td>6A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Small individual research project done by a student and supervised by a Professor/Dozent/Oberassistent of D-ERDW. The content of each project is unique and is defined by the supervisor. The project consists of preparing and writing a scientific report/paper. Short scientific report/paper is written by the student, which serves as a basis for project grading.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Objective | - To learn logic, content and methodology of research aimed at producing new scientific results and/or data.
- To familiarize with research procedures in a selected scientific area.
- To gain experience in writing scientific reports/papers. | | | | |
| Content | The content of each project is unique and not related to the BSc or MSc Thesis. This content is defined by the supervisor and discussed with the student, who agrees to take the project. The project should mainly consist of research activity aimed at producing new scientific results and/or data and cannot be limited to a literature work. Short scientific report is written by the student at the end of the project, which serves as a basis for the project grading. | | | | |
| Prerequisites | Only for excursions outside of the Bachelor excursions 2.-6. semester program. The program varies from year to year, details published on [link] | | | | |

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4191-00L</td>
<td>Radionuclides as Environmental Tracers</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>N. Casacuberta Arola, M. Christl, L. Wacker, C. Welte</td>
</tr>
<tr>
<td>Abstract</td>
<td>Radionuclides stemming from natural and artificial sources are powerful tools that allow gaining a better understanding of a large range of environmental processes. This course will focus on cosogenic and anthropogenic radionuclides and will provide a general overview about common applications and the use of tracers in the environment, e.g. to understand past climatic changes and ocean currents.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students learn the basic facts about sources and fate of natural and artificial long-lived radionuclides (e.g. 14C, 26Al, 10Be, 129I, 236U, Pu-isotopes, etc.). They gain insights into the different detection techniques, with special focus on accelerator mass spectrometry (AMS). A selection of the numerous applications of the different radionuclides in oceanic, atmospheric and terrestrial processes will be studied.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Content | The course will include lectures, practical exercises and two excursions, namely the opportunity to visit the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) and the AMS facilities at ETH (Laboratory of Ion Beam Physics). Lectures will cover:
- an introduction to natural and artificial radionuclides;
- a general overview of radionucleide detection, in particular AMS will be studied including a tour to the Laboratory of Ion Beam Physics;
- applications of long-lived radionuclides in the different environmental compartments (oceans, atmosphere and terrestrial environments): o The use of 14C in oceanic, atmospheric and terrestrial studies including a tour to the WSL labs; o applications of 10Be in ice cores and marine sediments; o applications of nuclear wastes from nuclear accidents (e.g. Fukushima); o controlled releases from nuclear reprocessing plants and their role in understanding oceanic processes. Exercise classes will include an introduction to the Ocean Data View and basic course in applying box models to describe transport and mixing processes. | | | | |
| Prerequisites | The content of this course is interdisciplinary and it will benefit from students coming from different fields. Two lab tours are organized. This course is also well suited for Ph.D. students. Students will need to bring their own computer that allow installing Ocean Data View. | | | | |

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4105-00L</td>
<td>Paleomagnetism</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>A. Biedermann</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course focuses on the Earth's magnetic field and the magnetization recorded in rocks as a way to study its past. In addition to mineral magnetism, field and laboratory methods, and data analysis are covered, as well as the wide range of applications of magnetic methods in Earth sciences, e.g. magnetostтратigraphy, studies of the early Earth, geodynamics or structural and tectonic studies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Gain an understanding of how paleomagnetism can be used to study the Earth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Content | 1. Earth's magnetic field
2. Mineral magnetism
3. Magnetic remanence
4. Paleomagnetic sampling and tests of stability
5. Data analysis and statistics
6. Paleomagnetic poles and paleogeography
7. Laboratory measurements
8. Topics requested by course participants (anisotropy, magnetostratigraphy, magnetotaxis,...) | | | | |
| Lecture notes | Slides will be provided during the lecture | | | | |
| Literature | Paleomagnetism: Magnetic Domains to Geologic Terranes by R.F. Butler http://www.geo.arizona.edu/Paleomag/ Essentials of Paleomagnetism by L. Tauxe https://earthref.org/MagIC/books/Tauxe/Essentials/ | | | | |

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4906-00L</td>
<td>Radiocarbon Dating ★★</td>
<td>W</td>
<td>2</td>
<td>4P</td>
<td>C. Welte, L. Wacker</td>
</tr>
<tr>
<td>Number of participants limited to 6. Please contact the lecturer for details immediately after subscription.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Radiocarbon (14C) dating is the most eminent dating tool for carbon containing samples younger than ~50 kyr and a useful tracer of the carbon cycle. Within this lab course, the sample preparation and 14C analysis of wood samples (or upon agreement other samples) will be performed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In this hands-on block course, students will have the opportunity to perform radiocarbon analysis of wood samples. This will include understanding the theoretical background of radiocarbon dating and its importance within Earth Sciences and related fields. Participants will gain know-how on the preparation of wood samples for AMS analysis. They will learn about the importance of suitable reference materials when performing AMS analysis. Data evaluation for C-14 measurements will be performed and discussed.

Content

- Sampling of tree ring layers.
- Preparation of reference materials and samples for AMS measurement, including chemical pre-treatment and graphitisation.
- Assisting the AMS measurement.
- Data evaluation and interpretation of results.

Prerequisites / notice

This is a block course for D-ERDW or D-USYS master or PhD students.

Recommended (but not a prerequisite 651-4191-00L Radionuclides as Environmental Tracers (in Autumn Semester)

OR

651-4901-00L Quaternary Dating Methods (in Autumn Semester)

651-4145-00L Seminar on Precambrian Geobiology and Biogeochemical Cycles

Abstract

The Precambrian Earth experienced several environmental states—all drastically different from today—that are recorded in sedimentological, fossil, and genetic records. We will review "classic" and more recent scientific literature on the evolution of chemical and biological processes to critically evaluate what we do and don’t know about how our planet’s biogeochemistry has changed through time.

Objective

For decades, researchers have attempted to reconstruct Precambrian environmental states and their relative timing using tracers recorded in the sedimentological, fossil, and genetic records. Here, by reading and discussing "classic" and more recently published scientific papers, students will learn about influential discoveries related to Earth history within the fields of geobiology and geochemistry.

In completing the course, students will specifically learn:

- Why Earth’s surface chemical composition evolved from anoxic to oxic environments
- How life evolved from simple prokaryotic metabolisms to multicellular eukaryotes
- The importance of geological, chemical, and biological feedback mechanisms
- How to discern between biologic innovation and environmental importance
- How to summarize, interpret, and discuss current evidence for what is and isn’t known about Earth’s geochemical and geobiological evolution
- How to assess opposing scientific viewpoints and outstanding questions in the literature

Content

Each lecture period will consist of a presentation and discussion—to be led by 1-2 students (depending on class size)—covering a given paper or set of papers. All students are expected to read the relevant papers before class and come prepared for discussion. Lecture periods will be divided between "review" presentations aimed at introducing the background and fundamentals of each topic and "debate" or "comparison"-style presentations, in which two (sometimes opposing) views of a given topic will be discussed and assessed.

Lecture notes

Where available, presentations and notes will be provided online during the course.

Literature

All required and recommended scientific publications will be provided online during the course.

GESS Science in Perspective

see Science in Perspective: Language Courses ETH/UZH

see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-ERDW.

Master’s Project Proposal

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4060-00L</td>
<td>MSc Project Proposal</td>
<td>O</td>
<td>10 credits</td>
<td>21A</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

The introductory lecture on conduct as a scientist is an integral part of the course.

The MSc Project Proposal is only offered in autumn semester, a registration in spring semester is subject to special approval by the study director.

Abstract

The main purpose of the Master Project Proposal is to help students organize ideas, material and objectives for their Master Thesis, and to begin development of communication skills.

Objective

The main objectives of the Master Project Proposal are to demonstrate the following abilities:

- to formulate a scientific question
- to present scientific approach to solve the problem
- to interpret, discuss and communicate scientific results in written form
- to gain experience in writing a scientific proposal

Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4062-00L</td>
<td>Master’s Thesis</td>
<td>O</td>
<td>30 credits</td>
<td>64D</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Only students who fulfill the following criteria are allowed to begin with their master thesis:

- a. successful completion of the bachelor programme;
- b. fulfilling of any additional requirements necessary to gain admission to the master programme;
- c. have successfully completed the MSc Project Proposal

Abstract

Students are to prove their skills in working autonomously on a scientific project.

Objective

Students are to prove their skills in working autonomously on a scientific project. They document their work in a scientific report.

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 874 of 2152
Mathematical tools for the engineer
C. Liebske

Tectonics
Textbooks in English:
Self-study course. This course is only available for those who got it as an additional requirement in their MSc admission.
Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical
Mathematics as a tool to solve engineering problems. Mathematical formulation of technical and scientific problems.
Analysis I and II
The course is intended to let the student learn fundamentals of geochemistry that were found lacking in his/her studies prior to entering the
M. Akveld
Complex numbers.
V. Picotti
13R
W. Behr
see "Content"
P. A. Sossi
T. Gerya

Fundamentals of Geophysics
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
Fundamentals of Geology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
Fundamentals of Geochemistry
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
Analysis I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
Physics I
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
Tectonics
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Self-study course. This course is only available for those who got it as an additional requirement in their MSc admission.
Objective
The course is intended to let the student learn fundamentals of geochemistry that were found lacking in his/her studies prior to entering the MSc in Earth Sciences at ETH. Contents of the course will be defined based on text books and/or scientific papers.

Literature
Textbooks in English:

Textbooks in German:
- M. Akveld, R. Sperb: Analysis I, vdf
- M. Akveld, R. Sperb: Analysis II, vdf
- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- L. Papula: Mathematik für Ingenieure 2, Vieweg Verlag

Content
Simple Mathematical models in engineering.

Objective
Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve the latter.
The student should acquire an overview over the basic concepts in mechanics.

Content
Book:

Chapters:
1, 2, 3, 4, 5, 6 (without: 6-5, 6-6, 6-8), 7, 8 (without 8-9), 9, 10 (without 10-10), 11 (without 11-7), 13 (without 13-13, 13-14), 14 (without 14-6), 15 (without 15-3, 15-5)

Literature
see "Content"

Friedhelm Kuypers
Physik für Ingenieure und Naturwissenschaftler
Band 1: Mechanik und Thermodynamik
Wiley-VCH Verlag, 2002, 544 S, ca.: Fr. 68.-

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 875 of 2152
Lecture notes
Detailed scriptum in digital form and additional learning modules (www.lead.ethz.ch) available on intranet.

Literature
see list in scriptum.

Prerequisites / notice
PPT-files of each lecture may be played back for rehearsal on www.lead.ethz.ch.

529-2001-AAL

Chemistry I and II

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

General Chemistry I and II: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium, kinetics, acids and bases, electrochemistry

Objective

Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.

Content

1. Stoichiometry

2. Atoms and Elements (Quantenmechanical Model of the Atom)

3. Chemical Bonding

4. Thermodynamics

5. Chemical Kinetics

6. Chemical Equilibrium (Acids and Bases, Solubility Equilibria)

7. Electrochemistry

Lecture notes

Nivaldo J. Tro

Chemistry - A molecular Approach (Pearson), Chapter 1-18

Literature

Housecroft and Constable, CHEMISTRY

Oxtoby, Gillis, Nachtrieb, MODERN CHEMISTRY

406-0603-AAL

Stochastics (Probability and Statistics)

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.

Objective

The objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".

Content

From "Statistics for research" (online)

Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's t Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"

Ch 1: Basics
Ch 2: The R Environment
Ch 3: Probability and distributions
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation
Introduction to Engineering Geology

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
This introductory course starts from a description of the behavior and phenomena of soils and rocks under near surface loading conditions and their key geotechnical properties. Lab and field methods for the characterization of soils, rocks and rock masses are introduced. Finally practical aspects of ground engineering, including tunneling and landslide hazards are presented.

Objective
Understanding the basic geotechnical and geomechanical properties and processes of rocks and soils. Understanding the interaction of rock and soil masses with technical systems. Understanding the fundamentals of geological hazards.

Content

Lecture notes
Lecture Material as defined in German PPT Slides of the German Course "651-3525-00L Ingenieurgeologie". Moodle Course Materials available.

Literature
For English speakers study chapters 1-3 of Part I of the book “Geological Engineering” (Gonzalez de Vallejo & Ferrer 2011, CRC Press), without groundwater flow, consolidation time, geophysical methods, details of triaxial tests in soils and rocks, details of clay mineralogy.

Prerequisites / notice
Participate on all exercises of “651-3525-00L Ingenieurgeologie”, Tuesday 13-14 pm. Participate in Written Exam together with students of the German Course.

Earth Sciences Master - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>E-</th>
<th>Z</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Recommended, eligible for credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>E-</th>
<th>Z</th>
<th>P</th>
<th>A</th>
<th>D</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Mathematics Education Master - Courses Offered

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>Abstract This lecture is only apt for students who intend to enrol in the programs “Teaching Diploma” or “Teaching Certificate”. It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way humans process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers are put in a position where they can further educate themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content Thematische Schwerpunkte: Lernen als Verhaltensänderung und als Informationsverarbeitung: Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information; Lernen als Wissenskonstruktion und Kompetenzerwerb unter besonderer Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und Erklärungen; Die Rolle von Emotion und Motivation beim Lernen; Interindividuelle Unterschiede in der Lernfähigkeit und ihre Ursachen: Intelligenztheorien, Geschlechtsunterschiede beim Lernen**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lernformen: Theorien und wissenschaftliche Konstrukte werden zusammen mit ausgewählten wissenschaftlichen Untersuchungen in Form einer Vorlesung präsentiert. Die Studierenden vertiefen nach jeder Stunde die Inhalte durch die Bearbeitung von Aufträgen in einem elektronischen Lerntagebuch. Über die Bedeutung des Gelernten für den Schulalltag soll reflektiert werden. Ausgewählte Tagebücherinträge werden zu Beginn jeder Vorlesung thematisiert.**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice This lecture is only apt for students who intend to enrol in the programs “Lehrdiplom” or “Didaktisches Zertifikat”. It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0238-01L</td>
<td>Support and Diagnosis of Knowledge Acquisition Processes (EW3)</td>
<td>W</td>
<td>3</td>
<td>3S</td>
<td>P. Edelsbrunner, J. Maue, C. M. Thurn</td>
</tr>
<tr>
<td></td>
<td>Abstract In this seminar students learn advanced techniques to support and to diagnose knowledge acquisition processes in school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective The main goals are: (1) You have a deep understanding about the cognitive mechanisms of knowledge acquisition. (2) You have a basic understanding about psychological test theory and can appropriately administer tests. (3) You know various techniques of formative assessment and can apply these to uncover students` misconceptions.**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mathematics Education Master - Key for Type

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Science Education Master

Educational Science (for all Directions)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>
| 851-0240-00L | Human Learning (EW1)
This lecture is only apt for students who intend to enrol in the programs "Teaching Diploma" or "Teaching Certificate". It is about learning in childhood and adolescence. | W | 2 credits | 2V | E. Stern |
| 851-0238-01L | Support and Diagnosis of Knowledge Acquisition Processes (EW3)
Enrolment only possible with matriculation in Teaching Diploma (except for students of Sport Teaching Diploma, who complete the sport-specific course unit EW3) and for students who intend to enrol in the "Teaching Diploma". | W | 3 credits | 3S | P. Edelbrunner, J. Maue, C. M. Thurn |

Support and Diagnosis of Knowledge Acquisition Processes (EW3)

Abstract

In this seminar students learn advanced techniques to support and to diagnose knowledge acquisition processes in school.

Objective

The main goals are:

1. You have a deep understanding about the cognitive mechanisms of knowledge acquisition.
2. You have a basic understanding about psychological test theory and can appropriately administer tests.
3. You know various techniques of formative assessment and can apply these to uncover students' misconceptions.

Content

- To develop lesson plans
- To develop a workbook for pupils
- To conduct more in-depth work on a research topic and to compile a tuition unit based on this topic
- To develop the concept of complex learning matters at a high specialist level which are suitably tailored to the recipients, and to teach these in a manner conducive to learning.
- Selected biological topics, with a special focus on evolution, are dealt with under consideration of the special needs of persons involved in teaching.

Literature

Prerequisites / notice

- Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate.
- Entrance is possible only for students who complete the sport-specific course unit EW3 during the fall semester.

Biological Direction

Specialised Courses

Introductory Courses

Selection of courses will be agreed with the course coordinator.

Spec. Courses in Respective Subject with Educational Focus

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>
| 551-0973-00L | Specialized Biology Course with an Educational Focus
Focus: Evolution
Specialist aspects of biology with a focus on evolution are covered from the angle of imparting knowledge to pupils, their historical development, and their significance for the subject, the individual and society. | W | 6 credits | 2G+13A | H. Stocker, Y. Barral, K. Köhler |

Abstract

Specialist aspects of biology with a focus on evolution are covered from the angle of imparting knowledge to pupils, their historical development, and their significance for the subject, the individual and society.

Objective

After successful completion of the module, students should be able to:

- to retrieve in-depth knowledge of biology with a special focus on evolution and to impart this to others.
- to analyse controversial topics and to give factual explanations for these.
- to conduct more in-depth work on a research topic and to compile a tuition unit based on this topic.
- to prepare tuition units involving complex learning matters at a high specialist level which are suitably tailored to the recipients, and to teach these in a manner conducive to learning.

Content

Selected biological topics, with a special focus on evolution, are dealt with under consideration of the special needs of persons involved in teaching.

Literature

- Teaching materials are available online on Moodle.
- Literature and references are posted online on Moodle.

Prerequisites / notice

The Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module of the spring semester deals with biological concepts. Students attending both modules can start with either module.

Performance is assessed during the course of the entire module. Active participation in the course is required. The thesis (including oral presentation) has to be completed.

In case of overbooking of the course, students enrolled in the Teaching Diploma in Biology will have priority.

Subject Didactics
Professional Exercises in Biology

W 2 credits 2U P. Faller

- Students conduct a series of "classical" biological school experiments and therefore gain practice and experience in this area. Implementation of Subject Didactics I and II with the focus on conducting biological experiments in schools. This includes finding, testing and further developing suitable protocols for different subject areas of school biology. Working out how to didactically embed the experiments in lessons. Students can perform, off the cuff, 12 school experiments (which they have tested themselves), from the different subject areas, and conduct these correctly in technical terms. They can incorporate these experiments in their tuition in a didactically meaningful manner. Comments: By contrast to the Subject Specialisation 1 and 2 course units, these are "basic tests" and do not involve the implementation of current research topics. The students' compilations are available in a data archive.

Subject Didactics Biology I

W 4 credits 3G P. Faller

- Basic conditions for tuition (MAR - recognition of Matura certificates - curricula, standards), selection of topics and reduction of the complexity of topics. - Application of teaching methods and techniques from educational science in biology classes. - Planning and preparation of lessons. - Assessing learning performance (forms of examination/assessment).

Teaching Science in Higher Education

W 3 credits 1V G. Schiltz

- This course imparts fundamental didactic concepts that are relevant to teaching science in a Higher Education context. Students are able to characterize and to discuss the model of outcomes based education. Students are able to transfer the basic concepts of this model (ILO, TLA, assessment, constructive alignment) to science education.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Autumn Semester 2021

Chemical Direction

Specialised Courses

Introductory Courses
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0962-00L</td>
<td>Fundamental Aspects of Chemistry with an Educational Focus B</td>
<td>W</td>
<td>4 credits</td>
<td>2V</td>
<td>A. Togni, R. Alberto</td>
</tr>
</tbody>
</table>

Abstract

Selected topics in general chemistry:
1. The language of chemistry
2. Chirality and stereochemistry
3. Oxidation of water
4. Chemistry of the atmosphere

Objective

In this course, participants acquire extended and more in-depth knowledge of selected chemistry topics. The selection is based on the extent of the partial aspects of chemistry that are typically taught at high school. By gaining a broader understanding, teachers are put in a position where they can comprehend the topics that are to be taught in a wider and, to some extent, unconventional context and critically process these in respect of their teachability and learnability. At the same time, interrelationships between the classical sub-disciplines of chemistry are highlighted, along with the unique features of chemistry as one of the central natural sciences.

Content

Content of the four modules:
1. The language of chemistry: Concepts, formulas, aesthetics, and philosophical aspects
2. Chirality and stereochemistry: Selected aspects, origin of biomolecular chirality, inorganic chemistry
3. Cosmochemistry
4. Chemistry of the atmosphere

Lecture notes

Folien und ausgewählte Literatur werden zur Verfügung gestellt.

Literature

Ausgewählte Artikel aus der Primärliteratur werden vorgestellt, kommentiert und zur Lektüre empfohlen.

Prerequisites / notice

FV A (gelesen im Frühjahrsemester) und FV B (gelesen im Herbstsemester) bauen nicht aufeinander. Die Reihenfolge der Belegung ist somit indifferent

Subject Didactics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0950-00L</td>
<td>Subject Didactics Chemistry I</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>A. Baertsch</td>
</tr>
</tbody>
</table>

Abstract

Implementing findings from research into teaching and learning for chemistry lessons and coverage of subject-specific teaching and learning specialities.

Objective

The students have basic subject didactic knowledge for teaching chemistry at a secondary school. They are able to design lessons that are effective for learning, actively involve students in lessons, explain challenging concepts simply, and use experiments for theory and reflect on teaching.

Content

Schwerpunkte im ersten Studiensemester bilden die folgenden Themen:
- Auswahl gymnasiumsrelevanter Lerninhalte
- Didaktische Vereinfachung
- Modelle und chemischen Formeln zur Beschreibung von Aufbau und Umwandlung der Substanzen
- Wechselwirkung zwischen Beobachtung in der realen Welt und Deutung auf Modell-Ebene
- Skizzen entwerfen und zur Erklärung von Reaktionen nutzen
- Chemie im 8. Schuljahr: Das Teilchenmodell erklärt viele Phänomene im Anfangsunterricht
- Atommodule und chemische Bindung
- Radioaktivität und Kernspaltung
- Struktur und Eigenschaft
- Auswahl, Konzeption, Vorbereitung, Durchführung, Einbettung und Auswertung von Demonstrations-Experimenten

Lecture notes

Die Unterlagen sind auf der Plattform http://fdfchemie.pbworks.com zugänglich

Literature

- E. Rossa: Chemie-Didaktik, Cornelsen Verlag, 2015
- H.-J. Bader et al: Konkrete Fachdidaktik Chemie, Oldenbourg Verlag, 2002

Prerequisites / notice

Anhand der Diskussion bewahrter Beispiele und dem Entwurf eigener Unterrichtsbausteine soll die zukünftige Lehrperson befähigt werden, einen den spezifischen Rahmenbedingungen angepassten Unterricht zu entwickeln, der diesen hohen Qualitätsanspruch genügt.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0091-00L</td>
<td>Teaching Science in Higher Education</td>
<td>W</td>
<td>3 credits</td>
<td>1V</td>
<td>G. Schlitz</td>
</tr>
</tbody>
</table>

Abstract

This course imparts fundamental didactic concepts that are relevant to teaching science in a Higher Education context.

Objective

Students are able to characterize and to discuss the model of outcomes based education.

Lecture notes

keines

Literature

(bitte das Buch in der Auflage von 2011 vor dem ersten Treffen erwerben!)
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Problem-solving assessed
- Project Management assessed

Domain C - Social Competencies
- Communication assessed
- Negotiation assessed
- Cooperation and Teamwork assessed
- Customer Orientation assessed
- Leadership and Responsibility assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity assessed
- Leadership and Responsibility assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity assessed
- Self-presentation and Social Influence assessed
- Leadership and Responsibility assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity assessed
- Self-presentation and Social Influence assessed
- Leadership and Responsibility assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity assessed

Domain D - Personal Competencies
- Adaptability and Flexibility assessed
- Creative Thinking assessed
- Critical Thinking assessed
- Integrity and Work Ethics assessed
- Leadership and Responsibility assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity assessed
- Negotiation assessed
- Creativity and Innovation assessed
- Decision-making assessed
- Problem-solving assessed
- Project Management assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity assessed

Physical Direction

Specialised Courses

Introductory Courses

Spec. Courses in Respective Subject with Educational Focus

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0737-00L</td>
<td>Energy and Sustainability in the 21st Century (Part I)</td>
<td>W</td>
<td>6 credits</td>
<td>2V+1U</td>
<td>P. Morf</td>
</tr>
</tbody>
</table>

Objective
- Why is energy important for life and our society?
- How did energy use change over time? Which effects did these changes have on the environment?
- What are the physical basics of energy technologies?
- When, why and how did technology and science of energy come together?
- What are the limits and benefits of all the various energy technologies?
- How can different energy technologies be compared?
- Can we understand the changes in the current energy systems?
- How will the energy systems of the future look like?
- How fast can we and should we alter the current energy transition?
- Which could be the overall guide lines for a working energy system of the future?

Content
- Physical basics of energy, thermodynamics and life. Introduction to self-organisation, and systems.
- Energy and making use of it - a short history and overview on energy technologies
- Coal, oil and natural gas – fossil fuels
- Hydro, Wind- & Solarpower (Geothermal- and Tidal power) – the quest for renewable energy
- Nuclear power, radioactivity and ultimate storage – the quest for a safe technology
- Breeding and Nuclear Fusion – can it work at all?
- Energy storage – available technologies and a technology outlook
- Climate change, decarbonisation – how much time do we have?
- Energy efficiency, recycling and other resource conservation measures
- Energy systems – how everything can play together
- Buildings and Mobility – new technologies, new Ways of life?
- Life cycle assessment of Energy Technologies – problems and possibilities
- Economics of energy, learning curves, technology assessments and Innovation.
- The energy transition and decarbonisation – How is your 2040, 2050?

Lecture notes
Web page:
http://ihp-lx2.ethz.ch/energy21/index.html

Literature
- The Physics of Energy, R.L. Jaffe, W. Taylor, 2018
- Clean Disruption of Energy and Transportation, T. Seba 2014
- Energy and Civilization: A History, V. Smil, 2018

Prerequisites / notice
- Basics of Physics applied to Energy and Energy Technology.
- Investigation on current problems (and possible solutions) related to the energy system and the environmental interactions.
- Training of scientific and multi-disciplinary methods, approaches and their limits in the exercises and discussions.

Subject Didactics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0910-00L</td>
<td>Physics Didactics I: Special Didactics of Physics Teaching</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>M. Mohr</td>
</tr>
</tbody>
</table>

Limited number of participants.
Further information is available from the lecturer via email: mohrm@ethz.ch

Simultaneous enrolment in Introductory Internship Physics
- course 402-0920-00L - is compulsory for Teaching Diploma Physic

Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module 090Phy1 at UZH.
Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-
Natural Sciences

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-3001-00L</td>
<td>Dynamic Earth I</td>
<td>W</td>
<td>6</td>
<td>4V+2U</td>
<td>O. Bachmann, A. Galli, A. Fichtner, M. Schönächter, S. Willett</td>
</tr>
</tbody>
</table>

Abstract

Provides a basic introduction into Earth Sciences, emphasizing different rock-types and the geological rock-cycle, as well as introduction into geophysics and plate tectonic theory.

Objective

Understanding basic geological and geophysical processes

Content

Overview of the Earth as a system, with emphasis on plate tectonic theory and the geological rock-cycle. Provides a basic introduction to crystals and minerals and different rock-types. Lectures include processes in the Earth's interior, physics of the earth, planetology, introduction to magmatic, metamorphic and sedimentary rocks. Exercises are conducted in small groups to provide more in depth understanding of concepts and content of the lectures.

Lecture notes

werden abgegeben.

Literature

Prerequisites / notice

Exercises and short excursions in small groups (10-15 students) will be lead by student assistants. Specific topics in earth sciences will be discussed using examples and case studies. Hand samples of the major rock types will be described and interpreted. Short excursions in the region of Zurich will permit direct experience with earth science processes (e.g. earth surface processes) and recognition of earth science problems and solutions relevant for modern society (e.g. building materials, water resources). Working in small groups will allow for discussion and examination of actual earth science themes.
Science Education Master - Key for Type

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Gender Issues In Education and STEM

The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.

Abstract
This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.

Objective
- Get to know cognitively activating instructions in MINT subjects
- Get information about recent literature on learning and instruction

Prerequisites / notice
Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-06L</td>
<td>Cognitively Activating Instructions in MINT Subjects</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>R. Schumacher</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.

Objective
- Get to know cognitively activating instructions in MINT subjects
- Get information about recent literature on learning and instruction

Prerequisites / notice
Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-07L</td>
<td>Human Intelligence</td>
<td>W</td>
<td>1</td>
<td>1S</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.

Objective
- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding findings relevant for education

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-08L</td>
<td>Research Methods in Educational Science</td>
<td>W</td>
<td>1</td>
<td>2S</td>
<td>P. Edelsbrunner, T. Braas,</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td>C. M. Thurn</td>
</tr>
</tbody>
</table>

Abstract
Literature from the learning sciences is critically discussed with a focus on research methods. At the first meeting, working groups will be assembled and meetings with those will be set up. In the small groups students will write critical essays about the read literature. At the third meeting, we will discuss the essays and develop research questions in group work.

Objective
- Understand research methods used in the empirical educational sciences
- Understand and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-11L</td>
<td>Gender Issues In Education and STEM</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>M. Berkowitz Biran, T. Braas,</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td>C. M. Thurn</td>
</tr>
</tbody>
</table>

Abstract
In this seminar, we introduce some of the major gender-related issues in the context of education and science learning, such as the under-representation of girls and women in science, technology, engineering and mathematics (STEM). Common perspectives, controversies and empirical evidence will be discussed.

Objective
- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- To integrate this knowledge with teacher’s work.

Content
Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisites / notice
Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0229-00L</td>
<td>Using Outdoor Education</td>
<td>W</td>
<td>1</td>
<td>1S</td>
<td>R. Schumacher, P. Faller</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma Biology and Geography.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
In this seminar, future teachers will be trained to prepare and conduct excursions to out-of-school learning venues. For this purpose, excursions are offered at the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf.
Objective
Future teachers will learn to prepare and conduct excursions to out-of-school learning venues.

Content
- Excursions at the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf:
 - Dendrochronology: What annual rings tell
 - Photosynthesis/Climate change: The tracks in the forest
 - Forest Soil: The soil in the focus of the climate

Subject Didactics in Geography
Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4239-00L</td>
<td>Didactics Geography I (University of Zurich)</td>
<td>O</td>
<td>3 credits</td>
<td>2G</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UZH Module Code: 090GG1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limited number of participants.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In addition to the course enrollment a registration by email is required to Dr. Stefan Hesske (E-Mail: stefan.hesske@ife.uzh.ch).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/dea-delines.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
Fundamentals (theory and practice) of specialist subject teaching for high-school geography lessons.

Prerequisites / notice
A maximum of 12KP additional requirements in Geography may be open before registering for the didactics Geography. Please provide the form https://ethz.ch/content/dam/ethz/main/education/didaktische-ausbildung/Files/Diverses/Form_Auflagen_bis%2012%20KP_291015.pdf as a confirmation.

651-4124-00L | Examination Didactics | O | 1 credit | 2G | S. Hesske, J. Rafflenbeul |

Abstract
Die Prüfung Fachdidaktik bildet den Abschluss der didaktischen Ausbildung und wird nach erfolgreichem Abschluss aller Ausbildungsbereiche der didaktischen Ausbildung abgelegt.

Content
Geprüft werden:
- Fähigkeit, Geografie-Unterricht mit Bezug zur eigenen Praxis kritisch und unter verschiedenen Blickwinkeln (inhaltlich, methodisch-didaktisch) zu betrachten, Lernarrangements mit Bezug zum heutigen Bildungs- und Schulfachverständnis zu gestalten und kritisch zu hinterfragen sowie deren möglichen/erzielten Wirkungen zu diskutieren und zu begründen; Unterrichtssituationen zu reflektieren und zu evaluieren.
- Unterlagen aus der Fachdidaktik Ausbildung
- Unterlagen aus der Fachdidaktik

Literature

Prerequisites / notice
Takes place at the end of the studies, prerequisites: successful completion of the program.

The examination lessons I and II must be enrolled and completed together with the examination didactics.

651-4120-00L | Geography Didactics IV: Mentored Project | O | 2 credits | 4A | S. Hesske, J. Rafflenbeul |

Prerequisites: successful participation in Geography Didactics of Geography Teaching I, II, III

Abstract
Mentorierte Arbeit mit Bezug zur fachdidaktischen Ausbildung.

Objective
selbständige, theoriegestützte Auseinandersetzung mit konkreter, praxisbezogener Fragestellung zum Geographieunterricht.

Content
selbständige, mentorierte Arbeit zu einem Thema aus der Fachdidaktik mit direktem Bezug zur Lehrpraxis im Fach Geografie (z.B. zu eigenen Übungslektionen und Praktikum oder zur Unterrichtsforschung).

Literature

Prerequisites / notice
May be completed together with didactics III at the earliest.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: not assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

651-4118-00L Geography Didactics of Geography Teaching III (University of Zurich)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4118-00L</td>
<td>Geography Didactics of Geography Teaching III (University of Zurich)</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: 090GG3

Limited number of participants. In addition to the course enrollment a registration by email is required no later than September 1 for autumn semester, February 1 for spring semester. Further details see UZH module.

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html

Abstract

Working with medias in Geography teaching:
- Part 1: ICT in Geography lessons, subject specific use with concrete examples, evaluating. Planning, implementing and reflecting individual applications.
- Part 2: learning with models, outside school learning (museum didactics). Filming and experimenting in Geography teaching with exercises.

Prerequisites / notice

Geography Didactics III may be completed in parallel with Geography Didactics II, but only after successful completion of Geography Didactics I.

Professional Training in Geography

Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

Number Title Type ECTS Hours Lecturers

| 651-2519-01L | Introductory Internship (University of Zürich) | O | 1 | 2P | University lecturers |

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: 090BPEP

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html

Abstract

The Introductory Internship belongs to the practical expertise education of the teacher training for Upper Secondary Schools and must be completed at the beginning of studies.

Prerequisites / notice

The Introductory Internship must be completed together with the practice lessons for didactics.

The Introductory Internship can only be completed together with an accredited internship teacher of ETH Zurich (separate list).

| 651-2519-02L | Practice Lessons for Didactics (University of Zurich) | O | 2 | 4P | University lecturers |

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: 090BPUE

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html

Abstract

The practice lessons help students to gain first experiences in teaching and is completed together with the didactics courses.

The practice lessons for didactics must be completed within the didactics courses.

Students register for the module at UZH ideally together with didactics II. ECTS will be assigned after having handed in all relevant documents to the lecturers, at the earliest upon completion of didactics II.

The Practice Lessons can only be completed together with an accredited internship teacher of ETH Zurich (separate list).

| 651-2517-00L | Teaching Internship I Geography (University of Zürich) | O | 8 | 17P | University lecturers |

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
The Teaching Internship takes place after successful completion of the didactics courses (I, II incl. practice lessons). The teaching internship takes in 50 lessons: 30 are taught by the students, and the students sit in on 20 lessons. The teaching internship lasts a maximum of 10 weeks.

Prerequisites / notice

Prerequisites: Successful completion of Educational Science and Subject Didactics in Geography (FD I, II, III) as well as Spec. Courses in Resp. Subj. w/ Educ. Focus & Further Subj. Didactics (FV I, II, III) plus completion of the introductory internship.

The Introductory Internship can only be completed together with an accredited internship teacher of ETH Zurich (separate list).

651-2520-01L
Examination Lesson I Geography

To be completed together with Examination Lesson II 651-2520-02.

Abstract
In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.

Objective
On the basis of a specified topic, the candidate shows that they are in a position
- to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle
- to analyze the tuition they have given with regard to its strengths and weaknesses, and outline improvements.

Content

Lecture notes
Dokument: Schriftliche Vorbereitung für Prüfungsselktionen.

Prerequisites / notice
Takes place at the end of the studies, prerequisites: successful completion of the program.

The examination lessons I and II must be enrolled and completed together with the examination didactics.

651-2520-02L
Examination Lesson II Geography

To be completed together with Examination Lesson I 651-2520-01.

Abstract
In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.

Objective
On the basis of a specified topic, the candidate shows that they are in a position
- to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle
- to analyze the tuition they have given with regard to its strengths and weaknesses, and outline improvements.

Content

Lecture notes
Dokument: Schriftliche Vorbereitung für Prüfungsselktionen.

Prerequisites / notice
Takes place at the end of the studies, prerequisites: successful completion of the program.

The examination lessons I and II must be enrolled and completed together with the examination didactics.

651-4137-00L
Semester Paper Within the 1st Teaching Internship Geography (University of Zurich)

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: 090BPPJ

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline s.html

Abstract
In the context of their first teaching practice, students compile a portfolio in which they analyse and document selected aspects of their teaching experience.

Prerequisites / notice
Only for students of the Geography Teaching Diploma.

The semester paper must be completed together with the first teaching internship, the registration is therefore in the same semester.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-2517-02L</td>
<td>Teaching Internship II-E Geography (University of Zurich)</td>
<td>O</td>
<td>6 credits</td>
<td>13P</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

An additional registration at LLBM is needed for further details refer to the module of UZH.

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline s.html
The Teaching Internship takes place after successful completion of the didactics courses (I, II incl. practice lessons). The teaching internship takes in 40 lessons: 25 are taught by the students. The teaching internship lasts a maximum of 10 weeks.

The teaching internship II has to be completed after the teaching internship I at the end of the program in the same semester. Prerequisite is the successful completion of all courses of the teaching diploma program. The internship can only be completed together with an accredited internship teacher of ETH Zurich (separate list).

651-4136-00L Learning Locations for Geography and Geography Didactics (University of Zurich)

- No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
- UZH Module Code: GEO992

- Mind the enrolment deadlines atUZH: https://www.uzh.ch/cmsssl/en/studies/application/deadline s.html

Abstract
The goal of the course is the content-based preparation and didactic conception of different “learning locations” in and around Zurich. The results are to be merged into an attractive excursion guide for teachers (sec. 1 / II).

Objective
- Get to know and explore Zurich from different angles (including urban geography, physical geography)
- Content-based development and didactic implementation of “learning locations” with different thematic priorities for school classes (sec. I / II)
- Project management and group work - Reflection of work results and processes

Prerequisites / notice
Successful completion of Geography Didactics I (651-4239-00L).

Compulsory Elective Courses

Further course offerings from the category Educational Science are listed under “Programme: Educational Science for Teaching Diploma and TC”.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0029-00L</td>
<td>Using Outdoor Education</td>
<td>W</td>
<td>1</td>
<td>1S</td>
<td>R. Schumacher, P. Faller</td>
</tr>
</tbody>
</table>

Abstract
In this seminar, future teachers will be trained to prepare and conduct excursions to out-of-school learning venues. For this purpose, excursions are offered at the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf.

Objective
Future teachers will learn to prepare and conduct excursions to out-of-school learning venues.

Content
- Excursions at the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf:
 - Dendrochronology: What annual rings tell
 - Photosynthesis/Climate change: The tracks in the forest
 - Forest Soil: The soil in the focus of the climate

860-0023-00L International Environmental Politics

Particularly suitable for students of D-ITET, D-USYS

Abstract
This course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

Objective
The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.

Content
This course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, international political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

Lecture notes
Assigned reading materials and slides will be available via Moodle.

Literature
Assigned reading materials and slides will be available via Moodle.
This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

Additional Requirements (ETH-Masterstudents in ERDW and AC)

Part 1

Compulsory Modules

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-2601-00L</td>
<td>Human Geography I: One Earth - Many Worlds (University of Zurich)</td>
<td>O</td>
<td>5 credits</td>
<td>2V+2U</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UZH Module Code: GEO112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://www.uzh.ch/cmsssl/en/studies/application/deadline.s.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Imparting of research questions and basic principles in Human Geography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>To get an overview about basic research questions and principles of Human Geography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>(1) Society and space (2) Society and development (structure and dynamic of population, urbanisation, disparities (3) Society and natural environment (natural resources; food security, sustainability)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>PowerPoint-slides (German)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-2613-00L</td>
<td>Humangeography III (Geographies of Difference) (Universität Zürich)</td>
<td>O</td>
<td>5 credits</td>
<td>1G+2S</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UZH Module Code: GEO232</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommended prerequisite: Human Geography II (UZH Module Code: GEO122)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mind the enrolment deadlines at UZH:</td>
<td>https://www.uzh.ch/cmsssl/en/studies/application/deadline.s.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This re-search-oriented course enables students to think through and about difference in a geographically (multi-scalar, critical, space-bound) manner, by elaborating on multiple concepts from postcolonial, intersectional and other disciplinary debates, and by applying these to specific topical domains.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Knowledge - Understand basic concepts and empirical manifestations of difference in human geography - Deepen knowledge on how difference works in one specific topic of human geography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skills</td>
<td>- Learn to independently digest, assess, and present basic academic texts - Conduct discussions in English or German (online and offline) - Be able to write a short research paper about a human geography topic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modules of Choice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-2603-00L</td>
<td>Geography. Matters. (University of Zurich)</td>
<td>W</td>
<td>4 credits</td>
<td>2V</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UZH Module Code: GEO410</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mind the enrolment deadlines at UZH:</td>
<td>https://www.uzh.ch/cmsssl/en/studies/application/deadline.s.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The course demonstrates geography's interdisciplinary approach to contribute solving urgent challenges ahead of society. Students are encouraged to reflect on the value of interdisciplinary research at discipline level and on their individual interdisciplinary curricula. The course creates awareness of ways that concepts structure our thinking, and how they figure in research and practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4088-03L</td>
<td>Physical Geography III (Geomorphology and Glaciology) (University of Zürich)</td>
<td>W</td>
<td>5 credits</td>
<td>1V+1U</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021
Mind the enrolment deadlines at UZH:

Abstract
Das Modul bietet eine kurze Einführung in einige Komponenten und Prozesse des hydrologischen Kreislaufs. Dabei werden einzelne Wasserspeicher (Schnee-, Boden und Grundwasser) und Flüsse zwischen den Speichern (Verdunstung, Niederschlag und Abfluss) betrachtet. Übungen ergänzen die Vorlesung.

Part 3

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-2338-00L</td>
<td>Remote Sensing and Geographic Information Science III (University of Zürich)</td>
<td>W</td>
<td>5</td>
<td>2V+3U</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zürich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: GEO233

Mind the enrolment deadlines at UZH:

Abstract
Exercises to the course Introduction Remote Sensing.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0214-00L</td>
<td>Cartography Fundamentals</td>
<td>W</td>
<td>5</td>
<td>4G</td>
<td>L. Hurni</td>
</tr>
</tbody>
</table>

Basic knowhow about communication with spatial information by using plans and maps, about the most important design rules and production methods for map graphics.

Objective
Acquire basic knowhow about communication with spatial information by using plans and maps, about the most important design rules and production methods for map graphics. Ability to assess existing products with respect to their content-related and design quality. Ability to design proper plans and well designed legends for basic maps.

Content
Definitions "map" and "cartography", map types, current tasks and situation of cartography, map history, spatial reference systems, map projections, map conception and workflow planning, map design, analog and digital map production technology, prepress technology, printing technology, topographic maps, map critics.

Lecture notes
Will be distributed module by module.

Literature

Prerequisites / notice
Further information at http://www.karto.ethz.ch/studium/lehrangebot.html

Geography Teaching Diploma - Key for Type

- O Compulsory
- W+ Eligible for credits and recommended
- W Eligible for credits
- Z Courses outside the curriculum
- Dr Suitable for doctorate

Key for Hours

- V lecture
- G lecture with exercise
- U exercise
- S seminar
- K colloquium
- P practical/laboratory course
- A independent project
- D diploma thesis
- R revision course / private study

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Bachelor's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0006-00L</td>
<td>Bachelor's Thesis</td>
<td>O</td>
<td>10 credits</td>
<td>21D</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Abstract

The Bachelor Programme concludes with the Bachelor Thesis. This project is supervised by a professor. Writing up the Bachelor Thesis encourages students to show independence and to produce structured work.

Objective

Encourages students to show independence, to produce scientifically structured work and to apply engineering working methods.

Content

The contents base upon the fundamentals of the Bachelor Programme. Students can choose from different subjects and tasks. The thesis consists of both a written report and an oral presentation.

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Major Courses
Major in Engineering Geodesy and Photogrammetry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0287-00L</td>
<td>Image Interpretation</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>K. Schindler</td>
</tr>
<tr>
<td>Abstract</td>
<td>Application of machine learning in satellite-based Earth observation; methodological and practical aspects of remote sensing data analysis, including atmospheric correction, image feature extraction, image classification and segmentation, regression of physical parameters.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Learn how to apply image analysis and machine learning to image interpretation tasks in remote sensing; hands-on experience in implementing automatic image analysis methods, and in judging their results.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Preprocessing of satellite images, atmospheric correction; extraction of features (radiometric indices, texture descriptors, etc.) from raw image intensities; semantic image segmentation (e.g., cloud masking); physical parameter estimation (e.g., vegetation height); practical deployment of classical machine learning algorithms as well as deep neural networks for remote sensing data analysis; assessment of prediction results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>basic knowledge of machine learning; basic knowledge of image processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

103-0137-00L	Engineering Geodesy	O	4	3G	A. Wieser, J. Qiao
Abstract	Introduction to Engineering Geodesy: methods, instruments, and applications.				
Objective	The students will be introduced to the methods, instruments and applications in Engineering Geodesy with a focus on end-to-end quality assessment, sensor and multi-sensor-systems, setting out, and monitoring of engineering objects. They will be able to acquire enhanced knowledge and fundamental competences in high-precision angle, distance and height measurements. They will be introduced to aspects of interdisciplinary work in particular related to construction processes and civil engineering.				
Content	- Introduction: Definition, methods, and tasks				
	- Planning and realizing geodetic networks				
	- High precision distance, angle and height measurements				
	- Sensors and multi-sensor-systems				
	- Calibration and testing				
	- Engineering Geodesy in construction above and below ground				
	- Tunnel surveying				
	- Building Information Modeling (BIM)				
	- Deformation monitoring: Models, methods, and applications				
Lecture notes	The slides and additional documents will be provided in electronic form.				
Prerequisites / notice	Fundamental knowledge in geodetic metrology (applied geodesy), physical geodesy, reference systems, GNSS and parameter estimation is required for this course. This knowledge can for instance been acquired within the appropriate courses of the bachelor studies in Geomatics and Planning.				

| 103-0267-01L| Photogrammetry and 3D Vision Lab | W | 3 | 2G | C. Albl |
| Prerequisites: It is suggested that students take the course “Photogrammetrie” at bachelor level before this one. |
Abstract	The aim of the course is to provide a hands-on experience with close-range photogrammetry. The students will go through all aspects of 3D reconstruction starting with the image acquisition, camera calibration, automatic sparse geometry reconstruction, and eventually produce a final textured 3D model.
Objective	The aim of the course is to familiarize the students with both the practical aspects of close-range photogrammetric reconstruction and the theoretical foundations behind them. After passing the course, the students should be able to plan the image acquisition, perform the camera calibration, build a structure-from-motion pipeline using modern open-source libraries, produce a 3D model, and improve its quality.
Content	This course builds in part on the courses "Photogrammetrie" and "Bildverarbeitung" from the Bachelor program. It focuses on the particular challenges of automated close-range photogrammetry. The students will obtain their own images using their own cameras/smartphones, learn how to perform the camera calibration, implement some key and interesting parts of the automatic reconstruction pipeline and learn how to avoid and address common issues in 3D reconstruction.
Lecture notes	Presentation slides, necessary publications and complementary learning materials will be provided through a dedicated course web-site.
Literature	Recommended textbooks:
	- T. Luhmann, Nahbereichsphotogrammetrie (also available in English)
	- R. Hartley and A. Zisserman - Multi-view geometry in computer vision
	- R. Szelski, Computer Vision
Prerequisites / notice	A recommended prerequisite for taking this course are the Bachelor courses “Photogrammetrie” and “Bildverarbeitung”. If you have not passed them, please contact the main lecturer of the course before enrolling. The course will include both practical work with commercial software, and programming in Python.

103-0787-00L	Project Parameter Estimation	W	3	3P	J. A. Butt, T. Medic
Abstract	Solving engineering problems with modern methods of parameter estimation for network adjustment in a real-world scenario; choosing adequate mathematical models, implementation and assessment of the solutions.				
Objective	Learn to solve engineering problems with modern methods of parameter estimation in a real-world scenario.				
Content	Analysis of given problems, selection of appropriate mathematical models, implementation and testing using Matlab; Kriging; system calibration of a terrestrial laser scanner.				
Lecture notes	The task assignments and selected documentation will be provided as PDF.				
Prerequisites / notice	Prerequisite: Statistics and Probability Theory, Geoprocessing and Parameter estimation, Geodetic Reference Systems and Networks of Interdisciplinary Work.				

102-0617-00L	Basics and Principles of Radar Remote Sensing for Environmental Applications	W	3	2G	I. Hajnsek
Abstract	The course will provide the basics and principles of Radar Remote Sensing (specifically Synthetic Aperture Radar (SAR)) and its imaging techniques for the use of environmental parameter estimation.				
Objective	The course should provide an understanding of SAR techniques and the use of the imaging tools for bio/geophysical parameter estimation. At the end of the course the student has the understanding of				
	1. SAR basics and principles,				
	2. SAR polarimetry,				
	3. SAR interferometry and				
	4. environmental parameter estimation from multi-parametric SAR data				
The course is giving an introduction into SAR techniques, the interpretation of SAR imaging responses and the use of SAR for different environmental applications. The outline of the course is the following:

1. Introduction into SAR basics and principles
2. Introduction into electromagnetic wave theory
3. Introduction into scattering theory and decomposition techniques
4. Introduction into SAR interferometry
5. Introduction into polarimetric SAR interferometry
6. Introduction into bio/geophysical parameter estimation (classification/segmentation, soil moisture estimation, earthquake and volcano monitoring, forest height inversion, wood biomass estimation etc.)

Lecture notes
Handouts for each topic will be provided

Literature
First readings for the course:
Complete literature listing will be provided during the course.

<table>
<thead>
<tr>
<th>103-0687-00L</th>
<th>Cadastral Systems</th>
<th>W</th>
<th>2 credits</th>
<th>2G</th>
<th>D. M. Steudler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Nature, role and importance of cadastral systems and related concepts such as land administration, land registration and spatial data infrastructures (SDIs). The Swiss cadastral system as well as a range of international approaches both in developed and developing countries will be reviewed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Origins and purposes of cadastral systems Importance of documentation Basic concepts of cadastral systems (real estate, legal basis, conceptual principles, property-ownership, property types) Swiss cadastral system: - legal basis - organization - technical elements - methods of data acquisition and maintenance - profession - quality assurance Digital revolution, access to data Benchmarking and evaluation of cadastral systems International trends, developments and initiatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>see: http://www.geo21.ch/ethz/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>263-5902-00L</th>
<th>Computer Vision</th>
<th>W</th>
<th>8 credits</th>
<th>3V+1U+3A</th>
<th>M. Pollefeys, S. Tang, F. Yu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objectives of this course are: 1. To introduce the fundamental problems of computer vision. 2. To introduce the main concepts and techniques used to solve those. 3. To enable participants to implement solutions for reasonably complex problems. 4. To enable participants to make sense of the computer vision literature.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>103-0820-00L</th>
<th>Introduction to Scientific Computation</th>
<th>W</th>
<th>3 credits</th>
<th>2G</th>
<th>M. Usvyatsov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Introduction to tools, techniques, and methods for data processing and analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Get ready to work with data of different origin. Learn Python and tools to the level which allows attacking data related problems. Basic introduction to numerical algorithms for efficient problem solving Python for scientific programming, fast numerical computations and data visualisation. Libraries for data processing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Python for scientific programming, fast numerical computations and data visualisation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Basic probability theory and statistics, linear algebra, basic programming skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>851-0724-01L</th>
<th>Real Estate Property Law</th>
<th>W</th>
<th>3 credits</th>
<th>3V</th>
<th>M. Huser, R. Müller-Wyss, S. Stucki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Fundamental concepts of Land Register Law and Land Surveying Law (substantive and procedural rules of Land Register Law, the parts and the relevance of the Land Register, process of registration with the Land Register, legal problems of land surveying, reform of the official land surveying).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Overview of the legal norms of land registry and surveying law.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Basic principles of material and formal land registry law, components of the land register, consequences of the land register, the registration process, legal problems of surveying, the reform of official surveying, liability of the geom-eter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Abgehobene Unterlagen: Skript in digitaler Form</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pflichtfächer: Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrechts und des Grundbuchrechts, Beiträge aus dem Institut für schweizerisches und internationales Baurecht der Universität Freiburg/Schweiz, Zürich 2014
Major in Space Geodesy and Navigation

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0187-01L</td>
<td>Space Geodesy</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>M. Rothacher</td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding the major observation techniques in space geodesy as modern methods applied in Earth system monitoring (geometry, rotation and gravity field of the Earth and the atmosphere), in national surveying and navigation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Overview of GNSS, Very Long Baseline Interferometry (VLBI), Satellite and Lunar Laser Ranging (SLR/LLR), Satellite Radar Altimetry with the basic principles, the instruments and observation equations. Modelling of the station motions and the estimation of station coordinates. Basics of wave propagation in the atmosphere. Signal propagation in the ionosphere and troposphere for the different observation techniques and the determination of atmospheric parameters. Equation of motion of the unperturbed and perturbed satellite orbit. Oscillating and mean orbital elements. General and special perturbation theory and the determination of satellite orbits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Script M. Rothacher “Space Geodesy”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Courses corresponding to: Analysis I-II, Linear Algebra I, Parameter Estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-0657-01L</td>
<td>Signal Processing, Modeling, Inversion</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>B. Soja</td>
</tr>
<tr>
<td>Abstract</td>
<td>Topics related to time series analysis, modeling, parameter estimation, prediction, and interpretation. Theoretical concepts will be applied to geodetic problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students have various methods at hand to mathematically formulate specific scientific problems. They are able to analyse observational data, estimate numerical and analytical models, and predict parameters into the future. The students can evaluate and interpret measurements and models derived from them. They know the necessary terminology in order to study expert literature.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Topics covered in this lecture include: time series analysis, Fourier transformation, stochastic processes, ARMA, analytical and numerical modeling, model selection, linear and non-linear parameter estimation, sequential parameter estimation and filtering, machine learning for time series analysis and prediction, interpretation of measurements and derived results. The theoretical concepts will be illustrated by concrete examples commonly found in geodetic applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture slides and notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Script Alain Geiger: Geoprocessing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Additional literature will be referred to in class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-0627-00L</td>
<td>Space Geodesy Lab</td>
<td>W</td>
<td>5</td>
<td>3P</td>
<td>G. Möller, R. Hohensinn, M. Rothacher, B. Soja</td>
</tr>
<tr>
<td>Abstract</td>
<td>Space Geodesy Lab allows you to deepen your knowledge about space-geodetic techniques, in particular of GNSS, VLBI, SLR, satellite altimetry and gravity missions for monitoring the environment and changes within the Earth system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students enrolled in this course will be given the possibility to learn about space-geodetic methods to solve a specific research problem. As a result, you will become familiar with the entire processing chain from gathering of raw measurements to geodetic products like reference frames, station motions, Earth orientation parameters, atmospheric and climate variables, or the Earth gravity field and its variations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>For a small project based on space geodetic measurements and methods (or a related project of your choice), you or a group of 2-3 students will be provided with the necessary equipment, access to data and analysis tools for solving a research question. Therefore, we expect autonomous development, planning, data analysis and interpretation of the results. At the end of the semester you will be asked to present your findings and to submit a report summarizing your semester activities. As needed, further background will be given during the semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>div. sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>M. Rothacher – Space Geodesy lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Additional literature will be distributed during lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Basic knowledge about satellite geodesy, reference frames and the Earth gravity field. Programming skills in Matlab, Python or similar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

103-0787-00L Project Parameter Estimation
- W 3 credits 3P J. A. Butt, T. Medic

Abstract
Solving engineering problems with modern methods of parameter estimation for network adjustment in a real-world scenario; choosing adequate mathematical models, implementation and assessment of the solutions.

Objective
Learn to solve engineering problems with modern methods of parameter estimation in a real-world scenario.

Content
Analysis of given problems, selection of appropriate mathematical models, implementation and testing using Matlab: Kriging; system calibration of a terrestrial laser scanner.

Lecture notes
The task assignments and selected documentation will be provided as PDF.

Prerequisites / notice
Prerequisite: Statistics and Probability Theory, Geoprocessing and Parameterestimation, Geodetic Reference Systems and Networks

102-0617-00L Basics and Principles of Radar Remote Sensing for Environmental Applications
- W 3 credits 2G I. Hajnsek

Abstract
The course will provide the basics and principles of Radar Remote Sensing (specifically Synthetic Aperture Radar (SAR)) and its imaging techniques for the use of environmental parameter estimation.

Objective
To provide an understanding of SAR basics and principles, SAR polarimetry, SAR interferometry and environmental parameter estimation from multi-parametric SAR data.

Content
The course is giving an introduction into SAR techniques, the interpretation of SAR imaging responses and the use of SAR for different environmental applications. The outline of the course is the following:
1. SAR basics and principles
2. SAR polarimetry
3. SAR interferometry
4. Environmental parameter estimation from multi-parametric SAR data

Lecture notes
Handouts for each topic will be provided

Literature
First readings for the course:
Complete literature listing will be provided during the course.

103-0687-00L Cadastral Systems
- W 2 credits 2G D. M. Steudler

Abstract
Nature, role and importance of cadastral systems and related concepts such as land administration, land registration and spatial data infrastructures (SDIs).

Objective
The students will get an understanding of the nature, role and importance of cadastral systems and related concepts such as land administration, land registration and spatial data infrastructures (SDIs). The Swiss cadastral system as well as a range of international approaches both in developed and developing countries will be reviewed.

Content
- Origins and purposes of cadastral systems
- Importance of documentation
- Basic concepts of cadastral systems (real estate, legal basis, conceptual principles, property-ownership, property types)
- Swiss cadastral system:
 - legal basis
 - organization
 - technical elements
 - methods of data acquisition and maintenance
 - profession
 - quality assurance
- Digital revolution, access to data
- Benchmarking and evaluation of cadastral systems
- International trends, developments and initiatives

Lecture notes
see: http://www.geo21.ch/ethz/

Literature

see also: http://www.geo21.ch/ethz/
851-0724-01L Real Estate Property Law 3 3V M. Huser, R. Müller-Wyss, S. Stucki

Particularly suitable for students of D-ARCH, D-BAUG, D-USYS

Abstract

Fundamental concepts of Land Register Law and Land Surveying Law (substantive and procedural rules of Land Register Law, the parts and the relevance of the Land Register, process of registration with the Land Register, legal problems of land surveying, reform of the official land surveying).

Objective

Overview of the legal norms of land registry and surveying law.

Content

Basic principles of material and formal land registry law, components of the land register, consequences of the land register, the registration process, legal problems of surveying, the reform of official surveying, liability of the geom-eter.

Lecture notes

Abgegebene Unterlagen: Skript in digitaler Form

Literature

- Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrechts und des Grundbuchrechts, Beiträge aus dem Institut für schweizerisches und internationales Baurecht der Universität Freiburg/Schweiz, Zürich 2014
- Meinrad Huser, Geo-Informationsrecht, Rechtlicher Rahmen für Geographische Informationssysteme, Zürich 2005
- Meinrad Huser, Darstellung von Grenzen zur Sicherung dinglicher Rechte, in ZGBR 2013, 238 ff.

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories assessed
 - Techniques and Technologies assessed
- Domain B - Method-specific Competencies
 - Analytical Competencies assessed
 - Decision-making assessed
 - Media and Digital Technologies assessed
 - Problem-solving assessed
- Domain C - Social Competencies
 - Communication not assessed
 - Cooperation and Teamwork assessed
 - Customer Orientation assessed
 - Leadership and Responsibility not assessed
 - Self-presentation and Social Influence not assessed
 - Sensitivity to Diversity assessed
 - Negotiation assessed
- Domain D - Personal Competencies
 - Adaptability and Flexibility not assessed
 - Creative Thinking assessed
 - Critical Thinking assessed
 - Integrity and Work Ethics assessed
 - Self-awareness and Self-reflection assessed
 - Self-direction and Self-management not assessed

Major in GIS and Cartography

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0227-00L</td>
<td>Cartography III</td>
<td>O</td>
<td>5 credits</td>
<td>4G</td>
<td>L. Hurni</td>
</tr>
<tr>
<td>Abstract</td>
<td>This follow-up course proceeds to a complete Web map project and introduces in 3D and animated cartography.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course enables students to plan, design and realize interactive Web map projects. The introduction to 3D and animated cartography also provides a general knowledge about animated 3D graphics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- Web mapping.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Data processing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Interaction design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Graphical user interface.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 3D cartography.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Animated cartography.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Video production.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Handouts of the lectures and exercise documents are available on Moodle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Further information at http://www.karto.ethz.ch/studium/lehrangebot.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

103-0237-00L	GIS III	O	5 credits	3G	W. Kuhn
Abstract	The course deals with advanced topics in GIS, such as Business aspects and Legal issues; Geostatistics; Human-Computer Interaction; Cognitive Issues in GIS; Geosensors; Spatial Data Mining and Machine Learning for GIS.				
Objective	Students will get a detailed overview of advanced GIS topics. They will work on a small project with geosensors in the lab and perform practical tasks relating to Geostatistics and Machine Learning.				
Lecture notes	Lecture slides will be made available in digital form.				

103-0747-00L	Cartography Lab	W	6 credits	13A	L. Hurni
Abstract	Independent practical work in cartography				
Objective	Independent practical work in cartography				
Content	Choice of theme upon individual agreement				
Prerequisites / notice	Cartography III				
	Multimedia Cartography				
	Further information at http://www.karto.ethz.ch/studium/lehrangebot.html				

| 103-0687-00L | Cadastral Systems | W | 2 credits | 2G | D. M. Steudler |
| Abstract | Nature, role and importance of cadastral systems and related concepts such as land administration, land registration and spatial data infrastructures (SDIs). |
The students will get an understanding of the nature, role and importance of cadastral systems and related concepts such as land administration, land registration and spatial data infrastructures (SDIs). The Swiss cadastral system as well as a range of international approaches both in developed and developing countries will be reviewed.

Objective

- Origins and purposes of cadastral systems
- Importance of documentation
- Basic concepts of cadastral systems (real estate, legal basis, conceptual principles, property-ownership, property types)
- Swiss cadastral system:
 - legal basis
 - organization
 - technical elements
 - methods of data acquisition and maintenance
 - profession
 - quality assurance
- Digital revolution, access to data
- Benchmarking and evaluation of cadastral systems
- International trends, developments and initiatives

Lecture notes

- Meinrad Huser, Darstellung von Grenzen zur Sicherung dinglicher Rechte, in ZBGR 2013, 238 ff.
- Meinrad Huser, Darstellung von Grenzen zur Sicherung dinglicher Rechte, in ZBGR 2013, 238 ff.
- Meinrad Huser, Real Estate Property Law
- Literature

Course content

- Particularly suitable for students of D-ARCH, D-BAUG, D-USYS

Lecture notes

- Pflichtlektüre: Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrechts und des Grundbuchrechts, Beiträge aus dem Institut für schweizerisches und internationales Baurecht der Universität Freiburg/Schweiz, Zürich 2014
- Meier Andreas, Geoinformationsrecht, Rechtlicher Rahmen für Geographische Informationssysteme, Zürich 2005
- Meinrad Huser, Grundlagen des Baubesitzrechts, in ZBGR 2020, 181 ff.
- Meinrad Huser, Darstellung von Grenzen zur Sicherung dinglicher Rechte, in ZBGR 2013, 238 ff.
- Meinrad Huser, Darstellung von Grenzen zur Sicherung dinglicher Rechte, in ZBGR 2013, 238 ff.
- Meinrad Huser, Real Estate Property Law

Independent study project with novel geoinformation technologies

- Information on past projects: http://gis-lab.ethz.ch/
- This lab focuses on presenting spatial, temporal, and open data in tangible ways. Students will learn how to work with novel geoinformation technologies such as virtual/mixed reality or mobile applications. They will engage in teamwork, application design, programming and presenting their results.

In the course, students learn about methods for the identification and measurement of landscape characteristics, as well as measures and policies for landscape planning. Landscape planning is put into the context of environmental systems (soil, water, air, climate, flora and fauna) and discussed with regard to socio-political questions of the future.

The aims of this course are:
1) To illustrate the concept of landscape planning, the economic relevance of landscape and nature in the context of the environmental systems (soil, water, air, climate, flora and fauna).
2) To show landscape planning as an integral information system for the coordination of different instruments by illustrating the aims, methods, instruments and their functions in landscape planning.
3) To show the importance of ecosystem services.
4) To learn basics about nature and landscape: Analysis and assessment of the complex interactions between landscape elements, effects of current and future land use (ecosystem goods and services, landscape functions).
5) To identify and measure the characteristics of landscape.
6) Learn how to use spatial data in landscape planning.

In this course, the following topics are discussed:
- Definition of the concept of landscape
- Relevance of landscape planning
- Landscape metrics
- Landscape change
- Methods, instruments and aims of landscape planning (policy)
- Socio-political questions of the future
- Environmental systems, ecological connectivity
- Ecosystem services
- Urban landscape services
- Practice of landscape planning
- Use of GIS in landscape planning

No script. The documentation, consisting of presentation slides are partly handed out and are provided for download on Moodle.

The contents of the course will be illustrated in the associated course 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)) or in Project LAND within the Experimental and Computer Lab (for Environmental Engineers). A combination of courses is recommended.
Abstract
The focus of the lecture Site & Project Development is on larger contiguous areas or sites and their urban, open space and infrastructural development. In this course, students work on a semester exercise in which they "develop" a specific large-scale project from practice and evaluate it economically, strategically and in terms of feasibility.

Objective
Students in this course will pursue the following learning objectives:

- Investigate and understand a given concrete project area and identify, evaluate and articulate the current problems and relevant issues within this area.

- Consolidate their knowledge in the essential topics of site & project development and apply this in a well-founded, argued and creative manner to address the task at hand.

- Organize and structure themselves while acquiring responsibilities in their interdisciplinary project teams. The teams consist of three to five fellow students that must develop innovative, viable and resilient concepts for a real project development in a given area. Their considerations should be presented in written form (project report) and in linguistic-visual form (final presentation). At the end of the course, the students critically reflect on their experiences with the group work process together with the course instructors.

- Acquire methodological knowledge in location & market analysis, 3D visualization of a project as well as in the financial assessment of a large-scale real estate project and use this knowledge to justify their considerations and evaluate their proposal.

- Development and strengthening of their individual position as planners (spatial, urban, transport planners, etc.) in relation to the questions formulated in the proposed project within the field of Site & Development as well as within their own discipline.

The lecture is divided into several thematic sections analogous to the essential topics of Site & Project Development. The students are accompanied both in the semester exercise and in the individual lectures by a large number of external guest speakers from the praxis-field, which means that the lecture will not only thematically examine the relevant areas of Site & Project Development, but also will offer the students exclusive, practice-oriented insights. The relevant methodological knowledge for the semester exercise is imparted and, due to the proximity to practice, the students gain exclusive insights into possible professional fields of activity. In this lecture, students apply their already acquired and newly learned skills, especially in interdisciplinary teams, and work on an exciting, motivating and relevant question from the practice.

Major topics covered in the lecture include:
- Urban planning
- Location and market analysis
- Real estate development, financing and valuation
- Project development and decision-making from the perspective of investors
- Open space design and landscape architecture
- Sustainable building and sustainability certification
- Mobility, parking issues, travel models
- Cooperative planning and participation processes, mediation
- Gendered planning in project development
- Inner development & urban quality
- Transformation

Parallel to the lecture series, students work in interdisciplinary teams on a real-life task. In the course of the semester exercise, the lecture material is deepened and what has been learned is applied. The students visit the project area at the beginning of the semester as part of an excursion. Specific large-scale projects such as the Gaswerkareal Bern, the Sihl- Manegg Areal Zurich (Greenocity) or the Areal Alter Platusmarkt (Nidfeld) Lucerne will be dealt with. For the possible development of the given site, visions are developed by the students on the basis of a comprehensive location and market analysis and a utilization concept is developed. In the process, the students are accompanied by experts and regularly discuss their ideas and proposed solutions with their supervisors.

Lecture notes
- Handouts of the lectures
- Extracts from relevant scientific articles and theory literature
- Exercise material

Download: https://rli.ethz.ch/de/education/vorlesungen/msc/project_development.html

Literature
References in the lecture notes

Prerequisites / notice
none

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

103-0317-00L Introduction to Spatial Development and Transformation

Only for master students, otherwise a special permission by the lecturer is required.

Abstract
The course deals with important theoretical, material and methodical foundations for action and decision-making of spatial relevance. This course discusses central tasks and possible solutions for current and future challenges of spatial development in Switzerland and Europe.
Objective
Spatial development deals with the development, formation and arrangement of our environment. In order to be able to mediate between the different demands, interests and projects of multiple actors, a forward-looking, action-oriented and robust planning is necessary. It is committed - in the sense of a sustainable spatial development - to the economical handling of resources, in particular of the non-replicable resource soil.

The lecture introduces necessary basic knowledge and is based on the following main topics:

- Inward development and challenges of spatial transformation
- Planning approaches and The (political) steering of spatial development
- Interplay of formal and informal processes and processes across different scales of spatial development
- Methods of action-oriented planning in situations of insecurity
- Integrated space and infrastructure development
- Different types of participation in spatial development

By taking up the lecture, the students are able to recognize cross-scale, complex tasks of spatial development and transformation and to use their theoretical, methodical and professional knowledge to clarify them.

Content

- Planning approaches and political organization in Switzerland
- Tasks of spatial relevance
- Key figures and ratios
- Drivers of spatial development
- Steering spatial development I: Policy
- Steering spatial development II: Formal and informal instruments
- Organizing spatial development I: Governance
- Organizing spatial development II: Processes and organization
- Methods in spatial planning I
- Methods in spatial planning II
- Planning in complex situations
- Participation in spatial development
- Present and future core tasks of spatial development

Lecture notes
Further information and the documents for the lecture can be found on the homepage of IRL/STL

Taught competencies

Domain A - Subject-specific Competencies	Techniques and Technologies	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Decision-making	assessed	
Problem-solving	assessed	
Project Management	not assessed	
Domain C - Social Competencies	Cooperation and Teamwork	not assessed
Domain D - Personal Competencies	Creative Thinking	assessed
Critical Thinking	assessed	
Self-direction and Self-management	not assessed	

103-0417-02L
Methodology of Planning Research and Practice

Only for master students, otherwise a special permission by the lecturer is required.

Abstract
This course deals with scientific and applied methods and the ways of thinking that are useful in planning practice as well as in scientific research. Students are offered interdisciplinary knowledge from planning practice and research, behavioural economics and social sciences. New perspectives on planning are opened up, which can lead to better results in future projects and research.

Objective
Keeping the general aim of exploring the basic methodologies in spatial planning research and practice, the specific course learning objectives are as follows:

- to address complex real-world spatial problems in adequate ways
- to know relevant theories and maxims that are subject to specific methods of problem solving
- to identify key questions and key concepts in contemporary planning research
- to select appropriate research methods to properly address the research questions

In practical terms, students:
- learn to deal with uncertainties and estimate quantities
- improve their ability to take decisions based on incomplete data and information
- are informed about different (qualitative and quantitative) methods and techniques for spatial research
- learn about different types of research (theoretical, empirical, action-oriented, qualitative, quantitative)
- get skilled for writing simple research essays
- are urged to question their own knowledge and challenge the course of action taken in planning processes
The course is based on the following questions:

How do we deal with complex issues in planning?
- Forms of knowledge, half-knowledge and not knowing
- Occurrence and explanation patterns for irrational behaviour
- Spatial research and planning practice
- Planning maxims
- Mapping complex topics in research questions

How do we generate knowledge about complex issues?
- Methods for scientific data generation
- Applied handling of quantities and probabilities
- Estimating despite uncertainties
- Opportunities of digitisation in planning (Participation, BigData)

How do we react to complex questions in planning?
- Methods of scientific data analysis
- Making decisions despite incomplete information
- Dealing with robustness and fragility

More specifically, the lectures focus on the following topics (NB: Some content units will be presented in English, they are marked with *asterisk below)
- (Half-) knowledge/behaviour/irrationalties
- Initial situation: Solving complex problems
- Behavioural patterns, occurrence and explanation patterns for irrational behaviour
- Methods for solving complex tasks in planning practice
- Spatial research and planning practice - connections, differences, overlaps
- Challenges in the solution of complex tasks: System delimitation, interdisciplinarity, retrospective vs. prospective approach (descriptive vs. action-oriented, "reflected scenario building")
- Planning maxims
- *Methodology in spatial research
- *Research design
- *Research questions (types of research questions; research questions, hypotheses and theories); justification of research question
- Data generation methods (interviews and questionnaires, ethnography and observation, documents, official statistics)
- -Dealing with quantities, estimations, anchor effect
- -Importance of scales and key figures in planning
- -Estimation methods
- -Danger of the anchor effect
- -Digitalization in planning
- -New data sources and sizes
- -Opportunities and challenges through digitisation in planning
- -Data analysis methods (quantitative and qualitative data; quantitative analysis of survey data; qualitative analysis - content analysis, discourse analysis, case study, comparative research)
- -*Role of science in planning - the perspective of both research and practice

Learning materials: available online (Moodle) before corresponding lecture.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain B - Method-specific Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain C - Social Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Domain D - Personal Competencies

Taught competencies

Abstract
This course aims at analyzing, designing, improving public transport systems, as part of the overall transport system.
Objective

Public transport is a key driver for making our cities more liveable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups.

Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders. The most relevant decision making problems in a planning tactical and operational point of view

At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport.

General structure:
general introduction of transport, modes, technologies, system design and line planning for different situations, mathematical models for design and line planning timetabling and tactical planning, and related mathematical approaches operations, and quantitative support to operational problems, evaluation of public transport systems.

Content

Basics for line transport systems and networks
Passenger/Supply requirements for line operations
Objectives of system and network planning, from different perspectives and users, design dilemmas
Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport
Planning process, from demand evaluation to line planning to timetables to operations
Matching demand and modes
Line planning techniques
Timetabling principles
Allocation of resources
Management of operations
Measures of realized operations
Improvements of existing services

Lecture notes

Lecture slides are provided.

Literature

Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English)

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork assessed
Customer Orientation assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

101-0417-00L Transport Planning Methods W 6 credits 4G K. W. Axhausen

Abstract

The course provides the necessary knowledge to develop models supporting and also evaluating the solution of given planning problems. The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/policy by means of cost-benefit analysis.

Objective

- Knowledge and understanding of statistical methods and algorithms commonly used in transport planning
- Comprehend the reasoning and capabilities of transport models
- Ability to independently develop a transport model able to solve / answer planning problem
- Getting familiar with cost-benefit analysis as a decision-making supporting tool

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 903 of 2152
The course provides the necessary knowledge to develop models supporting the solution of given planning problems and also introduces cost-benefit analysis as a decision-making tool. Examples of such planning problems are the estimation of traffic volumes, prediction of estimated utilization of new public transport lines, and evaluation of effects (e.g. change in emissions of a city) triggered by building new infrastructure and changes to operational regulations.

To cope with that, the problem is divided into sub-problems, which are solved using various statistical models (e.g. regression, discrete choice analysis) and algorithms (e.g. iterative proportional fitting, shortest path algorithms, method of successive averages).

The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/ policy by means of cost-benefit analysis. Interim lab session take place regularly to guide and support students with the applied part of the course.

Lecture notes
Moodle platform (enrollment needed)

Literature

103-0347-00L Landscape Planning and Environmental Systems (GIS W 3 credits 2U A. Grét-Regamey, C. Brouillet, N. Klein

Abstract
The course content of the lecture Landscape Planning and Environmental Systems (103-0347-00 V) will be illustrated in practical GIS exercises (e.g. habitat modelling, land use change, ecosystem services, connectivity).

Objective
- Practical application of theory from the lectures
- Quantitative assessment and evaluation of landscape characteristics
- Learning useful applications of GIS for landscape planning
- Developing landscape planning measures for practical case studies

Content
- Applications of GIS in landscape planning
- Landscape analysis
- Landscape structural metrics
- Modelling habitats and land use change
- Calculating urban ecosystem services
- Ecological connectivity

Lecture notes
A script and presentation slides for each exercise will be provided on Moodle.

Literature
Will be named in the lecture.

Prerequisites / notice
Basic GIS skills are strongly recommended.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

103-0569-00L European Aspects of Spatial Development W 3 credits 2G A. Peric Momcilovic

Abstract
Following the insight into historical perspective and contemporary models of governance and planning, the course focuses on the international dimension of spatial planning in Europe. This includes a discussion of how European spatial policy is made and by whom, how planners can participate in such process and how they can address transnational challenges of spatial development cooperatively.

Objective
Keeping the general aim of exploring the European dimension of spatial planning in mind, the specific course learning objectives are as follows:
- to interpret the history of spatial planning at the transnational scale
- to understand and explain the content of the European spatial policy agenda
- to describe and analyse the role of territorial cooperation in making European spatial development patterns and planning procedures
- to discuss the changing role of planners and evaluate the ways of their engagement in European spatial policy-making
- European spatial policy agenda: introduction and basic directives
- governance models
- planning models; collaborative planning model (main concepts & critics)
- post-positivist approach to spatial planning
- transnational spatial planning in Europe; questioning the European spatial planning; spatial development trends in Europe
- EU as a political system: EU institutions & non-EU actors
- planning families in Europe; the European spatial planning agenda
- spatial planning strategies and programmes on territorial cooperation
- the European planning culture and planning system; planning cultures in Europe
- basic characteristics of planning systems in Europe
- the relevance of European transnational cooperation for spatial planning
- European transnational initiatives

Lecture notes

The documents for the lecture will be provided at the moodle.

Literature

Obligatory literature:

Recommended literature:

Governance models:

Planning models:

Territorial cooperation in Europe:

Planning families and cultures:

Planning systems in Europe:

Prerequisites / notice

Only for master students, otherwise a special permission by the lecturer is required.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Electives

The entire course programs of ETH Zurich and the University of Zurich are open to the students to individual selection.

Recommended Electives of Master Degree Programme

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1065-00L</td>
<td>Design Thinking: Human-Centred Solutions to Real World Challenges</td>
<td>W</td>
<td>5 credits</td>
<td>5G</td>
<td>S. Brusoni</td>
</tr>
</tbody>
</table>

Does not take place this semester.
The goal of this course is to engage students in a multidisciplinary collaboration to tackle real world problems. Following a design thinking approach, students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.

During the course, students will learn about different design thinking methods and tools. This will enable them to:

- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).
- Engage in collaborative ideation with a multidisciplinary team.
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

The specific design challenge is to identify and layout a holistic, partly quantified and visualized systems strategy for building a resilient economy in relation to the actual Covid driven pressure factors in the relation of the alpine with the urban. We build upon former ETH SDL students who developed a systems maps for the community of Ostana, Italy, that embraces local identity, revitalizes cultural and landscape biodiversity, and creates alpine-urban circularity.

This course will extend this systems map to more clearly understand the urban component, the source market, and design in new opportunities of urban-alpine regeneration, for circularity, for new ways of tourism, of mobility, in a creative economy.

Systemic Design Labs: RE:GENERATE Alpine-Urban

Objectives:
- Systemic Design (SD) optimizes an entire system as a whole, rather than its parts in isolation. SD is iterative, recursive and circular, requires creative, curious, informed and critical systems thinking and doing, yielding radical resource efficiency. It systems mapping, design thinking, footprint assessment, network analysis, test planning, prototyping, fabrication, social experiments.

The teaching purpose of Systemic Design Labs (SDL) is to better tackle the complexity of today’s sustainability challenges. Often, in current education we learn to disassemble design challenges into their bits and parts for individual optimization. While being useful for developing topical expertise, this reductionism to parts with less emphasis on their interaction does not match with the growing complexity of today’s challenges. In contrast, systemic design approaches a task from a holistic perspective, zooming out of a system to reveal its structure and connections between its parts – to zoom in on the hub of influence that matters most.

The objectives of the course are to introduce students to Systemic Design as theory, methodology and practice. This includes whole systems thinking, circularity, cross-scale design, Gigamapping, and many more. The course stimulates overall reflective eco-social thinking in design, planning and engineering disciplines.

Systemic Design Labs: RE:GENERATE Alpine-Urban

Objectives:
- The specific design challenge is to identify and layout a holistic, partly quantified and visualized systems strategy for building a resilient economy in relation to the actual Covid driven pressure factors in the relation of the alpine with the urban. We build upon former ETH SDL students who developed a systems maps for the community of Ostana, Italy, that embraces local identity, revitalizes cultural and landscape biodiversity, and creates alpine-urban circularity.

This course will extend this systems map to more clearly understand the urban component, the source market, and design in new opportunities of urban-alpine regeneration, for circularity, for new ways of tourism, of mobility, in a creative economy.

Recap of former SDL courses:
- In Ostana, a clear connection is between the local identity (culture, traditions, visions) which is formed by Occitan culture (food, music, dance, language), traditional stone building architecture which is under pressure to carefully evolve with new needs for carbon-neutral and net-positive buildings, and the Monte Viso landscape. How does a re-growing economy that should be regenerative and circular by design, correlate with innovation in architecture, with population growth and associated challenges in mobility, waste systems and supplies, with growing tourism, new agro-forestry practices like industrial hemp and Paulownia, while impacts of climate change are clearly visible? How does the community design a vision that is based on cooperation on different governance scales, balancing local identity and urgently needed international innovation?

Deliverables & output: This SDL course RE:GENERATE builds upon related work from former courses hosted and lead by the MonViso Institute (i.e. on social innovation, mobility, architecture and local identity, tourism, circular economy, land use change) to develop and design foundations for an extension of the existing, visualized and partly quantified systems map, that will support ongoing and future innovation processes in this community. The focus now is on the urban integration into new, regenerative business models of the alpine, and in regenerative relation between both as a model for the future. This course will thus develop an extended graphical systems map from the alpine to the urban, backed up by a technical report, and connected with the existing systems maps of Ostana and the surrounding valley.

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Linda Armbruster to learn about the requirements of the class.

101-0193-00L

Systemic Design Labs: RE:GENERATE Alpine-Urban

W 4 credits

T. Luthe

Abstract

Objectives

Content

Prerequisites / notice

literature

lecture notes

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 906 of 2152
Depending on the Covid situation, some part of the course will be virtual via Zoom, using a Miro design board. If possible, we will do a field trip. Some travel costs may apply.

Students need to be motivated to design in teams on the preparation of the deliverables, a systemic strategy map and a written report.

Prerequisites / notice
Depending on the Covid situation, some part of the course will be virtual via Zoom, using a Miro design board. If possible, we will do a field trip. Some travel costs may apply.

Students need to be motivated to design in teams on the preparation of the deliverables, a systemic strategy map and a written report.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Problem-solving
- Self-awareness and Self-reflection
- Self-direction and Self-management

263-5905-00L Mixed Reality W 5 credits 3G+1A I. Armeni, F. Bogo, M. Pollefeys

Abstract
The goal of this course is an introduction and hands-on experience on latest mixed reality technology at the cross-section of 3D computer graphics and vision, human machine interaction, as well as gaming technology.

Objective
After attending this course, students will:
1. Understand the foundations of 3D graphics, Computer Vision, and Human-Machine Interaction
2. Have a clear understanding on how to build mixed reality apps
3. Have a good overview of state-of-the-art Mixed Reality
4. Be able to critically analyze and assess current research in this area.

Content
The course introduces latest mixed reality technology and provides introductory elements for a number of related fields including:
- Introduction to Mixed Reality / Augmented Reality / Virtual Reality
- Introduction to 3D Computer Graphics, 3D Computer Vision.

Prerequisites / notice
Prerequisites include:
- Good programming skills (C# / C++ / Java etc.)
- Computer graphics/vision experience: Students should have taken, at a minimum, Visual Computing. Higher level courses are recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

Electives ETH Zurich

Seminar Work

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0817-00L</td>
<td>Geomatics Seminar</td>
<td>O</td>
<td>4 credits</td>
<td>2S</td>
<td>K. Schindler, A. Göt-Regamey, L. Hurni, K. W. Axhausen, W. Kuhn, M. Rothacher, A. Wieser</td>
</tr>
</tbody>
</table>

Abstract
Introduction to general scientific working methods and skills in the core fields of geomatics. It includes a literature study, a review of one of the articles, a presentation and a report about the literature study.

Objective
Learn how to search for literature, how to write a scientific report, how to present scientific results, and how to critically read and review a scientific article.

Content
A list of topics for the literature study are made available at the beginning of the semester. A topic can be selected based on a moodle.

Interdisciplinary Project Work

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0298-02L</td>
<td>Interdisciplinary Project</td>
<td>O</td>
<td>12 credits</td>
<td>24A</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Abstract
Registration via myStudies from mid-July

Objective
Working on a concrete interdisciplinary task in Geomatics

Content
The project work is supervised by a professor. Students can choose from different subjects and tasks.

GESS Science in Perspective

see GESS Science in Perspective: Language Courses
ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for
Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0009-00L</td>
<td>Master’s Thesis ■</td>
<td>O</td>
<td>24 credits</td>
<td>51D</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract

The Master Programme concludes with the Master Thesis, which has to be done in one of the chosen Majors and has to be completed within 16 weeks. The Master Thesis is supervised by a professor and shall attest the students’ ability to work independently and to produce scientifically structured work.

Objective

To work independently and to produce a scientifically structured work.

Content

The topics of the Master Thesis are published by the professors. The Topic can be set also in consultation between the student and the professor.

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0132-AAL</td>
<td>Geodetic Metrology Fundamentals</td>
<td>E-</td>
<td>6 credits</td>
<td>13R</td>
<td>A. Wieser</td>
</tr>
</tbody>
</table>

Abstract

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Objective

Introduction to the most important sensors, operation and calculation methods of Geodetic Metrology

Content

Overview on the different domains of geodetic metrology

- Geodetic instruments and sensors
- Determination of 3D-coordinates with GNSS, total station and levelling
- Calculation methods of geodetic metrology
- Survey and staking-out methods

Lecture notes

Slides and additional material used in the associated regular course Geodätische Messtechnik GZ (in German) are provided in electronic form.

Literature

Prerequisites / notice

The field course is part of this lecture. Practical exercises complete the subjects taught during the semester.

If evidence of equivalent practical experience in surveying cannot be provided by the student, participation in the field course during the respective next available period (i.e. 1 week in the beginning of the summer holidays) is required.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0153-AAL</td>
<td>Transport Planning (Transportation I)</td>
<td>E-</td>
<td>3 credits</td>
<td>6R</td>
<td>K. W. Axhausen</td>
</tr>
</tbody>
</table>

Abstract

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Objective

The lecture course discusses the basic concepts, approaches and methods of transport planning in both their theoretical and practical contexts.

Content

The course introduces the basic theories and methods of transport planning.

- Basic theoretical links between transport, space and economic development; basic terminology; measurement and observation of travel behaviour; methods of the four stage approach; cost-benefit analysis.

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0132-AAL</td>
<td>Cartography II</td>
<td>E-</td>
<td>6 credits</td>
<td>13R</td>
<td>L. Hurni</td>
</tr>
</tbody>
</table>

Abstract

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Objective

Theory and mathematical basics of the cartographic visualisation of attributed geo-objects for static and interactive maps (with exercises).

Content

- Cartographic workflow, data types, data capturing, data sources and legal aspects.
- Introduction to QGIS, ArcGIS and OCAD for cartographic applications.
- Data types: Analytical and visualisation processes in cartography.
- Colour management and pre-press processes.
- Web maps using HTML, CSS, JavaScript, SVG and Canvas 2D.
- Interaction with diagrams and maps.
- Libraries and APIs for cartographic applications.

Lecture notes

Will be distributed module by module

Literature

- References and other materials will be distributed by the supervisors.
- Students are requested to contact the supervisors in advance for detailed instructions.

Prerequisites / notice

Cartography Fundamentals or similar introduction courses in Cartography.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0132-AAL</td>
<td>Cartography Fundamentals</td>
<td>E-</td>
<td>5 credits</td>
<td>11R</td>
<td>L. Hurni</td>
</tr>
</tbody>
</table>

Abstract

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Objective

- Introduction to the most important sensors, operation and calculation methods of Geodetic Metrology
- Determination of 3D-coordinates with GNSS, total station and levelling
- Calculation methods of geodetic metrology
- Survey and staking-out methods

Lecture notes

Slides and additional material used in the associated regular course Geodätische Messtechnik GZ (in German) are provided in electronic form.

Literature

Prerequisites / notice

The field course is part of this lecture. Practical exercises complete the subjects taught during the semester.

If evidence of equivalent practical experience in surveying cannot be provided by the student, participation in the field course during the respective next available period (i.e. 1 week in the beginning of the summer holidays) is required.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0132-AAL</td>
<td>Transport Planning (Transportation I)</td>
<td>E-</td>
<td>3 credits</td>
<td>6R</td>
<td>K. W. Axhausen</td>
</tr>
</tbody>
</table>

Abstract

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Objective

The lecture course discusses the basic concepts, approaches and methods of transport planning in both their theoretical and practical contexts.

Content

The course introduces the basic theories and methods of transport planning.

- Basic theoretical links between transport, space and economic development; basic terminology; measurement and observation of travel behaviour; methods of the four stage approach; cost-benefit analysis.

Literature

Prerequisites / notice

Cartography Fundamentals or similar introduction courses in Cartography.
Abstract
Basic knowhow about communication with spatial information by using plans and maps, about the most important design rules and production methods for map graphics.

Objective
Acquire basic knowhow about communication with spatial information by using plans and maps, about the most important design rules and production methods for map graphics. Ability to assess existing products with respect to their content-related and design quality. Ability to design proper plans and well designed legends for basic maps.

Content
Definitions "map" and "cartography", map types, current tasks and situation of cartography, map history, spatial reference systems, map projections, map conception and workflow planning, map design, analogue and digital map production technology, prepress technology, printing technology, topographic maps, map critics.

Lecture notes
Will be distributed module by module.

Literature
- Further references and other materials will be distributed by the supervisors.
- Students are requested to contact the supervisors in advance for detailed instructions.

103-0253-AAL Parameter Estimation
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Objective
The students are capable of analysing measurements with appropriate methods. They can optimally extract model parameters from real measurements and are able to analyse and to retrieve additional information from time series. They understand the underlying algorithms of different geodetic analysis tools and processing methods.

Abstract
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Literature
- Luhmann, Robson, Kyle, Boehm: Close-Range Photogrammetry and 3D Imaging, deGruyter, 2020

Prerequisites / notice
Requirements: basic knowledge of physics, linear algebra and analytical geometry, calculus, least-squares adjustment and statistics

103-0254-AAL Photogrammetry
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Objective
The class conveys the basics of photogrammetry. Its aim is to equip students with an understanding of the principles, methods and applications of image-based 3D measurement.

Abstract
The students are capable of analysing measurements with with appropriate methods. They can optimally extract model parameters from real measurements and are able to analyse and to retrieve additional information from time series. They understand the underlying algorithms of different geodetic analysis tools and processing methods.

Content
The basics of photogrammetry, its products and applications: the principle of image-based triangulation; digital aerial cameras and related sensors; projective geometry; mathematical modelling, calibration and orientation of cameras; photogrammetric reconstruction of points and lines, and stereoscopy; orthophoto generation; digital photogrammetric workstations; recording geometry and flight planning.

Literature
- Jähne, 2012: Digitale Bildverarbeitung und Bildgewinnung, Springer
- Next references and other materials will be distributed by the supervisors.

103-0274-AAL Image Processing
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Objective
Understanding core methods and algorithms in image processing and computer vision an the underlying signal processing foundations. Applying image processing algorithms to relevant problems in photogrammetry and remote sensing.

Abstract
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Content
- Properties of digital images
- Sampling, quantisation and signal processing
- Colour spaces and transformations
- Geometric image transformations
- Image morphology
- Discrete convolution
- Image filtering
- Texture descriptors
- 2D Fourier transform and the Fourier domain
- Pattern recognition: corner and edge extraction
- Image segmentation

Literature
- Jähne, 2012: Digitale Bildverarbeitung und Bildgewinnung, Springer

We suggest the following textbooks for further reading:
Rafael C. Gonzalez, Richard E. Woods
Digital Image Processing
ISBN: 013168728X

Rafael C. Gonzalez, Steven L. Eddins, Richard E. Woods:
Digital Image Processing Using MATLAB
Prentice Hall, 2003
ISBN: 0130085197

103-0313-AAL Spatial Planning and Landscape Development
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Objective
Acquire basic knowhow about communication with spatial information by using plans and maps, about the most important design rules and production methods for map graphics. Ability to assess existing products with respect to their content-related and design quality. Ability to design proper plans and well designed legends for basic maps.

Abstract
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Literature
- Further references and other materials will be distributed by the supervisors.
- Students are requested to contact the supervisors in advance for detailed instructions.

103-0293-AAL Urban Planning
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Objective
The aim is an understanding of the principles, methods and possible applications of photogrammetry. The course also forms the basis for more in-depth studies and self-reliant photogrammetric project work in further photogrammetry-related courses.

Content
The basics of photogrammetry, its products and applications: the principle of image-based triangulation; digital aerial cameras and related sensors; projective geometry; mathematical modelling, calibration and orientation of cameras; photogrammetric reconstruction of points and lines, and stereoscopy; orthophoto generation; digital photogrammetric workstations; recording geometry and flight planning.

Literature
- Luhmann, Robson, Kyle, Boehm: Close-Range Photogrammetry and 3D Imaging, deGruyter, 2020

Prerequisites / notice
Requirements: basic knowledge of physics, linear algebra and analytical geometry, calculus, least-squares adjustment and statistics

103-0294-AAL Remote Sensing
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Objective
Acquire basic knowhow about communication with spatial information by using plans and maps, about the most important design rules and production methods for map graphics. Ability to assess existing products with respect to their content-related and design quality. Ability to design proper plans and well designed legends for basic maps.

Abstract
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Literature
- Further references and other materials will be distributed by the supervisors.
- Students are requested to contact the supervisors in advance for detailed instructions.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 909 of 2152
The lecture imparts methodological and instrumental fundamentals for spatial planning and will be exemplified by exploring two Zurich city quarters.

- To get to know the self-study course comprises the following readings:
- F. O. Friedrich Wicker, R. Sasse, Analysis II
- To get to know instruments and facilities to process problems in spatial planning.
- Link theory and practice in spatial planning.
- To acquire basic knowledge of Linear Algebra and some aspects of related numerical methods and the ability to apply basic algorithms to simple problems.
- To get to know the interaction between the community and our living space and their resulting conflicts.

103-0325-AAL Integrated Spatial Planning in Cities and Districts

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

The lecture imparts methodological and instrumental fundamentals for spatial planning and will be exemplified by exploring two Zurich city quarters.

Objective

Spatial planning is concerned with the foresighted design of the built and un-built environment. Starting points are spatially relevant problems that need to be explored, clarified and solved. The cornerstone of the course is formed by an independent exploration by the student of two Zurich city quarters that involves investigating specific spatially relevant conditions, recognizing regularities and relevant problems.

Content

The self-study course compromises the following readings:
- Chapters of: Lynch, Kevin: «The Image of the City».
- Alexander, Christopher et al.: «A Pattern Language».
- Mikoleit, Anne and Pürckhauer, Mortiz: «Urban Code», and
- «SIDAIA - Spatial and Infrastructure Development: An Integrated Approach».

The graded semester performance comprises a condensed paper to be written by the student reflecting both the literature read as well as exemplarily applying the knowledge gained from the literature by independently exploring the two city quarters.

Lecture notes

cf. content

Literature

cf. content

252-0846-AAL Computer Science II

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Introduction to programming in Java. Procedural foundations of programming and outlook to object oriented programming. Variables, types, assignments, control structures (branch, loop), data structures, algorithms, line graphics, graphical user interface. Writing small programs. Working with a professional programming environment (Eclipse).

Objective

The students will be able to write simple programs and to modify existing programs.

Content

This course offers an introduction to variables, control structures (branch, loop), algorithms and data structures, as well as an outlook to modularisation and object oriented techniques. In the exercises students train programming skills (in the programming language JAVA). Students can solve the exercises on their own laptop or in the computer labs at ETH. The software used in this course runs on MS Windows, MacOS X and Linux.

Prerequisites / notice

Prerequisites:
252-0845-00 Computer Science I (D-BAUG)

406-0141-AAL Linear Algebra

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Introduction to Linear Algebra and Numerical Analysis for Engineers. This reading course is based on chapters from the book "Introduction to Linear Algebra" by Gilbert Strang (SIAM 2009), and "A first Course in Numerical Methods" by U. Ascher and C. Greif (SIAM, 2011).

Objective

To acquire basic knowledge of Linear Algebra and some aspects of related numerical methods and the ability to apply basic algorithms to simple problems.

Content

1 Introduction, calculations using MATLAB
2 Linear systems I
3 Linear systems II
4 Scalar- & vektorproduct
5 Basics of matrix algebra
6 Linear maps
7 Orthogonal maps
8 Trace & determinant
9 General vectorspaces
10 Metric & scalarproducts
11 Basis, basistransform & similar matrices
12 Eigenvalues & eigenvectors
13 Spectral theorem & diagonalisation
14 Repetition

Literature

Prerequisites / notice

Knowledge of elementary calculus

406-0242-AAL Analysis II

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
Abstract
Mathematical tools of an engineer

Objective
Mathematics as a tool to solve engineering problems, mathematical formulation of problems in science and engineering. Basic mathematical knowledge of an engineer.

Content

Literature
Textbooks in English:
- M. Akveld, R. Sperb: Analysis I, vdf
- L. Papula: Mathematik für Ingenieure 2, Vieweg Verlag

406-0243-AAL Analysis I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract
Mathematical tools for the engineer

Objective
Mathematics as a tool to solve engineering problems. Basic mathematical knowledge for engineers.

Content
Complex numbers.
Calculus for functions of one variable with applications.
Simple Mathematical models in engineering.

Literature
Textbooks in English:
- M. Akveld, R. Sperb: Analysis I, vdf
- M. Akveld, R. Sperb: Analysis II, vdf
- L. Papula: Mathematik für Ingenieure und Naturwissenschafchter, Vieweg Verlag
- L. Papula: Mathematik für Ingenieure 2, Vieweg Verlag

406-0603-AAL Stochastics (Probability and Statistics)
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract
Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical programming language "R" will be a central theme.

Objective
The objective of this course is to build a solid foundation in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".

Content
From "Statistics for research" (online)
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's t Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
Ch 1: Basics
Ch 2: The R Environment
Ch 3: Probability and distributions
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation

Literature
- "Statistics for research" by S. Dowdy et. al. (3rd edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI: 10.1002/0471477435
 From within the ETH, this book is freely available online under: http://onlinelibrary.wiley.com/book/10.1002/0471477435
 From within the ETH, this book is freely available online under: http://www.springerlink.com/content/m17578/

103-0357-AAL Environmental Planning
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract
The lecture covers tools, methods and procedures of Landscape and Environmental Planning developed. By means of field trips their implementation will be illustrated.
Objective
Knowledge of the various instruments and possibilities for the practical implementation of environmental planning.
Knowledge of the complex interactions of the instruments.

Content
Topics of the Lectures
- forest planning
- inventories
- intervention and compensation
- ecological network
- agricultural policy
- landscape development concepts (LEK)
- parks
- swiss landscape concept
- riverine zone
- natural hazards

Note: there are several non-obligatory field trips as part of the lecture. It is recommended to participate at these to boost the in-depth understanding of the different topics.

Lecture notes
- lecture notes concerning the instruments
- handouts
- copies of selected literature

Download: http://www.plus.ethz.ch/de/studium/vorlesungen/bsc/environmental_planning.html

406-0062-AAL Physics I

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) **CANNOT enrol for this course unit.**

Abstract
Introduction to the concepts and tools in physics: mechanics of point-like and rigid bodies, elasticity theory, elements of hydrostatics and hydrodynamics, periodic motion and mechanical waves.

Objective
Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve the latter.

The student should acquire an overview over the basic concepts in mechanics.

Content

Book:

Chapters:
1, 2, 3, 4, 5, 6 (without: 6-5, 6-6, 6-8), 7, 8 (without 8-9), 9, 10 (without 10-10), 11 (without 11-7), 13 (without 13-13, 13-14), 14 (without 14-6), 15 (without 15-3, 15-5)

Literature
see "Content"

Friedhelm Kuypers
Physik für Ingenieure und Naturwissenschaftler
Band 1: Mechanik und Thermodynamik
Wiley-VCH Verlag, 2002, 544 S, ca.: Fr. 68.-

406-0063-AAL Physics II

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) **CANNOT enrol for this course unit.**

Abstract
Introduction to the "way of thinking" and the methodology in Physics. The Chapters treated are Magnetism, Refraction and Diffraction of Waves, Elements of Quantum Mechanics with applications to Spectroscopy, Thermodynamics, Phase Transitions, Transport Phenomena.

Objective
Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve the latter.

The student should acquire an overview over the basic concepts used in the theory of heat and electricity.

Content

Book:

Chapters:

Literature
see "Content"

Friedhelm Kuypers
Physik für Ingenieure und Naturwissenschaftler
Band 2: Elektrizität, Optik, Wellen
Verlag Wiley-VCH, 2003, Fr. 77.-

252-0856-AAL Computer Science

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) **CANNOT enrol for this course unit.**

Abstract

Objective

F. O. Friedrich Wicker, R. Sasse
103-2233-AAL GIS Basics
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Fundamentals in geoinformation technologies: database principles, including modeling of spatial information, geometric and semantic models, topology and metrics; practical training with GIS software.

Objective
Know the fundamentals in geoinformation technologies for the realization, application and operation of geographic information systems in engineering projects.

Content
Modelling of spatial information
Geometric and semantic models
Topology & metrics
Raster and vector models
Databases
Applications
Labs with GIS software

Literature

103-0187-AAL Satellite Geodesy
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Objective
Understanding the major observation techniques in space geodesy as modern methods applied in Earth system monitoring (geometry, rotation and gravity field of the Earth and the atmosphere), in national surveying and navigation.

Content
Overview of GPS, VLBI, Satellite and Lunar Laser Ranging (SLR/LLR), Satellite Radar Altimetry with the basic principles, the instruments and observation equations. Modelling of the station motions and the estimation of station coordinates. Basics of wave propagation in the atmosphere. Signal propagation in the ionosphere and troposphere for the different observation techniques and the determination of atmospheric parameters. Equation of motion of the unperturbed and perturbed satellite orbit. Osculating and mean orbital elements. General and special perturbation theory and the determination of satellite orbits.

Literature
Script M. Rothacher "Space Geodesy"

103-1115-AAL Geodetic Metrology and Laserscanning
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Advanced topics in geodetic metrology with focus on instrumental and methodic aspects for applications with higher accuracy demands.

Objective
The students acquire enhanced knowledge regarding the operating mode, the application and the limitations of modern geodetic standard instruments. They will be able to properly select, test and apply these instruments for geodetic tasks with higher accuracy requirements. They will get acquainted with the typical workflow from the preparation of the field works to the digital or plotted plan. Finally, the students will be introduced to specific geodetic tasks related to construction and civil engineering.

Content
- The geomatics workflow
- Propagation of light in the atmosphere
- The modern total station
- Terrestrial Laserscanning
- Digital levels
- Field tests
- Traverses
- Trigonometric leveling
- Precision leveling
- Route planning and transition curves

Lecture notes
Documents for enhanced study will be provided upon appointment.

Literature

103-1184-AAL Physical and Kinematic Geodesy
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Objective
Overview over the entire spectrum of Physical and Kinematic Geodesy

103-0717-AAL Geoinformation Technologies and Analysis
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Die Konzepte der Vorlesung werden jeweils durch Algorithmen und Anwendungen motiviert und illustriert.

Objective
Funktionen, Felder, zusammengesetzte Strukturen und Zeiger. Im Teil zur Objektorientierung werden Klassen, Vererbung und Polymorphie behandelt, es werden exemplarisch einfache dynamische Datentypen eingeführt.

Content

Lecture notes
Ein Skript in englischer Sprache wird semesterbegleitend herausgegeben. Das Skript und die Folien werden auf der Vorlesungshomepage zum Herunterladen bereitgestellt.

Literature
Bjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010

this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Advanced geoinformation technologies and analyses methods: Mobile GIS; Web-GIS & Geo-Web-Services; Spatial Big Data; Temporal aspects in GIS; Analysis of movement data; User interfaces

Objective
Knowing advanced topics of geoinformation technologies (Mobile GIS and Web-GIS) and spatio-temporal analysis methods for the realization, application and operation of Web-GIS in engineering projects.

Prerequisites / notice
Introductory GIS course

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0184-AAL</td>
<td>Higher Geodesy</td>
<td>E- 5 credits</td>
<td>11R</td>
<td>M. Rothacher</td>
</tr>
</tbody>
</table>

Abstract
Modern methods of Higher Geodesy. Basics of Shape of the Earth; Geoid determination and deflection of the vertical. Introduction into the most important topics: Satellite Geodesy and Navigation; Physical Geodesy and gravity field of the Earth; Astronomical Geodesy and Positioning; Mathematical Geodesy and basics of Geodynamics. Reference systems and applications in National and Global Geomatics.

Objective
Overview over the entire spectrum of Higher Geodesy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0126-AAL</td>
<td>Geodetic Reference Systems</td>
<td>E- 3 credits</td>
<td>6R</td>
<td>M. Rothacher</td>
</tr>
</tbody>
</table>

Abstract
Fundamentals and theory of geodetic reference systems and frames. Introduction to current international systems as well as to systems for the Swiss national geodetic survey.

Objective
Introduction to current international systems as well as to systems for the Swiss national geodetic survey

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0255-AAL</td>
<td>Geodata Analysis</td>
<td>E- 2 credits</td>
<td>4R</td>
<td>W. Kuhn</td>
</tr>
</tbody>
</table>

Abstract
The course deals with advanced methods in spatial data analysis.

Objective
- Understanding the theoretical principles in spatial data analysis.
- Understanding and using methods for spatial data analysis.
- Detecting common sources of errors in spatial data analysis.
- Advanced practical knowledge in using appropriate GIS-tools.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0234-AAL</td>
<td>GIS II</td>
<td>E- 5 credits</td>
<td>11R</td>
<td>W. Kuhn</td>
</tr>
</tbody>
</table>

Abstract
Advanced course in geoinformation technologies: conceptual and logical modelling of networks, 3D- and 4D-data and spatial processes in GIS; raster data structures and operations; mobile GIS; Internet and GIS; interoperability and data transfer; legal and technical foundations of spatial data infrastructures (SDI)

Objective
Students will be able to carry out the following phases of a GIS project: data modelling, mobile data acquisition and analysis, Web publication of data and integration of interoperable geospatial web services into a Spatial Data Infrastructure (SDI).

Literature

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>406-0353-AAL</td>
<td>Analysis III</td>
<td>E- 4 credits</td>
<td>9R</td>
<td>A. Iozzi</td>
</tr>
</tbody>
</table>

Abstract
Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics.

Objective
Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations.
Content
- Laplace Transforms:
 - Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
 - Transforms of Derivatives and Integrals, ODEs
 - Unit Step Function, t-Shifting
 - Short Impulses, Dirac's Delta Function, Partial Fractions
 - Convolution, Integral Equations
 - Differentiation and Integration of Transforms

- Fourier Series, Integrals and Transforms:
 - Fourier Series
 - Functions of Any Period p=2L
 - Even and Odd Functions, Half-Range Expansions
 - Forced Oscillations
 - Approximation by Trigonometric Polynomials
 - Fourier Integral
 - Fourier Cosine and Sine Transform

- Partial Differential Equations:
 - Basic Concepts
 - Modeling: Vibrating String, Wave Equation
 - Solution by separation of variables; use of Fourier series
 - D'ALEMBERT Solution of Wave Equation, Characteristics
 - Heat Equation: Solution by Fourier Series
 - Heat Equation: Solutions by Fourier Integrals and Transforms
 - Modeling Membrane: Two Dimensional Wave Equation
 - Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
 - Solution of PDEs by Laplace Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'ALEMBERT Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform

Literature

For reference/complement of the Analysis I/II courses:
Christian Blatter: Ingenieur-Analysis (Download PDF)

Prerequisites / notice
Up-to-date information about this course can be found at:
http://www.math.ethz.ch/education/bachelor/lectures/hs2013/other/analysis3_itet

E-4 credits 9R I. Hajnsek

102-0675-AAL Earth Observation
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation.

E-4 credits 9R K. Schindler

103-0849-AAL Multivariate Statistics and Machine Learning
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction to statistical modelling and machine learning.

Objective
The goal is to familiarise students with the principles and tools of machine learning, and to enable them to apply them for practical data analysis.

Content
- multivariate probability distributions; comparison of distributions; regression; classification; model selection and cross-validation; clustering and density estimation; mixture models; neural networks

Literature
- Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer 2009
- Duda, Hart, Stork: Pattern CClassification, Wiley 2012

Geomatics Master - Key for Type
O Compulsory
W+ Eligible for credits and recommended
W Eligible for credits

E- Recommended, not eligible for credits
Z Courses outside the curriculum
Dr Suitable for doctorate

Key for Hours
V lecture
G lecture with exercise
U exercise
S seminar
K colloquium

P practical/laboratory course
A independent project
D diploma thesis
R revision course / private study

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
History and Philosophy of Knowledge Master

entar Tickets: Lectures and Exercises

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>862-0050-00L</td>
<td>Theorie und Methodologie MAGPW Only for MA History and Philosophy of Knowledge.</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>F. Forster, L. Schurrer</td>
</tr>
</tbody>
</table>

Abstract

The interdisciplinary seminar is aimed exclusively at students of the master program "History and Philosophy of Knowledge". It is designed to give students an insight into the subjects represented in the degree program and their specific requirements, procedures, questions and working techniques.

Objective

The course offers an introduction into theories of globalization and presents key concepts of the analysis of processes of globalization.

Prerequisites / notice

Dates: Thursday, 10-12

851-0101-88L

National Socialist Persecution, International Politics on Refugees and Science 1933-1945

Does not take place this semester.

Number of participants limited to 45

Abstract

The course discusses the development of National Socialist persecution policy, the reactions of democratic states to the persecution of the Jews and the role of science in the Nazi regime.

Objective

The students are able to distinguish the stages of persecution and know various models to explain how the Holocaust came about. They can situate Swiss refugee policy in an international context. In their engagement with science under National Socialism, they develop an awareness of the socio-political responsibility of science.

Content

The "Nazis" and the "Holocaust" are omnipresent in politics and entertainment industry - often combined with a lack of historical knowledge. The students learn about the logic of radicalization from exclusion to expulsion to extermination. The reaction of selected states to the persecution of Jews will enable them to recognize the challenge the Nazi regime posed to Western democracies and to place Swiss refugee policy in an international context.

The fact that "the Germans," whose achievements in art and science made them one of the world's leading nations, murdered millions of people on an industrial scale, caused widespread horror. This is based on the assumption that education and culture stand in contrast to the "barbarism" of the "Nazis". Therefore, the course pays special attention to the role of science and the academically educated people.

Prerequisites / notice

The course combines lecture and tutorial. Active participation in class through short presentations and working papers is required. This requires 1-2 hours of preparation time per week in addition to class attendance.

851-0157-00L

Mind and Brain

W | 3 | 2V |

M. Hagner

Abstract

In the last 2500 years, the mind-brain relationship has been articulated in various ways. In these lectures, I will explore the scientific and philosophical aspects of this relationship in the context of relevant cultural, historical and technological processes, with a focus on the modern neurosciences, but I will also discuss works of art and literature.

Objective

By the end of this lecture, students should be familiar with essential positions in the scientific and philosophical treatment of questions relating the mind to the brain. It should also become clear that some of the most relevant problems in current neurosciences have a long history.

Content

According to a myth, the ancient Greek philosopher Democrit dissected animals, because he was in search of the seat of the soul. Current neuroscientists use neuroimaging techniques like functional magnetic-resonance-tomography in order to localize cognitive and emotional qualities in the brain. Between these two dates lies a history of 2500 years, in which the relationship between the mind and the brain has been defined in various ways. Starting with ancient and medieval theories, the lecture will have its focus on modern theories from the nineteenth century onward. I will discuss essential issues in the history of the neurosciences such as localization theories, the neuron doctrine, reflex theory, theories of emotions, neuropsychemics and the importance of visualizing the brain and its parts, but I will also include works of art and literature.

851-0337-00L

African Intellectual and Artistic Presence: From “Nègritude” to the “Ateliers de la pensée”

W | 3 | 2V |

F. Sarr

Abstract

The objective of this seminar is to provide a critical overview of contemporary African thought as it is expressed in literature, philosophical discourse, social sciences, and the humanities.

Objective

We will explore the questions posed by contemporary thinkers from the African continent and its diasporas; and see to what extent these shed light on the political, cultural and civilizational issues of Africa and the contemporary world.

Content

The objective of this seminar is to provide a critical overview of contemporary African thought as it is expressed in literature, philosophical discourse, social sciences, and the humanities; this from the Nègritude movement (1930s) to the Dakar Thought Workshops ("Ateliers de la pensée", 2016). We will explore the questions posed by contemporary thinkers from the African continent and its diasporas; and see to what extent these shed light on the political, cultural, and civilizational issues of Africa and the contemporary world.

851-0499-00L

Globalization – Theories, Concepts, Aspects

W | 3 | 2V |

S. M. Scheuzger

Abstract

The course offers an introduction into theories of globalization and presents key concepts of the analysis of processes of globalization. Among the many aspects of globalization – which is dealt with in its historical dimensions – the course focuses on the interactions between these processes on the one hand and technical and scientific developments on the other.

Objective

A) The students know central theories of globalization. B) They are familiar with different concepts of analysis of processes of globalization and are able to assess them. C) They are able to reflect, on this basis, on the interconnectedness between technical and scientific developments and processes of global entanglements.

Content

The course shows to what extent "literature" from the 19th to the 21st century and the - often empirical - sciences of the social are mutually
This course will review several case studies from the ancient, medieval and modern history of mathematics. The case studies will be
Once upon a time there was natural law, the foundation of sexual relations between two people of different genders, in order to procreate.
The reading list includes literary texts and discursive texts, amongst others, from Gustav Landauer, Erich Mühsam, Else Lasker-Schüler,
Once upon a time there was natural law, the foundation of sexual relations between two people of different genders, in order to procreate.
3 credits
This course is focused on the investigation of scientific thought between 1000 and 1700, that is to say the period that saw the flourishing of
Eros: Athens, Rome, Vienna, Paris
A Sampler of Histories and Philosophies of
Mathematics
Particularly suitable for students D-CHAB, D-INFK, D-
ITET, D-MATH, D-PHYS
This course will review several case studies from the ancient, medieval and modern history of mathematics. The case studies will be
analyzed from various philosophical perspectives, while situating them in their historical and cultural contexts.
The course aims are:
1. To introduce students to the historiaicity of mathematics
2. To make sense of mathematical practices that appear unreasonable from a contemporary point of view
3. To develop critical reflection concerning the nature of mathematical objects
4. To introduce various theoretical approaches to the philosophy and history of mathematics
5. To open the student’s horizons to the plurality of mathematical cultures and practices
The course analyses the evolution of the relation between science and philosophy during the Middle Age and the Early Modern Period.
The course presents some crucial moments of this distant past, in which knowledge, practices and representations have shaped disparate
experiences of desire, pleasure and the body. Challenges for a fluid present, ideas for the near future.
The lecture is part of the "Science in Perspective" course programme: students will learn about the precursors of today’s calls for reform and
alternative concepts which propagated the "back-to-nature" lifestyle around the 1900s.
This movement was clearly politically diverse, and attracted all manner of advocates, for example, those with socialist anarchism, jingoist or
anti-Semitic beliefs. What made them kindred spirits was their rather negative experience of modernisation: their fantasies about the era
merely confirmed that existing interpretations of the human existence (Dasein) were obsolete. Amongst the fantasies was, as described by
Gert Mattenklott, the idea of a dramatic shift in current thinking and the creation of a new world, the emergence of a new mankind that
embodied the characteristics of youth, and a new community. Strong dichotomies like light and darkness, hot and cold, the fears of
dehumanisation and a propensity for vegetarianism were also typical of life reforms.
The lecture is part of the "Science in Perspective" course programme: students will learn about the precursors of today’s calls for reform and
alternative concepts which propagated the "back-to-nature" lifestyle around the 1900s. Some of the key concepts used then are
unknown today or have been disavowed due to exploitation by the totalitarian regimes of the 20th century. Nevertheless, some of the
original topics and motives have once again become contemporary topics of discussion due to the debate about the future of society, the
whole of mankind and the planet. Historization of present-day concepts is the condition on which plans for a possible future can be
compared with previous attempts and experiences, and to identify alternatives and potential impulses, and provide objective evidence for
debate.
The reading list includes literary texts and discursive texts, amongst others, from Gustav Landauer, Erich Mühsam, Else Lasker-Schüler,
Paul Scheerbart, Heinrich and Julius Hart, Rudolf Steiner, Sebastian Kneipp, Max Bircher-Benner, Theodor Hertzka, Franz Oppenheimer,
Ebbeiner, Howard Theodor Goecke, Hermann Muthesius, Karl Schmidt-Hellerau, Bruno Taut, Gustav Wynekne, Wassily Kandinsky,
Ludwig Klages, Emile Jaques-Dalcroze, Walter Benjamin, Martin Buber. Furthermore, we will discuss creative contributions from E. M.
Lillien and Fidus (pseudonym Hugo Höppener).
4. To introduce various theoretical approaches to the philosophy and history of mathematics
5. To open the student’s horizons to the plurality of mathematical cultures and practices
The course presents some crucial moments of this distant past, in which knowledge, practices and representations have shaped disparate
experiences of desire, pleasure and the body. Challenges for a fluid present, ideas for the near future.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 917 of 2152
At the beginning of the 19th century, the social sciences established themselves and oriented themselves towards the natural sciences and their knowledge models and research methods in order to produce empirically proven knowledge of the social. Terms such as 'social physics' (Auguste Comte) or 'mass psychology' bear witness to this. Conspicuously, in the course of this "scientization of the social" (Lutz Raphael), reference is often made to literature, which is recognized as an essential instrument of social science practice. E.g., in the debate on the so-called social question at the beginning of the 19th century, literature is employed to make the discourse on poverty more scientific by making individual fates which are unrepresentable by statistics the object of theory formation. Thus Karl Marx refers to Eugène Sue's 'The Secrets of Paris' in his interpretation of the social.

The relevance of literature for the production of knowledge of the social has recently been demonstrated by the sociologist Luc Boltanski in his monograph "Mysteries & Conspiracies. Detective Stories, Spy Novels and the Making of Modern Societies" (2012) which showed how the way in which crime and spy novels problematize reality has shaped the historical development of the humanities and social sciences. The course is based on the assumption that this combination of literature and the social sciences has always made statements about the premises of the differentiation of literature and science, of the humanities and the natural sciences and their different practices and research goals (keyword: "Science in Perspective"). The integration of literature in the production of knowledge of the social is relevant to the question of the conditions of possibility of a scientifically secured knowledge of the social for several reasons: It permits, firstly, the question of the extent to which the humanities have shaped the supposedly scientific-mathematically oriented social sciences in questions of methodology, epistemic interest and theory formation of knowledge of the social. This question has remained recognizable until presently, in projects such as SHAPE-ID, which is domiciled at the ETH and other European Universities and is dedicated to the integration of the arts as well as the historical and social sciences in trans- and interdisciplinary research, with the purpose tackling societal challenges. It has, secondly, become aesthetically productive and has led to the genesis of new poetic means that, on the one hand, reflect the specifics of social science knowledge production by literary means, but, on the other, claim to produce evaluable data on the social.

Examples of this are primarily crime and spy novels, but also travelogues and urban novels or genres such as the social science survey, which share with the natural sciences methods of sampling, observation, documentation and experimentation.

Objective

Overview of social science in its connection to literature from the 1830s to the present day

Overview of popular literary genres that are relevant for social science

Reflecting and historicising the question of the epistemic status of literature and the aestheticization of knowledge.

Reflecting and historicising the question of the relevance of literature for the humanities and natural sciences.

Content

Reflexion of knowledge production and methods

At the beginning of the 19th century, the social sciences established themselves and oriented themselves towards the natural sciences and mathematics, their knowledge models and research methods in order to produce empirically proven knowledge of the social. Terms such as 'social physics' (Auguste Comte) or 'mass psychology' bear witness to this. Conspicuously, in the course of this "scientization of the social" (Lutz Raphael), reference is often made to literature, which is recognized as an essential instrument of social science practice. E.g., in the debate on the so-called social question at the beginning of the 19th century, literature is employed to make the discourse on poverty more scientific by making individual fates which are unrepresentable by statistics the object of theory formation. Thus Karl Marx refers to Eugène Sue's 'The Secrets of Paris' in his interpretation of the social.

The relevance of literature for the production of knowledge of the social has recently been demonstrated by the sociologist Luc Boltanski in his monograph "Mysteries & Conspiracies. Detective Stories, Spy Novels and the Making of Modern Societies" (2012) which showed how the way in which crime and spy novels problematize reality has shaped the historical development of the humanities and social sciences. The course is based on the assumption that this combination of literature and the social sciences has always made statements about the premises of the differentiation of literature and science, of the humanities and the natural sciences and their different practices and research goals (keyword: "Science in Perspective"). The integration of literature in the production of knowledge of the social is relevant to the question of the conditions of possibility of a scientifically secured knowledge of the social for several reasons: It permits, firstly, the question of the extent to which the humanities have shaped the supposedly scientific-mathematically oriented social sciences in questions of methodology, epistemic interest and theory formation of knowledge of the social. This question has remained recognizable until presently, in projects such as SHAPE-ID, which is domiciled at the ETH and other European Universities and is dedicated to the integration of the arts as well as the historical and social sciences in trans- and interdisciplinary research, with the purpose tackling societal challenges. It has, secondly, become aesthetically productive and has led to the genesis of new poetic means that, on the one hand, reflect the specifics of social science knowledge production by literary means, but, on the other, claim to produce evaluable data on the social.

Examples of this are primarily crime and spy novels, but also travelogues and urban novels or genres such as the social science survey, which share with the natural sciences methods of sampling, observation, documentation and experimentation.
A range of fundamental processes have transformed European societies in the course of the 19th and the 20th centuries. This lecture series asks whether one single model of modernization prevailed on the "Old Continent" or whether we need to differentiate regionally. A special focus lies on the Swiss experience.

At the end of this lecture course, students can: (a) highlight the most important changes in the "long nineteenth century" in Europe (b) explain their long-term effects; and (c) relate these changes to global developments today.

The thematic foci include: Industrialization on the British Isles, urban growth in Switzerland, the difficult road to democracy in Germany, and French individualism.

Power Point Slides and references will be made available in digital form during the course of the semester. Mandatory and further reading will be listed on the course plan that is made available as from the first session. This lecture series does not build upon specific previous knowledge by the students.

Seminars

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0019-00L</td>
<td>Readings in Environmental Thinking</td>
<td>W</td>
<td>3</td>
<td>2S</td>
<td>J. Ghazoul</td>
</tr>
<tr>
<td>851-0430-00L</td>
<td>Günther Anders: The Antiquity of Man</td>
<td>W</td>
<td>3</td>
<td>2S</td>
<td>M. Hagner</td>
</tr>
</tbody>
</table>
851-0011-00L The Body in Global History W 3 credits 2S E. Valdameri

Abstract
While being the universal constant which is common to every human being in history, the body is also culturally and historically specific. In this seminar we will examine how ideas of the body have changed throughout history and how these ideas of the body can be useful to understand political, social, and cultural phenomena in particular historical settings.

Objective
Students learn the history of the body from the mid-eighteenth century onwards through examples taken from the multidisciplinary scholarship on the body with a special, albeit not exclusive, focus on colonial and postcolonial contexts. More specifically, students are sensitized to the historical and cultural variabilities of the human body that challenge scientific understandings of it as an unchanging biological entity. Adopting a humanities perspective on topics like anatomy and surgery, the treatment of the insane, sexuality, physical culture, eugenics, and body productivity, the course looks at shifting attitudes to body health and fitness and the ways these have been shaped by considerations of gender, race, and class as well as by socioeconomic circumstances of modernity. It considers how bodies have historically concerned governments who have classified different (sections of) populations as ‘fit’ or ‘unfit’ to be members of a certain community.

The ‘long durée’ approach of the course allows to consider the continuities and changes in terms of scientific epistemologies and practices regarding the body. In doing so, debated contemporary issues such as assisted reproductive technologies and wearable systems of surveillance of the worker fatigue in the workplace are discussed.

The course is structured thematically, adopts a multidisciplinary approach, and uses academic texts as well as concrete examples. It intends to a) enable STEM students to develop new perspectives on their core subjects by bringing them in dialogue with the themes dealt with and by raising ethical questions; b) familiarise students in general with major topics in the field of the recent scholarship on the body and make them mindful of the multiple ways in which understanding the body and its relationship with culture and power can help think critically of the present we live in.

851-0175-00L Images of the Human W 3 credits 2G J. L. Gastaldi

Abstract
This seminar will explore the multiple transformations of the conception of the “human” in the face of the current scientific, social and technological challenges, focusing on those related to recent digital technologies and practices. The lectures will be delivered by researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences.

Objective
By the end of the course, students will be able to describe and compare different conceptions of the human at work in multiple fields of the humanities and the social sciences. They will be able to evaluate both the differences and the convergences between those conceptions, and critically assess their relation to current trends in science, technology and society, particularly in the context of new digital practices.

Content
The remarkable development of AI in the past decade has brought about a renewed urge to rethink our image of the “human”. In this way, computational science and technology join other scientific disciplines having experienced challenges in the face of current challenges, such as climate change or the global pandemic, which question the place of the human in its environment. Such circumstances reveal that a science of the human is today more necessary than ever. For this reason, the Turing Centre’s lecture series of this year will be dedicated to exploring the multiple images of the human at work across the humanities and their transformation as a consequence of the current global challenges.

In line with the Turing Centre’s activities, the focus will be on challenges related to recent digital technologies and practices. Various researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences, will present what they consider crucial concepts, methods, challenges, and limits in our investigations about the human and its relation to machines, animals and nature.

851-0422-00L A Modern Utopia: Science and Visions of the Future W 3 credits 2S A. Fryxell

Abstract
This course explores how science and technoscience produced utopian or dystopian visions of the future in historical context, assessing how they developed in the physical, natural, and economic sciences since c.1880. It has shaped possible “futures” in Western thought.

Objective
This course equips students with the skills to assess how scientific ideas diffused broader ideas of present and future societies in the West since industrialization. Students will be able to compare and contrast distinct developments in the relationship between science and society, identify key trends in thinking about the future, and explain how science informed ethical and social questions.

Content
This course offers an overview of the history of science and technoscience since 1880 by exploring the intersection of thinking about science and society in the modern utopian tradition, starting with Darwinian evolution, capitalism, and new transport and communication technologies. Different historical cases across the 20th century where scientific and technological change played a central role in defining visions of the future will be studied in detail. We will explore case studies like the impact of new technologies on visions of future war, the atom bomb, overpopulation and ecological catastrophe, transhumanism, AI, and the significance of new digital technologies for the posthuman future. Course materials will include histories of science and technology in addition to popular science texts and science fiction.

851-0421-00L Sapiens: A Reading Course W 3 credits 2S N. Guettler

Abstract
Yuval Noah Harari’s “Sapiens” is the most successful historical book of recent years. The seminar examines the text from a history of science perspective: What kind of sources does it rely on? What type of history is being written here? And in what tradition does “Sapiens” represent a popular non-fiction book?

Objective
In the course of the seminar, the students develop the competence to deal with the original text and the research literature on the history of anthropology, science and technology in a critical and historically thoughtful way. In doing so, they practice navigating independently through historical literature by means of smaller research tasks.

Content
The aim of the seminar is to introduce students to the history of science in anthropology, prehistory and popular science literature on the history of mankind by reading “Sapiens”. In addition to studying and critically discussing the original text, the students explore significant scientific and historical contexts of the book in small groups and present them in the seminar. In this way, they develop an understanding of the underlying narratives and popular science genres that inform “Sapiens”.

851-0527-00L Introduction to the History of Technology: Concepts, and Current Debates W 3 credits 2S R. Wichum, R. Delucchi

Abstract
Technology and society cannot be separated. No society functions without technology. The seminar offers a problem-oriented introduction to basic questions of the history of technology, introduces approaches to the history of technology and discusses selected, ongoing debates.

Objective
The course seeks to provide a critical introduction to the issues, methods, and selected areas of research in the history of technology.

Content
History of technology investigates technological developments that arise in specific historical contexts. These developments are perceived by social groups or entire societies as a means of social change and ultimately find use or are forgotten. The questions that history of technology poses arise from both the technological and social change that are a product of contemporary orientation and thinking; current historiographical methods provide the tools for answering these questions.

851-0168-00L Aristotle’s Lecture on Physics W 3 credits 2S M. Hampe

Abstract
Aristotle’s lecture on physics is a theory of movement. But his concept of movement or change (kinesis) is much more general than the modern one, that applies only to changes of place by bodies. This as far reaching consequences. Aristotle’s physics can therefore be interpreted as a general theory of natural processes.

Objective
Students should develop a clear understanding of a complex pre-modern theory of nature.

Content
Aristotle’s lecture on physics is a theory of movement. But his concept of movement or change (kinesis) is much more general than the modern one, that applies only to changes of place by bodies. This as far reaching consequences. Aristotle’s physics can therefore be interpreted as a general theory of natural processes.

851-0162-00L Philosophy of Physics W 3 credits 3S M. Hampe, R. Wallny

Number of participants limited to 50.
Students will discuss primary and secondary sources about the relationship between technology and the environment since the nineteenth
century. They will learn to analyze argumentative strategies, divergent perspectives, and consequences and to write precisely and
trenchantly about technology and the environment in society.

851-0087-00L Knowledge and Practice in Philosophy of War

Does not take place this semester.

Abstract

In the seminar we read classical texts from the field of ‘philosophy of war’. Due to today’s technological advancements and ecological problems, we will also discuss contemporary conceptions of war such as lethal autonomous weapons and climate change. Important questions that arise are: Is the concept of war only applicable to human society? Is there a difference between politics and nature?

Objective

Students learn about the different types of arguments and conceptions in philosophical texts and their historical context. They should learn to understand the descriptive and critical value of texts in regard to the topic of war.

Literature

see moodle

Prerequisites / notice

The course follows the concept of an "inverted classroom". A prerequisite is that the relevant texts have been read prior to the lecture. The assistants will give support.

851-0053-00L Technology and the Environment – on Course for Collision?

Abstract

Technology has been both the cause and the solution of many environmental problems. Motor vehicle emissions contribute to climate change. Apps are supposed to help us minimizing our CO2 footprint. This course examines which politics, social relations, economic interests, environmental changes, and forms of engineering have conditioned which types and consequences of technology in modern history.

Objective

Students will discuss primary and secondary sources about the relationship between technology and the environment since the nineteenth century. They will learn to analyze argumentative strategies, divergent perspectives, and consequences and to write precisely and trenchantly about technology and the environment in society.

851-0081-00L Artificial Intelligence. Interdisciplinary Perspectives

Abstract

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results This eLearning-seminar will discuss epistemological, but also ethical and political aspects of these recent developments in interdisciplinary perspective.

Objective

Students will learn to reflect on one of the most attention-grabbing technologies of recent years in terms of its epistemological basis and social impact.

Content

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results and is already applied in many contexts. Since this approach breaks with assumptions of the older symbolic approaches of AI research, a new philosophical discussion is needed. Therefore, the interdisciplinary seminar will start from the classical philosophical debate, which was shaped by thinkers like Herbert Dreyfus and John Searle and focused on the concept of the rule following, in order to confront it with the newer state of research, its data driven approach and the concept of learning. We will discuss the consequences and challenges of these new approaches in AI for their theoretical and philosophical reflection. In a second step, the seminar will discuss not only epistemological, but also ethical and political aspects of the recent developments in AI in interdisciplinary perspectives.

Prerequisites / notice

The seminar will be conducted as an eLearning event in cooperation with LMU Munich.

851-0300-86L Max Frisch: Experiments of Storytelling

Abstract

This seminar provides an insight into the poetic and narrative procedures of Max Frisch's prose writing. Frisch's writing can be essentially understood as experimenting with a new mode of narration which takes on epistemological functions and treats themes of existential philosophy.

Objective

1) Overview of the prose writings by Max Frisch; 2) insight in the poetic and narrative procedures of Max Frisch's prose writing; 3) understanding of the novels of Max Frisch as epistemological and philosophical projects.

Content

"Narrative: but how?", as asked Max Frisch in his diary. In his prose the answer to this question is definitely troublesome since it transcends the classic form and function of narrative. His novels - from Stiller (1954), Homo faber (1957), Mein Name sei Gantenbein (1964) to his late prose Montauk (1975) and Der Mensch erscheint im Holozän (1979) - but also his journals (including 1950) can be essentially understood as experiments of a new mode of narration, which implies a multiple perspective. Not only is the narrative performed according to a formal technique, but, at the same time, it takes on epistemological and existential philosophical functions. The purpose is epistemological since this type of narrative strives to generate knowledge; it is existential philosophical as soon as characters such as Stiller and Ganntenbein prove to be myth-maniac inventors of their self. Out of necessity, or playfully, they perform (other) identities. "Ich probiere Geschichten an wie Kleider", thus Ganntenbein and again Montauk. Narrative, play, disguise, and (self)deception become anthropological practices; even as "Gier nach Geschichten" (craving for stories) they become an elementary effort of human life.

Literature

Litteratur zur Anschaffung:
Suhrkamp Quarto 0
Broschur, 1782 Seiten
ISBN: 978-3-518-42005-8

851-0301-11L The Unconditionality of Knowledge: Faust in European Literature

Abstract

His unconditional desire for knowledge made "Faust" the symbolic figure of the modern period. Since the Renaissance, a rich Faust-literature, ranging from Marlowe, Goethe, and up to Thomas Mann, has portrayed the highly conflictual emancipation of knowledge from theology as well as the self-assertion of a modern knowledge of nature and the human being.
Objective
Learning objectives: Faust is one of the most fascinating figures in European literature and cultural history. A pact with the devil, magic, sexual desire, power and knowledge, these are the great taboos of the medieval world, which, in 1500, the graduated theologian set out to dismantle. Through this demonstrative gesture of hubris, he became the much-disputed hero of the modern period. Since the "Historia von Johann Fausten" (1587), the wide range of Faust-literature also depicts the highly conflictual emancipation from theological knowledge in favor of an unconditional knowledge of nature and the human being that hides itself behind disciplines such as medicine, astrology and magic. Faust was thereby not only transformed into the epitome of the fortuneteller, he also became the cipher for the risky undertaking of modern knowledge as such, to which he then spectacularly fell victim in an experiment. Consequently, the course's treatment of this subject matter in the literature since the early modern period will center on the question of knowledge as it is negotiated through the Faust-figure. Initially, we shall take a look at examples from the early modern period (apart from the Faust-book from 1587, among others the drama version by Christopher Marlowe, 1589). Then we shall move on to new editions around 1800, which highlight the modernity of this norm-transcending and boundary-breaking knowledge paradigm (among others Goethe’s Faust). Finally, we shall discuss FaustFigures of the 20th century, such as Friedrich Murnau's Faust movie (1926), Thomas Mann's novel, "Doktor Faustus", written in exile in 1947, or Klaus Mann's "Mephisto" (1936).

851-0107-00L
Science and the Public: A Problem of Mediation that the Media Have to Solve?

Abstract
Scientific knowledge is often provisional; it is subject to correction. That is why it cannot always satisfy the need for certainty and clarity that arises in the public as soon as political controversies are linked to questions of (scientific) knowledge. This is shown by the Corona pandemic, but not only by it.

Objective
Gaining insights into the relationship between the sciences, the public and the media, into their historical development and current problems.

Content
The feuilleton of the «Frankfurter Allgemeine Zeitung» of 27 June 2000 has gone down in the annals of recent media history. The last sequences of the fully mapped human genetic code were printed on six large-format pages: the letters A, G, C and T in various combinations and sequences - a «readable» but incomprehensible jumble of letters. What at the time was astounding journalistic coup and not met with enthusiasm as well as head shaking can (also) be read as an allegory of the tense relationship between science and the public. What can, what should, what do «laymen» want to know and understand from scientific findings? Scientific knowledge is often provisional: it is subject to correction. That is why it cannot always satisfy the need for certainty and clarity that arises in the public as soon as political controversies are linked to questions of (scientific) knowledge. This is shown by the Corona pandemic, but not only by it. How can science journalism, how can scientists deal with this problem? Do the natural sciences, medicine and technology differ from the humanities and social sciences in terms of «comprehensibility» and «public awareness»? These questions will be explored on some excursions into recent and also older media, scientific and cultural history.

851-0537-00L
Architectures of Knowledge: Infrastructures of the University

Abstract
The seminar explores interrelations between the architecture of the university and forms of knowledge production. The emphasis is on the end of the 20th century, when digital infrastructures increasingly merged with the spatial constellation of the lecture hall, library and laboratory. We will discuss the discursive spaces that condition the reading, thinking and perception of knowledge.

Objective
Analyzing the spatial-technical ensembles of the university and its significance for the production and circulation of knowledge. We will study the overlapping spatial and digital infrastructures that shaped ideas of research and teaching at the end of the 20th century.

Content
The seminar deals with the spatial-technical organization and communication forms of the university. Of particular interest is how, in the context of digitization, digital infrastructures overlap and intertwine with built space and determine the self-understanding of the sciences. At its core the course asks you to identify how teaching and research methods correlate with the social, material and spatial structures of the university.
This essay is the outcome of an individual teaching and learning process during several terms and draws upon representative books and articles in history of technology. It has to consider the state of the art in the field. This paper is based on the active participation in the actual seminar. It concentrates on one aspect of the seminar's general topic in the history of technology and must develop a sound approach to a well-defined corpus of historic sources.

Objective
Developing a case-specific approach, coping with relevant literature and an enhancing one's competence in the critical evaluation of historic sources are the learning targets of this course.

Term paper that allows students to explore a topic of their choice in greater depth, applying the fundamental knowledge they have acquired so far.

Abstract
This paper is based on the active participation in the actual seminar. It concentrates on one aspect of the seminar's general topic in the history of technology and must develop a sound approach to a well-defined corpus of historic sources.

Objective
Developing a case-specific approach, coping with relevant literature and an enhancing one's competence in the critical evaluation of historic sources are the learning targets of this course.

Abstract
This paper is based on the active participation in the actual seminar. It concentrates on one aspect of the seminar's general topic in the history of technology and must develop a sound approach to a well-defined corpus of historic sources.

Objective
Developing a case-specific approach, coping with relevant literature and an enhancing one's competence in the critical evaluation of historic sources are the learning targets of this course.

Abstract
This paper is based on the active participation in the actual seminar. It concentrates on one aspect of the seminar's general topic in the history of technology and must develop a sound approach to a well-defined corpus of historic sources.

Objective
Developing a case-specific approach, coping with relevant literature and an enhancing one's competence in the critical evaluation of historic sources are the learning targets of this course.

Abstract
This paper is based on the active participation in the actual seminar. It concentrates on one aspect of the seminar's general topic in the history of technology and must develop a sound approach to a well-defined corpus of historic sources.

Objective
Developing a case-specific approach, coping with relevant literature and an enhancing one's competence in the critical evaluation of historic sources are the learning targets of this course.

Major Courses

Essays

In each subject of the master reading lists are handout. The books on these lists are the subject of the tutorials one has to attend with the teachers that are named in the Leitfaden. In three subjects essays are to be written about works on these lists.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>862-0021-00L</td>
<td>Essay on Readings in History of Technology (HS)</td>
<td>W</td>
<td>10</td>
<td>21A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>862-0023-00L</td>
<td>Essay on Readings in Science Research (HS)</td>
<td>W</td>
<td>10</td>
<td>21A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>862-0025-00L</td>
<td>Essay on Readings in Theoretical Philosophy (HS)</td>
<td>W</td>
<td>10</td>
<td>21A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>862-0027-00L</td>
<td>Essay on Readings in Practical Philosophy (HS)</td>
<td>W</td>
<td>10</td>
<td>21A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>862-0029-00L</td>
<td>Essay on Readings in Literature and Culture (HS)</td>
<td>W</td>
<td>10</td>
<td>21A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>862-0031-00L</td>
<td>Essay on Readings in History of the Modern World (HS)</td>
<td>W</td>
<td>10</td>
<td>21A</td>
<td>Lecturers</td>
</tr>
<tr>
<td>862-0035-00L</td>
<td>Essay on Readings in History and Philosophy of Mathematical Sciences (HS)</td>
<td>W</td>
<td>10</td>
<td>21A</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Autumn Semester 2021
Objective

One-to-one supervisions form the basis for an essay covering the paradigmatic texts studied over several semesters. This essay should also take recent research into account. The instructor will work one-to-one with the student to hone the skills and fundamental topics that are relevant for the Master's thesis.

Seminars

In the seminars topics from the introductory courses are taught in more detail. Topics for essays are to be arranged with the teachers of the courses.

Research Colloquium

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>862-0004-13L</td>
<td>Research Colloquium Philosophy for Master Students and PhD (HS 2021)</td>
<td>W</td>
<td>2</td>
<td>1K</td>
<td>R. Wagner, M. Hampe, L. Wingert</td>
</tr>
<tr>
<td></td>
<td>For MAGPW and PhD students of D-GESS only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Ph.D. students, post docs, members of staff, and senior colleagues from other philosophy departments will report on their work in progress. Furthermore, promising new philosophical articles and parts of new philosophical books will be studied.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Ideas and arguments dealing with systematic problems especially in epistemology, ethics, political philosophy, and the philosophy of mind will be scrutinized and elaborated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For PhD and postdoctoral students. Master students are welcome.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Information about dates and program http://www.gmw.ethz.ch/studium.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>862-0088-09L</td>
<td>Research Colloquium Science Studies (HS 2021)</td>
<td>W</td>
<td>2</td>
<td>1K</td>
<td>M. Hagner</td>
</tr>
<tr>
<td>Abstract</td>
<td>This colloquium is devoted to the introduction into the theory and practice of scientific work. The schedule can be found on the institute's website: http://www.wiss.ethz.ch/en/teaching/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This colloquium is devoted to the introduction into the theory and practice of scientific work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Lectures may be held either in English or German. Students receive 2 credit points for submitting a brief, written commentary on one of the presented topics (approx. 5 pages).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>862-0089-09L</td>
<td>Advanced Colloquium in Literary Studies (HS 2021)</td>
<td>W</td>
<td>2</td>
<td>1K</td>
<td>A. Kilcher</td>
</tr>
<tr>
<td>Abstract</td>
<td>The colloquium addresses advanced and graduate students. First, it offers participants the opportunity to present their own research projects (work in progress); and, second, it provides a most fruitful space to discuss methodological, theoretical and systematic complex issues.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The colloquium addresses advanced and graduate students. First, it offers participants the opportunity to present their own research projects (work in progress); and, second, it provides a most fruitful space to discuss methodological, theoretical and systematic complex issues.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0551-18L</td>
<td>Colloquium for Master and PhD Students History of Technology (HS 2021)</td>
<td>W</td>
<td>2</td>
<td>1K</td>
<td>D. Gugerli</td>
</tr>
<tr>
<td>Abstract</td>
<td>Colloquium for master and doctoral students preparing a thesis in the history of technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Goals: to identify, discuss, and resolve methodological problems that emerge while elaborating a master or doctoral thesis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Anmeldung bei Rachele Delucchi (rachele.delucchi@history.gess.ethz.ch). Siehe fürs Programm auch: www.tg.ethz.ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master's Thesis

The work on the master-thesis is supervised by one of the teachers that are allowed to offer tutorials for it, named in the Leitfaden.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>862-0500-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30</td>
<td>64D</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>A student is only permitted to commence the Master thesis if</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. the Bachelor degree programme has been completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. any additional requirements for admission to the degree programme have been fulfilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. all credits have been acquired in the categories basic courses and major courses and at least 6 credits have been acquired in the category research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The Master's thesis gives a thorough historical, philological or philosophical analysis of a topic related to the experimental or formal sciences or to technology. It incorporates the relevant research literature on this topic as well as first attempts at original research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The master thesis gives a thorough historical, philological or philosophical analysis of a topic related to the experimental or formal sciences or to technology. It incorporates the relevant research literature on this topic as well as first attempts at original research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
History and Philosophy of Knowledge Master - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS: European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Z

Concepts and Theories
Prior to the lectures, the respective slides are provided as well as primary sources and literature, as preparatory readings (via Moodle).

title: Strategic Studies I
Type: Z
ECTS: 3 credits
Hours: 2V
Lecturers: M. Mantovani

Abstract
The lecture series treats high-impact strategic theory from antiquity to the present. The participants know how the understanding of strategy has evolved over time. They understand the interplay of strategy’s basic components: ends, ways, means. They know the most important classics of strategy and war theory, especially against their specific historical background. Based on the analysis of historical and contemporary examples, they are aware of the mismatch between declaration and implementation of any given strategy. They are capable of analyzing original texts and modern scholarly works in the field of strategic studies.

Objective
The two-term lecture series treats classic texts of strategic studies from antiquity to the present. Term 1 covers the theories up until roughly 1900, term 2 treats the theories ever since. Theories are considered classic if they were prominent in their respective times and if they enjoyed a strong reception thereafter, be it in literature, in academic debates or as guidelines for action (doctrine). Each out of some 50 theories is discussed in three steps: historical context, core elements and reception.

Content
Prior to the lectures, the respective slides are provided as well as primary sources and literature, as preparatory readings (via Moodle). The program is also available online (www.milak.ch).

Literature
- Peter Paret, Makers of Modern Strategy. From Machiavelli to the Nuclear Age, Princeton 1986.

Prerequisites / notice
The lecture is held in German.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 926 of 2152
Lecture slides are given to the participants before the first lecture. In addition, the above mentioned book will be handed over to the participants.

Societal change; organizations as societal phenomena; aims, structures, environments of organizations; specifics of the military as an organization; impacts of technological and societal changes on the armed forces in modern societies.

Beside of the most important terms of sociology, demographic changes and the related value and structure change will be analysed. The second part focuses on organizational sociology. Thirdly, the course examines to which extent armed forces can be considered as organizations like any other and to which extent they constitute a special case from an organizational and normative point of view.

The semester program of the course is divided into 14 modules of 90 minutes each, which combine lecture (teaching of analytical competencies) and exercise (application by means of concrete case studies).

- Recognize and explain current changes (social change) in modern society (individualisation, pluralisation); describe demographic changes in Switzerland; explain the structures of societies; define issues and fields of research in modern military sociology and explain the foundations of organisational sociology; explain the military in terms of organisational sociology and identify specific traits of the military as an organisation.

The contents correspond to sections 1 to 2.2.5 of the above book. The following will be discussed:

1. fundamental military economic problems including historical introduction to the topic
2. the institutional foundations of a military organisation
3. the modern military as a planned economy system
4. actors and stakeholders in the system

The contents correspond to sections 1 to 2.2.5 of the above book. The following will be discussed:

1. fundamental military economic problems including historical introduction to the topic
2. the institutional foundations of a military organisation
3. the modern military as a planned economy system
4. actors and stakeholders in the system

The lectures "Leadership I" (WS) and "Leadership II" (SS) have been designed as a two-semester lecture series, but may also be followed independently of one another or in reverse order. "Leadership I" covers the following fields: leadership basics, leadership theories and styles, the concept of leadership responsibility and the role of communication in practical leadership. The aim of this lecture is to give students an introductory overview of relevant topics regarding leadership research and practice, thus enabling them to gain a deeper understanding of the leadership phenomenon. Students should understand different concepts of leadership in the complex interaction between individuals, groups, organisation, context and situation. They should be informed about the evolution of the understanding of mankind in relation to working processes and its impact on organizations and the understanding of leadership theory in the past 100 years. They should grasp the concept of leadership responsibility (leadership ethics) and be able to derive consequences for leadership in practical situations. They should recognize the fundamental importance of communication in leadership situations and receive input which enables them to communicate adequately in specific situations.
Further Courses (no SiP-courses)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0370-00L</td>
<td>Didactic Basics for Student Teaching Assistants</td>
<td>Z</td>
<td>1</td>
<td>1S</td>
<td>S. Pedrocchi, B. Volk</td>
</tr>
</tbody>
</table>

Abstract
The course “Didactic Basics for Student Teaching Assistants” enhances Student Teaching Assistants (Student TAs) to develop knowledge, capability and confidence to effectively plan and teach courses and exercises. Participants get trained to think critically about students’ learning and create learning situations in which students are actively engaged.

Objective
In this course, Student Teaching Assistants will...
- reflect on their approach to teaching as well as their attitude towards teaching.
- understand the basics of teaching and learning in the context of their subject.
- consciously design the introduction of their course as well as the introduction of single teaching units.
- apply classroom assessment techniques as formative assessments to measure the current status of their students.
- develop a didactic concept according to the learning objectives.
- conduct interactive sequences as learning activities.
- give and get feedback from peers and self-reflect on their teaching practice.
- feel confident to use methods for active learning scenarios in their classes.

Content
The online course provides a range of relevant topics for developing teaching competences of Student Teaching Assistants:
- Overview about how learning works. Based on these fundamentals of learning participants reflect on their role as Student TAs to feel comfortable in their new role as a teacher.
- Plan an own lesson by introducing a class and locate it in the larger topic (methods: portal and informative introduction).
- Develop learning activities in order to activate students (active learning methods).
- Giving and also getting feedback. The participants integrate this topic also in their lesson plan.

While working through the online course, Student TAs have the chance to reflect, exchange ideas with peers and plan their own teaching accordingly so that they feel confident in their role.

Prerequisites / notice
Self-paced online course: https://moodle-app2.let.ethz.ch/course/view.php?id=15127

<table>
<thead>
<tr>
<th>Number</th>
<th>Coaching Students</th>
<th>Z</th>
<th>1</th>
<th>1S</th>
<th>B. Volk, R. P. Haas, S. Pedrocchi</th>
</tr>
</thead>
</table>

Abstract
The course “Coaching Students” enhances Student Teaching Assistants (Student TAs) in their role as student coaches to develop basic knowledge about coaching methodology and the mindset of a coach.

Objective
In this course, Student Teaching Assistants will...
- understand the basics of coaching and the role as student coaches.
- develop the mindset of a coach and reflect on their attitude towards guiding student learning processes (individuals and teams).
- acquire coaching skills and build knowledge and know-how about coaching methods.
- analyse learning scenarios and team situations by developing and verifying hypotheses.
- design the coaching session and feel confident to use coaching methods.
- give and get feedback from peers and self-reflect on their coaching practice.

Content
The course starts with a kick-off meeting in the first lessons to provide an overview of the role as student coaches and the following online phase. The online phase with 6 live sessions will provide a range of relevant topics for developing coaching competencies:
- Overview about coaching: Based on this, participants reflect on their role as student coaches in order to develop the mindset of a coach,
- Introduction into coaching methodology, incl. the differences and similarities of coaching individuals vs. teams.
- Coaching skills training: active listening, asking questions and giving/getting feedback.

While working through the online course, Student TAs have the chance to reflect, exchange ideas with peers and plan their own coaching sessions accordingly so that they feel confident in their role as student coaches.

Prerequisites / notice
This course (also the synchronous activities) takes place ONLINE!

Kick-off on 4.10.2021 (16:15-18h)
followed by five double lessons with in-class activities (skills training):
11.10.2021 (16:15-18h)
18.10.2021 (16:15-18h)
25.10.2021 (16:15-18h)
1.11.2021 (16:15-18h)
8.11.2021 (16:15-18h)
Two optional double lessons:
15.11.2021 (16:15-18h)
22.11.2021 (16:15-18h)
All double lessons start at 4.15pm and finish by 6pm.

<table>
<thead>
<tr>
<th>Number</th>
<th>Ready, Set, Go!</th>
<th>Z</th>
<th>0</th>
<th></th>
<th>K. Brown, B. Volk</th>
</tr>
</thead>
</table>

Abstract
This course is open to Student Teaching Assistants (students with teaching duties in exercises, practicals etc.) from all departments and chairs.

Objective
- Reflecting on your teaching role
- Finding out about your students
- Introducing your course and class
- Planning student engagement
Learning to Teach
This programme is designed for ETH Doctoral Teaching Assistants with current teaching responsibilities.

Abstract
This course imparts a variety of teaching skills which will help Doctoral Teaching Assistants with their teaching tasks.

Objective
In this course Doctoral Teaching Assistants will...

- discuss learning science and teaching techniques with peers.
- design the introduction of their course/lecture/exercise class.
- develop learning activities according to learning objectives.
- practice classroom assessment techniques in order to measure student learning.
- engage in peer feedback in order to improve own teaching.

Content
We will meet for the kick-off meeting online on the 1st of October 2021 from 1-3 pm. You will get detailed information together with the invitation email in the first week of the semester. The self-paced online phase, where you work through 6 modules in the Moodle course page will end by the 17th of November 2021. We will meet on the 23/24 or 26 of November 21 for the Consolidation workshop. You will find more information on the course page in Moodle.

Prerequisites / notice
This programme is designed for ETH Doctoral Teaching Assistants with current teaching responsibilities (exercises, excursions, supervision of practicals, lectures, etc.) or those who will assume teaching tasks in the semester following the programme. No previous teacher training is required.

▶ Specialized Continuing Education
Special internal ETH courses offered by LET and the Teaching Specialists.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>999999-99L</td>
<td>EduApp Course</td>
<td>E-</td>
<td>0 credits</td>
<td>1V+1U</td>
<td>B. Volk</td>
</tr>
</tbody>
</table>

Humanities, Social and Political Sciences (General Courses) - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
The course discusses the development of National Socialist persecution policy, the reactions of democratic states to the persecution of the Jews and the role of science in the Nazi regime.

The fact that "the Germans," whose achievements in art and science made them one of the world's leading nations, murdered millions of people on an industrial scale, caused widespread horror. This is based on the assumption that education and culture stand in contrast to "barbarism" of the "Nazis". Therefore, the course pays special attention to the role of science and the academically educated people.

The topics that are discussed on the basis of a scientifically critical approach are concepts and understandings of history, the role of literature, sciences and religion, concepts of the West and relationship with the West, the role of education, understanding of culture and cultural refinement, current concepts and discourses relevant at the sociocultural level.

The students are able to distinguish the phases of persecution and know various models to explain how the Holocaust came about. They are aware of the socio-political responsibility of science.

This lecture series does not build upon specific previous knowledge by the students.

This lecture course, students can: (a) highlight the most important changes in the "long nineteenth century" in Europe (b) explain their long-term effects; and (c) relate these changes to global developments today.

The thematic foci include: Industrialization on the British Isles, urban growth in Switzerland, the difficult road to democracy in Germany, and French individualism.

The "Nazis" and the "Holocaust" are omnipresent in politics and entertainment industry - often combined with a lack of historical knowledge. Does not take place this semester.

The course combines lecture and tutorial. Active participation in class through short presentations and working papers is required. This requires 1-2 hours of preparation time per week in addition to class attendance.

6 ECTS need to be acquired during the BA and 2 ECTS during the MA

Suitable for all students.

Students who already took a course within their main study program are NOT allowed to take the course again.

W

Power Point Slides and references will be made available in digital form during the course of the semester.

Mandatory and further reading will be listed on the course plan that is made available as from the first session.

The students learn about the logic of radicalization from exclusion to expulsion to extermination. The reaction of selected states to the persecution of Jews will enable them to recognise the challenge the Nazi regime posed to Western democracies and to place Swiss refugee policy in an international context.

This lecture course, students can: (a) highlight the most important changes in the "long nineteenth century" in Europe (b) explain their long-term effects; and (c) relate these changes to global developments today.

The thematic foci include: Industrialization on the British Isles, urban growth in Switzerland, the difficult road to democracy in Germany, and French individualism.

The "Nazis" and the "Holocaust" are omnipresent in politics and entertainment industry - often combined with a lack of historical knowledge. Does not take place this semester.

The course combines lecture and tutorial. Active participation in class through short presentations and working papers is required. This requires 1-2 hours of preparation time per week in addition to class attendance.

6 ECTS need to be acquired during the BA and 2 ECTS during the MA

Suitable for all students.

Students who already took a course within their main study program are NOT allowed to take the course again.

W

Power Point Slides and references will be made available in digital form during the course of the semester.

Mandatory and further reading will be listed on the course plan that is made available as from the first session.

The students learn about the logic of radicalization from exclusion to expulsion to extermination. The reaction of selected states to the persecution of Jews will enable them to recognise the challenge the Nazi regime posed to Western democracies and to place Swiss refugee policy in an international context.

This lecture course, students can: (a) highlight the most important changes in the "long nineteenth century" in Europe (b) explain their long-term effects; and (c) relate these changes to global developments today.

The thematic foci include: Industrialization on the British Isles, urban growth in Switzerland, the difficult road to democracy in Germany, and French individualism.

The "Nazis" and the "Holocaust" are omnipresent in politics and entertainment industry - often combined with a lack of historical knowledge. Does not take place this semester.

The course combines lecture and tutorial. Active participation in class through short presentations and working papers is required. This requires 1-2 hours of preparation time per week in addition to class attendance.

6 ECTS need to be acquired during the BA and 2 ECTS during the MA

Suitable for all students.

Students who already took a course within their main study program are NOT allowed to take the course again.

W

Power Point Slides and references will be made available in digital form during the course of the semester.

Mandatory and further reading will be listed on the course plan that is made available as from the first session.

The students learn about the logic of radicalization from exclusion to expulsion to extermination. The reaction of selected states to the persecution of Jews will enable them to recognise the challenge the Nazi regime posed to Western democracies and to place Swiss refugee policy in an international context.

This lecture course, students can: (a) highlight the most important changes in the "long nineteenth century" in Europe (b) explain their long-term effects; and (c) relate these changes to global developments today.

The thematic foci include: Industrialization on the British Isles, urban growth in Switzerland, the difficult road to democracy in Germany, and French individualism.

The "Nazis" and the "Holocaust" are omnipresent in politics and entertainment industry - often combined with a lack of historical knowledge. Does not take place this semester.

The course combines lecture and tutorial. Active participation in class through short presentations and working papers is required. This requires 1-2 hours of preparation time per week in addition to class attendance.

6 ECTS need to be acquired during the BA and 2 ECTS during the MA

Suitable for all students.

Students who already took a course within their main study program are NOT allowed to take the course again.

W

Power Point Slides and references will be made available in digital form during the course of the semester.

Mandatory and further reading will be listed on the course plan that is made available as from the first session.

The students learn about the logic of radicalization from exclusion to expulsion to extermination. The reaction of selected states to the persecution of Jews will enable them to recognise the challenge the Nazi regime posed to Western democracies and to place Swiss refugee policy in an international context.

This lecture course, students can: (a) highlight the most important changes in the "long nineteenth century" in Europe (b) explain their long-term effects; and (c) relate these changes to global developments today.

The thematic foci include: Industrialization on the British Isles, urban growth in Switzerland, the difficult road to democracy in Germany, and French individualism.

The "Nazis" and the "Holocaust" are omnipresent in politics and entertainment industry - often combined with a lack of historical knowledge. Does not take place this semester.

The course combines lecture and tutorial. Active participation in class through short presentations and working papers is required. This requires 1-2 hours of preparation time per week in addition to class attendance.

6 ECTS need to be acquired during the BA and 2 ECTS during the MA

Suitable for all students.

Students who already took a course within their main study program are NOT allowed to take the course again.

W

Power Point Slides and references will be made available in digital form during the course of the semester.

Mandatory and further reading will be listed on the course plan that is made available as from the first session.

The students learn about the logic of radicalization from exclusion to expulsion to extermination. The reaction of selected states to the persecution of Jews will enable them to recognise the challenge the Nazi regime posed to Western democracies and to place Swiss refugee policy in an international context.

This lecture course, students can: (a) highlight the most important changes in the "long nineteenth century" in Europe (b) explain their long-term effects; and (c) relate these changes to global developments today.

The thematic foci include: Industrialization on the British Isles, urban growth in Switzerland, the difficult road to democracy in Germany, and French individualism.

The "Nazis" and the "Holocaust" are omnipresent in politics and entertainment industry - often combined with a lack of historical knowledge. Does not take place this semester.

The course combines lecture and tutorial. Active participation in class through short presentations and working papers is required. This requires 1-2 hours of preparation time per week in addition to class attendance.
Literature

There are three books that will function as main reference literature throughout the course:

These books will be reserved for consultation in the ETH Baubibliothek, and will not be available for individual loans.

Prerequisites / Notice

A list of further recommended literature will be found within each chapter of the reader (Skript).

Students are required to familiarize themselves with the conventions of architectural drawing (reading and analyzing plans at various scales).

851-0011-00L

The Body in Global History

| W | 3 credits | 2S | E. Valdameri |

Abstract

While being the universal constant which is common to every human being in history, the body is also culturally and historically specific. In this seminar we will examine how ideas of the body have changed throughout history and how these ideas of the body can be useful to understand political, social, and cultural phenomena in particular historical settings.

Objective

Students learn the history of the body from mid-eighteenth century onwards through examples taken from the multidisciplinary scholarship on the body with a special, albeit not exclusive, focus on colonial and postcolonial contexts. More specifically, students are sensitized to the historical and cultural variabilities of the human body that challenge scientific understandings of it as an unchanging biological entity.

Content

Adopting a humanities perspective on topics like anatomy and surgery, the treatment of the insane, sexuality, physical culture, eugenics, and body productivity, the course looks at shifting attitudes to body health and fitness and the ways these have been shaped by considerations of gender, race, and class as well as by socioeconomic circumstances of modernity. It considers how bodies have historically concerned governments who have classified different (sections of) populations as 'fit' or ' unfit' to be members of a certain community.

The course is structured thematically, adopts a multidisciplinary approach, and uses academic texts as well as concrete examples. It intends to a) enable STEM students to develop new perspectives on their core subjects by bringing them in dialogue with the themes dealt with in the seminar by raising ethical questions; b) familiarise students in general with major fields in the recent scholarship on the body and make them mindful of the multiple ways in which understanding the body and its relationship with culture and power can help think critically of the present we live in.

851-0175-00L

Images of the Human

| W | 3 credits | 2G | J. L. Gastaldi |

Abstract

This seminar will explore the multiple transformations of the conception of the “human” in the face of the current scientific, social, and technological challenges, focusing on those related to recent digital technologies and practices. The lectures will be delivered by researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences.

Objective

By the end of the course, students will be able to describe and compare different conceptions of the human at work in multiple fields of the humanities and the social sciences. They will be able to evaluate both the differences and the convergences between those conceptions, and critically assess their relation to current trends in science, technology and society, particularly in the context of new digital practices.

Content

The remarkable development of AI in the past decade has brought about a renewed urge to rethink our image of the “human”. In this way, computer science and technology join other scientific disciplines having experienced the same need in the face of current challenges, such as climate change or the global pandemic, which question the place of the human in its environment. Such circumstances reveal that a science of the human is today more necessary than ever. For this reason, the Turing Centre's lecture series of this year will be dedicated to exploring the multiple images of the human at work across the human sciences and their transformation as a consequence of the current global challenges. In line with the Turing Centre's activities, the focus will be on challenges related to recent digital technologies and practices. Various researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences, will present what they consider crucial concepts, methods, challenges, and limits in our investigations about the human and its relation to machines, animals and nature.

851-0422-00L

A Modern Utopia: Science and Visions of the Future

| W | 3 credits | 2S | A. Fryxell |

Abstract

This course explores how science and technoscience produced utopian or dystopian visions of the future in historical context, assessing how new developments in the physical, natural, and economic sciences since c.1880 have shaped possible "futures" in Western thought.

Objective

This course equips students with the skills to assess how scientific ideas diffused broader ideas of present and future societies in the West since industrialization. Students will be able to compare and contrast distinct developments in the relationship between science and society, identify key trends in thinking about the future, and explain how science informed ethical and social questions.

Content

This course offers an overview of the history of science and technoscience since 1880 by exploring the intersection of thinking about science and society in the modern utopian tradition, starting with Darwinian evolution, capitalism, and new transport and communication technologies. Different historical cases across the 20th century where scientific and technological change played a central role in defining visions of the future will be studied in detail. We will explore case studies like the impact of new technologies on visions of future war, the atom bomb, overpopulation and ecological catastrophe, transhumanism, AI, and the significance of new digital technologies for the posthuman future. Course materials will include histories of science and technology in addition to popular science texts and science fiction.

851-0421-00L

Sapiens: A Reading Course

| W | 3 credits | 2S | N. Guettler |

Abstract

Yuval Noah Harari's "Sapiens" is the most successful historical book of recent years. The seminar examines the text from a history of science perspective: What kind of sources does it rely on? What type of history is being written here? And in what tradition does "Sapiens" represent a popular non-fiction book?

Objective

In the course of the seminar, the students develop the competence to deal with the original text and the research literature on the history of anthropology, science and technology in a critical and historically thoughtful way. In doing so, they practise navigating independently through historical literature by means of smaller research tasks.

Content

The aim of the seminar is to introduce students to the history of science in anthropology, prehistory and popular science literature on the history of mankind by reading "Sapiens". In addition to studying and critically discussing the original text, the students explore significant scientific and historical contexts of the book in small groups and present them in the seminar. In this way, they develop an understanding of the underlying narratives and popular science genres that inform "Sapiens".

851-0527-00L

Introduction to the History of Technology: Concepts, and Current Debates

| W | 3 credits | 2S | R. Wichum, R. Delucchi |

Abstract

Technology and society cannot be separated: No society functions without technology. The seminar offers a problem-oriented introduction to basic questions of the history of technology, introduces approaches to the history of technology and discusses selected, ongoing debates.

Objective

The course seeks to provide a critical introduction to the issues, methods, and selected areas of research in the history of technology.

Content

How do we make sense of technological developments that arise in specific historical contexts? These developments are perceived by social groups or entire societies as a means of social change and ultimately find use or are forgotten. The questions that history of technology poses derive from the technological and social change that are a product of contemporary orientation and history; current historiographical methods provide the tools for answering these questions.
Aristotle’s Lecture on Physics

W 3 credits 2S M. Hampé

Abstract

Aristotle’s lecture on physics is a theory of movement. But his concept of movement or change (kinesis) is much more general than the modern one, that applies only to changes of place by bodies. This as far reaching consequences, Aristotle’s physics can therefore be interpreted as a general theory of natural processes.

Objective

1. Examine the concept of failed state within the International relations literature.

Content

"Globalisation" is a term which is used to describe the changes that have taken place in the world in the past few decades. These changes have been so extensive that they have affected almost all aspects of human life. The concept of failed state is used to describe a country that is unable to maintain its social, political, and economic stability. This concept is often used to describe countries that are marred with civil wars, poverty and epidemic corruption.

Is Yemen a failed state? The Yemen Republic is the result of the unification in 1990 of two former states: The Yemen Arab Republic (NorthYemen) and the People’s Democratic Republic of Yemen (South Yemen). The country's history and its former units have been marred with civil wars, poverty and epidemic corruption. What made them kindred spirits was their rather negative experience of modernisation: their fantasies about the era

The reading list includes literary texts and discursive texts, amongst others, from Gustav Landauer, Erich Mühsam, Else Lasker-Schüler, Ludwig Klages, Emile Jaques-Dalcroze, Walter Benjamin, Martin Buber. Furthermore, we will discuss creative contributions from E. M. Lilien and Fidus (pseudonym Hugo Höppener).

851-001-72L

The Modern City and Cultural Criticism. The "Knowledge of Life" in Reform Movements 1880-1930

W 3 credits 2V S. S. Leuenberger

Abstract

Rapid industrialisation, urbanisation and the unique sociopolitical conditions of 19th century Germany led, from 1880 onwards, to radical changes in political and cultural life and the need for new policies and forms of political life. This lecture focuses on the theory and aesthetic practice of wide range of reform movements, the so-called "Lives of Reformation" (life reform movement).

Objective

1. To explore the concept of movement or change (kinesis) as presented by Aristotle and alternative concepts which propagated the "back-to-nature" lifestyle around the 1900s.

Content

The rapid industrialisation, mechanisation and urbanisation of 19th century Europe gave rise to a new world of challenges and problems in cities. From 1880 onwards, the unique sociopolitical conditions in Germany resulted in anti-urban and anti-cultural criticism by parts of the bourgeoisie and academic youth, culminating in the idea that the issue of change in progress and social movements, was the key to understanding the so-called "Lebensreform" movement.

This movement was clearly politically diverse, and attracted all manner of advocates, for example, those with social anarchist, jingoistic or anti-Semitic beliefs. What made them kindred spirits was their rather negative experience of modernisation: their fantasies about the era

The reading list includes literary texts and discursive texts, amongst others, from Gustav Landauer, Erich Mühsam, Else Lasker-Schüler, Ludwig Klages, Emile Jaques-Dalcroze, Walter Benjamin, Martin Buber. Furthermore, we will discuss creative contributions from E. M. Lilien and Fidus (pseudonym Hugo Höppener).

851-053-10L

Yemen: A Failed State?

W 2 credits 2V E. Manea

Abstract

Is Yemen a failed state? The Yemen Republic is the result of the unification in 1990 of two former states: The Yemen Arab Republic (NorthYemen) and the People's Democratic Republic of Yemen (South Yemen). The country's history and its former units have been marred with civil wars, poverty and epidemic corruption.

Objective

1. To examine the concept of movement or change (kinesis) as presented by Aristotle and alternative concepts which propagated the "back-to-nature" lifestyle around the 1900s. Some of the key concepts used are unknown today or have been disavowed due to exploitation by the totalitarian regimes of the 20th century. Nevertheless, some of the original topics and objectives have once again become contemporary topics of discussion due to the debate about the future of society, the future of mankind and the planet. Historization of present-day concepts is the condition on which plans for a possible future can be

Content

This seminar looks at the concept of failed states and how useful it can be in describing the situation in a country like Yemen. It will also take a closer look at Yemen's political history and its political and social structures. Students are expected to write a paper and make a presentation.
This course will review several case studies from the ancient, medieval and modern history of mathematics. The case studies will be analyzed from various philosophical perspectives, while situating them in their historical and cultural contexts.

The course aims are:
1. To introduce students to the historicity of mathematics
2. To make sense of mathematical practices that appear unreasonable from a contemporary point of view
3. To develop historical and critical reflection concerning the nature of mathematical objects
4. To introduce various theoretical approaches to the philosophy and history of mathematics
5. To open the students’ horizons to the plurality of mathematical cultures and practices

851-0107-00L
Science and the Public: A Problem of Mediation that the Media Have to Solve?
U. J. Wenzel

Abstract
Scientific knowledge is often provisional; it is subject to correction. That is why it cannot always satisfy the need for certainty and clarity that arises in the public as soon as political controversies are linked to questions of (scientific) knowledge. This is shown by the Corona pandemic, but not only by it.

Objective
Gaining insights into the relationship between the sciences, the public and the media, into their historical development and current problems.

Content
The feuilleton of the «Frankfurter Allgemeine Zeitung» of 27 June 2000 has gone down in the annals of recent media history. The last sequences of the fully mapped human genetic code were printed on six large-format pages: the letters A, G, C and T in various combinations and sequences - a readable but incomprehensible jumble of letters. What at the time was astounding journalistic coup and met with enthusiasm as well as head shaking can (also) be read as an allegory of the tense relationship between science and the public. What can, what should, what do »laymen« want to know and understand from scientific findings? Scientific knowledge is often provisional; it is subject to correction. That is why it cannot always satisfy the need for certainty and clarity that arises in the public as soon as political controversies are linked to questions of (scientific) knowledge. This is shown by the Corona pandemic, but not only by it. How can science journalism, how can scientists deal with this problem? Do the natural sciences, medicine and technology differ from the humanities and social sciences in terms of «comprehensibility» and public awareness?

These questions will be explored on some excursions into recent and also older media, scientific and cultural history.

851-0537-00L
Architectures of Knowledge: Infrastructures of the University
N. Bredella

Abstract
The seminar explores interrelations between the architecture of the university and forms of knowledge production. The emphasis is on the end of the 20th century, when digital infrastructures increasingly merged with the spatial constellation of the lecture hall, laboratory and library. We will discuss the discursive spaces that condition the reading, thinking and perception of knowledge.

Objective
Using positions from the history of technology, science and architecture, the seminar will discuss the spatial-technical ensembles of the university and their significance to the production and circulation of knowledge. Case studies provide insights into the overlapping spatial and digital infrastructures that shaped ideas of research and teaching at the end of the 20th century.

Content
The seminar deals with the spatial-technical organization and communication forms of the university. Of particular interest is how, in the context of digitization, digital infrastructures overlap and intertwine with built space and determine the self-understanding of the sciences. At its core the course asks you to identify how teaching and research methods correlate with the social, material and spatial structures of the university.

851-0101-56L
From Cotton to Cocaine: Commodities That Made History (c.1700-1900)
H. Fischer-Tiné

Abstract
Each session focuses on a particular commodity and explores how its production, trade and consumption was entangled with important political, social and cultural developments. Taken together, the case studies (ranging from agricultural crops, via chemically produced drugs to mechanical marvels such as the gramophone) provide a picture of major global transformations in the past 300 years.

Objective
On one level, the course aims to familiarise students with a currently much debated approach to the writing of global history, namely the history of commodities. Each case study is used to deepen the participants' understanding of complex historical development and seemingly simple stories in a global frame. Thus, for instance, the session on sugar explores plantation economies in the Caribbean and the transatlantic slave trade as well as shifting patterns of diet and consumption in Europe. The session on rubber focuses on botanical expeditions in Latin America, the deployment of Chinese coolies on Malaysian Rubber farms and the rise of the automobile mass production in the USA. By linking the familiar to the unfamiliar and 'exotic' the inter-cultural sensitivity of the students will be enhanced.

On a second level, the analysis and understanding of these complex interconnections, it is hoped, will help students to get a more nuanced understanding of the historical process that is currently referred to as 'globalization' and overcome the eurocentric perspective that still structures many scholarly and media writings on this topic.

851-0008-00L
Ban on Alcohol and Science: A Global History of Prohibition 1918-1939
E. Biger-Deveci

Abstract
The seminar deals with an overview on anti-alcohol campaigns since late 19th century. The focus is on prohibition in the interwar period in different regions. The role of scientific experts in the emergence of prohibition will be discussed from a global historical perspective. Formation of international networks and process of knowledge production on the issue of alcohol are subjects of analysis.

Objective
The reconstruction of the development of prohibitionist regimes helps to understand the process of national institution formations, for example health services. Participants analyze interactions between science, international relations and change of social political context in the process of knowledge production and in the definition of daily life norms on drinking habits.

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0337-00L</td>
<td>African Intellectual and Artistic Presence: From “Nègritude” to the “Ateliers de la pensée”</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>F. Sarr</td>
</tr>
<tr>
<td>851-0336-00L</td>
<td>Eros: Athens, Rome, Vienna, Paris</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>G. Sissa</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 933 of 2152
At the beginning of the 19th century, the social sciences established themselves and oriented themselves towards the natural sciences and philosophy.

This seminar provides an insight into the poetic and narrative procedures of Max Frisch's prose writing. Frisch's writing can be essentially understood as experimenting with a new mode of narration which takes on epistemological functions and treats themes of existential philosophy.

Objectives:
1) Overview of the prose writings by Max Frisch;
2) insight in the poetic and narrative procedures of Max Frisch's prose writing;
3) understanding of the possibilities of Max Frisch's prose writing as epistemological and philosophical project.

Content:
"Narrative: but how?", asked Max Frisch in his diary. In his prose the answer to this question is definitely troublesome since it transcends the classical form and function of narrative. His novels - from Stiller (1954), Homo faber (1957), Mein Name sei Gantenbein (1964) to his late prose Montauk (1975) and Der Mensch erscheint im Holozän (1979) - but also his journals (including 1950) can be essentially understood as experiments of a new mode of narration, which implies a multiperspective. Not only is the narrative performed according to a formal technique, but, at the same time, it takes on epistemological and existential philosophical functions. The purpose is epistemological since this type of narrative strives to generate knowledge; it is existential philosophical as soon as characters such as Stiller and Gantenbein prove to be myth-maniac inventors of their self. Out of necessity, or playfully, they perform (other) identities. "Ich probiere Geschichten an wie Kleider," thus Gantenbein and again Montauk. Narrative, play, disguise, and (self)deception become anthropological practices; even as "Gier nach Geschichten" (craving for stories) they become an elementary effort of human life.

Literature:

The Unconditionality of Knowledge: Faust in European Literature

Learning objectives: Faust is one of the most dazzling figures in European literature and cultural history. A pact with the devil, magic, sexual desire, power and knowledge, these are the great taboos of the medieval world, which, in 1500, the educated theologian set out to dismantle. Through this demonstrative gesture of hubris, he became the much-disputed hero of the modern period. Since the "Historia von Johaen Fausten" (1587), the wide range of Faust-literature also depicts the highly conflictual emancipation from theological knowledge in favor of an unconditional knowledge of nature and the human being that hides itself behind disciplines such as medicine, astrology and magic. Faust was thereby not only transformed into the epitome of the fortuneteller, he also became the cipher for the risky undertaking of modern knowledge as such, to which he then spectacularly fell victim in an experiment. Consequently, the course's treatment of this subject matter in the literature since the early modern period will center on the question of knowledge as it is negotiated through the Faust-figure. Initially, we shall take a look at examples from the early modern period (apart from the Faust-book from 1587, among others the drama version by Christopher Marlowe, 1589). Then we shall move on to new editions around 1800, which highlight the modernity of this norm-transcending and boundary-breaking knowledge paradigm (among others Goethe's Faust). Finally, we shall discuss Faust-figures of the 20th century, such as Friedrich Murnau's Faust movie (1926), Thomas Mann's novel, 'Doktor Faustus', written in exile in 1947, or Klaus Mann's "Mephisto" (1936).

Literature and the Knowledge of the Social

The course shows to what extent "literature" from the 19th to the 21st century and the - often empirical - sciences of the social are mutually dependent. It is based on theoretical social science texts as well as literary genres that are used to model knowledge, primarily crime novels and spy novels, but also travelogues and city novels or genres such as the social science survey.

Overview of of social science in its connection to literature from the 1830s to the present day

Overview of popular literary genres that are relevant for social science

Reflecting and historicising the question of the epistemic status of literature and the aestheticization of knowledge. Reflecting and historicising the question of the relevance of literature for the humanities and natural sciences

Knowledge production and methods

At the beginning of the 19th century, the social sciences established themselves and oriented themselves towards the natural sciences and mathematics, their knowledge models, their methods and research methods in order to produce empirically proven knowledge of the social. Terms such as "social physics" (Auguste Comte) or 'mass psychology' bear witness to this. Conspicuously, in the course of this "scientization of the social" (Lutz Raphael), reference is often made to literature, which is recognized as an essential instrument of social science practice. E.g., in the debate on the so-called social question at the beginning of the 19th century, literature is employed to make the discourse on poverty more scientific by making individual fates which are unrepresentable by statistics the object of theory formation. Thus Karl Marx refers to Eugène Sue's 'The Secrets of Paris' in his interpretation of the social.

The relevance of literature for the production of knowledge of the social has recently been demonstrated by the sociologist Luc Boltanski in his monograph "Mysteries & Conspiracies. Detective Stories, Spy Novels and the Making of Modern Societies" (2012) which showed how the way in which crime and spy novels problematize reality has shaped the historical development of the humanities and social sciences.

The course is based on the assumption that this combination of literature and the social sciences has always made statements about the premises of the differentiation of literature and science, of the humanities and the natural sciences and their different practices and research goals (keyword: "Science in Perspective"). The integration of literature in the production of knowledge of the social is relevant to the question of the conditions of possibility of a scientifically secured knowledge of the social for several reasons: It permits, firstly, the question of the extent to which the humanities have shaped the supposedly scientific-mathematically oriented social sciences in questions of methodology, epistemic interest and theory formation of knowledge of the social. This question has remained recognizable until presently, in projects such as SHAPE-ID, which is domiciled at the ETH and other European Universities and is dedicated to the integration of the arts as well as the historical and social sciences in trans- and interdisciplinary research, with the purpose tackling societal challenges. It has, secondly, become aesthetically productive and has led to the genesis of new poetic means that, on the one hand, reflect the specifics of social science knowledge production by literary means, but, on the other, claim to produce evaluable data on the social. Examples of this are primarily crime and spy novels, but also travelogues and urban novels or genres such as the social science survey, which share with the natural sciences methods of sampling, observation, documentation and experimentation.
This course addresses the role of policy and its underlying politics in the transformation of the energy sector. It covers historical, socio-economic and legal aspects of the energy transition. It focuses on the role of policy and policy change in governing the energy transition, considering the role of innovation and transitions. It then focuses on the role of policy and policy change in governing the energy transition, considering the role of innovation and transitions.

Objective
After completing this course, students will be able to provide examples of the role literary texts played in the development of writing technology. On the one hand, we will direct our attention to that most conspicuous writing technology of our world: the coded symbols of digital computers. On the other hand, we will consider a set of fictional works that explore the forms, uses, and implications of such technology in writing. We will also regularly jump back and forth between the two sides of the issue, literally and figuratively re-coding literary writing in the language of information theory to see what is lost—and what is gained—in translation.

The tutelary spirit of our course is the American mathematician Claude Shannon, the author of The Mathematical Theory of Communication and the founder of information theory. But Shannon’s own muse was Edgar Allan Poe, whose 1843 story, ‘The Gold-Bug,’ inspired him to regard language as a probabilistic system susceptible to mathematical analysis. A passionate reader of Poe, Shannon was also fascinated by the vertiginous vocabulary of James Joyce’s novels, whose exceptional information content he contrasted with C.K. Ogden’s proposal for “Basic English,” a simplified, ‘universal’ language consisting of only 850 English words. We will examine all of these sources as well as others so that we may reconnect the key terms of Shannon’s theory (“information,” “code,” “message,” “translation,” etc.) with the literary traditions that—at least in part—inspired him.

Over the course of the semester, we will turn from specific writing technologies to more capacious logics of control: writing technologies ‘writ large.’ After looking at the machine languages and feedback mechanisms that underwrite the mid-century field of cybernetics, we will read excerpts from Samuel Beckett’s experimental novel, Watt, and examine how it imagining the intersection of human cognition with digital logic. Watt, Beckett’s hapless protagonist, obliges us to reexamine the programs we habitually follow and to ask ourselves, ‘watt’ has digital communications technology done to how we live and how we think?

Economics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0626-01L</td>
<td>International Aid and Development</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>K. Harttgen, I. Günther</td>
</tr>
</tbody>
</table>

Prerequisites: Basic knowledge of economics

Abstract
The course gives economic and empirical foundations for a sound understanding of the instruments, prospects and limitations of international development aid.

Objective
Students are able to provide examples of the role literary texts played in the development of writing technology. On the one hand, we will direct our attention to that most conspicuous writing technology of our world: the coded symbols of digital computers. On the other hand, we will consider a set of fictional works that explore the forms, uses, and implications of such technology in writing. We will also regularly jump back and forth between the two sides of the issue, literally and figuratively re-coding literary writing in the language of information theory to see what is lost—and what is gained—in translation.

The tutelary spirit of our course is the American mathematician Claude Shannon, the author of The Mathematical Theory of Communication and the founder of information theory. But Shannon’s own muse was Edgar Allan Poe, whose 1843 story, ‘The Gold-Bug,’ inspired him to regard language as a probabilistic system susceptible to mathematical analysis. A passionate reader of Poe, Shannon was also fascinated by the vertiginous vocabulary of James Joyce’s novels, whose exceptional information content he contrasted with C.K. Ogden’s proposal for “Basic English,” a simplified, ‘universal’ language consisting of only 850 English words. We will examine all of these sources as well as others so that we may reconnect the key terms of Shannon’s theory (“information,” “code,” “message,” “translation,” etc.) with the literary traditions that—at least in part—inspired him.

Over the course of the semester, we will turn from specific writing technologies to more capacious logics of control: writing technologies ‘writ large.’ After looking at the machine languages and feedback mechanisms that underwrite the mid-century field of cybernetics, we will read excerpts from Samuel Beckett’s experimental novel, Watt, and examine how it imagining the intersection of human cognition with digital logic. Watt, Beckett’s hapless protagonist, obliges us to reexamine the programs we habitually follow and to ask ourselves, ‘watt’ has digital communications technology done to how we live and how we think?

Environmental Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0757-00L</td>
<td>Environmental Management</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>R. Züst</td>
</tr>
</tbody>
</table>

Abstract
An environmental management system has the objective to continuously improve the environmental performance of the activities, products and services of a company. The company has to introduce different management procedures. The goal of this lecture is to provide basics and specific procedure to implement the environmental dimension in the planning and decision making processes of an organisation.

Objective
Overview of environmental management and environmental management systems, general methods and principles.
Introduction to environmental management / environmental management systems, energy and material flows; economical and ecological problems in industry; characterisation of an enterprise (incl. management handbook); structure and contents of an environmental management system; overview on the ISO 14001 ff. series; methods for environmental evaluation and assessment; integrated management systems; planning methodology and life-cycle-design; planning example.

Lecture notes: Information about environmental management and environmental management systems will be provided by a CD or mail.

Literature: A list with literatures and links will be provided.

Prerequisites / notice: Delivery of a case study, worked out in groups. Language: Teaching in English on request.

363-1027-00L Introduction to Health Economics and Policy

W 2 credits
1V
C. Waibel

Abstract

Health expenditures constitute about 10% of GDP in OECD countries. Extensive government intervention is a typical feature in health markets. Risk factors to health have been changing with growing importance of lifestyle factors such as smoking, obesity and lack of physical activity. This course gives an introduction to the economic concepts and empirical findings in health economics.

Objective

Introduce students without prior economic background to the main concepts of health economics and policy to enhance students understanding of how health care institutions and markets function.

Please note that we will apply basic economic concepts to health care markets. Hence, master students with an economic background have to expect that a large share of the concepts will overlap with their previous courses. However, they are, of course, welcome to join the course.

Content

The course gives an introduction to the economic concepts and empirical findings in health economics to enhance students understanding of how health care institutions and markets function. Motivated by the fact that health care markets are designed differently across countries, this course looks at the challenges in regulating health care markets. First, two important decisions of individuals will be analyzed: What types and amount of personal health care services does an individual demand? How much will health insurance coverage be purchased? In the second part, the supply side of health care markets will be discussed. What are the financial incentives of physicians, and how do these influence physicians' treatment choices? What does it mean and imply that a physician is an agent for a patient? The choices made by societies about how health care services are financed and about the types of organizations that supply health care will be addressed in the third part. One important choice is whether a country will rely on public financing of personal health care services or encourage private health insurance markets. How could and should a public health insurance system be designed? The advantages and disadvantages of the alternatives will be discussed to provide a framework for analyzing specific types of health care systems.

Literature

Jay Bhattacharya, Timothy Hyde, Peter Tu, "Health Economics", Palgrave Macmillan.

Prerequisites / notice

Although we apply basic economic concepts to health care questions, students should be aware that this course requires some mathematical skills in terms of maximization problems.

Please be prepared that this course might (partially) be run via zoom, depending on the situation.

363-1050-00L Simulation of Negotiations

W 3 credits
3V
M. Ambühl, A. Knobel

Abstract

The Global Studies Institute (University of Geneva) is organizing a simulation seminar on Nagorno-Karabakh in collaboration with MGIMO Moscow (TBC) and the Chair of Negotiation and Conflict Management (ETHZ).

Objective

Students will have the possibility to participate in simulated diplomatic negotiations and to analyse and assess the negotiation logic behind the situation. During the course, they should gain insight into the negotiations between Armenia, Azerbaijan, and the international community, as well as negotiation techniques in general.

Students who wish to register for this course have to apply no later than 18 September. Please send your application to Andreas Knobel: aknobel@ethz.ch, additionally register in mystudies (technical note for the registration: All registered students will initially be placed on a waiting list).

In the lectures, students will be provided with basic information related to Nagorno-Karabakh. The historical, military, economic and political dimensions, including the various treaties and existing agreements and their evolution will be analyzed. Students will as well participate in an introduction on negotiation techniques, particularly on the negotiation engineering approach. On the basis of the comprehensive analysis, negotiation scenarios will be developed and subsequently tested during a two-day simulation exercise. The simulation exercise will be prepared with the help of experienced negotiators and experts.

The simulation exercise is intended for Masters degree and PhD students. The course will be taught in English. The project is headed by Prof. Micheline Calmy-Rey and Prof. Nicolas Levrat, Global Studies Institute, University of Geneva.

Students who wish to register for this course have to apply no later than 18 September 2021. Please send your (brief) application with your background and motivation to Andreas Knobel: aknobel@ethz.ch, additionally register in mystudies (Technical note for the registration: All registered students will initially be placed on a waiting list.)

The homepage for this course with more information is located at: https://necom.ethz.ch/education/simulation-of-negotiations.html.

Students from ETH Zurich and MGIMO will participate in the seminar sessions via video conferencing. They will go to Geneva for the simulation exercise on 2 and 3 December 2021.

There will be two exercise sessions (see separate course 363-1050-01L).

Date | Time | Topic (Location)
GE = University of Geneva;
VC = Video conference (ETH main building: HG D22)

28 September | 10:15-12:00 | Introduction (VC)
5 October | 9:15-12:00 | Introduction to Negotiation Engineering (VC)
12 October | 10:15-12:00 | Scenarii and random drawing of teams (VC)
19 October | 10:15-12:00 | TBA (VC)
26 October | 10:15-12:00 | TBA (VC)
2 November | 10:15-12:00 | TBA (VC)
9 November | No session (Reading week, but see exercises)
16 November | 10:15-12:00 | TBA (VC)
23 November | 10:15-12:00 | Preparation (VC)
2-3 December | 08:00-17:00 | Simulation (GE)
7 December | 10:15-12:00 | Debriefing (VC)

Prerequisites / notice

Evaluation

I. Active participation in class (50%)
II. Texts to be submitted before, during and after the simulation (50%)

1. Attend all seminar sessions either in person or via video conference and actively participate in discussions.
2. Participate in person in the two-day simulation exercise (19-20 November 2021).

3. After the simulation: Prepare a report on the negotiation outcomes to the organization, state or region you represent (3-4 pages) and a press release (max. 1 page). The report and press release are individually evaluated.

363-0387-00L Corporate Sustainability

W 3 credits 2G V. Hoffmann, C. Bening-Bach, N. U. Blum, J. Meuer

Abstract

The lecture explores current challenges of corporate sustainability and prepares students to become champions for sustainable business practices. In the beginning, traditional lectures are complemented by e-modules that allow students to train critical thinking skills. In the 2nd half of the semester, students work in teams on sustainability challenges related to water, energy, mobility, and food.

Objective

Students
- assess the limits and the potential of corporate sustainability for sustainable development
- develop critical thinking skills (argumentation, communication, evaluative judgment) that are useful in the context of corporate sustainability using an innovative writing and peer review method.
- recognize and realize opportunities through team work for corporate sustainability in a business environment
- present strategic recommendations in teams with different output formats (tv-style debate, consultancy pitch, technology model walk-through, campaign video)

Content

In the first part of the semester, Prof. Volker Hoffmann and Dr. Johannes Meuer will share his insights on corporate sustainability engineering with you through a series of lectures. They introduce you to a series of critical thinking exercises and build a foundation for your group work. In the second part of the semester, you participate in one of four tracks in which SusTec researchers will coach your groups through a seven-step program. Our ambition is that you improve your analytic and organizational skills and that you can confidently stand up for corporate sustainability in a professional setting. You will share the final product of your work with fellow students in a final puzzle session at the end of the semester.

http://www.sustec.ethz.ch/teaching/lectures/corporate-sustainability.html

Lecture notes Literature
Presentation slides will be made available on moodle prior to lectures.
Literature recommendations will be distributed during the lecture

Prerequisites / notice

TEACHING FORMAT/ ATTENDANCE: Please note that we aim to offer you the course in-class and online, but at this point we cannot guarantee that a purely online participation is possible. Irrespective of the format (in-class or online), the course includes several mandatory sessions that participants must attend to successfully earn credit points.

363-0503-00L Principles of Microeconomics

W 3 credits 2G M. Filippini

GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L

Einführung in die Mikroökonomie

Abstract

The course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.
The learning objectives of the course are:

1. Students must be able to discuss basic principles, problems and approaches in microeconomics.
2. Students can analyse and explain simple economic principles in a market using supply and demand graphs.
3. Students can contrast different market structures and describe firm and consumer behaviour.
4. Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole.
5. Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics.
6. Students can apply simple mathematical concepts on economic problems.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation? Further, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:

Complementary:

This book can also be used for the course 'Principles of Macroeconomics' (Sturm)

The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15062) contains announcements, course information and lecture slides.

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain C - Social Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain D - Personal Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

363-0565-00L Principles of Macroeconomics

Abstract
This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective
This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.

Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.

Content

This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filippini).

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: not assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

363-0561-00L Financial Market Risks

Abstract
I aim to introduce students to the concepts and tools of modern finance and to make them understand the limits of these tools, and the many problems met by the theory in practice. I will put this course in the context of the on-going financial crises in the US, Europe, Japan and China, which provide fantastic opportunities to make the students question the status quo and develop novel solutions.

Objective
The course explains the key concepts and mechanisms of financial economics, their depth and then stresses how and why the theories and models fail and how this is impacting investment strategies and even a global view of citizenship, given the present developing crises in the US since 2007 and in Europe since 2010.

- Development of the concepts and tools to understand these risks and master them.
- Working knowledge of the main concepts and tools in finance (Portfolio theory, asset pricing, options, real options, bonds, interest rates, inflation, exchange rates)
- Strong emphasis on challenging assumptions and developing a systemic understanding of financial markets and their many dimensional risks
Content

1- The Financial Crises: what is really happening? Historical perspective and what can be expected in the next decade(s). Bubbles and crashes. The illusion of the perpetual money machine.

2- Risks in financial markets
 - What is risk?
 - Measuring risks of financial assets
 - Introduction to three different concepts of probability
 - History of financial markets, diversification, market risks

3- Introduction to financial risks and its management.
 - Relationship between risk and return
 - Portfolio theory: the concept of diversification and optimal allocation
 - How to price assets: the Capital Asset Pricing Model
 - How to price assets: the Arbitrage Pricing Theory, the factor models and beyond

4- Financial markets: role and efficiency
 - What is an efficient market?
 - Financial markets as valuation engines: exogeneity versus endogeneity (reflexivity)
 - Deviations from efficiency, puzzles and anomalies in the financial markets
 - Financial bubbles, crashes, systemic instabilities

5- An introduction to Options and derivatives
 - Calls, Puts and Shares and other derivatives
 - Financial alchemy with options (options are building blocks of any possible cash flow)
 - Determination of option value; concept of risk hedging

6- Valuation and using options
 - A first simple option valuation model
 - The Binomial method for valuing options
 - The Black-Scholes model and formula
 - Practical examples and implementation
 - Realized prices deviate from these theories; volatility smile and real option trading
 - How to imperfectly hedge with real markets?

7- Real options
 - The value of follow-on investment opportunities
 - The timing option
 - The abandonment option
 - Flexible production
 - Conceptual aspects and extensions

8- Government bonds and their valuation
 - Relationship between bonds and interest rates
 - Real and nominal rates of interest
 - Term structure and yields to maturity
 - Explaining the term structure
 - Different models of the term structure

9- Managing international risks
 - The foreign exchange market
 - Relations between exchange rates and interest rates, inflation, and other economic variables
 - Hedging currency risks
 - Currency speculation
 - Exchange risk and international investment decisions

Lecture notes

Lecture slides will be available on the site of the lecture

Literature

Corporate finance
Brealey / Myers / Allen
Eight edition

+ additional paper reading provided during the lectures

Prerequisites / notice

none

351-0555-00L
Open- and User Innovation
W
3 credits
2G
S. Häfliger, S. Spaeth

Abstract
The course introduces the students to the long-standing tradition of actively involving users of technology and other knowledge-intensive products in the development and production process, and through own cases they develop an entrepreneurial understanding of product development under distributed, user-centered, or open innovation strategies.

Objective
The course includes both lectures and exercises alternately. The goal is to understand the opportunity of user innovation for management and develop strategies to harness the value of user-developed ideas and contributions for firms and other organizations.

The students actively participate in discussions during the lectures and contribute presentations of case studies during the exercises. The combination should allow to compare theory with practical cases from various industries.

The course presents and builds upon recent research and challenges the students to devise innovation strategies that take into account the availability of user expertise, free and public knowledge, and the interaction with communities that span beyond one organization.

Performance assessment will be: a written group essay based on the open/user innovation case that participants will research and present during the block seminar (including the slides). Each group will have to hand in a 15-20 page essay, details on the required format and the content will be distributed during the course. Active class participation is required.

Content
This course on user innovation extends courses on knowledge management and innovation as well as marketing. The students are introduced to the long-standing tradition of actively involving users of technology and other knowledge-intensive products in the development and production process, and through own cases they develop an entrepreneurial understanding of product development under distributed, user-centered, or open innovation strategies. Theoretical underpinnings taught in the course include models of innovation, the structuration of technology, and an introduction to entrepreneurship.

Lecture notes
The slides of the lectures are made available and updated continuously through the SMI website:
This course presents the basics of public policy analysis and the specific characteristics of Swiss environmental policy. Policy instruments, actors and processes are addressed from a political science perspective both theoretically as well as by means of current Swiss environmental policy examples.

Content

Beyond acquiring basic knowledge about public policy analysis, this course teaches students how to analytically address current and concrete questions of environmental policy. Through exercises the students learn about political science concepts and frameworks as well as real-life political decision-making processes. The well-grounded examination of complex political conflict situations is an important precondition for the entry into the (environmental policy) workforce or a future research career.

The processes of change, overuse or destruction of the natural environment through humans have historically placed high demands on social and political institutions. In the interplay between the environment, society and economy, the environmental policy field encompasses the sum of public measures that have the goal to eliminate, reduce or avoid environmental degradation. The course systematically presents the basics of environmental policy instruments, actors, programs and processes as well as their change over time. Invited practitioners will provide us with insight regarding the current developments in forest, water and spatial planning policies. A key aspect is the distinction between politics and political science and specifically environmental policy.

Literature

- Relevant literature for the exam includes the slides and the reading assignments. The corresponding papers are either available from the author online or distributed during class.

Prerequisites / notice

The detailed semester program (syllabus) is made available to the students at the beginning of the semester. During the lecture we will work with Moodle and eduApp. We ask that all students register themselves on these platforms before the lecture and to bring a laptop, tablet or smartphone to class, so that you can complete exercises using Moodle and eduApp.

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Analytical Competencies
 - Sensitivity to Diversity
 - Critical Thinking
- Domain B - Method-specific Competencies
 - Decision-making
 - Problem-solving
- Domain D - Personal Competencies
 - Self-direction and Self-management

701-0985-00L Social Intercourse with Current Environmental Risks

This course introduces basic economic concepts and theories. Beginning with microeconomics, the course starts with the topics of supply and demand, markets, and behavioral economics before moving on to the key macroeconomic concepts of national accounts, the labor market, trade, and monetary policy.

Objective

After successful completion of the course you will be able to:

- Describe the basic micro- and macroeconomic problems and theories.
- Introduce economic reasoning appropriately to a given topic.
- Evaluate economic measures.

Content

Households, firms, supply and demand: How are household preferences and consumption patterns formed? How does a household react to price changes? How are goods prices formed? At what prices are companies willing to offer goods? How do we make economic decisions?

Markets: What is "perfect competition" and how does a competitive market work? Are monopolies always a bad thing? How can the state influence the market?

Market failure: What happens when prices give wrong signals?

Labour market: How do supply and demand work in the labour market? What influences unemployment?

National accounts: How big is the Swiss economy?

Foreign trade: Why do countries trade with each other? What are the consequences for the domestic market?

Money and inflation: What exactly is money? How does money creation work and what happens when there is too much (or too little) money on the market?

Students will be asked to apply these concepts to issues in their own field of study and to current issues in society. This goal will be achieved through participation in exercises, class discussions and reading material from current media. By the end of the course, students should be able to apply economic analysis confidently and independently.

Literature

- The reader and additional lecture material and exercises will be posted on Moodle.

Prerequisites / notice

- The reader and additional lecture material and exercises will be posted on Moodle.
- During the lecture we will work with Moodle and eduApp. We ask that all students register themselves on these platforms before the lecture and to bring a laptop, tablet or smartphone to class, so that you can complete exercises using Moodle and eduApp.

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
- Domain B - Method-specific Competencies
 - Analytical Competencies
- Domain D - Personal Competencies
 - Critical Thinking
 - Self-direction and Self-management
Objective
- Getting acquainted to the extended risk concept
- Evaluation of the risks caused by technology within the societal context
- Knowledge about the mode science and society handle current environmental risks (examples gene- and nanotechnology)
- Knowledge about handling risks (e.g. precautionary principle, protection goal, damage definition, ethics)
- Knowledge about possibilities for sustainable innovation

Content
- Risks and technical systems (risk categories, risk perception, risk management)
- Illustration with case studies (nanotechnology)
- Implementation (politics, science, media, etc.)
- Decision making (technology assessment, cost-benefit analysis etc.)
- The role of the media
- prospects for future developments

Lecture notes
Copies of slides and selected documents will be distributed

Prerequisites / notice
The lecture is held biweekly (for 2 hours). The dates are 3.9.; 30.9. (instead of 7.10); 21.10.; 4.11.; 18.11.; 2.12.; 16.12.

363-1109-00L Introduction to Microeconomics

W 3 credits 2G M. Wörter, M. Beck

GEES (Science in Perspective): This course is only for students enrolled in a Bachelor's degree programme.

Students enrolled in a Master's degree programme may attend “Principles of Microeconomics” (LE 363-0503-00L) instead.

Note for D-MAVT students: If you have already successfully completed “Principles of Microeconomics” (LE 363-0503-00L), then you will not be permitted to attend it again.

Abstract
The course introduces basic principles, problems and approaches of microeconomics. It describes economic decisions of households and firms, and their coordination through perfectly competitive markets.

Objective
Students acquire a deeper understanding of basic microeconomic models.

They acquire the ability to apply these models in the interpretation of real world economic contexts.

Content
Market, budget constraint, preferences, utility function, utility maximisation, demand, technology, profit function, cost minimisation, cost functions, perfect competition, information and communication technologies

Lecture notes
Course material in e-learning environment https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php

Literature

Prerequisites / notice
This course "Einführung in die Mikroökonomie" (363-1109-00L) is intended for Bachelor students and LE 363-0503-00 "Principles of Microeconomics" for Master students.

363-1044-00L Applied Negotiation Seminar

W 3 credits 2S A. Knobel

Number of participants limited to 30.

Prerequisites: Successful completion of lectures “363-1039-00L Introduction to Negotiation”.

Abstract
The block-seminar combines lectures introducing negotiation and negotiation engineering with the respective application through in-class negotiation case studies and games.

Objective
In this seminar students can expect to:

- learn more theory of negotiation and apply this learning in simulated negotiations
- have their perceptions of rationality, fairness and trust challenged through little embedded experiments
- learn to recognize and analyze negotiation contexts and interests and generate creative solutions
- learn to negotiate under pressure (with time and mandate restrictions) and experience (and potentially chair) a formal negotiation
- learn to read, analyze and present a scholarly paper
Content

This block seminar is an extension of the course "Introduction to Negotiation" and provides more detailed insight into key aspects of the field of negotiation and negotiation engineering.

In particular,

- a series of brief lectures will outline foundational aspects of negotiation science, such as rationality, fairness, and trust, as well as the possible application of machine learning in negotiation
- three practitioners will describe lessons learnt in their negotiation domains (diplomacy, labor, and business) and allow time for Q&A and discussion
- Professor Ambühl will elucidate further current cases from his professional experience
- students will apply course input in a number of challenging simulations (ranging from simple 30 minute games to full-fledged international ten party negotiations). In each game they will be asked to represent a party and negotiate as skillfully as they possibly can within the constraints of their mandate
- each student will be assigned a scholarly paper (20 to 30 pages) between the two blocks to read. They will give a 20 minute group presentation with one or two of their peers and submit a brief reflection report after the seminar

The course size is deliberately limited (30 maximum) to enable ample opportunity to interact with the lecturers, guests and each other.

363-1050-01L Simulation of Negotiations (Exercises) W 1 credit 1U M. Ambühl, A. Knobel

Abstract

The Global Studies Institute (University of Geneva) is organizing a simulation seminar on the conflict in Nagorno-Karabakh in collaboration with MGIMO Moscow (TBC) and the Chair of Negotiation and Conflict Management (ETHZ).

Objective

The two main aims of the exercises are: 1) to become familiar with the historical, economic, political dimensions of the conflict in Nagorno-Karabakh (first session); 2) to work on the mandates for the simulation under supervision of the lecturers (second session).

Content

For the first session students will be asked to prepare and deliver a 15 minute talk on some aspect of the conflict.

Dates, Time:

First session: 12 October 2021, 13-17 h
Second session: 9 November 2021, 8-12 h

Prerequisites / notice

In order to participate in this module students also need to apply and register for the lecture 363-1050-00 L Simulation of Negotiations.

Philosophy

Number Title Type ECTS Hours Lecturers

851-0180-00L Research Ethics W 2 credits 2G G. Achermann, P. Emch

Number of participants limited to 40

Particularly suitable for students of D-BIOL, D-CHAB, D-HEST

Abstract

Students are able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different normative perspectives and to create their own well-justified reasoning for taking decisions to the kind of ethical problems a scientist is likely to encounter during the different phases of biomedical research.

Objective

Participants of the course Research Ethics will

- Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
- Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles), and their ability to use these skills in assessing other people’s arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;
The pressing environmental challenges of today demand a critical reflection. Ethics is an important tool for doing so. This lecture introduces environmental ethics.

Course Material
- Handouts, case studies, exercises, surveys, and papers will be available during the lectures and on the course homepage.

Learning Outcomes
- **Domain B - Method-specific Competencies**: Ethics.

Assessment
- **701-0703-00L Environmental Ethics**
 - **W 2 credits**
 - **ZV A. Deplazes Zemp**

Content
- **Abstract**: The pressing environmental challenges of today demand a critical reflection. Ethics is an important tool for doing so. This lecture introduces the basics of ethics and provides an in-depth knowledge of environmental ethics and its debates. This theoretical background will be applied and critically reflected using examples of current environmental challenges.
- **Objective**: On completion of this lecture, you have acquired the ability to identify, analyze, critically reflect and resolve ethical challenges in general and specifically regarding the environment. You know basic concepts, positions, and lines of argumentation from the debate in environmental ethics, which you have applied and discussed in smaller exercises.
- **Content**:
 - Introduction to general and applied ethics.
 - Overview and discussion of ethical theories relevant to address environmental challenges.
 - Familiarisation with various basic standpoints within environmental ethics.
 - Cross-section topics, such as sustainability, intergenerational justice, protection of species, etc.
 - Practicing of newly acquired knowledge in smaller exercises.
- **Lecture notes**: Presentation slides of the individual sessions will be distributed, including the most important theories and keywords; extended reading lists.
Lectures
- Andrew Light/Holmes Rolston III, Environmental Ethics. An Anthology, 2003
- John O'Neill et al., Environmental Values, 2008
- Konrad Ot/Jan Diers/Lieske Vogt-Kleschin, Handbuch Umwelthethik, 2016

Prequisites:
- Marcus Düwel et. al (Hrsg.), Handbuch Ethik, 2. Auflage, Stuttgart (Metzler Verlag), 2006
- Johann S. Ach et. al (Hrsg.), Grundkurs Ethik 1. Grundlagen, Paderborn (mentis) 2008

Literature
- Grundtexte der gegenwärtigen tier- und ökothetischen Diskussion 1997
- Environmental Ethics. An Anthology, 2003
- Environmental Values, 2008
- Handbuch Umwelthethik, 2016

Objective
Students shall obtain a basis for their own exploration of world views, with a focus on new technological developments.

Prior knowledge of philosophical concepts and history is not required but are studied in the course.

Abstract
World views guide our thoughts and our actions even though we may not be aware of it. By means of lectures, discussions and contributions of participants, we examine elements of world views regarding the underlying philosophical concepts and their relations to the sciences, philosophy and religion.

Content
- the basic material for this seminar will be the monograph "Die Antiquiertheit des Menschen" (https://www.chbeck.de/antiquiertheit-des-menschen-bd-i-uber-seele-zeitalter-zweiten-industriellen-revolution/product/23611879)
- reading this book and other texts will lead to a comparison between the period after WW II (1950s - 1970s) and the situation in the early 21st century.
- what can philosophical anthropology tell us about the role of human beings in the age of anthropocene?

Note
- the course follows the concept of an "inverted classroom". A prerequisite is that the relevant texts have been read prior to the lecture. The assistants will give support.

Objective
- to introduce students to the philosophical dimension of science;
- to develop a critical understanding of scientific notions;
- to introduce various theoretical approaches to the philosophy and history of mathematics;
- to develop critical reflection concerning the nature of mathematical objects;
- to open the students' horizons to the plurality of mathematical cultures and practices.

Content
- Newton's opus magnum of 1687 is still called a philosophy of nature: "Philosophiae Naturalis Principia Mathematica". The separation of physics from philosophy is new, and institutionally executed only in the 19th century. Since the result of the experiment is not a philosophical method and mathematical symbolism not part of the languages of philosophy anymore. But although the subjects were divided methodically they stayed in contact via their content. This can be seen in the reflections of physicists like C. F. v. Weizsächer, Frank Wilczek or Leonard Susskind, who were all concerned with epistemological questions and topics related to the philosophy of science and philosophy of nature. The seminar is devoted to these reflections and will ask in what relation the philosophy of physicists stands to the physics of their time. We will discuss problems of the unity of physics, of emerging laws and of the beauty or ugliness of the physical universe resp. the theories about it.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 945 of 2152
In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results. This e-learning seminar will discuss epistemological, but also ethical and political aspects of these recent developments in interdisciplinary perspective.

Objective

The seminar will be conducted as an eLearning event in cooperation with LMU Munich.

Prerequisites / notice

The seminar will discuss not only epistemological, but also ethical and political aspects of these recent developments in AI in interdisciplinary perspectives.

851-0097-00L

Ignorance and Error in the Sciences

Objective

Not a few members of the elites argue that important issues in democracy like policies against climate change, free trade agreements, urban planning are too complicated for the people. Experts should have a stronger say in politics. Less democracy = more rationality? The course should give an answer to this question.

851-0198-00L

Philosophy of Psychiatry

Objective

This course offers an overview of some representative topics in philosophy of psychiatry.

Content

This course offers an overview of some representative topics in philosophy of psychiatry.

851-0351-00L

Philosophy of Religion: Faith and Knowledge According to Kant (University of Zurich)

Objective

As a classical topic in philosophy of religion, the relation of faith and knowledge provokes a host of questions. The seminar will discuss these and other questions by critical interpretation of philosophical texts (mainly) from Immanuel Kant’s philosophical oeuvre.

851-0352-00L

Introductory Course in Philosophy of Religion

Objective

The seminar will discuss these and other questions by critical interpretation of philosophical texts (mainly) from Immanuel Kant’s philosophical oeuvre.

851-0081-00L

Artificial Intelligence. Interdisciplinary Perspectives

Content

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results. This eLearning-seminar will discuss epistemological, but also ethical and political aspects of these recent developments in interdisciplinary perspective.

Objective

Students will learn to reflect on one of the most attention-grabbing technologies of recent years in terms of its epistemological basis and social impact.

Content

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results and is already applied in many contexts. Since this approach breaks with assumptions of the older symbolic approaches of AI research, a new philosophical discussion is needed. Therefore, the interdisciplinary seminar will start from the classical philosophical debate, which was shaped by thinkers like Herbert Dreyfus and John Searle and focused on the concept of the rule following, in order to confront it with the newer state of research, its data driven approach and the concept of learning. We will discuss the consequences and challenges of these new approaches in AI for their theoretical and philosophical reflection. In a second step, the seminar will discuss not only epistemological, but also ethical and political aspects of the recent developments in AI in interdisciplinary perspectives.

Prerequisites / notice

The seminar will be conducted as an eLearning event in cooperation with LMU Munich.

851-0096-00L

Science in Society

Abstract

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results and is already applied in many contexts. Since this approach breaks with assumptions of the older symbolic approaches of AI research, a new philosophical discussion is needed. Therefore, the interdisciplinary seminar will start from the classical philosophical debate, which was shaped by thinkers like Herbert Dreyfus and John Searle and focused on the concept of the rule following, in order to confront it with the newer state of research, its data driven approach and the concept of learning. We will discuss the consequences and challenges of these new approaches in AI for their theoretical and philosophical reflection. In a second step, the seminar will discuss not only epistemological, but also ethical and political aspects of the recent developments in AI in interdisciplinary perspectives.

851-0081-00L

Artificial Intelligence. Interdisciplinary Perspectives

Abstract

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results. This eLearning-seminar will discuss epistemological, but also ethical and political aspects of these recent developments in interdisciplinary perspective.

Objective

Students will learn to reflect on one of the most attention-grabbing technologies of recent years in terms of its epistemological basis and social impact.

Content

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results and is already applied in many contexts. Since this approach breaks with assumptions of the older symbolic approaches of AI research, a new philosophical discussion is needed. Therefore, the interdisciplinary seminar will start from the classical philosophical debate, which was shaped by thinkers like Herbert Dreyfus and John Searle and focused on the concept of the rule following, in order to confront it with the newer state of research, its data driven approach and the concept of learning. We will discuss the consequences and challenges of these new approaches in AI for their theoretical and philosophical reflection. In a second step, the seminar will discuss not only epistemological, but also ethical and political aspects of the recent developments in AI in interdisciplinary perspectives.

Prerequisites / notice

The seminar will be conducted as an eLearning event in cooperation with LMU Munich.

851-0096-00L

Science in Society

Abstract

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results and is already applied in many contexts. Since this approach breaks with assumptions of the older symbolic approaches of AI research, a new philosophical discussion is needed. Therefore, the interdisciplinary seminar will start from the classical philosophical debate, which was shaped by thinkers like Herbert Dreyfus and John Searle and focused on the concept of the rule following, in order to confront it with the newer state of research, its data driven approach and the concept of learning. We will discuss the consequences and challenges of these new approaches in AI for their theoretical and philosophical reflection. In a second step, the seminar will discuss not only epistemological, but also ethical and political aspects of the recent developments in AI in interdisciplinary perspectives.

Prerequisites / notice

The seminar will be conducted as an eLearning event in cooperation with LMU Munich.

851-0096-00L

Science in Society

Abstract

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results and is already applied in many contexts. Since this approach breaks with assumptions of the older symbolic approaches of AI research, a new philosophical discussion is needed. Therefore, the interdisciplinary seminar will start from the classical philosophical debate, which was shaped by thinkers like Herbert Dreyfus and John Searle and focused on the concept of the rule following, in order to confront it with the newer state of research, its data driven approach and the concept of learning. We will discuss the consequences and challenges of these new approaches in AI for their theoretical and philosophical reflection. In a second step, the seminar will discuss not only epistemological, but also ethical and political aspects of the recent developments in AI in interdisciplinary perspectives.

Prerequisites / notice

The seminar will be conducted as an eLearning event in cooperation with LMU Munich.

851-0096-00L

Science in Society

Abstract

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results and is already applied in many contexts. Since this approach breaks with assumptions of the older symbolic approaches of AI research, a new philosophical discussion is needed. Therefore, the interdisciplinary seminar will start from the classical philosophical debate, which was shaped by thinkers like Herbert Dreyfus and John Searle and focused on the concept of the rule following, in order to confront it with the newer state of research, its data driven approach and the concept of learning. We will discuss the consequences and challenges of these new approaches in AI for their theoretical and philosophical reflection. In a second step, the seminar will discuss not only epistemological, but also ethical and political aspects of the recent developments in AI in interdisciplinary perspectives.

Prerequisites / notice

The seminar will be conducted as an eLearning event in cooperation with LMU Munich.

851-0096-00L

Science in Society

Abstract

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results and is already applied in many contexts. Since this approach breaks with assumptions of the older symbolic approaches of AI research, a new philosophical discussion is needed. Therefore, the interdisciplinary seminar will start from the classical philosophical debate, which was shaped by thinkers like Herbert Dreyfus and John Searle and focused on the concept of the rule following, in order to confront it with the newer state of research, its data driven approach and the concept of learning. We will discuss the consequences and challenges of these new approaches in AI for their theoretical and philosophical reflection. In a second step, the seminar will discuss not only epistemological, but also ethical and political aspects of the recent developments in AI in interdisciplinary perspectives.

Prerequisites / notice

The seminar will be conducted as an eLearning event in cooperation with LMU Munich.

851-0096-00L

Science in Society

Abstract

In the last 50 years, research on artificial intelligence (AI) has repeatedly boomed but failed to deliver on its great promises. In the last decade, however, especially the deep learning approach has achieved remarkable results and is already applied in many contexts. Since this approach breaks with assumptions of the older symbolic approaches of AI research, a new philosophical discussion is needed. Therefore, the interdisciplinary seminar will start from the classical philosophical debate, which was shaped by thinkers like Herbert Dreyfus and John Searle and focused on the concept of the rule following, in order to confront it with the newer state of research, its data driven approach and the concept of learning. We will discuss the consequences and challenges of these new approaches in AI for their theoretical and philosophical reflection. In a second step, the seminar will discuss not only epistemological, but also ethical and political aspects of the recent developments in AI in interdisciplinary perspectives.

Prerequisites / notice

The seminar will be conducted as an eLearning event in cooperation with LMU Munich.
The course offers an introduction to analytical, phenomenological and hermeneutic philosophy of religion. Influential positions, vital questions and significant developments will be discussed and critically reflected.

Objective

Special emphasis will be placed on the relationship between religious and scientific discourse in the 20th century. To get a better grasp of the complexity of this relationship, different narratives will be examined as to how the modern ideal of modelling all cognitive values on scientific ones came to exert supreme authority in Western societies. The still prevalent, mainstream view has deep roots in 19th century positivism, which assumed a necessary historical progress from religion to metaphysics to science. In this perspective, scientific knowledge uncovers “objective” reality by displacing superstition and more “primitive”, mythical or metaphysical accounts of human and cosmic origins. On the other hand, there is the more recent, “heterodox” view advanced by philosophers and historians of science like S. Gaukroger, that the success of science in the West in the early-modern era might be related to its close association with theology rather than attempts to emancipate itself from it. The question here arises: What traditional ideas of God and religious faith contributed to the modern ideal of knowledge and truth – an ideal which, in a strange twist of historical irony, finally led to the seeming exclusion of all religious discourse from the properly scientific quest for real knowledge and truth in present-day secular societies?

Political Science

Number Title Type ECTS Hours Lecturers
851-0589-00L Technology and Innovation for Development W Dr 3 credits 2V P. Aerni

Abstract

Technological change plays a crucial role in efforts to create a more sustainable future. In this context, policy decision makers must design rules that minimize its risks and maximize its benefits for society at large. The course discusses this challenge from an interdisciplinary perspective taking into account legal, economic, historical, development and environmental aspects..

Objective

- to recognize the challenges and opportunities of technological change in terms of sustainable development
- to become familiar with policy instruments to promote innovation
- to improve understanding of political decision-making processes in the regulation of science & technology
- improved understanding of the role of science and technology in the context of human and societal development

Content

Science and Technology Policy is normally associated with the improvement of national competitiveness; yet, it is also an integral part of effective environmental and development policies. The course will discuss the challenges and opportunities of technological change in terms of sustainable development and show how public policy on the national and the international level is responding to this change.

In this context, students are to become familiar with the basic principles of political economy and New Growth Theory and how such theories help explain political decisions as well as political outcomes in the area of Science, Technology and Innovation. State interventions are either designed to regulate (e.g. environmental regulations, anti-trust law) or facilitate (e.g. intellectual property rights protection, public investment in R&D and technical education, technology transfer) technological change. This will be illustrated by looking at different industries and different national systems of innovation. Subsequently the positive and negative consequences for society and the natural environment will be discussed from a short-term and a long-term perspective.

Lecture notes

Reader with issue-specific articles. E-version is partly available under
https://www.ethz.ch/content/specialinterest/gess/cis/international-relations/en/teaching/materials/tech.html
by the end of the semester, participants should have a solid knowledge of the history and theoretical foundations of international relations. students will receive a handout of slides accompanying the lectures. this lecture series provides students with an overview of the development of international relations since the end of world war ii. the first part of the course will cover the international political economy and the transformation of 1989/91; the focus here is on current issues in international security policy. the required reading will be listed at the beginning of the semester.

students should acquire a sound understanding of swiss foreign policy and the relevant academic and political debates associated with it. the 2-hour course (5-7 p.m.) will be held as a series of lectures. the course materials will be available in form of an electronic reader at the beginning of the semester. the class will be taught in english.

students will be asked to make a contribution in class choosing one out of three options: (a) presentation in class (15 minutes) based on a paper to be discussed on a particular day in class (b) review paper based on a selected publication in the course material (c) preparation of questions for a selected invited speaker, and subsequent submission of protocol about the content of the talk and the discussion in addition, they will have to pass a written test at the end of the course in order to obtain 3 credit points in the ects system. in the final exam (a) will have a weight of 40% and (b) 60%.

853-0038-00L Swiss Foreign Policy W 3 credits 2V D. Möckli

abstract
this course analyzes the foundations and challenges of swiss foreign policy. after reviewing the history of foreign policy conceptions since the early 20th century, we will discuss the determining factors of swiss foreign policy and examine, together with guest speakers from the foreign ministry, current international developments and respective foreign policy challenges. each week the class will be held in a different language.

objective
students should acquire a sound understanding of swiss foreign policy and the relevant academic and political debates associated with it. after a brief introduction to the aussenpolitikanalyse, the focus will be on the international political economy and the transformation of 1989/91; the focus here is on current issues in international security policy. the course will be supported by an e-learning environment.

content
the course will be supported by an e-learning environment. the required reading will be selected from the following readings:

- hahn, r. w. and sunstein, c. 2005. the precautionary principle as a basis for decision making. the economist's voice 2(2): 1-9
- hidalgo, c. 2015. when information grows. basic books.
- malakoff, d. 2011. are more people necessarily a problem? science 329 (333): 544-546
- malerba, franco, and luigi orsenigo. 2015 the evolution of the pharmaceutical industry. business history 57.5 (2015): 664-687.
- mazzucato, m. (2016). from market fixing to market creating: a new framework for innovation policy. industry and innovation, 23(2), 140-156.
- schumpeter, joseph a. 1942. capitalism, socialism and democracy. new york, harper collins publishers.
- the economist. 2014. biodiversity report. september, 1: 1-14
- ziegler, n., gassmann, o. and fritske, s. 2014. why do firms give away their patents for free? world patent information 37: 19–25

853-0047-01L World Politics Since 1945: The History of International Relations (Without Exercises) W 3 credits 2V l. horovitz

abstract
this lecture series provides students with an overview of the development of international relations since the end of world war ii. the first part of the series deals with the developments and changes in cold war security policy structures. the second part deals with the period after the transformation of 1989/91; the focus here is on current issues in international security policy.

objective
by the end of the semester, students should have a solid knowledge of the history and theoretical foundations of international relations since the end of the second world war.

content
cf. "diploma supplement"

prerequisites / notice
the lecture is being supported by a website on moodle. if you have any questions, please contact oliver roos (oliver.roos@sipo.gess.ethz.ch).
Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories assessed
Techniques and Technologies not assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving not assessed
Project Management not assessed

Domain C - Social Competencies

Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies

Adaptability and Flexibility assessed
Creative Thinking not assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management assessed

853-0015-01L Conflict Research I: Political Violence W 3 credits 2V A. Juon

Abstract

Introduction to research on political violence in domestic and international politics. This course covers the causes and solutions to different types of political violence including interstate wars, civil wars, terrorism or social protests.

Objective

Knowledge on different types of political violence and their causes.

Content

This course offers an introduction to research on the causes and solutions to political violence in domestic and international politics. First, we discuss the definitions and concepts used in conflict research, the data and methods commonly applied and their historical development. Second, we focus on interstate wars and examine in this context state formation, nationalism and democracy. The third part of the course focuses on different types of political violence, including civil war, terrorism or social protests.

Prerequisites / notice

The course «Conflict Research II» in the following semester further examines civil wars.

853-0302-01L European Integration (Seminar without Tutorial) W 2 credits 2S R. Sczepanski

Abstract

The lecture course covers the theory, development, and core policy fields of European integration as well as structures and processes of the EU as a decision- and policy-making system.

Objective

The seminar is designed to help students understand the European Union as a particular kind of political system that differs both from the nation-state and from other international organizations. It imparts basic knowledge on the development, institutions, procedures, and policies of the EU and provides an introduction to major approaches to integration theory and political science research on the EU.

Content

1. Introduction
2. Theories of European integration
3. Institutional development of European integration
4. Development of political integration
5. Internal market and monetary union
6. Internal and external security policies
7. Constitutionalization
8. Widening and differentiation
9. European integration in crisis
10. Institutions
11. Law-making and law enforcement
12. Statehood and democracy
13. Switzerland, the EEA and Neighbourhood Policies

Lecture notes

The seminar covers the theory, development, and core policy fields of European integration as well as structures and processes of the EU as a decision- and policy-making system.

Literature

Die Literatur wird auf Moodle bereitgestellt.

Prerequisites / notice

The grade is based on a written exam.

860-0023-00L International Environmental Politics W 3 credits 2V T. Bernauer

Particularly suitable for students of D-ITET, D-USYS

Abstract

This course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

Objective

The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.
The course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

853-0061-00L Introduction to Cybersecurity Politics

<table>
<thead>
<tr>
<th>Abstraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture is an introduction to global cybersecurity politics. The focus is on the strategic use of cyberspace by state and non-state actors (threats) and different answers to these new challenges (countermeasures).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants learn to assess the advantages and disadvantages of cyberspace as a domain for strategic military operations. They understand the technical basics of cyber operations and know how technology and politics are interlinked in this area. They understand the security challenges for and the motivations of states to be active in cyberspace offensively and defensively and they are familiar with the consequences for international politics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>We start with an overview of cybersecurity issue from 1980 to today and look at events and actors responsible for turning cybersecurity matters into a security political issue with top priority. After familiarizing ourselves with the technical basics, we look at different forms of cyberviolence and trends in cyber conflicts (technique in social and political practices). Then, we turn to countermeasures: we compare national cybersecurity strategies, examine international norms building, and scrutinize concepts such as cyber-power and cyber-deterrence (technique in social and political regulatory contexts).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A script with background information and comments on the literature will be made available at the beginning of the semester.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature for each session will be available on Moodle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture is being supported by a website on Moodle.</td>
</tr>
</tbody>
</table>

853-8002-00L The Role of Technology in National and International Security Policy

<table>
<thead>
<tr>
<th>Abstraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture provides an introduction to the role of security and military technologies in the formulation and implementation of national and international security policies. The focus is on challenges posed by new and developing technologies, the transformation of military capabilities, and the question of regulation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants will gain an in-depth overview of the many ways in which technology is becoming part of security policies and practices, in both civilian and military contexts.</td>
</tr>
</tbody>
</table>
The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members.

Objective
Given a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a suitable solution. Students will also learn to critically evaluate their ideas and solutions together with all course members in a broader context that goes beyond mere technical solutions, but touch on ethics, local culture, etc., too.

Content
The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders, (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data (and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a specific problem. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Every two weeks, each group will present ideas and progress during a short presentation followed by a discussion with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Prerequisites / notice
Note: The course AI4Good is not related to Hack4Good, which is a students' initiative organized by the Analytics Club at ETH. For more information about Hack4Good check out the website: https://analytics-club.org/wordpress/hack4good/

Students with a strong background in machine learning and excellent programming skills (preferably in Python)

851-0536-00L

Technology and the Environment – On Course for Collision?

Abstract
Technology has been both the cause and the solution of many environmental problems. Motor vehicle emissions contribute to climate change. Apps are supposed to help us minimizing our CO2 footprint. This course examines which politics, social relations, economic interests, environmental changes, and forms of engineering have conditioned which types and consequences of technology in modern history.

Objective
Students will discuss primary and secondary sources about the relationship between technology and the environment since the nineteenth century. They will learn to analyze argumentative strategies, divergent perspectives, and consequences and to write precisely and trenchantly about technology and the environment in society.

851-0101-74L

Sustainable Development - Bridging Art and Science

Abstract
In this course students deepen their knowledge about global development and sustainability issues. We will show five movies each of them linked to one of the five P’s (Planet, People, Prosperity, Peace and Partnerships) reflecting the topics of the 2030 Agenda. Afterwards the movie will be critically discussed with researchers and relevant stakeholders from the broader society.

Objective
- Students get a broad understanding of some of the most important issues and discussions related to sustainable development.
- Students get exposed to diverse realities of young people in developing countries
- Students can critically reflect upon the information that is presented to them in the movies and relate it to the broader discussions around sustainable development.
- Students reflect on issues concerning communicating research and the realities of low-income settings to a wider public.

Content
The aim of the course is to deepen student’s knowledge about global issues and to inspire them to reflect critically upon complex topics, which are related to the broader discourse on sustainable development. In each class, we show a documentary film, which is linked to one of the five critical areas of the 2030 Agenda (Planet, People, Prosperity, Peace and Partnerships), putting specific focus on realities in developing countries. Following the movie screenings, we will discuss the topic of the film in the light of sustainable development with an expert from academia and/or a practitioner from the field of development cooperation. In preparation for each class, the students read an academic paper, which will also be considered in the discussion. The idea of "Bridging Art and Science" is to expose an interdisciplinary group of students to artistic and scientific perspectives alike and to challenge them to deal with bias and polarization, and the role that the media and films play in that regard. The participants of the course will be given the chance to embrace the complexity of sustainable global development.

851-0535-10L

Yemen: A Failed State?

Abstract
Is Yemen a failed state? The Yemen Republic is the result of the unification in 1990 of two former states: The Yemen Arab Republic (North Yemen) and the People's Democratic Republic of Yemen (South Yemen). The country's history and its former units have been marred with civil wars, poverty and epidemic corruption.

Objective
1. Examine the concept of failed state within the International relations literature.
2. Take a closer look at Yemen(s) political history(ies), its/their political social structures, and power dynamics.
3. Introduce the concept of the ‘cunning state’ and its exploitation of the discourse of failed state

Content
This seminar looks at the concept of failed state and how useful it can be in describing the situation in a country like Yemen. It will also take a closer look at Yemen(s) political history(ies) and its/their political and social structures. Students are expected to write a paper and make a presentation.

851-0594-04L

One Study, Two Paths: The Dual-Use Dilemma in the Life Sciences

Abstract
Particularly suitable for students (from Bachelor 3rd year onwards) of D-BIOL, D-CHAB, D-HEST

Maximum number of participants limited to 20

Research and technologies emerging from the life sciences bring beneficial aspects to our society but also unforeseeable risks regarding biosafety and biosecurity. In this course, students will learn about the advances in science and technology and their implications for society and international treaties (BWC or CWC) and their social, ethical and legal responsibilities as life scientists.

Objective
By the end of this course, students will be able to critically assess their own research regarding the possibility to apply scientific results or methods with benevolent or malevolent intentions (dual-use) and will be able to integrate strategies into their research design to reduce the misuse potential.
Support and Diagnosis of Knowledge Acquisition

Life sciences evolve rapidly supported by developments in related disciplines. However, while those new and emerging technologies greatly benefit society, they additionally bring along predictable as well as unforeseeable risks in the context of biosafety and biosecurity.

The ability of life science professionals to critically assess their own research regarding potential misuse risks and how to reduce these is a crucial aspect to maintain research integrity against the background of novel security concerns arising from the speed and dynamics of advancements in the life- and associated sciences.

During the course, you will discuss about your societal, ethical, and legal responsibilities as life scientists. You will become aware of biosecurity and biosafety risks and what scientists can do to minimize misuse potential in highest-risk research (“dual use research of concern”). A strong focus of the seminar lies on interactive group work for which you will be able to build on your individual experiences and scientific background. Additionally, a combination of lectures and input from guest speakers will provide you with essential background information and insights into real-world applications. You will understand the dual-use dilemma and learn about biological warfare, biological terrorism, and the international prohibition regimes; the national implementation of the biological and toxins weapons convention and about efforts to build the web of prevention against the misuse of life sciences.

Psychology, Pedagogics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>This lecture is only apt for students who intend to enrol in the programs “Teaching Diploma“ or “Teaching Certificate“. It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course looks into scientific theories and also empirical studies on human learning and relates them to the school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way humans process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers are put in a position where they can further educate themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thematische Schwerpunkte:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lernen als Verhaltensänderung und als Informationsverarbeitung: Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information; Lernen als Wissenskonstruktion und Kompetenzerwerb unter besonderer Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und Erklärungen; Die Rolle von Emotion und Motivation beim Lernen; Interindividuelle Unterschiede in der Lernfähigkeit und ihre Ursachen; Intelligenztheorien, Geschlechtsunterschiede beim Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lernformen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folien werden zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This lecture is only apt for students who intend to enrol in the programs "Lehrdiplom" or "Didaktisches Zertifikat". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 60.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In this semester students learn advanced techniques to support and to diagnose knowledge acquisition processes in school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0238-01L</td>
<td>Support and Diagnosis of Knowledge Acquisition</td>
<td>W</td>
<td>3</td>
<td>3S</td>
<td>P. Edelsbrunner, J. Maue, C. M. Thurn</td>
</tr>
<tr>
<td></td>
<td>Processes (EW3): Enrolment only possible with matriculation in Teaching Diploma (except for students of Sport Teaching Diploma, who complete the sport-specific course unit EW3) and for students who intend to enrol in the "Teaching Diploma".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: successful participation in 851-0240-00L "Human Learning (EW1)".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In this seminar students learn advanced techniques to support and to diagnose knowledge acquisition processes in school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The main goals are:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) You have a deep understanding about the cognitive mechanisms of knowledge acquisition.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) You have a basic understanding about psychological test theory and can appropriately administer tests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) You know various techniques of formative assessment and can apply these to uncover students' misconceptions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0252-01L</td>
<td>Human-Computer Interaction: Cognition and Usability</td>
<td>W</td>
<td>3</td>
<td>2S</td>
<td>H. Zhao, S. Credé, C. Hölscher</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 35.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particularly suitable for students of D-ARCH, D-INFK, D-ITET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This seminar introduces theory and methods in human-computer interaction and usability. Cognitive Science provides a theoretical framework for designing user interfaces as well as a range of methods for assessing usability (user testing, cognitive walkthrough, GOMS). The seminar will provide an opportunity to experience some of the methods in applied group projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This seminar will introduce key topics, theories and methodology in human-computer interaction (HCI) and usability. Presentations will cover basics of human-computer interaction and selected topics like mobile interaction, adaptive systems, human error and attention. A focus of the seminar will be on getting to know evaluation techniques in HCI. Students form work groups that first familiarize themselves with a select usability evaluation method (e.g. user testing, GOMS, task analysis, heuristic evaluation, questionnaires or Cognitive Walkthrough). They will then apply the methods to a human-computer interaction setting (e.g. an existing software or hardware interface) and present the method as well as their procedure and results to the plenary. Active participation is vital for the success of the seminar, and students are expected to contribute to presentations of foundational themes, methods and results of their chosen group project. In order to obtain course credit a written essay / report will be required (details to be specified in the introductory session of the course).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0252-12L</td>
<td>The Science of Learning From Failure</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>M. Kapur, E. Ziegler</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 60.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>We can learn from failure. But, what does “failure” mean? And, what, how, and why do we learn from failure? This course covers research from the cognitive, educational, and learning sciences that addresses the role of failure in human learning. Students will critically examine how failure affects thinking, knowledge, creativity, problem-solving, and motivation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objective

- Critically read and analyze articles on research that addresses failure in learning
- Participate in in-class problem-solving activities around research in failure
- Discuss and reflect upon topics in both online and face-to-face formats
- Engage in activities through the online platform
- Complete a final paper on a subtopic related to failure in learning

By the end of the course, students should be able to:
- Demonstrate a critical understanding of the role that failure plays in learning
- Discuss how and why failure can benefit learning
- Discuss how and why failure does not facilitate learning
- Apply understanding to a related sub-topic

Content

We learn from our mistakes, or rather, we hope that we do. Another way to say this is that we can learn from failure. But, what does "failure" mean? What, how, and why do we learn from failure? This course covers research from the cognitive, educational, and learning sciences that addresses the role of failure in human learning. Students will critically examine how failure affects development of knowledge, creativity, problem-solving, and general thinking and learning. More specifically, they will have the opportunity to question and evaluate the potential relationships between the facets around failure within individual, interactional, cultural, societal, and global contexts through seminal readings and problem-solving activities. Students from any discipline are welcome to this course to learn more about how failure can be harnessed to improve our knowledge, capabilities, innovations, teamwork, and contribute to the larger global world.

Prerequisites / notice

This seminar is an interactive course, thus attendance and classroom participation are required. Processing of online tasks is a requirement for obtaining credit points.

The course is held as 2 separate courses with each a maximum of 30 students: one course in German and one course in English.

363-0311-00L

Psychological Aspects of Risk Management and Technology

Number of participants limited to 65.

Abstract

Using uncertainty management by organizations and individuals as conceptual framework, risk management and risk implications of new technologies are treated. Three components of risk management (risk identification/evaluation, risk mitigation, risk communication) and underlying psychological and organizational processes are discussed.

Objective

- You know how risk and risk management is defined and applied in different industries
- You know the challenges of decision making under risk and uncertainty and its effects on organisations
- Know about and (partially) apply some risk management tools
- Gain some more in-depth knowledge in a selected field within risk management through the semester project (e.g. transport systems, IT, insurance)

This course consists of three main elements:

A) Attendance of lectures that provide the theoretical foundations of "Psychological Aspects of Risk Management and Technology" together with reading assignments for each lecture.

B) Attendance of guest lectures that provide a rich source of practical insights and enable the transfer of theory into practice by discussing real-life cases with experts from various industries.

C) Furthermore, this course enables you to apply what you have learned in the classroom into practice by participating in a group assignment in which you gain insights into various risk industries (e.g., aviation, healthcare, insurance) and topics (e.g., risks in cyber-attacks, mountaineering, autonomous vehicles). These projects help students understand key aspects through in-depth application of the course material on real-life topics. Each group project will be mentored and graded by one of the lecturers (70% of course grade). To round off the course at the end of the year, you will have the opportunity to present your group’s findings to the lecturers and to your peers (30% of course grade).

Content

The course is organized into fourteen sessions. Sessions comprise a mixture of (guest) lectures, case discussions, and presentations. Through class discussion we will further deepen understanding of the topics and themes of the class. For each session you are required to prepare by reading the assigned literature or case material provided on the Moodle e-learning platform. Topics covered include:

- Elements of risk management:
 - Risk identification and evaluation
 - Risk mitigation
 - Risk communication
- Psychological and organizational concepts relevant in risk management:
 - Decision-making under uncertainty
 - Risk perception
 - Resilient organizational processes for managing uncertainty
- Case studies on different elements of risk management (e.g., rule-making, training, managing project risks, automation)
- Group projects related to company case studies

Lecture notes

There is no script, but slides will be made available before the lectures.

Literature

There are texts for each of the course topics made available before the lectures.

Prerequisites / notice

The course is restricted to 40 participants who will work closely with the lecturers on case studies prepared by the lecturers on topics relevant in their own companies (SWICA, SWISS, University Hospital Zurich).

701-0721-00L

Psychology

W 3 credits 2V

Objective

Students are able to:
- describe the areas, concepts, theories, methods and findings of psychology.
- differentiate scientific psychology from "everyday" psychology.
- structure the conclusions and significance of an experiment, according to a theory of psychology.
- formulate a problem for psychological investigation.
- apply basic forms of psychological experiment.

Content

Einführung in die psychologische Forschung und Modellbildung unter besonderer Berücksichtigung der kognitiven Psychologie und des psychologischen Experiments. Themen sind u.a.: Wahrnehmung; Lernen und Entwicklung; Denken und Problemlösen; Kognitive Sozialpsychologie; Risiko und Entscheidung.

851-0252-08L

Evidence-Based Design: Methods and Tools For Evaluating Architectural Design

W 3 credits 2S

Objective

- Students will: C. Hölscher, L. Narvaez Zertuche, C. Veddeler

This course provides an introduction to psychological research and modelling, focusing on cognitive psychology and the psychological sciences that addresses the role of failure in human learning. Students will critically examine how failure affects development of knowledge, creativity, problem-solving, and general thinking and learning. More specifically, they will have the opportunity to question and evaluate the potential relationships between the facets around failure within individual, interactional, cultural, societal, and global contexts through seminal readings and problem-solving activities. Students from any discipline are welcome to this course to learn more about how failure can be harnessed to improve our knowledge, capabilities, innovations, teamwork, and contribute to the larger global world.
Students are taught a variety of analytic techniques that can be used to evaluate architectural design. The concept of evidence-based design is introduced, and complemented with theoretical background on space syntax and spatial cognition. This is a project-oriented course, students implement a range of methods on a sample project. The course is tailored for architecture design students.

The course aims to teach students how to evaluate a design project from the perspective of the end user. The concept of evidence-based design is introduced through a series of case studies. Students are given a theoretical background in space syntax and spatial cognition, with a view to applying this knowledge during the design process. The course covers a range of methods including visibility analysis, network analysis, conducting real-world observations, and virtual reality for architectural design. Students apply these methods to a case study of their choice, which can be at building or urban scale. For students taking a B-ARCH or M-ARCH degree, this can be a completed or ongoing design studio project. The course gives students the chance to implement the methods iteratively and explore how best to address the needs of the eventual end-user during the design process.

The course is tailored for students studying for B-ARCH and M-ARCH degrees. As an alternative to obtaining D-GESS credit, architecture students can obtain course credit in "Vertiefungsfach" or "Wahlfach".

Law

Number

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0735-09L</td>
<td>Workshop & Lecture Series on the Law & Economics of Innovation</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>S. Bechtold, H. Gersbach</td>
</tr>
</tbody>
</table>

Abstract

This is a joint project by ETH Zurich and the Universities of St. Gallen and Zurich. It provides an overview of interdisciplinary research on intellectual property, innovation, antitrust, privacy & technology policy. Scholars from law, economics, management and related fields present their current research. All speakers are internationally well-known experts from Europe, the U.S. & beyond.

Objective

After the workshop and lecture series, participants should be acquainted with interdisciplinary approaches towards intellectual property, innovation, antitrust, privacy and technology policy research. They should also have an overview of current topics of international research in these areas.

Content

The workshop and lecture series will present a mix of speakers who represent the wide range of current social science research methods available in these areas.

Literature

- Suzanne Scotchmer, Innovation and Incentives, 2004
- Bronwyn Hall / Nathan Rosenberg (eds.), Handbook of the Economics of Innovation, 2 volumes, Amsterdam 2010
- Bronwyn Hall / Dietmar Harhoff, Recent Research on the Economics of Patents, 2011

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Problem-solving
- Domain C - Social Competencies
 - Communication
- Domain D - Personal Competencies
 - Creative Thinking
 - Critical Thinking

Number

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0703-00L</td>
<td>Introduction to Law</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>O. Streiff Gnøpf</td>
</tr>
</tbody>
</table>

Students who have attended or will attend the lecture "Introduction to Law for Civil Engineering and Architecture" (851-0703-03L) or "Introduction to Law" (851-0709-00L), cannot register for this course unit.

Particularly suitable for students of D-ARCH, D-MAVT, D-MATL.

Abstract

This class introduces students into basic features of the legal system. Fundamental issues of constitutional law, administrative law, private law and the law of the EU are covered.

Objective

Students are able to identify basic structures of the legal system. They understand selected topics of public and private law and are able to apply the fundamentals in more advanced law classes.

Content

- Basic concepts of law, sources of law.
- Private law: Contract law (particularly contract for work and services), tort law, property law.
- Public law: Human rights, administrative law, procurement law, procedural law.
- Insights into the law of the EU and into criminal law.
Legal rules are tied to urban space. Illustrative is the relation between land ownership and urban morphology or between zoning and the Space Planning Law and Environment. Further documents will be available online (see https://moodle-app2.let.ethz.ch/course/view.php?id=15142).

Students recognize the interplay between legal structures and urban space. They can describe legal concepts with spatial impact.

Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than half a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=CvIdfG70zq0). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

In the first part of the course, we take a systematic approach to contract design. This means we first analyze the economic environment in which a transaction takes place, and then engineer contracts that achieve the desired outcome.

The second part of the course is about the functional dimension of urban space. Key concept is the zone (cf. CIAM 4). This concept is introduced and related to the theory of urban design. Moreover, it is discussed how these concepts shape specific places.

Particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, DMATH, D-MTEC, D-INFK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

You can find all course materials and the most recent announcements on Moodle. Please log in to Moodle using your ETH or UZH credentials. Then search for “Contract Design I (851-0742-00L; Fall 2021)” and enroll. The password is “ContractDesign01”.

Number of participants limited to 160.

Max 80 ETHZ and 80 UZH Students.

Contract Design I aims to bridge the gap between economic contract theory, contract law, and the writing of real-world contracts. In this course, we take a systematic approach to contract design. This means we first analyze the economic environment in which a transaction takes place, and then engineer contracts that achieve the desired outcome.

Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than half a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=CvIdfG70zq0). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

In the first part of the course, we take a systematic approach to contract design. This means we first analyze the economic environment in which a transaction takes place, and then engineer contracts that achieve the desired outcome.

The second part of the course is about the functional dimension of urban space. Key concept is the zone (cf. CIAM 4). This concept is introduced and related to the theory of urban design. Moreover, it is discussed how these concepts shape specific places.

Particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, DMATH, D-MTEC, D-INFK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

You can find all course materials and the most recent announcements on Moodle. Please log in to Moodle using your ETH or UZH credentials. Then search for “Contract Design I (851-0742-00L; Fall 2021)” and enroll. The password is “ContractDesign01”.

Number of participants limited to 160.

Max 80 ETHZ and 80 UZH Students.

Contract Design I aims to bridge the gap between economic contract theory, contract law, and the writing of real-world contracts. In this course, we take a systematic approach to contract design. This means we first analyze the economic environment in which a transaction takes place, and then engineer contracts that achieve the desired outcome.

Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than half a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=CvIdfG70zq0). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

In the first part of the course, we take a systematic approach to contract design. This means we first analyze the economic environment in which a transaction takes place, and then engineer contracts that achieve the desired outcome.

The second part of the course is about the functional dimension of urban space. Key concept is the zone (cf. CIAM 4). This concept is introduced and related to the theory of urban design. Moreover, it is discussed how these concepts shape specific places.

Particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, DMATH, D-MTEC, D-INFK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

You can find all course materials and the most recent announcements on Moodle. Please log in to Moodle using your ETH or UZH credentials. Then search for “Contract Design I (851-0742-00L; Fall 2021)” and enroll. The password is “ContractDesign01”.

Number of participants limited to 160.

Max 80 ETHZ and 80 UZH Students.
Abstract
The course Private Law focuses on the Swiss Code of Obligations (contracts, torts) and on Property Law (ownership, mortgage and easements). In addition, the course will provide a short overview of Civil Procedure and Enforcement.

Objective
Teaching of the principles of law, particularly private law. Introduction to law.

Content
Le cours de droit civil porte notamment sur le droit des obligations (droit des contrats et responsabilité civile) et sur les droits réels (propriété, gages et servitudes). De plus, il est donné un bref aperçu du droit de la procédure et de l'exécution forcée.

Literature
Editions officielles récentes des lois fédérales, en langue française (Code civil et Code des obligations) ou italienne (Codice civile e Codice delle obbligazioni), disponibles auprès de la plupart des librairies.

Sont indispensables:
- le Code civil et le Code des obligations;
- Sont conseillés:
 - Nef, Urs Ch.: Le droit des obligations à l'usage des ingénieurs et des architectes, trad. Bovay, J., éd. Payot, Lausanne

Prerequisites / notice
- Le cours de droit civil et le cours de droit public (2e sem.) sont l'équivalent des cours "Recht I" et "Recht II" en langue allemande et des exercices y relatifs.
- Les examens peuvent se faire en français ou en italien.
- Examen au 1er propédeutique; convient pour travail de semestre.
- Con riassunti in italiano. E possibile sostenere l’esame in italiano.

851-0709-00L Introduction to Civil Law W 2 credits 2V H. Peter

Abstract
The course deals with the basic legal framework for doing e-business as well as using information technology. It discusses a variety of legal concepts and rules to be taken into account in practice, be it when designing and planning new media business models, be it when implementing online projects and undertaking information technology activities.

Objective
The objective is knowing and understanding key legal concepts relevant for doing e-business, in particularly understanding how e-business is regulated by law nationally and internationally, how contracts are concluded and performed electronically, which rules have to be obeyed in particular in the Internet with regard to third party and own content and client data, the concept of liability applied in e-business and the role of the law in the practical implementation and operation of e-business applications.

Content
Vorgesehene Strukturierung der Vorlesung:

1) Welches Recht gilt im E-Business?
- Internationalität des Internets
- Regulierte Branchen

2) Gestaltung und Vermarktung von E-Business-Angeboten
- Verwendung fremder und Schutz der eigenen Inhalte
- Haftung im E-Business (und wie sie beschränkt werden kann)
- Domain-Namen

3) Beziehung zu E-Business-Kunden
- Verträge im E-Business, Konsumentenschutz
- Elektronische Signaturen
- Datenschutz
- Spam

4) Verträge mit E-Business-Providern

Änderungen, Umstellungen und Kürzungen bleiben vorbehalten. Der aktuelle Termin- und Themenplan ist zu gegebener Zeit über die elektronische Dokumentenablage abrufbar.

Lecture notes
Es wird mit Folien gearbeitet, die als PDF über die elektronische Dokumentenablage (ILIAS) auf dem System der ETHZ vorgängig abrufbar sind. Auf dem Termin- und Themenplan (ebenfalls online abrufbar) sind Links zu Gesetzestexten und weiteren Unterlagen abrufbar. Schliesslich wird jede Vorlesung auch als Podcast aufgezeichnet, der jedoch nur für die Studierenden mit einem Passwort (erhältlich beim Dozenten) zugänglich sind.

Literature
Weiterführende Materialien, Links und Literatur sind auf dem Termin- und Themenplan aufgeführt (zu gegebener Zeit abrufbar via elektronische Dokumentenablage).

Prerequisites / notice
Die Semestersendprüfung war vor Corona in Form eines schriftlichen Kurztests (normalerweise ein MC, im letzten Jahr Coronabedingt aber eine Falllösung) in der letzten Doppelstunde ausgestaltet. Es wird angegeben, welche Unterlagen beim jeweiligen Thema den Prüfungsstoff definieren. Der Test wird möglicherweise elektronisch durchgeführt.

851-0727-02L E-Business-Law W 2 credits 2V D. Rosenthal

Abstract
Particularly suitable for students of D-INFK, D-ITET

Objective
Particularly suitable for students of D-INFK, D-ITET

Content
Particularly suitable for students of D-INFK, D-ITET

Literature
Particularly suitable for students of D-INFK, D-ITET

Prerequisites / notice
Particularly suitable for students of D-INFK, D-ITET

851-0735-10L Business Law W 2 credits 2V P. Peyrot

Abstract
Particularly suitable for students of D-ITET, D-MAVT

Objective
Particularly suitable for students of D-ITET, D-MAVT

Content
Particularly suitable for students of D-ITET, D-MAVT

Literature
Particularly suitable for students of D-ITET, D-MAVT

Prerequisites / notice
Particularly suitable for students of D-ITET, D-MAVT
In recent years, knowledge about intellectual property has become increasingly important for engineers and scientists. Both in production and distribution and in research and development, they are increasingly being confronted with questions concerning the patenting of technical inventions and the use of patent information.

The students shall obtain a basic knowledge about business law. They shall be able to recognize and evaluate issues in the area of business law and suggest possible solutions.

The lecture addresses students in the fields of engineering, science and other related technical fields.

Objective

The lecture gives an overview of the fundamental aspects of intellectual property, which plays an important role in the daily routine of engineers and scientists. Students should learn to assess the risks and opportunities of intellectual property rights in development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

Prerequisites / notice

The role of intellectual property in the Engineering and Technical Sector

Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

The lecture gives an overview of the fundamental aspects of intellectual property, which plays an important role in the daily routine of engineers and scientists. The lecture aims to make participants aware of the various methods of protection and to put them in a position to use this knowledge in the workplace.

Objective

In recent years, knowledge about intellectual property has become increasingly important for engineers and scientists. Both in production and distribution and in research and development, they are increasingly being confronted with questions concerning the patenting of technical inventions and the use of patent information.

The lecture will acquaint participants with practical aspects of intellectual property and enable them to use the acquired knowledge in their future professional life.

Topics covered during the lecture will include:
- The importance of innovation in industrialised countries
- An overview of the different forms of intellectual property
- The protection of technical inventions and how to safeguard their commercialisation
- Patents as a source of technical and business information
- Practical aspects of intellectual property in day-to-day research, at the workplace and for the formation of start-ups.

Case studies will illustrate and deepen the topics addressed during the lecture.

The seminar will include practical exercises on how to use and search patent information. Basic knowledge of how to read and evaluate patent documents as well as how to use publicly available patent databases to obtain the required patent information will also be provided.

Prerequisites / notice

The role of intellectual property in the Engineering and Technical Sector

Particularly suitable for students of D-chaB, D-INFK, D-ITET, D-MAVT

The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Objective

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

Prerequisites / notice

The role of intellectual property in the Engineering and Technical Sector

Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Objective

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

Prerequisites / notice

The role of intellectual property in the Engineering and Technical Sector

Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Objective

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

Prerequisites / notice

The role of intellectual property in the Engineering and Technical Sector

Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Objective

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

Prerequisites / notice

The role of intellectual property in the Engineering and Technical Sector

Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Objective

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

Prerequisites / notice

The role of intellectual property in the Engineering and Technical Sector

Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Objective

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

Prerequisites / notice

The role of intellectual property in the Engineering and Technical Sector

Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Objective

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

Prerequisites / notice

The role of intellectual property in the Engineering and Technical Sector

Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Objective

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).
851-0746-00L
Algorithms and Fairness

Objective	In a semester paper, students (individually or in groups) will conceive and implement their own research project applying natural language tools to legal texts. Some programming experience in Python is required, and some experience with NLP is highly recommended.
Content	Students will investigate and implement the relevant machine learning tools for making legal predictions, including regression, classification, and deep neural networks models. We will use these predictions to better understand the operation of the legal system. In a semester project, student groups will conceive and implement a research design for examining this type of empirical research question.
Number	851-0746-00L
Title	Algorithms and Fairness
Type	W
ECTS	2 credits
Hours	1S
Lecturers	A. Stremitzer, A. Nielsen

Abstract
Any students enrolling in the course must complete a short writing assignment within two weeks of registering. Please contact the instructors via email (aileen.nielsen@gess.ethz.ch) for information about the assignment and for access to the course Slack workspace.

Objective
Understand the history of fairness as defined in law, social science, and applied mathematics research. Identify logical and mathematical conflicts between different definitions of fairness. Explain why fairness and AI is a highly contested and unresolved problem in law.

Content
This block course will be broken into three components.

1. Fair outcomes: the equality/equity debate
2. The proliferation of fairness definitions
3. Impossibility theorems
4. AI & fundamental rights

Fair process
- Appropriate use of AI in administrative or judicial roles
- AI counterparties
- Fair markets

Fair distribution
- Distributing scarce resources
- Data markets and data labor
- The future of work

851-0742-01L
Contract Design II

Objective	This course is taught by Professor Alexander Stremitzer (https://lawecon.ethz.ch/group/professors/stremitzer.html). To be considered for Contract Design II, you must have completed Contract Design I in the same semester. Students can only register for Contract Design II after having obtained approval by Prof. Stremitzer.
Content	Contract Design II is a masterclass in the form of an interactive clinic that allows you to deepen your understanding of contracting by applying insights from Contract Design I to a comprehensive case study. Together with your classmates, you are going to advise a (hypothetical) client organization planning to enter a complex transaction on how to structure the underlying contract.
Number	851-0742-01L
Title	Contract Design II
Type	W
ECTS	1 credit
Hours	1U
Lecturers	A. Stremitzer

Abstract
Contract Design II is a masterclass in the form of an interactive clinic that allows you to deepen your understanding of contracting by applying insights from Contract Design I to a comprehensive case study. Together with your classmates, you are going to advise a (hypothetical) client organization planning to enter a complex transaction on how to structure the underlying contract.

Objective
There is a possibility that representatives from companies that were previously engaged in similar deals will visit us in class and tell you about their experience firsthand. In Contract Design I, you will receive more detailed information on the content and learning objectives of Contract Design II. If you have urgent questions, please do not hesitate to send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

Prerequisites / notice
To enable you to work under the close supervision of your professor and his team, only a small group of students with backgrounds in law, business, or engineering is admitted to this course. This simulation is time-consuming and challenging. Hence, we can only admit the most successful and motivated students to this class. Further information on the application process will follow.

Sociology

Number	851-0252-10L
Title	Project in Behavioural Finance
Type	W
ECTS	3 credits
Hours	2S
Lecturers	S. Andraszewicz, C. Hölscher, A. C. Roberts

Objective
This course has four main goals:

1. To learn about the most important topics within Behavioural Finance
2. To learn how to conduct behavioural studies, design experiments, plan data collection and experimental tasks
3. To learn about causes of market crashes, factors that influence them, traders’ behaviour before, during and after financial crises
4. To investigate a topic of interest, related to behaviour of traders during market crashes.

Additionally, the course gives to the students the opportunity to practice oral presentations, communication skills, report writing and critical thinking.

Content
The course provides an overview of the most important topics in Behavioural Finance. First part of the course involves reading scientific articles, which will be discussed during the seminar. Therefore, attendance is required to pass the course. Each week, a student volunteer will present a paper and the presentation will be followed by a discussion. After obtaining sufficient knowledge of the field, students will select a topic for a behavioural study of their own. The final assignment consists of preparing and conducting a small behavioural study/experiment, analysing the data and presenting the project in the final meeting of the class. Each student will write a scientific report of their study.

Number	851-0252-13L
Title	Network Modeling
Type	W
ECTS	3 credits
Hours	2V
Lecturers	C. Stadtfeld, V. Amati

Students are required to have basic knowledge in inferential statistics, such as regression models.
Network Science is a distinct domain of data science that focuses on relational systems. Various models have been proposed to describe structures and dynamics of networks. Statistical and numerical methods have been developed to fit these models to empirical data. Emphasis is placed on the statistical analysis of (social) systems and their connection to social theories and data sources.

Students will be able to develop hypotheses that relate to the structures and dynamics of (social) networks, and tests those by applying advanced statistical network methods such as exponential random graph models (ERGMs) and stochastic actor-oriented models (SAOMs).

The seminar aims at three-fold integration: (1) bringing modeling and computer simulation of techno-socio-economic processes and (2) combining perspectives of different scientific disciplines (e.g. sociology, computer science, physics, complexity science, engineering), (3) bridging between fundamental and applied work. Participants of the seminar should understand how tightly connected systems lead to networked risks, and why this can imply systems we do not understand and cannot control well, thereby causing systemic risks and extreme events. They should also be able to explain how systemic instabilities can be understood by changing the perspective from a component-oriented to an interaction- and network-oriented view, and what fundamental implications this has for the proper design and management of complex dynamical systems.

Prerequisites / notice

Students are required to have basic knowledge in inferential statistics and should be familiar with linear and logistic regression models.

851-0252-15L Network Analysis

W 3 credits 2V U. Brandes

Abstract

Network science is a distinct domain of data science that is characterized by a specific kind of data being studied. While areas of application range from archaeology to zoology, we concern ourselves with social networks for the most part. Emphasis is placed on descriptive and analytic approaches rather than theorizing, modeling, or data collection.

Lecture notes

Slides and lecture notes are distributed via the associated course moodle.

Literature

Emphasis is placed on descriptive and analytic approaches rather than theorizing, modeling, or data collection. Students will be able to identify and categorize research problems that call for network approaches while appreciating differences across application domains and contexts. They will master a suite of mathematical and computational tools, and know how to design or adapt suitable methods for analysis. In particular, they will be able to evaluate such methods in terms of appropriateness and efficiency.

The following topics will be covered with an emphasis on structural and computational approaches and frequent reference to their suitability with respect to substantive theory:

- Empirical Research and Network Data
- Macro and Micro Structure
- Centrality
- Roles
- Cohesion

Students will be able to develop hypotheses that relate to the structures and dynamics of (social) networks, and test those by applying advanced statistical network methods such as exponential random graph models (ERGMs) and stochastic actor-oriented models (SAOMs).

851-0585-41L Computational Social Science

W 3 credits 2S D. Helbing, J. Argota Sánchez-Vaquero, M. Korecki

Abstract

The seminar aims at three-fold integration: (1) bringing modeling and computer simulation of techno-socio-economic processes and phenomena together with related empirical, experimental, and data-driven work, (2) combining perspectives of different scientific disciplines (e.g. sociology, computer science, physics, complexity science, engineering), (3) bridging between fundamental and applied work.

Objective

Students will be able to develop hypotheses that relate to the structures and dynamics of (social) networks, and test those by applying advanced statistical network methods such as exponential random graph models (ERGMs) and stochastic actor-oriented models (SAOMs).

The following topics will be covered:

- Introduction to network models and their applications
- Stylized models:
 - uniform random graph models
 - small world models
 - preferential attachment models
- Models for testing hypotheses while controlling for the network structure:
 - Quadratic assignment procedure regression (QAP regression)
- Models for testing hypotheses on the network structure:
 - Models for one single observation of a network: exponential random graph models (ERGMs)
 - Models for panel network data: stochastic actor-oriented models (SAOMs)
 - Models for relational event data: dynamic network actor models (DynAMs)

The application of these models is illustrated through examples and practical sessions involving the analysis of network data using the software R.

Emphasis is placed on descriptive and analytic approaches rather than theorizing, modeling, or data collection. Students will be able to identify and categorize research problems that call for network approaches while appreciating differences across application domains and contexts. They will master a suite of mathematical and computational tools, and know how to design or adapt suitable methods for analysis. In particular, they will be able to evaluate such methods in terms of appropriateness and efficiency.

The following topics will be covered with an emphasis on structural and computational approaches and frequent reference to their suitability with respect to substantive theory:

- Empirical Research and Network Data
- Macro and Micro Structure
- Centrality
- Roles
- Cohesion

Students will be able to explain and compare various network models, and develop an understanding of how those can be fit to empirical data. This will enable students to independently address research questions from various social science fields.
Literature

Computational Social Science
https://science.sciencemag.org/content/323/5915/721.full.pdf

Manifesto of Computational Social Science
https://link.springer.com/article/10.1140/epjst/e2012-01697-8

Social Self-Organisation

How simple rules determine pedestrian behaviour and crowd disasters
https://www.pnas.org/content/108/17/6884.short

Peer review and competition in the Art Exhibition Game
https://www.pnas.org/content/113/30/8414.short

Generalized network dismantling
https://www.pnas.org/content/116/14/6554.short

Computational Social Science: Obstacles and Opportunities
https://science.sciencemag.org/content/369/6507/1060?rss=1

Bit by Bit: Social Research in the Digital Age
https://www.amazon.co.uk/Bit-Social-Research-Digital-Age-ebook/dp/B072MPFXX2/

Further literature will be recommended in the lectures.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving not assessed
Project Management not assessed

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics assessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed

851-0586-03L Applied Network Science: Social Media Networks
Number of participants limited to 20
W 3 credits 1S U. Brandes

Abstract
We study applications of network science methods, this semester in the domain of social media.
Topics are selected for diversity in research questions and techniques for topics such as privacy and information spread on a variety of platforms.
Student teams present results from the recent literature, possibly with replication, in a one-day conference.

Objective
Network science as a paradigm is entering domains from engineering to the humanities but application is tricky.
By examples from recent research on social media, students learn to appreciate that, and how, context matters.
They will be able to assess the appropriateness of approaches for substantive research problems, and especially when and why quantitative approaches are or are not suitable.

851-0745-00L Ethics Workshop: The Impact of Digital Life on Society
Number of participants limited to 40.
W 2 credits 2S E. Vayena, A. Blasimme, C. Brall, C. Landers, J. Sleigh

Abstract
Open to all Master level / PhD students.
This workshop focuses on understanding and managing the ethical and social issues arising from the integration of new technologies in various aspects of daily life.

Objective
Explain relevant concepts in ethics.
Evaluate the ethical dimensions of new technology uses.
Identify impacted stakeholders and who is ethically responsible.
Engage constructively in the public discourse relating to new technology impacts.
Review tools and resources currently available that facilitate resolutions and ethical practice.
Work in a more ethically reflective way.

Content
The workshop offers students an experience that trains their ability for critical analysis and develops awareness of responsibilities as a researcher, consumer and citizen. Learning will occur in the context of three intensive workshop days, which are highly interactive and focus on the development and application of reasoning skills.

The workshop will begin with some fundamentals: the nature of ethics, of consent and big data, of AI ethics, public trust and health ethics. Students will then be introduced to key ethical concepts such as fairness, autonomy, trust, accountability, justice, as well different ways of reasoning about the ethics of digital technologies.

A range of practical problems and issues in the domains of education, news media, society, social media, digital health and justice will be then considered. These six domains are represented respectively by unique and interesting case studies. Each case study has been selected not only for its timely and engaging nature, but also for its relevance. Through the analysis of these case studies key ethical questions (such as fairness, accountability, explain-ability, access etc.) will be highlighted and questions of responsibility and tools for ethical practice will be explored. Throughout, the emphasis will be on learning to make sound arguments about the ethical aspects of policy, practice and research.
ECTS
3 credits
3 credits
Hours
O. Streiff Gnöpff
Gender and Science
2V
In the last 2500 years, the mind-brain relationship has been articulated in various ways. In these lectures, I will explore the scientific and philosophical aspects of this relationship in the context of relevant cultural, historical and technological processes, with a focus on the modern neurosciences. I will also discuss works of art and literature.

Objective
There is agreement across academic disciplines today that gender influences and structures the production of knowledge and that scientific knowledge production in turn shapes gender notions. Even within "hard" sciences such as mathematics, physics, engineering, etc., gender is a significant factor in determining what counts as "objective" knowledge, who can know it, what kind of knowledge is produced, or how this knowledge is acquired and justified. Feminist research aims to reveal how dominant conceptions of science and knowledge practices disadvantage women*, and other subordinate groups, with the goal of reforming these practices. An important part of feminist critique is to show that such efforts substantially improve the overall quality of research.

Content
The semester will start with an introductory lecture acquainting students with research questions in the field of Gender and Science by summarizing its key concepts and methods. It will then continue as a series of weekly guest lectures, given by scholars from different scientific disciplines, that provide accessible insights into the intersection between gender studies and the guest lecturer’s research field. Students will thereby be encouraged to learn from concrete examples rather than abstract theory. The goal is for students to understand how to apply concepts and methods of gender studies to particular disciplines. A mid-term discussion session and end-term assignment will provide students the opportunity to critically reflect on how these questions are relevant for their own academic practices.

Mind and Brain
W
3 credits
2V
M. Hagner
In the last 2500 years, the mind-brain relationship has been articulated in various ways. In these lectures, I will explore the scientific and philosophical aspects of this relationship in the context of relevant cultural, historical and technological processes, with a focus on the modern neurosciences. I will also discuss works of art and literature.

Objective
By the end of this lecture, students should be familiar with essential positions in the scientific and philosophical treatment of questions relating the mind to the brain. It should also become clear that some of the most relevant problems in current neurosciences have a long history.

Content
According to a myth, the ancient Greek philosopher Democrit dissected animals, because he was in search of the seat of the soul. Current neuroscientists use neuroimaging techniques like functional magnetic-resonance-tomography in order to localize cognitive and emotional qualities in the brain. Between these two dates lies a history of 2500 years, in which the relationship between the mind and the brain has been defined in various ways. Starting with ancient and medieval theories, the lecture will have its focus on modern theories from the nineteenth century onward. I will discuss essential issues in the history of the neurosciences such as localization theories, the neuron doctrine, reflex theory, theories of emotions, neurocybernetics and the importance of visualizing the brain and its parts, but I will also include works of art and literature.

851-0703-00L
Introduction to Law
W
2 credits
2V
O. Streif Gnöpff
Students who have attended or will attend the lecture "Introduction to Law for Civil Engineering and Architecture" (851-0703-03L) or "Introduction to Law" (851-0708-00L), cannot register for this course unit. Particularly suitable for students of D-ARCH, D-MAVT, D-MATL.

Abstract
This class introduces students into basic features of the legal system. Fundamental issues of constitutional law, administrative law, private law and the law of the EU are covered. Students are able to identify basic structures of the legal system. They understand selected topics of public and private law and are able to apply the fundamentals in more advanced law classes.

Objective
Basic concepts of law, sources of law.
Private law: Contract law (particularly contract for work and services), tort law, property law.
Public law: Human rights, administrative law, procurement law, procedural law.
Insights into the law of the EU and into criminal law.

Literature
Jaap Hage, Bram Akkermans (Eds.), Introduction to Law, Cham 2017 (Online Resource ETH Library)

Further documents will be available online (see https://moodle-app2.let.ethz.ch/course/view.php?id=15142).

851-0742-00L
Contract Design I
W
3 credits
2V
A. Stremitzer
This course is taught by Professor Alexander Stremitzer (https://laweconbusiness.ethz.ch/group/professor/stremitzer.html). Note that this is NOT a legal drafting class that focuses on contractual language. Instead, in Contact Design I, you will learn what the content of a contract should be so that parties can reach their goals.

You can find all course materials and the most recent announcements on Moodle. Please log in to Moodle using your ETH or UZH credentials. Then search for "Contract Design I" (851-0742-00L; Fall 2021) and enroll. The password is "ContractDesign01".

Number of participants limited to 160. Max 80 ETHZ and 80 UZH Students

Abstract
Contract Design I aims to bridge the gap between economic contract theory, contract law, and the writing of real-world contracts. In this course, we take a systematic approach to contract design. This means we first analyze the economic environment in which a transaction takes place, and then engineer contracts that achieve the desired outcome.
Objective

Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than half a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=G7OzQ6). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

Lecture notes

Documents will be available online (see https://moodle-app2.let.ethz.ch/course/view.php?id=15143).

Prerequisite

Course Design I is available to ETH students through the Science in Perspective (SiP) Program of D-GESS. This course is particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, DMATH, D-MTEC, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderraherra@ethz.ch).

851-0703-04L Law and Urban Space

Number of participants limited to 45

Lecture notes

 Particularly suitable for students of D-ARCH

Abstract

Legal rules are tied to urban space. Illustrative is the relation between land ownership and urban morphology or between zoning and the functional dimension of urban space. Legal concepts (from property law, fundamental rights and administrative law) with spatial impacts are introduced and related to the theory of urban design. Moreover, it is discussed how these concepts shape specific places.

Objective

Students recognize the interplay between legal structures and urban space. They can describe legal concepts with spatial impact. Moreover, they are able to compare legally binding targets with theoretical approaches in urban design. By analysing specific places, students learn to find relevant norms, to analyse and to judge them with regard to urban design theories. Therefore, they are able to distinguish design and policy questions.

Content

Using the the term «lawscape» (Philippopoulos-Mihalopoulos), we initially discuss general aspects of the interplay between legal rules and urban space.

The first part of the course is about the morphological dimension of urban space. We compare positions of urban planners like Trancik (Finding Lost Space) or Rowe/Koetter (Collage City) with property law. Freedom of property in turn contrasts to the theoretical approaches of Bernoulli (Die Stadt und ihr Boden) or Rossi (L’architettura della città), Using court decisions concerning nail houses, we study the tensions between urban development and the system of property ownership.

The second part of the course is about the functional dimension of urban space. Key concept is the zone (cf. CIAM 4). This concept is criticized (Wolftrum, Zonen Befund). We compare the concept as well as the critique with the main concerns in spatial planning law. Environmental law and neighbouring rights are also relevant.

In the third part of the course, we work on the social, visual and temporal dimensions of urban space. The positions of Jacobs (The Death and Life of Great American Cities), Cullen (Townscape) or Lynch (The Presence of the Past) are compared with the dichotomy public space/private space, safety regulations, regulations on design reviews or heritage protection laws.

Literature

Working tools are theoretical texts, legal rules, court decisions as well as site analyses. Students undertake a case study in small groups. Selected case studies are presented and discussed in a final meeting.

Lecture notes

Documents will be available online (see https://moodle-app2.let.ethz.ch/course/view.php?id=15143).

Prerequisite

Number of participants limited to: 45

851-0707-00L Space Planning Law and Environment

W 2 credits 2G

O. Bucher

 Particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, DMATH, D-MTEC, and D-MAVT.

Abstract

System of swiss planning law, Constitutional and statutory provisions, Space planning and fundamental rights, Instruments, Application, legal protection, enforcement, Practical training.

Objective

Basic understanding of nature and function of space planning from a legal point of view. Basic knowledge of space planning instruments, relationship between space planning and constitutional law (especially property rights), solving of practical cases.

Content

Lecture notes

Haller, Walter/Karlen, Peter, Raumplanung-, Bau- und Umweltrecht, 3.A., Zürich 1999

Prerequisite

Number of participants limited to: 45

851-0252-01L Human-Computer Interaction: Cognition and Usability

W 3 credits

H. Zhao, S. Credé, C. Hölscher

 Particularly suitable for students of D-ARCH, D-INFK, D-ITET

Abstract

This seminar introduces theory and methods in human-computer interaction and usability. Cognitive Science provides a theoretical framework for designing user interfaces as well as a range of methods for assessing usability (user testing, cognitive walkthrough, GOMS). The seminar will provide an opportunity to experience some of the methods in applied group projects.
Objective
This seminar will introduce key topics, theories and methodology in human-computer interaction (HCI) and usability. Presentations will cover basics of human-computer interaction and selected topics like mobile interaction, adaptive systems, human error and attention. A focus of the seminar will be on getting to know evaluation techniques in HCI. Students form work groups that first familiarize themselves with a select usability evaluation method (e.g. user testing, GOMIS, task analysis, heuristic evaluation, questionnaires or Cognitive Walkthrough). They will then apply the methods to a human-computer interaction setting (e.g. an existing software or hardware interface) and present the method as well as their procedure and results to the plenary. Active participation is vital for the success of the seminar, and students are expected to contribute to presentations of foundational themes, methods and results of their chosen group project. In order to obtain course credit a written essay / report will be required (details to be specified in the introductory session of the course).

851-0252-08L Evidence-Based Design: Methods and Tools For Evaluating Architectural Design
Objective The course aims to teach students how to evaluate a design project from the perspective of the end user. The concept of evidence-based design is introduced through a series of case studies. Students are given a theoretical background in space syntax and spatial cognition, with a view to applying this knowledge during the design process. The course covers a range of methods including visibility analysis, network analysis, conducting real-world observations, and virtual reality for architectural design. Students apply these methods to a case study of their choice, which can be at building or urban scale. For students taking a B-ARCH or M-ARCH degree, this can be a completed or ongoing design studio project. The course gives students the chance to implement the methods iteratively and explore how best to address the needs of the eventual end-user during the design process.

The course is tailored for students studying for B-ARCH and M-ARCH degrees. As an alternative to obtaining D-GESS credit, architecture students can obtain course credit in "Vertiefungsfach" or "Wahlfach".

851-0175-00L Images of the Human
Abstract Students are taught a variety of analytic techniques that can be used to evaluate architectural design. The concept of evidence-based design is introduced, and students are familiarized with different disciplinary backgrounds in the humanities and the social sciences. The aim of the course is to explore the multiple transformations of the conception of the "human" in the face of the current scientific, social and technological challenges, focusing on those related to recent digital technologies and practices. The lectures will be delivered by researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences.
Objective By the end of the course, students will be able to describe and compare different conceptions of the human at work in multiple fields of the humanities and the social sciences. They will be able to evaluate both the differences and the convergences between those conceptions, and critically assess their relation to current trends in science, technology and society, particularly in the context of new digital practices.
Content The remarkable development of AI in the past decade has brought about a renewed urge to rethink our image of the "human". In this way, computer science and technology join other scientific disciplines having experienced the same need in the face of current challenges, such as climate change or the global pandemic, which question the place of the human in its environment. Such circumstances reveal that a science of the human is today more necessary than ever. For this reason, the Turing Centre's lecture series of this year will be dedicated to exploring the multiple images of the human at work across the human sciences and their transformation as a consequence of the current digital challenges. In line with the Turing Centre's activity background on space syntax and spatial cognition, this is a project-oriented course, students implement a range of methods on a sample project. The course is tailored for architecture design students.

851-0421-00L Sapiens: A Reading Course
Abstract Yuval Noah Harari's "Sapiens" is the most successful historical book of recent years. The seminar examines the text from a history of science perspective: What kind of sources does it rely on? What type of history is being written here? And in what tradition does "Sapiens" represent a popular non-fiction book?
Objective In the course of the seminar, the students develop the competence to deal with the original text and the research literature on the history of anthropology, science and technology in a critical and historically thoughtful way. In doing so, they practise navigating independently through historical literature by means of smaller research tasks.
Content The aim of the seminar is to introduce students to the history of science in anthropology, prehistory and popular science literature on the history of mankind by reading "Sapiens". In addition to studying and critically discussing the original text, the students explore significant scientific and historical contexts of the book in small groups and present them in the seminar. In this way, they develop an understanding of the underlying narratives and popular science genres that inform "Sapiens".

851-0724-01L Real Estate Property Law
Abstract Fundamental concepts of Land Register Law and Land Surveying Law (substantive and procedural rules of Land Register Law, the parts and the relevance of the Land Register, process of registration with the Land Register, legal problems of land surveying, reform of the official land surveying).
Objective Overview of the legal norms of land registry and surveying law. The seminar will focus on the relevance of legal frameworks for property transactions.
Content Basic principles of material and formal land registry law, components of the land register, consequences of the land register, the registration process, legal problems of surveying, the reform of official surveying, liability of the geom-eter.
Lecture notes Abgegebene Unterlagen: Skript in digitaler Form
Literature
- Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrechts und des Grundbuchrechts, Beiträge aus dem Institut für schweizerisches und internationales Baurecht der Universität Freiburg/Schweiz, Zürich 2014
- Meinrad Huser, Geo-Informationsrecht, Rechtlicher Rahmen für Geographische Informationssysteme, Zürich 2005
- Meinrad Huser, Darstellung von Grenzen zur Sicherung dinglicher Rechte, in ZBGR 2013, 238 ff.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 963 of 2152
From Traffic Modeling to Smart Cities and Digital Democracies

Number of participants limited to 50.

Abstract
This seminar will present speakers who discuss the challenges and opportunities arising for our cities and societies with the digital revolution. Besides discussing questions of automation using Big Data, AI and other digital technologies, we will reflect on the question of how democracy could be digitally upgraded to promote innovation, sustainability, and resilience.

Objective
To collect credit points, students will have to give a 30-40 minute presentation in the seminar, after which the presentation will be discussed. The presentation will be graded.

Content
This seminar will present speakers who discuss the challenges and opportunities arising for our cities and societies with the digital revolution. Besides discussing questions of automation using Big Data, AI and other digital technologies, we will also reflect on the question of how democracy could be digitally upgraded, and how citizen participation could contribute to innovation, sustainability, resilience, and quality of life. This includes questions around collective intelligence and digital platforms that support creativity, engagement, coordination and cooperation.
Literature

Martin Treiber and Arne Kesting
Traffic Flow Dynamics: Data, Models and Simulation

Dirk Helbing
Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

Dirk Helbing
An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Michael Batty, Kay Axhausen et al.
Smart cities of the future
Books by Michael Batty
https://link.springer.com/article/10.1140/epjst/e2012-01703-3

How social influence can undermine the wisdom of crowd effect
https://www.pnas.org/content/108/22/2020

Evidence for a collective intelligence factor in the performance of human groups
https://science.sciencemag.org/content/330/6004/686.full

Optimal incentives for collective intelligence
https://www.pnas.org/content/114/20/5077.short

Collective Intelligence: Creating a Prosperous World at Peace
https://www.amazon.com/Collective-Intelligence-Creating-Prosperous-World/dp/097156616X/

Big Mind: How Collective Intelligence Can Change Our World
https://www.amazon.com/Big-Mind-Collective-Intelligence-Change/dp/0691170797/

Programming Collective Intelligence
https://www.amazon.com/Programming-Collective-Intelligence-Building-Applications/dp/0596529325/

Urban architecture as connective-collective intelligence. Which spaces of interaction?
https://www.mdpi.com/2071-1050/5/7/2928

Build digital democracy
https://www.nature.com/news/society-build-digital-democracy-1.18690

How to make democracy work in the digital age
http://www.huffingtonpost.com/entry/how-to-make-democracy-work-in-the-digital-age_us_57a2f48e4b0456cb7e17e0f

Digital Democracy: How to make it work?
http://futurict.blogspot.com/2020/06/digital-democracy-how-to-make-it-work.html

Proof of witness presence: Blockchain consensus for augmented democracy in smart cities

Iterative Learning Control for Multi-agent Systems Coordination
https://dl.acm.org/doi/abs/10.1145/3277668

Decentralized Collective Learning for Self-managed Sharing Economies
https://dl.acm.org/doi/abs/10.1145/3277668

Further literature will be recommended in the lectures.
Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Techniques and Technologies	assessed
Domain C - Social Competencies	Analytical Competencies	assessed
	Decision-making	not assessed
	Media and Digital Technologies	assessed
	Problem-solving	assessed
	Project Management	not assessed
Domain D - Personal Competencies	Communication	assessed
	Cooperation and Teamwork	not assessed
	Customer Orientation	not assessed
	Leadership and Responsibility	not assessed
	Self-presentation and Social Influence	not assessed
	Sensitivity to Diversity	not assessed
	Negotiation	not assessed
	Adaptability and Flexibility	not assessed
	Creative Thinking	assessed
	Critical Thinking	assessed
	Integrity and Work Ethics	assessed
	Self-awareness and Self-reflection	assessed
	Self-direction and Self-management	assessed

Contract Design II

851-0742-01L
W 1 credit 1U
A. Stremitzer

Abstract
Contract Design II is a masterclass in the form of an interactive clinic that allows you to deepen your understanding of contracting by applying insights from Contract Design I to a comprehensive case study. Together with your classmates, you are going to advise a (hypothetical) client organization planning to enter a complex transaction on how to structure the underlying contract.

Objective
There is a possibility that representatives from companies that were previously engaged in similar deals will visit us in class and tell you about their experience firsthand. In Contract Design I, you will receive more detailed information on the content and learning objectives of Contract Design II. If you have urgent questions, please do not hesitate to send an email to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

Prerequisites / notice
To enable you to work under the close supervision of your professor and his team, only a small group of students with backgrounds in law, business, or engineering is admitted to this course. This simulation is time-consuming and challenging. Hence, we can only admit the most successful and motivated students to this class. Further information on the application process will follow.

Theory and Practice: Heterotopia, Referential Space and Spatial Effects

052-0517-21L
W 2 credits 2G
C. Posthufen, A. Brändhuber

Abstract
In 1967, Foucault showed certain entanglements of space with his concept of heterotopia; a little later, Pierre Bourdieu established a multidimensional space sociologically with his concept of field. The seminar also discusses such interweaving in current local situations and tries to think about potentials for spatial policy practice.

Objective
The students gain insight into the spectrum of epistemological and perceptual theories, learn to read them and analyze and critique their respective requirements. From this work an object relationship model is developing in progress, which serves self-examination in the design process as well as the evaluation of architectural situations in general and in particular. The writing of "scientific diaries" in which the contents of the colloquium are combined with the everyday experience of the students in free form, trains the concentrated result-oriented thinking in general, as well as in architectural situations. The special form of the writing of the "scientific diary" leads abstract Theory together with the experience of the students and make the knowledge creatively available in their own way.

Content
In 1967, Foucault showed certain entanglements of space with his concept of heterotopia; a little later, Pierre Bourdieu established a multidimensional space sociologically with his concept of field. The seminar also discusses such interweaving in current local situations and tries to think about potentials for spatial policy practice. Cooperation in the form of discussions and scientific diary.

Prerequisites / notice
The additional personal work (besides the course) is about 20 working hours for the creation of a scientific journal, individual deepening and filming!

Science and the Public: A Problem of Mediation that the Media Have to Solve?

851-0107-00L
W 2 credits 1S
U. J. Wenzel

Abstract
Scientific knowledge is often provisional; it is subject to correction. That is why it cannot always satisfy the need for certainty and clarity that arises in the public as soon as political controversies are linked to questions of (scientific) knowledge. This is shown by the Corona pandemic, but not only by it. How can science journalism, how can scientists deal with this problem? Do the natural sciences, medicine and technology differ from the humanities and social sciences in terms of comprehensibility and public awareness? These questions will be explored on some excursions into recent and also older media, scientific and cultural history.

Basic Problems of Environmental Ethics

851-0101-80L
W 3 credits 2G
L. Wingert

Abstract
Climate change exerts a pressure on us to significantly change our individual and collective behaviour. Such a pressure raises questions like: Who has to give up what? What is a fair distribution of the burdens in the struggle against the climate change? What is the reasonable understanding of our relation to nature? How should we run our economies?
Objective

Participants should become familiar with basic approaches to central problems in environmental ethics.

The course will try to give an argument-based answer to the question: What are the responsibilities for individuals (e.g. as consumers), and for collectivities (e.g. states and firms).

Another focus will be to clarify the concept of "climate justice".

The course should also enable participants to evaluate different answers to the question how we should organize our economies for securing our ecological niche.

Literature

Preparatory Literature

Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than half a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation incentives, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=CvldtG70zqO). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

Handouts, prerecorded videos, slides, and other materials are available. Particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, DAMTH, D-MTEC, D-INFK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

851-0707-00L Space Planning Law and Environment

Objective

Basic understanding of nature and function of space planning from a legal point of view. Basic knowledge of space planning instruments, relationship between space planning and constitutional law (especially property rights), solving of practical cases.

Content

The Vorlesung basiert wesentlich auf der Mitwirkung der Studenten. Es finden 3 Sitzungen im Hörsaal statt, in welchen sich in der Praxis stellende Probleme erörtert werden. Die Vorbereitung auf die jeweiligen Sitzungen erfolgt an Hand von Fallbearbeitungen und einem System of swiss planning law, Constitutional and statutory provisions, Space planning and fundamental rights, Instruments, Application, legal protection, enforcement, Practical training.

The basics of ethics and provides in-depth knowledge of environmental ethics and its debates. This theoretical background will be applied and critically reflected using examples of current environmental challenges.

Objective

On completion of this lecture, you have acquired the ability to identify, analyze, critically reflect and resolve ethical challenges in general and specifically regarding the environment. You know basic concepts, positions and lines of argumentation from the debate in environmental ethics, which you have applied and discussed in smaller exercises.

Content

- Introduction to general and applied ethics.
- Overview and discussion of ethical theories relevant to address environmental challenges.
- Familiarisation with various basic standpoints within environmental ethics.
- Cross-section topics, such as sustainability, intergenerational justice, protection of species, etc.
- Practicing of newly acquired knowledge in smaller exercises.

Lecture notes

Presentation slides of the individual sessions will be distributed, including the most important theories and keywords; extended reading lists.

- Andrew Light/Holmes Rolston III, Environmental Ethics. An Anthology, 2003
- Johann O'Neill et al., Environmental Values, 2008
- Konrad Ott/Jan Dierks/Lieske Vogel-Kleschin, Handbuch Umweltethik, 2016

- Marcus Düwell et. al. (Hrsg.), Handbuch Ethik, 2. Auflage, Stuttgart (Metzler Verlag), 2006
- Johann S. Ach et. al. (Hrsg.), Grundkurs Ethik 1. Grundlagen, Paderborn (mentis) 2008

Prerequisites / notice

We expect participants to engage in and contribute to discussions for keeping the course interesting and lively.

052-0801-00L Global History of Urban Design I

This course focuses on the history of the design of cities, as well as on the ideas, processes and actors that engender and lead their development and transformation. The history of urban design will be approached as a cross-cultural field of knowledge that integrates scientific, economic and technical innovation as well as social and cultural advances.

Objective

The lectures deal mainly with the definition of urban design as an independent discipline, which maintains connections with other disciplines (politics, sociology, geography) that are concerned with the transformation of the city. The aim is to make students conversant with the multiple theories, concepts and approaches of urban design as they were articulated throughout time in a variety of cultural contexts, thus offering a theoretical framework for students' future design work.
In the first semester the genesis of the objects of study, the city, urban culture and urban design, are introduced and situated within their intellectual, cultural and political contexts:

- 01: The History and Theory of the City as Project
- 02: Of Rituals, Water and Mud: The Urban Revolution in Mesopotamia and the Indus
- 03: The Idea of the Polis: Rome, Greece and Beyond
- 04: The Long Middle Ages and their Counterparts: From the Towns of Tuscany to Delhi
- 05: Between Ideal and Laboratory: Of Middle Eastern Grids and European Renaissance Principles
- 06: Of Absolutism and Enlightenment: Baroque, Defense and Colonization
- 07: The City of Labor: Company Towns as Cross-Cultural Phenomenon
- 08: Garden Cities of Tomorrow: From the Global North to the Global South and Back Again
- 09: Civilization and City Beautiful: The Park Movement of Olmsted and The Urban Plans of Burnham
- 10: The Extension of the European City: From the Viennese Ringstrasse to Amsterdam Zuider Eiland
- 11: Urbanization and the Developing World: From the Emerging Cities to the Developing World
- 12: The City as Project: From the Global North to the Global South

Lecture notes
Prior to each lecture a chapter of the reader (Skript) will be made available through the webpage of the Chair. These chapters will provide an introduction to the lecture, the basic visual references of each lecture, key dates and events, as well as references to the compulsory and additional reading.

Literature
There are three books that will function as main reference literature throughout the course:

These books will be reserved for consultation in the ETH Baubibliothek, and will not be available for individual loans.

Prerequisites / notice
A list of further recommended literature will be found within each chapter of the reader (Skript).

Students are required to familiarize themselves with the conventions of architectural drawing (reading and analyzing plans at various scales).

Prerequisites / notice
Students have a strong background in machine learning and excellent programming skills (preferably in Python).

Autumn Semester 2021

AI4Good

W 3 credits 2G J. D. Wegner

Abstract

The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members.

Objective

Given a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a suitable solution. Students will also learn to critically evaluate their ideas and solutions together with all course members in a broader context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.

Content

The AI4Good course is a hackathon turning into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data (and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a specific problem. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Every week, each group will present ideas and progress during a short presentation followed by a discussion with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Note: The course AI4Good is not related to Hack4Good, which is a students' initiative organized by the Analytics Club at ETH. For more information about Hack4Good check out the website: https://analytics-club.org/wordpress/hack4good/.

Sapiens: A Reading Course

W 3 credits 2S N. Guettler

Abstract

Yuval Noah Harari's "Sapiens" is the most successful historical book of recent years. The seminar examines the text from a history of science perspective: What kind of sources does it rely on? What kind of history is being written here? And in what tradition does "Sapiens" represent a non-fiction book?

Objective

In the course of the seminar, the students develop the competence to deal with the original text and the research literature on the history of anthropology, science and technology in a critical and historically thoughtful way. In doing so, they practise navigating independently through historical literature by means of smaller research tasks.

Content

The aim of the seminar is to introduce students to the history of science in anthropology, prehistory and popular science literature on the history of mankind by reading "Sapiens". In addition to studying and critically discussing the original text, the students explore significant scientific and historical contexts of the book in small groups and present them in the seminar. In this way, they develop an understanding of the underlying narratives and popular science genres that inform "Sapiens".

Real Estate Property Law

W 3 credits 3V M. Huser, R. Müller-Wyss, S. Stucki

Abstract

Fundamental concepts of Land Register Law and Land Surveying Law (substantive and procedural rules of Land Register Law, the parts and the relevance of the Land Register, process of registration with the Land Register, legal problems of land surveying, reform of the official land surveying).

Objective

Overview of the legal norms of land registry and surveying law.

Content

Basic principles of material and formal land registry law, components of the land register, consequences of the land register, the registration process, legal problems of surveying, the reform of official surveying, liability of the geometer.

Lecture notes

Abgegebene Unterlagen: Skript in digitaler Form

Pflichtlektüre: Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrechts und des Grundbuchrechts. Beiträge aus dem Institut für schweizerisches und internationales Baurecht der Universität Freiburg/Schweiz, Zürich 2014

- Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrechts und des Grundbuchrechts, Zürich 2014
- Meinrad Huser, Geo-Informationsrecht, Rechtlicher Rahmen für Geographische Informationssysteme, Zürich 2005
- Meinrad Huser, Darstellung von Grenzen zur Sicherung dinglicher Rechte, in ZBGR 2013, 238 ff.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: not assessed

851-0742-01L Contract Design II
Number of participants limited to 40
This course is taught by Professor Alexander Stremitzer (https://lawecon.ethz.ch/group/professors/stremitzer.html). To be considered for Contract Design II, you must have completed Contract Design I in the same semester. Students can only register for Contract Design II after having obtained approval by Prof. Stremitzer.

Abstract
Contract Design II is a masterclass in the form of an interactive clinic that allows you to deepen your understanding of contracting by applying insights from Contract Design I to a comprehensive case study. Together with your classmates, you are going to advise a (hypothetical) client organization planning to enter a complex transaction on how to structure the underlying contract.

Objective
This course will try to give an argument-based answer to the question: What are the responsibilities for individuals (e.g. as consumers), and for collectivities (e.g. states and firms). Another focus will be to clarify the concept of "climate justice".

The course should also enable participants to evaluate different answers to the question how we should organize our economies for securing our ecological niche.

Literature
Preparatory Literature

851-0010-00L Basic Problems of Environmental Ethics

Abstract
Climate change exerts a pressure on us to significantly change our individual and collective behaviour. Such a pressure raises questions like: Who has to give up what? What is a fair distributions of the burdens in the struggle against the climate change? What is the reasonable understanding of our relation to nature? How should we run our economies?

Objective
Participants should become familiar with basic approaches to central problems in environmental ethics. The course will try to give an argument-based answer to the question: What are the responsibilities for individuals (e.g. as consumers), and for collectivities (e.g. states and firms).

Another focus will be to clarify the concept of "climate justice".

The course should also enable participants to evaluate different answers to the question how we should organize our economies for securing our ecological niche.

Literature
Preparatory Literature

D-BIOL

Number Title Type ECTS Hours Lecturers
851-0180-00L Research Ethics W 2 credits 2G G. Achermann, P. Emch

Particularly suitable for students of D-BIOL, D-CHAB, D-HEST

Abstract
Students are able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different normative perspectives and to create their own well-justified reasoning for taking decisions to the kind of ethical problems a scientist is likely to encounter during the different phases of biomedical research.

Objective
- Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
- Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles), and their ability to use these skills in assessing other people's arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;
I. Introduction to Moral Reasoning

1. Ethics - the basics
1.1 What ethics is not... 1.2 Recognising an ethical issue (awareness) 1.3 What is ethics? Personal, cultural and ethical values, principles and norms 1.4 Ethics: a classification 1.5 Research Ethics: what is it and why is it important?

2. Normative Ethics
2.1 What is normative ethics? 2.2 Types of normative theories – three different ways of thinking about ethics: Virtue theories, duty-based theories, consequentialist theories 2.3 The plurality of normative theories (moral pluralism); 2.4 Roles of normative theories in "Research Ethics"

3. Decision making: How to solve a moral dilemma
3.1 How (not) to approach ethical issues 3.2 What is a moral dilemma? Is there a correct method for answering moral questions? 3.3 Methods of making ethical decisions 3.4 Is there a "right" answer?

II. Research Ethics - Internal responsibilities

1. Integrity in research and research misconduct
1.1 What is research integrity and why is it important? 1.2 What is research misconduct? 1.3 Questionable/Detrimental Research Practice (QRP/DRP) 1.4 What is the incidence of misconduct? 1.5 What are the factors that lead to misconduct? 1.6 Responding to research wrongdoing 1.7 The process of dealing with misconduct 1.8 Approaches to misconduct prevention and for promoting integrity in research

2. Data Management
2.1 Data collection and recordkeeping 2.2 Analysis and selection of data 2.3 The (mis)representation of data 2.4 Ownership of data 2.5 Retention of data 2.6 Sharing of data (open research data) 2.7 The ethics of big data

3. Publication ethics / Responsible publishing
3.1 Background 3.2 Criteria for being an author 3.3 Ordering of authors 3.4 Publication practices

III. Research Ethics – External responsibilities

1. Research involving human subjects
1.1 History of research with human subjects 1.2 Basic ethical principles – The Belmont Report 1.3 Requirements to make clinical research ethical 1.4 Social value and scientific validity 1.5 Selection of study participants – the concept of vulnerability 1.6 Favourable risk-benefit ratio 1.7 Independent review - Ethics Committees 1.8 Informed consent 1.9 Respect for potential and enrolled participants

2. Social responsibility
2.1 What is social responsibility? a) Social responsibility of the individual scientist b) Social responsibility of the scientific community as a whole; 2.2 Participation in public discussions: a) Debate & Dialogue b) Communicating risks & uncertainties c) Science and the media 2.3 Public advocacy (policy making)

3. Dual use research
3.1 Introduction to Dual use research 3.2 Case study – Censuring science? 3.3 Transmission studies for avian flu (H5N1) 3.4 Synthetic biology

Lecture notes
Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.

Prerequisites / notice
What are the requirements?
First and foremost your strong willingness to seriously achieve the main learning outcomes as indicated in the Course Catalogue (specific learning outcomes for each module will be provided at the beginning of the course). For successfully completing the course Research Ethics, the following commitment is absolutely necessary (but not sufficient) (observed success factors for many years!):
1. Your regular presence is absolutely required (so please no double, parallel enrollment for courses taking place at the identical time!) connected with your active participation during class, e.g. taking notes, contributing to discussions (in group as well as in plenary class), solving exercises.
2. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more...).

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Problem-solving
Domain C - Social Competencies
Communication
Cooperation and Teamwork
Domain D - Personal Competencies
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection

851-0738-01L
The Role of Intellectual Property in the Engineering and Technical Sector
Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT

Abstract
The lecture gives an overview of the fundamental aspects of intellectual property, which plays an important role in the daily routine of engineers and scientists. The lecture aims to make participants aware of the various methods of protection and to put them in a position to use this knowledge in the workplace.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 971 of 2152
Objective

In recent years, knowledge about intellectual property has become increasingly important for engineers and scientists. Both in production and distribution and in research and development, they are increasingly being confronted with questions concerning the patenting of technical inventions and the use of patent information.

The lecture will acquaint participants with practical aspects of intellectual property and enable them to use the acquired knowledge in their future professional life.

Topics covered during the lecture will include:
- The importance of innovation in industrialised countries
- An overview of the different forms of intellectual property
- The protection of technical inventions and how to safeguard their commercialisation
- Patents as a source of technical and business information
- Practical aspects of intellectual property in day-to-day research, at the workplace and for the formation of start-ups.

Case studies will illustrate and deepen the topics addressed during the lecture.

The seminar will include practical exercises on how to use and search patent information. Basic knowledge of how to read and evaluate patent documents as well as how to use publicly available patent databases to obtain the required patent information will also be provided.

Prerequisites / notice

The lecture addresses students in the fields of engineering, science and other related technical fields.

<table>
<thead>
<tr>
<th>851-0732-06L</th>
<th>Law & Tech</th>
<th>W</th>
<th>3 credits</th>
<th>3S</th>
<th>A. Stremitzer, J. Merane, A. Nielsen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants limited to 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This course introduces students to legal, economic, and social perspectives on the increasing economic and social importance of technology. We focus particularly on the challenges to current law posed by the increasing rate of tech innovation and adoption generally and also by case-specific features of prominent near-future technologies.

Objective

The course is intended for a wide range of engineering students, from machine learning to bioengineering to human computer interaction, as well as for law students interested in acquiring a better understanding of state-of-the-art technology.

The course will combine both an overview of major areas of law that affect the regulation of technology and also guest lectures on the state-of-the art in a variety of important technologies, ranging from autonomous vehicles to fair artificial intelligence to consumer-facing DNA technologies.

The course is open to ETH students through the Science in Perspective program of the Department of Humanities, Social and Political Sciences.
The planned course outline is below

1. Overview of science, law, and technology
 a. Studies of law and technology
 b. Should science be regulated, and if so, how?
 c. Technology as a social problem

2. Designing technology for humans
 a. Attention fiduciaries and the digital environment
 b. Does technology weaponize known problems of bounded human rationality?
 c. Should technology be regulated as a psychotropic substance? An addictive substance?
 d. Can technology make life easier?
 e. Psychological effects of surveillance

3. Governing tech
 a. Can small governments regulate big tech?
 b. National and supranational legislation
 c. Enforcing the law with technology
 d. Can enforcement be baked into technology?

4. AI and fairness
 a. Discrimination
 b. Privacy
 c. Opacity
 d. AI and due process

5. Trade secret and technological litigation
 a. Trade secret is a long-standing tool for litigation but does it enjoy too much deference?
 b. Trade secrets and the rights of employees

6. Enforcement against tech
 a. Big tech and antitrust
 b. Consumer protection

7. The Digital Battlefield
 a. Technology for spying
 b. Spying on technology companies
 c. Race to be AI superpower
 d. Immigration policy

8. Contract law
 a. Smart contracts
 b. Modernizing contract law and practice
 c. Regulating cryptocurrencies

9. Tort law
 a. Applying existing tort law to new autonomous technologies
 b. Personhood and personal responsibility
 c. Victim entitlements

10. Self-driving cars and other autonomous robotics
 a. Legal regimes
 b. Diversity in morality judgements related to autonomous vehicles

11. Biometrics
 a. Widespread use of facial recognition
 b. Law enforcement
 c. Connecting biometrics to social data
 d. Solving crimes with biometrics

12. New Biology and Medicine
 a. Unregulated science (biohackers)
 b. Promising technology before it can be delivered
 c. Connecting medicine to social data
 d. Using technology to circumvent medical regulations

Abstract
This seminar will explore the multiple transformations of the conception of the “human” in the face of the current scientific, social, and technological challenges, focusing on those related to recent digital technologies and practices. The lectures will be delivered by researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences.

Objective
By the end of the course, students will be able to describe and compare different conceptions of the human at work in multiple fields of the humanities and the social sciences. They will be able to evaluate both the differences and the convergences between those conceptions, and critically assess their relation to current trends in science, technology and society, particularly in the context of new digital practices.

Content
The remarkable development of AI in the past decade has brought about a renewed urge to rethink our image of the “human”. In this way, computer science and technology join other scientific disciplines having experienced the same need in the face of current challenges, such as climate change or the global pandemic, which question the place of the human in its environment. Such circumstances reveal that a science of the human is today more necessary than ever. For this reason, the Turing Centre's lecture series of this year will be dedicated to exploring the multiple images of the human at work across the human sciences and their transformation as a consequence of the current global challenges. In line with the Turing Centre’s activities, the focus will be on challenges related to recent digital technologies and practices. Various researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences, will present what they consider crucial concepts, methods, challenges, and limits in our investigations about the human and its relation to machines, animals and nature.
Objective
Participants should become familiar with basic approaches to central problems in environmental ethics.

The course will try to give an argument-based answer to the question: What are the responsibilities for individuals (e.g. as consumers), and for collectivities (e.g. states and firms).

Another focus will be to clarify the concept of "climate justice".

The course should also enable participants to evaluate different answers to the question how we should organize our economies for securing our ecological niche.

Preparatory Literature

Literature

The remarkable development of AI in the past decade has brought about a renewed urge to rethink our image of the “human”. In this way, computer science and technology join other scientific disciplines having experienced the same need in the face of current challenges, such as climate change or the global pandemic, which question the place of the human in its environment. Such circumstances reveal that a science of the human is today more necessary than ever. For this reason, the Turing Centre’s lecture series of this year will be dedicated to exploring the multiple images of the human at work across the human sciences and their transformation as a consequence of the current global challenges. In line with the Turing Centre’s activities, the focus will be on challenges related to recent digital technologies and practices. Various researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences, will present what they consider crucial concepts, methods, challenges, and limits in our investigations about the human and its relation to machines, animals and nature.

Basic Problems of Environmental Ethics

- **Title:** Basic Problems of Environmental Ethics
- **Type:** W
- **ECTS:** 3
- **Hours:** 2G
- **Lecturer:** L. Wingert

Abstract

Climate change exerts a pressure on us to significantly change our individual and collective behaviour. Such a pressure raises questions like: Who has to give up what? What is a fair distribution of the burdens in the struggle against the climate change? What is the reasonable understanding of our relation to nature? How should we run our economies?

Another focus will be to clarify the concept of “climate justice”.

The course should also enable participants to evaluate different answers to the question how we should organize our economies for securing our ecological niche.

Objective

Participants should become familiar with basic approaches to central problems in environmental ethics.

The course will try to give an argument-based answer to the question: What are the responsibilities for individuals (e.g. as consumers), and for collectivities (e.g. states and firms).

- Participants should also become familiar with central concepts in environmental ethics such as: responsibilities, climate justice, environmental ethics.

Literature

D-CHAB

Number

| 851-0180-00L |

Title

| Research Ethics |

Type

| W |

ECTS

| 2 |

Hours

| 2G |

Lecturers

| G. Achermann, P. Emch |

Number of participants limited to 40

Abstract

Students are able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different normative perspectives and to create their own well-justified reasoning for taking decisions to the kind of ethical problems a scientist is likely to encounter during the different phases of biomedical research.

Objective

Participants of the course Research Ethics will

- Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
- Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles), and their ability to use these skills in assessing other people’s arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;
I. Introduction to Moral Reasoning

1. Ethic - the basics
1.1 What ethics is not… 1.2 Recognising an ethical issue (awareness) 1.3 What is ethics? Personal, cultural and ethical values, principles and norms 1.4 Ethics: a classification 1.5 Research Ethics: what is it and why is it important?

2. Normative Ethics
2.1 What is normative ethics? 2.2 Types of normative theories – three different ways of thinking about ethics: Virtue theories, duty-based theories, consequentialist theories 2.3 The plurality of normative theories (moral pluralism); 2.4 Roles of normative theories in "Research Ethics"

3. Decision making: How to solve a moral dilemma
3.1 How (not) to approach ethical issues 3.2 What is a moral dilemma? Is there a correct method for answering moral questions? 3.3 Methods of making ethical decisions 3.4 Is there a "right" answer?

II. Research Ethics - Internal responsibilities
1. Integrity in research and research misconduct
1.1 What is research integrity and why is it important? 1.2 What is research misconduct? 1.3 Questionable/Detrimental Research Practice (QRP/DRP) 1.4 What is the incidence of misconduct? 1.5 What are the factors that lead to misconduct? 1.6 Responding to research wrongdoing 1.7 The process of dealing with misconduct 1.8 Approaches to misconduct prevention and for promoting integrity in research

2. Data Management
2.1 Data collection and recordkeeping 2.2 Analysis and selection of data 2.3 The (mis)representation of data 2.4 Ownership of data 2.5 Retention of data 2.6 Sharing of data (open research data) 2.7 The ethics of big data

3. Publication ethics / Responsible publishing
3.1 Background 3.2 Criteria for being an author 3.3 Ordering of authors 3.4 Publication practices

III. Research Ethics – External responsibilities
1. Research involving human subjects
1.1 History of research with human subjects 1.2 Basic ethical principles – The Belmont Report 1.3 Requirements to make clinical research ethical 1.4 Social value and scientific validity 1.5 Selection of study participants – the concept of vulnerability 1.6 Favourable risk-benefit ratio 1.7 Independent review - Ethics Committees 1.8 Informed consent 1.9 Respect for potential and enrolled participants

2. Social responsibility
2.1 What is social responsibility? a) Social responsibility of the individual scientist b) Social responsibility of the scientific community as a whole; 2.2 Participation in public discussions: a) Debate & Dialogue b) Communicating risks & uncertainties c) Science and the media 2.3 Public advocacy (policy making)

3. Dual use research
3.1 Introduction to Dual use research 3.2 Case study – Censuring science? 3.3 Transmission studies for avian flu (H5N1) 3.4 Synthetic biology

Lecture notes
Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.

Prerequisites / notice
What are the requirements?
First and foremost your strong willingness to seriously achieve the main learning outcomes as indicated in the Course Catalogue (specific learning outcomes for each module will be provided at the beginning of the course). For successfully completing the course Research Ethics, the following commitment is absolutely necessary (but not sufficient) (observed success factors for many years!):
1. Your regular presence is absolutely required (so please no double, parallel enrollment for courses taking place at the identical time!)
2. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more…)
3.1 History of research with human subjects 1.2 Basic ethical principles – The Belmont Report 1.3 Requirements to make clinical research ethical 1.4 Social value and scientific validity 1.5 Selection of study participants – the concept of vulnerability 1.6 Favourable risk-benefit ratio 1.7 Independent review - Ethics Committees 1.8 Informed consent 1.9 Respect for potential and enrolled participants

Taught competencies

Domain A - Subject-specific Competencies
1. Concepts and Theories
2. Analytical Competencies
3. Decision-making
4. Problem-solving

Domain B - Method-specific Competencies
1. Communication
2. Cooperation and Teamwork
3. Creative Thinking
4. Critical Thinking
5. Integrity and Work Ethics
6. Self-awareness and Self-reflection

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Contract Design I</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0742-00L</td>
<td>W</td>
</tr>
</tbody>
</table>

This course is taught by Professor Alexander Stremitzer (https://laweconbusiness.ethz.ch/group/professor/stremitzer.html). Note that this is NOT a legal drafting class that focuses on contractual language. Instead, in Contract Design I, you will learn what the content of a contract should be so that parties can reach their goals.

You can find all course materials and the most recent announcements on Moodle. Please log in to Moodle using your ETH or UZH credentials. Then search for "Contract Design I (851-0742-00L; Fall 2021)" and enroll. The password is "ContractDesign01".

Number of participants limited to 160.
Max 80 ETHZ and 80 UZH Students

Abstract
Contract Design I aims to bridge the gap between economic contract theory, contract law, and the writing of real-world contracts. In this course, we take a systematic approach to contract design. This means we first analyze the economic environment in which a transaction takes place, and then engineer contracts that achieve the desired outcome.
Objective

Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than half a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=CVldG70zQ0). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

Handouts, prerecorded videos, slides, and other materials

Lecture notes

Prerequisites / notice

Prerequisite Contract Design I is available to ETH students through the Science in Perspective (SiP) Program of D-GESSH. This course is particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, D-MATH, D-MTEC, D-INFK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

851-0738-00L Intellectual Property: Introduction

W 2 credits 2V M. Schweizer

Abstract

The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

Objective

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

851-0738-01L The Role of Intellectual Property in the Engineering and Technical Sector

W 2 credits 2V K. Houshang Pour Islam

Abstract

The lecture gives an overview of the fundamental aspects of intellectual property, which plays an important role in the daily routine of engineers and scientists. The lecture aims to make participants aware of the various methods of protection and to put them in a position to use this knowledge in the workplace.

Objective

In recent years, knowledge about intellectual property has become increasingly important for engineers and scientists. Both in production and distribution and in research and development, they are increasingly being confronted with questions concerning the patenting of technical inventions and the use of patent information.

The lecture will acquaint participants with practical aspects of intellectual property and enable them to use the acquired knowledge in their future professional life.

Topics covered during the lecture will include:
- The importance of innovation in industrialised countries
- An overview of the different forms of intellectual property
- The protection of technical inventions and how to safeguard their commercialisation
- Patents as a source of technical and business information
- Practical aspects of intellectual property in day-to-day research, at the workplace and for the formation of start-ups.

Case studies will illustrate and deepen the topics addressed during the lecture.

The seminar will include practical exercises on how to use and search patent information. Basic knowledge of how to read and evaluate patent documents as well as how to use publicly available patent databases to obtain the required patent information will also be provided.

Prerequisites / notice

The lecture addresses students in the fields of engineering, science and other related technical fields.

851-0742-01L Contract Design II

W 1 credit 1U A. Stremitzer

Abstract

This course is taught by Professor Alexander Stremitzer (https://law econ.ethz.ch/group/professors/stremitzer.html).

To be considered for Contract Design II, you must have completed Contract Design I in the same semester. Students can only register for Contract Design II after having obtained approval by Prof. Stremitzer.

Objective

Contract Design II is a masterclass in the form of an interactive clinic that allows you to deepen your understanding of contracting by applying insights from Contract Design I to a comprehensive case study. Together with your classmates, you are going to advise a (hypothetical) client organization planning to enter a complex transaction on how to structure the underlying contract.

There is a possibility that representatives from companies that were previously engaged in similar deals will visit us in class and tell you about their experience firsthand. In Contract Design I, you will receive more detailed information on the content and learning objectives of Contract Design II. If you have urgent questions, please do not hesitate to send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

Prerequisites / notice

To enable you to work under the close supervision of your professor and his team, only a small group of students with backgrounds in law, business, or engineering is admitted to this course. This simulation is time-consuming and challenging. Hence, we can only admit the most successful and motivated students to this class. Further information on the application process will follow.

851-0125-65L A Sampler of Histories and Philosophies of Science

W 3 credits 2V R. Wagner
Research and technologies emerging from the life sciences bring beneficial aspects to our society but also unforeseeable risks regarding the use of those technologies in areas such as biotechnology, biodefense, and biosecurity. This seminar will focus on the dual-use dilemma, where advancements in the life- and associated sciences can be used for both benevolent and malevolent purposes. Participants will learn about the advances in science and technology and their implications for society, international treaties (BWC or CWC) and their social, ethical and legal responsibilities as life scientists.

The ability of life science professionals to critically assess their own research regarding the possibility to apply scientific results or methods with benevolent or malevolent intentions (dual-use) and will be able to integrate strategies into their research design to reduce the misuse potential.

The seminar will review several case studies from the ancient, medieval and modern history of mathematics. The case studies will be analyzed from various philosophical perspectives, while situating them in their historical and cultural contexts.

During the course, you will discuss about your societal, ethical, and legal responsibilities as life scientists. You will become aware of the security challenges of novel technologies and scientific advancements in the life- and associated sciences.

The seminar will try to give an argument-based answer to the question: What are the responsibilities for individuals (e.g. as consumers), and for collectivities (e.g. states and firms).

Objective
- To introduce students to the history of mathematics
- To make sense of mathematical practices that appear unreasonable from a contemporary point of view
- To develop critical reflection concerning the nature of mathematical objects
- To introduce various theoretical approaches to the philosophy and history of mathematics
- To open the students' horizons to the plurality of mathematical cultures and practices

Literature
Students are able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different

Climate change exerts a pressure on us to significantly change our individual and collective behaviour. Such a pressure raises questions

The AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe

Research Ethics

The aim of the seminar is to introduce students to the history of science in anthropology, prehistory and popular science literature on the

2 credits

Type

ECTS

3 credits

2G

W

J. D. Wegner

851-0650-00L

AI4Good

Abstract

The AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members.

Objective

Given a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a suitable solution. Students will also learn to critically evaluate their ideas and solutions together with all course members in a broader context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.

Content

The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data (and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a specific problem. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Every two weeks, each group will present ideas and progress during a short presentation followed by a discussion with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Note: The course AI4Good is not related to Hack4Good, which is a students' initiative organized by the Analytics Club at ETH. For more information about Hack4Good check out the website: https://analytics-club.org/wordpress/hack4good/.

Prerequisites / notice

Students with a strong background in machine learning and excellent programming skills (preferably in Python)

851-0421-00L

Sapiens: A Reading Course

Abstract

Yuval Noah Harari's "Sapiens" is the most successful historical book of recent years. The seminar examines the text from a history of science perspective: What kind of sources does it rely on? What type of history is being written here? And in what tradition does "Sapiens" represent a popular non-fiction book?

Objective

In the course of the seminar, the students develop the competence to deal with the original text and the research literature on the history of anthropology, science and technology in a critical and historically thoughtful way. In doing so, they practise navigating independently through historical literature by means of smaller research tasks.

Content

The aim of the seminar is to introduce students to the history of science in anthropology, prehistory and popular science literature on the history of mankind by reading "Sapiens". In addition to studying and critically discussing the original text, the students explore significant scientific and historical contexts of the book in small groups and present them in the seminar. In this way, they develop an understanding of the underlying narratives and popular science genres that inform "Sapiens".

Preparatory Literature

851-0101-00L

Basic Problems of Environmental Ethics

Abstract

Climate change exerts a pressure on us to significantly change our individual and collective behaviour. Such a pressure raises questions like: Who has to give up what? What is a fair distribution of the burdens in the struggle against the climate change? What is the reasonable understanding of our relation to nature? How should we run our economies?

Objective

Participants should become familiar with basic approaches to central problems in environmental ethics.

The course will try to give an argument-based answer to the question: What are the responsibilities for individuals (e.g. as consumers), and for collectivities (e.g. states and firms).

Another focus will be to clarify the concept of "climate justice".

The course should also enable participants to evaluate different answers to the question how we should organize our economies for securing our ecological niche.

Literature

Preparatory Literature

Number

Title

Type

ECTS

Hours

Lecturers

851-0180-00L

Research Ethics

Number of participants limited to 40

Participants of the course Research Ethics will

• Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
• Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles), and their ability to use these skills in assessing other people's arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;

AngELiKA Krebs (Hrg.), NatuReThik. Grundtexte der gegenwärtigen tier- und ökoethischen Diskussion 1997
Andrew Light/Holmes Rolston III, Environmental Ethics. An Anthology, 2003
John O'Neill et al., Environmental Values, 2008
Konrad Ott/Jan Diers/ieske VogCr-Klesch, Handbuch Umweltethik, 2016
The course gives an introduction to the economic concepts and empirical findings in health economics. Physical activity. The course gives an introduction to the economic concepts and empirical findings in health economics.

Prerequisites / notice

Lecture notes

Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories: assessed
- Domain B - Method-specific Competencies
 - Analytical Competencies: assessed
 - Decision-making: assessed
 - Problem-solving: assessed
- Domain C - Social Competencies
 - Communication: assessed
- Domain D - Personal Competencies
 - Creative Thinking: assessed
 - Critical Thinking: assessed
 - Integrity and Work Ethics: assessed
 - Self-awareness and Self-reflection: assessed

Content

I. Introduction to Moral Reasoning
 1. Ethics - the basics
 1.1 What ethics is not…
 1.2 Recognising an ethical issue (awareness)
 1.3 What is ethics? Personal, cultural and ethical values, principles and norms
 1.4 Ethics: a classification
 1.5 Research Ethics: what is it and why is it important?

II. Research Ethics - Internal responsibilities
 1. Integrity in research and research misconduct
 1.1 What is research integrity and why is it important?
 1.2 What is research misconduct?
 1.3 Questionable/Detrimental Research Practice (QRP/DRP)
 1.4 What is the incidence of misconduct?
 1.5 What are the factors that lead to misconduct?
 1.6 Responding to research wrongdoing
 1.7 The process of dealing with misconduct
 1.8 Approaches to misconduct prevention and for promoting integrity in research

II. Research Ethics - Internal responsibilities
 1.1 History of research with human subjects
 1.2 Basic ethical principles – The Belmont Report
 1.3 Requirements to make clinical research ethical
 1.4 Social value and scientific validity
 1.5 Selection of study participants – the concept of vulnerability
 1.6 Favourable risk-benefit ratio
 1.7 Independent review
 1.8 Ethics Committees
 1.9 Informed consent
 1.10 Respect for potential and enrolled participants

II. Research Ethics - Internal responsibilities
 1. Social responsibility
 1.1 What is social responsibility?
 1.2 Social responsibility of the individual scientist
 1.3 Social responsibility of the scientific community as a whole
 1.4 Participation in public discussions:
 a) Debate & Dialogue
 b) Communicating risks & uncertainties
 c) Science and the media

II. Research Ethics - External responsibilities
 1. History of research with human subjects
 2. Social responsibility
 3. Dual use research
 3.1 Introduction to Dual use research
 3.2 Case study – Censuring science?
 3.3 Transmission studies for avian flu (H5N1)
 3.4 Synthetic biology

II. Research Ethics - External responsibilities
 1. Research involving human subjects
 1.1 History of research with human subjects
 1.2 Basic ethical principles – The Belmont Report
 1.3 Requirements to make clinical research ethical
 1.4 Social value and scientific validity
 1.5 Selection of study participants – the concept of vulnerability
 1.6 Favourable risk-benefit ratio
 1.7 Independent review
 1.8 Ethics Committees
 1.9 Informed consent
 1.10 Respect for potential and enrolled participants

III. Research Ethics – External responsibilities
 1. Research involving human subjects
 1.1 History of research with human subjects
 1.2 Basic ethical principles – The Belmont Report
 1.3 Requirements to make clinical research ethical
 1.4 Social value and scientific validity
 1.5 Selection of study participants – the concept of vulnerability
 1.6 Favourable risk-benefit ratio
 1.7 Independent review
 1.8 Ethics Committees
 1.9 Informed consent
 1.10 Respect for potential and enrolled participants

363-1027-00L

Introduction to Health Economics and Policy

W 2 credits

C. Walbel

Does not take place this semester.

Abstract

Health expenditures constitute about 10% of GDP in OECD countries. Extensive government intervention is a typical feature in health markets. Risk factors to health have been changing with growing importance of lifestyle factors such as smoking, obesity and lack of physical activity. This course gives an introduction to the economic concepts and empirical findings in health economics.

Objective

Introduce students without prior economic background to the main concepts of health economics and policy to enhance students understanding of how health care institutions and markets function.

Please note that we will apply basic economic concepts to health care markets. Hence, master students with an economic background have to expect that a large share of the concepts will overlap with their previous courses. However, they are, of course, welcome to join the course.

Content

The course gives an introduction to the economic concepts and empirical findings in health economics to enhance students understanding of how health care institutions and markets function. Motivated by the fact that health care markets are designed differently across countries, this course looks at the challenges in regulating health care markets. First, two important decisions of individuals will be analyzed: What types and amount of personal health care services does an individual demand? How much will health insurance coverage be purchased? In this regard, the supply side of health care markets will be discussed. What are the financial incentives of physicians, and how do these influence physicians' treatment choices? What does it mean and imply that a physician is an agent for a patient? The choices made by societies about how health care services are financed and about the types of organizations that supply health care will be addressed in the third part. One important choice is whether a country will rely on public financing of personal health care services or encourage private health insurance markets. How could and should a public health insurance system be designed? The advantages and disadvantages of the alternatives will be discussed to provide a framework for analyzing specific types of health care systems.
This workshop focuses on understanding and managing the ethical and social issues arising from the integration of new technologies in various aspects of daily life.

The Body in Global History

Yuval Noah Harari’s “Sapiens” is the most successful historical book of recent years. The seminar examines the text from a history of science perspective: What kind of sources does it rely on? What type of history is being written here? And in what tradition does “Sapiens” represent a popular non-fiction book?

The course should also enable participants to evaluate different answers to the question how we should organize our economies for securing our ecological niche.

Another focus will be to clarify the concept of “climate justice”.

The course should also enable participants to evaluate different answers to the question how we should organize our economies for securing our ecological niche.
By the end of this course, students will be able to critically assess their own research regarding the possibility to apply scientific results or methods with benevolent or malevolent intentions (dual-use) and will be able to integrate strategies into their research design to reduce the misuse potential.

Life sciences evolve rapidly supported by developments in related disciplines. However, while those new and emerging technologies greatly benefit society, they additionally bring along predictable as well as unforeseeable risks in the context of biosafety and biosecurity. During the course, you will discuss about your societal, ethical, and legal responsibilities as life scientists. You will become aware of biosafety and biosecurity risks and what scientists can do to minimize misuse potential in highest-risk research ("dual-use research of concern"). A strong focus of the seminar lies on interactive group work for which you will be able to build on your individual experiences and scientific background. Additionally, a combination of lectures and input from guest speakers will provide you with essential background information and insights into real-world applications. You will understand the dual-use dilemma and learn about biological warfare, biological terrorism, and the international prohibition regimes; the national implementation of the biological and toxins weapons convention and about efforts to build the web of prevention against the misuse of life sciences.

This seminar introduces theory and methods in human-computer interaction and usability. Cognitive Science provides a theoretical framework for designing user interfaces as well as a range of methods for assessing usability (user testing, cognitive walkthrough, GOMS). The seminar will provide an opportunity to experience some of the methods in applied group projects.

Contract Design I aims to bridge the gap between economic contract theory, contract law, and the writing of real-world contracts. In this course, we take a systematic approach to contract design. This means we first analyze the economic environment in which a transaction takes place, and then engineer contracts that achieve the desired outcome.
Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than half a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=CvldG7Qrz0I). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

Handouts, prerecorded videos, slides, and other materials

Lecture notes

Prerequisites / notice

Contract Design I is available to ETH students through the Science in Perspective (SiP) Program of D-GESS. This course is particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, DMATH, D-MTEC, D-INFK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

851-0727-02L E-Business-Law

particularly suitable for students of D-INFK, D-ITET

W 2 credits 2V D. Rosenthal

Objective

The objective is knowing and understanding key legal concepts relevant for doing e-business, in particular understanding how e-business is regulated by law nationally and internationally, how contracts are concluded and performed electronically, which rules have to be obeyed in particular in the Internet with regard to third party and own content and client data, the concept of liability applied in e-business and the role of the law in the practical implementation and operation of e-business applications.

Content

Vorgesehene Strukturierung der Vorlesung:

1) Welches Recht gilt im E-Business?
 - Internationalität des Internets
 - Regulierte Branchen

2) Gestaltung und Vermarktung von E-Business-Angeboten
 - Verwendung fremder und Schutz der eigenen Inhalte
 - Haftung im E-Business (und wie sie beschränkt werden kann)
 - Domain-Namen

3) Beziehung zu E-Business-Kunden
 - Verträge im E-Business, Konsumentenschutz
 - Elektronische Signaturen
 - Datenschutz
 - Spam

4) Verträge mit E-Business-Providern

Änderungen, Umstellungen und Kürzungen bleiben vorbehalten. Der aktuelle Termin- und Themenplan ist zu gegebener Zeit über die elektronische Dokumentenablage abrufbar.

Lecture notes

Es wird mit Folien gearbeitet, die als PDF über die elektronische Dokumentenablage (ILIAS) auf dem System der ETHZ vorgängig abrufbar sind. Auf dem Termin- und Themenplan (ebenfalls online abrufbar) sind Links zu Gesetzestexten und weiteren Unterlagen abrufbar. Schliesslich wird jede Vorlesung auch als Podcast aufgezeichnet, der jedoch nur für die Studierenden mit einem Passwort (erhältlich beim Dozenten) zugänglich sind.

Literature

Weiterführende Materialien, Links und Literatur sind auf dem Termin- und Themenplan aufgeführt (zu gegebener Zeit abrufbar via elektronische Dokumentenablage).

Prerequisites / notice

Die Semesterendprüfung war vor Corona in Form eines schriftlichen Kurztests (normalerweise ein MC, im letzten Jahr Coronabedingt aber eine Falllösung) in der letzten Doppelstunde ausgestaltet. Es wird angegeben, welche Unterlagen beim jeweiligen Thema den Prüfungsstoff definieren. Der Test wird möglicherweise elektronisch durchgeführt.

851-0738-00L Intellectual Property: Introduction

particularly suitable for students of D-CHAB, D-INFK, D-ITET, D-MAVT, D-MATL, D-MTEC

W 2 credits 2V M. Schweizer

Objective

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

851-0252-13L Network Modeling

Particularly suitable for students of D-INFK and in the MSc Data Science

W 3 credits 2V C. Stadtfeld, V. Amati

Students are required to have basic knowledge in
The following topics will be covered:

- Introduction to network models and their applications

- Stylized models:
 * uniform random graph models
 * small world models
 * preferential attachment models

- Models for testing hypotheses while controlling for the network structure:
 * Quadratic assignment procedure regression (QAP regression)

- Models for testing hypotheses on the network structure:
 * Models for one single observation of a network: exponential random graph models (ERGMs)
 * Models for panel network data: stochastic actor-oriented models (SAOMs)
 * Models for relational event data: dynamic network actor models (DynAMs)

The application of these models is illustrated through examples and practical sessions involving the analysis of network data using the software R.

Objective

Students will be able to develop hypotheses that relate to the structures and dynamics of (social) networks, and tests those by applying advanced statistical network methods such as exponential random graph models (ERGMs) and stochastic actor-oriented models (SAOMs). Students will be able to explain and compare various network models, and develop an understanding of how those can be fit to empirical data. This will enable students to independently address research questions from various social science fields.

Prerequisites / notice

Students are required to have basic knowledge in inferential statistics and should be familiar with linear and logistic regression models.

Literature

- Cohesion
- Roles
- Macro and Micro Structure

Lecture notes

Slides and lecture notes are distributed via the associated course moodle.

Content

The following topics will be covered with an emphasis on structural and computational approaches and frequent reference to their suitability with respect to substantive theory:

* Empirical Research and Network Data
* Macro and Micro Structure
* Centrality
* Roles
* Cohesion

Literature

Content

The planned course outline is below

1. Overview of science, law, and technology
 a. Studies of law and technology
 b. Should science be regulated, and if so, how?
 c. Technology as a social problem

2. Designing technology for humans
 a. Attention fiduciaries and the digital environment
 b. Does technology weaponize known problems of bounded human rationality?
 c. Should technology be regulated as a psychotropic substance? An addictive substance?
 d. Can technology make life easier?
 e. Psychological effects of surveillance

3. Governing tech
 a. Can small governments regulate big tech?
 b. National and supranational legislation
 c. Enforcing the law with technology
 d. Can enforcement be baked into technology?

4. AI and fairness
 a. Discrimination
 b. Privacy
 c. Opacity
 d. AI and due process

5. Trade secret and technological litigation
 a. Trade secret is a long-standing tool for litigation but does it enjoy too much deference?
 b. Trade secrets and the rights of employees

6. Enforcement against tech
 a. Big tech and antitrust
 b. Consumer protection

7. The Digital Battlefield
 a. Technology for spying
 b. Spying on technology companies
 c. Race to be AI superpower
 d. Immigration policy

8. Contract law
 a. Smart contracts
 b. Modernizing contract law and practice
 c. Regulating cryptocurrencies

9. Tort law
 a. Applying existing tort law to new autonomous technologies
 b. Personhood and personal responsibility
 c. Victim entitlements

10. Self-driving cars and other autonomous robotics
 a. Legal regimes
 b. Diversity in morality judgements related to autonomous vehicles

11. Biometrics
 a. Widespread use of facial recognition
 b. Law enforcement
 c. Connecting biometrics to social data
 d. Solving crimes with biometrics

12. New Biology and Medicine
 a. Unregulated science (biohackers)
 b. Promising technology before it can be delivered
 c. Connecting medicine to social data
 d. Using technology to circumvent medical regulations

Abstract

This course introduces mathematical and computational models to study techno-socio-economic systems and the process of scientific research. Students develop a significant project to tackle techno-socio-economic challenges in application domains of complex systems. They are expected to implement a model and communicating their results through a seminar thesis and a short oral presentation.

Objective

The students are expected to know a programming language and environment (Python, Java or Matlab) as a tool to solve various scientific problems. The use of a high-level programming environment makes it possible to quickly find numerical solutions to a wide range of scientific problems. Students will learn to take advantage of a rich set of tools to present their results numerically and graphically.

The students should be able to implement simulation models and document their skills through a seminar thesis and finally give a short oral presentation.

Content

Students are expected to implement themselves models of various social processes and systems, including agent-based models, complex networks models, decision making, group dynamics, human crowds, or game-theoretical models.

Part of this course will consist of supervised programming exercises. Credit points are finally earned for the implementation of a mathematical or empirical model from the complexity science literature and the documentation in a seminar thesis.
Lecture notes
The lecture slides will be presented on the course web page after each lecture.

Agent-Based Modeling
https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2

Social Self-Organization

Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Pedestrian, Crowd, and Evacuation Dynamics
https://www.research-collection.ethz.ch/handle/20.500.11850/45424

The hidden geometry of complex, network-driven contagion phenomena (relevant for modeling pandemic spread)
https://science.sciencemag.org/content/342/6164/1337

Further literature will be recommended in the lectures.

Prerequisites / notice
The number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Good programming skills and a good understanding of probability & statistics and calculus are expected.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concepts and Theories</td>
<td>Analytical Competencies</td>
<td>Communication</td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>Decision-making</td>
<td>Customer Orientation</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>Leadership and Responsibility</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem-solving</td>
<td>Self-presentation and Social Influence</td>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Management</td>
<td>Sensitivity to Diversity</td>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Negotiation</td>
<td>Self-direction and Self-management</td>
</tr>
<tr>
<td></td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
</tbody>
</table>

851-0760-00L Building a Robot Judge: Data Science for Decision-Making
Particularly suitable for students of D-INFK, D-ITET, D-MTEC

Abstract
This course explores the automation of decisions in the legal system. We delve into the machine learning tools needed to predict judge decision-making and ask whether techniques in model explanation and algorithmic fairness are sufficient to address the potential risks.

Objective
This course introduces students to the data science tools that may provide the first building blocks for a robot judge. While building a working robot judge might be far off in the future, some of the building blocks are already here, and we will put them to work.

Content
Data science technologies have the potential to improve legal decisions by making them more efficient and consistent. On the other hand, there are serious risks that automated systems could replicate or amplify existing legal biases and rigidities. Given the stakes, these technologies force us to think carefully about notions of fairness and justice and how they should be applied.

The focus is on legal prediction problems. Given the evidence and briefs in this case, how will a judge probably decide? How likely is a criminal defendant to commit another crime? How much additional revenue will this new tax law collect? Students will investigate and implement the relevant machine learning tools for making these types of predictions, including regression, classification, and deep neural networks models.

We then use these predictions to better understand the operation of the legal system. Under what conditions do judges tend to make errors? Against which types of defendants do parole boards exhibit bias? Which jurisdictions have the most tax loopholes? Students will be introduced to emerging applied research in this vein. In a semester paper, students (individually or in groups) will conceive and implement an applied data-science research project.

851-0761-00L Building a Robot Judge: Data Science for Decision-Making (Course Project)
This is the optional course project for "Building a Robot Judge: Data Science for the Law."

Please register only if attending the lecture course or with consent of the instructor.

Some programming experience in Python is required, and some experience with text mining is highly recommended.

Abstract
Students investigate and implement the relevant machine learning tools for making legal predictions, including regression, classification, and deep neural networks models. This is the extra credit for a larger course project for the course.

Objective
In a semester paper, students (individually or in groups) will conceive and implement their own research project applying natural language tools to legal texts. Some programming experience in Python is required, and some experience with NLP is highly recommended.
Students will investigate and implement the relevant machine learning tools for making legal predictions, including regression, classification, and deep neural networks models. We will use these predictions to better understand the operation of the legal system. In a semester project, student groups will conceive and implement a research design for examining this type of empirical research question.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0650-00L</td>
<td>AI4Good</td>
<td>3</td>
<td>credits</td>
<td>J. D. Wegner</td>
</tr>
<tr>
<td>851-0175-00L</td>
<td>Images of the Human</td>
<td>3</td>
<td>credits</td>
<td>J. L. Gastaldi</td>
</tr>
<tr>
<td>851-0467-00L</td>
<td>From Traffic Modeling to Smart Cities and Digital Democracies</td>
<td>3</td>
<td>credits</td>
<td>D. Helbing, S. Mahajan</td>
</tr>
</tbody>
</table>

AI4Good

Abstract
The AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members.

Objective
Given a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a suitable solution. Students will also learn to critically evaluate their ideas and solutions together with all course members in a broader context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.

Content
The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data (and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a specific problem. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning.

Every two weeks, each group will present ideas and progress during a short presentation followed by a discussion with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Note: The course AI4Good is not related to Hack4Good, which is a students’ initiative organized by the Analytics Club at ETH. For more information about Hack4Good check out the website: https://analytics-club.org/wordpress/hack4good/.

Images of the Human

Abstract
This seminar will explore the multiple transformations of the concept of the “human” in the face of the current scientific, social and technological challenges, focusing on those related to recent digital technologies and practices. The lectures will be delivered by researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences.

Objective
By the end of the course, students will be able to describe and compare different conceptions of the human at work in multiple fields of the humanities and the social sciences. They will be able to evaluate both the differences and the convergences between those conceptions, and critically assess their relation to current trends in science, technology and society, particularly in the context of new digital practices.

Content
The remarkable development of AI in the past decade has brought about a renewed urge to rethink our image of the “human”. In this way, computer science and technology join other scientific disciplines having experienced the same need in the face of current challenges, such as climate change or the global pandemic, which question the place of the human in its environment. Such circumstances reveal that a science of the human is today more necessary than ever. For this reason, the Turing Centre's lecture series of this year will be dedicated to discussing questions of automation using Big Data, AI and other digital technologies, and how democracy could be digitally upgraded to promote innovation, sustainability, resilience.

Besides discussing questions of automation using Big Data, AI and other digital technologies, we will reflect on the question of how democracy could be digitally upgraded, and how citizen participation could contribute to innovation, sustainability, resilience, and quality of life. This includes questions around collective intelligence and digital platforms that support creativity, engagement, coordination and cooperation.
Further literature will be recommended in the lectures.
A Sampler of Histories and Philosophies of Mathematics

Particularly suitable for students D-CHAB, D-INFK, D-ITET, D-MATH, D-PHYS

Abstract
This course will review several case studies from the ancient, medieval and modern history of mathematics. The case studies will be analyzed from various philosophical perspectives, while situating them in their historical and cultural contexts.

Objective
The course aims are:
1. To introduce students to the historicity of mathematics
2. To make sense of mathematical practices that appear unreasonable from a contemporary point of view
3. To develop critical reflection concerning the nature of mathematical objects
4. To introduce various theoretical approaches to the philosophy and history of mathematics
5. To open the students' horizons to the plurality of mathematical cultures and practices

International Environmental Politics

Particularly suitable for students D-ITET, D-USYS

Abstract
This course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

Objective
The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.

Content
This course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:
1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit),

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

Lecture notes
Assigned reading materials and slides will be available via Moodle.

Literature
Assigned reading materials and slides will be available via Moodle.
Prerequisites / notice
This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

851-0727-02L E-Business-Law W 2 credits 2V D. Rosenthal
Particularly suitable for students of D-INFK, D-ITET
Abstract
The course deals with the basic legal framework for doing e-business as well as using information technology. It discusses a variety of legal concepts and rules to be taken into account in practice, be it when designing and planning new media business models, be it when implementing online projects and undertaking information technology activities.

Objective
The objective is knowing and understanding key legal concepts relevant for doing e-business, in particularly understanding how e-business is regulated by law nationally and internationally, how contracts are concluded and performed electronically, which rules have to be obeyed in particular in the Internet with regard to third party and own content and client data, the concept of liability applied in e-business and the role of the law in the practical implementation and operation of e-business applications.

Content
Vorgesehene Strukturierung der Vorlesung:

1) Welches Recht gilt im E-Business?
- Internationalität des Internets
- Regulierte Branchen

2) Gestaltung und Vermarktung von E-Business-Angeboten
- Verwendung fremder und Schutz der eigenen Inhalte
- Recht im E-Business (und wie sie beschränkt werden kann)
- Domain-Namen

3) Beziehungen zu E-Business-Kunden
- Verträge im E-Business, Konsumentenschutz
- Elektronische Signaturen
- Datenschutz
- Spam

4) Verträge mit E-Business-Providern

Lecture notes
Änderungen, Umstellungen und Kürzungen bleiben vorbehalten. Der aktuelle Termin- und Themenplan ist zu gegebener Zeit über die elektronische Dokumentenablage abrufbar.

Literature
Weiterführende Materialien, Links und Literatur sind auf dem Termin- und Themenplan aufgeführt (zu gegebener Zeit abrufbar via elektronische Dokumentenablage).

Prerequisites / notice
Die Semesterendprüfung war vor Corona in Form eines schriftlichen Kurztests (normalerweise ein MC, im letzten Jahr Coronabedingt aber eine Falllösung) in der letzten Doppelstunde ausgestaltet. Es wird angegeben, welche Unterlagen beim jeweiligen Thema den Prüfungsstoff definieren. Der Test wird möglicherweise elektronisch durchgeführt.

851-0252-01L Human-Computer Interaction: Cognition and Usability W 3 credits 2S H. Zhao, S. Credé, C. Hölscher
Particularly suitable for students of D-ARCH, D-INFK, D-ITET
Abstract
This seminar introduces theory and methods in human-computer interaction and usability. Cognitive Science provides a theoretical framework for designing user interfaces as well as a range of methods for assessing usability (user testing, cognitive walkthrough, GOMS). The seminar will provide an opportunity to experience some of the methods in applied group projects.

Objective
This seminar will introduce key topics, theories and methodology in human-computer interaction (HCI) and usability. Presentations will cover basics of human-computer interaction and selected topics like mobile interaction, adaptive systems, human error and attention. A focus of the seminar will be on getting to know evaluation techniques in HCI. Students form work groups that first familiarize themselves with a select usability evaluation method (e.g. user testing, GOMS, task analysis, heuristic evaluation, questionnaires or Cognitive Walkthrough). They will then apply the methods to a human-computer interaction setting (e.g. an existing software or hardware interface) and present the method as well as their procedure and results to the plenary. Active participation is vital for the success of the seminar, and students are expected to contribute to presentations of foundational themes, methods and results of their chosen group project. In order to obtain course credit a written essay / report will be required (details to be specified in the introductory session of the course).

851-0735-10L Business Law W 2 credits 2V P. Peyrot
Particularly suitable for students of D-ITET, D-MAVT
Abstract
The students shall obtain a basic knowledge about business law. They shall be able to recognize and evaluate issues in the area of business law and suggest possible solutions.

Objective
The students shall obtain the following competence:
- They shall obtain a working knowledge on the legal aspects involved in setting up and managing an enterprise.
- They shall be acquainted with corporate functions as contracting, corporation law, management and disput resolution.
- They shall be familiar with the issues of corporate compliance, i.e. the system to ascertain that all legal and ethical rules are observed.
- They shall be able to contribute to the legal management of the company and to discuss legal issues.
- They shall have an understanding of the law as a part of the corporate strategy and as a valuable resource of the company.

Lecture notes
A comprehensive script will be made available online on the moodle platform.
The lecture addresses students in the fields of engineering, science and other related technical fields.

Prerequisites / notice
The seminar will include practical exercises on how to use and search patent information. Basic knowledge of how to read and evaluate patent documents as well as how to use publicly available patent databases to obtain the required patent information will also be provided.
The planned course outline is below

1. Overview of science, law, and technology
 a. Studies of law and technology
 b. Should science be regulated, and if so, how?
 c. Technology as a social problem

2. Designing technology for humans
 a. Attention fiduciaries and the digital environment
 b. Does technology weaponize known problems of bounded human rationality?
 c. Should technology be regulated as a psychotropic substance? An addictive substance?
 d. Can technology make life easier?
 e. Psychological effects of surveillance

3. Governing tech
 a. Can small governments regulate big tech?
 b. National and supranational legislation
 c. Enforcing the law with technology
 d. Can enforcement be baked into technology?

4. AI and fairness
 a. Discrimination
 b. Privacy
 c. Opacity
 d. AI and due process

5. Trade secret and technological litigation
 a. Trade secret is a long-standing tool for litigation but does it enjoy too much deference?
 b. Trade secrets and the rights of employees

6. Enforcement against tech
 a. Big tech and antitrust
 b. Consumer protection

7. The Digital Battlefield
 a. Technology for spying
 b. Spying on technology companies
 c. Race to be AI superpower
 d. Immigration policy

8. Contract law
 a. Smart contracts
 b. Modernizing contract law and practice
 c. Regulating cryptocurrencies

9. Tort law
 a. Applying existing tort law to new autonomous technologies
 b. Personhood and personal responsibility
 c. Victim entitlements

10. Self-driving cars and other autonomous robotics
 a. Legal regimes
 b. Diversity in morality judgements related to autonomous vehicles

11. Biometrics
 a. Widespread use of facial recognition
 b. Law enforcement
 c. Connecting biometrics to social data
 d. Solving crimes with biometrics

12. New Biology and Medicine
 a. Unregulated science (biohackers)
 b. Promising technology before it can be delivered
 c. Connecting medicine to social data
 d. Using technology to circumvent medical regulations

Complex Social Systems: Modeling Agents, Learning, and Games

Number of participants limited to 100.

Prerequisites: Basic programming skills, elementary probability and statistics.

Abstract
This course introduces mathematical and computational models to study techno-socio-economic systems and the process of scientific research. Students develop a significant project to tackle techno-socio-economic challenges in application domains of complex systems. They are expected to implement a model and communicating their results through a seminar thesis and a short oral presentation.

Objective
The students are expected to know a programming language and environment (Python, Java or Matlab) as a tool to solve various scientific problems. The use of a high-level programming environment makes it possible to quickly find numerical solutions to a wide range of scientific problems. Students will learn to take advantage of a rich set of tools to present their results numerically and graphically.

The students should be able to implement simulation models and document their skills through a seminar thesis and finally give a short oral presentation.

Content
Students are expected to implement themselves models of various social processes and systems, including agent-based models, complex networks models, decision making, group dynamics, human crowds, or game-theoretical models.

Part of this course will consist of supervised programming exercises. Credit points are finally earned for the implementation of a mathematical or empirical model from the complexity science literature and the documentation in a seminar thesis.
Lecture notes

The lecture slides will be presented on the course web page after each lecture.

Agent-Based Modeling
https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2

Social Self-Organization

Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Pedestrian, Crowd, and Evacuation Dynamics
https://www.research-collection.ethz.ch/handle/20.500.11850/45424

The hidden geometry of complex, network-driven contagion phenomena (relevant for modeling pandemic spread)
https://science.sciencemag.org/content/342/6164/1337

Further literature will be recommended in the lectures.

Literature

Agent-Based Modeling
https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2

Social Self-Organization

Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Pedestrian, Crowd, and Evacuation Dynamics
https://www.research-collection.ethz.ch/handle/20.500.11850/45424

The hidden geometry of complex, network-driven contagion phenomena (relevant for modeling pandemic spread)
https://science.sciencemag.org/content/342/6164/1337

Further literature will be recommended in the lectures.

Prerequisites / notice

The number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Good programming skills and a good understanding of probability & statistics and calculus are expected.

Prerequisites

Good programming skills and a good understanding of probability & statistics and calculus are expected.

Taught competencies

Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies

Domain B - Method-specific Competencies
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Project Management

Domain C - Social Competencies
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity
 - Negotiation

Domain D - Personal Competencies
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

851-0760-00L Building a Robot Judge: Data Science for Decision-Making

6 credits
2V
E. Ash

Abstract

This course explores the automation of decisions in the legal system. We delve into the machine learning tools needed to predict judge decision-making and ask whether techniques in model explanation and algorithmic fairness are sufficient to address the potential risks.

Objective

This course introduces students to the data science tools that may provide the first building blocks for a robot judge. While building a working robot judge might be far off in the future, some of the building blocks are already here, and we will put them to work.

Content

Data science technologies have the potential to improve legal decisions by making them more efficient and consistent. On the other hand, there are serious risks that automated systems could replicate or amplify existing legal biases and rigidities. Given the stakes, these technologies force us to think carefully about notions of fairness and justice and how they should be applied.

The focus is on legal prediction problems. Given the evidence and briefs in this case, how will a judge probably decide? How likely is a criminal defendant to commit another crime? How much additional revenue will this new tax law collect? Students will investigate and implement the relevant machine learning tools for making these types of predictions, including regression, classification, and deep neural networks models.

We then use these predictions to better understand the operation of the legal system. Under what conditions do judges tend to make errors? Against which types of defendants do parole boards exhibit bias? Which jurisdictions have the most tax loopholes? Students will be introduced to emerging applied research in this vein. In a semester paper, students (individually or in groups) will conceive and implement an applied data-science research project.

851-0761-00L Building a Robot Judge: Data Science for Decision-Making (Course Project)

This is the optional course project for "Building a Robot Judge: Data Science for the Law."

Students investigate and implement the relevant machine learning tools for making legal predictions, including regression, classification, and deep neural networks models. This is the extra credit for a larger course project for the course.

Some programming experience in Python is required, and some experience with text mining is highly recommended.

Abstract

Some programming experience in Python is required, and some experience with text mining is highly recommended.

Objective

In a semester paper, students (individually or in groups) will conceive and implement their own research project applying natural language tools to legal texts. Some programming experience in Python is required, and some experience with NLP is highly recommended.
Students will investigate and implement the relevant machine learning tools for making legal predictions, including regression, classification, and deep neural networks models. We will use these predictions to better understand the operation of the legal system. In a semester project, student groups will conceive and implement a research design for examining this type of empirical research question.

851-0650-00L
AI4Good
W
3 credits
2G
J. D. Wegner

Abstract
The AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members.

Objective
Given a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a suitable solution. Students will also learn to critically evaluate their ideas and solutions together with all course members in a broader context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.

Content
The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data (and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a specific problem. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Every two weeks, each group will present ideas and progress during a short presentation followed by a discussion with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Note: The course AI4Good is not related to Hack4Good, which is a students’ initiative organized by the Analytics Club at ETH. For more information about Hack4Good check out the website: https://analytics-club.org/wordpress/hack4good/.

Prerequisites / notice
Students with a strong background in machine learning and excellent programming skills (preferably in Python)

851-0467-00L
From Traffic Modeling to Smart Cities and Digital Democracies
W
3 credits
2S
D. Helbing, S. Mahajan

Abstract
This seminar will present speakers who discuss the challenges and opportunities arising for our cities and societies with the digital revolution. Besides discussing questions of automation using Big Data, AI and other digital technologies, we will reflect on the question of how democracy could be digitally upgraded to promote innovation, sustainability, and resilience.

Objective
To collect credit points, students will have to give a 30-40 minute presentation in the seminar, after which the presentation will be discussed. The presentation will be graded.

Content
This seminar will present speakers who discuss the challenges and opportunities arising for our cities and societies with the digital revolution. Besides discussing questions of automation using Big Data, AI and other digital technologies, we will also reflect on the question of how democracy could be digitally upgraded, and how citizen participation could contribute to innovation, sustainability, resilience, and quality of life. This includes questions around collective intelligence and digital platforms that support creativity, engagement, coordination and cooperation.
Further literature will be recommended in the lectures.
Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Communication	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed

851-0125-65L

A Sampler of Histories and Philosophies of Mathematics

Number 851-0742-00L

Title Contract Design I

Type W

ECTS 3 credits

Hours 2V

Lecturers R. Wagner

Objective

The course aims to:

1. Introduce students to the historicity of mathematics
2. Make sense of mathematical practices that appear unreasonable from a contemporary point of view
3. Develop critical reflection concerning the nature of mathematical objects
4. Introduce various theoretical approaches to the philosophy and history of mathematics
5. Open students' horizons to the plurality of mathematical cultures and practices

D-MATH

851-0742-00L

Title Contract Design I

Type W

ECTS 3 credits

Hours 2V

Lecturers A. Stremitzer

Abstract

Contract Design I is taught by Professor Alexander Stremitzer (https://laweconbusiness.ethz.ch/group/professor/stremitzer.html). Note that this is NOT a legal drafting class that focuses on contractual language. Instead, in Contract Design I, you will learn what the content of a contract should be so that parties can reach their goals.

You can find all course materials and the most recent announcements on Moodle. Please log in to Moodle using your ETH or UZH credentials. Then search for "Contract Design I (851-0742-00L; Fall 2021)" and enroll. The password is "ContractDesign01".

Number of participants limited to 160. Max 80 ETHZ and 80 UZH Students

Objective

Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=CvIdfG70zq0). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

Lecture notes

- Handouts, prerecorded videos, slides, and other materials

Prerequisites / notice

- Contract Design I is available to ETH students through the Science in Perspective (SiP) Program of D-GESS. This course is particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, D-MATH, D-MTEC, D-INFK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer's Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

851-0052-15L

Network Analysis

Number 851-0052-15L

Title Network Analysis

Type W

ECTS 3 credits

Hours 2V

Lecturers U. Brandes

Prerequisites / notice

- Particularly suitable for students of D-INFK, D-MATH

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 996 of 2152
Analytical Competencies

Participants learn to assess the advantages and disadvantages of cyberspace as a domain for strategic military operations. They will master a suite of mathematical and computational tools, and know how to design or adapt suitable methods for analysis. In particular, they will be able to evaluate such methods in terms of appropriateness and efficiency.

Content

The following topics will be covered with an emphasis on structural and computational approaches and frequent reference to their suitability with respect to substantive theory:

- Empirical Research and Network Data
- Macro and Micro Structure
- Centrality
- Roles
- Cohesion

Lecture notes

Lecture notes are distributed via the associated course moodle.

Literature

<table>
<thead>
<tr>
<th>853-0061-00L</th>
<th>Introduction to Cybersecurity Politics</th>
<th>W</th>
<th>3 credits</th>
<th>2G</th>
<th>M. Dunn Cavelty, F. J. Egloff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The lecture is an introduction to global cybersecurity politics. The focus is on the strategic use of cyberspace by state and non-state actors (threats) and different answers to these new challenges (countermeasures).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants learn to assess the advantages and disadvantages of cyberspace as a domain for strategic military operations. They understand the technical basics of cyber operations and know how technology and politics are interlink in this area. They understand the security challenges for and the motivations of states to be active in cyberspace offensively and defensively and they are familiar with the consequences for international politics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>We start with an overview of cybersecurity issue from 1980 to today and look at events and actors responsible for turning cybersecurity matters into a security political issue with top priority. After familiarizing ourselves with the technical basics, we look at different forms of cyberviolence and trends in cyber conflicts (technique in social and political practice). Then, we turn to countermeasures: we compare national cybersecurity strategies, examine international norms building, and scrutinize concepts such as cyber-power and cyber-deterrence (technique in social and political regulatory contexts).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>A script with background information and comments on the literature will be made available at the beginning of the semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literature for each session will be available on Moodle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed

Domain C - Social Competencies

- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Sensitivity to Diversity: not assessed

Domain D - Personal Competencies

- Creative Thinking: assessed
- Critical Thinking: assessed
- Self-direction and Self-management: not assessed

<table>
<thead>
<tr>
<th>853-8002-00L</th>
<th>The Role of Technology in National and International Security Policy</th>
<th>W</th>
<th>3 credits</th>
<th>2G</th>
<th>M. Haas, A. Dossi, M. Leese, O. Thranert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The lecture provides an introduction to the role of security and military technologies in the formulation and implementation of national and international security policies. The focus is on challenges posed by new and developing technologies, the transformation of military capabilities, and the question of regulation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will gain an in-depth overview of the many ways in which technology is becoming part of security policies and practices, in both civilian and military contexts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literature für die einzelnen Sitzungen wird auf Moodle bereitgestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The lecture is being supported by a website on Moodle. If you have any questions, please contact Oliver Roos, oliver.roos@siapo.gess.ethz.ch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>851-0650-00L</th>
<th>AI4Good</th>
<th>W</th>
<th>3 credits</th>
<th>2G</th>
<th>J. D. Wegner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Given a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a suitable solution. Students will also learn to critically evaluate their ideas and solutions together with all course members in a broader context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content
The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the
development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will
make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data
(and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a
specific problem. Students will spend the semester on designing, implementing, and critically assessing the relation to current trends in science, technology and society, in particular in the context of new digital practices.

Every two weeks, each group will present ideas and progress during a short presentation followed by a discussion with all course
members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the
developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Note: The course AI4Good is not related to Hack4Good, which is a students' initiative organized by the Analytics Club at ETH. For more
information about Hack4Good check out the website: https://analytics-club.org/wordpress/hack4good/.

Prerequisites / notice
Students with a strong background in machine learning and excellent programming skills (preferably in Python)

851-0175-00L Images of the Human
Objective
By the end of the course, students will be able to describe and compare different conceptions of the human at work in multiple fields of the
humanities and the social sciences. They will be able to evaluate both the differences and the convergences between those conceptions,
and critically assess their relation to current trends in science, technology and society, particularly in the context of new digital practices.

Content
The remarkable development of AI in the past decade has brought about a renewed urge to rethink our image of the “human”. In this way,
computer science and technology join other scientific disciplines having experienced the same need in the face of current challenges, such as
climate change or the global pandemic, which question the place of the human in its environment. Such circumstances reveal that a
science of the human is today more necessary than ever. For this reason, the Turing Centre’s lecture series of this year will be dedicated to
exploring the multiple images of the human at work across the human sciences and their transformation as a consequence of the current
global challenges. In line with the Turing Centre’s activities, the focus will be on challenges related to recent digital technologies and practices.
Various researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences, will
present what they consider crucial concepts, methods, challenges, and limits in our investigations about the human and its relation to
machines, animals and nature.

851-0174-00L Contract Design II
Objective
This course is taught by Professor Alexander Stremitzer (https://lawecon.ethz.ch/group/professors/stremitzer.html). To be considered for Contract Design II, you must have completed Contract Design I in the same semester.

Abstract
Students can only register for Contract Design II after having obtained approval by Prof. Stremitzer.

Content
To enable you to work under the close supervision of your professor and his team, only a small group of students with backgrounds in law,
business, or engineering is admitted to this course. This simulation is time-consuming and challenging. Hence, we can only admit the most
successful and motivated students to this class. Further information on the application process will follow.

851-0125-65L A Sampler of Histories and Philosophies of Mathematics
Objective
The course aims are: 1. To introduce students to the historicity of mathematics 2. To make sense of mathematical practices that appear unreasonable from a contemporary point of view 3. To develop critical reflection concerning the nature of mathematical objects 4. To introduce various theoretical approaches to the philosophy and history of mathematics 5. To open the students’ horizons to the plurality of mathematical cultures and practices

Abstract
This course will review several case studies from the ancient, medieval and modern history of mathematics. The case studies will be
analyzed from various philosophical perspectives, while situating them in their historical and cultural contexts.

851-0197-00L Medieval and Early Modern Science and Philosophy
Objective
The course aims are: 1. To introduce students to the historical dimension of science 2. To develop a critical understanding of scientific notions; 3. To acquire skills in order to read and comment on scientific texts written in the past ages.

Content
The course is focused on the investigation of scientific thought between 1000 and 1700, that is to say the period that saw the flourishing of
natural philosophy and the birth of the modern scientific method. Several case-studies, taken from different scientific fields (especially
algebra, astronomy, and physics) are presented in class in order to examine the relation between science and philosophy and the shift from
medieval times to the early modern world.

851-0703-00L Introduction to Law
Objective
This class introduces students into basic features of the legal system. Fundamental issues of constitutional law, administrative law, private
law and the law of the EU are covered.

Abstract
Students who have attended or will attend the lecture “Introduction to Law for Civil Engineering and Architecture” (851-0703-03L) or “Introduction to Law” (851-0708-00L), cannot register for this course unit.

Prerequisites / notice
Particularly suitable for students of D-ARCH, D-MAVT, D-MATL

Note: The course AI4Good is not related to Hack4Good, which is a students’ initiative organized by the Analytics Club at ETH. For more
information about Hack4Good check out the website: https://analytics-club.org/wordpress/hack4good/.
Objective
Students are able to identify basic structures of the legal system. They understand selected topics of public and private law and are able to apply the fundamentals in more advanced law classes.

Content
- Basic concepts of law, sources of law.
- Private law: Contract law (particularly contract for work and services), tort law, property law.
- Public law: Human rights, administrative law, procurement law, procedural law.
- Insights into the law of the EU and into criminal law.

Literature
- Jaap Hage, Bram Akkermans (Eds.), *Introduction to Law, Cham 2017* (Online Resource ETH Library)
- Further documents will be available online (see https://moodle-app2.let.ethz.ch/course/view.php?id=15142).

Intellectual Property: Introduction

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Lectures</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>853-0047-01L</td>
<td>World Politics Since 1945: The History of International Relations (Without Exercises)</td>
<td>3</td>
<td>2V</td>
<td>Domain A - Subject-specific Competencies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Concepts and Theories</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Techniques and Technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domain B - Method-specific Competencies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Analytical Competencies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Decision-making</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Problem-solving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Project Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domain C - Social Competencies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Communication</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Customer Orientation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Negotiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domain D - Personal Competencies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Creative Thinking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
</tr>
</tbody>
</table>

Environmental Ethics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Lectures</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0703-00L</td>
<td>Environmental Ethics</td>
<td>2</td>
<td>2V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The pressing environmental challenges of today demand a critical reflection. Ethics is an important tool for doing so. This lecture introduces the basics of ethics and provides in-depth knowledge of environmental ethics and its debates. This theoretical background will be applied and critically reflected using examples of current environmental challenges.</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
By the end of the semester, participants should have a solid knowledge of the history and theoretical foundations of International Relations since the end of the Second World War.

Objective
- Familiarisation with various basic standpoints within environmental ethics.
- Overview and discussion of ethical theories relevant to address environmental challenges.
- Cross-section topics: such as sustainability, intergenerational justice, protection of species, etc.
- Practicing of newly acquired knowledge in smaller exercises.

Literature
- Angelika Krebs (Hrsg.) *Naturethik. Grundtexte der gegenwärtigen tier- und ökotherischen Diskussion 1997*
- John O’Neill et al., *Environmental Values*, 2008

General introductions:
- Marcus Düwell et. al. (Hrsg.), *Handbuch Ethik*, 2. Auflage, Stuttgart (Metzler Verlag), 2006
- Johann S. Ach et. al (Hrsg.), *Grundkurs Ethik 1. Grundlagen, Paderborn (mentis) 2008*

Prerequisites
- Johann S. Ach et. al (Hrsg.), *Grundkurs Ethik 1. Grundlagen, Paderborn (mentis) 2008*
- Marcus Düwell et. al. (Hrsg.), *Handbuch Ethik*, 2. Auflage, Stuttgart (Metzler Verlag), 2006
- Johann S. Ach et. al (Hrsg.), *Grundkurs Ethik 1. Grundlagen, Paderborn (mentis) 2008*

Notice
The procedure for accumulating CP will be explained at the start of term.

Presentation Slides
- The lecture notes of the individual sessions will be distributed, including the most important theories and keywords; extended reading lists.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 999 of 2152
Social Intercourse with Current Environmental Risks

Abstract
The lecture treats the social intercourse with risks of technical systems. The notion of risk and the perception of risk are discussed by case studies (e.g. nanotechnology) and socio-political instruments for decision-making are presented. Methods are presented that can be applied to deal with environmental risks and how they can be used for sustainable innovation.

Objective
- Getting acquainted to the extended risk concept
- Evaluation of the risks caused by technology within the societal context
- Knowledge about the mode science and society handle current environmental risks (examples gene- and nanotechnology)
- Knowledge about handling risks (e.g. precautionary principle, protection goal, damage definition, ethics)
- Knowledge about possibilities for sustainable innovation

Content
- Risks and technical systems (risk categories, risk perception, risk management)
- Illustration with case studies (nanotechnology)
- Implementation (politics, science, media, etc.)
- Decision making (technology assessment, cost/benefit analysis etc.)
- The role of the media
- Prospects for future developments

Lecture notes
Copies of slides and selected documents will be distributed

Prerequisites / notice
The lecture is held biweekly (for 2 hours). The dates are 3.9.; 30.9. (instead of 7.10); 21.10; 4.11.; 18.11.; 2.12.; 16.12.

Introduction to Cybersecurity Politics

Abstract
The lecture is an introduction to global cybersecurity politics. The focus is on the strategic use of cyberspace by state and non-state actors (threats) and different answers to these new challenges (countermeasures).

Objective
Participants learn to assess the advantages and disadvantages of cyberspace as a domain for strategic military operations. They understand the technical basics of cyber operations and know how technology and cybersecurity are intertwined in this area. They understand the security challenges for and the motivations of states to be active in cyberspace offensively and defensively and they are familiar with the consequences for international politics.

Content
We start with an overview of cybersecurity issues from 1980 to today and look at events and actors responsible for turning cybersecurity matters into a security political issue with top priority. After familiarizing ourselves with the technical basics, we look at different forms of cyberviolence and trends in cyber conflicts (technique in social and political practice). Then, we turn to countermeasures: we compare national cybersecurity strategies, examine international norms building, and scrutinize concepts such as cyber-power and cyber-deterrence (technique in social and political regulatory contexts).

Lecture notes
A script with background information and comments on the literature will be made available at the beginning of the semester.

Literature
Literature for each session will be available on Moodle.

The lecture is being supported by a website on Moodle.

The Role of Technology in National and International Security Policy

Abstract
The lecture provides an introduction to the role of security and military technologies in the formulation and implementation of national and international security policies. The focus is on challenges posed by new and developing technologies, the transformation of military capabilities, and the question of regulation.

Objective
Participants will gain an in-depth overview of the many ways in which technology is becoming part of security policies and practices, in both civilian and military contexts.

Content

Literature
Literatur für die einzelnen Sitzungen wird auf Moodle bereitgestellt.

Prerequisites / notice
The lecture is being supported by a website on Moodle. If you have any questions, please contact Oliver Roos, oliver.roos@alps.gess.ethz.ch.

The AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members.

Objective
Given a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a suitable solution. Students will also learn to critically evaluate their ideas and solutions together with all course members in a broader context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.
The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data (and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a specific problem. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Every two weeks, each group will present ideas and progress during a short presentation followed by a discussion with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Note: The course AI4Good is not related to Hack4Good, which is a students' initiative organized by the Analytics Club at ETH. For more information about Hack4Good check out the website: https://analytics-club.org/wordsec/hack4good/.

Students with a strong background in machine learning and excellent programming skills (preferably in Python)

D-MTEC

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0252-10L</td>
<td>Project in Behavioural Finance</td>
<td>W</td>
<td>3</td>
<td>2S</td>
<td>S. Andraszewicz, C. Höltscher, A. C. Roberts</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particularly suitable for students of D-MTEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0738-00L</td>
<td>Intellectual Property: Introduction</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>M. Schweizer</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particularly suitable for students of D-CHAB, D-INFK, D-ITET, D-MAVT, D-MATL, D-MTEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>363-0565-00L</td>
<td>Principles of Macroeconomics</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>J.-E. Sturm</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particularly suitable for students of D-CHAB, D-INFK, D-ITET, D-MAVT, D-MATL, D-MTEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

In this seminar, students will study cognitive processes, behaviours and the underlying biological response to financial decisions. Research methods such as asset market experiments, lottery games, risk preference assessment, psychometrics, neuroimaging and psychophysiology of decision processes will be discussed. Financial bubbles and crashes will be the core interest.

Objective

This course has four main goals:
1) To learn about the most important topics within Behavioural Finance
2) To learn how to conduct behavioural studies, design experiments, plan data collection and experimental tasks
3) To learn about causes of market crashes, factors that influence them, traders’ behaviour before, during and after financial crises
4) To investigate a topic of interest, related to behaviour of traders during market crashes.

Additionally, the course gives to the students the opportunity to practice oral presentations, communication skills, report writing and critical thinking.

Content

The course provides an overview of the most important topics in Behavioural Finance. First part of the course involves reading scientific articles, which will be discussed during the seminar. Therefore, attendance is required to pass the course. Each week, a student volunteer will present a paper and the presentation will be followed by a discussion. After obtaining sufficient knowledge of the field, students will select a topic for a behavioural study of their own. The final assignment consists of preparing and conducting a small behavioural study/experiment, analysing the data and presenting the project in the final meeting of the class. Each student will write a scientific report of their study.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

Prerequisites / notice

Students with a strong background in machine learning and excellent programming skills (preferably in Python)
Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

363-0503-00L Principles of Microeconomics

W 3 credits **2G** M. Filippini

GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.

Abstract

The course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.

Objective

The learning objectives of the course are:

1. Students must be able to discuss basic principles, problems and approaches in microeconomics.
2. Students can analyse and explain simple economic principles in a market using supply and demand graphs.
3. Students can contrast different market structures and describe firm and consumer behaviour.
4. Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole.
5. Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics.
6. Students can apply simple mathematical concepts on economic problems.

Content

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

Lecture notes

Lecture notes, exercises and reference material can be downloaded from Moodle.

Literature

N. Gregory Mankiw and Mark P. Taylor (2020), "Economics", 5th edition, South-Western Cengage Learning. The book can also be used for the course Principles of Macroeconomics (Sturm)

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:

Complementary:

Prerequisites / notice

GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.
Introduction to Microeconomics

GESS (Science in Perspective):
This course is only for students enrolled in a Bachelor’s degree programme.

Students enrolled in a Master’s degree programme may attend “Principles of Microeconomics” (LE 363-0503-00L) instead.

Note for D-MAVT students: If you have already successfully completed “Principles of Microeconomics” (LE 363-0503-00L), then you will not be permitted to attend it again.

Abstract
The course introduces basic principles, problems and approaches of microeconomics. It describes economic decisions of households and firms, and their coordination through perfectly competitive markets.

Objective
Students acquire a deeper understanding of basic microeconomic models.

They acquire the ability to apply these models in the interpretation of real world economic contexts.

Students acquire a reflective and contextual knowledge on how societies use scarce resources to produce goods and services and distribute them among themselves.

Content
Market, budget constraint, preferences, utility function, utility maximisation, demand, technology, profit function, cost minimisation, cost functions, perfect competition, information and communication technologies

Lecture notes

Literature

Prerequisites / notice
This course “Einführung in die Mikroökonomie” (363-1109-00L) is intended for Bachelor students and LE 363-0503-00 “Principles of Microeconomics” for Master students.
In this seminar students can expect to:

- learn more theory of negotiation and apply this learning in simulated negotiations
- have their perceptions of rationality, fairness, and trust challenged through little embedded experiments
- learn to recognize and analyze negotiation contexts and interests and generate creative solutions
- learn to negotiate under pressure (with time and mandate restrictions) and experience (and potentially chair) a formal negotiation
- learn to read, analyze and present a scholarly paper

Content

This block seminar is an extension of the course "Introduction to Negotiation" and provides more detailed insight into key aspects of the field of negotiation and negotiation engineering.

In particular,

- a series of brief lectures will outline foundational aspects of negotiation science, such as rationality, fairness, and trust, as well as the possible application of machine learning in negotiation
- three practitioners will describe lessons learnt in their negotiation domains (diplomacy, labor, and business) and allow time for Q&A and discussion
- Professor Ambühl will elucidate further current cases from his professional experience
- students will apply course input in a number of challenging simulations (ranging from simple 30 minute games to full-fledged international ten party negotiations). In each game they will be asked to represent a party and negotiate as skillfully as they possibly can within the constraints of their mandate
- each student will be assigned a scholarly paper (20 to 30 pages) between the two blocks to read. They will give a 20 minute group presentation with one or two of their peers and submit a brief reflection report after the seminar

The course size is deliberately limited (30 maximum) to enable ample opportunity to interact with the lecturers, guests and each other.

851-0742-00L Contract Design I

This course is taught by Professor Alexander Stremitzer (http://www.elec.ethz.ch/group/professor/stremitzer.html). Note that this is NOT a legal drafting class that focuses on contractual language. Instead, in Contact Design I, you will learn what the content of a contract should be so that parties can reach their goals.

You can find all course materials and the most recent announcements on Moodle. Please log in to Moodle using your ETH or UZH credentials. Then search for "Contract Design I (851-0742-00L; Fall 2021)" and enroll. The password is "ContractDesign01".

Number of participants limited to 160.
Max 80 ETHZ and 80 UZH Students

Objective

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=cVldfG70zqQ). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

Abstract

Contract Design I aims to bridge the gap between economic contract theory, contract law, and the writing of real-world contracts. In this course, we take a systematic approach to contract design. This means we first analyze the economic environment in which a transaction takes place, and then engineer contracts that achieve the desired outcome.

Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than half a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

Lecture notes

Handouts, prerecorded videos, slides, and other materials

Prequisites / notice

Contract Design I students through the Science in Perspective (SiP) Program of D-GESS. This course is particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, D-MATH, D-MTEC, D-INFK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

851-0732-06L Law & Tech

This course introduces students to legal, economic, and social perspectives on the increasing economic and social importance of technology. We focus particularly on the challenges to current law posed by the increasing rate of tech innovation and adoption generally and also by case-specific features of prominent near-future technologies.

The course is intended for a wide range of engineering students, from machine learning to bioengineering to human computer interaction, as well as for law students interested in acquiring a better understanding of state-of-the-art technology.

The course will combine both an overview of major areas of law that affect the regulation of technology and also guest lectures on the state-of-the-art in a variety of important technologies, ranging from autonomous vehicles to fair artificial intelligence to consumer-facing DNA technologies.

The course is open to ETH students through the Science in Perspective program of the Department of Humanities, Social and Political Sciences.
Content

The planned course outline is below

1. Overview of science, law, and technology
 a. Studies of law and technology
 b. Should science be regulated, and if so, how?
 c. Technology as a social problem

2. Designing technology for humans
 a. Attention fiduciaries and the digital environment
 b. Does technology weaponize known problems of bounded human rationality?
 c. Should technology be regulated as a psychotropic substance? An addictive substance?
 d. Can technology make life easier?
 e. Psychological effects of surveillance

3. Governing tech
 a. Can small governments regulate big tech?
 b. National and supranational legislation
 c. Enforcing the law with technology
 d. Can enforcement be baked into technology?

4. AI and fairness
 a. Discrimination
 b. Privacy
 c. Opacity
 d. AI and due process

5. Trade secret and technological litigation
 a. Trade secret is a long-standing tool for litigation but does it enjoy too much deference?
 b. Trade secrets and the rights of employees

6. Enforcement against tech
 a. Big tech and antitrust
 b. Consumer protection

7. The Digital Battlefield
 a. Technology for spying
 b. Spying on technology companies
 c. Race to be AI superpower
 d. Immigration policy

8. Contract law
 a. Smart contracts
 b. Modernizing contract law and practice
 c. Regulating cryptocurrencies

9. Tort law
 a. Applying existing tort law to new autonomous technologies
 b. Personhood and personal responsibility
 c. Victim entitlements

10. Self-driving cars and other autonomous robotics
 a. Legal regimes
 b. Diversity in morality judgements related to autonomous vehicles

11. Biometrics
 a. Widespread use of facial recognition
 b. Law enforcement
 c. Connecting biometrics to social data
 d. Solving crimes with biometrics

12. New Biology and Medicine
 a. Unregulated science (biohackers)
 b. Promising technology before it can be delivered
 c. Connecting medicine to social data
 d. Using technology to circumvent medical regulations

851-0760-00L Building a Robot Judge: Data Science for Decision-Making
Particularly suitable for students of D-INFK, D-ITET, D-MTEC

Abstract
This course explores the automation of decisions in the legal system. We delve into the machine learning tools needed to predict judge decision-making and ask whether techniques in model explanation and algorithmic fairness are sufficient to address the potential risks.

Objective
This course introduces students to the data science tools that may provide the first building blocks for a robot judge. While building a working robot judge might be far off in the future, some of the building blocks are already here, and we will put them to work.
The AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Note: The course AI4Good is not related to Hack4Good, which is a students' initiative organized by the Analytics Club at ETH. For more information about Hack4Good check out the website: https://analytics-club.org/wordpress/hack4good/.

Prerequisites / notice

Students with a strong background in machine learning and excellent programming skills (preferably in Python) are admitted to this course.

Building a Robot Judge: Data Science for Decision-Making (Course Project)

This course is taught by Professor Alexander Stremitzer (https://lawecon.ethz.ch/group/professors/stremitzer.html).

To be considered for Contract Design II, you must have completed Contract Design I in the same semester. Students can only register for Contract Design II after having obtained approval by Prof. Stremitzer.

Contract Design II is a masterclass in the form of an interactive clinic that allows you to deepen your understanding of contracting by applying insights from Contract Design I to a comprehensive case study. Together with your classmates, you are going to advise a (hypothetical) client organization planning to enter a complex transaction on how to structure the underlying contract. There is a possibility that representatives of companies that were previously engaged in similar deals will visit us in class and tell you about their experience firsthand. In Contract Design I, you will receive more detailed information on the content and learning objectives of Contract Design II. If you have urgent questions, please do not hesitate to send an e-mail to Professor Stremitzer's Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

To enable you to work under the close supervision of your professor and his team, only a small group of students with backgrounds in law, business, or engineering is admitted to this course. This simulation is time-consuming and challenging. Hence, we can only admit the most successful and motivated students to this class. Further information on the application process will follow.

Data science technologies have the potential to improve legal decisions by making them more efficient and consistent. On the other hand, there are serious risks that automated systems could replicate or amplify existing legal biases and rigidities. Given the stakes, these technologies force us to think carefully about notions of fairness and justice and how they should be applied.

The focus is on legal prediction problems. Given the evidence and briefs in this case, how will a judge probably decide? How likely is a criminal defendant to commit another crime? How much additional revenue will this new tax law collect? Students will investigate and implement the relevant machine learning tools for making these types of predictions, including regression, classification, and deep neural networks models.

We then use these predictions to better understand the operation of the legal system. Under what conditions do judges tend to make errors? Against which types of defendants do parole boards exhibit bias? Which jurisdictions have the most tax loopholes? Students will be introduced to emerging applied research in this vein. In a semester paper, students (individually or in groups) will conceive and implement an applied data science research project.

Another focus will be to clarify the concept of “climate justice”.

The course will try to give an argument-based answer to the question: What are the responsibilities for individuals (e.g. as consumers), and for collectivities (e.g. states and firms). Another focus will be to clarify the concept of “climate justice”.

The course should also enable participants to evaluate different answers to the question how we should organize our economies for securing our ecological niche.
Contract Design I aims to bridge the gap between economic contract theory, contract law, and the writing of real-world contracts. In this course, you will learn what the content of a contract should be so that parties can reach their goals.

You can find all course materials and the most recent announcements on Moodle. Please log in to Moodle using your ETH or UZH credentials. Then search for "Contract Design I (Fall 2021)" and enroll. The password is "ContractDesign01".

Number of participants limited to 160. Max 80 ETHZ and 80 UZH Students

Objective

Contracts are agreements between parties to engage in transactions. A good contract creates value by giving parties the right incentives to meet their objectives. A good contract designer scrutinizes the economic situation in which parties find themselves and tailors the contract to the challenges at hand. To help you become sophisticated contract designers, we draw from insights, for which more than half a dozen Nobel Prizes were awarded in the past two decades, and transfer them to the art of writing real-world contracts. In other words, Contract Design I will provide you with analytical tools related to contracting that are invaluable to successful lawyers, business leaders, and startup founders.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=CvIdfG70zq0). However, this course prioritizes applications of contract design.

Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. This is because UZH students must hand in an extensive group project in addition to the weekly quizzes and short responses.

The lecture notes are handouts, prerecorded videos, slides, and other materials.

Prerequisites / notice

Contract Design I is available to ETH students through the Science in Perspective (SiP) Program of D-GESS. This course is particularly suitable for students of D-ARCH, D-BIOL, D-CHEM, D-CHAB, D-DIAM, D-MTEC, D-IFNK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).

Literature

D-MAVT

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0742-00L</td>
<td>Contract Design I</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>A. Stremitzer</td>
</tr>
<tr>
<td>851-0738-00L</td>
<td>The Role of Intellectual Property in the Engineering and Technical Sector</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>K. Houshang Pour Islam</td>
</tr>
<tr>
<td>851-0738-00L</td>
<td>Intellectual Property: Introduction</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>M. Schweizer</td>
</tr>
</tbody>
</table>

Prerequisites / notice

- Particularly suitable for students of D-BAUG, D-BIOL, D-BSSE, D-CHAB, D-ITET, D-MAVT
- Particularly suitable for students of D-ARCH, D-BIOL, D-CHAB, D-DIAM, D-MTEC, D-IFNK, and D-MAVT.
The course provides an introduction to Swiss and European intellectual property law (trademarks, copyright, patent and design rights). Aspects of competition law are treated insofar as they are relevant for the protection of intellectual creations and source designations. The legal principles are developed based on current cases.

The aim of this course is to enable students at ETH Zurich to recognize which rights may protect their creations, and which rights may be infringed as a result of their activities. Students should learn to assess the risks and opportunities of intellectual property rights in the development and marketing of new products. To put them in this position, they need to know the prerequisites and scope of protection afforded by the various intellectual property rights as well as the practical difficulties involved in the enforcement of intellectual property rights. This knowledge is imparted based on current rulings and cases.

Another goal is to enable the students to participate in the current debate over the goals and desirability of protecting intellectual creations, particularly in the areas of copyright (keywords: fair use, Creative Commons, Copyleft) and patent law (software patents, patent trolls, patent thickets).

851-0735-10L Business Law

Abstract

Particularly suitable for students of D-ITET, D-MAVT

Objective

The students shall obtain the following competence:
- They shall obtain a basic knowledge about business law. They shall be able to recognize and evaluate issues in the area of business law and suggest possible solutions.
- They shall be familiar with corporate functions as contracting, negotiation, claims management and dispute resolution.
- They shall be able to contribute to the legal management of the company and to discuss legal issues.
- They shall have an understanding of the law as a part of the corporate strategy and as a valuable resource of the company.

Lecture notes

A comprehensive script will be made available online on the moodle platform.

851-0703-00L Introduction to Law

Abstract

This class introduces students into basic features of the legal system. Fundamental issues of constitutional law, administrative law, private law and the law of the EU are covered.

Objective

Students are able to identify basic structures of the legal system. They understand selected topics of public and private law and are able to apply the fundamentals in more advanced law classes.

Content

Basic concepts of law, sources of law.

Private law: Contract law (particularly contract for work and services), tort law, property law.

Public law: Human rights, administrative law, procurement law, procedural law.

Insights into the law of the EU and into criminal law.

Lecture notes

Further documents will be available online (see https://moodle-app2.let.ethz.ch/course/view.php?id=15142).

853-0047-01L World Politics Since 1945: The History of International Relations (Without Exercises)

Abstract

This lecture series provides students with an overview of the development of international relations since the end of World War II. The first part of the series deals with the development of and changes in Cold War security policy structures. The second part deals with the period after the transformation of 1989/91; the focus here is on current issues in international security policy.

Objective

By the end of the semester, participants should have a solid knowledge of the history and theoretical foundations of International Relations since the end of the Second World War.

Content

cf. “Diploma Supplement”

Prerequisites / notice

The lecture is being supported by a website on Moodle. If you have any questions, please contact Oliver roos (oliver.roos@sipo.gess.ethz.ch).

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies

- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving

- Domain C - Social Competencies
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity

- Domain D - Personal Competencies
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

853-0725-00L History Part One: Europe (The Cradle of Modernity, Britain, 1789-1914)

Abstract

A range of fundamental processes have transformed European societies in the course of the 19th and the 20th centuries. This lecture series asks whether one single model of modernization prevailed on the ‘Old Continent’ or whether we need to differentiate regionally. A special focus lies on the Swiss experience.
701-0703-00L Environmental Ethics

W 2 credits 2V A. Deplazes Zemp

Abstract
The pressing environmental challenges of today demand a critical reflection. Ethics is an important tool for doing so. This lecture introduces the basics of ethics and provides in-depth knowledge of environmental ethics and its debates. This theoretical background will be applied and critically reflected using examples of current environmental challenges.

Objective
On completion of this lecture, you have acquired the ability to identify, analyze, critically reflect and resolve ethical challenges in general and specifically regarding the environment. You know basic concepts, positions and lines of argumentation from the debate in environmental ethics, which you have applied and discussed in smaller exercises.

Content
- Introduction to general and applied ethics.
- Overview and discussion of ethical theories relevant to address environmental challenges.
- Familiarization with various basic standpoints within environmental ethics.
- Cross-section topics, such as sustainability, intergenerational justice, protection of species, etc.
- Practicing of newly acquired knowledge in smaller exercises.

Lecture notes
Presentation slides of the individual sessions will be distributed, including the most important theories and keywords; extended reading lists.

Literature
- John ONeill et al., Environmental Values, 2008.

Generel introductions:
- Markus Düwell et al. (Hrsg.), Handbuch Ethik, 2. Auflage, Stuttgart (Metzler Verlag), 2006.

Prerequisites / notice
The procedure for accumulating CP will be explained at the start of term.

701-0985-00L Social Intercourse with Current Environmental Risks

W 1 credit 1V B. Nowack

Does not take place this semester.

Abstract
The lecture treats the social intercourse with risks of technical systems. The notion of risk and the perception of risk are discussed by case studies (e.g. nanotechnology) and socio-political instruments for decision-making are presented. Methods that are presented can be applied to deal with environmental risks and how they can be used for sustainable innovation.

Objective
- Getting acquainted to the extended risk concept
- Evaluation of the risks caused by technology within the societal context
- Knowledge about the mode science and society handle current environmental risks (examples gene- and nanotechnology)
- Knowledge about handling risks (e.g. precautionary principle, protection goal, damage definition, ethics)

Knowledge about possibilities for sustainable innovation

Content
- Risks and technical systems (risk categories, risk perception, risk management)
- Illustration with case studies (nanotechnology)
- Implementation (politics, science, media, etc.)
- Decision making (technology assessment, cost/benefit analysis etc.)
- The role of the media
- prospects for future developments

Lecture notes
Copies of slides and selected documents will be distributed.

Prerequisites / notice
The lecture is held biweekly (for 2 hours). The dates are 3.9.; 30.9. (instead of 7.10); 21.10; 4.11.; 18.11.; 2.12.; 16.12.

853-0061-00L Introduction to Cybersecurity Politics

W 3 credits 2G M. Dunn Cavelti, F. J. Egloff

Does not take place this semester.

Abstract
The lecture is an introduction to global cybersecurity politics. The focus is on the strategic use of cyberspace by state and non-state actors (threats) and different answers to these new challenges (countermeasures).

Objective
Participants learn to assess the advantages and disadvantages of cyberspace as a domain for strategic military operations. They understand the technical basics of cyber operations and know how technology and politics are interlinked in this area. They understand the security challenges for and the motivations of states to be active in cyberspace offensively and defensively and they are familiar with the consequences for international politics.

Content
We start with an overview of cybersecurity issues from 1980 to today and look at events and actors responsible for turning cybersecurity into a political issue. After familiarizing ourselves with the technical basics, we look at different forms of cyberviolence and trends in cyber conflicts (technique in social and political practice). Then, we turn to countermeasures: we compare national cybersecurity strategies, examine international norms building, and scrutinize concepts such as cyber-power and cyber-deterrence (technique in social and political regulatory contexts).

Lecture notes
A script with background information and comments on the literature will be made available at the beginning of the semester.

Literature
Literature for each session will be available on Moodle.

Prerequisites / notice
The lecture is being supported by a website on Moodle.

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concepts and Theories</td>
<td>Analytical Competencies</td>
<td>Communication</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td></td>
<td>Analytical Competencies</td>
<td>Decision-making</td>
<td>Cooperation and Teamwork</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>Media and Digital Technologies</td>
<td>Sensitivity to Diversity</td>
<td>Self-direction and Self-management</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>Problem-solving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1009 of 2152
853-8002-00L The Role of Technology in National and International Security Policy

Abstract
The lecture provides an introduction to the role of security and military technologies in the formulation and implementation of national and international security policies. The focus is on challenges posed by new and developing technologies, the transformation of military capabilities, and the question of regulation.

Objective
Participants will gain an in-depth overview of the many ways in which technology is becoming part of security policies and practices, in both civilian and military contexts.

Content

Literature
Literatur für die einzelnen Sitzungen wird auf Moodle bereitgestellt.

Prerequisites / notice
The lecture is being supported by a website on Moodle. If you have any questions, please contact Oliver Roos, oliver.roos@ai.pge.s.ethz.ch.

851-0650-00L AI4Good

Abstract
The AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members.

Objective
Given a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a solution. Students will learn to critically evaluate their ideas and solutions together with all course members in a broader context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.

Content
The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data (and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a specific problem. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning.

Every two weeks, each group will present ideas and progress during a short presentation followed by a discussion with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Note: The course AI4Good is not related to Hack4Good, which is a students' initiative organized by the Analytics Club at ETH. For more information about Hack4Good check out the website: https://analytics-club.org/wordpress/hack4good/.

Prerequisites / notice
Students with a strong background in machine learning and excellent programming skills (preferably in Python)

851-0742-01L Contract Design II

Abstract

*This course is taught by Professor Alexander Stremitzer (https://laweon.ethz.ch/group/professors/stremitzer.html).

To be considered for Contract Design II, you must have completed Contract Design I in the same semester.

Students can only register for Contract Design II after having obtained approval by Prof. Stremitzer.

Objective
There is a possibility that representatives from companies that were previously engaged in similar deals will visit us in class and tell you about their experience firsthand. In Contract Design I, you will receive more detailed information on the content and learning objectives of Contract Design II. If you have urgent questions, please do not hesitate to send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegocalderaherrera@uzh.ch).

Prerequisites / notice
To enable you to work under the close supervision of your professor and his team, only a small group of students with backgrounds in law, business, or engineering is admitted to this course. This simulation is time-consuming and challenging. Hence, we can only admit the most successful and motivated students to this class. Further information on the application process will follow.

D-PHYS

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0101-86L</td>
<td>Complex Social Systems: Modeling Agents, Learning, and Games</td>
<td>W</td>
<td>3</td>
<td>2S</td>
<td>N. Antulov-Fantulin, T. Asikis, D. Helbing</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 100.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites: Basic programming skills, elementary probability and statistics.

Abstract
This course introduces mathematical and computational models to study techno-socio-economic systems and the process of scientific research. Students develop a significant project to tackle techno-socio-economic challenges in application domains of complex systems. They are expected to implement a model and communicating their results through a seminar thesis and a short oral presentation.

Objective
The students are expected to know a programming language and environment (Python, Java or Matlab) as a tool to solve various scientific problems. The use of a high-level programming environment makes it possible to quickly find numerical solutions to a wide range of scientific problems. Students will learn to take advantage of a rich set of tools to present their results numerically and graphically.

Content
Students are expected to implement themselves models of various social processes and systems, including agent-based models, complex networks models, decision making, group dynamics, human crowds, or game-theoretical models.

Part of this course will consist of supervised programming exercises. Credit points are finally earned for the implementation of a mathematical or empirical model from the complexity science literature and the documentation in a seminar thesis.

Lecture notes
The lecture slides will be presented on the course web page after each lecture.
The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.

Good programming skills and a good understanding of probability & statistics and calculus are expected.

Prerequisites
The number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
</tbody>
</table>

851-0650-00L AI4Good

W 3 credits 2G J. D. Wegner

Abstract
The AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.

Objective
Given a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a suitable solution. Students will also learn to critically evaluate their ideas and solutions together with all course members in a broader context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.

Content
The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data (and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a specific problem. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Every two weeks, each group will present ideas and progress during a short presentation followed by a discussion with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Note: The course AI4Good is not related to Hack4Good, which is a students' initiative organized by the Analytics Club at ETH. For more information about Hack4Good check out the website: https://analytics-club.org/wordpress/hack4good/.

Prerequisites / notice
Students with a strong background in machine learning and excellent programming skills (preferably in Python)

851-0175-00L Images of the Human

W 3 credits 2G J. L. Gastaldi

Abstract
This seminar will explore the multiple transformations of the conception of the “human” in the face of the current scientific, social and technological challenges, focusing on those related to recent digital technologies and practices. The lectures will be delivered by researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences.

Objective
By the end of the course, students will be able to describe and compare different conceptions of the human at work in multiple fields of the humanities and the social sciences. They will be able to evaluate both the differences and the convergences between those conceptions, and critically assess their relation to current trends in science, technology and society, particularly in the context of new digital practices.

Content
The remarkable development of AI in the past decade has brought about a renewed urge to rethink our image of the "human". In this way, computer science and technology join other scientific disciplines having experienced the same need in the face of current challenges, such as climate change or the global pandemic, which question the place of the human in its environment. Such circumstances reveal that a science of the human is today more necessary than ever. For this reason, the Turing Centre's lecture series of this year will be dedicated to exploring the multiple images of the human at work across the human sciences and their transformation as a consequence of the current global challenges. In line with the Turing Centre's activities, the focus will be on challenges related to recent digital technologies and practices. Various researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences, will present what they consider crucial concepts, methods, challenges, and limits in our investigations about the human and its relation to machines, animals and nature.
This course will review several case studies from the ancient, medieval and modern history of mathematics. The case studies will be analyzed from various philosophical perspectives, while situating them in their historical and cultural contexts.

Objective
The course aims are:
1. To introduce students to the historicity of mathematics
2. To make sense of mathematical practices that appear unreasonable from a contemporary point of view
3. To develop critical reflection concerning the nature of mathematical objects
4. To introduce various theoretical approaches to the philosophy and history of mathematics
5. To open the students’ horizons to the plurality of mathematical cultures and practices

Within the context of the medieval and early modern world, the evolution of the relation between science and philosophy during the Middle Age and the Early Modern Period will be examined.

Content
The course analyses the evolution of the relation between science and philosophy during the Middle Age and the Early Modern Period.

Objective
The course aims are:
- To introduce students to the philosophical dimension of science;
- To develop a critical understanding of scientific notions;
- To acquire skills in order to read and comment on scientific texts written in the past ages.

Prerequisites / notice
To enable you to work under the close supervision of your professor and his team, only a small group of students with backgrounds in law, business, or engineering is admitted to this course. This simulation is time-consuming and challenging. Hence, we can only admit the most successful and motivated students to this class. Further information on the application process will follow.

This course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

Objective
The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.

Content
This course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:
1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater detail on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

Assigned reading materials and slides will be available via Moodle.

851-0197-00L Medieval and Early Modern Science and Philosophy W 3 credits 2V E. Sammarchi

851-0742-01L Contract Design II W 1 credit 1U A. Stremitzer

860-0023-00L International Environmental Politics W 3 credits 2V T. Bernauer
On completion of this lecture, you have acquired the ability to identify, analyze, critically reflect and resolve ethical challenges in general System of Swiss planning law, 2 credits

Haller, Walter/Karlen, Peter, Raumplanung-, Bau- und Umweltrecht, 3.A., Zürich 1999

The reader and additional lecture material and exercises will be posted on Moodle.

O. Bucher

Introduction to general and applied ethics. 2G

Space Planning Law and Environment 2G

W

2 credits

O. Bucher

System of swiss planning law, Constitutional and statutory provisions, Space planning and fundamental rights, Instruments, Application, legal protection, enforcement, Practical training.

Basic understanding of nature and function of space planning from a legal point of view. Basic knowledge of space planning instruments, relationship between space planning and constitutional law (especially property rights), solving of practical cases.

Lecture notes

Haller, Walter/Karlen, Peter, Raumplanung-, Bau- und Umweltrecht, 3.A., Zürich 1999

Hanni, Peter, Planungs-, Bau- und besonderes Umweltschutzrecht, 6.A., Bern 2016

Environmental Ethics 2V

A. Deplazes Zemp

The pressuring environmental challenges of today demand a critical reflection. Ethics is an important tool for doing so. This lecture introduces the basics of ethics and provides in-depth knowledge of environmental ethics and its debates. This theoretical background will be applied and critically reflected using examples of current environmental challenges.

On completion of this lecture, you have acquired the ability to identify, analyze, critically reflect and resolve ethical challenges in general and specifically regarding the environment. You know basic concepts, positions and lines of argumentation from the debate in environmental ethics, which you have applied and discussed in smaller exercises.

Introduction to general and applied ethics, Overview and discussion of ethical theories relevant to address environmental challenges, Familiarisation with various basic standpoints within environmental ethics, Cross-section topics, such as sustainability, intergenerational justice, protection of species, etc. Practicing of newly acquired knowledge in smaller exercises.

Presentation slides of the individual sessions will be distributed, including the most important theories and keywords; extended reading lists.

- Andrew Light/Holmes Rolston III, Environmental Ethics. An Anthology, 2003
- John O’Neill et al., Environmental Values, 2008
- Konrad Ott/Jan Dierskes/Lieske Voget-Klieschin, Handbuch Umweltethik, 2016

Generelle introductions:
- Marcus Düwell et. al. (Hrsg.), Handbuch Ethik, 2. Auflage, Stuttgart (Metzler Verlag), 2006
- Johann S. Acht et. al. (Hrsg.), Grundkurs Ethik 1. Grundlagen, Paderborn (mentis) 2008

The procedure for accumulating CP will be explained at the start of term.

We expect participants to engage in and contribute to discussions for keeping the course interesting and lively.

Environmental Policy of Switzerland 2G

E. Lieberherr

Number of participants limited to 130. Priority is given to the target group: Bachelor Study programme Environmental Sciences until September 27th 2021.

Waiting list will be deleted October 1st, 2021.

This course presents the basics of public policy analysis and the specific characteristics of Swiss environmental policy. Policy instruments, actors and processes are addressed from a political science perspective both theoretically as well as by means of current Swiss environmental policy examples.

Beyond acquiring basic knowledge about public policy analysis, this course teaches students how to analytically address current and concrete questions of environmental policy. Through exercises the students learn about political science concepts and frameworks as well as real-life political decision-making processes. The well-grounded examination of complex political conflict situations is an important precondition for the entry into the (environmental policy) workforce or a future research career.

The processes of change, overuse or destruction of the natural environment through humans have historically placed high demands on social and political institutions. In the interplay between the environment, society and economy, the environmental policy field encompasses the sum of public measures that have the goal to eliminate, reduce or avoid environmental degradation. The course systematically presents the basics of environmental policy instruments, actors, programs and processes as well as their change over time. Invited practitioners will provide us with insight regarding the current developments in forest, water and spatial planning policies. A key aspect is the distinction between politics and political science and specifically environmental policy.

The reader and additional lecture material and exercises will be posted on Moodle.

The detailed semester program (syllabus) is made available to the students at the beginning of the semester.

During the lecture we will work with Moodle and eduApp. We ask that all students register themselves on these platforms before the lecture and to bring a laptop, tablet or smartphone to class, so that you can complete exercises using Moodle and eduApp.
Copies of slides and selected documents will be distributed.

701-0985-00L

Social Intercourse with Current Environmental Risks
W 1 credit 1V B. Nowack
Does not take place this semester.

Abstract
The lecture treats the social intercourse with risks of technical systems. The notion of risk and the perception of risk are discussed by case studies (e.g. nanotechnology) and socio-political instruments for decision-making are presented. Methods are presented that can be applied to deal with environmental risks and how they can be used for sustainable innovation.

Objective
- Getting acquainted to the extended risk concept
- Evaluation of the risks caused by technology within the societal context
- Knowledge about the mode science and society handle current environmental risks (examples gene- and nanotechnology)
- Knowledge about handling risks (e.g. precautionary principle, protection goal, damage definition, ethics)

Content
- Risks and technical systems (risk categories, risk perception, risk management)
- Illustration with case studies (nanotechnology)
- Implementation (politics, science, media, etc.)
- Decision making (technology assessment, cost/benefit analysis etc.)

Lecture notes
Copies of slides and selected documents will be distributed.

Prerequisites / notice
The lecture is held biweekly (for 2 hours). The dates are 3.9.; 30.9. (instead of 7.10); 21.10.; 4.11.; 18.11.; 2.12.; 16.12.

851-0650-00L

AI4Good
W 3 credits 2G J. D. Wegner

Abstract
The AI4Good course is a hackathon turned into a full course. At the beginning, stakeholders active in the development sector will describe several problems that could be solved with a machine learning approach. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Progress will be discussed with all course members.

Objective
Given a specific problem in global development, students shall learn to self-responsibly design, implement and experimentally evaluate a suitable solution. Students will also learn to critically evaluate their ideas and solutions together with all course members in a broader context that go beyond mere technical solutions, but touch on ethics, local culture etc., too.

Content
The AI4Good course is a hackathon turned into a full course. At the beginning of the course, stakeholders (e.g., NGOs) active in the development sector will describe several problems that could be solved with a machine learning approach. Organizers of the course will make sure that only those problems are selected that are suitable for a machine learning approach and where sufficient amounts of data (and labels) are available. Students will organize themselves into small groups of 3-5 students, where each group works on solving a specific problem. Students will spend the semester on designing, implementing, and testing suitable solutions using machine learning. Every two weeks, each group will present ideas and progress during a short presentation followed by a discussion with all course members. At the end of the course, students will present their final results and submit source code. In addition, they will describe the developed method in form of a scientific paper of 8 pages. Grading will depend on the source code, the paper, and active participation in class.

Prerequisites / notice
Students with a strong background in machine learning and excellent programming skills (preferably in Python)

851-0175-00L

Images of the Human
W 3 credits 2G J. L. Gastaldi

Abstract
This seminar will explore the multiple transformations of the conception of the “human” in the face of the current scientific, social and technological challenges, focusing on those related to recent digital technologies and practices. The lectures will be delivered by researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences.

Objective
By the end of the course, students will be able to describe and compare different conceptions of the human at work in multiple fields of the humanities and the social sciences. They will be able to evaluate both the differences and the convergences between those conceptions, and critically assess their relation to current digital technologies and societies.

Content
The remarkable development of AI in the past decade has brought about a renewed urge to rethink our image of the “human”. In this way, computer science and technology join other scientific disciplines having experienced the same need in the face of current challenges, such as climate change or the global pandemic, which question the place of the human in its environment. Such circumstances reveal that a science of the human is today more necessary than ever. For this reason, the Turing Centre's lecture series of this year will be dedicated to exploring the multiple images of the human at work across the human sciences and the artificial transformation as a consequence of the current global challenges. In line with the Turing Centre's activities, the focus will be on challenges related to recent digital technologies and practices. Various researchers from ETH and abroad, with different disciplinary backgrounds in the humanities and the social sciences, will present what they consider crucial concepts, methods, challenges, and limits in our investigations about the human and its relation to machines, animals and nature.

851-0421-00L

Sapiens: A Reading Course
W 3 credits 2S N. Guettler

Abstract
Yuval Noah Haran's "Sapiens" is the most successful historical book of recent years. The seminar examines the text from a history of science perspective: What kind of sources does it rely on? What type of history is being written here? And in what tradition does "Sapiens" represent a popular non-fiction book? In the course of the seminar, the students will analyse the competence to deal with the original text and the research literature on the history of anthropology, science and technology in a critical and historically thoughtful way. In doing so, they can navigate independently through historical literature by means of smaller research tasks.

Objective
The aim of the seminar is to introduce students to the history of science in anthropology, prehistory and popular science literature on the history of mankind by reading "Sapiens". In addition to studying and critically discussing the original text, the students explore significant scientific and historical contexts of the book in small groups and present them in the seminar. In this way, they develop an understanding of the underlying narratives and popular science genres that inform "Sapiens".

851-0724-00L

Real Estate Property Law
W 3 credits 3V M. Huser, R. Müller-Wys, S. Stucki

Abstract
Fundamental concepts of Land Register Law and Land Surveying Law (substantive and procedural rules of Land Register Law, the parts and the relevance of the Land Register, process of registration with the Land Register, legal problems of land surveying, reform of the official land surveying).

Objective
Overview of the legal norms of land registry and surveying law.

Content
Basic principles of material and formal land registry law, components of the land register, consequences of the land register, the registration process, legal problems of surveying, reform of the official surveying, liability of the geom-eter.
Lecture notes
Abgegebene Unterlagen: Skript in digitaler Form

Pflichtlektüre: Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrechts und des Grundbuchrechts, Beiträge aus dem Institut für schweizerisches und internationales Baurecht der Universität Freiburg/Schweiz, Zürich 2014

Literatur
- Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrechts und des Grundbuchrechts, Zürich 2014
- Meinrad Huser, Geo-Informationsrecht, Rechtlicher Rahmen für Geographische Informationssysteme, Zürich 2005
- Meinrad Huser, Darstellung von Grenzen zur Sicherung dinglicher Rechte, in ZBGR 2013, 238 ff.

Literature
- Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrechts und des Grundbuchrechts, Zürich 2014
- Meinrad Huser, Geo-Informationsrecht, Rechtlicher Rahmen für Geographische Informationssysteme, Zürich 2005
- Meinrad Huser, Darstellung von Grenzen zur Sicherung dinglicher Rechte, in ZBGR 2013, 238 ff.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Media and Digital Technologies not assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies
- Communication not assessed
- Cooperation and Teamwork assessed
- Customer Orientation assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence not assessed
- Sensitivity to Diversity assessed

Domain D - Personal Competencies
- Negotiation assessed
- Adaptability and Flexibility not assessed
- Creative Thinking assessed
- Critical Thinking assessed
- Integrity and Work Ethics assessed
- Self-awareness and Self-reflection assessed
- Self-direction and Self-management not assessed

851-0101-80L Basic Problems of Environmental Ethics W 3 credits 2G L. Wingert

Abstract
Climate change exerts a pressure on us to significantly change our individual and collective behaviour. Such a pressure raises questions like: Who has to give up what? What is a fair distribution of the burdens in the struggle against climate change? What is the reasonable understanding of our relation to nature? How should we run our economies?

Objective
The course will try to give an argument-based answer to the question: What are the responsibilities for individuals (e.g. as consumers), and for collectivities (e.g. states and firms).

Another focus will be to clarify the concept of "climate justice".

The course should also enable participants to evaluate different answers to the question how we should organize our economies for securing our ecological niche.

Literature
Preparatory Literature

Language Courses of the UZH and ETH Zurich
A maximum of three credits from language courses may be recognized. In addition, only advanced courses (level B2 upwards) in the European languages English, French, Italian and Spanish are recognized. German language courses are recognized from level C2 upwards.

Course fees: https://www.sprachenzentrum.uzh.ch/en/angebot/Kursgebuehren.html
Registration dates: https://www.sprachenzentrum.uzh.ch/en/angebot.html

Number Title Type ECTS Hours Lecturers
851-0816-07L French B2-C1: Language and Literature W 2 credits 1G University lecturers

Abstract
No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees: https://www.sprachenzentrum.uzh.ch/en/Sprachkurse/Kursgebuehren1.html
Registration dates: https://www.sprachenzentrum.uzh.ch/en/angebot.html

Objective
This course offers participants the opportunity to read short stories in order to raise their awareness of linguistic aspects and cultural issues in the Francophone world, and to improve their oral skills, mainly through oral presentations.

The primary objective of this course is to develop participants' written comprehension and, more specifically, to refine their perception of the implicit meanings and cultural aspects present in the literary texts proposed for reading. The course further aims to raise participants' awareness of contemporary cultural issues in the Francophone world. Another goal is to improve participants' oral skills, specifically so they can deliver structured presentations and express personal, informed, and nuanced opinions.
Abstract
The course is organized around the communicative tasks that participants learn to perform. These relate to the university environment and are addressed both in terms of essential language skills at B2 level and of extra-linguistic skills (cultural knowledge, gestures, etc.) required to deal with these situations.

Objective
The objective of this course is to familiarize participants with the performance of communicative tasks specific to the academic world and, in so doing, to consolidate their general production and comprehension skills (oral and written) at B2 level.

Abstract
This course offers participants the opportunity to initiate and practice debating in French by developing and improving specific linguistic tools in order to allow them to speak fluently in controversial discussions.

Objective
This course allows participants to develop their speaking skills through active contributions in debates. More specifically, it aims at participants' production of clear and reasoned statements to ensure better communication. An additional goal is to improve participants' listening comprehension skills.

Abstract
Based on the main controversial issues of the moment, this course offers participants the opportunity to reflect on the rhetorical tools essential to the art of debate and to put these tools into practice in order to improve their ability to express themselves quickly, effectively, and fluently.

Objective
This course allows participants to develop specific skills in oral expression, as well as comprehension, in the context of controversial discussion. After observing various practices and rhetorical tools in the art of debate in an initial phase, participants put the theory into practice in order to produce clearly structured argumentation and improve their ability to interact effectively rhetorically and quickly in a controversial debate.

Abstract
This course allows participants to practice Italian in a real-life situation: At the Zurich art museum (Kunsthaus), participants look at art works while listening to an Italian audio guide; they then discuss the art. The course alternates between seven museum visits and seven in-class lessons. At home, participants study their chosen art works in more depth and prepare oral and written summaries.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Level</th>
<th>Credits</th>
<th>Type</th>
<th>Prerequisites</th>
<th>Objective</th>
<th>Abstract</th>
<th>Registration Dates</th>
<th>Course Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0826-03L</td>
<td>Italian B2-C1: Language Structure</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
<td>Participants should already have reached C1 level (advanced) as defined in the Common European Framework of Reference for Languages (CEFR). The course uses art as a means for participants to practice all four language skills: Reading, writing, speaking, and listening. Further activities enable participants to enhance vocabulary and grammar learning. Participants receive written feedback on their written work, and recurring errors are discussed in class.</td>
<td>The course gives participants the opportunity to broaden and intensify their knowledge of complex morphosyntactic structures. The objective is to improve their proficiency in expressing complex content. The aim is that at the end of the course, participants understand a wide range of texts and are able to express themselves clearly and effectively in a wide variety of oral and written situations.</td>
<td>University lecturers</td>
<td>https://www.sprachenzentrum.uzh.ch/en/Sprachkurse/Kursegebuehren1.html</td>
</tr>
<tr>
<td>851-0828-00L</td>
<td>English Language and Literature (C1-C2)</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
<td>Bachelor and master students at C1-C2 level. The course enhances students' appreciation and understanding of literature in English.</td>
<td>The aims of the course are to: * Introduce students to a variety of literary texts in English * Help students to develop critical, creative, and personal approaches to analyzing literary texts and by extension become more astute readers in general * Provide students with an opportunity to enhance and practice their argumentation skills in discussions and in writing * Improve the ways in which students organize their ideas and arguments in a sustained, coherent, and logical manner * Improve students grammatical and lexical repertoire through reading and discussion * Impart a life-long interest in literature written in English</td>
<td>Bachelor and master students at C1-C2 level. The course enhances students' appreciation and understanding of literature in English. Through the analysis and interpretation of literary texts, students improve their analytical and English language skills; their grammar skills through writing; and their range of vocabulary through reading, discussions, and writing.</td>
<td>University lecturers</td>
</tr>
<tr>
<td>851-0832-10L</td>
<td>Advanced English for Academic Purposes (C1-C2)</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
<td>Participants should already have reached C1 level (advanced) as defined in the Common European Framework of Reference for Languages (CEFR). The course is also open to participants whose level is above C1. The course aims to train and develop linguistic skills at mastery level, with a focus on formal and informal academic lexis, on listening and oral communication skills, and on increasing fluency, accuracy, and complexity of spoken language. Students will work on writing well-structured descriptive texts and argumentative essays, with the aim of fulfilling the language requirements for study at an English-speaking university or following university Master's courses held in English.</td>
<td>This course is designed for Bachelor's and Master's students from all disciplines who wish to improve their English from C1 towards C2 level and train their language skills at mastery level. Selected academic English features are included to add value to the course to meet standard entrance requirements by leading universities and colleges worldwide.</td>
<td>Bachelor and master students at C1-C2 level. The course enhances students' appreciation and understanding of literature in English. Through the analysis and interpretation of literary texts, students improve their analytical and English language skills; their grammar skills through writing; and their range of vocabulary through reading, discussions, and writing.</td>
<td>University lecturers</td>
</tr>
<tr>
<td>851-0846-01L</td>
<td>Spanish B2: Starter</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
<td>Participants improve their understanding of grammatical usage by investigating written and spoken texts. They put newly acquired language patterns into practice when writing and speaking, and they acquire vocabulary on current contemporary issues; they also acquire specialist vocabulary from their fields of study. Participants are able to write clear and detailed texts on scientific issues from their specific fields of study.</td>
<td>The course aims to train and develop linguistic skills at mastery level, with a focus on formal and informal academic lexis, on listening and oral communication skills, and on increasing fluency, accuracy, and complexity of spoken language. Students will work on writing well-structured descriptive texts and argumentative essays, with the aim of fulfilling the language requirements for study at an English-speaking university or following university Master's courses held in English.</td>
<td>Bachelor and master students at C1-C2 level. The course enhances students' appreciation and understanding of literature in English. Through the analysis and interpretation of literary texts, students improve their analytical and English language skills; their grammar skills through writing; and their range of vocabulary through reading, discussions, and writing.</td>
<td>University lecturers</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Start Date</td>
<td>Credits</td>
<td>Semester</td>
<td>Lecturers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0846-03L</td>
<td>Spanish B2: Grammar and Communication</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course fees: https://www.sprachenzentrum.uzh.ch/en/Sprachkurse/Kursegebuehren1.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration dates: https://www.sprachenzentrum.uzh.ch/en/angebot.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>The most important grammar topics of this course are past tense forms, subordinate clauses, linking devices, reported speech, periphrastic verb constructions, and verbs that express change. The course also deals with topics that typically cause problems for higher level learners, including ser/estar, por/para, and indicative and subjunctive forms of verbs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>In this course, participants improve their comprehension of written and oral texts that deal with current issues, as well as of scientific texts from participants' own fields of study. They are able to analyse various points of view and can create clear and detailed oral and written texts on scientific issues from their field of study, while taking a position and expressing definite views on these issues.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Start Date</th>
<th>Credits</th>
<th>Semester</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0849-00L</td>
<td>Brazilian Portuguese A1</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course fees: https://www.sprachenzentrum.uzh.ch/en/Sprachkurse/Kursegebuehren1.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration dates: https://www.sprachenzentrum.uzh.ch/en/angebot.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>This course is designed for participants with no previous knowledge of Portuguese. In the course, participants learn simple basic vocabulary, common daily idiomatic expressions, and fundamental grammar. The focus is on the phonetic features of Portuguese language. Intercultural and cultural issues relating to Brazil are also taken into consideration.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>Participants can understand and form simple questions, messages, and requests.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Start Date</th>
<th>Credits</th>
<th>Semester</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0849-01L</td>
<td>Brazilian Portuguese A2</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course fees: https://www.sprachenzentrum.uzh.ch/en/Sprachkurse/Kursegebuehren1.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration dates: https://www.sprachenzentrum.uzh.ch/en/angebot.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>This course is designed for participants with a basic knowledge of Portuguese (level A1). The course deals with everyday topics. Participants practice simple forms of communication as these occur in daily life. Lexical and linguistic structures are taught within these contexts. Intercultural and socio-cultural issues relating to Brazil are also taken into consideration.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>Participants can talk and write about themselves and everyday topics using simple sentences. They can take part in simple daily conversations, understand and write simple messages, describe an event in a time sequence, and express wishes, assumptions, and recommendations.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Start Date</th>
<th>Credits</th>
<th>Semester</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0849-02L</td>
<td>Brazilian Portuguese B1</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course fees: https://www.sprachenzentrum.uzh.ch/en/Sprachkurse/Kursegebuehren1.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration dates: https://www.sprachenzentrum.uzh.ch/en/angebot.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>This course is designed for participants with an A2 level in Portuguese. The course deals with everyday topics. Participants practice forms of communication as these occur in daily life. Lexical and linguistic structures are taught within these contexts. Intercultural and socio-cultural issues relating to Brazil are also taken into consideration.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>Participants can deal with everyday situations; they can talk about their experiences, opinions, wishes, and plans in simple coherent sentences.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Start Date</th>
<th>Credits</th>
<th>Semester</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0885-09L</td>
<td>Modern Greek Language I A1.1</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course fees: https://www.sprachenzentrum.uzh.ch/en/Sprachkurse/Kursegebuehren1.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration dates: https://www.sprachenzentrum.uzh.ch/en/angebot.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>Modern Greek I leads to A1.1 level on the Common European Framework of Reference for Languages. It is the first part of a four-semester Modern Greek course. The goal of the course is for participants to acquire basic language skills in speaking, listening comprehension, and reading and writing Greek script. The focus is also on building basic vocabulary and on acquiring basic grammar.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objective

Participants are able to use Modern Greek adequately in selected areas. They have basic vocabulary skills, which they can use actively. They can read and write Greek script well. They can filter out a general overview from the information presented on Greek websites. The focus is on speaking, reading comprehension, and listening comprehension skills at A1.1 level of the Common European Framework of Reference for Languages, and on the development of cultural competence. Special importance is attached to an academic environment and student life. Content areas that are embedded in various communicative tasks include: Giving information about yourself, your job, your studies, your place of residence, and your personal preferences; and conducting simple, everyday conversations (including ordering food and drink, shopping, and inquiring about places).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Hours</th>
<th>University lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0885-10L</td>
<td>Modern Greek Language III A2.1</td>
<td>2</td>
<td>2G</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course fees: https://www.sprachenzentrum.uzh.ch/en/Sprachkurse/Kursegebuehren1.html</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registration dates: https://www.sprachenzentrum.uzh.ch/en/angebot.html</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Modern Greek III leads to A2.1 level on the Common European Framework of Reference for Languages. It is the third part of a four-semester Modern Greek course. The goal of the course is for participants to expand their language skills in speaking and listening comprehension, reading, and writing. The focus is also on grammar structures, vocabulary extension.

Objective

Participants are able to use Modern Greek adequately in selected areas. They improve their listening comprehension skills and expand their vocabulary. They can read a simple text fluently and can answer content questions in speech and in writing. They understand Greek as the language of instruction and have developed strategies needed to ask questions in Greek. The focus is on speaking, reading comprehension, and writing skills at A2.1 level of the Common European Framework of Reference for Languages and on developing cultural competence. Special importance is attached to an academic environment and student life. Content areas that are embedded in various communicative listening, reading, and writing tasks include: Describing an apartment, people, and objects; making comparisons; talking about past experiences and future plans; participating in interviews; asking for permission; giving advice; making appointments; and acting out dialogues.

851-0889-00L Swedish I A1.2

No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

<table>
<thead>
<tr>
<th>Credits</th>
<th>Hours</th>
<th>University lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2G</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Swedish I leads to A1.2 level on the Common European Framework of Reference for Languages. The course is the first part of a two-semester Swedish course. The goal of the course is for participants to gain basic language skills in speaking, listening comprehension, reading, and writing.

Objective

Participants are able to use Swedish adequately in selected areas. The focus is on speaking, reading comprehension, and listening comprehension skills at A1.2 level of the Common European Framework of Reference for Languages, and on developing cultural competence. Special importance is attached to an academic environment and student life. Content areas that are embedded in various communicative tasks include: Greetings, introducing yourself, and speaking about yourself (including about your personal and professional identity and your interests); and asking for information and requesting services.

851-0889-02L Swedish II A2.1

No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

<table>
<thead>
<tr>
<th>Credits</th>
<th>Hours</th>
<th>University lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2G</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Swedish II leads to A2.1 level on the Common European Framework of Reference for Languages. The course is the second part of a two-semester Swedish course. The goal of the course is for participants to extend their skills in speaking, listening comprehension, reading, and writing. Participants expand their skills in basic grammar, extend their vocabulary and improve their pronunciation.

Objective

Participants are able to use Swedish adequately in selected areas. The focus is on speaking, listening comprehension, and reading comprehension skills at A2.1 level of the Common European Framework of Reference for Languages, and on developing cultural competence. Special importance is attached to an academic environment and student life. Content areas that are embedded in various communicative tasks include: Giving information about yourself, your job, your studies, your place of residence, and your personal preferences; and conducting simple, everyday conversations (including ordering food and drink, shopping, and inquiring about places).

851-0851-00L Russian I A1.1

No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

<table>
<thead>
<tr>
<th>Credits</th>
<th>Hours</th>
<th>University lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2G</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Russian I is the first part of a five-semester Russian course. The course leads to A1.1 level on the Common European Framework of Reference for Languages. The goal of the course is to introduce participants to the Cyrillic alphabet and to Russian phonetics; participants build up a basic vocabulary, learn the basics of Russian grammar, and are introduced to Russian culture.
Objective
Participants are able to use Russian adequately in selected areas. The focus is on speaking, reading comprehension, and listening comprehension skills at A1.1 level of the Common European Framework of Reference for Languages, and on developing cultural competence. Special importance is attached to an academic environment and student life. The course deals with the following content: Reading and writing Russian script; saying hello and goodbye; introducing yourself; asking for someone’s name; addressing someone; apologizing; indicating your country and place of origin and residence; stating your profession; talking about family; talking about your wellbeing; asking about prices; and ordering items in a café.

851-0853-00L Russian III A2.1

No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees:

Registration dates:

Abstract
Russian III leads to A2.1 level on the Common European Framework of Reference for Languages. The course is the third part of a five-semester Russian course. In this course, participants extend their ability to express themselves, in particular regarding daily life (eating, shopping) and work and education (daily routines); it also extends participants’ grammar skills.

Objective
Participants are able to use Russian adequately in selected areas. The focus is on speaking, reading comprehension, and listening comprehension skills at A2.1 level of the Common European Framework of Reference for Languages, and on developing cultural competence. Special importance is attached to an academic environment and student life. The course deals with the following content: Talking about food and meals; indicating packaging and quantities; talking about things you need or that you have to buy; talking to people while shopping; naming food establishments, crockery, and cutlery; extending invitations and responding to invitations; asking for explanations of unfamiliar terms; expressing congratulations and wishes; describing daily routines; describing actions in the present, past, and future; and explaining how you get to work.

851-0855-00L Russian V A2.2+

No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees:

Registration dates:

Abstract
Russian V leads to A2.2+ level on the Common European Framework of Reference for Languages. The course is the final part of a five-semester Russian course. In this course, participants extend their ability to express themselves, in particular regarding daily life (holidays) and personality (biography, education, and professional career); it also extends participants’ grammar skills.

Objective
Participants are able to use Russian adequately in selected areas. The focus is on speaking, reading comprehension, and listening comprehension skills at A2.2+ level of the Common European Framework of Reference for Languages, and on developing cultural competence. Special importance is attached to an academic environment and student life. The course deals with the following content: Talking about the weather; naming the seasons and months; understanding activities offered to tourists; expressing agreement, disagreement, and indifference; making appointments; talking about holiday plans and arrangements; expressing prohibitions; making comparisons; talking about learning; indicating date and year; saying what you are interested in and what you are doing; giving biographical details; saying what you would like to do; making and obtaining recommendations; passing on information.

851-0861-01L Arabic I A1.1

No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees:

Registration dates:

Abstract
Arabic I leads to A1.1 level on the Common European Framework of Reference for Languages. Arabic I is the first part (A1.1 level) of a four-semester Arabic course. The goal of the course is for participants to acquire basic language skills in speaking, listening comprehension, and the reading and writing of Arabic script.

Objective
Participants are able to use the Arabic language adequately in selected areas. The focus is on speaking; reading and listening comprehension at A1.1 level on the Common European Framework of Reference for Languages; learning Arabic script; and the development of cultural competence. The following content areas are embedded in various communicative tasks: Greeting each other, comparing; talking about learning; indicating date and year; saying what you are interested in and what you are doing; giving biographical details; saying what you would like to do; making and obtaining recommendations; passing on information.

851-0863-00L Arabic III A2.1

No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees:

Registration dates:

Abstract
Arabic III leads to A2.1 level on the Common European Framework of Reference for Languages. Arabic III is the third part (A2.1 level) of a four-semester Arabic course. The practice exercises relate to simple discursive situations in daily life. In terms of grammar, special importance is attached to systematically learning the Arabic verbal system.
Objective

Participants are able to use the Arabic language adequately in selected areas and can conduct themselves in a culturally appropriate manner. To this end, the following content is dealt with: Talking about your life; daily routines; expressing wishes, commands, and eventualities; and talking about language and language learning (meta-language skills). Culturally, the focus is on useful phrases and appropriate conduct on important occasions such as holidays, weddings, births, and deaths. In terms of grammar, this course attaches particular importance to the systematization of the Arabic verbal system.

851-0877-00L
Chinese I A1.1
No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees:

Registration dates:

Abstract

Chinese I leads to A1.1 level on the Common European Framework of Reference for Languages. It is the first part of a four-semester Chinese course. The goal of the course is to introduce participants to standard modern Chinese and Chinese script, with a focus on speaking skills. The main focus is on communicating in everyday situations. This includes an introduction to Hiragana and Katakana syllabic writing and its use in word processing.

Objective

Participants are able to use the Chinese language adequately in selected areas and can conduct themselves in a culturally appropriate manner. The focus is on oral language skills at A1.1 level of the Common European Framework of Reference for Languages. Special importance is attached to an academic environment and student life. After one semester, participants have basic knowledge of the structure of the script and of about 200 characters. Content areas that are embedded in various communicative tasks include:

- Greetings and farewells
- Presenting yourself and family members and giving information such as name, age, profession, origin, and telephone number
- Describing objects and institutions
- Language skills
- Shopping

851-0879-00L
Chinese III A2.1
No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees:

Registration dates:

Abstract

Chinese III leads to A2.1 level on the Common European Framework of Reference for Languages. It provides an extension of participants' skills in standard modern Chinese and Chinese script. The goal of the course is for participants to communicate in and deal with more complex everyday situations. Special importance is attached to an academic environment and student life.

Objective

Participants are able to use the Chinese language adequately in selected areas and can conduct themselves in a culturally appropriate manner. The focus is on oral language skills at A2.1 level of the Common European Framework of Reference for Languages; reading and writing skills are fostered simultaneously. Special importance is attached to an academic environment and student life. Participants learn about 200 new characters. (After three semesters, participants know about 600 characters). Content areas that are embedded in various communicative tasks include: Directions, your living situation, public transport, visits to doctors and hospitals, hairdresser appointments.

851-0881-00L
Japanese I A1.1
No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees:

Registration dates:

Abstract

Japanese I leads to A1.1 level on the Common European Framework of Reference for Languages. It is the first part of a five-semester Japanese course. The goal of the course is for participants to learn the basic vocabulary and sentence structures needed to communicate in everyday situations. This includes an introduction to Hiragana and Katakana syllabic writing and its use in word processing.

Objective

Participants are able to use the Japanese language adequately in selected areas. The focus is equally on fostering speaking, listening, writing, and reading skills at A1.1 level of the Common European Framework of Reference for Languages, as well as on the development of cultural competence. Special importance is attached to an academic environment and student life. In addition, the two syllabic writing systems and the use of Japanese computer word processing are learnt. Content areas that are embedded in various communicative tasks include: Directions, your living situation, public transport, visits to doctors and hospitals, hairdresser appointments; and requesting services.

851-0881-02L
Japanese 1 (A1.1)
No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees:

Registration dates:

Abstract

Everyday introduction to the Japanese language. Students acquire a basic vocabulary together with the most frequently used sentence structures, as well as the Hiragana and Katakana syllabaries. Reading and writing training includes use of the computer for Japanese text editing.

Objective

 Everyday conversation / Reading simple texts written with Hiragana and Katakana syllabaries / Writing simple texts about everyday topics using the Hiragana and Katakana syllabaries on the computer.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Contacts</th>
<th>Credits</th>
<th>Component</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0882-02L</td>
<td>Japanese V A2.2 - B1.1</td>
<td>Participants are able to use the Japanese language adequately in selected areas. The focus is equally on fostering speaking, listening, writing, and reading skills at A1.2/A2.1 level of the Common European Framework of Reference for Languages, as well as on the development of cultural competence. Grammar skills are also reviewed and extended. Participants learn about 60 new Kanji, thus improving their reading skills. The following content from daily interactions is dealt with: Various daily activities (logical sequences, expressing regrettable and gratifying events), distinguishing between, and using, deferential and informal language.</td>
<td>W</td>
<td>2 credits</td>
<td>University lecturers</td>
</tr>
<tr>
<td>851-0890-00L</td>
<td>Latin Reading Course: "Carmina Burana: Vagabond Songs and their Sources"</td>
<td>Participants reactivate, review, and improve their language skills (vocabulary, morphology, morphosyntax) by applying these skills to texts and in exercises (translation competence, text analysis). Students mostly prepare the texts at home for class discussion. Furthermore, important topics of basic grammar are reviewed (exercises). Participants are able to communicate orally in specific situations and read everyday texts in Sino-Japanese mixed script.</td>
<td>W</td>
<td>2 credits</td>
<td>University lecturers</td>
</tr>
<tr>
<td>851-0900-03L</td>
<td>Advanced Norwegian Practice (University of Zürich)</td>
<td>Students gain an understanding of various aspects of a new topic and are able to analyse and contrast these aspects within a wider context. You will be reading Norwegian literature with ease and discussing various themes both in speech and in writing.</td>
<td>W</td>
<td>3 credits</td>
<td>University lecturers</td>
</tr>
<tr>
<td>851-0856-06L</td>
<td>Spanish B2-C1: The Realities of the Hispanic World</td>
<td>University lecturers</td>
<td>W</td>
<td>2 credits</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>
Abstract

This course gives participants an initial insight into the contemporary reality of the global Spanish-speaking community through journalistic texts. The skills they practice in this approach include reading, writing, and oral interaction, and the course includes reading and writing activities and oral debates.

Objective

Participants work on two areas: First, due the size of the Hispanic world, each week they focus on a nation or a region, thus gaining a deeper insight into that nation. Second, participants can choose to investigate various aspects of the Hispanic world, according to their own interests. This course gives an overview of the societies that form the Hispanic world in two ways: On the one hand, the course looks at the perspectives of the various nations that comprise this international community, and on the other, it looks at various aspects that define this community, including its politics, news, traditions, and culture.

851-0827-01L French B2-C1: Society and Current Issues

Objective

Participants work on two areas: First, due the size of the Hispanic world, each week they focus on a nation or a region, thus gaining a deeper insight into that nation. Second, participants can choose to investigate various aspects of the Hispanic world, according to their own interests.

This course gives an overview of the societies that form the Hispanic world in two ways: On the one hand, the course looks at the perspectives of the various nations that comprise this international community, and on the other, it looks at various aspects that define this community, including its politics, news, traditions, and culture.

851-0849-03L Brazilian Portuguese A2-B2: Urban Popular Music

Objective

The aim of this course is to expose the participants to the language with a musical approach using linguistic and cultural resources to develop and improve their oral and written learning and communication skills.

851-0846-02L Spanish B2-C1: Language and Cinema

Objective

The course aims to visual observation, development of ideas, presentation, and interaction. Some basic elements of movie-making are presented.

The participant gets familiarized with images, customs, dialogs and vocabulary, carrying out an observation, analysis, and comment of these elements.

Glossaries of different linguistic regions are created.

851-0856-04L Spanish B2-C1: Grammar and Communication

Objective

The course aims to visual observation, development of ideas, presentation, and interaction. Some basic elements of movie-making are presented.

The participant gets familiarized with images, customs, dialogs and vocabulary, carrying out an observation, analysis, and comment of these elements.

Glossaries of different linguistic regions are created.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Tuition</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0816-13L</td>
<td>French B2.2-C2: Practising French in Context</td>
<td>1</td>
<td>G</td>
<td>This course offers participants a choice of films that reflect recent issues in order to raise their awareness of the ongoing concerns of Francophone culture (the media and the press). University lecturers</td>
</tr>
<tr>
<td>851-0820-01L</td>
<td>French B2-C1: Language and Cinema</td>
<td>2</td>
<td>G</td>
<td>This course offers participants the opportunity to carry out a "case study" based on a topical issue in order to practice and improve the four language skills by developing a fictitious but plausible scenario that requires the use of specific rhetorical, lexical, and pragmatic tools. University lecturers</td>
</tr>
<tr>
<td>851-0834-17L</td>
<td>Spanish B2: Oral Interaction</td>
<td>2</td>
<td>G</td>
<td>The course aims to expose participants to a range of conversational situations, providing them with tools that help them to improve their ability to perform various tasks linguistically and socially. University lecturers</td>
</tr>
<tr>
<td>851-0826-04L</td>
<td>Italian B2-C1: Language and Literature</td>
<td>2</td>
<td>G</td>
<td>The course approaches the Italian language through short stories, relevant both for their linguistic structures and content, which is related to historical and sociological realities typical for Italy. University lecturers</td>
</tr>
<tr>
<td>851-0826-05L</td>
<td>Italian B2: Italian for Academic Purposes</td>
<td>2</td>
<td>G</td>
<td>The course offers participants the opportunity to: - Better understand complex literary texts - Be able to grasp nuances of meaning expressed through certain lexical and syntactical choices more effectively - Learn how to express themselves clearly and in a differentiated way - Understand through short narrative texts some cultural and social realities typical of Italy University lecturers</td>
</tr>
</tbody>
</table>
Abstract
In this course, participants examine and write/prepare various academic text genres, including scientific essays, abstracts, oral presentations, and handouts.

Objective
The course aims to deepen participants’ mastery of academic language. By reading scientific texts and listening to university lectures, participants analyze and study the linguistic structures of these text genres and learn specialist vocabulary from their field of study.

851-0879-01L Chinese V 2.2+
No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees:

Registration dates:

Abstract
Chinese V requires level A2.2. of the Common European Framework of Reference. The goal of the course is for participants to communicate orally about selected topics from different areas.

Objective
The participants are able to talk about selected topics. The focus is on oral language skills. However, listening, reading and writing skills are also trained. Participants can work with texts or audios/videos using aids such as pop-up dictionaries and writing on the computer. Handwriting is not required. They learn to acquire the key vocabulary and to develop idioms for each topics. The students practice, for example, how to express a fact, their own opinion, criticism, agreement, concerns, etc. and how to respond to them.

Content
The vocabulary of 600 words, which was acquired in the courses I-IV, will be enlarged by another 150. Which means, that of the ten lessons of the book, five will have to be mastered.

The participants will learn 25 grammatical structures and the corresponding syntax. Furthermore they will learn 50 idiomatic phrases, and their respective use in everyday life. They will also acquire the competence to understand new characters from those already known.

Lecture notes
This course will be supported by a module in OLAT. The participants will be asked to do some of their portfolios on OLAT.

Literature
HSK Standard Course 4, Teil 1, HSK标准教程4 上（含1MP3）
ISBN: 9787561939031 und HSK标准教程4上 练习册（含1MP3）

Prerequisites / notice
It is mandatory that the course Chinese IV has been successfully completed. Or else, that a certificate of the HSK 3 examination in the last two years is provided.

GESS Science in Perspective - Key for Type

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>W+</th>
<th>O</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible for credits and recommended</td>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
<td></td>
</tr>
<tr>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>V</th>
<th>G</th>
<th>U</th>
<th>S</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td>P</td>
<td>practical/laboratory course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0033-00L</td>
<td>Molecular Genetics and Cell Biology</td>
<td>O</td>
<td>5 credits</td>
<td>5G</td>
<td>J. Corn, F. Allain, K. Köhler</td>
</tr>
<tr>
<td></td>
<td>Only for Health Sciences and Technology BSc and Human Medicine BSc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course teaches the basic principles of evolution, cell biology, molecular biology, genetics and developmental biology using the example of humans.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>1) Students can explain the importance of evolution for the development of humans and diseases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) The students know the cell as the smallest unit of the body. They can explain how the functions of the cell are disturbed in certain diseases and where therapies intervene. They can describe the multiplication of cells in the body and show how errors in this multiplication can lead to diseases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) The students know DNA as the basis of life. They can explain how the DNA information is stored and how this information can be reproduced and protected from damage. They can describe how the information is read and translated into proteins. They can explain which mechanisms at the level of RNA, DNA and proteins can cause diseases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Students can explain which technologies can be used to diagnose and treat diseases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) Students can explain how people differ genetically and know the molecular basis of these differences. They can explain how these differences can lead to diseases and why some of these differences do not affect diseases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6) The students know the molecular causes of the most common hereditary diseases and can determine the probability of occurrence and transmission to offspring.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Students can explain the biochemical and molecular basis of human reproduction and know the basic principles of human embryonic development. The students can explain which mechanisms can be disturbed by a faulty development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-1001-03L</td>
<td>General Chemistry (for HST)</td>
<td>O</td>
<td>6 credits</td>
<td>4V+2U</td>
<td>J. Cvengros</td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture deals with a number of basic chemistry concepts. These include (amongst others) chemical reactions, energy transfer during chemical reactions, properties of ionic and covalent bonds, Lewis structures, properties of solutions, kinetics, thermodynamics, acid-base equilibria, electrochemistry and properties of metal complexes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course is designed to provide an understanding of the basic principles and concepts of general and inorganic chemistry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught</td>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td>competencies</td>
<td>Concepts and Theories</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Analytical Competencies</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Adaptability and Flexibility</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td>252-0852-00L</td>
<td>Foundations of Computer Science</td>
<td>O</td>
<td>4 credits</td>
<td>2V+2U</td>
<td>L. E. Fässler, M. Dahinden</td>
</tr>
<tr>
<td>Abstract</td>
<td>Students learn to apply selected concepts and tools from computer science for working on interdisciplinary projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students learn to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- understand the role of computer science in science,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- to control computer and automate processes of problem solving by programming,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- choose and apply appropriate tools from computer science,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- process and analyze real-world data from their subject of study,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- handle the complexity of real-world data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>1. The role of computer science in science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Introduction to Programming with Python</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Modeling and simulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Data management with lists and tables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Data management with a relational database</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Introduction to Matrices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>All materials for the lecture are available at www.gdi.ethz.ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Students should know the terms, models and classification systems used in health and disease; in addition, they should understand the

Mathematics I/II is an introduction to one- and multidimensional calculus

Communication

Organic molecules: Isolation, separation and characterization of organic compounds. Classical structure theory: constitution, covalent

Understanding the basic concepts and definitions of organic chemistry. Knowledge of the functional groups and classes of compounds that

Title

- Health: differences health-disease-accident, diagnostics, therapy, prevention and rehabilitation, ICF, epidemiology.

Techniques and Technologies

Domain A - Subject-specific Competencies

- Health: differences health-disease-accident, diagnostics, therapy, prevention and rehabilitation, ICF, epidemiology.

Abstract

- Science: ethics, literature search, study design, tests, data analysis, data presentation

Taught

not assessed

not assessed

assessed

not assessed

Creative Thinking

Critical Thinking

Self-awareness and Self-reflection

Self-direction and Self-management

not assessed

401-0291-00L

Mathematics I

Overview on various aspects of health and disease (health models, diagnostics and therapy of diseases, prevention, epidemiology);

Introduction to Health Sciences and Technology I

Objective

Students should know the terms, models and classification systems used in health and disease; in addition, they should understand the

Content

- Health: differences health-disease-accident, diagnostics, therapy, prevention and rehabilitation, ICF, epidemiology.

Objective

Students should know the terms, models and classification systems used in health and disease; in addition, they should understand the

Content

- Science: ethics, literature search, study design, tests, data analysis, data presentation

First Year Examinations Part 2

Number

Title

Type

ECTS

Hours

Lecturers

529-1011-00L

Organic Chemistry I (for Biol./Pharm.Sc./HST)

O

4 credits

4G

C. Thilgen

Abstract

Fundamentals of Organic Chemistry: molecular structure. Bonding and functional groups; nomenclature; resonance and aromaticity; stereochemistry; conformation; bond strength; organic acids and bases; basic reaction thermodynamics and kinetics; reactive intermediates: carbanions, carbenium ions and radicals.

Objective

Understanding the basic concepts and definitions of organic chemistry. Knowledge of the functional groups and classes of compounds that are important in biological systems. Foundations for the understanding of the relationship between structure and reactivity.

Content

Lecture notes

Printed lecture notes are available. Exercises, answer keys and other handouts can be downloaded from the Moodle course "Organic Chemistry I" of the current semester (https://moodle-app2.let.ethz.ch).

Literature

• Essential Organic Chemistry (Global Edition). Paula Y. Bruce, 3rd ed., Pearson. (Designed for a one-term course)

Prerequisites / notice

The course consists of lectures (36 hours) and problem-solving lessons (20 hours, groups of ca. 25 people). In addition, online exercises are available in the e-learning environment Moodle (Course "OC I").

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories

Analytical Competencies

Communication

Sensitivity to Diversity

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Self-awareness and Self-reflection

Self-direction and Self-management

assessed

assessed

not assessed

not assessed

not assessed

not assessed

not assessed

not assessed

assessed

assessed

not assessed

not assessed

not assessed

not assessed

not assessed
Content

Eindimensionale diskrete Entwicklungen
- linear, exponentiell, begrenzt, logistisch
- Fixpunkte, diskrete Veränderungsraten
- Folgen und Grenzwerte

Funktionen in einer Variablen
- Reproduktionsfunktion, Fixpunkte
- Periodizität
- Stetigkeit

Differentialrechnung (I)
- Veränderungsrate/-geschwindigkeit
- Differentialquotient und Ableitungsfunktion
- Anwendungen der Ableitungsfunktion

Integralrechnung (I)
- Stammfunktionen
- Integrationstechniken

Gewöhnliche Differentialgleichungen (I)
- Qualitative Beschreibung an Beispielen: Beschränkt, Logistisch, Gompertz
- Stationäre Lösungen
- Lineare DGL 1. Ordnung
- Trennung der Variablen

Lineare Algebra
- Erste Arithmetische Aspekte
- Matrizenrechnung
- Eigenwerte / -vektoren
- Quadratische LGS und Determinante

Lecture notes

In Ergänzung zu den Vorlesungskapiteln der Lehrveranstaltungen fassen wir wichtige Sachverhalte, Formeln und weitere Ausführungen jeweils in einem Vademecum zusammen.

Dabei gilt:

* Die Skripte ersetzen nicht die Vorlesung und/oder die Übungen!
* Ohne den Besuch der Lehrveranstaltungen verlieren die Ausführungen ihren Mehrwert.
* Details entwickeln wir in den Vorlesungen und den Übungen, um die hier bestehenden Lücken zu schliessen.
* Prüfungsrelevant ist, was wir in der Vorlesung und in den Übungen behandeln.

Literature

Th. Wihler
Mathematik für Naturwissenschaften, 2 Bände: Einführung in die Analysis, Einführung in die Lineare Algebra; Haupt-Verlag Bern, UTB.

H. H. Storrer
Einführung in die mathematische Behandlung der Naturwissenschaften I; Birkhäuser.

Via ETHZ-Bibliothek: https://link.springer.com/book/10.1007/978-3-0348-8598-0

Ch. Blatter
Lineare Algebra; VDF

Prerequisites / notice

Übungen und Prüfungen

+ Die Übungsaufgaben (inkl. Multiple-Choice) sind ein wichtiger Bestandteil der Lehrveranstaltung.
+ Es wird erwartet, dass Sie mindestens 75 % der wöchentlichen Serien bearbeiten und zur Korrektur einreichen.
+ Der Prüfungsstoff ist eine Auswahl von Themen aus Vorlesung und Übungen. Für eine erfolgreiche Prüfung ist die konzentrierte Bearbeitung der Aufgaben unerlässlich.

Second and Third Year Core Courses

Examination Blocks

Examination Block A

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

Basic knowledge of the anatomy and physiology of tissues, of the embryonal and postnatal development, the sensory organs, the nervous-muscular system, the cardiovascular system and the respiratory system.

Objective

Basic knowledge of human anatomy and physiology and basics of clinical pathophysiology.

Content

Anatomy and Physiology I (fall term):
Basics of cytology, histology, embryology; nervous system, sensory organs, muscles, cardiovascular system, respiratory system

Anatomy and Physiology II (spring term):
digestive tract, endocrine organs, metabolism and thermoregulation, skin, blood and immune system, urinary system, circadian rhythm, reproductive organs, pregnancy and birth.

Prerequisites / notice

Requirements: 1st year, scientific part.
Part of the course is read and checked in English.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0293-00L</td>
<td>Mathematics III</td>
<td>O</td>
<td>5</td>
<td>3V+2U</td>
<td>E. W. Farkas</td>
</tr>
</tbody>
</table>

Abstract
Vertiefung der mehrdimensionalen Analysis mit Schwerpunkt in der Anwendung der partiellen Differentialgleichungen, Vertiefung der Linearen Algebra und Einführung in die Systemanalyse und Modellbildung.

Objective
Vertiefung und Ausbau des Stoffes der Vorlesungen Mathematik I/II für die Anwendung in der Systemanalyse.

Content
- Fourier-Reihen:
 - Euklidische Vektorräume, Skalarpunkt, Orthogonalität
 - Entwicklung einer periodischen Funktion in eine Fourier-Reihe
 - Komplexe Darstellung
 - Anwendungen zur Lösung gewöhnlicher Differentialgleichungen, Reihenansätze.

Systems linearer Differentialgleichungen 1. Ordnung
- Definition, allgemeine Lösungsmenge, Fundamentalsystem
- Bestimmung von Lösungen mittels Eigenvektoren, Fundamental- system im diagonalisierbaren Fall
- Exponential einer Matrix
- homogene lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten.

Mathematische Modelle
- Begriffsbildung; (mathematisches) Modell, einführende Beispiele
- Lineare Kompartment-Modelle (Box-Modelle)

Laplace-Transformation
- Grundbegriffe: Definition der Laplace-Transformation und Rück- transformation, Konvergenz des Laplace-Integrals
- Eigenschaften der Laplace-Transformation
- Anwendungen der Laplace-Transformation zur Lösung linearer Differentialgleichungen mit konstanten Koeffizienten.

Partial differential equations
- Definition, Randbedingungen, Anfangsbedingungen
- Diffusionsgleichung: Herleitung, Lösung an einfachen Beispielen
- Techniken: Separationsansätze, Variationsprinzip

Lecture notes
Siehe Lernmaterial > Literatur

Literature
- Papula, L., Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Vieweg und Teubner (2015), Kapitel 2 über Fourierreihen und Kapitel 4 über Partielle Differentialgleichungen
- A’Campo-Neuen, A., Skript über gekoppelte Differentialgleichungen

Prerequisites / notice
Vorlesungen Mathematik I/II

Statistics II
3 credits
2V+1U
M. Kalisch

Abstract
Vertiefung von Statistikmethoden. Nach dem detaillierten Fundament aus Statistik I liegt nun der Fokus auf konzeptueller Breite und konkreter Problemlösungsfähigkeit mit der Statistiksoftware R.

Objective

Physics I
4 credits
3V+1U
K. S. Kirch

Abstract
This course is an introduction to classical physics, with special focus on applications in medicine.

Objective
Obtain an understanding of basic concepts in classical physics and their application (using mathematical pre-knowledge) to the solution of simple problems, including certain applications in medicine.

Obtain an understanding of relevant quantities and of orders of magnitude.

Content
General introduction; Positron-Emission-Tomography as appetizer, including ionising radiation; kinematics of a point mass; dynamics of a point mass (Newton's axioms and forces); physical work, power and energy; conservation of linear and angular momentum; oscillations and waves; mechanics of a rigid body; fluid mechanics; introduction to electricity.

Laboratory Course in Medical Technology
2 credits
2P
J. G. Snedeker, O. Lambercy

The examination block will not be offered until Spring Semester 2022.

Individual Subjects and Laboratory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0019-00L</td>
<td>Laboratory Course in Medical Technology</td>
<td>O</td>
<td>2</td>
<td>2P</td>
<td>J. G. Snedeker, O. Lambercy</td>
</tr>
</tbody>
</table>
This practical course is designed to give students hands on experience in CAD, FEM, product optimization, mechanical load testing, software development in Python and hardware utilization in robotics.

Objective
The course aims at teaching and solidifying following topics:

- CAD
- FEM
- Product optimization
- Mechanical testing
- Software development in Python

Content
The course is aimed at improving the students knowledge on certain topics such as programming in python and biomechanics, but also teaches new skills such as using CAD software, FEM and mechanical testing. The course is split into 6 different experiments, which will be completed in groups. The students will be assigned to groups at the beginning of the semester. 4 of the experiments will be geared towards the use case of designing a bone plate to bridge a critical size gap of a femur. The experiments are therefore 1) using CAD to reconstruct the initial condition and the bone plate 2) running a FEM in order to analyze the performance of the bone plate 3) with the knowledge of the FEM, optimizing the bone plate and 4) testing of the designed bone plate, the bone plate will be 3D printed. The remaining 2 experiments will 1) focus on programming a robotic arm used in rehabilitation engineering and 2) on the hardware usage of the robotic arm.

Prerequisites / notice
Only motivation and curiosity is required.

Focus Courses

Human Movement Sciences and Sports

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0203-00L</td>
<td>Movement and Sport Biomechanics</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>B. Taylor, R. List</td>
</tr>
<tr>
<td>376-0207-00L</td>
<td>Exercise Physiology</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>C. Spengler, F. Gabe Beltrami, R. M. Rossi</td>
</tr>
</tbody>
</table>

Medical Technology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0386-00L</td>
<td>Biomedical Engineering</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong</td>
</tr>
</tbody>
</table>

This course provides an overview over molecular and systemic aspects of neuromuscular, cardiovascular and respiratory adaptations to acute and chronic exercise as well as the interactions of the different systems influencing factors, e.g. genetics, gender, age, altitude(depth, heat/cold, with respect to performance and health. The aim of this course is to understand molecular and systemic aspects of neuromuscular, cardiovascular and respiratory adaptations to acute and chronic exercise as well as the interaction of the different systems regarding health-relevant aspects and performance in healthy people and persons with selected diseases. Furthermore, students will understand the influence of genetics, gender, age, altitude (depth, heat and cold on the named factors. History of Exercise Physiology, research methods, fibertype heterogeneity and its functional significance, neural control of muscle force, molecular nad cellular mechanisms of muscle adaptation to resistance, endurance and stretching exercise, interindividual variability in the response to training, cardiorespiratory and metabolic responses to acute and chronic exercise, sex differences relevant to exercise performance, exercise in hot and cold environment, children and adolescents in sport and exercise, exercise at altitude and depth, aging and exercise performance, exercise for health, exercise in the context of disease.
Objective

Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.

Content

Lecture notes

Practical and theoretical exercises in small groups in the laboratory.

AND

https://ibb.ethz.ch/education/biomedical-engineering.html

376-0021-00L

<table>
<thead>
<tr>
<th>Materials and Mechanics in Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
</tr>
<tr>
<td>Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td>Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants.</td>
</tr>
<tr>
<td>Lecture notes</td>
</tr>
<tr>
<td>course website on Moodle</td>
</tr>
<tr>
<td>Literature</td>
</tr>
</tbody>
</table>

376-1714-00L

<table>
<thead>
<tr>
<th>Biocompatible Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
</tr>
<tr>
<td>The course covers the following topics: 1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications.</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td>Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.</td>
</tr>
<tr>
<td>Literature</td>
</tr>
<tr>
<td>Handouts are deposited online (moodle).</td>
</tr>
<tr>
<td>Literature</td>
</tr>
<tr>
<td>(available online via ETH library)</td>
</tr>
<tr>
<td>Handouts and references therein.</td>
</tr>
</tbody>
</table>

Molecular Health Sciences

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0309-00L</td>
<td>Concepts in Modern Genetics</td>
<td>W</td>
<td>6</td>
<td>4V</td>
<td>Y. Barral, D. Bopp, A. Hajnal, O. Voinnet</td>
</tr>
<tr>
<td></td>
<td>Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIG348 at UZH.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students/university-of-zurich.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course focuses on the concepts of classical and modern genetics and genomics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Scripts and additional material will be provided during the semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>551-0317-00L</td>
<td>Immunology I</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>M. Kopf, A. Oxenius</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content
- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions

Lecture notes
Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien"

Literature
- Kuby, Immunology, 9th edition, Freeman + Co., New York, 2020

Prerequisites / notice
For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a “Sessionsprüfung”. All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies not assessed
Decision-making assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed

Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking not assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed

Neurosciences

Number Title Type ECTS Hours Lecturers
376-1305-00L Development of the Nervous System (University of Zurich) W 3 credits 2V University lecturers

Abstract
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: BIO344

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html

Objective
The lecture will cover molecular and cellular processes underlying the development of the nervous system (neurogenesis, cell death, cell migration and differentiation, axon guidance and synapse formation). The importance of these processes in the context of developmental diseases is discussed.

Key skills
On successful completion of the module the student should be able to
- interpret and critically evaluate original research reports
- apply knowledge and relate experimental approaches from molecular, cellular and developmental biology to the developing nervous system.

Content
The lecture will cover molecular and cellular processes underlying the development of the nervous system. After an introduction to structure and function of the nervous system, we will discuss neurogenesis, cell death, cell migration and differentiation, axon guidance and synapse formation. The importance of these processes in the context of developmental diseases will be discussed.

Lecture notes
Must be downloaded from OLAT: https://www.olat.uzh.ch/olat/dmz/ as BIO344

Literature
The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on OLAT.

Prerequisites / notice
Auxiliary tools:
None. Bring something to write and your student ID

376-1305-01L Neural Systems for Sensory, Motor and Higher Brain Functions W 3 credits 2V G. Schratt, J. Bohacek, R. Fiore, W. von der Behrens, further lecturers

Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module BIO343 at UZH.

Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-
The course covers the structure, plasticity and regeneration of the adult nervous system (NS) with focus on: sensory systems, cognitive functions, learning and memory, molecular and cellular mechanisms, animal models, and diseases of the NS.

The aim is to give a deepened insight into the structure, plasticity and regeneration of the nervous system based on molecular, cellular and biochemical approaches.

The main focus is on the structure, plasticity and regeneration of the NS: biology of the adult nervous system; structural plasticity of the adult nervous system, regeneration and repair: networks and nerve fibers, regeneration, pathological loss of cells.

The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on Moodle / OLAT.

Concepts in Modern Genetics

Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH.

Please mind the ETH enrolment deadlines for UZH students: <https://www.ethz.ch/en/studies/non-degree-courses/special-students-university-of-zurich.html>

Abstract
Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Objective
This course focuses on the concepts of classical and modern genetics and genomics.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Lecture notes
Scripts and additional material will be provided during the semester.

Bachelor Studies (Programme Regulations 2017)

Second Year Compulsary Courses

Examination Blocks

Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0002-00L</td>
<td>Product Design in Medical Engineering</td>
<td>O</td>
<td>4</td>
<td>2V+2U</td>
<td>S. J. Ferguson</td>
</tr>
<tr>
<td></td>
<td>Only for Health Sciences and Technology BSc, Programme Regulations 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>This course will provide insight into various aspects of medical device design such as patient needs assessment, product specification, research and technical design, validation, regulatory affairs and clinical evaluation.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The goal of this lecture series is to enable the students to (i) identify the principal functional requirements for a medical device, (ii) to understand the mechanical properties of natural tissues and synthetic biomaterials, (iii) to apply this information and a basic knowledge of mechanics in the calculation of implant performance, (iv) to develop a plan for the pre-clinical evaluation and regulation of a new device.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>https://moodle-app2.let.ethz.ch/course/view.php?id=180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0103-00L</td>
<td>Fundamentals of Biology II: Cell Biology</td>
<td>O</td>
<td>5</td>
<td>5V</td>
<td>S. Werner, Y. Barral, U. Kutay, G. Schertler, U. Suter, I. Zemp</td>
</tr>
<tr>
<td></td>
<td>Only for</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Biologie BSc (Programme Regulations 2013), - Pharmaceutical Sciences BSc (Programme Regulations 2013), - Health Sciences and Technology BSc (Programme Regulations 2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>The goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacologica, sciences, molecular biology, and others.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>The focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>The lectures are presented in the Powerpoint format. These are available on the WEB for ETH students via Moodle. Some lectures are available on the ETH WEB site in a live format (Livestream) at the above WEB site.</td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td>Some of the lectures are given in the English language. Certain sections of the text-book must be studied by self-instruction.</td>
</tr>
</tbody>
</table>

Examination Block 2
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
Basic knowledge of the anatomy and physiology of tissues, of the embryonal and postnatal development, the sensory organs, the neuromuscular system, the cardiovascular system and the respiratory system.

Objective
Basic knowledge of human anatomy and physiology and basics of clinical pathophysiology.

Content
The lecture series provides a short overview of human anatomy and physiology

- Anatomy and Physiology I (fall term): Basics of cytology, histology, embryology; nervous system, sensory organs, muscles, cardiovascular system, respiratory system.
- Anatomy and Physiology II (spring term): digestive tract, endocrine organs, metabolism and thermoregulation, skin, blood and immune system, urinary system, circadian rhythm, reproductive organs, pregnancy and birth.

Prerequisites / notice
Requirements: 1st year, scientific part.
Part of the course is read and checked in English.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0293-00L</td>
<td>Mathematics III</td>
<td>O</td>
<td>5</td>
<td>3V+2U</td>
<td>E. W. Farkas</td>
</tr>
</tbody>
</table>

Abstract
Vertiefung der mehrdimensionalen Analysis mit Schwerpunkt in der Anwendung der partiellen Differentialgleichungen, Vertiefung der Linearen Algebra und Einführung in die Systemanalyse und Modellbildung.

Objective
Vertiefung und Ausbau des Stoffes der Vorlesungen Mathematik I/II für die Anwendung in der Systemanalyse.

Content
Fourier-Reihen
- Euklidische Vektorräume, Skalarprodukt, Orthogonalität
- Entwicklung einer periodischen Funktion in eine Fourier-Reihe
- Komplexe Darstellung
- Anwendungen zur Lösung gewöhnlicher Differentialgleichungen, Reihenansätze.

Systeme linearer Differentialgleichungen 1. Ordnung
- Definition, allgemeine Lösungsmenge, Fundamentalsystem
- Bestimmung von Lösungen mittels Eigenvektoren, Fundamental- system im diagonalisierbaren Fall
- Exponential einer Matrix
- homogene lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten.

Mathematische Modelle
- Begriffsbildung: (mathematisches) Modell, einführende Beispiele
- Lineare Kompartment-Modelle (Box-Modelle)

Laplace-Transformation
- Grundbegriffe: Definition der Laplace-Transformation und Rück- transformation, Konvergenz des Laplace-Integrals
- Eigenschaften der Laplace-Transformation
- Anwendungen der Laplace-Transformation zur Lösung linearer Differentialgleichungen mit konstanten Koeffizienten.

Partielle Differentialgleichungen
- Definition, Randbedingungen, Anfangsbedingungen
- Diffusionsgleichung: Herleitung, Lösung an einfachen Beispielen
- Techniken: Separationsansätze, Basislösungen, Superpositionsprinzip

Lecture notes
Siehe Lernmaterial > Literatur

Literature
Siehe Lernmaterial > Literatur

- Papula, L., Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Vieweg and Teubner (2015), Kapitel 2 über Fourierreihen und Kapitel 4 über Partielle Differentialgleichungen
- A'Campo-Neuen, A., Skript über Gekoppelte Differentialgleichungen

Prerequisites / notice
Vorlesungen Mathematik I/II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0643-13L</td>
<td>Statistics II</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>M. Kalisch</td>
</tr>
</tbody>
</table>

Abstract
Vertiefung von Statistikmethoden. Nach dem detaillierten Fundament aus Statistik I liegt nun der Fokus auf konzeptuellem Breite und konkreter Problemlöschfähigkeit mit der Statistiksoftware R.

Objective

Examination Block 3

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0007-00L</td>
<td>Neuroanatomy and Neurophysiology</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>N. Wenderoth, D. P. Wolfer</td>
</tr>
</tbody>
</table>

Does not take place this semester.

Only for Health Sciences and Technology BSc.

Offered in the spring semester from HS21/FS22 onwards.

Abstract
Advanced knowledge in anatomy and physiology of the nervous system.
Objective
Advanced knowledge of human anatomy and physiology and of molecular and pathophysiological aspects.

Content
- Anatomy of the central nervous system
- Function of the autonomic and the voluntary nervous system
- Sensomotoric integration
- Sensory physiology

402-0083-00L Physics I

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0203-00L</td>
<td>Movement and Sport Biomechanics</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>B. Taylor, R. List</td>
</tr>
</tbody>
</table>

Abstract
This course is an introduction to classical physics, with special focus on applications in medicine.

Objective
Obtain an understanding of basic concepts in classical physics and their application (using mathematical pre-knowledge) to the solution of simple problems, including certain applications in medicine.

Content
General introduction; Positron-Emission-Tomography as appetizer, including ionising radiation; kinematics of a point mass; dynamics of a point mass (Newton's axioms and forces); physical work, power and energy; conservation of linear and angular momentum; oscillations and waves; mechanics of a rigid body; fluid mechanics; introduction to electricity.

Lecture notes
Will be distributed at the start of the semester.

Literature
"Physik für Mediziner, Biologen, Pharmazeuten", von Alfred Trautwein, Uwe Kreibig, Jürgen Hüttermann; De Gruyter Verlag.

Prerequisites / notice
This course is an introduction to classical physics, with special focus on applications in medicine.

ECTS
3V+1U K. S. Kirch

Number Title Type ECTS Hours Lecturers
376-0207-00L Exercise Physiology W 4 credits 3G C. Spengler, F. Gabe Beltrami, F. Bellati, R. M. Rossi

Abstract
This course provides an overview over molecular and systemic aspects of neuromuscular, cardiovascular and respiratory adaptations to acute and chronic exercise as well as the interactions of the different systems influencing factors, e.g. genetics, gender, age, altitude/depth, heat/cold, with respect to performance and health.

Objective
They analyse and describe human movement according to the laws of mechanics.

Content
Movement- and sports biomechanics deals with the attributes of the human body and their link to mechanics. The course includes topics such as functional anatomy, biomechanics of daily activities (gait, running, etc.) and looks at movement in sport from a mechanical point of view. Furthermore, simple reflections on the loading analysis of joints in various situations are discussed. Additionally, questions covering the statics and dynamics of rigid bodies, and inverse dynamics, relevant to biomechanics are investigated.

Lecture notes
Online material is provided during the course.

Literature
Wird in der Vorlesung bekannt gegeben.

Prerequisites / notice
This course focuses on the concepts of classical and modern genetics and genomics.

551-0309-00L Concepts in Modern Genetics Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0317-00L</td>
<td>Immunology I</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>M. Kopf, A. Oxenius</td>
</tr>
</tbody>
</table>

Abstract
Introduction into structural and functional aspects of the immune system.

Objective
Basic knowledge of the mechanisms and the regulation of an immune response.

E-Mail: haeupel@ethz.ch

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1035 of 2152
Content
- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions

Lecture notes
Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien"

Literature
- Kuby, Immunology, 9th edition, Freeman + Co., New York, 2020

Prerequisites / notice
For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Method-specific Competencies</th>
<th>Social Competencies</th>
<th>Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A</td>
<td>Concepts and Theories</td>
<td>Techniques and Technologies</td>
<td>Communication</td>
<td>Adaptable and Flexibility</td>
</tr>
<tr>
<td>Domain B</td>
<td>Analytical Competencies</td>
<td>Decision-making</td>
<td>Cooperation and Teamwork</td>
<td></td>
</tr>
<tr>
<td>Domain C</td>
<td>Media and Digital Technologies</td>
<td>Problem-solving</td>
<td>Customer Orientation</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td>Domain D</td>
<td>Project Management</td>
<td></td>
<td>Leadership and Responsibility</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Negotiation</td>
<td>Self-direction and Self-management</td>
</tr>
</tbody>
</table>

Medical Technology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0386-00L</td>
<td>Biomedical Engineering</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong</td>
</tr>
</tbody>
</table>

Abstract
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.

Objective
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.

Content

Practical and theoretical exercises in small groups in the laboratory.

Lecture notes
Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino

AND

https://lbb.ethz.ch/education/biomedical-engineering.html

376-0021-00L | Materials and Mechanics in Medicine | W | 4 credits | 3G | M. Zenobi-Wong, J. G. Snedeker |

Abstract
Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.

Objective
Understanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.

Content
Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants.

Lecture notes
course website on Moodle

Literature

376-1714-00L | Biocompatible Materials | W | 4 credits | 3V | K. Maniura, M. Rottmar, M. Zenobi-Wong |

Abstract
Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.
Objective

The course covers the following topics:
1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction to methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.

Content

- Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry and the interface of living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated.
-Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Lecture notes

Handouts are deposited online (moodle).

Literature

(available online via ETH library)

Handouts and references therin.

Neurosciences

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1305-00L</td>
<td>Development of the Nervous System (University of Zurich)</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

Abstract

The lecture will cover molecular and cellular processes underlying the development of the nervous system (neurogenesis, cell death, cell migration and differentiation, axon guidance and synapse formation). The importance of these processes in the context of developmental diseases is discussed.

Objective

On successful completion of the module the student should be able to
- relate structure and function of the nervous system to its development - apply principles of molecular, cellular, and developmental biology to the development of the nervous system
- identify key steps in development underlying neurological syndromes and diseases

Key skills

On successful completion of the module the student should be able to
- interpret and critically evaluate original research reports
- apply knowledge and relate experimental approaches from molecular, cellular and developmental biology to the developing nervous system.

Content

The lecture will cover molecular and cellular processes underlying the development of the nervous system. After an introduction to structure and function of the nervous system, we will discuss neurogenesis, cell death, cell migration and differentiation, axon guidance and synapse formation. The importance of these processes in the context of developmental diseases will be discussed.

Lecture notes

Must be downloaded from OLAT: https://www.olat.uzh.ch/olat/dmz/ as BIC344

Literature

The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on OLAT.

Prerequisites / notice

Auxiliary tools:
None. Bring something to write and your student ID

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1305-01L</td>
<td>Neural Systems for Sensory, Motor and Higher Brain Functions</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>G. Schratt, J. Bohacek, R. Fiore, W. von der Behrens, further lecturers</td>
</tr>
</tbody>
</table>

Abstract

The course covers the structure, plasticity and regeneration of the adult nervous system (NS) with focus on: sensory systems, cognitive functions, learning and memory, molecular and cellular mechanisms, animal models, and diseases of the NS.

Objective

The aim is to give a deepened insight into the structure, plasticity and regeneration of the nervous system based on molecular, cellular and biochemical approaches.

Content

The main focus is on the structure, plasticity and regeneration of the NS: biology of the adult nervous system; structural plasticity of the adult nervous system, regeneration and repair: networks and nerve fibers, regeneration, pathological loss of cells.

Literature

The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on Moodle / OLAT.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0309-00L</td>
<td>Concepts in Modern Genetics</td>
<td>W</td>
<td>6 credits</td>
<td>4V</td>
<td>Y. Barral, D. Bopp, A. Hajnal, O. Voinnet</td>
</tr>
</tbody>
</table>

Abstract

The course covers the following topics:
- apply principles of molecular, cellular, and developmental biology to the developing nervous system
- identify key steps in development underlying neurological syndromes and diseases
Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0575-01L</td>
<td>Signals and Systems</td>
<td>W</td>
<td>4</td>
<td>2V+2U</td>
<td>A. Carron</td>
</tr>
<tr>
<td>Abstract</td>
<td>Signals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Master the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes available on course website.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Control Systems I is helpful but not required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

151-0604-00L	Microrobotics	W	4	3G	B. Nelson, N. Shamsudhin
Abstract	Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.				
Objective	The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.				
Content	Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots				
Lecture notes	The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.				
Prerequisites / notice	The lecture will be taught in English.				

151-0917-00L	Mass Transfer	W	4	2V+2U	S. E. Pratsinis, V. Mavrantzas, C.-J. Shih
Abstract	This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.				
Objective	This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.				
Content	Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.				
Prerequisites / notice	Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.				

227-0045-00L	Signals and Systems I	W	4	2V+2U	H. Bölcskei
Objective	Introduction to mathematical signal processing and system theory.				
Lecture notes	Lecture notes, problem set with solutions.				

| 327-0103-00L | Foundations of Materials Science I | W | 2 | 2G | L. Isa |
| Abstract | The basic physical concepts for the description of materials are taught, partly in self-study, and applied in exercises. Basic atomistic and macroscopic concepts (e.g. phase diagrams, phase transformations, response functions) are introduced through examples. Selected topics are deepened in classroom lectures. |
Objective Students are able to
- name the basic concepts of materials science. (remember, 1)
- describe simple relations between atomic structure and macroscopic properties. (understand, 2)
- calculate basic material-specific quantities. (apply, 3)
- read and interpret phase diagrams, material characteristic (e.g. stress-strain) diagrams and Ashby plots (analyse, 4)

Content

Atomic structure
- Crystalline structure and defects
- Thermodynamics, phase diagrams and phase transformations
- Diffusion
- Mechanical and thermal properties of materials

Literature

Main textbook:
- William D. Callister, Jr., David G. Rethwisch
 Materials Science and Engineering - An Introduction

Alternatives:
- Milton Ohring
 Engineering Materials Science
- James F. Shackelford
 Introduction to Materials Science for Engineers

376-0130-00L Laboratory Course in Exercise Physiology W 3 credits 4P C. Spengler

Abstract
Conduct physical performance tests and measurements that are typically used to assess performance of athletes and/or patients and that deepen the understanding of physiological processes in response to physical exertion.

Objective
Gain hands-on experience in exercise physiology and consolidate knowledge on physiological adaptations to different types and degrees of physical activity and climatic influences. Learn fundamental assessment techniques of the muscular system, the cardio-respiratory system and of whole-body performance, learn scientifically correct data analysis and interpretation of results. Insight into today's Sports Medicine.

Content
- Laboratory course: Various exercise tests assessing human performance and assessments of physiological responses to activity (examples are VO2max-test, Conconi-Tests, Determination of anaerobic threshold, Cooper-Test, 1-repetition maximum test, lactate minimum test), dynamometry, mechanography, body composition etc.). Insight into measurements in Sports Medicine.
- Lecture notes: Tutorial on Laboratory Experiments in Exercise Physiology (Editor: Exercise Physiology Lab)
- Literature: Schmidt/Lang/Heckmann: Physiologie des Menschen, Springer-Verlag, Heidelberg
- Prerequisites / notice:
 - Prerequisite: Anatomy and physiology classes and lab course in physiology successfully completed (BWS students please contact C. M. Spengler)
 - Desirable: Exercise Physiology Lecture (concomitantly or passed; is selection criterion in case of more applications than lab spaces)

376-1033-00L History of Sports W 2 credits 2V M. Gisler

Abstract
Comprehension for development and changes of sports from the ancient world to the presence. Description of sports in services of national idea, from education and health promotion from the middle of the 18th century till this day.

Objective
Understanding for the development and adaptation of sports from the ancient world to present times.

Content
- Ein Skript für die aktuelle Veranstaltung wird abgegeben.

376-1107-00L Sport Pedagogy W 2 credits 2V C. Herrmann

Abstract
The teacher-student interaction presents a complex psychosocial event, demonstrating the need for a psychological extension of the classical social science / sports pedagogical perspective. Therefore, this lecture will be focused on "pedagogical-psychological aspects of competence development in the context of a multi-perspective physical education".

Objective
Development of pedagogical-psychological competences for the optimisation of future teaching activities.
- Subject area of educational psychology
- Motivating students in physical education
- Building self-efficacy and strengthen the self-concept
- Promoting positive emotions and a positive attitude to anxiety
- Encouraging self-directed learning
- Leading classes and promoting cooperation
- Communicating with students efficiently
- Reflecting your own expectations critically
- Handling gender issues sensitively
- Promoting inclusion / Strengthening social and moral development
- Dealing with difficult students
- Evaluating achievements of students

Literature

376-1117-00L Sport Psychology W 2 credits 2V H. Gubelmann
Students are given insight into different work areas of sport psychology. In order to understand what «sport psychology» is, it is necessary to explain the essence and tasks of sport psychology and what it relates to, and to work out an underlying basis for key topics, such as cognition and emotions. Students’ expertise is furthered by presenting and providing more in-depth treatment of additional topics of sport psychology. Selected intervention forms are intended to provide insight into applied sport psychology and ensure that mental processes and their impact in sport can be recognised. Case studies and practical exercises (e.g. objective training) are intended to prompt students to reflect to a greater extent on the forms in which sport psychology can be applied in their practice of sports and to integrate these in their teaching.

Main Topics
- Introduction to sport psychology
- Cognitions in sports: mental rehearsal and mental training
- Emotions and stress
- Motivation: goal-setting in sports
- Career and career transition in elite sport
- Coach-Athlete-Interaction
- Psychological aspects of sport-injury rehabilitation
- Group dynamics in sport

Solcio-Scientific Health Research: A Thematic Insight

Presentation of and work with different topics and particularly relevant focal points of socio-scientific health research as well as communication of contents and becoming more familiar with ways of thinking and working in socio-scientific health research.

The lectures set out to:

- present the different dimensions, functions and interrelationships of present-day sport
- provide an introduction to the central theories and models of (sport) sociology
- show how far sport reflects society and how it changes and becomes more differentiated in the process
- take current examples to highlight the sociological view of sport

The economy and the media: dependencies, consequences, scandals

Social inequalities and distinctions: gender differences and group behavior

Group dynamics in sport

Analytical Competencies

There are many different socio-scientific disciplines or rather subdisciplines which deal with health relevant topics such as social or health psychology, medical or health sociology, gerontology, health economics, social epidemiology etc. They all belong to the health sciences and address societal and individual causes and conditions of health and disease. These causes and conditions include experiences such as social integration or isolation, poverty, migration, violence, social deprivation and discrimination, lifestyle, socialisation and family, personality, profession, unemployment, but also psychosocial aspects of biological characteristics like sex or age. The course gives an insight and overview of these social and personal determinants of health, which turned out to be highly relevant with regard to health, disease, life quality and mortality or life expectancy.

Domain C - Social Competencies

The course gives an insight and overview of these social and personal determinants of health, which turned out to be highly relevant with regard to health, disease, life quality and mortality or life expectancy.

Domain B - Method-specific Competencies

Students get to know important and particularly health relevant socio-scientific topics, phenomena and problems and learn how to handle related issues and questions.

Intrumental materials for each course will be made available to students. All lecture materials will be available to students on Moodle.

Willingness to be regularly present and to play an active part in the course.

A detailed program with additional references will be delivered at the beginning of the lecture.

A detailed program with additional references will be delivered at the beginning of the lecture.

Willingness to be regularly present and to play an active part in the course.
Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
assessed
Techniques and Technologies
assessed

Domain B - Method-specific Competencies
Analytical Competencies
assessed
Decision-making
not assessed
Media and Digital Technologies
not assessed
Problem-solving
assessed

Domain C - Social Competencies
Communication
assessed
Cooperation and Teamwork
assessed
Customer Orientation
not assessed
Leadership and Responsibility
not assessed
Self-presentation and Social Influence
assessed
Sensitivity to Diversity
not assessed
Negotiation
not assessed

Domain D - Personal Competencies
Adaptability and Flexibility
assessed
Creative Thinking
assessed
Critical Thinking
assessed
Integrity and Work Ethics
not assessed
Self-awareness and Self-reflection
assessed
Self-direction and Self-management
assessed

376-1661-00L Ethics of Life Sciences and Biotechnology
W 3 credits 2V A. Blasimme, E. Vayena

Abstract
This semester course enables students to recognize, anticipate and address ethical issues in the domain of health sciences and their technological application. The students will acquire the necessary theoretical and analytic resources to develop critical thinking skills in the field of applied ethics and will practice how to use such resources to address concrete ethical issues in health sciences. Students learn the assessments to plan an exercise-therapy-treatment.

Objective
A. Identify ethical issues in in life sciences and biotechnology.
B. Analyze and critically discuss ethical issues in life sciences and biotechnology.
C. Become aware of relevant legal and public policy frameworks.
D. Distinguish different ethical approaches and argumentative strategies in applied ethics.
E. Recognize how ethical issues relate to different accounts of technology and innovation.
F. Develop a personal and critical attitude towards the ethical aspects of life sciences and their technological application.
G. Autonomously anticipate ethical issues.
H. Propose and communicate solutions to ethical challenges and dilemmas.

Content
The course starts off with an introductory lecture on ethics as a discipline and an overview of the most relevant approaches in the domain of applied ethics. The students will also be introduced to current theoretical accounts of technology and will start to appreciate the relevance of ethics especially with respect to new and emerging technologies. Usable analytic tools will also be provided, thus enabling the students to engage with the discipline in a practical way from the very onset of the semester.

The course will continue with thematic sessions covering a broad variety of topics all of which are relevant to the different study tracks offered by the department. In particular, the course will cover the following domains: digital health technologies and medical AI; food, nutrition and healthy longevity; biomedical engineering; genetics; neuroscience and Neurotechnologies; medical robotics; disability and rehabilitation; environmental ethics. The course will also include sessions on cross-cutting ethically relevant aspects of health sciences and technologies, namely: access to innovation, translational research, and the relation between science and public policy.

All the topics of the course will be illustrated and interactively discussed through many case studies, offering the students the opportunity to practice how to use such resources to address concrete ethical issues in health sciences and technology in the domain of human health. The specific learning objectives of this course are:

A. Identify ethical issues in in life sciences and biotechnology.
B. Analyze and critically discuss ethical issues in life sciences and biotechnology.
C. Become aware of relevant legal and public policy frameworks.
D. Distinguish different ethical approaches and argumentative strategies in applied ethics.
E. Recognize how ethical issues relate to different accounts of technology and innovation.
F. Develop a personal and critical attitude towards the ethical aspects of life sciences and their technological application.
G. Autonomously anticipate ethical issues.
H. Propose and communicate solutions to ethical challenges and dilemmas.

Domain A - Subject-specific Competencies
Concepts and Theories
assessed
Techniques and Technologies
assessed

Domain B - Method-specific Competencies
Analytical Competencies
assessed
Decision-making
not assessed
Media and Digital Technologies
not assessed
Problem-solving
assessed

Domain C - Social Competencies
Communication
assessed
Cooperation and Teamwork
assessed
Customer Orientation
not assessed
Leadership and Responsibility
not assessed
Self-presentation and Social Influence
assessed
Sensitivity to Diversity
not assessed
Negotiation
not assessed

Domain D - Personal Competencies
Adaptability and Flexibility
assessed
Creative Thinking
assessed
Critical Thinking
assessed
Integrity and Work Ethics
not assessed
Self-awareness and Self-reflection
assessed
Self-direction and Self-management
assessed

376-1716-00L Basics of Exercise Therapy
W 2 credits 2V K. Marschall

Number of participants limited to 30.

Possible from the 5th semester on. Requirement: 376-1715-00L "Introduction to Exercise Therapy" passed.

Abstract
Basics of Exercise Therapy:
A: diagnostic, anamnese, diagnostic of movement and function, assessments in exercise therapy, diagnostic of experience and behavior in relation to movement
B: biological-medical basics, pathophysiologische Basics (internal, orthopedic and psychological deseases).

C: didactic knowledge, Reha-didactic

Objective
Students learn the assessments to plan an exercise-therapy-treatment.
They are able to use them. They're able to integrate biological and medical basics.
They are able to preparate a therapy-session

Content
Grundlagen der Diagnostik, Anamnese,
Biostatistik, Funktionsdiagnostik
Sport- und Bewegungstherapeutische Testverfahren
Motorische Basisdiagnostik
Diagnostik bewegungsbezogenen Erlebens und Verhaltens
Biologisch-medicinische Grundlagen
Biomechanik (v.a. Gelenke), Pathophysiologische Grundlagen, Modelle der Methodik und Didaktik, Lektionsplanung

Lecture notes
wird vor Semesterbeginn elektronisch zur Verfügung gestellt

Literature
- Schüle / Huber: Grundlagen der Sporttherapie, Deutscher Ärzteverlag , Köln 2012
- Deimel et al.: Neue aktive Wege in Prävention und Rehabilitation, Deutscher Ärzteverlag, Köln 2007

Prerequisites / notice
lecture "Introduction in Exercise Therapie“ ist prerequisite
90% of the lections students must be present.
open-book-test in the last sessions at 20.12.2017

376-1717-00L Applied Basics in Sports and Exercise Therapy
W 2 credits 2V B. Spörrl Kälín, M. Gwerder

Number of participants limited to 30.
Abstract
Communication skills and methods of psychoregulation applied to the area of Exercise and Sports Therapy.

Objective
The students are able to plan, lead through and evaluate conversations with patients. The students are familiar with a specific method of psychoregulation. The participants know different aspects of relationship formation (therapist/client) in therapeutic work.

Content
Communication and conversation: client-centered forms of conversation in theory and practice. Psychoregulative Methods: Theoretical and practical insight into various psychoregulative methods

Lecture notes
Documents will be distributed two weeks before lecture.

Prerequisites / notice
The courses “Exercise and Sports Therapy 1 and 2” have been completed successfully. A minimum of 90% of attendance if used as credits towards CAS SVGS. One seminar day in an institution/company specialized in reintegration of clients into the workforce.

376-1722-00L Spinal Cord Injury and Exercise
Prerequisite: Anatomy and Physiology

Abstract
Intensive discussion concerning complications of a spinal cord injury and their consequences on trainability and exercise performance of persons sitting in a wheelchair. Overview on the clinical application of exercise testing as well as on the implementation of sport scientific findings to optimise performance of spinal cord injured subjects in rehabilitation and elite sports.

Objective
The following issues will be discussed: Epidemiology and etiology of spinal cord injury; complications and consequences of spinal cord injury; trainability/exercise physiology and spinal cord injury; history and organisation of wheelchair sports; elite sport and spinal cord injury

Content
The following issues will be discussed: Epidemiology and etiology of spinal cord injury; complications and consequences of spinal cord injury; trainability/exercise physiology and spinal cord injury; history and organisation of wheelchair sports; elite sport and spinal cord injury

Literature
G.A. Zäch, H. G. Koch
Paraplegie - ganzheitliche Rehabilitation
Karger-Verlag, 2006
ISBN 3-8055-7980-2

V. Goosey-Tolfrey
Wheelchair sport: A complete guide for athletes, coaches and teachers
Human Kinetics, 2010

Y.C. Vanlandewijck, W.R. Thompson
The Paralympic Athlete
Wiley-Blackwell, 2011

Liz Broad
Sports Nutrition for Paralympic Athletes, Second Edition
CRC Press 2019

Y.C. Vanlandewijck, W.R. Thompson
Training and Coaching the Paralympic Athlete
ISBN 978-1-119-04433-8

529-0731-00Nucleic Acids and Carbohydrates
Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree.

Abstract
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed

Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

529-0731-00L Nucleic Acids and Carbohydrates
W 6 credits 3G D. Hilvert, P. A. Kast, S. J. Sturla, H. Wennemers
Objective
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Content
Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines

Lecture notes
No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server).

Literature
Mainly based on original literature, a detailed list will be distributed during the lecture

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Problem-solving assessed

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork assessed

Domain D - Personal Competencies
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed

535-0230-00L Medicinal Chemistry I
W 2 credits 2V J. Hall

Abstract
The lectures give an overview of selected drugs and the molecular mechanisms underlying their therapeutic effects in disease. The historical and modern-day methods by which these drugs were discovered and developed are described. Structure-function relationships and the biophysical rules underlying ligand-target interactions will be discussed and illustrated with examples.

Objective
Basic understanding of therapeutic agents with respect to molecular, pharmacological and pharmaceutical properties.

Content
Molecular mechanisms of action of drugs. Structure function and biophysical basis of ligand-target interactions

Lecture notes
Will be provided in parts before each individual lecture.

Literature

Prerequisites / notice
Attendance of Medicinal Chemistry II in the spring semester.

535-0521-00L Pharmacology and Toxicology I
W 2 credits 2V U. Quitterer, J. Abd Alla

Abstract
The two-semester lecture course will provide a detailed understanding of the fundamentals of drug action and the mechanisms of action and therapeutic use of the important classes of drugs. The lectures are intended for students of pharmaceutical sciences.

Objective
The lectures will provide a comprehensive survey of pharmacology and toxicology. Special emphasis is placed on the interrelationship between pharmacological, pathophysiological and clinical aspects.

Content
Topics include disease-relevant macroscopic, microscopic, pathobiochemical and functional disturbances of specific organs and organ systems. The lectures integrate disease pathology with mechanisms of drug action, usage, metabolism, pharmacokinetics, side effects, toxicology, contraindications and dosage of relevant drug classes. Basic principles of clinical pharmacology and pharmacotherapy will be covered.

Lecture notes
A script is provided for each lecture. Scripts define important course contents but do not replace the lectures.

Literature
Recommended reading:
Urban & Fischer (Elsevier, München)

The classic textbook in pharmacology:
Goodman and Gilman’s The Pharmacological Basis of Therapeutics
ISBN-10: 1259584739

Prerequisites / notice
Requirements: Knowledge of physical and organic chemistry, biochemistry and biology. Voraussetzungen: Abschluss Grundstudium

535-0810-00L Gene Technology
W 2 credits 2G K. Eyer, J. Scheuermann

Abstract
The course gives a description and summary of the field of gene technology and its pharmaceutical applications. The course focuses on important methods and technologies and their application for genomic, transcriptomic and proteomic analyses in human biology.

Objective
The course gives an overview of current state-of-the-art and advancement in the fields of gene technology. Herein, the course focuses on genomic, transcriptomic and proteomic analysis and their uses in drug discovery and biomedical applications. The course is structured into lectures and practical examples drawn from the research field. Upon completion, the students are familiar and know current state-of-the-art methods and applications, but are also able to classify, contrast and apply different strategies and methods within the field of gene technology. The course is suited for advanced undergraduate and early graduate students in pharmaceutical sciences or related fields.
I) Genomics and transcriptomics

Methods and Techniques:
- Recombinant DNA technology
- Next generation sequencing methods, sequencing of genomes
- CRISPR technology

Application to human biology:
- Functional genomics/transcriptomics
- Principles of cancer, genetic diseases
- Therapies: cell-based therapies/gene therapies/DNA and RNA vaccination

II) Proteomics

Methods and Techniques:
- Protein cloning and expression
- The antibody molecule
- Measurement and determination of biomolecular interactions
- Protein characterization and engineering
- Modifications and radioactive labelling

Application to human biology:
- Protein therapeutics
- Proteomic approaches for identification of novel disease-related targets and biomarkers

III) Drug discovery: Protein-based libraries

- Immune repertoire mining
- Display and selection technologies
 1. antibody phage display
 2. other polypeptide display technologies
 3. small-molecules display: DNA-encoded chemical libraries

Lecture notes

The lecture series follows the above-described content, and the students are provided with the lecture slides and additional notes. The additional notes are needed for the in-depth study of the individual topics, and to set the frame and content of the in-class group work of the chosen examples.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Decision-making: assessed
- Problem-solving: assessed

Domain D - Personal Competencies
- Creative Thinking: assessed
- Critical Thinking: assessed

535-0830-00L Pharmaceutical Immunology

Abstract
Get Students familiar with basic Immunological concepts of pharmaceutical relevance.

Objective
Get Students familiar with basic Immunological concepts of pharmaceutical relevance.

Content
Chapters 1 - 11 of the Janeway’s ImmunoBiology, by Kenneth Murphy (9th Edition; Garland).

Literature
Janeway’s ImmunoBiology, by Kenneth Murphy (9th Edition).

Paperback
[www.garlandscience.com]

551-0319-00L Cellular Biochemistry (Part I)

Abstract
Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

Objective
The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Content
Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes.

Lecture notes
Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch)

Literature
Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

Prerequisites / notice
To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.

752-2120-00L Consumer Behaviour I

Abstract
Introduction in consumer research. The following aspects will be emphasized in the course: Consumer decision making, individual determinants of consumer behavior, environmental influences on consumer behavior, influencing consumer behavior

Objective
Introduction in consumer research. The following aspects will be emphasized in the course: Consumer decision making, individual determinants of consumer behavior, environmental influences on consumer behavior, influencing consumer behavior

752-4005-00L Food Microbiology I

Abstract
This lecture is the first part of a one-year course. It offers insights into the fundamentals and applications of Food Microbiology. Contents include basic microbiology of the different bacteria, yeasts and molds present in foods, as well as the occurrence and control of foodborne pathogens and spoilage organisms.
Objective
The lecture offers insights into the fundamentals and applications of Food Microbiology. Contents include basic microbiology of the different bacteria, yeasts, molds and protozoa in foods, as well as the occurrence and control of foodborne pathogens and spoilage organisms. The focus of this first part of the two part lecture (Food Micro II is offered in the FS) will be on the organisms, but also on the factors which determine spoilage and foodborne disease.

Content
1. History of Food Microbiology
1.1. Short synopsis of foodborne microorganisms
1.2. Spoilage of Foods
1.3. Foodborne Disease
1.4. Food Preservation
1.5. VIP's of Food Microbiology
2. Overview of Microorganisms in Foods
2.1 Origin of foodborne Microorganisms
2.2. Bacteria
2.3. Yeasts
2.4. Molds
3. Microbial Spoilage of Foods
3.1. Intrinsinc and Extrinsic Paramaters
3.2. Meats, Seafoods, Eggs
3.3. Milk and Milk Products
3.4. Vegetable and Fruit Products
3.5. Miscellaneous (baked goods, nuts, spices, ready-to-eat products)
3.6. Drinks and Canned Foods
4. Foodborne Disease
4.1. Significance and Transmission of Foodborne pathogens
4.2. Staphylococcus aureus
4.3. Gram-positive Sporeformers (Bacillus & Clostridium)
4.4. Listeria monocytogenes
4.5. Salmonella, Shigella, Escherichia coli
4.6. Vibrio, Yersinia, Campylobacter
4.7. Brucella, Mycobacterium
4.8. Parasites
4.9. Viruses and Bacteriophages
4.10. Mycotoxins
4.11. Bioactive Amines
4.12. Miscellaneous (Antibiotic-resistant Bacteria, Biofilms)

Lecture notes
Electronic copies of the presentation slides (PDF) and additional material will be made available for download.

Literature
Recommendations will be given in the first lecture

752-6001-00L
Introduction to Nutritional Science
W 3 credits 2V M. B. Zimmermann, C. Wolfrum

Abstract
This course introduces basic concepts of micro- and macronutrient nutrition. Macronutrients studied include fat-soluble and water-soluble vitamins, minerals and trace elements. Macronutrients include proteins, fat and carbohydrates. Special attention is given to nutrient digestion, bioavailability, metabolism and excretion with some focus on energy metabolism.

Objective
To introduce the students to the both macro- and micronutrients in relation to food and metabolism.

Content
The course is divided into two parts. The lectures on micronutrients are given by Prof. Zimmermann and the lectures on macronutrients are given by Prof. Wolfrum. Prof. Zimmermann discusses the micronutrients, including fat-soluble vitamins, water-soluble vitamins, minerals and trace elements. Prof. Wolfrum introduces basic nutritional aspects of proteins, fats, carbohydrates and energy metabolism. The nutrients are described in relation to digestion, absorption and metabolism. Special aspects of homeostasis and homeorhesis are emphasized.

Lecture notes
There is no script. Powerpoint presentations will be made available.

Literature
Elmadfa I & Leitzmann C: Ernährung des Menschen
UTB Ulmer, Stuttgart, 4. überarb. Ausgabe 2004

Garrow JS and James WPT: Human Nutrition and Dietetics
Churchill Livingstone, Edinburgh, 11th rev. ed. 2005

752-6301-00L
Nutrition-Related Physiology
lecture was formerly named: “Selected Topics in Physiology Related to Nutrition” (until fall semester 2020)
W 3 credits 2V F. von Meyenn

Abstract
Gives the students background knowledge necessary for a basic understanding of the complex relationships between food composition and nutrition on one hand and the functioning, as well as the malfunctioning, of major organ systems on the other hand.

Objective
Some basic knowledge in physiology is recommended for this course, which revisits important physiological topics, emphasizing their relation to nutrition. The aim is to give the students background knowledge necessary for a basic understanding of the complex relationships between food composition and nutrition on one hand and the functioning, as well as the malfunctioning, of major organ systems on the other hand. For students with a background in medicine, pharmacy or biology, the course is useful as a review of previously acquired knowledge. Major topics are basic neuroanatomy and neurophysiology; general endocrinology; the physiology of taste and smell; nutrient digestion and absorption; intermediary metabolism and energy homeostasis; and some aspects of cardiovascular physiology and water balance.

Lecture notes
Handouts for each lecture will be uploaded to Moodle every week.

752-6403-00L
Nutrition and Performance
W 2 credits 2V S. Mettler, M. B. Zimmermann

Abstract
The course introduces basic concepts of the interaction between nutrition and exercise performance.

Objective
To understand the potential effects of nutrition on exercise performance, with a focus on concepts and principles of nutrition before, during and after exercise.

Content
The course will cover elementary aspects of sports nutrition physiology, including carbohydrate, glycogen, fat, protein and energy metabolism. A main focus will be to understand nutritional aspects before exercise to be prepared for intensive exercise bouts, how exercise performance can be supported by nutrition during exercise and how recovery can be assisted by nutrition after exercise. Although this is a scientific course, it is a goal of the course to translate basic sports nutrition science into practical sports nutrition examples.

Lecture notes
Lecture slides and required handouts will be available on the ETH website (moodle).

Literature
Information on further reading will be announced during the lecture. There will be some mandatory as well as voluntary readings.
Prerequisites / notice

General knowledge about nutrition, human biology, physiology and biochemistry is a prerequisite for this course. The course builds on basic nutrition and biochemistry knowledge to address exercise and performance related aspects of nutrition.

The course is designed for 3rd year Bachelor students, Master students and postgraduate students (MAS/CAS).

It is strongly recommended to attend the lectures. The lecture (including the handouts) is not designed for distance education.

▶ GESS Science in Perspective

▶▶ Science in Perspective

see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-HEST.

▶▶ Language Courses

see Science in Perspective: Language Courses ETH/UZH

▶ Sport Practical

Sport Practical Basic Education

Sport Practical Advanced Education

Assessments

<table>
<thead>
<tr>
<th>Health Sciences and Technology Bachelor - Key for Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key for Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Educational Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2 credits</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course looks into scientific theories and also empirical studies on human learning and relates them to the school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way humans process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers are put in a position where they can further educate themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Thematische Schwerpunkte: Lernen als Verhaltensänderung und als Informationsverarbeitung; Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information; Lernen als Wissenskonstruktion und Kompetenzentwicklung unter besonderer Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und Erklärungen; Die Rolle von Emotion und Motivation beim Lernen; Interindividuelle Unterschiede in der Lernfähigkeit und ihre Ursachen: Intelligenztheorien, Geschlechtsunterschiede beim Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>This course is only apt for students who intend to enrol in the programs "Lehrdiplom" or "Didaktisches Zertifikat". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-22L</td>
<td>Coping with Psychosocial Demands of Teaching (EW4 W)</td>
<td>2 credits</td>
<td>3S</td>
<td>U. Markwalder, S. Maurer, S. Peteranderl-Rüschoff</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In this class, students will learn concepts and skills for coping with psychosocial demands of teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students possess theoretical knowledge and practical competences to be able to cope with the psychosocial demands of teaching.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The successful participation in EW1 ("Human Learning") and EW2 ("Designing Learning Environments for School") is recommended, but not a mandatory prerequisite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-06L</td>
<td>Cognitively Activating Instructions in MINT Subjects</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>R. Schumacher</td>
</tr>
<tr>
<td>Abstract</td>
<td>This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Get to know cognitively activating instructions in MINT subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>For a reorganisation of the semester plan, early enrolment and personal engagement in the first course meeting is recommended.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-07L</td>
<td>Human Intelligence</td>
<td>W</td>
<td>1 credit</td>
<td>1S</td>
<td>E. Stern</td>
</tr>
<tr>
<td>Abstract</td>
<td>The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is mandatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Understanding of research methods used in the empirical human sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is mandatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-08L</td>
<td>Research Methods in Educational Science</td>
<td>W</td>
<td>1 credit</td>
<td>2S</td>
<td>P. Edelsbrunner, T. Braas, C. M. Thurn</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW1)"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Understanding findings relevant for education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Human Learning (EW 1)

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".

Human Learning (EW 2)

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".

Designing Learning Environments for School

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".

Themenatische Schwerpunkte

- Lernen als Verhaltensänderung und als Informationsverarbeitung
- Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information
- Lernen als Wissenskonstruktion und Kompetenzentwicklung unter besonderer Berücksichtigung des Wissenstransfers
- Lernen durch Instruktion und Erklärungen
- Die Rolle von Emotion und Motivation beim Lernen
- Interindividuelle Unterschiede in der Lernfähigkeit und ihre Ursachen: Intelligenztheorien, Geschlechtsunterschiede beim Lernen

Basisvoraussetzungen

- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding findings relevant for education

Prerequisites

- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding findings relevant for education

Literature

Lecture notes

- Folien werden zur Verfügung gestellt.

Objectives

- Participants will learn about the relevance of intelligence research for education.
- They will get to know intelligence tests.
- Students will work on a teaching unit in small groups (5 - 10 students).

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 1047 of 2152
Abstract

Literature from the learning sciences is critically discussed with a focus on research methods. At the first meeting, working groups will be assembled and meetings with those will be set up. In the small groups students will write critical essays about the read literature. At the third meeting, we will discuss the essays and develop research questions in group work.

Objective

- Understand research methods used in the empirical educational sciences
- Understand and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

851-0242-11L Gender Issues In Education and STEM m

Number of participants limited to 30.

Entral only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Prerequisite: students should be taking the course 851-0240-00L Human Learning (EW1) in parallel, or to have successfully completed it.

Abstract

In this seminar, we introduce some of the major gender-related issues in the context of education and science learning, such as the under-representation of girls and women in science, technology, engineering and mathematics (STEM). Common perspectives, controversies and empirical evidence will be discussed.

Objective

- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- To integrate this knowledge with teacher's work.

Content

Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisites / notice

Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

Subject Didactics and Professional Training

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-8001-00L</td>
<td>Didactics of Health Sciences and Technology I m</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>S. Maurer, S. Sinistaj</td>
</tr>
<tr>
<td></td>
<td>Only for Health Sciences and Technology TC students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

In this course students learn the principles and techniques of teaching singular lessons, based on scientific knowledge about learning. The aim is to plan, realize, evaluate and reflect lessons effectively and efficiently.

Objective

- Students know how to prepare, conduct and reflect a single lesson based on educational requirements.
- Students take the learning goals as a starting point considering previous knowledge as well as the professional environment and the ambitions of the learners.
- Students apply the basic teaching techniques of their subject area in a sensible way and know how to appropriately arrange the phases of learning.
- Students know how to simplify and present complex technical contents of their subject area.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awarness and Self-reflection
- Self-direction and Self-management

376-8008-00L Teaching Internship Including Examination Lessons Health Sciences and Technology m

Only for Health Sciences and Technology TC students.

The teaching internship can just be visited if all other courses of TC are completed. Repetition of the teaching internship is excluded even if the examination lessons are to be repeated.

Abstract

Students apply the insights, abilities and skills they have acquired within the context of an educational institution. They observe 10 lessons and teach 20 lessons independently. Two of them are as assessed as Examination Lessons.
Objective

Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching.
- They are able to assess the significance of tuition topics for their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
- They learn the skills of the teaching trade.
- They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution.
- They learn to assess pupils' work.
- Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.

Further Subject Didactics

For students enrolled from HS 2019: The courses offered here are credited under the category «Subject Didactics and Professional Training».

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-8011-00L</td>
<td>Mentored Work Subject Didactics Health Sciences and O Technology ⚫ Only for Health Sciences and Technology TC students.</td>
<td>2 credits</td>
<td>4A</td>
<td>S. Maurer, S. Sinistaj</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The mentored paper is designed to bring together the findings from the FD1 and the FD2. By using various teaching techniques and methods a semester plan, which is based on various curricula will be elaborated for a given topic.

Objective

1. The students have planned a curriculum for a semester course.
2. Students reflect on formative and summative ways such a teaching unit to examine and implement parts of it.
3. The students have implemented parts of the semester curriculum.
4. The students deal with the question to what extend teaching techniques, teaching methods but also sequences of self-study must be involved in the planning.

Health Sciences and Technology TC - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
What is translational science and what is it not?

C. Spengler

Translational science is a cross-disciplinary scientific research that is motivated by the need for practical applications that help people. The course should help to clarify basic features of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.

Objective

After completing this course, students will be able to understand:

- Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication)
- How independent is translational science?
- Academic boundary conditions vs. industrial influences

Content

What is translational science and what is it not?

- How to identify need?
- Disease concepts and consequences for research
- Basics about incidence, prevalence etc., and orphan indications
- How to choose the appropriate research type and methodology
- Ethical considerations including ethics application
- Pros and cons of different types of research
- Coordination of complex approaches incl. timing and resources
- How to measure success?
- Outcome variables
- Improving the translational process
- Challenges of communication?
- How independent is translational science?
- Academic boundary conditions vs. industrial influences

Positive and negative examples will be illustrated by distinguished guest speakers.

ECTS

4 credits

Number

376-0300-00L

Title

Translational Science for Health and Medicine

Type

O

ECTS

3 credits

Hours

2G

Lecturers

J. Goldhahn, C. Wolfrum

Abstract

Translational science is a cross-disciplinary scientific research that is motivated by the need for practical applications that help people. The course should help to clarify basic features of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.

Objective

After completing this course, students will be able to understand:

- Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication)
- How independent is translational science?
- Academic boundary conditions vs. industrial influences

Content

What is translational science and what is it not?

- How to identify need?
- Disease concepts and consequences for research
- Basics about incidence, prevalence etc., and orphan indications
- How to choose the appropriate research type and methodology
- Ethical considerations including ethics application
- Pros and cons of different types of research
- Coordination of complex approaches incl. timing and resources
- How to measure success?
- Outcome variables
- Improving the translational process
- Challenges of communication?
- How independent is translational science?
- Academic boundary conditions vs. industrial influences

Positive and negative examples will be illustrated by distinguished guest speakers.

ECTS

4 credits

Number

376-0302-01L

Title

GCP Basic Course (Modules 1 and 2)

Type

O

ECTS

1 credit

Hours

1G

Lecturers

G. Senti

Abstract

The basic course in “Good Clinical Practice” (GCP) contains of two full-time training days (Module 1 and Module 2) and addresses elementary aspects for the appropriate conduct of clinical trials and non-clinical research projects involving human beings. Successful participation will be confirmed by a certificate that is recognized by the Swiss authorities.

Objective

Students will get familiar with:

- Key Ethics documents
- (Inter)national Guidelines and Laws (e.g. ICH-GCP, DIN EN ISO 14155, TPA, HRA)
- Sequence of research projects and project-involved parties
- Planning of research projects (statistics, resources, study design, set-up of the study protocol)
- Approval of research projects by Authorities (SwissEthics, Swissmedic, FOPH)
- Roles and responsibilities of project-involved parties

Students will learn how to:

- Classify research projects according the risk-based approach of the HRA
- Write a study protocol
- Inform participating patients/study subjects
- Obtain consent by participating patients/study subjects
- Classify, document and report Adverse Events
- Handle projects with biological material from humans and/or health-related related personal data

Content

Module 1:

Research and Research Ethics, Guidelines, (inter)national Legislation, Development of therapeutic products, Methodology (Study Design), Study documents (Study protocol, Investigator's Brochure, Patient Information Leaflet, Informed Consent Form)

Module 2:

Roles and Responsibilities, Approval procedures, Notification and Reporting, Study documentation, Research with biological material and health-related data, data protection, data retention

ECTS

2S

Number

376-0221-00L

Title

Method concepts in human systems neuroscience and motor control

Type

W

ECTS

4 credits

Hours

3P

Lecturers

M. Schraff-Alternatt

Abstract

This course provides hands-on experience with measurement and analysis methods relevant for Humans Systems Neuroscience and Motor control (nerve/brain stimulation, EMG, EEG, psycho-physical paradigms etc). Students read scientific material, set up experiments, perform measurements in the lab, analyse data, apply statistics and write short reports or essays.

Objective

This course will prepare students for experimental work as it is typically done during the master thesis. The goal is to gain hands-on experience with measurement and analysis methods relevant for Humans Systems Neuroscience and Motor control (for example peripheral nerve stimulation, electrical and magnetic brain stimulation, EMG, EEG, psycho-physical paradigms etc). Students will learn how to perform small scientific projects in this area. Students will work individually or in small groups and solve scientific problems which require them to perform measurements in human participants, extract relevant readouts from the data, apply appropriate statistics and interpret the results. They will also be required to write small essays and reports and they will get feedback on their writing throughout the course. The participation will be confirmed by a certificate that is recognized by the Swiss authorities.

Prerequisites / notice

Students are required to have successfully completed the course “Neural control of movement and motor learning” and to have basic knowledge of applied statistics.

ECTS

4 credits

Number

376-0223-00L

Title

Advanced topics in exercise physiology

Type

W

ECTS

4 credits

Hours

2S

Lecturers

C. Spengler, G. D'Hulst, F. Gabe Beltrami

Abstract

In this course, students read, present and discuss seminal publications in the area of exercise physiology. The focus lies on critical analysis of scientific content, conceptual as well as ethical aspects of publications. Students are trained in the most common scientific presentation techniques such as oral and poster presentations.

Objective

Students gain further knowledge and a deeper understanding of concepts in exercise physiology. Emphasis is put on critical analysis and discussion of scientific publications as well as on improving scientific presentation skills.
Content
About two third of the semester will be spent discussing structure and content of 2-3 scientific papers per double-lecture. This includes a student presenting the paper orally first, followed by the group discussion. Each student will also prepare and present a poster on a self-selected, scientific publication, participate in a poster discussion session and lead another discussion session as a facilitator. Student groups will prepare a scientific study design to a given, applied exercise physiology question. Furthermore, students will compare an article published in the lay press to the scientific publication the article is based on.

Literature
Material will be provided in moodle.

Prerequisites / notice
Successful completion of the Exercise Physiology Course.

376-0225-00L
Physical Activities and Health

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0385-10L</td>
<td>W</td>
<td>6</td>
<td>5G</td>
<td>S. Kozerke, K. P. Prüssmann</td>
</tr>
</tbody>
</table>

Abstract
This course introduces/explores the complex relationship between physical activity, sedentary behavior and health. It will discuss the evolution of current physical activity recommendations. It will examine the current evidence base that has informed physical activity recommendations and that identified physical activity as a key modifiable lifestyle behavior contributing to disease and mortality.

Objective
On completion of this course students will be able to demonstrate:

1. knowledge of and critical awareness of the role of physical activity and sedentary behavior in the maintenance of health and the aetiology, prevention and treatment of disease.
2. thorough knowledge and awareness of current recommendations for physical activity, and current prevalence and trends of physical activity and associated diseases.
3. awareness of critical current national and international physical activity policies and how these impact on global challenges.

Content
Introduction to Physical Activity for Health, including sedentary behavior
Physical activity epidemiology; concepts principles and approaches
Physical activity and all cause morbidity and mortality
Physical activity and chronic disease; Coronary heart disease, diabetes, bone health, cancer and obesity
Physical activity and brain health
Physical activity and sedentary behavior recommendations
Population prevalence of physical activity and sedentary behavior
Physical activity policies
Physical activity assessment

Lecture notes
Lecture notes and handouts

Literature
Selective journal articles from relevant journals such as Journal of Physical Activity and Health and Journal of Aging and Physical Activity

Notice
From the BSc-course the following book is recommended: ‘Essentials of strength training and conditioning’ T. Baechle, R. Earle (3rd Edition).

376-1651-00L
Clinical and Movement Biomechanics

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0386-00L</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>N. Singh, R. List, P. Schütz</td>
</tr>
</tbody>
</table>

Abstract
Measurement and modeling of the human movement during daily activities and in a clinical environment.

Objective
The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application.

Content
This course includes study design, measurement techniques, clinical testing, accessing movement data and analysis as well as modeling with regards to human movement.

Lecture notes
To be provided by the individual lecturers, at their discretion.

Literature

Notice
No compulsory prerequisites, but prior completion of the courses "Introduction to Nutritional Science" and "Advanced Topics in Nutritional Science" is strongly advised.

Elective Courses II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0385-10L</td>
<td>Biomedical Imaging</td>
<td>W</td>
<td>6</td>
<td>5G</td>
<td>S. Kozerke, K. P. Prüssmann</td>
</tr>
</tbody>
</table>

Abstract
Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.

Objective
To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.

Content
- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging

Lecture notes
Lecture notes and handouts

Literature
Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011

Prerequisites / notice
Analysis, Linear Algebra, Physics, Basics of Signal Theory. Basic skills in Matlab programming

227-0386-00L
Biomedical Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0386-00L</td>
<td>Biomedical Engineering</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong</td>
</tr>
</tbody>
</table>

Abstract
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1051 of 2152
Objectives

Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.

Content

Lecture notes

Introduction to Biomedical Engineering by Endler, Banchard, and Bronzino

AND

https://ibb.ethz.ch/education/biomedical-engineering.html

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0447-00L</td>
<td>Image Analysis and Computer Vision</td>
<td>6W 3V+1U</td>
<td>L. Van Gool, E. Konukoglu, F. Yu</td>
</tr>
</tbody>
</table>

Abstract

Objective

Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Content

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning. The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer. The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Lecture notes

Lecture notes will be distributed.

Course material, Script, computer demonstrations, exercises and problem solutions

Prerequisites / notice

Course material, Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux. The course language is English.

Prerequisites

Lecture notes

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0447-00L</td>
<td>Image Analysis and Computer Vision</td>
<td>6 credits</td>
<td>No mandatory prerequisites.</td>
</tr>
<tr>
<td>227-2125-00L</td>
<td>Microscopy Training SEM I - Introduction to SEM</td>
<td>2 credits</td>
<td>No mandatory prerequisites.</td>
</tr>
</tbody>
</table>

Prerequisites

Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.

The course language is English.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture Notes</th>
<th>Duration</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-2126-00L</td>
<td>Microscopy Training TEM - Introduction to TEM</td>
<td>W 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for beginners who are interested in using TEM for their Master or PhD thesis. TEM sample preparation techniques are also discussed. During hands-on sessions at different TEM instruments, students will have the opportunity to examine their own samples if time allows.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For PhD students, postdocs, and others, a fee will be charged (http://www.scopem.ethz.ch/education/MTP.html).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All applicants must additionally register on this form: (link will follow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The selected applicants will be contacted and asked for confirmation a few weeks before the course date.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for beginners who are interested in using TEM for their Master or PhD thesis. TEM sample preparation techniques are also discussed. During hands-on sessions at different TEM instruments, students will have the opportunity to examine their own samples if time allows.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The student will learn and apply a method for analyzing and designing work in business settings.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Practical: - Demo, practical demonstration of a TEM: instrument components, alignment, etc.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>- Hands-on training for students: sample loading, instrument alignment and data acquisition.</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>- Sample preparation for different types of materials</td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td>- Practical work with TEMs</td>
</tr>
<tr>
<td></td>
<td>No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551-1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>363-0301-00L</td>
<td>Work Design and Organizational Change</td>
<td>W 3</td>
<td></td>
<td>2G</td>
<td>Good work design is crucial for individual and company effectiveness and a core element to be considered in organizational change.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Meaning of work, organization-technology interaction, and uncertainty management are discussed with respect to work design and sustainable organizational change. As course project, students learn and apply a method for analyzing and designing work</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Meaning of work, organization-technology interaction, and uncertainty management are discussed with respect to work design and sustainable organizational change. As course project, students learn and apply a method for analyzing and designing work</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376-0121-00L</td>
<td>Multiscale Bone Biomechanics</td>
<td>W 6</td>
<td></td>
<td>4S</td>
<td>Number of participants limited to 30</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Imaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine.</td>
</tr>
</tbody>
</table>
Students are able to describe the human body as a mechanical system. Imaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine. For the imaging portion of the course, biosignal processing, radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging are covered. For the computing portion of the course, computing, programming, and modelling and simulation fundamentals are covered as well as their application in artificial intelligence and deep learning; complexity and systems medicine; big data and personalised medicine; and computational physiology and in silico medicine.

The course is structured as a seminar in three parts of 45 minutes with video lectures and a flipped classroom setup: in the first part (HST: Possible from the 5th semester on). Objective: This course provides theory-grounded knowledge and practice-driven skills for founding, financing, and growing new technology ventures. A critical understanding of dos and don'ts is provided through highlighting and discussing real life examples and cases.

Content
Lecture notes
Prerequisites / notice

363-0790-00L Technology Entrepreneurship

Abstract
Technology ventures are significantly changing the global economic picture. Technological skills increasingly need to be complemented by entrepreneurial understanding. This course offers the fundamentals in theory and practice of entrepreneurship in new technology ventures. Main topics covered are success factors in the creation of new firms, including founding, financing and growing a venture.

Objective
This course provides theory-grounded knowledge and practice-driven skills for founding, financing, and growing new technology ventures. A critical understanding of dos and don'ts is provided through highlighting and discussing real life examples and cases.

Content
Lecture notes

376-0130-00L Laboratory Course in Exercise Physiology

Objective
Gain hands-on experience in exercise physiology and consolidate knowledge on physiological adaptations to different types and degrees of physical activity and climatic influences. Learn fundamental assessment techniques of the muscular system, the cardio-respiratory system and of whole-body performance, learn scientifically correct data analysis and interpretation of results. Insight into today's Sports Medicine.

Content
Lecture notes

376-0203-00L Movement and Sport Biomechanics

Objective
Students are able to describe the human body as a mechanical system. They analyse and describe human movement according to the laws of mechanics.

Content
Lecture notes

376-0207-00L Exercise Physiology

Objective
The aim of this course is to understand molecular and systemic aspects of neuromuscular, cardiovascular and respiratory adaptations to acute and chronic exercise as well as the interaction of the different systems regarding health-relevant aspects and performance in healthy people and persons with selected diseases. Furthermore, students will understand the influence of genetics, gender, age, altitude/depth, heat and cold on the named factors.

Content
Lecture notes

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1054 of 2152
The course will consist of 4 main research themes and the anticipated 16 students will be divided into 4 subgroups of 4 students- each one.

The objective of this course is to introduce students into current research topics and outstanding questions in skeletal muscle biology. Also, the course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will be organized into 7 sessions, each approx. 4 hours: the first 2 sessions will be theoretical and include an introductory lectures by the professors in addition to a journal club presentation by the students. This journal club aims to provide theoretical and scientific background that will be used to identify outstanding research questions. This will be followed by 4 practical sessions (hands-on experience) and 1 final evaluation session. For the journal club, each group of students will receive a peer-review article that is highly relevant to the respective group’s research topic.

The course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will consist of 4 main research themes and the anticipated 16 students will be divided into 4 subgroups of 4 students- each one.

The objective of this course is to introduce students into current research topics and outstanding questions in skeletal muscle biology. Also, the course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will be organized into 7 sessions, each approx. 4 hours: the first 2 sessions will be theoretical and include an introductory lectures by the professors in addition to a journal club presentation by the students. This journal club aims to provide theoretical and scientific background that will be used to identify outstanding research questions. This will be followed by 4 practical sessions (hands-on experience) and 1 final evaluation session. For the journal club, each group of students will receive a peer-review article that is highly relevant to the respective group’s research topic.

The course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will consist of 4 main research themes and the anticipated 16 students will be divided into 4 subgroups of 4 students- each one.

The objective of this course is to introduce students into current research topics and outstanding questions in skeletal muscle biology. Also, the course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will be organized into 7 sessions, each approx. 4 hours: the first 2 sessions will be theoretical and include an introductory lectures by the professors in addition to a journal club presentation by the students. This journal club aims to provide theoretical and scientific background that will be used to identify outstanding research questions. This will be followed by 4 practical sessions (hands-on experience) and 1 final evaluation session. For the journal club, each group of students will receive a peer-review article that is highly relevant to the respective group’s research topic.

The course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will consist of 4 main research themes and the anticipated 16 students will be divided into 4 subgroups of 4 students- each one.

The objective of this course is to introduce students into current research topics and outstanding questions in skeletal muscle biology. Also, the course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will be organized into 7 sessions, each approx. 4 hours: the first 2 sessions will be theoretical and include an introductory lectures by the professors in addition to a journal club presentation by the students. This journal club aims to provide theoretical and scientific background that will be used to identify outstanding research questions. This will be followed by 4 practical sessions (hands-on experience) and 1 final evaluation session. For the journal club, each group of students will receive a peer-review article that is highly relevant to the respective group’s research topic.

The course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will consist of 4 main research themes and the anticipated 16 students will be divided into 4 subgroups of 4 students- each one.

The objective of this course is to introduce students into current research topics and outstanding questions in skeletal muscle biology. Also, the course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will be organized into 7 sessions, each approx. 4 hours: the first 2 sessions will be theoretical and include an introductory lectures by the professors in addition to a journal club presentation by the students. This journal club aims to provide theoretical and scientific background that will be used to identify outstanding research questions. This will be followed by 4 practical sessions (hands-on experience) and 1 final evaluation session. For the journal club, each group of students will receive a peer-review article that is highly relevant to the respective group’s research topic.

The course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will consist of 4 main research themes and the anticipated 16 students will be divided into 4 subgroups of 4 students- each one.

The objective of this course is to introduce students into current research topics and outstanding questions in skeletal muscle biology. Also, the course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.

The course will be organized into 7 sessions, each approx. 4 hours: the first 2 sessions will be theoretical and include an introductory lectures by the professors in addition to a journal club presentation by the students. This journal club aims to provide theoretical and scientific background that will be used to identify outstanding research questions. This will be followed by 4 practical sessions (hands-on experience) and 1 final evaluation session. For the journal club, each group of students will receive a peer-review article that is highly relevant to the respective group’s research topic.

The course will give students hands-on experience in respect to the tools needed to perform basic molecular biology research in the field of exercise and skeletal muscle biology. Students will learn how to translate a scientific question in muscle biology into a small scientific project. They will learn how to design an experiment and to analyze and critically interpret experimental data.
Analytical Competencies

The lectures set out to:
- present the different dimensions, functions and interrelationships of present-day sport
- provide an introduction to the central theories and models of (sport) sociology
- show how sport reflects society and how it changes and becomes more differentiated in the process
- take current examples to highlight the sociological view of sport.

Content

Sport and social change: developments and trends
- The economy and the media: dependencies, consequences, scandals
- Social inequalities and distinctions: gender differences and group behavior
- Conflicts and politics: sports organizations, doping, violence

Lecture notes

Selected materials for the lecture are available on the Moodle platform.

Literature

A detailed program with additional resources will be delivered at the beginning of the lecture.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed

Domain C - Social Competencies
Sensitivity to Diversity assessed

Domain D - Personal Competencies
Critical Thinking assessed

376-1117-00L: Sport Psychology

Objective

This lecture is intended as an introduction to sport psychology and imparts knowledge on selected areas of the subject.

Content

- Introduction to sport psychology
- Cognitions in sports: mental rehearsal and mental training
- Emotions and stress
- Motivation: goal-setting in sports
- Career and career transition in elite sport
- Coach-Athlete-Interaction
- Psychological aspects of sport-injury rehabilitation
- Group dynamics in sport

Lecture notes

Instructional materials for each course will be made available to students. All lecture materials will be available to students on Moodle.

Literature

376-1151-00L: Translation of Basic Research Findings from Genetics and Molecular Mechanisms of Aging

Objective

The overall goal of this course is to be able to analyze current therapeutic interventions to identify an unmet need in molecular biology of aging and apply scientific thinking to discover new mechanisms that could be used as a novel therapeutic intervention.

Learning objectives include:
1. Evaluate the current problem of our aging population, the impact of age-dependent diseases and current strategies to prevent these age-dependent diseases.
2. Analyze/compare current molecular/genetic strategies that address these aging problems.
3. Apply case studies about biotech companies in the aging sector. Apply the scientific methods to formulate basic research questions to address these problems.
4. Evaluate own hypotheses (educated guess/idea), design experiments to test them, and map out the next steps to translate them.

Prerequisites

No compulsory prerequisites, but student should have basic knowledge about genetics and molecular biology.

376-1177-00L: Human Factors I

Objective

The goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.

Content

- Physiological, physical, and cognitive factors in sensation, perception, and action
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance, well-being, and comfort
- Usability engineering in system designs, product development, and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks

Literature

- Gabriël Salenvido, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students.
- Further textbooks are introduced in the lecture.
- Brouchures, checklists, key articles etc. are uploaded in ILIAS
Abstract
Cybernetics systems have been studied and applied in various research fields, such as for applications in ergonomics. Topics discussed in this lecture (man-machine-interaction, performance in multi-modal interactions, quantification in gestalt principles for the use in product development, information processing) are deepened with exercises conducted at our labs.

Objective
To learn and practice cybernetics principles in interface designs and product development.

Content
- Fitt's law applied in manipulation tasks
- Hick-Hyman law applied in design of the driver assistance systems
- Vigilance applied in quality inspection
- Accommodation/vergence crosslink function
- Cross-link models in neurobiology- the ocular motor control system
- Human performance in optimization of production lines

Literature

376-1219-00L Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions

Abstract
Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society. The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.

Objective
Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

Content
- Introduction, problem definition, overview
- Rehabilitation of visual function
 - Anatomy and physiology of the visual sense
 - Technical aids (glasses, sensor substitution)
 - Retina and cortex implants
 - Rehabilitation of hearing function
 - Anatomy and physiology of the auditory sense
 - Hearing aids
 - Cochlea Implants
 - Rehabilitation and use of kinesthetic and tactile function
 - Anatomy and physiology of the kinesthetic and tactile sense
 - Tactile/haptic displays for motion therapy (incl. electrical stimulation)
 - Role of displays in motor learning
 - Rehabilitation of vestibular function
 - Anatomy and physiology of the vestibular sense
 - Rehabilitation strategies and devices (e.g. BrainPort)
 - Rehabilitation of vegetative Functions
 - Cardiac Pacemaker
 - Phrenic stimulation, artificial breathing aids
 - Bladder stimulation, artificial sphincter
 - Brain stimulation and recording
 - Deep brain stimulation for patients with Parkinson, epilepsy, depression
 - Brain-Computer Interfaces
Literature

Introductory Books:

Prerequisite / note:

Target Group: Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK, D-HEST
- Biomedical Engineering, Robotics, Systems and Control
- Medical Faculty, University of Zurich

Students of other departments, faculties, courses are also welcome

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

376-1353-00L Nanostructured Materials Safety

- **Abstract:** Fundamentals in nanostructured material - living system interactions focusing on the main exposure routes, lung, gastrointestinal tract, skin and intravenous injection.

- **Objective:** Understanding the potential side effects of nanomaterials in a context-specific way, enabling to evaluate nanomaterial safety and provide knowledge to design safer materials.

- **Lecture notes:** Handouts provided during the classes and references therein as well as primary literature as case studies will be posted to the course website.

- **Prerequisites / notice:** course "Introduction to Toxicology"

376-1714-00L Biocompatible Materials

- **Abstract:** Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.

- **Objective:** The course covers the following topics:
 1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
 2. The concept of biocompatibility.
 3. Introduction into methodology used in biomaterials research and application.
 4. Introduction to different material classes in use for medical applications.
Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Handouts are deposited online (moodle).

(available online via ETH library)

376-1720-00L Application of MATLAB in the Human Movement Sciences

W 2 credits 2G
R. van de Langenberg

Abstract
Students will learn to import, process and graphically present experimental data using the MATLAB computing environment. Both the data and the methods of analysis will be typical for experiments in Human Movement Science (i.e. kinematics, kinetics and electromyography).

Objective
Students will acquire the ability to independently load, plot, and process kinematic, kinetic and electromyographical data using the MATLAB computing environment.

Content
Drawbacks of Excel; Possibilities in MATLAB; Import of several data formats; Plot of one and more signals; Removing of an offset and filtering of data based on self-written functions; Normalisation and parametrisation of data; Reliability; Interpolation, Differentiation and Integration in MATLAB.

Literature
During the lecture, several electronically available MATLAB introductions are indicated. Course-specific scripts will be provided by the lecturer.

Prerequisites / notice
A Laptop with MATLAB installed (v2009 or higher) and wireless internet access is mandatory. Two students can share a laptop if necessary. A MATLAB student version can be obtained at Stud-IDES for free.

376-1722-00L Spinal Cord Injury and Exercise

W 2 credits 2V
C. Perret

Prerequisite: Anatomy and Physiology

Abstract
Intensive discussion concerning complications of a spinal cord injury and their consequences on trainability and exercise performance of persons sitting in a wheelchair. Overview on the clinical application of exercise testing as well as on the implementation of sport scientific findings to optimise performance of spinal cord injured subjects in rehabilitation and elite sports.

Objective
Knowledge of the pathophysiology and the concomitant complications of a spinal cord injury and the consequences for physical exercise and trainability during rehabilitation as well as in recreational and elite sport.

Content
The following issues will be discussed: Epidemiology and etiology of spinal cord injury; complications and consequences of spinal cord injury; trainability/exercise physiology and spinal cord injury; history and organisation of wheelchair sports; elite sport and spinal cord injury

Literature
General literature:

G.A. Zäch, H. G. Koch
Paraplegie - ganzheitliche Rehabilitation
Karger-Verlag, 2006
ISBN 3-8055-7980-2

V. Goosey-Tolfrey
Wheelchair sport: A complete guide for athletes, coaches and teachers
Human Kinetics, 2010

Y.C. Vanlandewijck, W.R. Thompson
The Paralympic Athlete
Wiley-Blackwell, 2011
ISBN 978-1-4443-3404-3

Liz Broad
Sports Nutrition for Paralympic Athletes, Second Edition
CRC Press 2019

Y.C. Vanlandewijck, W.R. Thompson
Training and Coaching the Paralympic Athlete
ISBN 978-1-119-04433-8

Prerequisites / notice
Voraussetzung: Vorlesung Anatomie/Physiologie besucht!
Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed

Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

376-1723-00L Big Data Analysis in Biomedical Research W 4 credits 2V+2U E. Araldi, M. Ristow

Abstract
Biomedical datasets are increasing in size and complexity, and discoveries arising from their analysis have important implications in human health and biotechnological advances. While the potential of biomedical dataset analysis is considerable, preclinical researchers often lack the computational tools to analyze them. This course will provide the basis of data analysis of large biomedical data.

Objective
This course aims to provide practical tools to analyze large biomedical datasets, and it is tailored towards experimental researchers in the life sciences with minimal prior programming experience, but with a strong interest in exploring big data to solve own research problems. Through theoretical classes, practical demonstrations, in class exercises and homework, the participants will master computational methods to independently manipulate large datasets, effectively visualize big data, and analyze it with appropriate statistical tools and machine learning approaches. For the final assessment, students will conduct an independent data analysis project based on a biomedical problem of their choosing and using publicly available population-based biomedical datasets.

Content
While learning the programming skills needed to manipulate and visualize the data, participants will learn the statistical and modeling approaches for big data analysis. The course will cover:
• Basis of Python programming and UNIX;
• High performance computing;
• Manipulation and cleaning of large datasets with Pandas;
• Visualization tools (Matplotlib, Seaborn);
• Machine learning and numerical libraries (SciPy, NumPy, Statsmodels, Scikit-Learn);
• Statistical analysis and modeling of big data, and applications to biomedical datasets (statistical learning, distributions, linear and logistic regressions, principal component analysis, clustering, classification, time series analysis, tree-based methods, predictive models).

Prerequisites / notice
Basic understanding of mathematics and statistics, as taught in basic courses at the Bachelor’s level.

376-1974-00L Colloquium in Biomechanics W 2 credits 2K B. Helgason, S. J. Ferguson, R. Müller, J. G. Snedeker, B. Taylor, M. Zenobi-Wong

Abstract
Current topics in biomechanics presented by speakers from academia and industry.

Objective
Getting insight into actual areas and problems of biomechanics.

376-1985-00L Trauma Biomechanics W 4 credits 2V+1U K.-U. Schmitt, M. H. Muser

Abstract
Trauma biomechanics in an interdisciplinary research field investigating the biomechanics of injuries and related subjects such as prevention. The lecture provides an introduction to the basic principles of trauma biomechanics.

Objective
Introduction to the basic principles of trauma biomechanics.

Content
This lecture serves as an introduction to the field of trauma biomechanics. Emphasis is placed on the interdisciplinary nature of impact biomechanics, which uses the combination of fundamental engineering principles and advanced medical technologies to develop injury prevention measures. Topics include: accident statistics and accident reconstruction, biomechanical response of the human to impact loading, injury mechanisms and injury criteria, test methods (including crash tests), computer simulations, aspects of vehicle safety. Real world examples mainly from automobile safety are used to augment lecture material.

Lecture notes
Handouts will be made available.

Literature
This lecture introduces the basic principles of trauma biomechanics. Based on examples from sports, you will get to know different mechanisms that can possibly result in injury. Investigating the background and cause of injury should allow you to assess the injury risk for sports activities. Furthermore, you should be able to develop measures to prevent such injuries.

This lecture deals with the basic principles of injury mechanics and rehabilitation. Mechanisms that can result in injury are presented. Furthermore, possibilities to prevent injuries are discussed. Thereby, the lecture focuses on sports injuries.

Handouts will be made available.

Literature

A course work is required. The mark of this course work contributes to the final credits for this lecture. Details will be given during the first lecture.

Abstract
Starting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.

Develop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology.

For each particular problem studied, we will work out how the various methods work and what their capabilities/limits are. The problem areas range from microbial metabolism to cancer cell metabolism and from metabolic networks to regulation networks in populations and single cells. Key methods to be covered are various modeling approaches, metabolic flux analyses, metabolomics and other omics.

Script and original publications will be supplied during the course.

The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.

A “cook-and look” approach to process design is no longer applicable in the current environmental, nutritional and competitive constraints. Therefore the objective of this course is for students to be equipped with a skill set that will encompass basic digestion and sensory physiology knowledge and food structures.

The students will be exposed to this interplay all along the GI tract, including taste, aroma and texture perception, swallowing mechanics and gastro intestinal digestion with an engineering or physical sciences angle.

The module Epidemiology and prevention describes the process of scientific discovery from the detection of a disease and its causes, to the development and evaluation of preventive and treatment interventions and to improved population health.
At the end of this module, students are able to:

Human Health, Nutrition and Environment: Term

Information on further reading will be announced during the lecture. There will be some mandatory as well as voluntary readings.

ECTS

R. Heusser

assessed

2G

S. Mettler

The overall goal of the course is to introduce students to epidemiological thinking and methods, which are critical pillars for medical and public health research. Students will also become aware of how epidemiological facts are used in prevention, practice, and policies.

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories

assessed

Domain B - Method-specific Competencies

Analytical Competencies

assessed

Decision-making

assessed

Problem-solving

not assessed

Project Management

not assessed

Domain C - Social Competencies

Communication

not assessed

Cooperation and Teamwork

not assessed

Domain D - Personal Competencies

Creative Thinking

not assessed

Critical Thinking

assessed

752-6151-00L

Public Health Concepts

W

3 credits

2V

R. Heusser

Abstract

The module "public health concepts" offers an introduction to key principles of public health. Students get acquainted with the concepts and methods of epidemiology. Students also learn to use epidemiological data for prevention and health promotion purposes. Public health concepts and intervention strategies are presented, using examples from infectious and chronic diseases.

Objective

At the end of this module, students are able to:

- to interpret the results of epidemiological studies
- to critically assess scientific literature
- to know the definition, dimensions and determinants of health
- to plan public health interventions and health promotion projects
- to draw a bridge from evidence to policies and politics

Content

Concepts of descriptive and analytical epidemiology, study designs, measures of effect, confounding and bias, screening, surveillance, definition of health and health promotion, health dimensions and health determinants, prevention strategies, public health interventions, public health action cycle, epidemiology and prevention of infectious and chronic diseases (HIV, COVID-19, Obesity, iodine/PH nutrition).

Lecture notes

Handouts are provided to students in the classroom.

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories

assessed

Domain B - Method-specific Competencies

Analytical Competencies

assessed

Decision-making

assessed

752-6403-00L

Nutrition and Performance

W

2 credits

2V

S. Mettler, M. B. Zimmermann

Abstract

The course introduces basic concepts of the interaction between nutrition and exercise performance.

Objective

To understand the potential effects of nutrition on exercise performance, with a focus on concepts and principles of nutrition before, during and after exercise.

Content

The course will cover elementary aspects of sports nutrition physiology, including carbohydrate, glycogen, fat, protein and energy metabolism. A main focus will be to understand nutritional aspects before exercise to be prepared for intensive exercise bouts, how exercise performance can be supported by nutrition during exercise and how recovery can be assisted by nutrition after exercise. Although this is a scientific course, it is a goal of the course to translate basic sports nutrition science into practical sports nutrition examples.

Lecture notes

Information on further reading will be announced during the lecture. There will be some mandatory as well as voluntary readings.

Prerequisites / notice

General knowledge about nutrition, human biology, physiology and biochemistry is a prerequisite for this course. The course builds on basic nutrition and biochemistry knowledge to address exercise and performance related aspects of nutrition.

The course is designed for 3rd year Bachelor students, Master students and postgraduate students (MAS/CAS).

It is strongly recommended to attend the lectures. The lecture (including the handouts) is not designed for distance education.

Major in Human Health, Nutrition and Environment

Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only for students of the Major Human Health, Nutrition and Environment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Writing of a review paper on scientific quality on a topic in the domain of Human Health, Nutrition and Environment based on critical evaluation of scientific literature.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Acquisition of knowledge in the field of the review paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Assessment of original literature as well as synthesis and analysis of the findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Practising of academic writing in English</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Giving an oral presentation with discussion on the topic of the review paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Topics are offered in the domains of the major 'Human Health, Nutrition and Environment' covering 'Public Health', 'Infectious Diseases', 'Nutrition and Health' and 'Environment and Health'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Guidelines will be handed out in the beginning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literature will be identified based on the topic chosen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376-0300-00L</td>
<td>Translational Science for Health and Medicine</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>J. Goldhahn, C. Wolfrum</td>
</tr>
<tr>
<td>Abstract</td>
<td>Translational science is a cross disciplinary scientific research that is motivated by the need for practical applications that help people. The course should help to clarify basics of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>After completing this course, students will be able to understand:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This course is structured into three parts. The first part focuses on Linear and Generalised Linear Models. The second part introduces more advanced methodologies such as Linear Mixed-Effects Models and Generalised Additive Models. Both, part one and two will include the statistical software R. Finally, in the third part of the course students will be analysing real-world datasets to put into practice the knowledge and skills acquired during the first two parts.

Content
- Disease concepts and consequences for research
- Basics about incidence, prevalence etc., and orphan indications
- Ethical considerations including ethics application
- Pros and cons of different types of research
- Coordination of complex approaches incl. timing and resources
- How to choose the appropriate research type and methodology
- How to measure success?
- Outcome variables
- Improving the translational process
- Academic boundary conditions vs. industrial influences

Positive and negative examples will be illustrated by distinguished guest speakers.

<table>
<thead>
<tr>
<th>376-0302-01L</th>
<th>GCP Basic Course (Modules 1 and 2)</th>
<th>O</th>
<th>1 credit</th>
<th>1G</th>
<th>G. Senti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The basic course in "Good Clinical Practice" (GCP) contains of two full-time training days (Module 1 and Module 2) and addresses elementary aspects for the appropriate conduct of clinical trials and non-clinical research projects involving human beings. Successful participation will be confirmed by a certificate that is recognized by the Swiss authorities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will get familiar with:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Key Ethics documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- (International) Guidelines and Laws (e.g. ICH-GCP, DIN EN ISO 14155, TPA, HRA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sequence of research projects and project-involved parties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Planning and development of research projects, (statistics, resources, study design, set-up of the study protocol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Approval of research projects by Authorities (SwissEthics, Swissmedic, FOPH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Roles and responsibilities of project-involved parties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students will learn how to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Classify research projects according the risk-based approach of the HRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Write a study protocol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Inform participating patients/study subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Obtain consent by participating patients/study subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Classify, document and report Adverse Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Handle projects with biological material from humans and/or health-related personal data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance

- **Module 1:** Research and Research Ethics, Guidelines, (Inter)national Legislation, Development of therapeutic products, Methodology (Study Design), Study documents (Study protocol, Investigator's Brochure, Patient Information Leaflet, Informed Consent Form)
- **Module 2:** Roles and Responsibilities, Approval procedures, Notification and Reporting, Study documentation, Research with biological material and health-related data, data protection, data retention

Electives

| Elective Courses I |
|--------------------|-----|-----|-----|-----|
| **Number** | **Title** | **Type** | **ECTS** | **Hours** | **Lecturers** |
| 401-0629-00L | Applied Biostatistics | W | 4 credits | 3G | M. Tanadini |
| **Abstract** | This course covers the main methods used in Biostatistics. It starts by revising Linear Models (Regression, Anova), then moves to Generalised Linear Models (logistic regression and methods for count data) and finally introduces more advanced topics (Linear Mixed-Effects Models and Generalised Additive Models). The course strongly focuses on applied aspects of data analysis. |
| **Objective** | After this course students: |
| | - revised Linear Models |
| | - revised or got introduced to Generalised Linear Models |
| | - got introduced to Linear Mixed-Effects Models |
| | - got introduced to Generalised Additive Models |
| | - are able to select among these methods to solve an applied problem in Biostatistics |
| | - can perform the data analysis using the statistical software R. |
| | can interpret the results of such an analysis and draw valid "biological" conclusions |
| **Content** | This course is structured into three parts. The first part focuses on Linear and Generalised Linear Models. The second part introduces more advanced methodologies such as Linear Mixed-Effects Models and Generalised Additive Models. Both, part one and two will include the following topics: exploratory data analysis, model fitting, model "selection"; residual diagnostics, model validation and results interpretation. |
| **Prerequisites / notice** | The statistical software R will be used in the exercises. If you are unfamiliar with R, it is highly recommend to view the online R course "etutoR". |

752-6105-00L	Epidemiology and Prevention	W	3 credits	2V	M. Puhani, R. Heusser
Abstract	The module Epidemiology and prevention describes the process of scientific discovery from the detection of a disease and its causes, to the development and evaluation of preventive and treatment interventions and to improved population health.				
Objective	The overall goal of the course is to introduce students to epidemiological thinking and methods, which are critical pillars for medical and public health research. Students will also become aware on how epidemiological facts are used in prevention, practice and politics.				
Content	The module Epidemiology and prevention follows an overall framework that describes the course of scientific discovery from the detection of a disease to the development of prevention and treatment interventions and their evaluation in clinical trials and real world settings. We will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples from nutrition, chronic and infectious diseases will be used in order to show the underlying concepts and methods.				
Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Decision-making	assessed	
Problem-solving	not assessed	
Domain C - Social Competencies	Communication	not assessed
Domain D - Personal Competencies	Creative Thinking	not assessed
Critical Thinking	assessed	

752-6151-00L Public Health Concepts

Abstract

The module "public health concepts" offers an introduction to key principles of public health. Students get acquainted with the concepts and methods of epidemiology. Students also learn to use epidemiological data for prevention and health promotion purposes. Public health concepts and intervention strategies are presented, using examples from infectious and chronic diseases.

Objective

At the end of this module students are able:
- to interpret the results of epidemiological studies
- to critically assess scientific literature
- to know the definition, dimensions and determinants of health
- to plan public health interventions and health promotion projects
- to draw a bridge from evidence to policies and politics

Content

Concepts of descriptive and analytical epidemiology, study designs, measures of effect, confounding and bias, screening, surveillance, definition of health and health promotion, health dimensions and health determinants, prevention strategies, public health interventions, public health action cycle, epidemiology and prevention of infectious and chronic diseases (HIV, COVID-19, Obesity, Iodine/PH nutrition).

Lecture notes

Handouts are provided to students in the classroom.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Decision-making	assessed	

Module: Infectious Diseases

Elective Courses II

Number Title Type ECTS Hours Lecturers

Abstract

This course provides a detailed understanding of
- development of T and B cells
- the dynamics of a immune response during acute and chronic infection
- mechanisms of immunopathology
- modern vaccination strategies

Key experimental results will be shown to help understanding how immunological textbook knowledge has evolved.

Objective

Obtain a detailed understanding of
- the development, activation, and differentiation of different types of T cells and their effectormechanisms during immune responses,
- recognition of pathogenic microorganisms by the host cells and molecular events thereafter,
- events and signals for maturation of naive B cells to antibody producing plasma cells and memory B cells.
- Optimization of B cell responses by intelligent design of new vaccines

Content

- Development and selection of CD4 and CD8 T cells, natural killer T cells (NKT), and regulatory T cells (Treg)
- NK T cells and responses to lipid antigens
- Differentiation, characterization, and function of CD4 T cell subsets such as Th1, Th2, and Th17
- Overview of cytokines and their effector function
- Co-stimulation (signals 1-3)
- Dendritic cells
- Evolution of the "Danger" concept
- Cells expressing Pattern Recognition Receptors and their downstream signals
- T cell function and dysfunction in acute and chronic viral infections

Prerequisites / notice

Immunoology I and II recommended but not compulsory

701-0263-01L Seminar in Evolutionary Ecology of Infectious Diseases W 3 credits 2G R. R. Regös, S. Bonhoeffer

Abstract

Students of this course will discuss current topics from the field of infectious disease biology. From a list of publications, each student chooses some themes that he/she is going to explain and discuss with all other participants and under supervision. The actual topics will change from year to year corresponding to the progress and new results occurring in the field.

Objective

This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific literature and trace the development of ideas related to understanding the ecology and evolutionary biology of infectious diseases.

Content

A core set of ~10 classic publications encompassing unifying themes in infectious disease ecology and evolution, such as virulence, resistance, metapopulations, networks, and competition will be presented and discussed. Pathogens will include bacteria, viruses and fungi. Hosts will include animals, plants and humans.

Literature

Publications and class notes can be downloaded from a web page announced during the lecture.

701-1471-00L Ecological Parasitology W 3 credits 1V+1P J. Jokela, C. Vorburger

Number of participants limited to 20.
A minimum of 6 students is required that the course will take place.

Abstract

Course focuses on the ecology and evolution of macroparasites and their hosts. Through lectures and practical work, students learn about diversity and natural history of parasites, adaptations of parasites, ecology of host-parasite interactions, applied parasitology, and human macroparasites in the modern world.

Waiting list will be deleted on October 1st, 2021.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1064 of 2152
Objective
1. Identify common macroparasites in invertebrates.
2. Understand ecological and evolutionary processes in host-parasite interactions.
3. Conduct parasitological research

Content
Lectures:
1. Diversification and natural history of parasites (i.e. systematic groupings and life-cycles).
2. Adaptations of parasites (e.g. evolution of life-cycles, host manipulation).
3. Ecology of host-parasite interactions (e.g. parasite communities, effects of environmental changes).
4. Ecology and evolution of parasitoids and their applications in biocontrol
5. Human macroparasites (schistosomiasis, malaria).

Practical exercises:
1. Examination of parasites in molluscs (identification and examination of host exploitation strategies).
2. Examination of parasites in amphipods (identification and examination of effects on hosts).
3. Examination of parasitoids of aphids.

Prerequisites / notice
The three practicals will take place at the 05.10.2021, the 19.10.2021 and the 09.11.2021 at Eawag Dübendorf from 08:15 - 12:00. Note that each practical takes 2 hours longer than the weekly lecture.

701-1703-00L Evolutionary Medicine for Infectious Diseases W 3 credits 2G A. Hall
Number of participants limited to 35.

Waiting list will be deleted October 3rd, 2021.

Abstract
This course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively.

Objective
Students will learn to (i) identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses.

Content
We will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes: (i) determinants of pathogen host range and virulence, (ii) dynamics of host-parasite coevolution, (iii) pathogen adaptation to evade or suppress immune responses, (iv) antimicrobial resistance, (v) evolution-proof medicine. For each topic there will be a short (< 20 minutes) introductory lecture, before students independently research the primary literature and develop discussion points and questions, followed by interactive discussion in class.

Literature
The focus is on primary literature, but for some parts the following text books provide good background information:

Schmid Hempel 2011 Evolutionary Parasitology
Stearns & Medzhitov 2016 Evolutionary Medicine

Prerequisites / notice
A basic understanding of evolutionary biology, microbiology or parasitology will be advantageous but is not essential.

752-4009-00L Molecular Biology of Foodborne Pathogens W 3 credits 2V M. Loessner, M. Schmelcher, M. Schuppler, E. Wetter Slack

Abstract
The course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.

Objective
Detailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.

Content
Molecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnostics and antimicrobial intervention.

Lecture notes
Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.

Literature
Recommendations will be given in the first lecture

Prerequisites / notice
Lectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), without break!

Module: Nutrition and Health

Number	Title	Type	ECTS	Hours	Lecturers
752-2122-00L Food and Consumer Behaviour W 2 credits 2V M. Siegrist, C. Hartmann
Abstract
This course focuses on food consumer behavior, consumer's decision-making processes and consumer's attitudes towards food products.

Objective
The course provides an overview about the following topics: Factors influencing consumer's food choice, food and health, attitudes towards new foods and food technologies, labeling and food policy issues

752-5103-00L Functional Microorganisms in Foods W 3 credits 2G C. Lacroix, A. Geirnaert, A. Greppi
Abstract
This integration course will discuss new applications of functional microbes in food processing and products and in the human gut. Selected topics will be used to illustrate the rapid development but also limits of basic knowledge for applications of functional microorganisms to produce food with high quality and safety, and for health benefits for consumers.

Objective
To understand the principles, roles and mechanisms of microorganisms with metabolic activities of high potential for application in traditional and functional foods, and for benefiting human health. This course will integrate basic knowledge in food microbiology, physiology, biochemistry, and technology.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1065 of 2152
This course will address selected and current topics targeting functional characterization and new applications of microorganisms in food and for promoting human health. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to different topics:

- **Probiotics and Prebiotics:** human gut microbiota, functional foods and microbial-based products for gastrointestinal health and functionality, diet-microbiota interactions, molecular mechanisms; challenges for the production and addition of probiotics to foods.

- **Protective Cultures and Antimicrobial Metabolites** for enhancing food quality and safety: antifungal cultures; bacteriocin-producing cultures (bacteriocins); long path from research to industry in the development of new protective cultures.

- Legal and protection issues related to functional foods

- Industrial biotechnology of flavor and taste development

- Safety of food cultures and probiotics

Students will be required to complete a Project on a selected current topic relating to functional culture development, application and claims. Project will involve information research and critical assessment to develop an opinion, developed in an oral presentation.

Lecture notes
Copy of the power point slides from lectures will be provided.

Literature
A list of topics for group projects will be supplied, with key references for each topic.

Prerequisites / notice
This lecture requires strong basics in microbiology.

Module: Environment and Health

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-6101-00L</td>
<td>Dietary Etiologies of Chronic Disease</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>M. B. Zimmermann</td>
</tr>
<tr>
<td>Abstract</td>
<td>To have the student gain understanding of the links between the diet and the etiology and progression of chronic diseases, including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>To examine and understand the protective effect of foods and food ingredients in the maintenance of health and the prevention of chronic disease, as well as the progression of complications of the chronic diseases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course evaluates food and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>There is no script. Powerpoint presentations will be made available on-line to students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>To be provided by the individual lecturers, at their discretion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>No compulsory prerequisites, but prior completion of the courses “Introduction to Nutritional Science” and “Advanced Topics in Nutritional Science” is strongly advised.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major in Medical Technology

Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1353-00L</td>
<td>Nanostructured Materials Safety</td>
<td>W</td>
<td>2 credits</td>
<td>1V</td>
<td>P. Wick</td>
</tr>
<tr>
<td>Abstract</td>
<td>Fundamentals in nanostructured material - living system interactions focusing on the main exposure routes, lung, gastrointestinal tract, skin and intravenous injection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding the potential side effects of nanomaterials in a context-specific way, enabling to evaluate nanomaterial safety and provide knowledge to design safer materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course should help to clarify basics of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Handouts provided during the classes and references therein as well as primary literature as case studies will be posted to the course website</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>course “Introduction to Toxicology”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autumn Semester 2021

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1341-00L</td>
<td>Water Resources and Drinking Water</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Hug, M. Berg, F. Hammes, U. von Gunten</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Handouts will be distributed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Will be mentioned in handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1066 of 2152
The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the imaging techniques. Matlab exercises are used to implement and study basic concepts.

The lecture will be taught in English.

The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.

The lecture will be taught in English.

Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.

The lecture will be taught in English.

Lecture notes
Lecture notes and handouts

Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011

Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.

The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.

During this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field

L1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning

Prerequisites / notice
The course requires an open attitude to the interdisciplinary approach of bioelectronics.

In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.).
This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Lecture notes
Course material Script, computer demonstrations, exercises and problem solutions

Prerequisites / notice
Prerequisites: Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux. The course language is English.

227-0939-00L Cell Biophysics

<table>
<thead>
<tr>
<th>W</th>
<th>6 credits</th>
<th>4G</th>
<th>T. Zambelli</th>
</tr>
</thead>
</table>

Abstract
Applying two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization), an analytical model is derived for a variety of biological phenomena at the molecular as well as cellular level, and critically compared with the corresponding experimental data in the literature.

Objective
Engineering uses the laws of physics to predict the behavior of a system. Biological systems are so diverse and complex prompting the question whether we can apply unifying concepts of theoretical physics coping with the multiplicity of life's mechanisms.

Objective of this course is to show that biological phenomena despite their variety can be analytically described using only two principles from statistical mechanics: maximization of the entropy and minimization of the Gibbs free energy.

Starting point of the course is the probability theory, which enables to derive step-by-step the two pillars thermodynamics from the perspective of statistical mechanics: the maximization of entropy according to the Boltzmann's law as well as the minimization of the Gibbs free energy. Then, an assortment of biological phenomena at the molecular and cellular level (e.g. cytoskeletal polymerization, action potential, photosynthesis, gene regulation, morphogen patterning) will be examined at the light of these two principles with the aim to derive a quantitative expression describing their behavior. Each analytical model is finally validated by comparing it with the corresponding available experimental results.

By the end of the course, students will also learn to critically evaluate the concepts of making an assumption and making an approximation.

Content
- Basics of theory of probability
- Boltzmann's law
- Entropy maximization and Gibbs free energy minimization
- Ligand-receptor: two-state systems and the MWC model
- Random walks, diffusion, crowding
- Electrostatics for salty solutions
- Elasticity: fibers and membranes
- Molecular motors
- Action potential: Hodgkin-Huxley model
- Photosynthesis and vision
- Gene regulation
- Development: Turing patterns
- Sequences and evolution

Theory and corresponding exercises are merged together during the classes.

Lecture notes
No lecture notes because the two proposed textbooks are more than exhaustive!

An extra hour (Mon 17.00 o'clock - 18.00) will be proposed via zoom to solve together the exercises of the previous week.

!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!!!

Literature

Prerequisites / notice
Participants need a good command of
- differentiation and integration of a function with one or more variables (basics of Analysis),
- Newton's and Coulomb's laws (basics of Mechanics and Electrostatics).

Notions of vectors in 2D and 3D are beneficial.
The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics. The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

The course teaches methods and models for fMRI data analysis, covering all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, statistical inference, multiple comparison corrections, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data. The course teaches state-of-the-art methods and models for fMRI data analysis in lectures and exercises. It covers all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, frequentist and Bayesian inference, multiple comparison corrections, and DCM and of their practical application to empirical fMRI data.

After being introduced to the physical/chemical principles and importance of surfaces and interfaces, the student is introduced to the most important techniques that can be used to characterize surfaces. Later, liquid interfaces are treated, followed by an introduction to the fields of tribology (friction, lubrication, and wear) and corrosion.

The course teaches state-of-the-art methods and models for fMRI data analysis in lectures and exercises. It covers all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, frequentist and Bayesian inference, multiple comparison corrections, and event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data. A particular emphasis of the course will be on methodological questions arising in the context of clinical studies in psychiatry and neurology. Practical exercises serve to consolidate the skills taught in lectures.

After being introduced to the physical/chemical principles and importance of surfaces and interfaces, the student is introduced to the most important techniques that can be used to characterize surfaces. Later, liquid interfaces are treated, followed by an introduction to the fields of tribology (friction, lubrication, and wear) and corrosion.
Microscopy Training TEM I - Introduction to TEM

Objective

- Set-up, align and operate a TEM successfully and safely.

- Understand important operational parameters of TEM and optimize microscope performance.

- Explain different signals in TEM and obtain secondary electron (SE) and backscatter electron (BSE) images.

- Operate the TEM in low-vacuum mode.

- Make use of EDX for semi-quantitative elemental analysis.

- Prepare samples with different techniques and equipment for imaging and analysis by TEM.

Content

During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications.

Lectures:
- Introduction to Transmission Electron Microscopy (TEM)
- Damage of materials.
- Energy dispersive X-ray spectroscopy (EDX) for semi-quantitative analysis.
- synchrotron X-ray micro-analysis.
- X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescan and spectral mapping.

Practicals:
- Practice on real-world samples and report results.
- Practice on image formation, image contrast (and image processing).
- Practice on sample preparation techniques for EM.
- Practice on various sample preparation techniques.

Literature

- Practice on sample preparation techniques
- Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities
- Lecture notes will be distributed.

Microscopy Training SEM I - Introduction to SEM

Objective

- Set-up, align and operate a SEM successfully and safely.

- Understand important operational parameters of SEM and optimize microscope performance.

- Explain different signals in SEM and obtain secondary electron (SE) and backscatter electron (BSE) images.

- Operate the SEM in low-vacuum mode.

- Make use of EDX for semi-quantitative elemental analysis.

- Prepare samples with different techniques and equipment for imaging and analysis by SEM.

Content

During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications.

Lectures:
- Introduction to Electronic Microscopy and instrumentation.
- beam/specimen interaction, image formation, image contrast and imaging modes.

Practicals:
- Prepare samples with different techniques and equipment for imaging and analysis by SEM.
- Make use of EDX for semi-quantitative elemental analysis.
- Operate the SEM in low-vacuum mode.

Literature

- Lecture notes will be distributed.

Prerequisites

No mandatory prerequisites.
Introduction to Biomedical Engineering, 3rd Edition 2011, Lecture notes will be distributed.

Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. The purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.

Prerequisites / notice
No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551-1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.

Lecture notes
Lecture slides and case material

Abstract
Technology ventures are significantly changing the global economic picture. Technological skills increasingly need to be complemented by entrepreneurial understanding. This course offers the fundamentals in theory and practice of entrepreneurship in new technology ventures. Main topics covered are success factors in the creation of new firms, including founding, financing and growing a venture.

Objective
This course provides theory-grounded knowledge and practice-driven skills for founding, financing, and growing new technology ventures. A critical understanding of dos and don'ts is provided through highlighting and discussing real life examples and cases.

Content
See course website: http://www.entrepreneurship.ethz.ch/education/fall/technology-entrepreneurship.html

363-0790-00L Technology Entrepreneurship W 2 credits 2V F. Hacklin

363-1065-00L Design Thinking: Human-Centred Solutions to Real World Challenges Does not take place this semester.

Abstract
The goal of this course is to engage students in a multidisciplinary collaboration to tackle real world problems. Following a Design Thinking approach, students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.

Objective
During the course, students will learn about different design thinking methods and tools. This will enable them to:
- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).
- Engage in collaborative ideation with a multidisciplinary team.
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.

Content
The purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validate them through quick iterations of prototyping and testing using different tools and materials. The students will work in multidisciplinary teams on a set of challenges that are organized as a one-week, a three-week, and a final six-week project with an external project partner. In this course, the students will learn about the different Design Thinking methods and tools that are needed to generate deep insights, to engage in collaborative ideation, rapid prototyping and iterative testing.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

Prerequisites / notice
Open mind, ability to manage uncertainty and to work with students from various background. Class attendance and active participation is crucial as much of the learning occurs through the work in teams during class. Therefore, attendance is obligatory for every session. Please also note that the group work outside class is an essential element of this course, so that students must expect an above-average workload.

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Linda Armbruster to learn about the requirements of the class.

376-0021-00L Materials and Mechanics in Medicine W 4 credits 3G M. Zenobi-Wong, J. G. Snedeker

Abstract
Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.

Objective
Understanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.

Content
Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants.

Lecture notes
Course website on Moodle

Literature

376-0121-00L Multiscale Bone Biomechanics ■ W 6 credits 4S R. Müller, X.-H. Qin

Number of participants limited to 30

Abstract
Imaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine.
The objective of this course is to introduce students into current research topics and outstanding questions in skeletal muscle biology. Also, the overall goal of this course is to be able to analyse current therapeutic interventions to identify an unmet need in molecular biology of aging or postpone age-related diseases (e.g., Google founded Calico or Craig Venter's Human Longevity, Inc.). This course will teach the students about the fundamentals of muscle biology and exercise science, and how to apply these concepts to understand the role of muscle biology in aging and age-dependent diseases.

Learning objectives include:

1. Evaluate the current problem of our aging population, the impact of age-dependent diseases and current strategies to prevent these age-dependent diseases.
2. Analyse/compare current molecular/genetic strategies that address these aging problems.
3. Analyse case studies about biotech companies in the aging sector. Apply the scientific methods to formulate basic research questions to address these problems.
4. Generate own hypotheses (educated guess/idea), design experiments to test them, and map out the next steps to translate them.

For the computing portion of the course, computing, programming, and modelling and simulation fundamentals are covered as well as their application in artificial intelligence and deep learning; complexity and systems medicine; big data and personalised medicine; and computational physiology and in silico medicine.

The course is structured as a seminar in three parts of 45 minutes with video lectures and a flipped classroom setup: in the first part (TORQUEs: Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness), students study the basic concepts in short, interactive video lectures on the online learning platform Moodle. Students are able to post questions at the end of each video lecture or the Moodle forum that will be addressed in the second part of the lectures using a flipped classroom concept. For the flipped classroom, the lecturer may prepare additional teaching material to answer the posted questions (Q&A). Following the Q&A, the students will form small groups to acquire additional knowledge using online, python-based activities via JupyterHub or additionally distributed material and discuss their findings in teams. Learning outcomes will be reinforced with weekly Moodle assignments, to be completed during the flipped classroom portion.

Select practical methods that the proposed course will teach include:

i. Group 1: tissue culture, isolation of muscle stem cells via FACS, differentiation of muscle stem cells into muscle fibers, small molecules screens, quantitative analysis of muscle cell proliferation and fusion, Immunofluorescence.
ii. Group 2: tissue culture, differentiation of muscle stem cells into muscle fibers, guide RNA design and Crispr-Cas9 gene editing of genetic mutations that cause muscle diseases in muscle stem cells and fibers, Immunofluorescence and PCR.
iii. Group 3: ex vivo assessment of muscle force characteristics, cryosectioning of muscle tissue, Immunofluorescence and western blot.
iv. Group 4: tissue culture of muscle stem cells, isolation of muscle stem cells and differentiation into muscle fibers, amino acid stimulation of muscle fibers, Western blot.

The course will be organized into 7 sessions, each approx. 4 hours: the first 2 sessions will be theoretical and include an introductory lecture by the professors in addition to a journal club presentation by the students. This journal club aims to provide theoretical and scientific background that will be used to identify outstanding research questions. This will be followed by 4 practical sessions (hands-on experience) and 1 final evaluation session.

For the journal club, each group of students will receive a peer-review article that is highly relevant to the respective group’s research topic. Each of the 4 groups will present and discuss the article in a journal club format to the rest of the participants the following week. During the four practical sessions, students will gain hands-on experiences and learn different lab techniques related to molecular biology of exercise and muscle regeneration. Each group will be presented with a research objective that is related to their topic, and perform in collaboration with teaching assistants a set of experiments that aim to address the research objective. At the final evaluation session, each group of students will present their results and identify follow-up research questions and hypothesis based on their experimental achievements.

The course is structured as a seminar in three parts of 45 minutes with video lectures and a flipped classroom setup: in the first part (TORQUEs: Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness), students study the basic concepts in short, interactive video lectures on the online learning platform Moodle. Students are able to post questions at the end of each video lecture or the Moodle forum that will be addressed in the second part of the lectures using a flipped classroom concept. For the flipped classroom, the lecturer may prepare additional teaching material to answer the posted questions (Q&A). Following the Q&A, the students will form small groups to acquire additional knowledge using online, python-based activities via JupyterHub or additionally distributed material and discuss their findings in teams. Learning outcomes will be reinforced with weekly Moodle assignments, to be completed during the flipped classroom portion.

Select practical methods that the proposed course will teach include:

i. Group 1: tissue culture, isolation of muscle stem cells via FACS, differentiation of muscle stem cells into muscle fibers, small molecules screens, quantitative analysis of muscle cell proliferation and fusion, Immunofluorescence.
ii. Group 2: tissue culture, differentiation of muscle stem cells into muscle fibers, guide RNA design and Crispr-Cas9 gene editing of genetic mutations that cause muscle diseases in muscle stem cells and fibers, Immunofluorescence and PCR.
iii. Group 3: ex vivo assessment of muscle force characteristics, cryosectioning of muscle tissue, Immunofluorescence and western blot.
iv. Group 4: tissue culture of muscle stem cells, isolation of muscle stem cells and differentiation into muscle fibers, amino acid stimulation of muscle fibers, Western blot.

The course will be organized into 7 sessions, each approx. 4 hours: the first 2 sessions will be theoretical and include an introductory lecture by the professors in addition to a journal club presentation by the students. This journal club aims to provide theoretical and scientific background that will be used to identify outstanding research questions. This will be followed by 4 practical sessions (hands-on experience) and 1 final evaluation session.

For the journal club, each group of students will receive a peer-review article that is highly relevant to the respective group’s research topic. Each of the 4 groups will present and discuss the article in a journal club format to the rest of the participants the following week. During the four practical sessions, students will gain hands-on experiences and learn different lab techniques related to molecular biology of exercise and muscle regeneration. Each group will be presented with a research objective that is related to their topic, and perform in collaboration with teaching assistants a set of experiments that aim to address the research objective. At the final evaluation session, each group of students will present their results and identify follow-up research questions and hypothesis based on their experimental achievements.
376-1103-00L

Frontiers in Nanotechnology

W 4 credits
V Vogel, further lecturers

Abstract

Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.

Objective

Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within mammalian and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently sizzling in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.

Content

Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.

Literature

Lecture notes

All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.

376-1177-00L

Human Factors I

W 3 credits
2V M. Menozzi Jäckli, R. Huang, M. Siegrist

Abstract

Strategies of human-system-interaction, individual needs, physical & mental abilities, and system properties are key factors affecting the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's health, well-being, and satisfaction as well as the overall system performance.

Objective

- The goal of the course is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.

- Physiological, physical, and cognitive factors in sensation, perception, and action
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance, well-being, and comfort
- Usability engineering in system designs, product development, and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks

Literature

- Gavriel Salvendy, *Handbook of Human Factors and Ergonomics*, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS

376-1179-00L

Applications of Cybernetics in Ergonomics

W 1 credit
1U M. Menozzi Jäckli, Y.-Y. Hedinger Huang, R. Huang

Abstract

Cybernetics systems have been studied and applied in various research fields, such as for applications in ergonomics. Topics discussed in this lecture (man-machine-interaction, performance in multi-modal interactions, quantification in gestalt principles for the use in product development, information processing) are deepened with exercises conducted at our labs.

Objective

- To learn and practice cybernetics principles in interface designs and product development.
- Fitt's law applied in manipulation tasks
- Hick-Hyman law applied in design of the driver assistance systems - Vigilance applied in quality inspection
- Accommodationvergence crosslink function
- Cross-link models in neurobiology- the ocular motor control system
- Human performance in optimization of production lines

Literature

376-1219-00L

Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions

W 3 credits
2V R. Rienner, O. Lambercy

Abstract

Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society. The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.

Objective

Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.
Content

Introduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
- Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces

Literature

Introductory Books:

Selected Journal Articles and Web Links:

Prerequisites / notice

Target Group:
Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK, D-HEST
- Biomedical Engineering, Robotics, Systems and Control
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome
This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

376-1351-00L Micro/Nanotechnology and Microfluidics for W 2 credits 2V E. Delamarche
Biomedical Applications

This course is an introduction to techniques in micro/nanotechnology and to microfluidics. It reviews how many familiar devices are built up from the fundamental theories of electronics and electromagnetics, understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.

Content
- An overview of the microelectronics industry, Moore's law, field-effect transistors, next-generation DNA sequencing
- Liquid crystal displays, organic light emitting diodes, electrophoretic displays, micromirrors and beamers, photopatterning of proteins and cells, optogenetics, and flexible displays and electronics
- Disk drives and the giant magnetoresistance effect, magnetic nanoparticles, photonics, magnetic sensing and optical biosensing
- Cleanroom techniques and instruments, from design to microfabrication of simple devices and microfluidics, examples of DNA microarrays
- The principles of microfluidics, microfluidic functions and fabrication, from microfluidics for research to point-of-care diagnostics, and the (infamous) history of Theranos, as well as some discussions on diagnostics for COVID, R0, and (im)precision of diagnostic devices and why it matters
- Hobby electronics, making a device for 10$ and controlling it using a smartphone.

Prerequisites / notice
- The nanotech center and labs visit at IBM would be mandatory, as well as attending the student project presentations.

Course 376-1504-00L

Nanostructured Materials Safety

Objective

Understanding the potential side effects of nanomaterials in a context-specific way, enabling to evaluate nanomaterial safety and provide knowledge to design safer materials

Lecture notes

Handouts provided during the classes and references therein as well as primary literature as case studies will be posted to the course website.

Prerequisites / notice

- course "Introduction to Toxicology"

Course 376-1504-00L

Physical Human Robot Interaction (pHRI)

Objective

The objective of this course is to give an introduction to the fundamentals of human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de-sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1. Identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2. Compare and select mechatronic components that optimally fulfill the defined design requirements;
3. Derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system;
4. Design control hardware and software and implement test human-interactive control strategies on the physical setup;
5. Characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6. Investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.

Content

This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.

Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (https://relab.ethz.ch/downloads/open-hardware/haptic-paddle.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.

Lecture notes

Will be distributed on Moodle before the lectures.
This course includes study design, measurement techniques, clinical testing, accessing movement data and analysis as well as modeling.

The course covers the following topics:

- Handouts are deposited online (moodle).

The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application.

Prerequisites / notice

- The registration is limited to 26 students.
- There are 4 credit points for this lecture.
- The lecture will be held in English.
- The students are expected to have basic control knowledge from previous classes.
- http://www.relab.ethz.ch/education/courses/phyi.html

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1622-00L</td>
<td>Practical Methods in Tissue Engineering</td>
<td>5</td>
<td>A Windows laptop (or Windows on Mac) is required for certain of the lab modules.</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 12.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Practical exercises on topics including sterile cell culture, light microscopy and histology, and biomaterials are covered. Practical work on manufacturing and evaluating hydrogels and scaffolds for tissue engineering will be performed in small groups. In addition to practical lab work, the course will teach skills in data acquisition/analysis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>A Windows laptop (or Windows on Mac) is required for certain of the lab modules.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>376-1651-00L</th>
<th>Clinical and Movement Biomechanics</th>
<th>4</th>
<th>N. Singh, R. List, P. Schütz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants limited to 50.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Measurement and modeling of the human movement during daily activities and in a clinical environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course includes study design, measurement techniques, clinical testing, accessing movement data and anisyis as well as modeling with regards to human movement.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>376-1714-00L</th>
<th>Biocompatible Materials</th>
<th>4</th>
<th>K. Maniura, M. Rotmar, N. Zenobi-Wong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course covers the following topics: 1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes and their use for medical applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living bulk tissues and organs. In particular the interaction between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Handouts are deposited online (moodle).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analytical Competencies

Getting insight into actual areas and problems of biomechanics. After this course students:

- assessed
- 2V+1U
- M. Tanadini
- 3G
- not assessed

Trauma Biomechanics

This course covers the main methods used in Biostatistics. It starts by revising Linear Models (Regression, Anova), then moves to Generalised Linear Models (logistic regression and methods for count data) and finally introduces more advanced topics (Linear Mixed-Effects Models and Generalised Additive Models). The course strongly focuses on applied aspects of data analysis.

• Statistical analysis and modeling of big data, and applications to biomedical datasets (statistical learning, distributions, linear and logistic regressions, principal component analysis, clustering, classification, time series analysis, tree-based methods, predictive models).

• Manipulation and cleaning of large datasets with Pandas;
• High performance computing;
• Machine learning and numerical libraries (SciPy, NumPy, Statsmodels, Scikit-Learn);
• Basis of Python programming and UNIX;
• Loading, injury mechanisms and injury criteria, test methods (including crash tests), computer simulations, aspects of vehicle safety. Real world examples mainly from automobile safety are used to augment lecture material.

Basic understanding of mathematics and statistics, as taught in basic courses at the Bachelor’s level.

Handouts will be made available.

Big Data Analysis in Biomedical Research

Biomedical datasets are increasing in size and complexity, and discoveries arising from their analysis have important implications in human health and biotechnological advances. While the potential of biomedical dataset analysis is considerable, preclinical researchers often lack the computational tools to analyze them. This course will provide the basis of data analysis of large biomedical data

- can interpret the results of such an analysis and draw valid "biological" conclusions
- can perform the data analysis using the statistical software R
- are able to select among these methods to solve an applied problem in Biostatistics
- got introduced to Generalised Additive Models
- got introduced to Linear Mixed-Effects Models
- revised or got introduced to Generalised Linear Models
- revised Linear Models

Lecture notes

Handouts and references therin.

Trauma biomechanics in an interdisciplinary research field investigating the biomechanics of injuries and related subjects such as prevention. The lecture provides an introduction to the basic principles of trauma biomechanics.

Introduction to the basic principles of trauma biomechanics.

This lecture serves as an introduction to the field of trauma biomechanics. Emphasis is placed on the interdisciplinary nature of impact biomechanics, which uses the combination of fundamental engineering principles and advanced medical technologies to develop injury prevention measures. Topics include: accident statistics and accident reconstruction, biomechanical response of the human to impact loading, injury mechanisms and injury criteria, test methods (including crash tests), computer simulations, aspects of vehicle safety. Real world examples mainly from automobile safety are used to augment lecture material.

Handouts will be made available.

Concepts and Theories

Analytical Competencies

Decision-making

Media and Digital Technologies

Problem-solving

Project Management

Content

While learning the programming skills needed to manipulate and visualize the data, participants will learn the statistical and modeling approaches for big data analysis. The course will cover:

- Basis of Python programming and UNIX;
- High performance computing;
- Manipulation and cleaning of large datasets with Pandas;
- Visualization tools (Matplotlib, Seaborn);
- Machine learning and numerical libraries (SciPy, NumPy, Statsmodels, Scikit-Learn);
- Statistical analysis and modeling of big data, and applications to biomedical datasets (statistical learning, distributions, linear and logistic regressions, principal component analysis, clustering, classification, time series analysis, tree-based methods, predictive models).

Prerequisites / notice

Basic understanding of mathematics and statistics, as taught in basic courses at the Bachelor’s level.

Handouts will be made available.

Colloquium in Biomechanics

Current topics in biomechanics presented by speakers from academia and industry.

Applied Biostatistics

This course covers the main methods used in Biostatistics. It starts by revising Linear Models (Regression, Anova), then moves to Generalised Linear Models (logistic regression and methods for count data) and finally introduces more advanced topics (Linear Mixed-Effects Models and Generalised Additive Models). The course strongly focuses on applied aspects of data analysis.

- revised Linear Models
- revised or got introduced to Generalised Linear Models
- got introduced to Linear Mixed-Effects Models
- got introduced to Generalised Additive Models
- are able to select among these methods to solve an applied problem in Biostatistics
- can perform the data analysis using the statistical software R
- can interpret the results of such an analysis and draw valid "biological" conclusions
This course is structured into three parts. The first part focuses on Linear and Generalised Linear Models. The second part introduces more advanced methodologies such as Linear Mixed-Effects Models and Generalised Additive Models. Both, part one and two will include the following topics: exploratory data analysis, model fitting, model "selection", residual diagnostics, model validation and results interpretation. Analyses will be carried out using the statistical software R. Finally, in the third part of the course students will be analysing real-world datasets to put into practice the knowledge and skills acquired during the first two parts.

The statistical software R will be used in the exercises. If you are unfamiliar with R, it is highly recommended to view the online R course "etuRo".

This course is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxide, and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism, and to determine the relation between cell morphology and function.

X-rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue's anisotropies of biopsies.
Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer. The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.

Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression. Lecture notes Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien". The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Abstract

Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.

Objective

Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.

Content

- Introduction and historical background
- Innate and adaptive immunity. Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions

Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien". The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Lecture notes

Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien". The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Literature

- Kuby, Immunology, 9th edition, Freemen + Co., New York, 2020

Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

Prerequisites / notice

For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session.

551-0319-00L Cellular Biochemistry (Part I) W 3 credits 2V U. Kutay, G. Neurohr, M. Peter, K. Weis, I. Zemp

- Concepts and Theories assessed
- Techniques and Technologies assessed
- Analytical Competencies not assessed
- Decision-making assessed
- Media and Digital Technologies not assessed
- Problem-solving assessed
- Project Management not assessed
- Communication not assessed
- Cooperation and Teamwork not assessed
- Customer Orientation not assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence not assessed
- Sensitivity to Diversity assessed
- Negotiation not assessed
- Adaptability and Flexibility not assessed
- Creative Thinking not assessed
- Critical Thinking assessed
- Integrity and Work Ethics not assessed
- Self-awareness and Self-reflection assessed
- Self-direction and Self-management assessed

636-0108-00L Biological Engineering and Biotechnology W 4 credits 3V M. Fussenegger

Lecture notes

Handout during the course.

752-3105-00L Physiology Guided Food Structure and Process Design

W 3 credits 2V E. J. Windhab, M. Devezeaux de Lavergne, S. Michlig Gonzalez, T. Wooster

Abstract
A “cook-and look” approach to process design is no longer applicable in the current environmental, nutritional and competitive constraints. The modern R&D chemical/food engineer should have a clear focus on the desired structure that needs to be achieved to design a process line or processing equipment, coupled with in depth knowledge of the processed materials.

Objective
The objective of this course is to highlight the intimate links between human physiology and product sensory and nutritional functions. To optimize these functions, an understanding of the physiological functions that interact and encode the actions of those product structures must be well understood.

Therefore the objective of this course is for students to be equipped with a skill set that will encompass basic digestion and sensory physiology knowledge and food structures.

The students will be exposed to this interplay all along the GI tract, including taste, aroma and texture perception, swallowing mechanics and gastro intestinal digestion with an engineering or physical sciences angle.

► Major in Molecular Health Sciences

►► Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0300-00L</td>
<td>Translational Science for Health and Medicine n</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>J. Goldhahn, C. Wolfrum</td>
</tr>
</tbody>
</table>

Abstract
Translational science is a cross disciplinary scientific research that is motivated by the need for practical applications that help people. The course should help to clarify basics of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.

Objective
After completing this course, students will be able to understand:
- Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication)

Content
What is translational science and what is it not?
- How to identify need?
- Disease concepts and consequences for research
- Basics about incidence, prevalence etc., and orphan indications
- How to choose the appropriate research type and methodology
- Ethical considerations including ethics application
- Pros and cons of different types of research
- Coordination of complex approaches incl. timing and resources
- How to measure success?
- Outcome variables
- Improving the translational process
- Challenges of communication?
- How independent is translational science?
- Academic boundary conditions vs. industrial influences

Positive and negative examples will be illustrated by distinguished guest speakers.

376-0302-01L GCP Basic Course (Modules 1 and 2)

Only for Health Sciences and Technology MSc.

Abstract
The basic course in "Good Clinical Practice" (GCP) contains of two full-time training days (Module 1 and Module 2) and addresses elementary aspects for the appropriate conduct of clinical trials and non-clinical research projects involving human beings. Successful participation will be confirmed by a certificate that is recognized by the Swiss authorities.

Objective
Students will get familiar with:
- Key Ethics documents
- (International) Guidelines and Laws (e.g. ICH-GCP, DIN EN ISO 14155, TPA, HRA)
- Sequence of research projects and project-involved parties
- Planning of research projects (statistics, resources, study design, set-up of the study protocol)
- Approval of research projects by Authorities (SwissEthics, Swissmedic, FOPH)
- Roles and responsibilities of project-involved parties

Students will learn how to:
- Classify research projects according the risk-based approach of the HRA
- Write a study protocol
- Inform participating patients/study subjects
- Obtain consent by participating patients/study subjects
- Classify, document and report Adverse Events
- Handle projects with biological material from humans and/or health-related personal data

Content
Module 1: Research and Research Ethics, Guidelines, (international) Legislation, Development of therapeutic products, Methodology (Study Design), Study documents (Study protocol, Investigator's Brochure, Patient Information Leaflet, Informed Consent Form)

Module 2: Roles and Responsibilities, Approval procedures, Notification and Reporting, Study documentation, Research with biological material and health-related data, data protection, data retention

►► Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0939-00L</td>
<td>Cell Biophysics</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>T. Zambelli</td>
</tr>
</tbody>
</table>

Abstract
Applying two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization), an analytical model is derived for a variety of biological phenomena at the molecular as well as cellular level, and critically compared with the corresponding experimental data in the literature.
Objective

Engineering uses the laws of physics to predict the behavior of a system. Biological systems are so diverse and complex prompting the question whether we can apply unifying concepts of theoretical physics coping with the multiplicity of life's mechanisms.

Objective of this course is to show that biological phenomena despite their variety can be analytically described using only two principles from statistical mechanics: maximization of the entropy and minimization of the Gibbs free energy.

Starting point of the course is the probability theory, which enables to derive step-by-step the two pillars thermodynamics from the perspective of statistical mechanics: the maximization of entropy according to the Boltzmann’s law as well as the minimization of the Gibbs free energy. Then, an assortment of biological phenomena at the molecular and cellular level (e.g. cytoskeletal polymerization, action potential, photosynthesis, gene regulation, morphogen patterning) will be examined at the light of these two principles with the aim to derive a quantitative expression describing their behavior. Each analytical model is finally validated by comparing it with the corresponding available experimental results.

By the end of the course, students will also learn to critically evaluate the concepts of making an assumption and making an approximation.

Content

• Basics of theory of probability
• Boltzmann's law
• Entropy maximization and Gibbs free energy minimization
• Ligand-receptor: two-state systems and the MWC model
• Random walks, diffusion, crowding
• Electrostats for salty solutions
• Elasticity: fibers and membranes
• Molecular motors
• Action potential: Hodgkin-Huxley model
• Photosynthesis and vision
• Gene regulation
• Development: Turing patterns
• Sequences and evolution

Theory and corresponding exercises are merged together during the classes. No lecture notes because the two proposed textbooks are more than exhaustive!

Lecture notes

An extra hour (Mon 17.00 o’clock - 18.00) will be proposed via zoom to solve together the exercises of the previous week.

Literature

Prerequisites / notice

Participants need a good command of
differentiation and integration of a function with one or more variables (basics of Analysis),
Newton's and Coulomb's laws (basics of Mechanics and Electrostatics).

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>Techniques and Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain A - Subject-specific Competencies</td>
<td>assessed</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>assessed</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>assessed</td>
<td>assessed</td>
</tr>
</tbody>
</table>

327-2125-00L Microscopy Training SEM I - Introduction to SEM

The number of participants is limited. In case of overbooking, the course will be repeated once. All registrations will be recorded on the waiting list.

For PhD students, postdocs and others, a fee will be charged (http://www scopem.ethz.ch/education/MTP.html).

All applicants must additionally register on this form: (link will follow). The selected applicants will be contacted and asked for confirmation a few weeks before the course date.

Abstract

This introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using ScopeM SEMs, students have the opportunity to study their own samples (or samples provided) and solve practical problems by applying knowledge acquired during the lectures. At the end of the course, students will be able to apply SEM for their (future) research projects.
Understanding of imaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine.

Content
During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications. This course gives basic skills for students new to SEM. At the end of the course, students are able to align an SEM, to obtain secondary electron (SE) and backscatter electron (BSE) images and to perform energy dispersive X-ray spectroscopy (EDX) semi-quantitative analysis. Emphasis is put on procedures to optimize SEM parameters in order to best solve practical problems and deal with a wide range of materials.

Lectures:
- Introduction on Electron Microscopy and instrumentation
- electron sources, electron lenses and probe formation
- beam/specimen interaction, image formation, image contrast and imaging modes.
- sample preparation techniques for EM
- X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescan and spectral mapping

Prerequisites / notice
No mandatory prerequisites.

327-2126-00L Microscopy Training TEM I - Introduction to TEM

<table>
<thead>
<tr>
<th>Objective</th>
<th>Set-up, align and operate a SEM successfully and safely.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Understand important operational parameters of SEM and optimize microscope performance.</td>
</tr>
<tr>
<td></td>
<td>Explain different signals in SEM and obtain secondary electron (SE) and backscatter electron (BSE) images.</td>
</tr>
<tr>
<td></td>
<td>Operate the SEM in low-vacuum mode.</td>
</tr>
<tr>
<td></td>
<td>Make use of EDX for semi-quantitative elemental analysis.</td>
</tr>
<tr>
<td></td>
<td>Prepare samples with different techniques and equipment for imaging and analysis by SEM.</td>
</tr>
</tbody>
</table>

| Content | During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications. This course gives basic skills for students new to SEM. At the end of the course, students are able to align an SEM, to obtain secondary electron (SE) and backscatter electron (BSE) images and to perform energy dispersive X-ray spectroscopy (EDX) semi-quantitative analysis. Emphasis is put on procedures to optimize SEM parameters in order to best solve practical problems and deal with a wide range of materials. |

Literature

Prerequisites / notice
No mandatory prerequisites.

376-0121-00L Multiscale Bone Biomechanics

<table>
<thead>
<tr>
<th>Objective</th>
<th>Number of participants limited to 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Imaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine.</td>
</tr>
</tbody>
</table>

| Content | No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551-1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite. |

Prerequisites / notice
No mandatory prerequisites.
Objective
1. Understanding and practical implementation of biosignal processes methods for imaging
2. Understanding of imaging techniques including radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging
3. Knowledge of computing, programming, modelling and simulation fundamentals
4. Computational and systems thinking as well as scripting and programming skills
5. Understanding and practical implementation of emerging computational methods and their application in medicine including artificial intelligence, deep learning, big data, and complexity
6. Understanding of the emerging concept of personalised and in silico medicine
7. Encouragement of critical thinking and creating an environment for independent and self-directed studying

Content
Imaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine. For the imaging portion of the course, biosignal processing, radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging are covered. For the computing portion of the course, computing, programming, and modelling and simulation fundamentals are covered as well as their application in artificial intelligence and deep learning; complexity and systems medicine; big data and personalised medicine; and computational physiology and in silico medicine.

The course is structured as a seminar in three parts of 45 minutes with video lectures and a flipped classroom setup: in the first part (TORQUES: Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness), students study the basic concepts in short, interactive video lectures on the online learning platform Moodle. Students are able to post questions at the end of each video lecture or the Moodle forum that will be addressed in the second part of the lectures using a flipped classroom concept. For the flipped classroom, the lecturers may prepare additional teaching material to answer the posted questions (Q&A). Following the Q&A, the students will form small groups to acquire additional knowledge using online, python-based activities via JupyterHub or additionally distributed material and discuss their findings in teams. Learning outcomes will be reinforced with weekly Moodle assignments, to be completed during the flipped classroom portion.

Lecture notes
Stored on Moodle.

Prerequisites / notice
Lectures will be given in English.

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Lecture</th>
<th>Credits</th>
<th>Exam</th>
<th>Offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0208-00L</td>
<td>Molecular and Cellular Biology of Exercise and Muscle Regeneration - Practical Aspects</td>
<td>W</td>
<td>3</td>
<td>G</td>
<td>O. Bar-Nur, K. De Bock</td>
</tr>
<tr>
<td>376-1151-00L</td>
<td>Translation of Basic Research Findings from Genetics and Molecular Mechanisms of Aging</td>
<td>W</td>
<td>3</td>
<td>V</td>
<td>to be announced</td>
</tr>
</tbody>
</table>
Number of participants limited to 30.

Abstract
Recently, several start-up companies are aiming to translate basic molecular findings into new drugs/therapeutic interventions to slow aging or post-pone age-related diseases (e.g., Google founded Calico or Craig Venter's Human Longevity, Inc.). This course will teach students the basic skill sets to formulate their own ideas, design experiments to test them and explains the next steps to translate work, the course will teach skills in data acquisition/analysis.

Objective
The goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine.

Prerequisites / notice
A Windows laptop (or Windows on Mac) is required for certain of the lab modules.

376-1622-00L Practical Methods in Tissue Engineering ■ W 5 credits 4P M. Zenobi-Wong, S. J. Ferguson, S. Grad, S. Schürle-Finke

Abstract
The goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine.

Objective
Practical exercises on topics including sterile cell culture, light microscopy and histology, and biomaterials are covered. Practical work on manufacturing and evaluating hydrogels and scaffolds for tissue engineering will be performed in small groups. In addition to practical lab work, the course will teach skills in data acquisition/analysis.

Prerequisites / notice
A Windows laptop (or Windows on Mac) is required for certain of the lab modules.

376-1723-00L Immunology III W 4 credits 2V E. Araldi, M. Ristow

Abstract
This course provides a detailed understanding of - development of T and B cells - the dynamics of a immune response during acute and chronic infection - mechanisms of immunopathology - modern vaccination strategies

Objective
Key experimental results will be shown to help understanding how immunological text book knowledge has evolved.

Content
While learning the programming skills needed to manipulate and visualize the data, participants will learn the statistical and modeling approaches for big data analysis. The course will cover:
• Basis of Python programming and UNIX;
• High performance computing;
• Manipulation and cleaning of large datasets with Pandas;
• Visualization tools (Matplotlib, Seaborn);
• Machine learning and numerical libraries (SciPy, NumPy, Statsmodels, Scikit-Learn);
• Statistical analysis and modeling of big data, and applications to biomedical datasets (statistical learning, distributions, linear and logistic regressions, principal component analysis, clustering, classification, time series analysis, tree-based methods, predictive models).

551-0223-00L Big Data Analysis in Biomedical Research ■ W 4 credits 2V+2U E. Araldi, M. Ristow

Abstract
Biomedical datasets are increasing in size and complexity, and discoveries arising from their analysis have important implications in human health and biotechnological advances. While the potential of biomedical dataset analysis is considerable, preclinical researchers often lack the computational tools to analyze them. This course will provide the basis of data analysis of large biomedical data

Objective
This course aims to provide practical tools to analyze large biomedical datasets, and it is tailored towards experimental researchers in the life sciences with minimal prior programming experience. The course will teach students the basic skill sets to formulate their own ideas, design experiments to test them and explains the next steps to translate work, the course will teach skills in data acquisition/analysis.

Content
While learning the programming skills needed to manipulate and visualize the data, participants will learn the statistical and modeling approaches for big data analysis. The course will cover:
• Basis of Python programming and UNIX;
• High performance computing;
• Manipulation and cleaning of large datasets with Pandas;
• Visualization tools (Matplotlib, Seaborn);
• Machine learning and numerical libraries (SciPy, NumPy, Statsmodels, Scikit-Learn);
• Statistical analysis and modeling of big data, and applications to biomedical datasets (statistical learning, distributions, linear and logistic regressions, principal component analysis, clustering, classification, time series analysis, tree-based methods, predictive models).

Prerequisites / notice
Basic understanding of mathematics and statistics, as taught in basic courses at the Bachelor’s level.
Concepts in Modern Genetics

Prerequisites / notice

Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH. Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students/university-of-zurich.html

Abstract

Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Content

This course focuses on the concepts of classical and modern genetics and genomics.

Objective

- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions

Lecture notes

Scripts and additional material will be provided during the semester.

Literature

- Kuby, Immunology, 9th edition, Freeman + Co., New York, 2020

Prerequisites / notice

For D-BIOL students, Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a “Sessionsprüfung”. All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session.

Taught competencies

- Domain A - Subject-specific Competencies: Concepts and Theories
- Domain A - Subject-specific Competencies: Techniques and Technologies
- Domain B - Method-specific Competencies: Analytical Competencies
- Domain B - Method-specific Competencies: Decision-making
- Domain C - Social Competencies: Communication
- Domain D - Personal Competencies: Adaptability and Flexibility

Course information

- **Course code:** 551-0309-00L
- **Modules:** 5 credits
- **Type:** Lecture
- **Language:** English

Immunology I

Prerequisites / notice

- For D-BIOL students: Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a “Sessionsprüfung”. All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session.

Abstract

Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.

Objective

Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.

Content

- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histoincompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions

Lecture notes

Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien".

Literature

- Kuby, Immunology, 9th edition, Freeman + Co., New York, 2020

Prerequisites / notice

For D-BIOL students: Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a “Sessionsprüfung”. All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session.

Taught competencies

- Domain A - Subject-specific Competencies: Concepts and Theories
- Domain A - Subject-specific Competencies: Techniques and Technologies
- Domain B - Method-specific Competencies: Analytical Competencies
- Domain B - Method-specific Competencies: Decision-making
- Domain C - Social Competencies: Communication
- Domain D - Personal Competencies: Adaptability and Flexibility

Course information

- **Course code:** 551-0317-00L
- **Modules:** 3 credits
- **Type:** Lecture
- **Language:** English

Current Topics in Molecular and Cellular Neurobiology

Prerequisites / notice

Does not take place this semester.

Number of participants limited to 8.

Abstract

The course is a literature seminar or "journal club". Each Friday a student, or a member of the Suter Lab in the Institute of Molecular Health Sciences, will present a paper from the recent literature.

Objective

The course introduces you to recent developments in the fields of cellular and molecular neurobiology. It also supports you to develop your skills in critically reading the scientific literature. You should be able to grasp what the authors wanted to learn i.e. their goals, why the authors chose the experimental approach they used, the strengths and weaknesses of the experiments and the data presented, and how the work fits into the wider literature in the field. You will present one paper yourself, which provides you with practice in public speaking.

Content

You are expected to take part in the discussion and to ask questions. To prepare for this you should read all the papers beforehand (they will be announced a week in advance of the presentation).

Lecture notes

Presentations will be made available after the seminars.

Course information

- **Course code:** 551-0512-00L
- **Modules:** 2 credits
- **Type:** Lecture
- **Language:** English

551-0571-00L From DNA to Diversity (University of Zurich) W 2 credits 2V A. Hajnal, D. Bopp

Abstract
The evolution of the various body-plans is investigated by means of comparison of developmentally essential control genes of molecularly analysed model organisms.

Objective
By the end of this module, each student should be able to recognize the universal principles underlying the development of different animal body plans, explain how the genes encoding the molecular toolkit have evolved to create animal diversity, relate changes in gene structure or function to evolutionary changes in animal development.

Key skills:
- By the end of this module, each student should be able to present and discuss a relevant evolutionary topic in an oral presentation
- select and integrate key concepts in animal evolution from primary literature
- participate in discussions on topics presented by others

551-1153-00L Systems Biology of Metabolism W 4 credits 2V U. Sauer, N. Zamboni, M. Zampieri

Abstract
Starting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.

Objective
Develop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology.

Content
The course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics.

Lecture notes
Script and original publications will be supplied during the course.

Prerequisites / notice
The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.

551-1171-00L Immunology: From Milestones to Current Topics W 4 credits 2S B. Ludewig, J. Kisielow, A. Oxenius, L. Tortola, University lecturers

Abstract
Milestones in Immunology: on old concepts and modern experiments

Objective
The course will cover the current grand topics in immunology: B cells, innate immunity, antigen presentation, tumor immunity, T cells, myeloid cells and stromal cells. For each topic two or four hours will be allocated. Historical milestone papers will be presented by the tutor/lecturer providing an overview on the development of the theoretical framework and critical technological advances. The students will read the historical milestone papers and contribute to the discussion. In the second part of the lecture, students will present recent high impact research papers that have emerged from the landmark achievements of the previously discussed milestone concepts.

Content
Milestones and current topics of innate immunity, antigen presentatino, B cells, thymus and T cells, cytotoxic T cells, NK cells, stromal cells, CNS immunity and tumor immunology.

Prerequisites / notice
The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.

551-1303-00L Cellular Biochemistry of Health and Disease W 4 credits 2S V. Korkhov, Y. Barral, T. Ishikawa, M. Jagannathan, R. Kroschewski, G. Neurohr, M. Peter, A. E. Smith, B. Snijder, K. Weiss

Abstract
During this Masters level seminar style course, students will explore current research topics in cellular biochemistry focused on the structure, function and regulation of selected cell components, and the consequences of dysregulation for pathologies.

Objective
Students will work with experts toward a critical analysis of cutting-edge research in the domain of cellular biochemistry, with emphasis on normal cellular processes and the consequences of their dysregulation. At the end of the course, students will be able to introduce, present, evaluate, critically discuss and write about recent scientific articles in the research area of cellular biochemistry.

Content
Guided by an expert in the field, students will engage in classical round-table style discussions of current literature with occasional frontal presentations. Students will alternate as discussion leaders throughout the semester, with the student leader responsible to briefly summarize key general knowledge and context of the assigned primary research paper. Together with the faculty expert, all students will participate in discussion of the primary paper, including the foundation of the biological question, specific questions addressed, key methods, key results, remaining gaps and research implications.

Literature
The literature will be provided during the course

Prerequisites / notice
The course will be taught in English.

636-0017-00L Computational Biology W 6 credits 3G+2A T. Vaughan

Objective
By the end of this module, each student should be able to recognize the universal principles underlying the development of different animal body plans, explain how the genes encoding the molecular toolkit have evolved to create animal diversity, relate changes in gene structure or function to evolutionary changes in animal development.

Key skills:
- By the end of this module, each student should be able to present and discuss a relevant evolutionary topic in an oral presentation
- select and integrate key concepts in animal evolution from primary literature
- participate in discussions on topics presented by others

Prerequisites / notice
You must attend at least 80% of the journal clubs, and give a presentation of your own. At the end of the semester there will be a 30 minute oral exam on the material presented during the semester. The grade will be based on the exam (45%), your presentation (45%), and a contribution based on your active participation in discussion of other presentations (10%).

551-1153-00L Systems Biology of Metabolism W 4 credits 2V U. Sauer, N. Zamboni, M. Zampieri

Abstract
Starting from contemporary biological problems related to metabolism, the course focuses on systems biological approaches to address them. In a problem-oriented, this-is-how-it-is-done manner, we thereby teach modern methods and concepts.

Objective
Develop a deeper understanding of how relevant biological problems can be solved, thereby providing advanced insights to key experimental and computational methods in systems biology.

Content
The course will be given as a mixture of lectures, studies of original research and guided discussions that focus on current research topics.

Lecture notes
Script and original publications will be supplied during the course.

Prerequisites / notice
The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.

551-1171-00L Immunology: From Milestones to Current Topics W 4 credits 2S B. Ludewig, J. Kisielow, A. Oxenius, L. Tortola, University lecturers

Abstract
Milestones in Immunology: on old concepts and modern experiments

Objective
The course will cover the current grand topics in immunology: B cells, innate immunity, antigen presentation, tumor immunity, T cells, myeloid cells and stromal cells. For each topic two or four hours will be allocated. Historical milestone papers will be presented by the tutor/lecturer providing an overview on the development of the theoretical framework and critical technological advances. The students will read the historical milestone papers and contribute to the discussion. In the second part of the lecture, students will present recent high impact research papers that have emerged from the landmark achievements of the previously discussed milestone concepts.

Content
Milestones and current topics of innate immunity, antigen presentatino, B cells, thymus and T cells, cytotoxic T cells, NK cells, stromal cells, CNS immunity and tumor immunology.

Prerequisites / notice
The course extends many of the generally introduced concepts and methods of the Concept Course in Systems Biology. It requires a good knowledge of biochemistry and basics of mathematics and chemistry.

551-1303-00L Cellular Biochemistry of Health and Disease W 4 credits 2S V. Korkhov, Y. Barral, T. Ishikawa, M. Jagannathan, R. Kroschewski, G. Neurohr, M. Peter, A. E. Smith, B. Snijder, K. Weiss

Abstract
During this Masters level seminar style course, students will explore current research topics in cellular biochemistry focused on the structure, function and regulation of selected cell components, and the consequences of dysregulation for pathologies.

Objective
Students will work with experts toward a critical analysis of cutting-edge research in the domain of cellular biochemistry, with emphasis on normal cellular processes and the consequences of their dysregulation. At the end of the course, students will be able to introduce, present, evaluate, critically discuss and write about recent scientific articles in the research area of cellular biochemistry.

Content
Guided by an expert in the field, students will engage in classical round-table style discussions of current literature with occasional frontal presentations. Students will alternate as discussion leaders throughout the semester, with the student leader responsible to briefly summarize key general knowledge and context of the assigned primary research paper. Together with the faculty expert, all students will participate in discussion of the primary paper, including the foundation of the biological question, specific questions addressed, key methods, key results, remaining gaps and research implications.

Literature
The literature will be provided during the course

Prerequisites / notice
You must attend at least 80% of the journal clubs, and give a presentation of your own. At the end of the semester there will be a 30 minute oral exam on the material presented during the semester. The grade will be based on the exam (45%), your presentation (45%), and a contribution based on your active participation in discussion of other presentations (10%).
The course is not based on any of the textbooks below, but they are excellent choices as accompanying material:

- **Yang, Z. 2006. Computational Molecular Evolution.**
- **Felsenstein, J. 2004. Inferring Phylogenies.**
- **Semple, C. & Steel, M. 2003. Phylogenetics.**
- **Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.**

Content

The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e., we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e., we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g., HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.

Lecture notes

Lecture slides will be available on moodle.

Literature

The course is not based on any of the textbooks below, but they are excellent choices as accompanying material:

- *Yang, Z. 2006. Computational Molecular Evolution.*
- *Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.*

Prerequisites / notice

Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course „Introduction to Programming“, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date http://www.cbb.ethz.ch/news-events.html

For the Zurich-based students without R experience, we recommend the R course http://www.vzw.ethz.ch/Vorlesungsverzeichnis/lehrveranstaltungen/view?semkey=2018W1sansicht=KATALOGDATEN&lehrveranstaltungsnummer=132546&xlang=de, or working through the script provided as part of this R course.

Lecture notes

Handout during the course.

636-0108-00L

Biological Engineering and Biotechnology

W 4 credits 3V M. Fussenegger

Abstract

Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Objective

Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.

Content

Lecture notes

Handout during the course.

636-0507-00L

Synthetic Biology II

Does not take place this semester.

W 8 credits 4A S. Panke, Y. Benenson, J. Stelling

Abstract

Students in the MSc Biotechnology (Programme Regulations 2017) may select Synthetic Biology II instead of the Research Project 1.

7 months biological design project, during which the students are required to give presentations on advanced topics in synthetic biology (specifically genetic circuit design) and then select their own biological system to design. The system is subsequently modeled, analyzed, and experimentally implemented. Results are presented at an international student competition at the MIT (Cambridge).

Objective

The students are supposed to acquire a deep understanding of the process of biological design including model representation of a biological system, its thorough analysis, and the subsequent experimental implementation of the system and the related problems.

Content

Presentations on advanced synthetic biology topics (eg genetic circuit design, adaptation of systems dynamics, analytical concepts, large scale de novo DNA synthesis), project selection, modeling of selected biological system, design space exploration, sensitivity analysis, conversion into DNA sequence, (DNA synthesis external) implementation and analysis of design, summary of results in form of scientific presentation and poster, presentation of results at the iGEM international student competition (www.igem.org).

Lecture notes

Handouts during course

Prerequisites / notice

The final presentation of the project is typically at the MIT (Cambridge, US). Other competing schools include regularly Imperial College, Cambridge University, Harvard University, UC Berkeley, Princeton University, CalTech, etc.

This project takes place between end of Spring Semester and beginning of Autumn Semester. Registration in April.

Please note that the number of ECTS credits and the actual work load are disconnected.

701-1703-00L

Evolutionary Medicine for Infectious Diseases

W 3 credits 2G A. Hall

Number of participants limited to 35.

Waiting list will be deleted October 3rd, 2021.

Abstract

This course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively.
Objective

Students will learn to (i) identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses.

Content

We will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes: (i) determinants of pathogen host range and virulence, (ii) dynamics of host-parasite coevolution, (iii) pathogen adaptation to evade or suppress immune responses, (iv) antimicrobial resistance, (v) evolution-proof medicine. For each topic there will be a short (< 20 minutes) introductory lecture, before students independently research the primary literature and develop discussion points and questions, followed by interactive discussion in class.

Literature

The focus is on primary literature, but for some parts the following text books provide good background information:

Schmid Hempel 2011 Evolutionary Parasitology
Stearns & Medzhitov 2016 Evolutionary Medicine

Prerequisites / notice

A basic understanding of evolutionary biology, microbiology or parasitology will be advantageous but is not essential.

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Lectures</th>
<th>Tutor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-3105-00L</td>
<td>Physiology Guided Food Structure and Process Design</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>E. J. Windhab, M. Devezeaux de Lavergne, S. Michig Gonzalez, T. Wooster</td>
</tr>
<tr>
<td>752-4009-00L</td>
<td>Molecular Biology of Foodborne Pathogens</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>M. Loessner, M. Schmelcher, M. Schuppiger, E. Wetter Slack</td>
</tr>
<tr>
<td>752-6101-00L</td>
<td>Dietary Etiologies of Chronic Disease</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>M. B. Zimmermann</td>
</tr>
<tr>
<td>752-6105-00L</td>
<td>Epidemiology and Prevention</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>M. Puhan, R. Heusser</td>
</tr>
</tbody>
</table>

Domain A - Subject-specific Competencies: Concepts and Theories
Domain B - Method-specific Competencies: Analytical Competencies
Domain C - Social Competencies: Communication
Domain D - Personal Competencies: Creative Thinking

Decision-making: assessed
Problem-solving: not assessed
Project Management: not assessed
Cooperation and Teamwork: not assessed
Critical Thinking: assessed

Major in Neurosciences

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1089 of 2152
Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0300-00L</td>
<td>Translational Science for Health and Medicine</td>
<td>O</td>
<td>3 credits</td>
<td>2G</td>
<td>J. Goldhahn, C. Wolfrum</td>
</tr>
</tbody>
</table>

Abstract
Translational science is a cross disciplinary scientific research that is motivated by the need for practical applications that help people. The course should help to clarify basics of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.

Objective
After completing this course, students will be able to understand:
- Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication)
- Basics about incidence, prevalence etc., and orphan indications

Content
- Disease concepts and consequences for research
- How to choose the appropriate research type and methodology
- Ethical considerations including ethics application
- Pros and cons of different types of research
- Coordination of complex approaches incl. timing and resources

376-0302-01L GCP Basic Course (Modules 1 and 2) | O | 1 credit | 1G | G. Senti |

Abstract
The basic course in “Good Clinical Practice” (GCP) contains of two full-time training days (Module 1 and Module 2) and addresses elementary aspects for the appropriate conduct of clinical trials and non-clinical research projects involving human beings. Successful participation will be confirmed by a certificate that is recognized by the Swiss authorities.

Objective
Students will get familiar with:
- Key Ethics documents
- (Inter)national Guidelines and Laws (e.g. ICH-GCP, DIN EN ISO 14155, TPA, HRA)
- Sequence of research projects and project-involved parties
- Planning of research projects (statistics, resources, study design, set-up of the study protocol)
- Approval of research projects by Authorities (SwissEthics, Swissmedic, FOPH)
- Roles and responsibilities of project-involved parties

Content
Module 1:
- Research and Research Ethics, Guidelines, (inter)national Legislation, Development of therapeutic products, Methodology (Study Design), Study documents (Study protocol, Investigator’s Brochure, Patient Information Leaflet, Informed Consent Form)

Module 2:
- Roles and Responsibilities, Approval procedures, Notification and Reporting, Study documentation, Research with biological material and health-related data, data protection, data retention

Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1305-00L Development of the Nervous System (University of Zurich)</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>University lecturers</td>
<td></td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: BIO344

Mind the enrolment deadlines at UZH:

Abstract
The lecture will cover molecular and cellular processes underlying the development of the nervous system (neurogenesis, cell death, cell migration and differentiation, axon guidance and synapse formation). The importance of these processes in the context of developmental diseases is discussed.

Objective
On successful completion of the module the student should be able to
- relate structure and function of the nervous system to its development - apply principles of molecular, cellular, and developmental biology to the development of the nervous system
- identify key steps in development underlying neurological syndromes and diseases

Key skills
On successful completion of the module the student should be able to
- interpret and critically evaluate original research reports
- apply knowledge and relate experimental approaches from molecular, cellular and developmental biology to the developing nervous system.

Content
The lecture will cover molecular and cellular processes underlying the development of the nervous system. After an introduction to structure and function of the nervous system, we will discuss neurogenesis, cell death, cell migration and differentiation, axon guidance and synapse formation. The importance of these processes in the context of developmental diseases will be discussed.
The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on OLAT.

376-1305-01L Neural Systems for Sensory, Motor and Higher Brain Functions
Enrolment to this course unit only possible at ETH. No enrolment to module BIOC343 at UZH.
Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students/university-of-zurich.html

Abstract
The course covers the structure, plasticity and regeneration of the adult nervous system (NS) with focus on: sensory systems, cognitive functions, learning and memory, molecular and cellular mechanisms, animal models, and diseases of the NS.

Objective
The aim is to give a deepened insight into the structure, plasticity and regeneration of the nervous system based on molecular, cellular and biochemical approaches.

Content
The main focus is on the structure, plasticity and regeneration of the NS: biology of the adult nervous system; structural plasticity of the adult nervous system, regeneration and repair; networks and nerve fibers, regeneration, pathological loss of cells.

Literature
The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on Moodle / OLAT.

551-0309-00L Concepts in Modern Genetics
Enrolment to this course unit only possible at ETH. No enrolment to module BIOC348 at UZH.
Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students/university-of-zurich.html

Abstract
Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Objective
This course focuses on the concepts of classical and modern genetics and genomics.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Literature
The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on Moodle / OLAT.

227-0447-00L Image Analysis and Computer Vision
Objective
Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Content
This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer. The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Lecture notes
Scripts and additional material will be provided during the semester.

Prerequisites / notice
Course material Script, computer demonstrations, exercises and problem solutions
Prerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.
The course language is English.
This introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using ScopeM SEMs, students have the opportunity to study their own samples (or samples provided) and solve practical problems by applying knowledge acquired during the lectures. At the end of the course, students will be able to apply SEM for their (future) research projects.

During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications. This course gives basic skills for students new to SEM. At the end of the course, students are able to align an SEM, to obtain secondary electron (SE) and backscatter electron (BSE) images, to perform energy dispersive X-ray spectroscopy (EDX) semi-quantitative analysis. Emphasis is put on procedures to optimize SEM parameters in order to best solve practical problems and deal with a wide range of materials.

Lectures:
- Introduction on Electron Microscopy and instrumentation
- electron sources, electron lenses and probe formation
- beam/specimen interaction, image formation, image contrast and imaging modes
- sample preparation techniques for EM
- X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescan and spectral mapping

Practicals:
- Brief description and demonstration of the SEM microscope
- Practice on image formation, image contrast (and image processing)
- Student participation on sample preparation techniques
- Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities
- Practice on real-world samples and report results

Prerequisites / notice
No mandatory prerequisites.

Content

227-1047-00L Consciousness: From Philosophy to Neuroscience (University of Zurich) W 3 credits 2V D. Kiper
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: INI410
Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmisssi/en/studies/application/deadline.html

Abstract
This seminar reviews the philosophical and phenomenological as well as the neurobiological aspects of consciousness. The subjective features of consciousness are explored, and modern research into its neural substrate, particularly in the visual domain, is explained. Emphasis is placed on students developing their own thinking through a discussion-centered course structure.

Objective
The course's goal is to give an overview of the contemporary state of consciousness research, with emphasis on the contributions brought by modern cognitive neuroscience. We aim to clarify concepts, explain their philosophical and scientific backgrounds, and to present experimental protocols that shed light on a variety of consciousness related issues.

Content
The course includes discussions of scientific as well as philosophical articles. We review current schools of thought, models of consciousness, and proposals for the neural correlate of consciousness (NCC).

Lecture notes
None

Literature
We display articles pertaining to the issues we cover in the class on the course's webpage.

Prerequisites / notice
Since we are all experts on consciousness, we expect active participation and discussions!

237-2125-00L Microscopy Training SEM I - Introduction to SEM W 2 credits 3P P. Zeng
The number of participants is limited. In case of overbooking, the course will be repeated once. All registrations will be recorded on the waiting list.

For PhD students, postdocs and others, a fee will be charged (http://www.scopem.ethz.ch/education/MTP.html).

All applicants must additionally register on this form: (link will follow)

The selected applicants will be contacted and asked for confirmation a few weeks before the course date.

Abstract
This introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using ScopeM SEMs, students have the opportunity to study their own samples (or samples provided) and solve practical problems by applying knowledge acquired during the lectures. At the end of the course, students will be able to apply SEM for their (future) research projects.

Objective
- Set-up, align and operate a SEM successfully and safely.
- Understand important operational parameters of SEM and optimize microscope performance.
- Explain different signals in SEM and obtain secondary electron (SE) and backscatter electron (BSE) images.
- Operate the SEM in low-vacuum mode.
- Make use of EDX for semi-quantitative elemental analysis.
- Prepare samples with different techniques and equipment for imaging and analysis by SEM.

Content
During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications.

This course gives basic skills for students new to SEM. At the end of the course, students are able to align an SEM, to obtain secondary electron (SE) and backscatter electron (BSE) images and to perform energy dispersive X-ray spectrometry (EDX) semi-quantitative analysis. Emphasis is put on procedures to optimize SEM parameters in order to best solve practical problems and deal with a wide range of materials.

Lectures:
- Introduction on Electron Microscopy and instrumentation
- electron sources, electron lenses and probe formation
- beam/specimen interaction, image formation, image contrast and imaging modes
- sample preparation techniques for EM
- X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescan and spectral mapping

Practicals:
- Brief description and demonstration of the SEM microscope
- Practice on image formation, image contrast (and image processing)
- Student participation on sample preparation techniques
- Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities
- Practice on real-world samples and report results

Literature
This course will prepare students for experimental work as it is typically done during the master thesis. The goal is to gain hands-on strategies of human-system-interaction, individual needs, physical & mental abilities, and system properties are key factors affecting the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's health, well-being, and satisfaction as well as the overall system performance.

The overall goal of this course is to be able to analyse current therapeutic interventions to identify an unmet need in molecular biology of aging and apply scientific thinking to discover new mechanisms that could be used as a novel therapeutic intervention.

No compulsory prerequisites, but student should have basic knowledge of genetics and molecular biology.

Number of participants limited to 30.

Does not take place this semester.

For PhD students, postdocs and others, a fee will be charged (http://www scopem.ethz.ch/education/MTP.html).

All applicants must additionally register on this form: (link will follow)

The selected applicants will be contacted and asked for confirmation a few weeks before the course date.

Abstract

The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for beginners who are interested in using TEM for their Master or PhD thesis. TEM sample preparation techniques are also discussed. During hands-on sessions at different TEM instruments, students will have the opportunity to examine their own samples if time allows.

Objective

Understanding of

1. the set-up and individual components of a TEM
2. the basics of electron optics and image formation
3. the basics of electron beam – sample interactions
4. the contrast mechanism
5. various sample preparation techniques

Learning how to

1. align and operate a TEM
2. acquire data using different operation modes of a TEM instrument, i.e. Bright-field and Dark-field imaging
3. record electron diffraction patterns and index diffraction patterns
4. interpret TEM data

Content

Lectures:
- basics of electron optics and the TEM instrument set-up
- TEM imaging modes and image contrast
- STEM operation mode
- Sample preparation techniques for hard and soft materials

Practicals:
- Demo, practical demonstration of a TEM: instrument components, alignment, etc.
- Hands-on training for students: sample loading, instrument alignment and data acquisition.
- Sample preparation for different types of materials
- Practical work with TEMs
- Demonstration of advanced Transmission Electron Microscopy techniques

Lecture notes

Lecture notes will be distributed.

Literature

Prerequisites / notice

No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551-1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.

376-0221-00L Methods and Concepts in Human Systems Neuroscience and Motor Control

W 4 credits 3P M. Schrafl-Alttermatt

Number of participants limited to 12

Abstract

This course provides hands-on experience with measurement and analysis methods relevant for Humans Systems Neuroscience and Motor control (nerve-brain stimulation, EMG, EEG, psycho-physical paradigms etc). Students read scientific material, set up experiments, perform measurements in the lab, analyse data, apply statistics and write short reports or essays.

Objective

This course will prepare students for experimental work as it is typically done during the master thesis. The goal is to gain hands-on experience with measurement and analysis methods relevant for Humans Systems Neuroscience and Motor control (e.g. peripheral nerve stimulation, electrical and magnetic brain stimulation, EMG, EEG, psycho-physical paradigms etc). Students will learn how to perform small scientific projects in this area. Students will work individually or in small groups and solve scientific problems which require them to perform measurements in human participants, extract relevant readouts from the data, apply appropriate statistics and interpret the results. They will also be required to write small essays and reports and they will get feedback on their writing throughout the course.

Prerequisites / notice

Students are required to have successfully completed the course "Neural control of movement and motor learning" and to have basic knowledge of applied statistics.

376-1151-00L Translation of Basic Research Findings from Genetics and Molecular Mechanisms of Aging

W 3 credits 2V to be announced

Abstract

Recently, several start-up companies are aiming to translate basic molecular findings into new drugs/therapeutic interventions to slow aging or post-pone age-related diseases (e.g., Google founded Calico or Craig Venter's Human Longevity, Inc.). This course will teach students the basic skill sets to formulate their own ideas, design experiments to test them and explains the next steps to translate them.

Objective

The overall goal of this course is to be able to analyse current therapeutic interventions to identify an unmet need in molecular biology of aging and apply scientific thinking to discover new mechanisms that could be used as a novel therapeutic intervention.

Learning objectives include:

1. Evaluate the current problem of our aging population, the impact of age-dependent diseases and current strategies to prevent these age-dependent diseases.
2. Analyse/compare current genetic/therapeutic interventions that address these aging problems.
3. Analyse case studies about biotech companies in the aging sector. Apply the scientific methods to formulate basic research questions to address these problems.

Content

Overview of aging and age-related diseases. Key discoveries in molecular biology of aging. Case studies of biotech companies addressing age-related complications. Brief introduction from bench to bedside with focus on start-up companies.

Prerequisites / notice

No compulsory prerequisites, but student should have basic knowledge about genetics and molecular biology.

376-1177-00L Human Factors I

W 3 credits 2V M. Menozzi Jäckli, R. Huang, M. Siegrist

Abstract

Strategies of human-system-interaction, individual needs, physical & mental abilities, and system properties are key factors affecting the quality and performance in interaction processes. Discussed topics are important for optimizing people's health, well-being, and satisfaction as well as the overall system performance.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1093 of 2152
The goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.

- Physiological, physical, and cognitive factors in sensation, perception, and action
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance, well-being, and comfort
- Usability engineering in system designs, product development, and innovation
- Human information processing and biological cybernetics
- Interaction among environments, consumers, behavior, and tasks

- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1179-00L</td>
<td>Applications of Cybernetics in Ergonomics</td>
<td>W</td>
<td>1 credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376-1414-00L</td>
<td>Current Topics in Brain Research (HS)</td>
<td>W</td>
<td>1 credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376-1504-00L</td>
<td>Physical Human Robot Interaction (pHRI)</td>
<td>W</td>
<td>4 credits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2V+2U</td>
</tr>
</tbody>
</table>

Physical Human Robot Interaction (pHRI)

Objective

The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de-sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1. Identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2. Compare and select mechatronic components that optimally fulfill the defined design requirements;
3. Derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system;
4. Design control hardware and software and implement and test human-robot interaction strategies on the physical setup;
5. Characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6. Investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.

Content

This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.

Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (https://relab.ethz.ch/downloads/open-hardware/haptic-paddle.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.

Lecture notes

Will be distributed on Moodle before the lectures.
While learning the programming skills needed to manipulate and visualize the data, participants will learn the statistical and modeling approaches for big data analysis. For the final assessment, students will conduct an independent data analysis project based on a biomedical dataset. Through theoretical classes, practical demonstrations, in class exercises and homework, the participants will master computational techniques to analyze them. This course will provide the basis of data analysis of large biomedical data. The students are expected to have basic control knowledge from previous classes.

Prerequisites / notice
Notice:
The registration is limited to 26 students.
The lecture will be held in English.
The students are expected to have basic control knowledge from previous classes.
http://www.relab.ethz.ch/education/courses/phri.html

375-1723-00L Big Data Analysis in Biomedical Research 4 credits 2V+2U E. Araldi, M. Ristow

Abstract
Biomedical datasets are increasing in size and complexity, and discoveries arising from their analysis have important implications in human health and biotechnological advances. While the potential of biomedical dataset analysis is considerable, preclinical researchers often lack the computational tools to analyze them. This course will provide the basis of data analysis of large biomedical data.

Objective
This course aims to provide practical tools to analyze large biomedical datasets, and it is tailored towards experimental researchers in the life sciences with minimal prior programming experience, but with a strong interest in exploring big data to solve own research problems. Through theoretical classes, practical demonstrations, in class exercises and homework, the participants will master computational techniques to independently manipulate large datasets, effectively visualize big data, and analyze it with appropriate statistical tools and machine learning approaches. For the final assessment, students will conduct an independent data analysis project based on a biomedical dataset of their choosing and using publicly available population-based biomedical datasets.

Content
While learning the programming skills needed to manipulate and visualize the data, participants will learn the statistical and modeling approaches for big data analysis. The course will cover:

- Basis of Python programming and UNIX;
- High performance computing;
- Manipulation and cleaning of large datasets with Pandas;
- Visualization tools (Matplotlib, Seaborn);
- Machine learning and numerical libraries (SciPy, NumPy, Statsmodels, Scikit-Learn);
- Statistical analysis and modeling of big data, and applications to biomedical datasets (statistical learning, distributions, linear and logistic regressions, principal component analysis, clustering, classification, time series analysis, tree-based methods, predictive models).

551-0317-00L Immunology I 3 credits 2V M. Kopf, A. Oxenius

Abstract
Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.

Objective
Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.

Content
- Introduction to the immune system
 - Innate and adaptive immunity
 - Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histocompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions

Lecture notes
Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien"
For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session.

Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

- Kuby, Immunology, 9th edition, Freeman + Co., New York, 2020

Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.

The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of foodborne pathogens.

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: not assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: not assessed

Domain C - Social Competencies

- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: not assessed

Domain D - Personal Competencies

- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

551-0319-00L

Cellular Biochemistry (Part I)

- W 3 credits 2V
- U. Kutay, G. Neurohr, M. Peter, K. Weis, I. Zemp

Abstract

Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

Objective

The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.

Content

Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes.

Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression.

Lecture notes

Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.bioli.ethz.ch)

Literature

Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

Prerequisites / notice

To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.

752-4009-00L

Molecular Biology of Foodborne Pathogens

- W 3 credits 2V
- M. Loessner, M. Schmelcher, M. Schuppler, E. Wetter Slack

Abstract

The course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.

Objective

Detailed and current status of research and insights into the molecular basis of foodborne diseases, with a focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.

Content

Molecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnostics and antimicrobial intervention.

Lecture notes

Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.

Literature

Recommendations will be given in the first lecture

Prerequisites / notice

Lectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), without break!

752-6403-00L

Nutrition and Performance

- W 2 credits 2V
- S. Mettler, M. B. Zimmermann

Abstract

The course introduces basic concepts of the interaction between nutrition and exercise performance.

Objective

To understand the potential effects of nutrition on exercise performance, with a focus on concepts and principles of nutrition before, during and after exercise.

Content

The course will cover elementary aspects of sports nutrition physiology, including carbohydrate, glycogen, fat, protein and energy metabolism. A main focus will be to understand nutritional aspects before exercise to be prepared for intensive exercise bouts, how exercise performance can be supported by nutrition during exercise and how recovery can be assisted by nutrition after exercise. Although this is a scientific course, it is the goal of the course to translate basic sports nutrition science into practical sports nutrition examples.

Lecture notes

Lecture slides and required handouts will be available on the ETH website (moodle).

Literature

Information on further reading will be announced during the lecture. There will be some mandatory as well as voluntary readings.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1096 of 2152
Prerequisites / notice

General knowledge about nutrition, human biology, physiology and biochemistry is a prerequisite for this course. The course builds on basic nutrition and biochemistry knowledge to address exercise and performance related aspects of nutrition.

The course is designed for 3rd year Bachelor students, Master students and postgraduate students (MAS/CAS).

It is strongly recommended to attend the lectures. The lecture (including the handouts) is not designed for distance education.

► Practical Training

Practical Training (former name: Practical Training and Semester project) only for majors mentioned below:
- Human Movement Science and Sport
- Medical Technology
- Molecular Health Sciences
- Neurosciences

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-2110-00L</td>
<td>Practical Training 12 Weeks (Job or Research Oriented)</td>
<td>W</td>
<td>15</td>
<td></td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical Training Internships are either research-oriented for exercising scientific (laboratory) methods or job-related for giving insight into the future world of work (industry, services, school).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students should exercise scientific working and/or get realistic insights into future jobs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This version of internships lasts for at least 12 weeks full time equivalent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-2111-00L</td>
<td>Practical Training 8 Weeks (Job or Research Oriented)</td>
<td>W</td>
<td>10</td>
<td></td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical Training Internships are either research-oriented for exercising scientific (laboratory) methods or job-related for giving insight into the future world of work (industry, services, school).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students should exercise scientific working and/or get realistic insights into future jobs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This version of internships lasts for at least 8 weeks full time equivalent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-2112-00L</td>
<td>Practical Training 4 Weeks (Job or Research Oriented)</td>
<td>W</td>
<td>5</td>
<td></td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical Training Internships are either research-oriented for exercising scientific (laboratory) methods or job-related for giving insight into the future world of work (industry, services, school).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students should exercise scientific working and/or get realistic insights into future jobs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This version of internships lasts for at least 4 weeks full time equivalent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

► GESS Science in Perspective

see Science in Perspective: Language Courses ETH/UZH

see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-HEST.

► Research Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-2100-00L</td>
<td>Research Internship</td>
<td>O</td>
<td>15</td>
<td></td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-week internship intended for exercising (independent) scientific working.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students shall exercise scientific working as preparation for their master thesis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Research Internship lasts for at least 12 weeks full time equivalent. It can be combined with the Master Thesis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

► Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-2000-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30</td>
<td>71D</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only students fulfilling the following criteria can start with their master thesis:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. successful completion of the bachelor programme;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. fulfillment of any additional requirements necessary to gain admission to the master programme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The students shall demonstrate their ability to carry out a structured, scientific piece of work independently.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Master Thesis can only be started after the Bachelor Degree was obtained and/or master admission requirements have been fulfilled.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

► Course Units for Additional Admission Requirements

The courses below are only for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>406-0253-AAL</td>
<td>Mathematics I & II</td>
<td>E-</td>
<td>13</td>
<td>28R</td>
<td>L. Halbeisen</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics I covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics II: multivariable calculus and partial differential equations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Movement and Sport Biomechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
</tr>
</tbody>
</table>

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Learning to view the human body as a (bio-) mechanical system. Making the connections between everyday movements and sports activity with injury, discomfort, prevention and rehabilitation.

Objective
"Students are able to describe the human body as a mechanical system. They analyse and describe human movement according to the laws of mechanics."

Content
Movement- and sports biomechanics deals with the attributes of the human body and their link to mechanics. The course includes topics such as functional anatomy, biomechanics of daily activities (gait, running, etc.) and looks at movement in sport from a mechanical point of view. Furthermore, simple reflections on the loading analysis of joints in various situations are discussed. Additionally, questions covering the statics and dynamics of rigid bodies, and inverse dynamics, relevant to biomechanics are investigated.

<table>
<thead>
<tr>
<th>Literature</th>
<th>Physics I</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).</td>
<td></td>
</tr>
<tr>
<td>- Thomas, G. B.: Thomas’ Calculus, Parts 2 (Pearson Addison-Wesley).</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites / notice
Prerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

Assistance:
Tuesdays and Wednesdays 17-19h, in Room HG E 41.

<table>
<thead>
<tr>
<th>376-0203-AAL</th>
<th>Movement and Sport Biomechanics</th>
<th>E-</th>
<th>4 credits</th>
<th>3R</th>
</tr>
</thead>
<tbody>
<tr>
<td>406-0062-AAL</td>
<td>Physics I</td>
<td>E-</td>
<td>5 credits</td>
<td>11R</td>
</tr>
<tr>
<td>376-1714-AAL</td>
<td>Biocompatible Materials</td>
<td>E-</td>
<td>4 credits</td>
<td>9R</td>
</tr>
</tbody>
</table>

Assistant: K. Maniura, M. Zenobi-Wong

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1098 of 2152
Objective

The course covers the following topics:
1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.

Content

Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Lecture notes
Handouts are deposited online (moodle).

Literature

(available online via ETH library)

Handouts and references therein.

<table>
<thead>
<tr>
<th>Health Sciences and Technology Master - Key for Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
</tr>
<tr>
<td>W+</td>
</tr>
<tr>
<td>W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key for Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>K</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Core Courses in Theoretical Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0843-00L</td>
<td>Quantum Field Theory I</td>
<td>W</td>
<td>10</td>
<td>4V+2U</td>
<td>G. M. Graf</td>
</tr>
</tbody>
</table>

Abstract
This course discusses the quantisation of fields in order to introduce a coherent formalism for the combination of quantum mechanics and special relativity.

Topics include:
- Relativistic quantum mechanics
- Quantisation of bosonic and fermionic fields
- Interactions in perturbation theory
- Scattering processes and decays
- Elementary processes in QED
- Radiative corrections

Objective
The goal of this course is to provide a solid introduction to the formalism, the techniques, and important physical applications of quantum field theory. Furthermore, it prepares students for the advanced course in quantum field theory (Quantum Field Theory II), and for work on research projects in theoretical physics, particle physics, and condensed-matter physics.

Core Courses in Experimental Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0891-00L</td>
<td>Phenomenology of Particle Physics I</td>
<td>W</td>
<td>10</td>
<td>3V+2U</td>
<td>P. Crivelli, A. de Cosa</td>
</tr>
</tbody>
</table>

Abstract
Topics to be covered in Phenomenology of Particle Physics I:
- Relativistic kinematics
- Decay rates and cross sections
- The Dirac equation
- From the S-matrix to the Feynman rules of QED
- Scattering processes in QED
- Experimental tests of QED
- Hadron spectroscopy
- Unitary symmetries and QCD
- QCD and alpha_s running
- QCD in e^+e^- annihilation
- Experimental tests of QCD in e^+e^- annihilation

Objective
Introduction to modern particle physics

Content
Topics to be covered in Phenomenology of Particle Physics I:
- Relativistic kinematics
- Decay rates and cross sections
- The Dirac equation
- From the S-matrix to the Feynman rules of QED
- Scattering processes in QED
- Experimental tests of QED
- Hadron spectroscopy
- Unitary symmetries and QCD
- QCD and alpha_s running
- QCD in e^+e^- annihilation
- Experimental tests of QCD in e^+e^- annihilation

Literature
As described in the entity: Lernmaterialien

Electives

Optional Subjects in Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0715-00L</td>
<td>Low Energy Particle Physics</td>
<td>W</td>
<td>6</td>
<td>2V+1U</td>
<td>A. Soter, P. A. Schmidt-Wellenburg</td>
</tr>
</tbody>
</table>
Abstract
Low energy particle physics provides complementary information to high energy physics with colliders. In this lecture, we will concentrate on flagship experiments which have significantly improved our understanding of particle physics today, concentrating mainly on precision experiments with neutrinos, muons and exotic atoms.

Objective
You will be able to present and discuss:
- the principle of the experiments
- the underlying technique and methods
- the context and the impact of these experiments on particle physics

Content
Low energy particle physics provides complementary information to high energy physics with colliders. At the Large Hadron Collider one directly searches for new particles at energies up to the TeV range. In a complementary way, low energy particle physics indirectly probes the existence of such particles and provides constraints for "new physics", making use of high precision and high intensities.

Besides the sensitivity to effects related with new physics (e.g. lepton flavor violation, symmetry violations, CPT tests, search for electric dipole moments, new low mass exchange bosons etc.), low energy physics provides the best test of QED (electron g-2), the best tests of bound-state QED (atomic physics and exotic atoms), precise determinations of fundamental constants, information about the CKM matrix, precise information on the weak and strong force even in the non-perturbative regime etc.

Starting from a general introduction on high intensity/high precision particle physics and the main characteristics of muons and neutrons and their production, we will then focus on the discussion of fundamental problems and ground-breaking experiments:

- search for rare decays and charged lepton flavor violation
- electric dipole moments and CP violation
- spectroscopy of exotic atoms and symmetries of the standard model
- what atomic physics can do for particle physics and vice versa
- neutron decay and primordial nucleosynthesis
- atomic clock
- Penning traps
- Ramsey spectroscopy
- Spin manipulation
- neutron-matter interaction
- ultra-cold neutron production
- various techniques: detectors, cryogenics, particle beams, laser cooling....

Literature
Golub, Richardson & Lamoreaux: "Ultra-Cold Neutrons"
Rauch & Werner: "Neutron Interferometry"
Carlile & Willis: "Experimental Neutron Scattering"
Byrne: "Neutrons, Nuclei and Matter"
Klapdor-Kleingrothaus: "Non Accelerator Particle Physics"

Prerequisites / notice
Einführung in die Kern- und Teilchenphysik / Introduction to Nuclear- and Particle-Physics
402-0833-00L Particle Physics in the Early Universe

Abstract
An introduction to key concepts on the interface of Particle Physics and Early Universe cosmology. Topics include inflation and inflationary models, the ElectroWeak phase transition and vacuum stability, matter-antimatter asymmetry, recombination and the Cosmic Microwave Background, relic abundances and primordial nucleosynthesis, baryogenesis, dark matter and more.

Objective
The objectives of this course is to understand the evolution of the Universe at its early stages, as described by the Standard Model of cosmology, and delve into the insights and constraints imposed by cosmological observations on possible new particles beyond those discovered at the LHC.

Prerequisites / notice
Prerequisites: Particle Physics Phenomenology 1 or Quantum Field Theory 1
Recommended: Quantum Field Theory 2, Advanced Field Theory, General Relativity

402-0767-00L Neutrino Physics

Abstract
Theoretical basis and selected experiments to determine the properties of neutrinos and their interactions (mass, spin, helicity, chirality, oscillations, interactions with leptons and quarks).

Objective
Introduction to the physics of neutrinos with special consideration of phenomena connected with neutrino masses.

Lecture notes / Literature
Script
D.O. Caldwell, Current Aspects of Neutrino Physics, Springer.

402-0830-00L General Relativity

Abstract
Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations of the theory as well as the underlying physical principles and concepts. It covers selected applications, such as the Schwarzschild solution and gravitational waves.

Objective
Basic understanding of general relativity, its mathematical foundations (in particular the relevant aspects of differential geometry), and some of the phenomena it predicts (with a focus on black holes).

Content
Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves.

Literature
Suggested textbooks:
- C. Misner, K. Thorne and J. Wheeler: Gravitation
- S. Carroll - Spacetime and Geometry: An Introduction to General Relativity
- R. Wald - General Relativity
- S. Weinberg - Gravitation and Cosmology

402-0777-00L Particle Accelerator Physics and Modeling I

Abstract
This is the first of two courses, introducing particle accelerators from a theoretical point of view and covers state-of-the-art modelling techniques.

Objective
You understand the building blocks of particle accelerators. Modern analysis tools allows you to model state-of-the-art particle accelerators. In some of the exercises you will be confronted with next generation machines. We will develop a Python (or Julia) simulation tool (pyAccelLEGOrator or jAccelLEGOrator) that reflects the theory from the lecture.

Content
Here is the rough plan of the topics, however the actual pace may vary relative to this plan.
- Recap of Relativistic Classical Mechanics and Electrodynamics
- Building Blocks of Particle Accelerators
- Lie Algebraic Structure of Classical Mechanics and Application to Particle Accelerators
- Symplectic Maps & Analysis of Maps
- Symplectic Particle Tracking
- Collective Effects
- Linear & Circular Accelerators

Lecture notes / Prerequisites / notice
Lecture notes
Prerequisites: Particle Physics Phenomenology 1 or Quantum Field Theory 1
Physics, Computational Science (RW) at BSc. Level
This lecture is also suited for PhD. students

402-0851-00L QCD: Theory and Experiment

Abstract
An introduction to the theoretical aspects and experimental tests of QCD, with emphasis on perturbative QCD and related experiments at colliders.

Objective
Knowledge acquired on basics of perturbative QCD, both of theoretical and experimental nature. Ability to perform simple calculations of perturbative QCD, as well as to understand modern publications on theoretical and experimental aspects of perturbative QCD.

Content
QCD Lagrangian and Feynman Rules
QCD running coupling
Parton model
DGLAP
Basic processes
Experimental tests at lepton and hadron colliders

Literature
2) R. K. Ellis, W. J. Stirling, B. R. Webber : "QCD and Collider Physics" (Cambridge Monographs on Particle Physics, Nuclear Physics & Cosmology)"

Prerequisites / notice
Will be given as block course, language: English.
For students of both ETH and University of Zurich.
Introduction to String Theory

402-0897-00L

Abstract

String theory is an attempt to quantise gravity and unite it with the other fundamental forces of nature. It is related to numerous interesting topics and questions in quantum field theory. In this course, an introduction to the basics of string theory is provided.

Objective

Within this course, a basic understanding and overview of the concepts and notions employed in string theory shall be given. More advanced topics will be touched upon towards the end of the course briefly in order to foster further research.

Content

- mechanics of point particles and extended objects
- string modes and their quantisation; higher dimensions, supersymmetry
- D-branes, T-duality
- supergravity as a low-energy effective theory, strings on curved backgrounds
- two-dimensional field theories (classical/quantum, conformal/non-conformal)

Literature

M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory I, CUP (1987).

Prerequisites / notice

Recommended: Quantum Field Theory I (in parallel)

University lecturers

402-0845-80L

Scattering Amplitudes in Quantum Field Theories

Does not take place this semester.

Abstract

This course provides a pedagogical introduction to an advanced topic in Quantum Field Theories, which has undergone a tremendous progress in the new millennium: scattering amplitudes and on-shell methods.

Objective

Students that complete the course will be able to understand the basics of the modern methods to compute scattering amplitudes, to perform simple calculations and to read modern publications on this research field.

Content

This course covers the basic concepts of:
- spinor helicity formalism
- colour decompositions
- BCFW on-shell recursion relations
- BCJ colour-kinematics duality
- Feynman integrals: IBPs and differential equations
- analytic and algebraic structure of loop-level amplitudes:
 * Hopf algebras, symbols and coproducts
 * multiple polylogarithms (a.k.a. as iterated integrals on the Riemann sphere)
 * Steinmann relations
 * coaction principle
 * elliptic and modular-form integrals (a.k.a. as iterated integrals on the torus)

Lecture notes

Will be provided at the Moodle site for the course.

Literature

Will be provided at the Moodle site for the course.

Prerequisites / notice

A basic knowledge of Feynman rules in scalar field theories and in Yang-Mills theory is assumed.

QFT-I and Introduction to Quantum Chromodynamics are highly recommended.

402-0886-00L

Quantum Chromodynamics

402-0886-00L

Abstract

The course presents the quantum field theory of the strong interaction (quantum chromodynamics, QCD) and discusses its applications to particle physics observables.

Objective

The course aims to familiarize its students with the concepts and applications of QCD and to introduce them to modern techniques for computations in QCD.

Content

Contents:
- Review of non-Abelian gauge theories and their quantization
- Spinor-helicity formalism
- Renormalization of QCD and running coupling constant
- Basic strong interaction processes
- Perturbation theory techniques: loops and phase space
- QCD perturbation theory and applications
- Proton structure in QCD
- Resummation of large logarithmic corrections
- Effective field theories
- Non-perturbative methods

Prerequisites / notice

The course assumes prior knowledge of the content of the quantum field theory 1+2 lectures.

402-0845-61L

Effective Field Theories for Particle Physics

402-0845-61L

Abstract

The focus of the course is on Effective Field Theories (EFTs) and their interplay with dispersion theory. These topics will be discussed both in general terms and with specific phenomenological applications in the context of physics beyond the Standard Model, effective description of the weak interaction, as well as the description of non-perturbative strong interaction at low energies.

Objective

This course covers the basic concepts of effective field theories (EFTs) and dispersion theory. We will start by introducing the core concept of constructing EFTs and apply them to the low-energy description of the weak interaction and the effective description of heavy physics beyond the Standard Model.

In the next part of the course, we will discuss Chiral Perturbation Theory (ChPT), the low-energy effective theory of Quantum Chromodynamics (QCD). We will briefly discuss the application of this concept to describe a class of theories beyond the SM in which the SM Higgs arises as a composite state of a new confining sector.

The second focus of the course is on dispersion theory and its interplay with EFTs. We will discuss how to make use of the constraints from unitarity of the S-matrix and analyticity of scattering amplitudes, in order to extend the range of validity of the theoretical description compared to pure EFT methods. We will also discuss how to obtain constraints on EFT parameters from unitarity and analyticity. We will discuss the application of these methods both in the context of low-energy strong interaction and physics beyond the Standard Model.
Introduction to Effective Field Theories
Decoupling and matching
Renormalization group resummation
The Standard Model Effective Field Theory (SMEFT)
Chiral Lagrangians
Unitarity of the S-matrix
Analyticity and dispersion relations

QFT-I (mandatory) and QFT-II (highly recommended)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3531-00L</td>
<td>Differential Geometry I</td>
<td>W</td>
<td>10 credits</td>
<td>4V+1U</td>
<td>J. Serra</td>
</tr>
</tbody>
</table>

At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory can be recognised for the Master's degree in Mathematics

or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Objective
Provide insightful knowledge about the classical theory of curves and surfaces (which is the precursor of modern differential geometry).

Lecture notes
Partial lecture notes are available from Prof. Lang's website https://people.math.ethz.ch/~lang/

Literature
- Manfredo P. do Carmo: Differential Geometry of Curves and Surfaces
- John M. Lee: Introduction to Smooth Manifolds
- S. Montiel, A. Ros: Curves and Surfaces
- S. Kobayashi: Differential Geometry of Curves and Surfaces
- Wolfgang Kühnel: Differentialgeometrie, Kurven-Flächen-Mannigfaltigkeiten
- Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds

401-3461-00L **Functional Analysis I**

At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory can be recognised for the Master's degree in Mathematics

or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Abstract
Baire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces.

Objective
Acquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.

Lecture notes
Recommended references include the following:

Prerequisites / notice
Solid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with topology and measure theory, in part: Lebesgue integration and L^p spaces).

Proseminars and Semester Papers

To organise a semester project take contact with one of the instructors.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0717-MSL</td>
<td>Particle Physics at CERN</td>
<td>W</td>
<td>8 credits</td>
<td>15P</td>
<td>W. Lustermann</td>
</tr>
</tbody>
</table>

During the semester break participating students stay for 4 weeks at CERN and perform experimental work relevant to our particle physics projects. Dates to be agreed upon.

Objective
Students learn, by doing, the needed skills to perform a small particle physics experiment: setup, problem solving, data taking, analysis, interpretation and presentation in a written report of publication quality.

Content
Detailed information in: https://ethteilchenpraktikum.web.cern.ch/
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0719-MSL</td>
<td>Experimental Semester Project in Physics</td>
<td>W</td>
<td>8</td>
<td>15P</td>
<td>A. Soter, A. S. Antognini</td>
</tr>
<tr>
<td>402-0210-MSL</td>
<td>Proseminar Theoretical Physics</td>
<td>W</td>
<td>8</td>
<td>4S</td>
<td>Supervisors</td>
</tr>
<tr>
<td>402-0217-MSL</td>
<td>Semester Project in Theoretical Physics</td>
<td>W</td>
<td>8</td>
<td>15A</td>
<td>Supervisors</td>
</tr>
<tr>
<td>402-0740-00L</td>
<td>Experimental Foundations of Particle Physics</td>
<td>W</td>
<td>8</td>
<td>3S</td>
<td>M. Backhaus, M. Donegà</td>
</tr>
<tr>
<td>402-0215-MSL</td>
<td>Experimental Semester Project in Physics</td>
<td>W</td>
<td>8</td>
<td>15A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Objective

402-0719-MSL

During semester breaks 6-12 students stay for 3 weeks at PSI and participate in a hands-on course on experimental particle physics. A small real experiment is performed in common, including apparatus design, construction, running and data analysis. The course includes some lectures, but the focus lies on the practical aspects of experimenting.

402-0210-MSL

Students learn all the different steps it takes to perform a complete particle physics experiment in a small team. They acquire skills to do this themselves in the team, including design, construction, data taking and data analysis.

402-0217-MSL

This course unit is an alternative if no suitable "Proseminar Theoretical Physics" is available or if the proseminar is already overbooked. Die Leistungskontrolle erfolgt aufgrund eines oder mehrerer schriftlicher Berichte bzw. einer schriftlichen Arbeit. Vorträge können ein zusätzlicher Bestandteil der Leistungskontrolle sein.

402-0740-00L

The Standard Model of particle physics is a monumental achievement of human ingenuity. While typically approached from the theoretical side, in this proseminar we will collect the experimental evidence upon which the Standard Model has been built.

402-0215-MSL

The aim of the project is to give the student experience in working in a research environment, carrying out physics experiments, analysing and interpreting the resulting data.

Literature

- Cahn, Goldhaber "Experimental Foundations of Particle Physics" (2nd edition), Cambridge University Press
- Bettini, "Introduction to Elementary Particle Physics" Cambridge University Press
- Recommended: Phenomenology of Particle Physics I (or II) (in parallel)

Content

402-0719-MSL

- Neutrino oscillations
- CP violation in the kaon system
- Higgs discovery and properties
- number of neutrino families, muon pair production asymmetry, W+W- production
- neutral current, W/Z discovery
- parity violation, neutrino observation, neutrino helicity
- strong interaction: gluons and jets (anti-k_t jet clustering)
- J/ψ and tau discovery
- cloud chamber
- cosmics rays with plastic scintillators
- cerenkov light in water
- silicon detectors
- Review of basic relativistic kinematics (Lorentz transformations, invariant mass, etc.)
- Passage of particles through matter: Bethe Bloch dE/dx, bremsstrahlung, photon interactions, electromagnetic showers, hadronic showers, Cherenkov radiation, Transition Radiation
- Deep Inelastic scattering

402-0210-MSL

- J/ψ and tau discovery
- passage of particles through matter: Bethe Bloch dE/dx, bremsstrahlung, photon interactions, electromagnetic showers, hadronic showers, Cherenkov radiation, Transition Radiation
- PASSAGE OF PARTICLES THROUGH MATTER: BETHE-BLOCH dE/dX, BREMSSTRAHLUNG, PHOTON INTERACTIONS, ELECTROMAGNETIC SHOWERS, HADRONIC SHOWERS, CHERENKOV RADIATION, TRANSITION RADIATION

402-0740-00L

- The course is completed with in class detector demonstrations:
 - cloud chamber
 - cerenkov light in water
 - silicon detectors
 - Review of basic relativistic kinematics (Lorentz transformations, invariant mass, etc.)
 - Passage of particles through matter: Bethe Bloch dE/dx, bremsstrahlung, photon interactions, electromagnetic showers, hadronic showers, Cherenkov radiation, Transition Radiation
 - Deep Inelastic scattering

Prerequisites / notice

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - assessed
- Domain B - Method-specific Competencies
 - Analytical Competencies
 - assessed
- Domain C - Social Competencies
 - Communication
 - assessed
- Domain D - Personal Competencies
 - Critical Thinking
 - assessed
- Integrity and Work Ethics
- Self-direction and Self-management
- assessed

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - assessed
- Domain B - Method-specific Competencies
 - Analytical Competencies
 - assessed
- Domain C - Social Competencies
 - Communication
 - assessed
- Domain D - Personal Competencies
 - Critical Thinking
 - assessed
- Integrity and Work Ethics
- Self-direction and Self-management
- assessed

Prerequisites / notice

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - assessed
- Domain B - Method-specific Competencies
 - Analytical Competencies
 - assessed
- Domain C - Social Competencies
 - Communication
 - assessed
- Domain D - Personal Competencies
 - Critical Thinking
 - assessed
- Integrity and Work Ethics
- Self-direction and Self-management
- assessed

GESS Science in Perspective

- see GESS Science in Perspective: Language Courses ETH/UZH
 - see GESS Science in Perspective: Type A: Enhancement of Reflection Capability
 - Recommended GESS Science in Perspective (Type B) for D-PHYS.

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-2000-00L</td>
<td>Scientific Works in Physics</td>
<td>O</td>
<td>0</td>
<td></td>
<td>C. Eichler</td>
</tr>
</tbody>
</table>
Target audience:
Master students who cannot document to have received an adequate training in working scientifically.

Directive

Abstract
Literature Review: ETH-Library, Journals in Physics, Google Scholar; Thesis Structure: The IMRAD Model; Document Processing: LaTeX and BibTeX, Mathematical Writing, AVETH Survival Guide; ETH Guidelines for Integrity; Authorship Guidelines; ETH Citation Etiquettes; Declaration of Originality.

Objective
Basic standards for scientific works in physics: How to write a Master Thesis. What to know about research integrity.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Module Title</th>
<th>Type</th>
<th>Credits</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>462-0900-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30</td>
<td>57D</td>
</tr>
</tbody>
</table>

Further information: www.phys.ethz.ch/phys/education/master/msc-theses

Abstract
The Master’s thesis is normally conducted in the fourth semester and concludes the degree programme. With the Master’s thesis students verify their ability to undertake independent and scientifically structured work in the area of high energy physics.

Prerequisites / notice
The time limit for completing the Master's thesis is six months.

High-Energy Physics (Joint Master with IP Paris) - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Lecture</td>
</tr>
<tr>
<td>G</td>
<td>Lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>Exercise</td>
</tr>
<tr>
<td>S</td>
<td>Seminar</td>
</tr>
<tr>
<td>K</td>
<td>Colloquium</td>
</tr>
<tr>
<td>P</td>
<td>Practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>Independent project</td>
</tr>
<tr>
<td>D</td>
<td>Diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>Revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Human Medicine Bachelor

First Year Examinations

First Year Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>377-0105-00L</td>
<td>Musculoskeletal System</td>
<td>O</td>
<td>5</td>
<td>5V</td>
<td>J. Goldhahn, O. Distler, C. Maake, M. Steinwachs, R. Stocker</td>
</tr>
<tr>
<td></td>
<td>Only for Human Medicine BSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Structure and function of the human musculoskeletal system including its major disorders (acute and chronic).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Objective | - The students are able to participate in team discussions with correct technical language in the clinical daily routine.
- The students are able to describe the function of the musculoskeletal system of healthy people in a physiologically correct way.
- The students are able to contribute to a therapy plan based on their knowledge of the regenerative capacity of the different tissues in the musculoskeletal system.
- The students recognize pain as a leading symptom in diagnostics and successful therapy.
- The students can assign and compare treatment methods for the most common acute and chronic clinical pictures. |
| Content | The students learn about the structure and function of the musculoskeletal system and its disorders on the basis of exemplary clinical pictures.
They also learn:
- About its tissue types as well as its function and regeneration.
- Important acute and chronic clinical pictures and their therapeutic principles. |
| | In addition, further clinical pictures are presented in the form of seminars. | | | | |
| 377-0107-00L | Nervous System | O | 5 | 5V | D. P. Wolfer, I. Amrein, J. Bohacek, D. Burdakov, G. Schratt, L. Stomianga, O. Ullrich, N. Wenderoth, further lecturers |
| | Only for Human Medicine BSc | | | | |
| Abstract | Structure and function of the central and peripheral nervous system including its major disorders. |
| Objective | Upon successful completion of this module, students should be able to:
1. distinguish important cell types of the nervous system (neurons, glial cells) on the basis of their structure and function;
2. correctly describe the neurophysiological basics of stimulus conduction and processing in the peripheral and central nervous system;
3. correctly name the organ structures and circuits involved in the development of the peripheral and central nervous system;
4. associate the different brain areas with corresponding functions in homeostasis, sensory, motor and cognitive functions;
5. identify clinical pictures associated with the loss of function of certain structures of the central and peripheral nervous system and to understand the mode of action of current therapeutic approaches. |
| Content | In this module, students get an overview of the structure (anatomy) and function (physiology) of the peripheral and central nervous system as well as selected neurological diseases (pathophysiology).
The module is subdivided into a total of six subject areas:
1. basics of neurophysiology, stimulus conduction and processing using the example of the motor end plate, peripheral nervous system, associated clinical pictures (myasthenia gravis)
2. structure, circuits and pathways in the spinal cord, spinal nerves, motor stimulus conduction in the spinal cord, spinal cord lesions and pain
3. anatomy and function of the brain stem and cranial nerves and their significance for motor and sensory functions, lesions (brain stem syndromes)
4. anatomy and function of basal ganglia, thalamus and hypothalamus, control of the autonomic nervous system (homeostasis, food and water intake), basal ganglia defects using Parkinson's disease as an example
5. anatomy and function of the cerebellum and vestibular system, fine control of motor functions, associative learning, cerebellar symptoms (ataxias), organ of equilibrium
6. anatomy and function of the cerebrum, sensory and motor processing, cognition, learning and memory, neurodegenerative (Alzheimer) and neuropsychiatric (schizophrenia) disorders |
| 551-0033-00L | Molecular Genetics and Cell Biology | O | 5 | 5G | J. Corn, F. Allain, K. Köhler |
| | Only for Health Sciences and Technology BSc and Human Medicine BSc | | | | |
| Abstract | This course teaches the basic principles of evolution, cell biology, molecular biology, genetics and developmental biology using the example of humans. |
| Objective | 1) Students can explain the importance of evolution for the development of humans and diseases.
2) The students know the cell as the smallest unit of the body. They can explain how the functions of the cell are disturbed in certain diseases and where therapies intervene. They can describe the multiplication of cells in the body and show how errors in this multiplication can lead to diseases.
3) The students know DNA as the basis of life. They can explain how the DNA information is stored and how this information can be reproduced and protected from damage. They can describe how the information is read and translated into proteins. They can explain which mechanisms at the level of DNA, RNA and proteins can cause diseases.
4) Students can explain which technologies can be used to diagnose and treat diseases.
5) Students can explain how people differ genetically and know the molecular basis of these differences. They can explain how these differences can lead to diseases and why some of these differences do not affect diseases.
6) The students know the molecular causes of the most common hereditary diseases and can determine the probability of occurrence and transmission to offspring.
7) Students can explain the biochemical and molecular basis of human reproduction and know the basic principles of human embryonic development. The students can explain which mechanisms can be disturbed by a faulty development. |
| Content | In addition, the examination includes the following special topics:
1. DNA replication and recombination
2. DNA repair mechanisms
3. RNA transcription and processing
4. Protein synthesis and processing
5. Post-translational modifications
6. Gene regulation and expression
7. The central dogma of molecular biology
8. Evolutionary genetics
9. Human genetic diversity
10. Genetic and epigenetic variations
11. Molecular basis of human diseases
12. Molecular basis of drug resistance
13. Molecular basis of aging
14. Molecular basis of cancer
15. Molecular basis of infectious diseases
16. Molecular basis of neurodegenerative diseases
17. Molecular basis of immunological reactions
18. Molecular basis of environmental and occupational influences on health
19. Molecular basis of social and behavioral influences on health
20. Molecular basis of nutritional influences on health |
| 529-5000-00L | Chemistry (for Medical Students) | O | 4 | 3V+1U | S. Wolfrum |
| | Only for Human Medicine BSc | | | | |
| Abstract | The lecture teaches the most important fundamental concepts in chemistry (atomic structure, chemical bonds, thermodynamics and kinetics of chemical reactions, acid-base equilibria, types and reactivity of organic compounds, stereochemistry, biomolecules).
Connections of chemical processes with medically important biochemical, physiological, and pharmacological questions are highlighted. |
| Objective | Understanding of the basic concepts of chemistry. Understanding the importance of chemical processes in human physiology and in the diagnosis and treatment of human diseases. |
| Content | The lecture elaborates the fundamental concepts of chemistry. The organization of the lecture is guided by the two textbooks "Chemie für Mediziner" by Zeeck et al. and Schmuck et al., respectively, referred to below. Accordingly, the following major subject areas will be covered: Atomic structure, periodic table of the elements, types of chemical bonds, states of matter, heterogeneous equilibria, thermodynamics and kinetics of chemical reactions, salt solutions, acids and bases, oxidation and reduction, metal complexes, fundamentals of organic chemistry, important classes of organic compounds and their reactivities, stereochemistry, amino acids and peptides, carbohydrates, lipids, heterocycles, spectroscopy in chemistry and medicine. |
| Lecture notes| Scripts for individual subject areas will be provided electronically prior to the corresponding lectures. |
| Literature | There are no English translations of these textbooks. |

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1107 of 2152
Prerequisites / notice
There are no specific requirements.

First Year Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0281-00L</td>
<td>Mathematics I</td>
<td>O</td>
<td>4 credits</td>
<td>3V+1U</td>
<td>L. Keller</td>
</tr>
</tbody>
</table>

Abstract: Introduction of mathematics as the universal language for scientific facts. The lecture aims on one hand at learning and exercising the mathematical trade and on the other hand at applying the learnt concept to medical, biological, chemical and mechanical problems.

Objective: Simple and complex facts can be described and analysed using mathematical tools. Introduction to calculus in one dimension.

Content: Functions of one variable: the notion of a function, of the derivative and the integral, the idea of a differential equation, complex numbers, Taylor polynomials and Taylor series. Applications e.g. to prognoses, modeling action and dosage of drugs or tumor growth.

Further reading suggestions will be indicated during the lecture.

Taught competencies:
- Domain A - Subject-specific Competencies: Concepts and Theories (assessed), Techniques and Technologies (assessed), Analytical Competencies (assessed), Decision-making (not assessed), Media and Digital Technologies (not assessed), Problem-solving (assessed), Project Management (not assessed).
- Domain B - Method-specific Competencies: Communication (not assessed), Cooperation and Teamwork (not assessed), Customer Orientation (not assessed), Leadership and Responsibility (not assessed), Self-presentation and Social Influence (not assessed), Sensitivity to Diversity (not assessed), Negotiation (not assessed), Adaptability and Flexibility (not assessed), Creative Thinking (assessed), Critical Thinking (assessed), Integrity and Work Ethics (assessed), Self-awareness and Self-reflection (assessed), Self-direction and Self-management (assessed).

Additional First Year Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract: Fundamental principles of human medicine, Basic Life Support (BLS) and introduction to histology and microscopy.

Objective: After completion of the course, the students:
- have a basic understanding of elementary building blocks and processes as a basis for human medicine, e.g. cell structure and cycle.
- know basic terminology of anatomy.
- understand the process of medical care from first aid to rehabilitation.
- understand the advantages and disadvantages of emergency diagnostics, especially ultrasound.
- know the basics of microscopy and histology.
- have learned the basics of Basic Life Support:
 - recognize the symptoms of cardiovascular arrest.
 - alarm in an emergency according to the situation.
 - perform effective ventilation on the phantom using a pocket mask.
 - will identify possible ventilation complications. Under certain circumstances, they will not attempt further ventilation.
 - will identify the limits of cardiopulmonary resuscitation.
 - under stress, they do not risk their own or other “helpers” lives.

Content: Based on a complex clinical case, students are familiarized with the course of medical care from initial treatment to rehabilitation. Basic terms, modules and processes are introduced. In addition, the students experience the basics of imaging techniques, especially ultrasound.

Students complete the Basic Life Support course. After this training sequence, all participants should be able to initiate resuscitation measures in private and in-hospital settings.

The students experience learning, teaching and working in the hospital sector as a social process and teamwork in which all senses and a wide range of skills are needed.

In addition, the students experience in three workshops the basic process of a physiotherapeutic intervention with the concepts of clinical reasoning, therapeutic aspects and therapy progression.

An intensive course in microscopy/histology enables students to perform microscopy independently and to understand histological sections of a histological sample, but also online.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>377-0111-00L</td>
<td>Medical Anamnesis Technique</td>
<td>O</td>
<td>2 credits</td>
<td>2G</td>
<td>S. Markun, S. Neuner-Jehle, N. Scherz</td>
</tr>
</tbody>
</table>

Abstract: Interviewing techniques to acquire medically relevant information and building an adequate physician-patient relationship.
Objective

The students can build a relationship with the patient and, based on this, collect the essential concerns and information from the patient in a structured way.

The students know:
- the theoretical basics of communication;
- the structural components of the anamnesis;
- certain communication techniques.

The students can:
- pre-structure an anamnesis (structural components by heart);
- take a simple (but complete) anamnesis.

Content

Fundamentals of medical conversation in theory and practice

Mixed teaching methods, each with a theoretical part followed by practice in small groups and application to real patients. The most central components of communication and anamnesis techniques are reduced to their smallest components and each student performs each component at least once. At the end of the module, the components are practiced in an integrated manner to form a complete anamnesis.

Courses in Organ Systems and Clinical Practice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

This course will focus on the components and functions of the hematopoietic and the immune systems and on diseases affecting or caused by these systems.

Objective

1. The organization and development of hematopoiesis including hematopoietic stem cell development; the role of hematopoietic growth and transcription factors in hematopoiesis; the role of hemoglobin in health and disease; erythrocyte physiology and iron metabolism; the principles of blood groups and blood transfusions; the principles of coagulation and the pharmacology of coagulation; the role of platelets and pharmacological platelet inhibition; to define thrombophilia and to understand thrombotic events; the role of leukocytes in health and disease; the analysis of blood samples; the principles of hematopoietic stem cell transplantation.

2. The development of the immune system; the structure and function of primary and secondary lymphoid organs; the cellular and molecular mechanisms of the innate and adaptive immune systems; the effector mechanisms of immune responses against pathogens; basic concepts of immune-mediated diseases (allergy and autoimmunity), tumor immunology, immunodeficiency, organ transplantation; basic knowledge of therapies.

Content

1. Introduction to hematopoiesis, hematopoietic growth factors, hematopoietic transcription factors, erythrocyte physiology, blood groups, blood transfusion, iron metabolism, platelets, coagulation cascade, fibrinolysis, hemoglobin, hemoglobinopathies, leukocytes (granulocytes, monocytes), clinical presentation of neutropenia, pharmacology of hemostasis, clinical presentation of thrombophilia, basics of hematopoietic stem cell transplantation, some aspects of laboratory medicine in hematology, virtual microscopy of blood and bone marrow smears.

2. Structure and anatomical position of primary and secondary lymphoid organs, cells and molecules of the innate immune system, T and B cell development and receptor diversity, major histocompatibility complex (MHC) and antigen presentation, effector B cells and antibodies, effector T cells, regulatory T cells and cytokines, allergy and hypersensitivities, autoimmunity and anti-inflammatory drugs, transplantation and immunosuppressive drugs, immunodeficiency, immune response in cancer and immunotherapies.

Lecture notes

The course is supported by a Moodle page through which students have access to all necessary documentation.

Literature

The essential course material will be available on the course's Moodle Page in the form of lesson handouts. Suggested reference books include:

- Blood: Hoffbrand's Essential Haematology
- Immune system: Herbert Hof, Rüdiger Dörries; unter Mitarbeit von: Gernot Geginat, Dirk Schlüter und Constanze Wendt Medizinische Mikrobiologie Thieme 2017
- https://institut.elsevierlibrary.de/product/basic-immunology85281

Prerequisites / notice

The essential course material will be available on the course's Moodle Page in the form of lesson handouts. Suggested reference books include:

- Blood: Hoffbrand's Essential Haematology
- Immune system: Herbert Hof, Rüdiger Dörries; unter Mitarbeit von: Gernot Geginat, Dirk Schlüter und Constanze Wendt Medizinische Mikrobiologie Thieme 2017
- https://institut.elsevierlibrary.de/product/basic-immunology85281

Prerequisites / notice

The Immune system part of this course builds on the content of the "Infection and Immunology" course.
Upon successful completion of this module, students should:

- be able to explain the systematics of the endocrine system;
- know the structure and function of the hypothalamus, pituitary gland, adrenal gland, endocrine pancreas, thyroid gland, ovaries, testes;
- know the principles and regulation of bone, calcium and phosphate metabolism, energy balance, glucose metabolism, lipid metabolism, blood pressure;
- know the hormonally regulated metabolic processes (carbohydrates, protein and fat);
- know the most important endocrine diseases and tumors, their development, clinic, diagnostics and therapy;
- know the most important measures for the prevention of metabolic diseases and the underlying mechanisms.

In this module, students learn about anatomy, physiology, and pathophysiology of the endocrine glands, as well as the clinical, diagnostic, therapeutic, and preventive aspects of the most important endocrine diseases. This includes:
- Systematics of the endocrine system: structure and anatomical location of the various endocrine glands.
- Neuronal innervation and vascular supply area of the endocrine glands.
- Hormone classes: Protein and polypeptide hormones, amino and amino acid derivatives steroid hormones, biosynthesis of protein and polypeptide hormones, biosynthesis of amino and amino acid derivatives, biosynthesis of steroid hormones, storage of hormones, secretion of hormones, transport of hormones, half-lives, degradation and excretion of hormones.
- Transmission of information by hormones: hormone action at receptors, structure and function of membrane-associated hormone receptors, structure and function of nuclear receptors, regulation of hormone secretion.
- Structure and function of the hypothalamus, structure and function of the pituitary gland.
- Structure and function of the thyroid gland, under- and over-functioning of the thyroid gland, principles of diagnostics and therapy of thyroid diseases.
- Symptoms, medical history and clinical examination of thyroid diseases.
- Bones, calcium and phosphate metabolism.
- Regulation of glucose, lipid and protein metabolism, eating disorders, etiology, diagnostics, therapy and prevention of adipositas.
- Structure and function of the adrenal gland, pathogenesis, principles of diagnostics and therapy of diseases with hyper- and hypofunction of the adrenal gland. Symptoms, anamnesis and clinical examination in case of hyper- and hypofunction of the adrenal gland.
- Structure and function of the ovaries and testes, principles of reproductive physiology.

There is no traditional script for this course. Instead, the course is supported by a Moodle page through which students have access to all necessary texts, exercises, videos and activities.

The essential course material will be available on the course's Moodle Page in the form of scripts and lesson handouts. The course does not have an "official" textbook, but students may find a general reference book on the topic interesting. For this purpose the text "Endokrinologie und Stoffwechsel" von Stefan Fischli and Gailgen A. Spinas (Herausgeber), Thieme Verlag, may be helpful.

The course builds on the content of the "Chemie für Mediziner", "Biochemie", "Pathobiochemie", "Pharmakologie für Mediziner" and "Molekulare Genetik und Zellbiologie" course and "Nutrition and Digestion".

Examination Block B

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0083-00L</td>
<td>Physics I</td>
<td>O</td>
<td>4</td>
<td>3+1</td>
<td>K. S. Kirch</td>
</tr>
</tbody>
</table>

Abstract

This course is an introduction to classical physics, with special focus on applications in medicine.

Objective

Obtain an understanding of basic concepts in classical physics and their application (using mathematical pre-knowledge) to the solution of simple problems, including certain applications in medicine.

Content

General introduction; Positron-Emission- Tomography as appetizer, including ionising radiation; kinematics of a point mass; dynamics of a point mass (Newton's axioms and forces); physical work, power and energy; conservation of linear and angular momentum; oscillations and waves; mechanics of a rigid body; fluid mechanics; introduction to electricity.

Lecture notes

Will be distributed at the start of the semester.

Literature

"Physik für Mediziner, Biologen, Pharmazeuten", von Alfred Trautwein, Uwe Kreibig, Jürgen Hüttermann; De Gruyter Verlag.

Prerequisites / notice

Voraussetzung Mathematik I+II (Studiengänge Gesundheitswissenschaften und Technologie bzw. Humanmedizin) / Mathematik-Lehrveranstaltungen des Basisjahres (Studiengänge Chemie, Chemieingenieurwissenschaften bzw. Interdisziplinäre Naturwissenschaften)

Additional Courses 2nd Year

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>377-0311-00L</td>
<td>Clinical Anatomy Lab</td>
<td>O</td>
<td>5</td>
<td>7P</td>
<td>J. Loffing, O. Ullrich, I. Amrein, G. Colaccio, N. Lier, further lecturers</td>
</tr>
</tbody>
</table>

Abstract

Topographical Anatomy and Radiological anatomy of the head, skull, central nervous system, neck, organs of the upper and lower extremities, thoracic wall and organs, abdominal wall and organs, pelvis and pelvic organs, back muscles, vessels, nerves, functions, clinical aspects. Methods: Anatomical dissection of human bodies.

Objective

Learning and understanding of the detailed composition and function of the healthy human body and its components. Learning of selected examples of relevant radiographic anatomy and their implication in clinical medical work.

Content

Topographic – and radiographic anatomy of selected anatomical regions. Students dissect these regions and discuss important clinical content with aid of assistants.

Prerequisites / notice

Voraussetzungen:
- LE 377-0105-00L Bewegungssapparat
- LE 377-0107-00L Nervensystem
- LE 377-0201-00L Herz-Kreislauf-System
- LE 377-0203-00L Atmungs-System
- LE 377-0205-00L Nieren und Hombodastase

Additional Courses 3rd Year

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>377-0503-01L</td>
<td>Geriatrics</td>
<td>O</td>
<td>1</td>
<td>1V</td>
<td>M. Ristow, J. Goldhahn, R. W. Kressig, M. Martin, further lecturers</td>
</tr>
</tbody>
</table>

Abstract

Fundamentals and relevance of the aging process, as well as its biochemical, physiological and evolutionary basis. Insights into its individual as well as economic impact, including interventional and pharmaceutical treatment options.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1110 of 2152
At the end of the module, students should be able to:
1. correctly describe the biological bases of the aging process;
2. derive physical and pharmacological choices to modulate the aging process;
3. understand the social and psychological implication of aging;
4. describe the specificities of geriatric medicine in the stationary setting;
5. identify the age-specific differences in both diagnostics and therapeutics.

Content
Fundamentals and relevance of the aging process, as well as its biochemical, physiological and evolutionary basis. Insights into its individual as well as economic impact, including interventional and pharmacological treatment options.

Prerequisites / notice
Prerequisites:
LE 377-0105-00L Bewegungsapparat
LE 377-0107-00L Nervensystem
LE 377-0201-00L Herz-Kreislauf-System
LE 377-0203-00L Atmungs-System
LE 377-0205-00L Nieren und Homöostase
LE 377-0301-01L Blut, Immunsystem
LE 377-0301-02L Ernährung und Verdaunung
LE 377-0301-03L Endokrinologie, Stoffwechsel
LE 377-0401-00L Sinnesorgane
LE 377-0403-00L Haut und Anhangsorgane

377-0503-02L Rheumatology

Abstract
Disease patterns from the field of rheumatology. The main focus is on inflammatory diseases, including soft tissue and bone diseases.

Objective
At the end of the module, students should be able to do the following:
- list the typical symptoms and manifestations of the disease patterns;
- list the clinical examinations of the clinical pictures and explain the findings;
- list and justify further clarifications (such as laboratory tests, imaging, etc.) of the clinical pictures;
- recognize the respective clinical pictures of this topic block based on the symptoms, clinical examinations, findings and further clarifications;
- list the possible treatment options for the disease patterns and explain the indication, prevention and risk factors;
- Early detection of clinical pictures that require rapid therapy, identification of further steps for clarification and therapy;
- describe the causes and pathophysiological basis of the disease patterns.

Content
Overview Rheumatology, Rheumatoid Arthritis, M. Still, Spondyloarthritis, SAPHO Syndrome, Infectious and Crystal Arthritis, Juvenile Idiopathic Arthritis, CRPS, Soft Tissue Diseases, Myopathies, Bone Diseases, Vasculitis, Collagenosis, Drug Therapy in Rheumatology, Ergonomics, Occupational Reintegration.

Prerequisites / notice
Prerequisites:
LE 377-0105-00L Bewegungsapparat
LE 377-0107-00L Nervensystem
LE 377-0201-00L Herz-Kreislauf-System
LE 377-0203-00L Atmungs-System
LE 377-0205-00L Nieren und Homöostase
LE 377-0301-01L Blut, Immunsystem
LE 377-0301-02L Ernährung und Verdaunung
LE 377-0301-03L Endokrinologie, Stoffwechsel
LE 377-0401-00L Sinnesorgane
LE 377-0403-00L Haut und Anhangsorgane

377-0503-03L Paediatrics

Abstract
The module Paediatrics describes the peculiarities of the paediatric anamnesis as well as selected topics of the healthy and sick child. The focus is on the newborn, development in the first years of life and adolescence. Infections, congenital heart and the most common respiratory diseases are described throughout the different age stages.

Objective
- Knowledge of the paediatric aspects of the medical history
- Knowledge of the enormous variety of child development (inter- and intra-individual variability)
- Milestone concept: Assessment of the stage of development of a child in the first years of life
- Landmark concept: first knowledge of the demilitation on normality versus disorder
- Getting to know frequent developmental pediatric disorders
- Knowledge of the most common congenital heart defects
- Getting to know and recognize respiratory diseases of the upper and lower respiratory tract

Content
It describes the peculiarities of the pediatric anamnesis as well as selected topics of the healthy and sick child. The focus is on the newborn, development in the first years of life and adolescence. Infections, congenital heart, and the most common respiratory diseases are described throughout the different age stages.

Prerequisites / notice
Prerequisites:
LE 377-0105-00L Bewegungsapparat
LE 377-0107-00L Nervensystem
LE 377-0201-00L Herz-Kreislauf-System
LE 377-0203-00L Atmungs-System
LE 377-0205-00L Nieren und Homöostase
LE 377-0301-01L Blut, Immunsystem
LE 377-0301-02L Ernährung und Verdaunung
LE 377-0301-03L Endokrinologie, Stoffwechsel
LE 377-0401-00L Sinnesorgane
LE 377-0403-00L Haut und Anhangsorgane

377-0511-00L Emergency Medicine

Abstract
By focusing on the 20 most frequent emergencies, the students will learn how to make quick decisions including diagnostic strategy and therapeutic measures. In practical exercises the students practice interprofessional aspects and discuss legal and ethical questions of emergency medicine.
Objective

Perform a triage based on the assessment of the vital signs.
Collect a targeted anamnesis (max. 5-6 questions) of a patient and/or family member
Determine the status of a patient with the necessary clinical examinations.
Determine a differential diagnosis based on the targeted anamnesis and the status.
Interpret the vital signs of a patient
Interpret the results of the paraclinical examinations and confirm/reject the differential diagnosis.
Based on the differential diagnosis, determine the necessary paraclinical examinations
Determine the next steps (treatment in hospital / by family doctor / immediate measures)
Identify possible therapeutic measures

Content

Mornings – case discussions & lectures entire group:
• Hypo / Hyperglycemia
• Principles of poisoning
• Acute Dyspnoea
• Cough
• Acute Diarrhoea
• Gastrointestinal bleeding
• Acute Kidney injury
• Hypertensive Crisis
• Acute Headache
• Coma
• Chest Pain
• Syncope
• Acute Abdominal pain
• Acute blood loss
• Common Trauma
• Head Trauma
• Fever in child
• Crying child
• Seizures and convulsions
• Dyspnoea in child

Afternoon – 4 smaller groups rotating:
• Emergency room (Hospital Lugano)
• Emergency call-center / Ambulance (Croce Verde - Lugano)
• Simulation center (Lugano)
• Case discussion (Bellinzona)
• BLS Refresh

Prerequisites / notice

Voraussetzungen:
LE 377-0101-00L Grundbausteine Mensch
LE 377-0211-00L Körperliche Untersuchung
LE 377-0411-00L Internistische Untersuchung

377-0509-00L Pathology
Only for Human Medicine BSc

Objective

After successfully completing the «General Pathology» module, students should be able to

1. to describe the goals and methods of pathoanatomical diagnostics and in reference to clinical practice.
2. to name the general causes and mechanisms of disease development and the associated pathomorphological changes in cells and tissues.
3. to fundamentally link the general causes and mechanisms of disease development with the therapeutic approaches that arise from them.
4. to describe the mechanisms of general inflammation, cell damage and circulatory pathology and relate them to the pathogenesis of specific diseases.
5. to explain the basics of the classification of benign and malignant tumors.
6. to explain the value of pathoanatomical and molecular diagnostics for the predictive and prognostic stratification of patients and to fundamentally relate them to clinical therapy decisions.

After successfully completing the «Surgical Pathology» module, students should be able to

1. to name the most important organ-specific diseases of the nervous system, the endocrine system, the cardiovascular system, the respiratory system, the digestive system, the urogenital system, the musculoskeletal system and the skin and to describe their characteristic macroscopic and microscopic manifestations.
2. to relate the etiology and pathogenesis of the most important organ-specific diseases to their morphological appearance and clinical presentation.
3. to describe the etiopathogenesis of the most important organ-specific diseases and to understand the relation to the mode of action of common therapeutic approaches.
4. to describe the fundamental importance of pathology and molecular diagnostics for personalized medicine and to describe specific application examples.
In the module "General Pathology" general causes and mechanisms of disease development and the associated pathomorphological changes in cells and tissues are discussed. Basics, current and future possibilities of pathoanatomical diagnostics are presented. The module "General Pathology" provides the basics for understanding the diseases treated in "Special Pathology".

The general pathology part covers the main topics:
1. revision and in-depth histology
2. introduction to pathology, histopathological and macroscopic tissue evaluation, postmortem diagnostics
3. introduction to causes and mechanisms of disease development
4. inflammation theory
5. cell damage and circulation pathology
6. general tumor theory
7. predictive pathology

In the module "Special Pathology" you will learn about the most important organ-specific diseases. Each half-day is built around a complex of topics related to special pathology, and is implemented using various teaching methods. The most important part is the main lecture, in which we systematically discuss the diseases of the organs and organ systems with you. Using macroscopic and microscopic slides, we will show you the relation to pathophysiology, symptomatology and medical diagnostics. We establish clinical references by broadcasting the mortality conference at the USZ. An integrated revision course and exercises based on PathoMaps offer you the opportunity to link the subject matter of the lecture with already known contents, to structure it further and to clarify open points together. A special lecture on molecular pathology, digital pathology and bioinformatics will introduce you to future technologies that are of particular importance for modern medicine.

The special pathology part covers the main topics:
1. upper and lower respiratory tract
2nd upper gastrointestinal tract
3. lower gastrointestinal tract
4. liver, gall bladder, pancreas
5. kidney, draining urinary tract
6. male sexual organs, prostate
7. future technologies (molecular pathology, digital pathology, bioinformatics)
8. blood and bone marrow, lymphatic system
9. endocrine organs
10. skin, bones, joints, soft tissue
11. female sexual organs, mamma
12. neuropathology

Prerequisites / notice
Voraussetzungen:
LE 377-0105-00L Bewegungsapparat
LE 377-0107-00L Nervensystem
LE 377-0201-00L Herz-Kreislauf-System
LE 377-0203-00L Atmungs-System
LE 377-0205-00L Nieren und Hombdostase
LE 377-0301-01L Blut, Immunsystem
LE 377-0301-02L Ernährung und Verdauung
LE 377-0301-03L Endokrinologie, Stoffwechsel
LE 377-0401-00L Sinnesorgane
LE 377-0403-00L Haut und Anhangsorgane

Ethics and Legal Aspects and Communication

377-0513-00L

3 credits 2G 4 credits S. Goldhahn, T. Krones, B. Tag

Only for Human Medicine BSc

Abstract

The students develop the basics of medical law, clinical ethics and communication needed for central applications in the clinic. They learn which relevant legal framework conditions are to be observed in everyday clinical practice and how, in communication with patients, the principles of self-determination, patient well-being and damage avoidance are practically implemented.

Objective

After passing the modul sucessfully, students should be able to
- Know about ethical and legal basics of diagnostics and therapy and how these principles are put into practice
- Knowledge and use of central communication skills with patients, health care teams and the public
- Understand and describe the connections of ethics, law and communication and reflect on the implementation in clinical practice
- Apply the concept of evidence based decision aids
- Apply specific communication skills in simple clinical cases (informed consent, shared decision making, breaking bad news, communication of medical mistakes, Advance care Planning).
- Understand the concept and needs of vulnerable patients and address the concept ethically, legally and communicate adequately
- Know about the necessity of interprofessional collaboration in the process of dealing with ethically and juridically complex cases and practice first steps.
- Know about ethical and legal basics of diagnostics and therapy and how these principles are put into practice
- Knowledge and use of central communication skills with patients, health care teams and the public
- Understand and describe the connections of ethics, law and communication and reflect on the implementation in clinical practice
- Apply the concept of evidence based decision aids
- Apply specific communication skills in simple clinical cases (informed consent, shared decision making, breaking bad news, communication of medical mistakes, Advance care Planning).
- Understand the concept and needs of vulnerable patients and address the concept ethically, legally and communicate adequately
- Know about the necessity of interprofessional collaboration in the process of dealing with ethically and juridically complex cases and practice first steps.

Content

- Overview of clinical ethical cases
- Basics in medical ethics and professional communication
- Knowledge and application of concepts as informed consent, possible alternative juridical instruments
- Knowledge and application of Shared decision Making
- Knowledge and application of advance care planning, concept of advance directices, treatment of patients incapable of decision making
- Breaking bad news, difficult prognoses
- Concept of vulnerability, special needs
- Differences of research/clinical, concept of evidence-based and presonalized medicine
- Conflicts of interests in therapy and research
- Basics on interprofessional cooperation in ethically and legally challenging situations
- Goal of care approach, delaying with end of life decisions
- Differential diagnoses and misdiagnosis, systems of avoidance of medical mistakes

Prerequisites / notice

- LE 377-0405-00L LE 377-0405-00L Bewegungsapparat
- LE 377-0107-00L Nervensystem
- LE 377-0201-00L Herz-Kreislauf-System
- LE 377-0203-00L Atmungs-System
- LE 377-0205-00L Nieren und Hombdostase
- LE 377-0301-01L Blut, Immunsystem
- LE 377-0301-02L Ernährung und Verdauung
- LE 377-0301-03L Endokrinologie, Stoffwechsel
- LE 377-0401-00L Sinnesorgane
- LE 377-0403-00L Haut und Anhangsorgane

Patient Journeys

377-0515-00L

0 credits 2G 3 credits C. Schlegel, E. Kut Bacs, G. Mang, T. Moser, P. Schütz, D. Stämpfli

Only for Human Medicine BSc

Abstract

The modul deals with the importance of patient care by combining patient and interprofessional perspectives as well as the cooperation with other healthcare professions, at any moment (out- and inpatient treatment) as the patient progress along a care pathway.

Objective

- The students are able to analyze an interprofessional patient-path and modify it according to the personal patient situation.
- Students deal with other health professionals and together plan an appropriate patient-path.
- The students are able to take different perspectives (patient, family etc.) and consider them while planning a patient-path.
- Students actively participate in interprofessional sessions, are open to other viewpoints, and consider these for the care and safety of the patients.
Content

Based on various patient situations, students learn how an interprofessional patient-path looks like. During the self-study time, the students bring “their own patient” from their private environment and accompany her/him during the patient-path. Within this framework the individual path including all health professionals involved, will be analyzed. In a written assignment, the most important aspects will be documented and reflected. An exemplary patient case follows each session of the modules, to align the theoretical inputs with the corresponding patient case. During the first session, the students analyze various internet platforms such as NetDoktor and learn how to deal with an informed patient. In addition, pharmacy students get to know the different roles of the pharmacy. In further sessions, the students learn which responsibilities, tasks and competences, various health professionals have, during the care of the patients on their path. In addition, the students have the opportunity to visit a rural hospital in another canton and become acquainted with the importance of the free choice of doctors and treatments in other Cantons.

Prerequisites / notice

Voraussetzungen:
LE 377-0105-00L Bewegungsapparat
LE 377-0107-00L Nervensystem
LE 377-0201-00L Herz-Kreislaufl-System
LE 377-0203-00L Atmungs-System
LE 377-0205-00L Nieren und Homöostase
LE 377-0301-01L Blut, Immunsystem
LE 377-0301-02L Ernährung und Verdauung
LE 377-0301-03L Endokrinologie, Stoffwechsel
LE 377-0401-00L Sinnesorgane
LE 377-0403-00L Haut und Anhangsorgane

377-0501-00L Reproduction

Only for Human Medicine BSc

Objective

- Anatomy
 - Knowledge of the function of the female and male sexual organs
 - Explaining the development of the maternal and fetal parts of the placenta
 - Explaining the anatomy of the pelvis and the pelvic floor
- Gynecology
 - Recognizing gynecological emergencies
 - Listing of the various types of bleeding and irregularities
 - Overview of the benign tumors of the uterus and ovaries as well as the malignant tumors of the cervix and the endometrium
- Reproductive Endocrinology
 - Outlining the main regulatory hormones of the female cycle and explaining their effects
 - Listing of the most important sterility factors
 - Discussing the main contraceptive methods with their mechanisms of action and contraceptive safety
- Physiological situations in obstetrics
 - Knowledge of the physiological processes and adaptation processes during pregnancy
 - Determination of birth process
 - Being aware of the meaning of the puerperium

Content

In this module we lay the anatomical and physiological foundations for the subject of "reproduction". The associated clinical challenges are conveyed from different points of view and with different actors. The content is chronologically prepared and goes from the normal cycle of the woman and her disorders to the pregnancy and related issues to the obstetrics. Students will have the opportunity to work with prospective midwives to learn basic skills of normal birth through a simulation.

Prerequisites / notice

Voraussetzungen:
LE 377-0105-00L Bewegungsapparat
LE 377-0107-00L Nervensystem
LE 377-0201-00L Herz-Kreislaufl-System
LE 377-0203-00L Atmungs-System
LE 377-0205-00L Nieren und Homöostase
LE 377-0301-01L Blut, Immunsystem
LE 377-0301-02L Ernährung und Verdauung
LE 377-0301-03L Endokrinologie, Stoffwechsel
LE 377-0401-00L Sinnesorgane
LE 377-0403-00L Haut und Anhangsorgane

377-0517-00L Oncology

Only for Human Medicine BSc

Abstract

Advances in our knowledge of cancer genetic and the cancer immunology are changing the ways by which clinicians treat various types of cancer. This is a unique course designed to help students to learn about cutting-edge principles of cancer genetic, cancer immunology and target therapy and to apply these concepts to the clinical practice guided by leading experts in the field.

Objective

Students will learn basic concepts of cancer patients’ management and will acquired knowledge regarding experimental and clinically approved anti-cancer therapies.
Content

Basic knowledge in oncology
1. The cancer outbreak and its prevention
2. Tumor diagnostic, imaging and screening
3. Basic principle of cancer management and tumor recurrence
4. Clinical application: a clinical case study

Experimental immuno-oncology
1. Hallmarks of Cancer
2. The promise of Immuno-oncology
3. Experimental Immunotherapies: Checkpoint Blockade and CAR T cells
4. From Bedside to Bench to Bedside (Journal Club)

Targeted therapy
1. Cancer Genomics and Epigenomics
2. Basic knowledge of signal transduction and cancer metabolism
3. From Arsenic Trioxide and Glivec to modern targeted therapies
4. Mechanism of resistance to targeted therapies

Oncology practice
1. Basic and clinical application: Chemotherapy
2. Basic and clinical application: Radiotherapy
3. Clinical application: Evidence Based Medicine in oncology
4. Design and analysis of Clinical Trial
5. Clinical application: Immunotherapy
6. Clinical application: Target Therapy
7. From Symptoms to diagnosis
8. Oncology Emergency

Prerequisites / notice

Prerequisites:
LE 377-0105-00L Bewegungsapparat
LE 377-0107-00L Nervensystem
LE 377-0201-00L Herz-Kreislauf-System
LE 377-0203-00L Atmungs-System
LE 377-0205-00L Nieren und Homöostase
LE 377-0301-01L Blut, Immunsystem
LE 377-0301-02L Ernährung und Verdauung
LE 377-0301-03L Endokrinologie, Stoffwechsel
LE 377-0401-00L Sinnesorgane
LE 377-0403-00L Haut und Anhangsorgane

377-0519-00L Ultrasound Basics

<table>
<thead>
<tr>
<th>O</th>
<th>1 credit</th>
<th>1P</th>
<th>M. Rominger</th>
</tr>
</thead>
</table>

Abstract

Zurich Ultrasound-Modell (ETH/SGUM/UZH) for ultrasound profiles (curricular) und SGUM certificate basic course abdomen during medical studies (SGUM-Young Sonographers, facultative) with E-Learning and 8 hours practical teaching with 4 students per machine and instructor (curricular), as well as facultative 8 more hours practice and OSCE in the following semester.

Objective

- Understanding of basic ultrasound physics.
- Basic ultrasound anatomy abdomen.
- To know and do a typical Abdomen and soft-tissue ultrasound examination.
- Classical ultrasound pathology (Aszites, pleural effusion, gallstones, urinary retention …).
- Know the most important artefacts and relevance for ultrasound imaging.
- SGUM basic abdomen certificate successful determination

Content

Modules curricular teaching ETHZ
- 1+2 Anatomy
- 3+4 Liver, biliary tract, pleura, rips, lung
- 5+6 Pankreas, spleen, adrenals, abdominal vessels
- 7+8 kidneys, bladder, neck, lymphnodes, FAST

SGUM – Young Sonographers (facultative in the 6th Semester BSc Human Medicine)
- 9+10
- 10+11
- 11+12
- 13+14

Prerequisites / notice

Ultraschall Theorie

Voraussetzung:
LE 377-0311-00L Praktikum klinische Anatomie

Courses in Medical Sciences

Core Courses 2nd Year

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0683-00L</td>
<td>Statistics II</td>
<td>O</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>D. Stekhoven</td>
</tr>
</tbody>
</table>

Abstract

Extension of statistics for medical students. This lecture is based on the content of Statistics I. The focus will be on the understanding and the concrete application of statistical methods, as they are used in medical research. Exercises will be solved using the statistical programming environment R.

Objective

After this course you will understand the concept of a broad selection of statistical methods (see also Content). Furthermore, you will know when to use which method. Especially, you will be able to read, understand, and scrutinise the results from such methods, whether these results are written or graphical.

Using the statistical programming environment R, you will be able to read in data, analyse them in various ways, visualise and publish the results in reports or presentations. Knowing R will also enable you to reproduce published analyses, to check whether they work or to use them for your own medical research questions.

Data: 11.11.2021 12:40 Autumn Semester 2021
The course will cover the following topics.
For the part on regression: simple linear regression; multiple regression (including factors and interactions); model selection; logistic regression (including odds ratio and their interpretation); Bayes inference.
For the part on data: categorical data (including univariate tests); power analysis (including a guide on writing an ethics proposal); dealing with missing values.
For the part on further methods: supervised vs unsupervised learning; dimensional reduction (including PCA and tSNE); survival analysis (including Kaplan-Meier curves and logrank test).

There is no script.

An Introduction to Statistical Learning with Applications in R

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
Springer, 2013; online available from the ETH Library

Required: Statistics I

Core Courses 3rd Year

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0866-00L</td>
<td>Foundations of Computer Science for Human Medicine</td>
<td>O</td>
<td>2</td>
<td>2G</td>
<td>H.-J. Böckenhauer, D. Komm</td>
</tr>
<tr>
<td></td>
<td>Only for Human Medicine BSc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This lecture gives an introduction to programming in Python and an overview of basic problem solving strategies and design principles for efficient algorithms and data structures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>To learn basic principles of programming in Python and to apply them for implementing algorithmic approaches for solving simple computational problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This lecture has two goals. On the one hand, an introduction to programming is given, using Python as a sample language. This introduction includes the basic programming principles such as truth values, variables, data types, conditional statements, loops, and functions. On the other hand, basic data structures (such as lists, stacks, and queues) and important concepts of algorithm design are presented and implemented in Python to efficiently solve basic algorithmic tasks on these data structures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>All learning materials will be provided during the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

377-0523-00L	Medical Technology I	O	3	4G	O. Lambery
	Only for Human Medicine BSc				
Abstract	The course will guide students through the user-centered development and evaluation process of a medical engineering system for arm movement support. It will introduce the fundamentals of data acquisition, signal processing and control engineering, complemented by hands-on experience with sensors/signals, actuators, signal processing, feedforward/feedback control as well as 3D design/printing.				
Objective	The course enables students to:				
	• prepare for the collaboration with engineers, and understand their approach to the analysis and characterization of technical challenges				
	• describe the user-centered design and evaluation process of a medical engineering system				
	• explain the fundamentals of data acquisition, signal processing and controls engineering				
	• interpret measurements of physiological signals and analyze these for noise contributions				
	• acquire practical experience with sensors/signals, actuators, signal processing, controls as well as 3D design/printing				
Content	The course covers the interdisciplinary elements of a medical engineering development and its evaluation, ranging from human factors to sensor and actuator technologies, (real-time) signal processing, control engineering basics as well as safety/ethical aspects. It is framed around the electrophysiological assessment and robotic movement support following spinal cord injury, and complemented with practical training on a didactic elbow exoskeleton.				
Prerequisites / notice	Voraussetzungen: LE 402-0083-00L Physik I LE 402-0684-00L Physik II				

Compensatory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0021-00L</td>
<td>Materials and Mechanics in Medicine</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>M. Zenobi-Wong, J. G. Snedeker</td>
</tr>
<tr>
<td>Abstract</td>
<td>Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>course website on Moodle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 376-1103-00L| Frontiers in Nanotechnology | W | 4 | 4V | V. Vogel, further lecturers |
| Abstract | Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers. |
Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently sizzling in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.

Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.

All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.
Analytical Competencies
J.
assessed
not assessed
assessed
not assessed
assessed
Concepts and Theories

Communication

1.5V

Concepts and Theories

W

assessed

K. Locher,
The course covers the following topics: drug targeting and delivery principles, macromolecular drug carriers, liposomes, micelles,

Analytical Competencies

assessed

not assessed

assessed

R. Glockshuber

E. Weber-Ban

D-BIOL students are obliged to take part I and part II (next semester) as a two-semester course

Abstract

Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current
topics in protein biophysics and structural biology.
551-0309-00L Concepts in Modern Genetics

Objective
Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysical and physical methods as well as modern methods for protein purification and microanalytic.

Lecture notes
Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching.

Literature
Basics:
- Creighton, T.E., Proteins, Freeman, (1993)
- Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman.

Current topics: References will be given during the lectures.

551-0313-00L Microbiology (Part I)

Objective
This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacteria cell structure, genetics, metabolism, symbiosis and pathogenesis.

Content
The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.

Lecture notes
Scripts and additional material will be provided during the semester.

551-0319-00L Cellular Biochemistry (Part I)

Objective
The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Content
Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes. Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation; splicing; gene expression.

Lecture notes
Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch)

Literature
Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.

Prerequisites / notice
To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.

571-2413-00L Evolutionary Genetics

Objective
The concept course ‘Evolutionary Genetics’ consists of two lectures that jointly provide an introduction to the fields of population and quantitative genetics (emphasis on basic concepts) and ecological genetics (more emphasis on evolutionary and ecological processes of adaptation and speciation).

Content
Population genetics - Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of inbreeding; natural selection; random genetic drift and effective population size; gene flow and hierarchical population structure; molecular population genetics: neutral theory of molecular evolution and basics of coalescent theory. Quantitative genetics - Continuous variation; measurement of quant. characters; genes, environments and their interactions; measuring their influence; response to selection; inbreeding and crossbreeding, effects on fitness; Fisher's fundamental theorem. Ecological Genetics - Concepts and methods for the study of genetic variation and its role in adaptation, reproductive isolation, hybridization and speciation

Lecture notes
Handouts

Literature
Abstract
The course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.

Objective
Detailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.

Content
Molecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnostics and antimicrobial intervention.

Lecture notes
Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.

Literature
Recommendations will be given in the first lecture.

Prerequisites / notice
Lectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), without break!
Information Systems for Engineers

This course provides the basics of relational databases from the perspective of the user.

We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

Objective

This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

13. Outlook

Lecture material (slides).

 (It is not required to buy the book, as the library has it)

For non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logic
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

Computer Science II

The course provides the foundations for the design and analysis of algorithms.
Classical problems ranging from sorting up to problems on graphs are used to discuss common data structures, algorithms and algorithm design paradigms.
The course also comprises an introduction to parallel and concurrent programming.

An understanding of the analysis and design of fundamental and common algorithms and data structures. Knowledge regarding chances, problems and limits of parallel and concurrent programming.
Data structures and algorithms: mathematical tools for the analysis of algorithms (asymptotic function growth, recurrence equations, recurrence trees), informal proofs of algorithm correctness (invariants and code transformation), design paradigms for the development of algorithms (induction, divide-and-conquer, backtracking and dynamic programming), classical algorithmic problems (searching, selection and sorting), data structures for different purposes (linked lists, hash tables, balanced search trees, heaps, union-find), further tools for runtime analysis (generating functions, amortized analysis). The relationship and tight coupling between algorithms and data structures is illustrated with graph algorithms (traversals, topological sort, closure, shortest paths, minimum spanning trees).

Parallel programming: structure of parallel architectures (multicore, vectorization, pipelining) concepts of parallel programming (Amdahl's and Gustavson's laws, task/data parallelism, scheduling), problems of concurrency (data races, bad interleavings, memory reordering), process synchronisation and communication in a shared memory system (mutual exclusion, semaphores, monitors, condition variables).

The concepts are underpinned with examples of concurrent and parallel programs and with parallel algorithms, implemented in C++.

In general, the concepts provided in the course are motivated and illustrated with practically relevant algorithms and applications.

Exercises are carried out in Code-Expert, an online IDE and exercise management system.

All required mathematical tools above high school level are covered, including an introduction to graph theory.

This course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available.

Students learn to choose and apply appropriate tools from computer science, process and analyze real-world data from their subject of study, handle the complexity of real-world data.

Paradigms: divide & conquer, dynamic programming, greedy algorithms; Data Structures: search trees, dictionaries, priority queues; Complexity Theory; P and NP, NP-completeness, Cook's theorem, reductions, cryptography and zero-knowledge proofs.

The following topics are covered: modeling and simulations, introduction to programming, introduction matrices, managing data with lists and tables and with relational databases, introduction to programming.

The course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.

- The students learn to apply selected concepts and tools from computer science for working on interdisciplinary projects. The following topics are covered: modeling and simulations, managing data with lists and tables and with relational databases, introduction to programming.

- The students learn to apply selected concepts and tools from computer science for working on interdisciplinary projects.
Objective

The students learn to
- understand the role of computer science in science,
- to control computer and automate processes of problem solving by programming,
- choose and apply appropriate tools from computer science,
- process and analyze real-world data from their subject of study,
- handle the complexity of real-world data.

Content

1. The role of computer science in science
2. Introduction to Programming with Python
3. Modeling and simulations
4. Data management with lists and tables
5. Data management with a relational database
6. Introduction to Matrices

Lecture notes

All materials for the lecture are available at www.gdi.ethz.ch

Literature

Prerequisites / notice

This course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available.

Taught competencies

- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Communication
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Self-awareness and Self-reflection
- Self-direction and Self-management

252-0855-00L

Computer Science in Secondary School Mathematics

Z 4 credits 3G J. Hromkovic, G. Serafini

Abstract

The unit "Computer Science in Secondary School Mathematics" addresses key contributions of computer science to general education, the tight relations between the algorithmic and the mathematical way of thinking, and the thoughtful choice of computer science topics for high school mathematics classes.

Objective

The general goal of the course consists in presenting ways to teach fundamentals of computer science, which are closely related to contents and methods of mathematics. After attending the course unit, a mathematics teacher is able to teach selected fundamentals of computer science in mathematics classes.

The students understand the fundamental concepts of computer science in the context of a broad and deep knowledge. Through this understanding, they manage to prepare teaching materials for a successful knowledge transfer and to pass their passion for the subject on to their pupils.

The students know various teaching methods as well as their advantages and disadvantages. They can handle inhomogeneous prior knowledge of the learners inside a class. Besides holding classes, the students do care about the individual pupil support.

They encourage the autonomy of the learners, manage to work with diverse target groups and to establish a positive learning environment.

The students are able to express themselves using a comprehensible and refined professional language, both in a spoken and a written way, and they master the basic terminology of computer science. Besides the English terms, they are familiar with the corresponding German expressions. The students are able to produce detailed, matured, linguistically correct and design-wise appealing teaching materials.

Content

The main topics of the course unit "Computer Science in Secondary School Mathematics" represent a scientific and didactic added value for mathematics classes.

The course covers the didactics of logic, of cryptography, of finite state automata, of computability and of the introduction to programming. The students develop the understanding of fundamental scientific concepts such as algorithm, program, complexity, determinism, computation, automata, verification, testing, security of a cryptosystem and secure communication. They reflect on ways to embed them into a scientifically sound and didactically sustainable mathematics course.

In a semester exercise, the students develop and document an adaptive teaching unit for computer science. They learn to employ the didactics methods and techniques that are introduced at the beginning of the semester.

Lecture notes

Literatur wird angegeben. Zusätzliche Unterlagen und Folien werden zur Verfügung gestellt.

252-0856-00L

Computer Science

Z 4 credits 2V+2U F. O. Friedrich Wicker, R. Sasse

Abstract

The course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required.
Objective

Primary educational objective is to learn programming with C++. After having successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed. Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking like a computer scientist.

Content

The course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.

Lecture notes

English lecture notes will be provided during the semester. The lecture notes and the lecture slides will be made available for download on the course web page. Exercises are solved and submitted online.

Literature

Bjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000

Generally Accessible Seminars and Colloquia

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>251-0100-00L</td>
<td>Computer Science Colloquium</td>
<td>E-</td>
<td>0</td>
<td>2K</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Invited talks, covering the entire scope of computer science. External Listeners are welcome at no charge. A detailed schedule is published at the beginning of each semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Top international computer scientists take the floor at the distinguished computer science colloquium. Our guest speakers present impacting topics across various areas of the discipline. The colloquium series is held every semester and also includes inaugural and farewell lectures of the department's professors. The colloquium is a noteworthy event for all graduate students. Outside attendance is equally welcome.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Eingeladene Vorträge aus dem gesamten Bereich der Informatik, zu denen auch Auswärtige kostenlos eingeladen sind. Zu Semesterbeginn erscheint jeweils ein ausführliches Programm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-5960-00L</td>
<td>Colloquium on Mathematics, Computer Science, and Education Subject didactics for mathematics and computer science teachers.</td>
<td>E-</td>
<td>0</td>
<td></td>
<td>N. Hungerbühler, M. Akveld, D. Grawehr Morath, J. Hromkovic, P. Spindler</td>
</tr>
<tr>
<td>Abstract</td>
<td>Didactics colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computer Science (General Courses) - Key for Type

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>Type</th>
<th>Description</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td></td>
<td>E-</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td></td>
<td>Z</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td></td>
<td>Dr</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Type</th>
<th>Description</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td>practical/laboratory course</td>
<td>P</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>independent project</td>
<td>A</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>diploma thesis</td>
<td>D</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>revision course / private study</td>
<td>R</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Computer Science Bachelor

First Year Examinations

First Year Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0025-01L</td>
<td>Discrete Mathematics</td>
<td>O</td>
<td>7</td>
<td>4V+2U</td>
<td>U. Maurer</td>
</tr>
</tbody>
</table>
| **Abstract** | Content: Mathematical reasoning and proofs, abstraction. Sets, relations (e.g. equivalence and order relations), functions, (un-)countability, number theory, algebra (groups, rings, fields, polynomials, subalgebras, morphisms), logic (propositional and predicate logic, proof calculi).
Objective | The primary goals of this course are (1) to introduce the most important concepts of discrete mathematics, (2) to understand and appreciate the role of abstraction and mathematical proofs, and (3) to discuss a number of applications, e.g. in cryptography, coding theory, and algorithm theory.
Content | See course description.
Lecture notes | available (in english) |
| 252-0027-00L | Introduction to Programming | O | 7 | 4V+2U | T. Gross |
| **Abstract** | Introduction to fundamental concepts of modern programming and operational skills for developing high-quality programs, including large programs as in industry. The course introduces engineering principles with an object-oriented approach based.
Objective | Many people can write programs. The "Introduction to Programming" course goes beyond that basic goal: it teaches the fundamental concepts and skills necessary to perform programming at a professional level. As a result of successfully completing the course, students master the fundamental control structures, data structures, reasoning patterns and programming language mechanisms characterizing modern programming, as well as the fundamental rules of producing high-quality software. They have the necessary programming background for later courses introducing programming skills in specialized application areas.
Content | Basics of object-oriented programming, Objects and classes, Pre- and postconditions, class invariants, design by contract, Fundamental control structures, Assignment and references. Fundamental data structures and algorithms. Recursion. Inheritance and interfaces, basic concepts of Software Engineering such as the software process, specification and documentation, debugging, reuse and quality assurance.
Lecture notes | The lecture slides are available for download on the course page.
Literature | See the course page for up-to-date information.
Prerequisites / notice | There are no special prerequisites. Students are expected to enroll in the other courses offered to first-year students of computer science. |
| 252-0026-00L | Algorithms and Data Structures | O | 7 | 3V+2U+1A | M. Püschel, D. Steurer |
| **Abstract** | The course provides the foundation of the design and analysis of algorithms. The material is introduced using classical algorithmic problems including graph problems. The necessary basic introduction to graph theory is provided as part of this course.
Objective | An understanding of the design and analysis of fundamental algorithms and data structures. A basic understanding of graph theory and several basic graph algorithms.
Content | This course is an introduction into the design and analysis of algorithms. On the one hand this includes classical algorithm design patterns including induction, divide-and-conquer and dynamic programming. We study these using classical example such as searching and sorting. On the other hand the course covers the interaction between algorithms and data structures including linked lists, search trees, heaps, and union-find structures. A particular focus are graph algorithms for shortest path and minimal spanning tree problems. We provide the necessary introduction into graph theory as part of this course.
Lecture notes | A complete script in German is under development. A complete draft is already available on the course website.
Literature | Abgesehen vom Skript und Vorlesungsunterlagen empfehlen wir die folgenden Bücher als zusätzliches Nachschlagewerk.
O. Sorkine Hornung: Lineare Algebra (by Gutknecht) in German, with English expressions for all technical terms. |

First Year Examination Block 2

Offered in the spring semester.

Basic Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0131-00L</td>
<td>Linear Algebra</td>
<td>O</td>
<td>7</td>
<td>4V+2U</td>
<td>Ö. Imamoglu, O. Sorkine Hornung</td>
</tr>
</tbody>
</table>
| **Abstract** | Introduction to linear algebra (vector spaces, linear transformations, matrices), inner product, determinants, matrix decompositions (LU, QR, eigenvalue and singular value decomposition).
Objective | Understand and apply fundamental concepts of linear algebra
Content | Linear Algebra:
- Linear systems of equations, vectors and matrices, norms and scalar products, LU decomposition, vector spaces and linear transformations, least squares problems, QR decomposition, determinants, eigenvalues and eigenvectors, singular value decomposition, applications.
Lecture notes | Extracts from the lecture notes "Lineare Algebra" (by Gutknecht) in German, with English expressions for all technical terms.
Literature | Recommendations on the course website
Prerequisites / notice | The relevant high school material is reviewed briefly at the beginning. |
| 252-0057-00L | Theoretical Computer Science | O | 7 | 4V+2U | J. Hromkovic, H.-J. Böckenhauer |
| **Abstract** | Concepts to cope with: a) what can be accomplished in a fully automated fashion (algorithmically solvable) b) How to measure the inherent difficulty of tasks (problems) c) What is randomness and how can it be useful? d) What is nondeterminism and what role does it play in CS? e) How to represent infinite objects by finite automata and grammars?
Objective | Learning the basic concepts of computer science along their historical development |
This lecture gives an introduction to theoretical computer science, presenting the basic concepts and methods of computer science in its historical context. We present computer science as an interdisciplinary science which, on the one hand, investigates the border between the possible and the impossible and the quantitative laws of information processing, and, on the other hand, designs, analyzes, verifies, and implements computer systems.

The main topics of the lecture are:
- alphabets, words, languages, measuring the information content of words, representation of algorithmic tasks
- finite automata, regular and context-free grammars
- Turing machines and computability
- complexity theory and NP-completeness
- design of algorithms for hard problems

The lecture is covered in detail by the textbook "Theoretical Computer Science".

Basic literature:

Further reading:

More exercises and examples in:
6. A. Asteroth, Ch. Baier: Theoretische Informatik

Prerequisites / notice
During the semester, two non-obligatory test exams will be offered.

252-0061-00L Systems Programming and Computer Architecture O 7 credits 4V+2U T. Roscoe, A. Klimovic

Abstract
Introduction to systems programming. C and assembly language, floating point arithmetic, basic translation of C into assembler, compiler optimizations, manual optimizations. How hardware features like superscalar architecture, exceptions and interrupts, caches, virtual memory, multicore processors, devices, and memory systems function and affect correctness, performance, and optimization.

Objective
The course objectives are for students to:

1. Develop a deep understanding of, and intuition about, the execution of all the layers (compiler, runtime, OS, etc.) between programs in high-level languages and the underlying hardware: the impact of compiler decisions, the role of the operating system, the effects of hardware on code performance and scalability, etc.

2. Be able to write correct, efficient programs on modern hardware, not only in C but high-level languages as well.

3. Understand Systems Programming as a complement to other disciplines within Computer Science and other forms of software development.

This course does not cover how to design or build a processor or computer.

Content
This course provides an overview of "computers" as a platform for the execution of (compiled) computer programs. This course provides a programmer's view of how computer systems execute programs, store information, and communicate. The course introduces the major computer architecture structures that have direct influence on the execution of programs (processors with registers, caches, other levels of the memory hierarchy, supervisor/kernel mode, and I/O structures) and covers implementation and representation issues only to the extent that they are necessary to understand the structure and operation of a computer system.

The course attempts to expose students to the practical issues that affect performance, portability, security, robustness, and extensibility. This course provides a foundation for subsequent courses on operating systems, networks, compilers and many other courses that require an understanding of the system-level issues. Topics covered include: machine-level code and its generation by optimizing compilers, address translation, input and output, trap/event handlers, performance evaluation and optimization (with a focus on the practical aspects of data collection and analysis).
Lecture notes
- C programming
- Integers
- Pointers and dynamic memory allocation
- Basic computer architecture
- Compiling C control flow and data structures
- Code vulnerabilities
- Implementing memory allocation
- Linking
- Floating point
- Optimizing compilers
- Architecture and optimization
- Caches
- Exceptions
- Virtual memory
- Multicore
- Devices

Literature
The course is based in part on "Computer Systems: A Programmer's Perspective" (3rd Edition) by R. Bryant and D. O'Hallaron, with additional material.

Prerequisites / notice
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lecture Schedule</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0029-00L</td>
<td>Parallel Programming</td>
<td>O</td>
<td>5 credits</td>
<td>2V+2U</td>
</tr>
<tr>
<td>252-0028-00L</td>
<td>Design of Digital Circuits</td>
<td>O</td>
<td>5 credits</td>
<td>2V+2U</td>
</tr>
</tbody>
</table>

401-0213-15L
Analysis II
Differential and Integral calculus in many variables, vector analysis.

Literature
Für allgemeine Informationen, sehen Sie bitte die Webseite der Vorlesung

401-0663-00L
Numerical Methods for Computer Science
O 7 credits 2V+2U+2P R. Hiptmair

Abstract
The course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.

Objective
- Knowledge of the fundamental algorithms in numerical mathematics
- Knowledge of the essential terms in numerical mathematics and the techniques used for the analysis of numerical algorithms
- Ability to choose the appropriate numerical method for concrete problems
- Ability to interpret numerical results
- Ability to implement numerical algorithms efficiently

Content
- Computing with Matrices and Vectors
 2.1 Fundamentals
 2.2 Software and Libraries
 2.4 Computational Effort
 2.5 Machine Arithmetic and Consequences

- Direct Methods for (Square) Linear Systems of Equations
 3.1 Introduction: Linear Systems of Equations (LSE)
 3.2 Theory: Linear Systems of Equations (LSE)
 3.5 Survey: Elimination Solvers for Linear Systems of Equations
 3.7 Sparse Linear Systems

- Direct Methods for Linear Least Squares Problems
 4.1 Least Squares Solution Concepts
 4.2 Normal Equation Methods
 4.3 Orthogonal Transformation Methods
 4.3.1 Transformation Idea
 4.3.2 Orthogonal/Unitary Matrices
 4.3.3 QR-Decomposition
 4.3.4 QR-Based Solver for Linear Least Squares Problems
 4.4 Singular Value Decomposition (SVD)
 4.5 SVD-Based Optimization and Approximation

- Filtering Algorithms
 5.1 Filters and Convolutions
 5.2 Discrete Fourier Transform (DFT)
 5.3 Fast Fourier Transform (FFT)

- Machine Learning of One-Dimensional Data (Data Interpolation and Data Fitting in 1D)
 6.1 Abstract Interpolation (AI)
 6.2 Global Polynomial Interpolation
 6.4 Splines
 6.7 Least Squares Data Fitting

- Iterative Methods for Non-Linear Systems of Equations
 9.2 Iterative Methods
 9.4 Finding Zeros of Scalar Functions
 9.5 Newton's Method in Rn
 9.7 Non-linear Least Squares

Lecture notes
Lecture materials (PDF documents and codes) will be made available to the participants through the course web page and online repositories. Access information will be communicated in the beginning of the course.
Core Courses

Major: Information and Data Processing

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0206-00L</td>
<td>Visual Computing</td>
<td>O</td>
<td>8 credits</td>
<td>4V+3U</td>
<td>S. Coros, M. Pollefeys</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course acquaints students with core knowledge in computer graphics, image processing, multimedia and computer vision. Topics include: Graphics pipeline, perception and camera models, transformation, shading, global illumination, texturing, sampling, filtering, image representations, image and video compression, edge detection and optical flow.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course provides an in-depth introduction to the core concepts of computer graphics, image processing, multimedia and computer vision. The course forms a basis for the specialization track Visual Computing of the CS master program at ETH.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Course topics will include: Graphics pipeline, perception and color models, camera models, transformations and projection, projections, lighting, shading, global illumination, texturing, sampling theorem, Fourier transforms, image representations, convolution, linear filtering, diffusion, nonlinear filtering, edge detection, optical flow, image and video compression.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>In theoretical and practical homework assignments students will learn to apply and implement the presented concepts and algorithms. A scriptum will be handed out for a part of the course. Copies of the slides will be available for download. We will also provide a detailed list of references and textbooks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Markus Gross: Computer Graphics, scriptum, 1994-2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major: Theoretical Computer Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0209-00L</td>
<td>Algorithms, Probability, and Computing</td>
<td>O</td>
<td>8 credits</td>
<td>4V+2U+1A</td>
<td>B. Gärtner, M. Ghaffari, R. Kyng, A. Steger, D. Steurer</td>
</tr>
<tr>
<td>Abstract</td>
<td>Advanced design and analysis methods for algorithms and data structures: Random(ized) Search Trees, Point Location, Minimum Cut, Linear Programming, Randomized Algebraic Algorithms (matchings), Probabilistically Checkable Proofs (introduction).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Studying and understanding of fundamental advanced concepts in algorithms, data structures and complexity theory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Will be handed out.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Introduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest; Randomized Algorithms by R. Motwani und P. Raghavan; Computational Geometry - Algorithms and Applications by M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major: Systems and Software Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0210-00L</td>
<td>Compiler Design</td>
<td>O</td>
<td>8 credits</td>
<td>4V+3U</td>
<td>Z. Su</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course uses compilers as examples to expose students to modern software development techniques. Tentative topics include: compiler organization; lexical analysis; top-down and bottom-up parsing; symbol tables; semantic analysis; code generation; local and global optimization; register allocation; automatic memory management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Learn principles of compiler design; gain practical experience designing and implementing a medium-scale software system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course uses compilers as example to expose modern software development techniques. The course introduces the students to the fundamentals of compiler construction. Students will implement a simple yet complete compiler for an object-oriented programming language for a realistic target machine. Students will learn the use of appropriate tools. Throughout the course, students learn to apply their knowledge of theory (automata, grammars, stack machines, program transformation) and well-known programming techniques (module definitions, design patterns, frameworks, software reuse) in a software project.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann Publishers, 1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0217-00L</td>
<td>Computer Systems</td>
<td>O</td>
<td>8 credits</td>
<td>4V+2U+1A</td>
<td>T. Roscoe, S. Shinde, R. Wattenhofer</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course is about real computer systems, and the principles on which they are designed and built. We cover both modern OSes and the large-scale distributed systems that power today’s online services. We illustrate the ideas with real-world examples, but emphasize common theoretical results, practical tradeoffs, and design principles that apply across many different scales and technologies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1128 of 2152
Objective

The objective of the course is for students to understand the theoretical principles, practical considerations, performance tradeoffs, and engineering techniques on which the software underpinning almost all modern computer systems is based, ranging from single embedded systems-on-chip in mobile phones to large-scale geo-replicated data centers. By the end of the course, students should be able to reason about highly complex, real, operational software systems, applying concepts such as hierarchy, modularity, consistency, durability, availability, fault-tolerance, and replication. The course combines lectures with a set of assignments in which students are asked to work with a JAVA simulation tool.

Content

This course introduces the student to the fundamentals of parallel computing using shared and distributed memory programming models. The algorithms and methods are supported with problems that appear frequently in science and engineering.

Prerequisites / notice

Students should have interest in wireless communication, and should be familiar with Java programming. Experience with GNU Octave or Matlab will help too (not required).

Number of participants limited to 150.

Literature

(1) The course webpage (look for Stefan Mangold's site)
(2) The Java 802 protocol emulator "JEmula802" from https://bitbucket.org/lfield/jemula802

Prerequisites / notice

We will assume knowledge of the “Systems Programming” and “Computer Networks” courses (or equivalent), and their prerequisites, and build upon them.

Electives

Students may also choose courses from the Master's program in Computer Science. It is their responsibility to make sure that they meet the requirements and conditions for these courses.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0293-00L</td>
<td>Wireless Networking and Mobile Computing</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>S. Mangold</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course gives an overview of wireless standards and summarizes the state of art for Wi-Fi 802.11, Cellular 5G, and Internet-of-Things, including new topics such as contact tracing with Bluetooth, audio communication, cognitive radio, visible light communications. The course combines lectures with a set of assignments in which students are asked to work with a JAVA simulation tool.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The objective of the course is to learn about the general principles of wireless communications, including physics, frequency spectrum regulation, and standards. Further, the most up-to-date standards and protocols used for wireless LAN IEEE 802.11, Wi-Fi, Internet-of-Things, sensor networks, cellular networks, visible light communication, and cognitive radios, are analyzed and evaluated. Students develop their own add-on mobile computing algorithms to improve the behavior of the systems, using a JAVA-based event-driven simulator. We also hand out embedded systems that can be used for experiments for optical communication.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-3110-00L</td>
<td>Human Computer Interaction</td>
<td>W</td>
<td>6</td>
<td>2V+1U+2A</td>
<td>O. Hilliges, C. Holz</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course provides an introduction to the field of human-computer interaction, emphasising the central role of the user in system design. Through detailed case studies, students will be introduced to different methods used to analyse the user experience and shown how these can inform the design of new interfaces, systems and technologies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The goal of the course is that students should understand the principles of user-centred design and be able to apply these in practice. As well as understand the basic notions of Computational Design in a HCI context.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course will introduce students to various methods of analysing the user experience, showing how these can be used at different stages of system development from requirements analysis through to usability testing. Students will get experience of designing and carrying out user studies as well as analysing results. The course will also cover the basic principles of interaction design. Practical exercises related to touch and gesture-based interaction will be used to reinforce the concepts introduced in the lecture. To get students to further think beyond traditional system design, we will discuss issues related to ambient information and awareness.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course website can be found here:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://teaching.siplab.org/human_computer_interaction/2021/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering. With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering to and deploy them on large scale high performance computing (HPC) architectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1129 of 2152
Introduction to Neuroinformatics

Abstract

The course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.

Objective

Understanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monoculars of physics, math, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.

Prerequisites / notice

Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.

Literature

- Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
- Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
- Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
- Lecture notes

Prerequisites / notice

Prerequisites: Basic knowledge in computer architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis.

Lecture notes

More information is available at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html .

Prerequisites / notice

Prerequisites: Basic knowledge in computer architectures and programming.
This course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.

402-0209-00L Quantum Physics for Non-Physicists W 6 credits 3V+2U L. Pacheco Cañamero B. del Rio

Abstract
This is an introduction to the physics of quantum mechanics, aimed primarily at students with little to no background in physics. We start from the basic postulates and follow an information-theoretical approach to study the behaviour of quantum systems, from a single spin to entangled particles in space and the hydrogen atom.

Objective
This course teaches the basics of quantum physics, and complements courses in quantum computation and information theory. Students are equipped with tools to tackle complex quantum mechanical problems and foundational questions. The course covers approximately the same content as QM1, but from an information-driven perspective.

Content
1. Quantum formalism, from qubits to particles in space
2. Time and dynamics for quantum systems
3. Problems in 1D
4. Uncertainty and open systems
5. Spin
6. Problems in 3D
7. Non-locality and foundational aspects of quantum theory

Prerequisites / notice
This course is aimed at non-physicists, and in particular at students with a background in computer science, mathematics or engineering. Basic linear algebra and calculus knowledge is required (equivalent to first-year courses). Physics knowledge is not required. Physicists and students from a different background than outlined above are welcome at their own risk.

Note that while we follow an information-theoretical approach, this is not a course on quantum information theory or quantum computing. It therefore complements those courses offered at ETH in both semesters.

Taught competencies
Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: assessed

Seminar
Number Title Type ECTS Hours Lecturers
252-2300-00L Dependency Structures and Lexicalized Grammars W 2 credits 2S R. Cotterell

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

Number of participants limited to 25.

Abstract
Dependency parsing is a fundamental task in natural language processing. This seminar explores a variety of algorithms for efficient dependency parsing and their derivation in a unified algebraic framework.

Objective
The core ideas behind the mathematics of dependency parsing are explored.

Content
Dependency Structures and Lexicalized Grammars: An Algebraic Approach
The main goals of this seminar are 1) learning how to read and understand a recent research paper in computer science; and 2) learning how to present a technical topic in computer science to an audience of peers.

The technical content of this course falls into the general area of software engineering but will vary from semester to semester.

Participants will learn how to analyze and solve IT problems in practice in a systematic way, present findings to decision bodies, and defend their conclusions. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

The seminar will consist of student presentations based on a list of papers that will be provided at the beginning of the course. Presentations will be done in teams. Presentations will be arranged in slots of 30 minutes talk plus 15 minutes questions. Grades will be assigned based on quality of the presentation, coverage of the topic including material not in the original papers, participation during the seminar, and ability to understand, present, and criticize the underlying technology.

The seminar covers core concepts and ideas in the general area of machine learning systems, ranging from distributed and federated learning systems, DevOps systems for ML, life cycle and data management systems for ML, etc.

The seminar will consist of student presentations based on a list of papers that will be provided at the beginning of the course. Presentations will be done in teams. Presentations will be arranged in slots of 30 minutes talk plus 15 minutes questions. Grades will be assigned based on quality of the presentation, coverage of the topic including material not in the original papers, participation during the seminar, and ability to understand, present, and criticize the underlying technology.

Participants will learn how to analyze and solve IT problems in practice in a systematic way, present findings to decision bodies, and defend their conclusions. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

The seminar covers core concepts and ideas in the general area of software engineering but will vary from semester to semester.

Participants learn how to systematically approach an IT problem in practice. They work in groups of three to solve a case from a participating company in depth, studying provided materials, searching for additional information, analyzing all in depth, interviewing members from the company or discussing findings with them to obtain further insights, and presenting and defending their conclusion to company representatives, the lecturer, and all other participants of the seminar. Participants also learn how to challenge presentations from other teams, and obtain an overview of learnings from the cases other teams worked on.

The seminar covers core concepts and ideas in the general area of software engineering but will vary from semester to semester.

Participants will learn how to analyze and solve IT problems in practice in a systematic way, present findings to decision bodies, and defend their conclusions. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
This seminar introduces the latest research in the field of media technology and innovation. It is an exciting field laying at the intersection of computer vision, computer graphics, natural language processing, and machine learning. The seminar will cover a broad spectrum of topics considering not only the technical innovations but also the possibilities these technologies provide to professionals in the media industry and consumers of media.

227-2211-00L Seminar in Computer Architecture

W 2 credits 2S O. Mutlu, M. H. K. Alser, J. Gómez Luna

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

Abstract
In this seminar course, we will cover fundamental and cutting-edge research papers in computer architecture. The course will consist of multiple components that are aimed at improving students’ technical skills in computer architecture, critical thinking and analysis on computer architecture concepts, as well as technical presentation of concepts and papers in both spoken and written forms.

Objective
The main objective is to learn how to rigorously analyze and present papers and ideas on computer architecture. We will have rigorous presentation and discussion of selected papers during lectures and a written report delivered by each student at the end of the semester.

Content
The course will include the following topics (part I and II): hardware security; architectural acceleration mechanisms for key applications like machine learning, graph processing and bioinformatics; memory systems; interconnects; processing inside memory; various fundamental and emerging paradigms in computer architecture; hardware/software co-design and cooperation; fault tolerance; energy efficiency; heterogeneous and parallel systems; new execution models, etc.

Lecture notes
All the materials will be posted on the course website: https://safari.ethz.ch/architecture_seminar/

Literature
Key papers and articles, on both fundamentals and cutting-edge topics in computer architecture will be provided and discussed. These will be posted on the course website.

Prerequisites / notice
Students should have done very well in Design of Digital Circuits and show a genuine interest in Computer Architecture.

Minor Courses

3. Semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0945-00L</td>
<td>Cell and Molecular Biology for Engineers I</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>C. Frei</td>
</tr>
</tbody>
</table>

Abstract
The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.

Objective
After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.

Content
Lectures will include the following topics (part I and II): DNA, chromosomes, genome engineering, RNA, proteins, genetics, synthetic biology, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer and stem cells.

In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade.

Lecture notes
Scripts of all lectures will be available.

Literature

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain C - Social Competencies</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>assessed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain D - Personal Competencies</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>assessed</td>
<td></td>
</tr>
</tbody>
</table>

Discovering Management

Entry level course in management for BSc, MSc and PhD students at all levels not belonging to D-MTEC. This course can be complemented with Discovering
Management (Exercises) 351-0778-01.

Abstract
Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC.

Objective
The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship.

In particular, the aims of the course are to:
1. broaden understanding of management principles and frameworks
2. advance insights into the sources of corporate and entrepreneurial success
3. develop skills to apply this knowledge to real-life managerial problems

Content
The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / or appreciate the challenges that entrepreneurs and managers deal with.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.

The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.

Lecture notes
All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle. These course materials will form the point of departure for the lectures, class discussions and team work.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Communication	assessed
Domain D - Personal Competencies	Creative Thinking	assessed

351-0778-01L Discovering Management (Exercises) Complementary exercises for the module Discovering Management.

Prerequisite: Participation and successful completion of the module Discovering Management (351-0778-00L) is mandatory.

Abstract
This course is offered complementary to the basis course 351-0778-00L, "Discovering Management". The course offers an additional exercise.

Objective
The general objective of Discovering Management (Exercises) is to complement the course "Discovering Management" with one larger additional exercise.

Discovering Management (Exercises) thus focuses on developing the skills and competences to apply management theory to a real-life exercise from practice.

Content
Students who are enrolled for "Discovering Management Exercises" are asked to write an essay about a particular management issue of choice, using your insights from Discovering Management.

Students have the option to either write this alone or in a group of two students.

Literature
All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle. Students following this course should also be enrolled for course 351-0778-00L, "Discovering Management".

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Communication	assessed
Domain D - Personal Competencies	Creative Thinking	assessed

376-1177-00L Human Factors I

Abstract
Strategies of human-system-interaction, individual needs, physical & mental abilities, and system properties are key factors affecting the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's health, well-being, and satisfaction as well as the overall system performance.

Objective
The goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.

Content
- Physiological, physical, and cognitive factors in sensation, perception, and action
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance, well-being, and comfort
- Usability engineering in system designs, product development, and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks

Literature
- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS
Objective
Acquire knowledge of main methodologies for computer-based models of astrophysical systems, the physical equations behind them, and train such knowledge with simple examples of computer programs.

Content
1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility
2. Large-N gravity calculation, collisionless N-body systems and their simulation
3. Fast Fourier Transform and spectral methods in general
4. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiters
5. Lagrangian Hydrodynamics: The SPH method
6. Resolution and instabilities in Hydrodynamics
7. Initial Conditions: Cosmological Simulations and Astrophysical Disks
8. Physical Approximations and Methods for Radiative Transfer in Astrophysics

Literature
Galactic Dynamics (Binney & Tremaine, Princeton University Press),
Computer Simulation using Particles (Hockney & Eastwood CRC press),
Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)

Prerequisites / notice
Some knowledge of UNIX, scripting languages (see www.physik.uzh.ch/lectures/informatik/python/ as an example), some prior experience programming, knowledge of C, C++ beneficial

Objective
Acquire knowledge of the basic principles regarding the physics of classical mechanics. Skills in solving physics problems.

Abstract
This course gives a first introduction to Physics with an emphasis on classical mechanics.

Objective
The following concepts are introduced in the course:
- Working with matrices and arrays
- Programming and development of algorithms
- Effective data analysis and visualisation in 2D and 3D
- Learning to effectively use animations
- Statistical description of a dataset
- Regression analysis
- Testing hypotheses

Abstract
This lecture and the corresponding exercises provide the students with an introduction to the concepts and tools of scientific data analysis. Based on current questions in the Earth Sciences, the students solve problems of increasing complexity both in small groups and singly using the software package MATLAB. Students also learn how to effectively visualise different kinds of datasets.

Objective
Acquire knowledge of the methods for data analysis and visualisation, as well as programming and development of algorithms.

Abstract
The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.

Objective
Learning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance.

Content
- Testing hypotheses
- Regression analysis
- Statistical description of a dataset
- Effective data analysis and visualisation in 2D and 3D
- Learning to effectively use animations
- Effective data analysis and visualisation in 2D and 3D
- Statistical description of a dataset

Lecture notes
Overhead slides will be made available through the course website.

Literature

5. Semester

Number Title
101-0250-00L Solving Partial Differential Equations in parallel on GPUs

Abstract
This course aims to cover state-of-the-art methods in modern parallel Graphical Processing Unit (GPU) computing, supercomputing and code development with applications to natural sciences and engineering.

Objective
When quantitative assessment of physical processes governing natural and engineered systems relies on numerically solving differential equations, fast and accurate solutions require performant algorithms leveraging parallel hardware. The goal of this course is to offer a practical approach to solve systems of differential equations in parallel on GPUs using the Julia language. Julia combines high-level language conciseness to low-level language performance which enables efficient code development.

The course will be taught in a hands-on fashion, putting emphasis on you writing code and completing exercises; lecturing will be kept at a minimum. In a final project you will solve a solid mechanics or fluid dynamics problem of your interest, such as the shallow water equation, the shallow ice equation, acoustic wave propagation, nonlinear diffusion, viscous flow, elastic deformation, viscous or elastic poromechanics, frictional heating, and more. Your Julia GPU application will be hosted on a git-platform and implement modern software development practices.
The handouts in English will be available in digital form. 4 credits

The goal of this course is to provide students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.

The course will comprise of a broad introduction into the fundamentals of modeling water treatment systems. The topics are:

- The course will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples.

Links to relevant literature will be provided during classes.

Studends should have a general understanding of urban water management as many examples are taken from processes relevant to related systems. This course is offered in parallel with the course Process Engineering Ia. It is beneficial but not necessary to follow both courses simultaneously.

Completed BSc studies. Interest in and basic knowledge of numerics, applied mathematics, and physics/engineering sciences. Basic programming skills (e.g., Matlab, Python, Julia); advanced programming skills are a plus.

- Implement advanced physical processes (solids and fluid dynamic - elastic and viscous solutions).
- Apply your new skills in a final project.
Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

151-0575-01L Signals and Systems

<table>
<thead>
<tr>
<th>W</th>
<th>4 credits</th>
<th>2V+2U</th>
<th>L. Carron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Signals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Master the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Discrete-time signals and systems. Fourier- and z-Transforms. Frequency domain characterization of signals and systems. System identification. Time series analysis. Filter design.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes available on course website.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Control Systems I is helpful but not required.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

151-0591-00L Control Systems I

<table>
<thead>
<tr>
<th>W</th>
<th>4 credits</th>
<th>2V+2U</th>
<th>L. Guzzella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Analysis and controller synthesis for linear time invariant systems with one input and one output signal (SISO); transition matrix; stability; controllability; observability; Laplace transform; transfer functions; transient and steady state responses. PID control; dynamic compensators; Nyquist theorem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Identify the role and importance of control systems in everyday life. Obtain models of single-input single-output (SISO) linear time invariant (LTI) dynamical systems. Linearization of nonlinear models. Interpret stability, observability and controllability of linear systems. Describe and associate building blocks of linear systems in time and frequency domain with equations and graphical representations (Bode plot, Nyquist plot, root locus). Design feedback controllers to meet stability and performance requirements for SISO LTI systems. Explain differences between expected and actual control results. Notions of robustness and other nuisances such as discrete time implementation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Analysis and Synthesis of Single-Input Single-Output Control Systems, Lino Guzzella, vdf Hochschulverlag. The textbook is offered for sale at the beginning of the semester.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Analysis and Synthesis of Single-Input Single-Output Control Systems, Lino Guzzella, vdf Hochschulverlag. The textbook is offered for sale at the beginning of the semester.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Basic knowledge of (complex) analysis and linear algebra.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

151-0601-00L Theory of Robotics and Mechatronics

<table>
<thead>
<tr>
<th>W</th>
<th>4 credits</th>
<th>3G</th>
<th>P. Korba, S. Stoeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>We further explore how we can discover basic system properties by exciting a system with various types of signals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Identify the role and importance of control systems in everyday life. Obtain models of single-input single-output (SISO) linear time invariant (LTI) dynamical systems. Linearization of nonlinear models. Interpret stability, observability and controllability of linear systems. Describe and associate building blocks of linear systems in time and frequency domain with equations and graphical representations (Bode plot, Nyquist plot, root locus). Design feedback controllers to meet stability and performance requirements for SISO LTI systems. Explain differences between expected and actual control results. Notions of robustness and other nuisances such as discrete time implementation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Analysis and Synthesis of Single-Input Single-Output Control Systems, Lino Guzzella, vdf Hochschulverlag. The textbook is offered for sale at the beginning of the semester.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Analysis and Synthesis of Single-Input Single-Output Control Systems, Lino Guzzella, vdf Hochschulverlag. The textbook is offered for sale at the beginning of the semester.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Basic knowledge of (complex) analysis and linear algebra.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Available upon request.

Stochastic Methods for Engineers and Natural Scientists

The course provides an introduction into stochastic methods that are applicable for example for the description and modeling of turbulent and subsurface flows. Moreover, mathematical techniques are presented that are used for the simulation in various engineering applications. Concepts and Theories

By the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, you should be able to develop stochastic models of such systems.

- Probability theory, single and multiple random variables, mappings of random variables
- Estimation of statistical moments and probability densities based on data
- Stochastic differential equations, Ito calculus, PDF evolution equations
- Monte Carlo integration with importance and stratified sampling
- Markov-chain Monte Carlo sampling
- Control-variate and multi-level Monte Carlo estimation

All topics are illustrated with engineering applications.

Detailed lecture notes will be provided.

Some textbooks related to the material covered in the course:

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving

Domain D - Personal Competencies
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-direction and Self-management

The course is offered in Autumn Semester 2021.

Electrical Engineering II

This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.

- FPGA design flows
- Levels of abstraction for circuit modeling
- Organization and configuration of commercial field-programmable components
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.
Lecture notes Textbook and all further documents in English.
Prerequisites / notice
Prerequisites:
Basics of digital circuits.
Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German.
Further details:
https://iis-students.ee.ethz.ch/lectures/vlsi-i/

227-0731-00L Power Market I - Portfolio and Risk Management W 6 credits 4G D. Reichelt, G. A. Koeppe

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Portfolio and risk management in the electrical power business. Pan-European power market and trading, futures and forward contracts, hedging, options and derivatives, performance indicators for the risk management, modelling of physical assets, cross-border trading, ancillary services, balancing power market, Swiss market model.</th>
</tr>
</thead>
</table>

227-0945-00L Cell and Molecular Biology for Engineers I W 3 credits 2G C. Frei

<table>
<thead>
<tr>
<th>Abstract</th>
<th>This course is part I of a two-semester course. The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Lectures will include the following topics (part I and II): DNA, chromosomes, genome engineering, RNA, proteins, genetics, synthetic biology, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer and stem cells. In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade.</td>
</tr>
<tr>
<td>Content</td>
<td>Scripts of all lectures will be available.</td>
</tr>
</tbody>
</table>
Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural
scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and
managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC.

The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship.

In particular, the aims of the course are to:
(1) broaden understanding of management principles and frameworks
(2) advance insights into the sources of corporate and entrepreneurial success
(3) develop skills to apply this knowledge to real-life managerial problems

The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / or appreciate
the challenges that entrepreneurs and managers deal with.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation
Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one
practice session where you will apply the theory to a case.

The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and
case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or
entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team
coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear
recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.

All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle.
These course materials will form the point of departure for the lectures, class discussions and team work.

351-0778-01L Discovering Management (Exercises) 351-0778-01L
Complementary exercises for the module Discovering W 1 credit 1U B. Clarysse, L. P. T. Vandeweghe

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1140 of 2152
Management.

Prerequisite: Participation and successful completion of the module Discovering Management (351-0778-00L) is mandatory.

Abstract
This course is offered complementary to the basis course 351-0778-00L, "Discovering Management". The course offers an additional exercise.

Objective
The general objective of Discovering Management (Exercises) is to complement the course "Discovering Management" with one larger additional exercise.

Discovering Management (Exercises) thus focuses on developing the skills and competences to apply management theory to a real-life exercise from practice.

Content
Students who are enrolled for "Discovering Management Exercises" are asked to write an essay about a particular management issue of choice, using your insights from Discovering Management.

Students have the option to either write this alone or in a group of two students.

Literature
All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle.

Students following this course should also be enrolled for course 351-0778-00L, "Discovering Management".

Taught competencies
- Domain A - Subject-specific Competencies
 - Concepts and Theories: assessed
- Domain B - Method-specific Competencies
 - Analytical Competencies: assessed
 - Problem-solving: assessed
- Domain C - Social Competencies
 - Communication: assessed
- Domain D - Personal Competencies
 - Creative Thinking: assessed
 - Critical Thinking: assessed

363-0541-00L Systems Dynamics and Complexity

Abstract
Finding solutions: what is complexity, problem solving cycle.

Implementing solutions: project management, critical path method, quality control feedback loop.

Controlling solutions: Vensim software, feedback cycles, control parameters, instabilities, chaos, oscillations and cycles, supply and demand, production functions, investment and consumption

Objective
A successful participant of the course is able to:
- understand why most real problems are not simple, but require solution methods that go beyond algorithmic and mathematical approaches
- apply the problem solving cycle as a systematic approach to identify problems and their solutions
- calculate project schedules according to the critical path method
- setup and run systems dynamics models by means of the Vensim software
- identify feedback cycles and reasons for unintended systems behavior
- analyse the stability of nonlinear dynamical systems and apply this to macroeconomic dynamics

Content
Why are problems not simple? Why do some systems behave in an unintended way? How can we model and control their dynamics? The course provides answers to these questions by using a broad range of methods encompassing systems oriented management, classical systems dynamics, nonlinear dynamics and macroeconomic modeling.

The course is structured along three main tasks:
1. Finding solutions
2. Implementing solutions
3. Controlling solutions

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions.

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed.

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles.

Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM. Another objective of the self-study tasks is to practice efficient communication of such concepts.

These are provided as home work and two of these will be graded (see "Prerequisites").

Lecture notes
The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture

363-1082-00L Enabling Entrepreneurship: From Science to Startup

Students should provide a brief overview (unto 1 page) of their business ideas that they would like to commercialise through the course. If they do not have an idea, they are required to provide a motivation letter stating why they would like to do this elective. If you are unsure about the readiness of your idea or technology to be converted into a startup, please drop me a line to schedule a call or meeting to discuss.

The total number of students will be limited to 40. It is preferable that the students already form teams of at least two persons, where both the team-members would like to do the course. The names of the team-members should be provided together with the business idea or the motivation letter submitted by the students.

The students should submit the necessary information.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1141 of 2152
This elective is relevant for students who have developed a technology and are keen to evaluate the steps in starting a startup. This is also relevant for students who would like to start a startup but do not have a technology, but are clear on a specific market and the impact they would like to create.

Objective

Students have technology competence or an idea that they would like to convert into a startup. They are now in the process of evaluating the steps necessary to do so. In summary:

1. Students want to become entrepreneurs
2. The students can be from business or science & technology
3. The course will enable the students to identify the relevance of their technology or idea from the market relevance perspective and thereby create a business case to take it to market.
4. The students will have exposure to investors and entrepreneurs (with a focus on ETH spin-offs) through the course, to gain insight to commercialise their idea

Content

The students would cover the following topics, as the build their idea into a business case:

1. Technology excellence: this assumes that the student has achieved a certain degree of competence in the area of technology that he or she expects to bring to the market
2. Market need and market relevance: The student would then be expected to identify the possible markets that may find the technology of relevance. Market relevance implies the process of identification of how relevant the market perceives the technology, and whether this can sustain over a longer period of time
3. IP and IP strategy: Intellectual property, whether in the form of a patent or a trade secret, implies the secret ingredient that enables the student to achieve certain results that competitors are unable to copy. This enables the student (and subsequently the startup) to hold on to the market that they create with customers
4. Team including future capabilities required: a startup requires multiple people with complementary capabilities. They also need to be motivated while at the same time protecting the interests of the startup
5. Financials: There is a need of funding to achieve milestones. This includes funding for salaries and running of the company
6. Investors and funding options: There are multiple funding options for a startup. They all come with different advantages and limitations. It's important for a startup to recognise its needs and find the investors that fit these needs and are best aligned with the vision of the founders
7. Preparation of business case: The students will finally prepare the business case that can help them to articulate the link of the technology with the market need and its willingness to pay
8. Legal overview, company forms and shareholders’ agreements (including pitfalls)

The seminar includes talks from invited investors, entrepreneurs and legal experts regarding the importance of the various elements being covered in content, workshops and teamwork. There is a particular emphasis on market validation on each step of the journey, to ensure relevance.

Lecture notes

Since the course will revolve around the ideas of the students, the notes will be for the sole purpose of providing guidance to the students to help convert their technologies or ideas into business cases for the purpose of forming startups. Theoretical subject matter will be kept to a minimum and is not the focus of the course.

Literature

Book Sethi, A. “From Science to Startup” ISBN 978-3-319-30422-9

Prerequisites / notice

This course is relevant for those students who aspire to become entrepreneurs.

Students applying for this course are requested to submit a 1 page business idea or, in case they don't have a business idea, a brief motivation letter stating why they would like to do this course.

If you are unsure about the readiness of your idea or technology to be converted into a startup, please drop me a line to schedule a call or meeting to discuss.

Taught competencies

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th>Media and Digital Technologies</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Customer Orientation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

363-1109-00L Introduction to Microeconomics

W 3 credits 2G M. Wörter, M. Beck

GESS (Science in Perspective):

This course is only for students enrolled in a Bachelor's degree programme.

Students enrolled in a Master's degree programme may attend "Principles of Microeconomics" (LE 363-0503-00L) instead.

Note for D-MAVT students: If you have already successfully completed "Principles of Microeconomics" (LE 363-0503-00L), then you will not be permitted to attend it again.

Abstract

The course introduces basic principles, problems and approaches of microeconomics. It describes economic decisions of households and firms, and their coordination through perfectly competitive markets.

Objective

Students acquire a deeper understanding of basic microeconomic models.

They acquire the ability to apply these models in the interpretation of real world economic contexts.

Content

Market, budget constraint, preferences, utility function, utility maximisation, demand, technology, profit function, cost minimisation, cost functions, perfect competition, information and communication technologies

Lecture notes

Course material in e-learning environment https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php

Literature

Human Factors I

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: not assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

Prerequisites / notice
- Taught competencies

Analysis 3

Domain
- Mathematical Competencies

Prerequisites / notice
- Taught competencies

Applied Analysis of Variance and Experimental Design

Domain
- Statistics

Prerequisites / notice
- Taught competencies

Content
- Physiological, physical, and cognitive factors in sensation, perception, and action
- Psychological, social, and cultural factors in behavior, communication, and cognition
- Human information processing and biological cybernetics
- Usability engineering in system designs, product development, and innovation
- Interaction among consumers, environments, behavior, and tasks

Literature
- Gavriel Salvendy, *Handbook of Human Factors and Ergonomics*, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brochures, checklists, key articles etc. are uploaded in ILIAS
A. Adelmann
This course gives a first introduction to Physics with an emphasis on classical mechanics.

Physics I
- **Credits:** 3V+2U
- **Instructor:** F. Balabdaoui

1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility
2. Fast Fourier Transform and spectral methods in general
3. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiters
4. Lagrangian Hydrodynamics: The SPH method
5. Resolution and instabilities in Hydrodynamics
6. Initial Conditions: Cosmological Simulations and Astrophysical Disks
7. Physical Approximations and Methods for Radiative Transfer in Astrophysics
8. Galactic Dynamics (Binney & Tremaine, Princeton University Press),
 Computer Simulation using Particles (Hockney & Eastwood CRC press),
 Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)

Computational Astrophysics (University of Zurich)
- **Credits:** 2V
- **Instructor:** L. M. Mayer

The main reference for this course is the book "Introduction to Time Series and Forecasting", by P. J. Brockwell and R. A. Davis

- **Literature**
 - Computer Simulation using Particles (Hockney & Eastwood CRC press),
 - Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)

Introduction to Computational Physics
- **Credits:** 2V+2U
- **Instructor:** A. Adelmann

This course offers an introduction to computer simulation methods for physics problems and their implementation on PCs and supercomputers. The covered topics include classical equations of motion, partial differential equations (wave equation, diffusion equation, Maxwell's equations), Monte Carlo simulations, percolation, phase transitions, and N-Body problems.

Objective
Students learn to apply the following methods: Random number generators, Determination of percolation critical exponents, numerical solution of problems from classical mechanics and electrodynamics, canonical Monte-Carlo simulations to numerically analyze magnetic systems. Students also learn how to implement their own numerical frameworks in Julia and how to use existing libraries to solve physical problems. In addition, students learn to distinguish between different numerical methods to apply them to solve a given physical problem.

Content
Introduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics as well as some interdisciplinary applications are used to introduce modern programming methods for numerical simulations using Julia. Furthermore, an overview of existing software libraries for numerical simulations is presented.

Lecture notes
Lecture notes and slides are available online and will be distributed if desired.

Literature
Literature recommendations and references are included in the lecture notes.

Prerequisites
A knowledge of C, C++ and an introductory overview of numerical and computer programming.

Abstract
This course gives a first introduction to Physics with an emphasis on classical mechanics.

Objective
Acquire knowledge of the basic principles regarding the physics of classical mechanics. Skills in solving physics problems.

Physics I
- **Credits:** 7V+2U
- **Instructor:** K. Ensslin

1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility
2. Fast Fourier Transform and spectral methods in general
3. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiters
4. Lagrangian Hydrodynamics: The SPH method
5. Resolution and instabilities in Hydrodynamics
6. Initial Conditions: Cosmological Simulations and Astrophysical Disks
7. Physical Approximations and Methods for Radiative Transfer in Astrophysics
8. Galactic Dynamics (Binney & Tremaine, Princeton University Press),
 Computer Simulation using Particles (Hockney & Eastwood CRC press),
 Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)

Computational Systems Biology
- **Credits:** 3V+2U
- **Instructor:** J. Stelling

Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

Objective
The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation, and analysis of biological networks.
Biology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks.

We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.

Literature

- H. Wernli, P. Zschenderlein, R. Knutti

Content

651-4241-00L Numerical Modelling I and II: Theory and Applications

Objective

The goal of this course is for students to learn how to program numerical applications from scratch. By the end of the course, students should be able to write state-of-the-art MATLAB codes that solve systems of partial-differential equations relevant to Earth and Planetary Science applications using finite-difference method and marker-in-cell technique. Applications include Poisson equation, buoyancy driven variable viscosity flow, heat diffusion and advection, and state-of-the-art thermomechanical code programming. The emphasis will be on commonality, i.e., using a similar approach to solve different applications, and modularity, i.e., re-use of code in different programs. The course will emphasise a hands-on learning approach rather than extensive theory.

Abstract

In this 13-week sequence, students learn how to write programs from scratch to solve partial differential equations that are useful for Earth science applications. Programming will be done in MATLAB and will use the finite-difference method and marker-in-cell technique. The course will emphasise a hands-on learning approach rather than extensive theory.

Content

A provisional week-by-week schedule (subject to change) is as follows:

Week 1: Introduction to the finite difference approximation to differential equations. Introduction to programming in Matlab. Solving of 1D Poisson equation.

Week 2: Direct and iterative methods for obtaining numerical solutions. Solving of 2D Poisson equation with direct method. Solving of 2D Poisson equation with Gauss-Seidel and Jacobi iterative methods.

Week 3: Solving momentum and continuity equations in case of constant viscosity with stream function/vorticity formulation.

Weeks 4: Staggered grid for formulating momentum and continuity equations. Indexing of unknowns. Solving momentum and continuity equations in case of constant viscosity using pressure-velocity formulation with staggered grid.

Weeks 5: Conservative finite differences for the momentum equation. "Free slip" and "no slip" boundary conditions. Solving momentum and continuity equations in case of variable viscosity using pressure-velocity formulation with staggered grid.

Week 6: Advection in 1-D. Eulerian methods. Marker-in-cell method. Comparison of different advection methods and their accuracy.

Week 7: Advection in 2-D with Marker-in-cell method. Combining flow calculation and advection for buoyancy driven flow.

Week 8: "Free surface" boundary condition and "sticky air" approach. Free surface stabilization. Runge-Kutta schemes. Continuity-based velocity interpolation.

Week 9: Solving 2D heat conservation equation in case of constant thermal conductivity with explicit and implicit approaches.

Week 10: Solving 2D heat conservation equation in case of variable thermal conductivity with implicit approach. Temperature advection with markers. Creating thermomechanical code by combining mechanical solution for 2D buoyancy driven flow with heat diffusion and advection based on marker-in-cell approach.

Week 11: Implementation of radioactive, adiabatic and shear heating to the thermomechanical code.

Week 12: Programming of solution of coupled solid-fluid momentum and continuity equations for the case of melt percolation in a rising mantle plume.

Week 13: Subgrid diffusion of temperature and its implementation. Implementation of temperature-, pressure- and strain rate-dependent viscosity, temperature- and pressure-dependent density and temperature-dependent thermal conductivity to the thermomechanical code. Final project description for slab breakoff modeling.

GRADING will be based on weekly programming homeworks (50%) and a term project (50%) to develop an application of their choice to a more advanced level.

Literature

- H. Wernli, P. Zschenderlein, R. Knutti

701-0071-00L Mathematics III: Systems Analysis

Abstract

The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.

Objective

Learning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.

Content

https://iac.ethz.ch/edu/courses/bachelor/vorbereitung/systemanalys.html

Lecture notes

Overhead slides will be made available through the course website.

Literature

This course Student Teaching Assistants will ...

Objective

- Domain specific knowledge: Students have immersed knowledge about a certain complex, societal topic which will be selected every year. They understand the complex system context of the current topic, by comprehending its scientific, technical, political, social, ecological and economic perspectives.

- Analytical skills: The ETH Week participants are able to structure complex problems systematically using selected methods. They are able to acquire further knowledge and to critically analyse the knowledge in interdisciplinary groups and with experts and the help of team tutors.

- Design skills: The students are able to use their knowledge and skills to develop concrete approaches for problem solving and decision making to a selected problem statement, critically reflect these approaches, assess their feasibility, to transfer them into a concrete form (physical model, prototypes, strategy paper, etc.) and to present this work in a creative way (role-plays, videos, exhibitions, etc.).

- Self-competence: The students are able to plan their work effectively, efficiently and autonomously. By considering approaches from different disciplines they are able to make a judgment and form a personal opinion. In exchange with non-academic partners from business, politics, administration, nongovernmental organisations and media they are able to communicate appropriately, present their results professionally and creatively and convince a critical audience.

- Social competence: The students are able to work in multidisciplinary teams, i.e. they can reflect critically their own discipline, debate with students from other disciplines and experts in a critical-constructive and respectful way and can relate their own positions to different intellectual approaches. They can assess how far they are able to actively make a contribution to society by using their personal and professional talents and skills and as "Change Agents".

- Remote collaboration competence; The students work in a hybrid setting blending physical and virtual communication and collaboration methods and tools. They experience the potential and limitations of remote collaboration.

Content

The week is mainly about problem solving and design thinking applied to the complex world of health and well-being. During ETH Week students will have the opportunity to work in small interdisciplinary groups, allowing them to critically analyse both their own approaches and those of other disciplines, and to integrate these into their work.

While deepening their knowledge about health and well-being, students will be introduced to various methods and tools for generating creative ideas and understand how different people are affected by each part of the system. In addition to lectures and literature, students will acquire knowledge via excursions into the real world, empirical observations, and conversations with researchers and experts.

A key attribute of the ETH Week is that students are expected to find their own problem, rather than just solve the problem that has been handed to them.

Therefore, the first three days of the week will concentrate on identifying a problem the individual teams will work on, while the last two days are focused on generating solutions and communicating the team's ideas.

Prerequisites / notice

No prerequisites. Programme is open to Bachelor and Masters from all ETH Departments. All students must apply through a competitive application process at www.ethz.ch/ethweek. Participation is subject to successful selection through this competitive process.

Taught competencies

Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Media and Digital Technologies	assessed
	Problem-solving	assessed
	Communication	assessed
	Cooperation and Teamwork	assessed
	Sensitivity to Diversity	assessed
	Negotiation	assessed
Domain D - Personal Competencies	Adaptability and Flexibility	assessed
	Creative Thinking	assessed
	Critical Thinking	assessed
	Self-direction and Self-management	assessed

851-0370-00L Didactic Basics for Student Teaching Assistants

Abstract

The course "Didactic Basics for Student Teaching Assistants" enhance Student Teaching Assistants (Student TAs) to develop knowledge, capability and confidence to effectively plan and teach courses and exercises. Participants get trained to think critically about students' learning and create learning situations in which students are actively engaged.

Objective

In this course Student Teaching Assistants will ...
- reflect on their approach to teaching as well as their attitude towards teaching.
- understand the basics of teaching and learning in the context of their subject.
- consciously design the introduction of their course as well as the introduction of single teaching units.
- apply classroom assessment techniques as formative assessments to measure the current status of their students.
- develop a didactic concept according to the learning objectives.
- conduct interactive sequences as learning activities.
- give and get feedback from peers and self-reflect on their teaching practice.
- feel confident to use methods for active learning scenarios in their classes.

Content

The online course provide a range of relevant topics for developing teaching competences of Student Teaching Assistants:
- Overview about how learning works. Based on these fundamentals of learning participants reflect on their role as Student TAs to feel comfortable in their new role as a teacher.
- Plan an own lesson by introducing a class and locate it in the larger topic (methods: portal and informative introduction).
- Develop learning activities in order to activate students (active learning methods).
- Giving and also getting feedback. The participants integrate this topic also in their lesson plan.

While working through the online course, Student TAs have the chance to reflect, exchange ideas with peers and plan their own teaching accordingly so that they feel confident in their role.

Prerequisites / notice

Self-paced online course: https://moodle-app2.let.ethz.ch/course/view.php?id=15127

Consolidation Workshops in November (dates will be announced in the online course at the beginning of the semester)
Science in Perspective

see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-INFK.

Language Courses

see Science in Perspective: Language Courses ETH/UZH

Bachelor's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0500-00L</td>
<td>Bachelor's Thesis</td>
<td>O</td>
<td>10 credits</td>
<td>21D</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Abstract
The Bachelor thesis is the final requirement of the BSc program and is supervised by one of the D-INFK professors. The thesis encourages students to show and produce a scientifically structured work.

Objective
In their BSc thesis students should demonstrate their ability to carry out independent, structured scientific work.

Prerequisites / notice
The supervisor of the thesis defines the task, start and end date.
A written report will be prepared on the scientific studies carried out, followed by a final presentation.
The thesis must be handed in within 6 months.

Computer Science Bachelor - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Educational Science

General course offerings in the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>This lecture is only apt for students who intend to enrol in the programs "Teaching Diploma" or "Teaching Certificate". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course looks into scientific theories and also empirical studies on human learning and relates them to the school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way human processes information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers are put in a position where they can further educate themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Thematische Schwerpunkte: Lernen als Verhaltensänderung und als Informationsverarbeitung: Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information; Lernen als Wissenskonstruktion und Kompetenzerwerb unter besonderer Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und Erklärungen; Die Rolle von Emotion und Motivation beim Lernen; Interindividuelle Unterschiede in der Lernfähigkeit und ihre Ursachen: Intelligenztheorien, Geschlechtsunterschiede beim Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Folien werden zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>This lecture is only apt for students who intend to enrol in the programs "Lehrdiplom" or "Didaktisches Zertifikat". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0240-22L</td>
<td>Coping with Psychosocial Demands of Teaching (EW4 W D2)</td>
<td>W</td>
<td>2</td>
<td>3S</td>
<td>U. Markwalder, S. Maurer, S. Peteranderl-Rüschoff</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 20.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In this class, students will learn concepts and skills for coping with psychosocial demands of teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students possess theoretical knowledge and practical competences to be able to cope with the psychosocial demands of teaching.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) They know relevant rules of conversation and conflict management and are able to apply them in an appropriate way in the school context (e.g. in parental talks).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) They know core aspects of classroom management and know how to apply it concretely (e.g. promoting a positive learning atmosphere, avoiding disciplinary difficulties) and they are aware of possible contacts (e.g. illegal or psychological services).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-06L</td>
<td>Cognitively Activating Instructions in MINT Subjects (EW2)</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>R. Schumacher</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW1)".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Get to know cognitively activating instructions in MINT subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Get information about recent literature on learning and instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-07L</td>
<td>Human Intelligence (EW1)</td>
<td>W</td>
<td>1</td>
<td>1S</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport). Number of participants limited to 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Understanding of research methods used in the empirical human sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Getting to know intelligence tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Understanding findings relevant for education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-08L</td>
<td>Research Methods in Educational Science</td>
<td>W</td>
<td>1</td>
<td>2S</td>
<td>P. Edelsbrunner, T. Braas, C. M. Thurn</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport). Number of participants limited to 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW1)".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1148 of 2152
Literature from the learning sciences is critically discussed with a focus on research methods. At the first meeting, working groups will be assembled and meetings with those will be set up. In the small groups students will write critical essays about the read literature. At the third meeting, we will discuss the essays and develop research questions in group work.

Abstract
- Understand research methods used in the empirical educational sciences
- Understand and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

Objective
- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- To integrate this knowledge with teacher’s work.

Content
Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisites / notice
Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

Subject Didactics and Professional Training

Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>
| 272-0101-00L | Subject Didactics of Computer Science I
Simultaneous enrolment in Introductory Practical in Computer Science
- course 272-0201-00L
- is compulsory. | O | 4 | 3G | G. Serafini, J. Hromkovic |

Abstract
The unit “Subject Didactics of Computer Science I” addresses key contributions of computer science to general education. The course deals with the thoughtful choice of educational contents for computer science classes, which takes into account its comprehensibility for different age groups as well as didactic approaches suitable for a successful knowledge transfer.

Objective
The general objective of the course consists in highlighting the tight connection between the mathematical and algorithmic way of thinking and the approaches adopted by engineering disciplines, and in reflecting on teaching approaches for sustainable computer science teaching activities.

The students understand the fundamental concepts of computer science in the context of a broad and deep knowledge. Through this understanding, they manage to prepare teaching materials for a successful knowledge transfer and to pass their passion for the subject on to their pupils.

The students know various teaching methods as well as their advantages and disadvantages. They can handle inhomogeneous prior knowledge of the learners inside a class. Besides holding classes, the students do care about the individual pupil support.

They encourage the autonomy of the learners, manage to work with diverse target groups and to establish a positive learning environment.

The students are able to express themselves using a comprehensible and refined professional language, both in a spoken and a written way, and they master the basic terminology of computer science. Besides the English terms, they are familiar with the corresponding German expressions. The students are able to produce detailed, matured, linguistically correct and design-wise appealing teaching materials.

Content
The course “Subject Didactics of Computer Science I” addresses key contributions of computer science to general education. The chosen topics support the young learners in developing a unique and indispensable way of thinking, in enhancing their understanding of our world as well as in achieving university education entrance qualifications.

The main topics of the course unit “Subject Didactics of Computer Science I” are the didactics of finite state automata, of formal languages and of the introduction to programming. The unit focuses on contents of computer science that contribute to general education. This involves the understanding of fundamental scientific concepts such as algorithm, complexity, determinism, computation, automata, verification, testing and programming language as well as the way to embed them into a scientifically sound and didactically sustainable computer science course.

In a semester exercise, the students develop and document an adaptive teaching unit for computer science. They learn to employ the didactics methods and techniques that are introduced at the beginning of the semester.
In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.

The objective is for the students:
- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.
Specialized Courses in Respective Subject with Educational Focus

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>272-0400-00L</td>
<td>Mentored Work Specialised Courses in the Respective W+ Subject with Educational Focus Computer Sc A</td>
<td>W+</td>
<td>2 credits</td>
<td>4A</td>
<td>J. Hromovic, G. Serafini</td>
</tr>
<tr>
<td>Abstract</td>
<td>In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The aim is for the students - to familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way. - to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readers. - To try out different options for specialist further training in their profession.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0237-00L</td>
<td>Concepts of Object-Oriented Programming</td>
<td>W</td>
<td>8 credits</td>
<td>3V+2U+2A</td>
<td>P. Müller</td>
</tr>
<tr>
<td>Abstract</td>
<td>Course that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>After this course, students will: Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features. Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs. Be aware of many subtle problems of object-oriented programming and know how to avoid them.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages. The topics discussed in the course include among others: The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing) The key problems of single and multiple inheritance and how different languages address them Generic type systems, in particular, Java generics, C# generics, and C++ templates The situations in which object-oriented programming does not provide encapsulation, and how to avoid them The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing How to maintain the consistency of data structures Will be announced in the lecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Will be announced in the lecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0417-00L</td>
<td>Randomized Algorithms and Probabilistic Methods</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U+4A</td>
<td>A. Steger</td>
</tr>
<tr>
<td>Abstract</td>
<td>Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U+4A</td>
<td>J. M. Buhmann, C. Cotrini Jimenez</td>
</tr>
<tr>
<td>Abstract</td>
<td>Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1151 of 2152
Objective

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Fundamentals:
 - What is data?
 - Bayesian Learning
 - Computational learning theory
- Supervised learning:
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks
- Unsupervised learning:
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

Lecture notes

No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

<table>
<thead>
<tr>
<th>252-1407-00L</th>
<th>Algorithmic Game Theory</th>
<th>W</th>
<th>7 credits</th>
<th>3V+2U+1A</th>
<th>P. Penna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Game theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a mathematical model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good. This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>"Game Theory and Strategy", Philip D. Straffin, The Mathematical Association of America, 5th printing, 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture notes

Lecture notes will be usually posted on the website shortly after each lecture.

Prerequisites / notice

Several copies of both books are available in the Computer Science library.

Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

<table>
<thead>
<tr>
<th>263-2800-00L</th>
<th>Design of Parallel and High-Performance Computing</th>
<th>W</th>
<th>9 credits</th>
<th>3V+2U+3A</th>
<th>T. Hoefler, M. Püschel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Advanced topics in parallel and high-performance computing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

Computer Science TC - Key for Type

O	Eligible for credits
W+	Eligible for credits and recommended
W	Compulsory
E-	Recommended, not eligible for credits
Z	Courses outside the curriculum
Dr	Suitable for doctorate

Key for Hours

V	lecture
G	lecture with exercise
U	exercise
S	seminar
K	colloquium
P	practical/laboratory course
A	independent project
D	diploma thesis
R	revision course / private study

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Educational Science

Course offerings in the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-06L</td>
<td>Cognitive Activating Instructions in MINT Subjects</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>R. Schumacher</td>
</tr>
</tbody>
</table>

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Abstract
This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.

Objective
- Get to know cognitively activating instructions in MINT subjects
- Get information about recent literature on learning and instruction

Prerequisites / notice
Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-07L</td>
<td>Human Intelligence</td>
<td>W</td>
<td>1</td>
<td>1S</td>
<td>E. Stern</td>
</tr>
</tbody>
</table>

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Abstract
The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.

Objective
- Understanding research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding findings relevant for education

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-08L</td>
<td>Research Methods in Educational Science</td>
<td>W</td>
<td>1</td>
<td>2S</td>
<td>P. Edelsbrunner, T. Braas, C. M. Thurn</td>
</tr>
</tbody>
</table>

Number of participants limited to 30.

Abstract
Literature from the learning sciences is critically discussed with a focus on research methods. At the first meeting, working groups will be assembled and meetings with those will be set up. In the small groups students will write critical essays about the read literature. At the third meeting, we will discuss the essays and develop research questions in group work.

Objective
- Understand research methods used in the empirical educational sciences
- Understand and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-11L</td>
<td>Gender Issues in Education and STEM</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>M. Berkowitz Biran, T. Braas, C. M. Thurn</td>
</tr>
</tbody>
</table>

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Prerequisite: students should be taking the course 851-0240-00L Human Learning (EW 1) in parallel, or to have successfully completed it.

Abstract
In this seminar, we introduce some of the major gender-related issues in the context of education and science learning, such as the under-representation of girls and women in science, technology, engineering and mathematics (STEM). Common perspectives, controversies and empirical evidence will be discussed.

Objective
- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- To integrate this knowledge with teacher's work.

Content
Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisites / notice
Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).
Prerequisites: successful participation in 851-0240-00L "Human Learning (EW1)".

Abstract
In this seminar students learn advanced techniques to support and to diagnose knowledge acquisition processes in school.

Objective
The main goals are:
1. You have a deep understanding about the cognitive mechanisms of knowledge acquisition.
2. You have a basic understanding about psychological test theory and can appropriately administer tests.
3. You know various techniques of formative assessment and can apply these to uncover students' misconceptions.

Subject Didactics in Computer Science
Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>272-0101-00L</td>
<td>Subject Didactics of Computer Science I [Simultaneous enrolment in Introductory Practical in Computer Science - course 272-0201-00L - is compulsory.]</td>
<td>O</td>
<td>4 credits</td>
<td>3G</td>
<td>G. Serafini, J. Hromkovic</td>
</tr>
</tbody>
</table>

Abstract
The unit "Subject Didactics of Computer Science I" addresses key contributions of computer science to general education. The course deals with the thoughtful choice of educational contents for computer science classes, which takes into account its comprehensibility for different age groups as well as didactic approaches suitable for a successful knowledge transfer.

Objective
The general objective of the course consists in highlighting the tight connection between the mathematical and algorithmic way of thinking and the approaches adopted by engineering disciplines, and in reflecting on teaching approaches for sustainable computer science teaching activities.

The students understand the fundamental concepts of computer science in the context of a broad and deep knowledge. Through this understanding, they manage to prepare teaching materials for a successful knowledge transfer and to pass their passion for the subject on to their pupils.

The students know various teaching methods as well as their advantages and disadvantages. They can handle inhomogeneous prior knowledge of the learners inside a class. Besides holding classes, the students do care about the individual pupil support.

They encourage the autonomy of the learners, manage to work with diverse target groups and to establish a positive learning environment.

The students are able to express themselves using a comprehensible and refined professional language, both in a spoken and a written way, and they master the basic terminology of computer science. Besides the English terms, they are familiar with the corresponding German expressions. The students are able to produce detailed, matured, linguistically correct and design-wise appealing teaching materials.

Content
The course "Subject Didactics of Computer Science I" addresses key contributions of computer science to general education. The chosen topics support the young learners in developing a unique and indispensable way of thinking, in enhancing their understanding of our world as well as in achieving university education entrance qualifications.

The main topics of the course unit "Subject Didactics of Computer Science I" are the didactics of finite state automata, of formal languages and of the introduction to programming. The unit focuses on contents of computer science that contribute to general education. This involves the understanding of fundamental scientific concepts such as algorithm, complexity, determinism, computation, automata, verification, testing and programming language as well as the way to embed them into a scientifically sound and didactically sustainable computer science course.

In a semester exercise, the students develop and document an adaptive teaching unit for computer science. They learn to employ the didactics methods and techniques that are introduced at the beginning of the semester.

Lecture notes
Unterlagen und Folien werden zur Verfügung gestellt.

Literature

Prerequisites / notice
Lehrdiplom-Studierende müssen diese Lerneinheit zusammen mit dem Einführungspraktikum Informatik - 272-0201-00L - belegen.
<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Customer Orientation</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

272-0103-00L
Mentored Work Subject Didactics Computer Science O 2 credits 4A J. Hromkovic, G. Serafini

Abstract

In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.

Objective

The objective is for the students:

- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.

Content

Themenatische Schwerpunkte

Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen

Literature

Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.

Prerequisites / notice

Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

272-0104-00L
Mentored Work Subject Didactics Computer Science O 2 credits 4A J. Hromkovic, G. Serafini

Abstract

In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.

Objective

The objective is for the students:

- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.

Content

Themenatische Schwerpunkte

Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen

Literature

Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.

Prerequisites / notice

Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

Professional Training

Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>272-0201-00L</td>
<td>Introductory Practical in Computer Science</td>
<td>O</td>
<td>3 credits</td>
<td>6P</td>
<td>J. Hromkovic, G. Serafini</td>
</tr>
</tbody>
</table>

Abstract

During the introductory teaching practice, the students sit in on five lessons given by the teacher responsible for their teaching practice, and teach five lessons themselves. The students are given observation and reflection assignments by the teacher responsible for their teaching practice.
Right at the start of their training, students acquire initial experience with the observation of teaching, the establishment of concepts for teaching and the implementation of teaching. This early confrontation with the complexity of everything that teaching involves helps students decide whether they wish to and, indeed, ought to, continue with the training. It forms a basis for the subsequent pedagogical and subject-didactics training.

The students are supported by the lecturers or by experienced teachers. They assist teachers at school, they create training systems and tests, correct the written homework of pupils and evaluate the progress of a class. The students create explanations and detailed solutions to exercises with respect to the actual knowledge of the pupils. A written assignment states the exact scope of the activity.

Objective

- They learn to assess pupils' work.
- Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.
- The students are able to assess the significance of tuition topics in their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
- They acquire the skills of the teaching trade.
- They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution.

Content

- The course Professional Exercises offers the opportunity for additional school-relevant activities.
- The students carry out individually specified, practice related projects, in which they support, document or reflect on learning processes.

Literature

Wird von der Praktikumslehrperson bestimmt.

272-0202-00L

Professional Exercises

In the course Professional Exercises the students achieve additional school-relevant experiences. The students carry out individually specified, practice related projects, in which they support, document or reflect on learning processes.

Objective

Achievement of additional school-relevant experiences. The students carry out individually specified, practice related projects, in which they support, document or reflect on learning processes.

Content

- The course Professional Exercises offers the opportunity for additional school-relevant activities.
- The students are supported by the lecturers or by experienced teachers. They assist teachers at school, they create training systems and tests, correct the written homework of pupils and evaluate the progress of a class. The students create explanations and detailed solutions to exercises with respect to the actual knowledge of the pupils. A written assignment states the exact scope of the activity.

Literature

Wird von der Praktikumslehrperson bestimmt.

272-0203-00L

Teaching Internship in Computer Science

The teaching practice takes in 50 lessons: 30 are taught by the students, and the students sit in on 20 lessons. The teaching practice lasts 4-6 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.

Objective

- Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching.
- They are able to assess the significance of tuition topics in their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
- They acquire the skills of the teaching trade.
- They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution.

Content

Literature

Wird von der Praktikumslehrperson bestimmt.

272-0204-00L

Teaching Internship for students upgrading TC to Teaching Diploma

This is a supplement to the Teaching Internship required to obtain a Teaching Diploma in the corresponding subject. It is aimed at enlarging the already acquired teaching experience. Students observe 10 lessons and teach 15 lessons independently.

Objective

Die Studierenden können die Bedeutung von Unterrichtsthemen in ihrem Fach unter verschiedenen Blickwinkeln einschätzen. Sie kennen und beherrschen das unterrichtliche Handwerk. Sie können ein gegebenes Unterrichtsthema für eine Gruppe von Lernenden fachlich und didaktisch korrekt strukturieren und in eine adäquate Lernumgebung umsetzen. Es gelingt ihnen, die Balance zwischen Anleitung und Offenheit zu finden, sodass die Lernenden sowohl über den nötigen Freiraum wie über ausreichend Orientierung verfügen, um aktiv und effektiv flexibel nutzbares (Fach-)Wissen zu erwerben.

Content

272-0205-01L

Examination Lesson I in Computer Science

Simultaneous enrolment in "Examination Lesson II in Computer Science" (272-0205-02L) is compulsory.

In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.

Objective

- to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle
- to analyze the tuition they have given with regard to its strengths and weaknesses, and outline improvements.

Content

Lecture notes

Dokument: Schriftliche Vorbereitung für Prüfungslektionen.

Prerequisites / notice

Nach Abschluss der übrigen Ausbildung.

272-0205-02L

Examination Lesson II in Computer Science

Simultaneous enrolment in "Examination Lesson I in Computer Science" (272-0205-01L) is compulsory.

In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.
Objective: On the basis of a specified topic, the candidate shows that they are in a position
- to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle
- to analyze the tuition they have given with regard to its strengths and weaknesses, and outline improvements.

Lecture notes: Dokument: Schriftliche Vorbereitung für Prüfungslektionen.
Prerequisites / notice: Nach Abschluss der übrigen Ausbildung.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>272-0400-00L</td>
<td>Mentored Work Specialised Courses in the Respective O</td>
<td></td>
<td>2 credits</td>
<td>4A</td>
<td>J. Hromkovic, G. Serafini</td>
</tr>
</tbody>
</table>

Abstract: In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.

Objective: The aim is for the students
- to familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way.
- to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership.
- To try out different options for specialist further training in their profession.

Content: Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.

Prerequisites / notice: Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>272-0401-00L</td>
<td>Mentored Work Specialised Courses in the Respective O</td>
<td></td>
<td>2 credits</td>
<td>4A</td>
<td>J. Hromkovic, G. Serafini</td>
</tr>
</tbody>
</table>

Abstract: In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.

Objective: The aim is for the students
- to familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way.
- to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership.
- To try out different options for specialist further training in their profession.

Content: Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.

Prerequisites / notice: Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0237-00L</td>
<td>Concepts of Object-Oriented Programming</td>
<td>W</td>
<td>8 credits</td>
<td>3V+2U+2A</td>
<td>P. Müller</td>
</tr>
</tbody>
</table>

Abstract: Course that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection

Objective: After this course, students will:
Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features. Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs. Be able to learn new languages more rapidly. Be aware of many subtle problems of object-oriented programming and know how to avoid them.

Content: The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages.

The topics discussed in the course include among others:
The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing) The key problems of single and multiple inheritance and how different languages address them Generic type systems, in particular, Java generics, C# generics, and C++ templates The situations in which object-oriented programming does not provide encapsulation, and how to avoid them The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing How to maintain the consistency of data structures
Literature Will be announced in the lecture.

Prerequisites / notice Prerequisites: Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Semester</th>
<th>Credits</th>
<th>ECTS</th>
<th>Lecture</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10</td>
<td>3V+2U+4A</td>
<td>J. M. Buhmann, C. Cotrini Jimenez</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No lecture notes, but slides will be made available on the course webpage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Semester</th>
<th>Credits</th>
<th>ECTS</th>
<th>Lecture</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-1407-00L</td>
<td>Algorithmic Game Theory</td>
<td>W</td>
<td>7</td>
<td>3V+2U+1A</td>
<td>P. Penna</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Game theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning the basic concepts of game theory and mechanism design, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1159 of 2152
The Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a mathematical model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good.

This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth.

Outline:
- Introduction to classic game-theoretic concepts.
- Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity.
- Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization.
- Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy').
- Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium.

Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange.

Lecture notes will be usually posted on the website shortly after each lecture.

Prerequisites / notice
Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

263-2800-00L Design of Parallel and High-Performance Computing W 9 credits 3V+2U+3A T. Hoefler, M. Püschel

Number of participants limited to 125.

Abstract
Advanced topics in parallel and high-performance computing.

Objective
Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space.

Become familiar with important technical concepts and with concurrency folklore.

Content
We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites / notice
This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

Compulsory Elective Courses

Further course offerings from the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

see Compulsory Elective Courses Teaching Diploma

Computer Science Teaching Diploma - Key for Type

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td>P</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1160 of 2152
The course will cover the implementation aspects of data management systems using relational database engines as a starting point to approach the basic concepts of efficient data processing and then expanding those concepts to modern implementations in data centers and the cloud.

Objective

The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has required a combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.

This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form.

- physical storage: distributed file systems (HDFS), object storage (S3), key-value stores
- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)
- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBL, YAML, protocol buffers, Avro)
- data shapes and models (tables, trees, graphs, cubes)
- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)
- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)
- resource management (YARN)
- what a data center is made of and why it matters (racks, nodes, ...)
- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

Large scale analytics and machine learning are outside of the scope of this course.

Papers from scientific conferences and journals. References will be given as part of the course material during the semester.

This course, in the autumn semester, is only intended for:

- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

For students of all other departments interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you:

- "Information Systems for Engineers" (SQL, relational databases): this Fall
- "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists): Spring 2021

There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers.

Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data.
Objective
The goal of the course is to convey the fundamental aspects of efficient data management from a systems implementation perspective: storage, access, organization, indexing, consistency, concurrency, transactions, distribution, query compilation vs interpretation, data representations, etc. Using conventional relational engines as a starting point, the course will aim at providing an in depth coverage of the latest technologies used in data centers and the cloud to implement large scale data processing in various forms.

Content
The course will first cover fundamental concepts in data management: storage, locality, query optimization, declarative interfaces, concurrency control and recovery, buffer managers, management of the memory hierarchy, presenting them in a system independent manner. The course will place an special emphasis on understanding these basic principles as they are key to understanding what problems existing systems try to address. It will then proceed to explore their implementation in modern relational engines supporting SQL to then expand the range of systems used in the cloud: key value stores, geo-replication, query as a service, serverless, large scale analytics engines, etc.

Literature
The main source of information for the course will be articles and research papers describing the architecture of the systems discussed. The list of papers will be provided at the beginning of the course.

Prerequisites / notice
The course requires to have completed the Data Modeling and Data Bases course at the Bachelor level as it assumes knowledge of databases and SQL.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
assessed
assessed

Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10</td>
<td>3V+2U+4A</td>
</tr>
<tr>
<td>Abstract</td>
<td>Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>No lecture notes, but slides will be made available on the course webpage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>System Security</th>
<th>W</th>
<th>7</th>
<th>2V+2U+4A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The first part of the lecture covers individual system's aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Along the lectures, model cases will be elaborated and evaluated in the exercises.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advanced topics in parallel and high-performance computing.

Objective
Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.

Content
We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites / notice
This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

Course Details

Title: Deep Learning
Number of participants limited to 320.
Abstract
Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective
In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.

Prerequisites / notice
This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

 - Advanced Machine Learning
 https://ml2.inf.ethz.ch/courses/sml/
 - Computational Intelligence Lab
 - Introduction to Machine Learning
 https://las.inf.ethz.ch/teaching/introml-S19
 - Statistical Learning Theory
 http://ml2.inf.ethz.ch/courses/slt/
 - Computational Statistics
 - Probabilistic Artificial Intelligence
 https://las.inf.ethz.ch/teaching/pai-f18

Course Details

Title: Informal Methods
Number of participants limited to 125.
Abstract
Informal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to such software systems, and how to get into the habit of thinking formally about systems design even when writing low-level C code.

Objective
This course is about equipping students whose focus is systems with the insights and conceptual tools provided by formal methods, and thereby enabling them to become better systems programmers.

By the end of the course, students should be able to seamlessly integrate basic concepts form formal methods into how they conceive, design, implement, reason about, and debug computer systems.

The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems (who may or may not have existing background knowledge of formal methods) with a basis for applying formal methods in their work.

Content
This course does not assume prior knowledge of formal methods, and will start with a quick review of topics such static vs. dynamic reasoning, variants and invariants, program algebra and refinement, etc. However, it is strongly recommended that students have already taken one of the introductory formal methods course at ETH (or equivalents elsewhere) before taking this course - the emphasis is on reinforcing these concepts by applying them, not to teach them from scratch.

Instead, the majority of the course will be about how to apply these techniques to actual, practical code in real systems. We will work from real systems code written both by students taking the course, and practical systems developed using formal techniques, in particular the verified sat4j microkernel will be a key case study. We will also focus on informal, pen-and-paper arguments for correctness of programs and systems rather than using theorem provers or automated verification tools; again these latter techniques are well covered in other courses (and recommended as a complement to this one).

Major in Machine Intelligence

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10</td>
<td>3V+2U+4A</td>
<td>J. M. Buhmann, C. Cotrini Jimenez</td>
</tr>
</tbody>
</table>

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- **Fundamentals:**
 - What is data?
 - Bayesian Learning
 - Computational learning theory

- **Supervised learning:**
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks

- **Unsupervised learning:**
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

Lecture notes

No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

263-3210-00L Deep Learning

Abstract

Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective

In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.

Prerequisites / notice

This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:
 - Advanced Machine Learning
 https://ml2.inf.ethz.ch/courses/aml/
 - Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/
 - Introduction to Machine Learning
 https://ias.inf.ethz.ch/teaching/introml-S19
 - Statistical Learning Theory
 http://ml2.inf.ethz.ch/courses/sl/t/
 - Computational Statistics
 https://stat.ethz.ch/lectures/ss19/comp-stats.php
 - Probabilistic Artificial Intelligence
 https://ias.inf.ethz.ch/teaching/pai-f18

263-5210-00L Probabilistic Artificial Intelligence

Abstract

This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.

Objective

How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.
This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems. The objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.

This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable natural language processing. The course will cover a range of topics, tentatively including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and derandomization.

The lectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research papers.

This course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

The course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science, but it should also be accessible to last-year bachelor students.

Over the past years, rapid technological advancements have transformed classical disciplines such as biology and medicine into fields of applied data science. While the sheer amount of the collected data often makes computational approaches inevitable for analysis, it is the domain specific structure and close relation to research and clinic, that call for accurate, robust and efficient algorithms. In this course we will critically review central problems in Biomedicine and will discuss the technical foundations and solutions for these problems.

This course critically reviews central problems in Biomedicine and discusses the technical foundations and solutions for these problems. The course will consist of three topic clusters that will cover different aspects of data science problems in Biomedicine:

1) String algorithms for the efficient representation, search, comparison, composition and compression of large sets of strings, mostly originating from DNA or RNA Sequencing. This includes genome assembly, efficient index data structures for strings and graphs, alignment techniques as well as quantitative approaches.
2) Statistical models and algorithms for the assessment and functional analysis of individual genomic variations. This includes the identification of variants, prediction of functional effects, imputation and integration problems as well as the association with clinical phenotypes.
3) Models for organization and representation of large scale biomedical data. This includes ontology concepts, biomedical databases, sequence annotation and data compression.

While not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in "Intro to ML" classes at most institutions (e.g., "Introduction to Machine Learning" at ETH).

The course critically reviews central problems in Biomedicine and discusses the technical foundations and solutions for these problems. The course will consist of three topic clusters that will cover different aspects of data science problems in Biomedicine:

1) String algorithms for the efficient representation, search, comparison, composition and compression of large sets of strings, mostly originating from DNA or RNA Sequencing. This includes genome assembly, efficient index data structures for strings and graphs, alignment techniques as well as quantitative approaches.
2) Statistical models and algorithms for the assessment and functional analysis of individual genomic variations. This includes the identification of variants, prediction of functional effects, imputation and integration problems as well as the association with clinical phenotypes.
3) Models for organization and representation of large scale biomedical data. This includes ontology concepts, biomedical databases, sequence annotation and data compression.

Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/reliableai21):

- Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
- Defense against attacks
- Combining gradient-based optimization with logic for encoding background knowledge
- Complete Certification of deep neural networks via automated reasoning (e.g., via numerical relaxations, mixed-integer solvers).
- Probabilistic certification of deep neural networks
- Training deep neural networks to be provably robust via automated reasoning
- Fairness (different notions of fairness, certifiably fair representation learning)
- Federated Learning (introduction, security considerations)

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.

The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite.

This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.
The course will be centered around exploring methodological and system-focused perspectives on designing AI systems for education and analyzing educational data using AI methods. Students will be expected to a) engage in presentations and active in-class discussion, b) work on problem-sets exemplifying the use of educational data mining techniques, and c) undertake a final course project with feedback from instructors.

Literature
There are no prerequisites for this class. However, it will help if the student has taken an undergraduate or graduate level class in statistics, data science or machine learning. This class is appropriate for advanced undergraduates and master students in Computer Science as well as PhD students in other departments.

Prerequisites
Students are expected to have strong mathematical background in linear algebra, probability theory, optimization, and machine learning.

Number of participants limited to 75.

263-5005-00L Artificial Intelligence in Education

Abstract
Artificial Intelligence (AI) methods have shown to have a profound impact in educational technologies, where the great variety of tasks and data types enable us to get benefit of AI techniques in many different ways. We will review relevant methods and applications of AI in various educational technologies, and work on problem sets and projects to solve problems in education with the help of AI.

Objective
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

Content
- Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition

Prerequisites
It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.

Major in Secure and Reliable Systems

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0237-00L</td>
<td>Concepts of Object-Oriented Programming</td>
<td>W</td>
<td>8 credits</td>
<td>3V+2U+2A</td>
<td>P. Müller</td>
</tr>
</tbody>
</table>

Abstract
Course that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection

Objective
After this course, students will:
- Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features.
- Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs.
- Be able to learn new languages more rapidly.
- Be aware of many subtle problems of object-oriented programming and know how to avoid them.
The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages.

The topics discussed in the course include among others:
- The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing)
- The key problems of single and multiple inheritance and how different languages address them
- Generic type systems, in particular, Java generics, C# generics, and C++ templates
- The situations in which object-oriented programming does not provide encapsulation, and how to avoid them
- The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing
- How to maintain the consistency of data structures

Literature
Will be announced in the lecture.

Prerequisites / notice
Prerequisites:
- Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience

Security Engineering
Subject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements & risk analysis, system modeling & model-based development methods, implementation-level security, and evaluation criteria for secure systems.

Objective
Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include
- security requirements & risk analysis,
- system modeling and model-based development methods,
- implementation-level security, and
- evaluation criteria for the development of secure systems
Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include
- security requirements & risk analysis,
- system modeling and model-based development methods,
- implementation-level security, and
- evaluation criteria for the development of secure systems

Modules taught:

1. Introduction
 - Introduction of Infsec group and speakers
 - Security meets SW engineering: an introduction
 - The activities of SW engineering, and where security fits in
 - Overview of this class
2. Requirements Engineering: Security Requirements and some Analysis
 - Overview: functional and non-functional requirements
 - Use cases, misuse cases, sequence diagrams
 - Safety and security
3. Modeling in the design activities
 - Structure, behavior, and data flow
 - Class diagrams, statecharts
4. Model-driven security for access control (Part I)
 - SecureUML as a language for access control
 - Combining Design Modeling Languages with SecureUML
 - Semantics, i.e., what does it all mean,
 - Generation
 - Examples and experience
5. Model-driven security (Part II)
 - Continuation of above topics
6. Security patterns (design and implementation)
7. Implementation-level security
 - Buffer overflows
 - Input checking
 - Injection attacks
8. Code scanning
 - Static code analysis basics
 - Theoretical and practical challenges
 - Analysis algorithms
 - Common bug pattern search and specification
 - Dataflow analysis
9. Testing
 - Overview and basics
 - Model-based testing
 - Testing security properties
10. Risk analysis and management
 - "Risk": assets, threats, vulnerabilities, risk
 - Risk assessment: quantitative and qualitative
 - Safeguards
 - Generic risk analysis procedure
 - The OCTAVE approach
 - Example of qualitative risk assessment
11. Threat modeling
 - Overview
 - Safety engineering basics: FMEA and FTA
 - Security impact analysis in the design phase
 - Modeling security threats: attack trees
 - Examples and experience
12. Evaluation criteria
 - NIST special papers
 - ISO/IEC 27000
 - Common criteria
 - BSI baseline protection
13. Guest lecture
 - TBA

Literature
- Further relevant books and journal/conference articles will be announced in the lecture.

Prerequisites / notice
Prerequisite: Class on Information Security

System Security

The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.
In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.

The first part of the lecture covers individual system’s aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.

263-2800-00L Design of Parallel and High-Performance Computing

Objective
Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.

Content
We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites / notice
This course is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

263-4640-00L Network Security

Objective
Understand the properties and risks of security. Students will learn about the most important security protocols, secure DNS systems, and network intrusion-detection systems; (1) network defense mechanisms such as public-key infrastructures, TLS, VPNs, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems; (2) network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks; (3) analysis and inference topics such as traffic monitoring and network forensics; and (4) new technologies related to next-generation networks.

Prerequisites / notice
This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L. Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course. The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies

- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving

- Domain C - Social Competencies
 - Communication
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence

- Domain D - Personal Competencies
 - Adaptability and Flexibility
 - Creative Thinking
 - Integrity and Work Ethics

- S. Capkun, K. Kostiainen

Elective Courses

Number

Title

- **252-1411-00L Security of Wireless Networks**

Abstract
Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.

Lecturers
S. Capkun, K. Kostiainen
Objective
After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks.

Content

263-2400-00L Reliable and Trustworthy Artificial Intelligence

Abstract
Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.

Objective
The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.

Content
This comprehensive course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/reliableai21):

- Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
- Defenses against attacks
- Combining gradient-based optimization with logic for encoding background knowledge
- Complete Certification of deep neural networks via automated reasoning (e.g., via numerical relaxations, mixed-integer solvers).
- Probabilistic certification of deep neural networks
- Training deep neural networks to be provably robust via automated reasoning
- Fairness (different notions of fairness, certifiably fair representation learning)
- Federated Learning (introduction, security considerations)

Prerequisites / notice
While not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in "Intro to ML" classes at most institutions (e.g., "Introduction to Machine Learning" at ETH).

For solving assignments, some programming experience in Python is expected.

263-4657-00L Advanced Encryption Schemes

Abstract
Public-Key Encryption has had a significant impact by enabling remote parties to communicate securely via an insecure channel. Latest schemes go further by providing a fine-grained access to the encrypted data.

Objective
The student is comfortable with formal security definitions and proof techniques used to analyze the security of the latest encryption schemes with advanced features. This prepares the student to start reading research papers on the field.

Content
We will start by presenting the notion of Public-Key Encryption with its various security guarantees and some constructions. Then we will look into encryption schemes with fine-grained access control to the encrypted data, such as identity-based encryption or attribute-based encryption and present different methodology to prove their security.

Literature
Links to relevant research papers will be given in the course materials.

Prerequisites / notice
It is recommended for students to have prior exposure to cryptography, e.g. the D-INFK course "Digital Signatures" or "Applied Cryptography".

263-4655-00L Zero-Knowledge Proofs

Number of participants limited to 50.

Abstract
This course is a detailed introduction to zero-knowledge proof protocols.

Objective
To understand various methods of constructing zero-knowledge proof protocols, and be able to analyse their security properties.

Content
The course will discuss interactive zero-knowledge proofs based on various commitment schemes, and explore connections to other areas like secure multi-party computation. The course may also describe some more advanced constructions of non-interactive proofs.

Prerequisites / notice
Students should have taken a first course in Cryptography (as taught in the Information Security course at Bachelor's level). Confidence with algebra and probability is desirable.

227-0579-00L Hardware Security

Abstract
This course covers the security of commodity computer hardware (e.g., CPU, DRAM, etc.) with a special focus on cutting-edge hands-on research. The aim of the course is familiarizing the students with hardware security and more specifically microarchitectural and circuit-level attacks and defenses through lectures, reviewing and discussing papers, and executing some of these advanced attacks.

Objective
By the end of the course, the students will be familiar with the state of the art in commodity computer hardware attacks and defenses. More specifically, the students will learn about:

- security problems of commodity hardware that we use everyday and how you can defend against them.
- relevant computer architecture and operating system aspects of these issues.
- hands-on techniques for performing hardware attacks.
- writing critical reviews and constructive discussions with peers on this topic.

This is the course where you get credit points by building some of the most advanced exploits on the planet! The luckiest team will collect a Best Demo Award at the end of the course.

Literature
Slides, relevant literature and manuals will be made available during the course.

Prerequisites / notice
Knowledge of systems programming and computer architecture is a plus.

Major in Theoretical Computer Science
Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0417-00L</td>
<td>Randomized Algorithms and Probabilistic Methods</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U+4A</td>
<td>A. Steger</td>
</tr>
</tbody>
</table>

Abstract
Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks

Objective
After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.
Content: Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Lecture notes: Yes

252-0535-00L Advanced Machine Learning W 10 credits 3V+2U+4A J. M. Buhmann, C. Cotrini Jimenez

Abstract: Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective: Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content: The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:
- Fundamentals: What is data?
- Bayesian Learning
- Computational learning theory
- Supervised learning: Ensembles: Bagging and Boosting
- Max Margin methods
- Neural networks
- Unsupervised learning: Dimensionality reduction techniques
- Clustering
- Mixture Models
- Non-parametric density estimation
- Learning Dynamical Systems

Lecture notes: No lecture notes, but slides will be made available on the course webpage.

Prerequisites / notice: The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

252-1425-00L Geometry: Combinatorics and Algorithms W 8 credits 3V+2U+2A B. Gärtner, E. Welzl, M. Hoffmann, M. Wettstein

Abstract: Geometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?)

Objective: The goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains.

Content: Planar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in R^d, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations.

Lecture notes: Yes

Prerequisites / notice: Prerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH.

Outlook: In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area.

263-4500-00L Advanced Algorithms W 9 credits 3V+2U+3A M. Ghaffari, G. Zuzic

Abstract: This is a graduate-level course on algorithm design (and analysis). It covers a range of topics and techniques in approximation algorithms, sketching and streaming algorithms, and online algorithms.

Objective: This course familiarizes the students with some of the main tools and techniques in modern subareas of algorithm design.
Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-1407-00L</td>
<td>Algorithmic Game Theory</td>
<td>W</td>
<td>7 credits</td>
<td>3V+2U+1A</td>
<td>P. Penna</td>
</tr>
<tr>
<td>227-0417-00L</td>
<td>Information Theory I</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>A. Lapidot</td>
</tr>
<tr>
<td>401-3055-64L</td>
<td>Algebraic Methods in Combinatorics</td>
<td>W</td>
<td>6 credits</td>
<td>2V+1U</td>
<td>B. Sudakov</td>
</tr>
</tbody>
</table>

Abstract
- **Game theory** provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory.
- **Learning the basic concepts of game theory and mechanism design**, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting.
- **The Internet** is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a mathematical model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good.

- **This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth.**

- **Outline:**
 - Introduction to classic game-theoretic concepts.
 - Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity.
 - Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization.
 - Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the ‘Price of Anarchy’).
 - Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium.
 - Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange.

- **Lecture notes** will be usually posted on the website shortly after each lecture.

- **Prerequisites / notice**
 - Several copies of both books are available in the Computer Science library.
 - Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

- **Requirements:** You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

- **Audience:** Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

- **Prerequisites:** Students are exposed to basic concepts in discrete mathematics.

- **Literature**
 - T.M. Cover and J. Thomas, Elements of Information Theory (second edition)
The objectives of this course are:

1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

The programming assignments will be in C++. This will not be taught in the class.

Books:
- High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
- Physically Based Rendering: From Theory to Implementation

Prerequisites:
- Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.

The programming assignments will be in C++. This will not be taught in the class.

The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.

The objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition
Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0546-00L</td>
<td>Physically-Based Simulation in Computer Graphics</td>
<td>W</td>
<td>5 credits</td>
<td>2V+1U+1A</td>
<td>V. da Costa de Azevedo, B. Solenthaler, B. Thomaszewski</td>
</tr>
<tr>
<td>263-5905-00L</td>
<td>Mixed Reality</td>
<td>W</td>
<td>5 credits</td>
<td>3G+1A</td>
<td>I. Armeni, F. Bogo, M. Pollefeys</td>
</tr>
<tr>
<td>252-3811-00L</td>
<td>Case Studies from Practice Seminar</td>
<td>W</td>
<td>4 credits</td>
<td>2S</td>
<td>M. Brandis</td>
</tr>
<tr>
<td>252-4601-00L</td>
<td>Current Topics in Information Security</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>S. Capkun, K. Paterson, A. Perrig, S. Shinde</td>
</tr>
</tbody>
</table>

Seminar

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0546-00L</td>
<td>Physically-Based Simulation in Computer Graphics</td>
<td>W</td>
<td>5 credits</td>
<td>2V+1U+1A</td>
<td>V. da Costa de Azevedo, B. Solenthaler, B. Thomaszewski</td>
</tr>
<tr>
<td>263-5905-00L</td>
<td>Mixed Reality</td>
<td>W</td>
<td>5 credits</td>
<td>3G+1A</td>
<td>I. Armeni, F. Bogo, M. Pollefeys</td>
</tr>
<tr>
<td>252-3811-00L</td>
<td>Case Studies from Practice Seminar</td>
<td>W</td>
<td>4 credits</td>
<td>2S</td>
<td>M. Brandis</td>
</tr>
<tr>
<td>252-4601-00L</td>
<td>Current Topics in Information Security</td>
<td>W</td>
<td>2 credits</td>
<td>2S</td>
<td>S. Capkun, K. Paterson, A. Perrig, S. Shinde</td>
</tr>
</tbody>
</table>
Advanced Topics in Machine Learning

The seminar covers various topics in information security, including network security, cryptography and security protocols. The participants are expected to read a scientific paper and present it in a 35-40 min talk. At the beginning of the semester a short introduction to presentation techniques will be given.

Selected Topics
- security protocols: models, specification & verification
- trust management, access control and non-interference
- side-channel attacks
- identity-based cryptography
- host-based attack detection
- anomaly detection in backbone networks
- key-management for sensor networks

Content

The seminar will cover a number of recent papers which have emerged as important contributions to the pattern recognition and machine learning literature. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. Frequently, papers are selected from computer vision or bioinformatics - two fields, which relies more and more on machine learning methodology and statistical models.

Objective

The goal is to get an in-depth understanding of actual problems and research topics in the field of computer graphics as well as improve presentations and critical analysis skills.

Literature

The reading list will be published on the course web site.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-5051-00L</td>
<td>Advanced Topics in Machine Learning</td>
<td>2</td>
<td>2</td>
<td>J. M. Buhmann, R. Cotterell, J. Vogt, F. Yang</td>
</tr>
<tr>
<td>252-5701-00L</td>
<td>Advanced Topics in Computer Graphics and Vision</td>
<td>2</td>
<td>2</td>
<td>M. Pollefeys, O. Sorkine Hornung, S. Tang</td>
</tr>
<tr>
<td>263-2100-00L</td>
<td>Research Topics in Software Engineering</td>
<td>2</td>
<td>2</td>
<td>P. Müller, M. Püschel</td>
</tr>
<tr>
<td>263-3504-00L</td>
<td>Hardware Acceleration for Data Processing</td>
<td>2</td>
<td>2</td>
<td>G. Alonso</td>
</tr>
</tbody>
</table>
The general application areas are big data and machine learning. The systems covered will include systems from computer architecture, high performance computing, data appliances, and data centers.

Prerequisites / notice
Students taking this seminar should have the necessary background in systems and low level programming.

263-3713-00L Advanced Topics in Human-Centric Computer Vision

Objective
The learning objective is to analyze selected research papers published at top computer vision and machine learning venues. A key focus will be placed on identifying and discussing open problems and novel solutions in this space. The seminar will achieve this via several components: reading papers, technical presentations, writing analysis and critique summaries, class discussions, and exploration of potential research topics.

Content
The seminar will discuss state-of-the-art literature on human-centric computer vision topics including but not limited to human pose estimation, hand and eye-gaze estimation as well as generative modeling of detailed human activities.

Abstract
In this seminar we will discuss state-of-the-art literature on human-centric computer vision topics including but not limited to human pose estimation, hand and eye-gaze estimation as well as generative modeling of detailed human activities.

Prerequisites / notice
Participation will be limited subject to available topics. Furthermore, students will have to submit a motivation paragraph. Participants will be selected based on this paragraph.

Taught competencies
- Domain B - Method-specific Competencies: Analytical Competencies
- Domain C - Social Competencies: Communication
- Domain D - Personal Competencies: Critical Thinking

263-4410-00L Seminar on Advanced Graph Algorithms and Optimization

Objective
This seminar aims to familiarize students with current research topics in fast graph algorithms and optimization.

Content
Read papers on cutting edge research topics; learn how to give a scientific talk.

Abstract
We will study recent papers that made significant contributions in the areas in fast graph algorithms and optimization.

Prerequisites / notice
As prerequisite we require that you passed the course "Advanced Graph Algorithms and Optimization". In exceptional cases, students who passed one of the courses "Randomized Algorithms and Probabilistic Methods", "Optimization for Data Science", or "Advanced Algorithms" may also participate, at the discretion of the lecturer.

263-5156-00L Beyond iid Learning: Causality, Dynamics, and Interactions

Objective
The goal of the seminar is not only to familiarize students with exciting new research topics, but also to teach basic scientific writing and oral presentation skills. The seminar will have a different structure from regular seminars to encourage more discussion and a deeper learning experience.

Content
We will treat papers as case studies and discuss them in-depth in the seminar. Once per semester, every student will have to take one of the following roles:

Presenter: Give a presentation about the paper that you read in depth.

Reviewer: Perform a critical review of the paper.

Prerequisites / notice
All other students: read the paper and submit questions they have about the paper before the presentation.

Lecture notes
Further information will be published on the course website: https://beyond-iid-learning.xyz/

Keywords: Causal inference, adaptive decision-making, reinforcement learning, game theory, meta learning, interactions with humans.

Prerequisites / notice
BSc in computer science or related field (engineering, physics, mathematics). Passed at least one learning course, such as "Introduction to Machine Learning" or "Probabilistic Artificial Intelligence".

Practical Work

Number Title Type ECTS Hours Lecturers
252-0811-00L Applied Security Laboratory W 8 credits 7P C. Sprenger

Objective
The Applied Security Laboratory addresses four major topics: operating system security (hardening, vulnerability scanning, access control, logging), application security with an emphasis on web applications (web server setup, common web exploits, authentication, session handling, code security), computer forensics, and risk analysis and risk management.
This course emphasizes applied aspects of Information Security. The students will study a number of topics in a hands-on fashion and carry out experiments in order to better understand the need for secure implementation and configuration of IT systems and to assess the effectivity and impact of security measures. This part is based on a book and virtual machines that include example applications, questions, and answers.

The students will also complete an independent project: based on a set of functional requirements, they will design and implement a prototypical IT system. In addition, they will conduct a thorough security analysis and devise appropriate security measures for their systems. Finally, they will carry out a technical and conceptual review of another system. All project work will be performed in teams and must be properly documented.

This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods. There are projects available in a wide range of areas: from web services to ubiquitous computing including wireless networks, ad-hoc networks, RFID, and distributed applications on smartphones.

This course covers some of the fundamental concepts of computer graphics: generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.

The lab allows flexible working since there are only few mandatory working sessions during the semester.

The course covers the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed applications on smartphones. The goal of the project is for the students to gain hands-on experience with real products and the latest technology in distributed systems. There is no lecture associated to the course.

The lab covers a variety of different techniques. Thus, participating students should have a solid foundation in the following areas: information security, operating system administration (especially Unix/Linux) and networking. Students are also expected to have a basic understanding of HTML, PHP, JavaScript, and MySQL because several examples are implemented in these languages.

The course provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods. There are projects available in a wide range of areas: from web services to ubiquitous computing including wireless networks, ad-hoc networks, and distributed applications on smartphones. The goal of the project is for the students to gain hands-on experience with real products and the latest technology in distributed systems. There is no lecture associated to the course.

Recommended reading includes:
* Various: OWASP Guide to Building Secure Web Applications, available online
* Frisch: Essential System Administration, O’Reilly & Associates.
* NIST: Risk Management Guide for Information Technology Systems, available online as PDF
* BSI: IT-Grundschutzhandbuch, available online

* The lab allows flexible working since there are only few mandatory working sessions during the semester.
* The lab covers a variety of different techniques. Thus, participating students should have a solid foundation in the following areas: information security, operating system administration (especially Unix/Linux) and networking. Students are also expected to have a basic understanding of HTML, PHP, JavaScript, and MySQL because several examples are implemented in these languages.
* Students must be prepared to spend more than three hours per week to complete the lab assignments and the project. This applies particularly to students who do not meet the recommended requirements given above. Successful participants of the course receive 8 credits as compensation for their effort.
* All participants must sign the lab’s charter and usage policy during the introduction lecture.

Distributed Systems Laboratory

Practical Work

W 8 credits 17A Supervisors

The semester project is conducted under the supervision of a Computer Science professor.

Minors

Minor in Computer Graphics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0546-00L</td>
<td>Physically-Based Simulation in Computer Graphics</td>
<td>W</td>
<td>5 credits</td>
<td>2V+1U+1A</td>
<td>V. da Costa de Azevedo, B. Solenthaler, B. Thomszewski</td>
</tr>
</tbody>
</table>

Abstract

This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.

Objective

This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.

Content

The lecture covers topics in physically-based modeling, such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation.

Prerequisites / notice

Fundamentals of calculus and physics, basic concepts of algorithms and data structures, basic programming skills in C++. Knowledge on numerical mathematics as well as ordinary and partial differential equations is an asset, but not required.

Computer Graphics

W 8 credits 3V+2U+2A

Abstract

This course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.

Objective

At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students’ curiosity to explore the field of computer graphics in subsequent courses or on their own.

Content

This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering.

Lecture notes

no
The goal of this course is an introduction and hands-on experience on latest mixed reality technology at the cross-section of 3D computer graphics and vision, human machine interaction, as well as gaming technology.

After attending this course, students will:
1. Understand the foundations of 2D graphics, Computer Vision, and Human-Machine Interaction
2. Have a clear understanding on how to build mixed reality apps
3. Have a good overview of state-of-the-art Mixed Reality
4. Be able to critically analyze and assess current research in this area.

The course introduces latest mixed reality technology and provides introductory elements for a number of related fields including: Introspection to Mixed Reality / Augmented Reality / Virtual Reality Introduction to 3D Computer Graphics, 3D Computer Vision. This will take place in the form of short lectures, followed by student presentations discussing the current state-of-the-art. The main focus of this course is student projects on mixed reality topics, where small groups of students will work on a particular project with the goal to design, develop and deploy a mixed reality application. The project topics are flexible and can reach from proof-of-concept vision / graphics / HMI research, to apps that support teaching with interactive augmented reality, or game development. The default platform will be Microsoft HoloLens in combination with C# and Unity3D - other platforms are also possible to use, such as tablets and phones.

Prerequisites / notice
Prerequisites include:
- Good programming skills (C# / C++ / Java etc.)
- Computer graphics / vision experience: Students should have taken, at a minimum, Visual Computing. Higher level courses are recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

Minor in Computer Vision

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3210-00L</td>
<td>Deep Learning</td>
<td>W</td>
<td>8 credits</td>
<td>3V+2U+2A</td>
<td>F. Perez Cruz, A. Lucchi</td>
</tr>
<tr>
<td>263-3902-00L</td>
<td>Computer Vision</td>
<td>W</td>
<td>8 credits</td>
<td>3V+1U+3A</td>
<td>M. Pollefeys, S. Tang, F. Yu</td>
</tr>
</tbody>
</table>

Prerequisites / notice
Prerequisites include:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:
 - Advanced Machine Learning
 - Computational Intelligence Lab
 - Introduction to Machine Learning
 - Statistical Learning Theory
 - Computational Statistics
 - Probabilistic Artificial Intelligence

Other recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-5905-00L</td>
<td>Mixed Reality</td>
<td>W</td>
<td>5 credits</td>
<td>3G+1A</td>
<td>I. Armeni, F. Bogo, M. Pollefeys</td>
</tr>
</tbody>
</table>

Prerequisites / notice
Prerequisites include:
- Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
- The programming assignments will be in C++. This will not be taught in the class.

Prerequisites / notice
Prerequisites: Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.

The programming assignments will be in C++. This will not be taught in the class.

Prerequisites / notice
Prerequisites include:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:
 - Advanced Machine Learning
 - Computational Intelligence Lab
 - Introduction to Machine Learning
 - Statistical Learning Theory
 - Computational Statistics
 - Probabilistic Artificial Intelligence

Other recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

Prerequisites / notice
Prerequisites include:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:
 - Advanced Machine Learning
 - Computational Intelligence Lab
 - Introduction to Machine Learning
 - Statistical Learning Theory
 - Computational Statistics
 - Probabilistic Artificial Intelligence

Other recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

Literature
- Books:
 - High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
 - Multiple view geometry in computer vision
 - Physically Based Rendering: From Theory to Implementation

Prerequisites / notice
Prerequisites:
- Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
- The programming assignments will be in C++. This will not be taught in the class.

263-5905-00L
- **Mixed Reality**
- **W**
- **5 credits**
- **3G+1A**
- I. Armeni, F. Bogo, M. Pollefeys

Abstract
The goal of this course is an introduction and hands-on experience on latest mixed reality technology at the cross-section of 3D computer graphics and vision, human machine interaction, as well as gaming technology.

Objective
After attending this course, students will:
1. Understand the foundations of 2D graphics, Computer Vision, and Human-Machine Interaction
2. Have a clear understanding on how to build mixed reality apps
3. Have a good overview of state-of-the-art Mixed Reality
4. Be able to critically analyze and assess current research in this area.

Content
The course introduces latest mixed reality technology and provides introductory elements for a number of related fields including: Introspection to Mixed Reality / Augmented Reality / Virtual Reality Introduction to 3D Computer Graphics, 3D Computer Vision. This will take place in the form of short lectures, followed by student presentations discussing the current state-of-the-art. The main focus of this course is student projects on mixed reality topics, where small groups of students will work on a particular project with the goal to design, develop and deploy a mixed reality application. The project topics are flexible and can reach from proof-of-concept vision / graphics / HMI research, to apps that support teaching with interactive augmented reality, or game development. The default platform will be Microsoft HoloLens in combination with C# and Unity3D - other platforms are also possible to use, such as tablets and phones.

Prerequisites / notice
Prerequisites include:
- Good programming skills (C# / C++ / Java etc.)
- Computer graphics / vision experience: Students should have taken, at a minimum, Visual Computing. Higher level courses are recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

Minor in Computer Vision

Number
<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3210-00L</td>
<td>Deep Learning</td>
<td>W</td>
<td>8 credits</td>
</tr>
<tr>
<td>263-3902-00L</td>
<td>Computer Vision</td>
<td>W</td>
<td>8 credits</td>
</tr>
<tr>
<td>263-5905-00L</td>
<td>Mixed Reality</td>
<td>W</td>
<td>5 credits</td>
</tr>
</tbody>
</table>

Abstract
The goal of this course is an introduction and hands-on experience on latest mixed reality technology at the cross-section of 3D computer graphics and vision, human machine interaction, as well as gaming technology.
Objective
After attending this course, students will:
1. Understand the foundations of 3D graphics, Computer Vision, and Human-Machine Interaction
2. Have a clear understanding on how to build mixed reality apps
3. Have a good overview of state-of-the-art Mixed Reality
4. Be able to critically analyze and assess current research in this area.

Content
The course introduces latest mixed reality technology and provides introductory elements for a number of related fields including: Introduction to Mixed Reality / Augmented Reality / Virtual Reality. This will take place in the form of short lectures, followed by student presentations discussing the current state-of-the-art. The main focus of this course is to present projects on mixed reality topics, where small groups of students will work on a particular project with the goal to design, develop and deploy a mixed reality application. The project topics are flexible and can reach from proof-of-concept vision/graphics/HMI research, to apps that support teaching with interactive augmented reality, or game development. The default platform will be Microsoft HoloLens in combination with C# and Unity3D - other platforms are also possible to use, such as tablets and phones.

Prerequisites / notice
Prerequisites include:
- Good programming skills (C# / C++ / Java etc.)
- Computer graphics/vision experience: Students should have taken, at a minimum, Visual Computing. Higher level courses are recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

Minor in Data Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10</td>
<td>3V+2U+4A</td>
<td>J. M. Buhmann, C. Cotrini Jimenez</td>
</tr>
</tbody>
</table>

Abstract
Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real-world data.

Content
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:
- Fundamentals: What is data? Bayesian Learning Computational learning theory
- Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks
- Unsupervised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems

Lecture notes
No lecture notes, but slides will be made available on the course webpage.

Literature

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

Design of Parallel and High-Performance Computing

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-2800-00L</td>
<td>Design of Parallel and High-Performance Computing</td>
<td>W</td>
<td>9</td>
<td>3V+2U+3A</td>
<td>T. Hoefler, M. Püschel</td>
</tr>
</tbody>
</table>

Abstract
Advanced topics in parallel and high-performance computing.

Objective
Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.

Content
We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites / notice
This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallel Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

Big Data

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3010-00L</td>
<td>Big Data</td>
<td>W</td>
<td>10</td>
<td>3V+2U+4A</td>
<td>G. Fourny</td>
</tr>
</tbody>
</table>

Abstract
The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.
Objective

This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.

Content

This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form.

- physical storage: distributed file systems (HDFS), object storage (S3), key-value stores
- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)
- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro)
- data shapes and models (tables, trees, graphs, cubes)
- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)
- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)
- resource management (YARN)
- what a data center is made of and why it matters (racks, nodes, ...)
- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

Literature

Large scale analytics and machine learning are outside of the scope of this course.

Papers from scientific conferences and journals. References will be given as part of the course material during the semester.

This course, in the autumn semester, is only intended for:

- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

For students of all other departements interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you:

- "Information Systems for Engineers" (SQL, relational databases): this Fall
- "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists): Spring 2021

There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers.

Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Period</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3210-00L</td>
<td>Deep Learning</td>
<td>8</td>
<td>Fall 2021</td>
<td>F. Perez Cruz, A. Lucchi</td>
</tr>
</tbody>
</table>

Abstract

Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective

In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:
 - Advanced Machine Learning
 https://mi2.informatik.ethz.ch/courses/aml/
 - Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/
 - Introduction to Machine Learning
 https://ias.inf.ethz.ch/teaching/introml-S19
 - Statistical Learning Theory
 http://mi2.inf.ethz.ch/courses/slt/
 - Computational Statistics
 https://stat.ethz.ch/lectures/ss19/comp-stats.php
 - Probabilistic Artificial Intelligence
 https://ias.inf.ethz.ch/teaching/pai-f18

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>Data Management Systems</th>
<th>W</th>
<th>8 credits</th>
<th>3V+1U+3A</th>
<th>G. Alonso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The course will cover the implementation aspects of data management systems using relational database engines as a starting point to cover the basic concepts of efficient data processing and then expanding those concepts to modern implementations in data centers and the cloud.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of the course is to convey the fundamental aspects of efficient data management from a systems implementation perspective: storage, access, organization, indexing, consistency, concurrency, transactions, distribution, query compilation vs interpretation, data representations, etc. Using conventional relational engines as a starting point, the course will aim at providing an in depth coverage of the latest technologies used in data centers and the cloud to implement large scale data processing in various forms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course will first cover fundamental concepts in data management: storage, locality, query optimization, declarative interfaces, concurrency control and recovery, buffer managers, management of the memory hierarchy, presenting them in a system independent manner. The course will place an special emphasis on understanding these basic principles as they are key to understanding what problems existing systems try to address. It will then proceed to explore their implementation in modern relational engines supporting SQL to then expand the range of systems used in the cloud: key value stores, geo-replication, query as a service, serverless, large scale analytics engines, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The main source of information for the course will be articles and research papers describing the architecture of the systems discussed. The list of papers will be provided at the beginning of the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The course requires to have completed the Data Modeling and Data Bases course at the Bachelor level as it assumes knowledge of databases and SQL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>Informal Methods</th>
<th>W</th>
<th>5 credits</th>
<th>2G+2A</th>
<th>D. Cock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Formal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to such software systems, and how to get into the habit of thinking formally about systems design even when writing low-level C code.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course is about equipping students whose focus is systems with the insights and conceptual tools provided by formal methods, and thereby enabling them to become better systems programmers. By the end of the course, students should be able to seamlessly integrate basic concepts from formal methods into how they conceive, design, implement, reason about, and debug computer systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course does not assume prior knowledge of formal methods, and will start with a quick review of topics such static vs. dynamic reasoning, variants and invariants, program algebra and refinement, etc. However, it is strongly recommended that students have already taken one of the introductory formal methods course at ETH (or equivalents elsewhere) before taking this course - the emphasis is on reinforcing these concepts by applying them, not to teach them from scratch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instead, the majority of the course will be about how to apply these techniques to actual, practical code in real systems. We will work from real systems code written both by students taking the course, and practical systems developed using formal techniques, in particular the verified seL4 microkernel will be a key case study. We will also focus on informal, pen-and-paper arguments for correctness of programs and systems rather than using theorem provers or automated verification tools; again these latter techniques are well covered in other courses (and recommended as a complement to this one).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minor in Information Security

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0463-00L</td>
<td>Security Engineering</td>
<td>W</td>
<td>7 credits</td>
<td>2V+2U+2A</td>
<td>S. Kristic</td>
</tr>
<tr>
<td>Abstract</td>
<td>Subject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements, risk analysis, system modeling, model-based development methods, implementation-level security, and evaluation criteria for secure systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1181 of 2152
Objective

Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems
Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

- security requirements & risk analysis,
- system modeling and model-based development methods,
- implementation-level security, and
- evaluation criteria for the development of secure systems

Modules taught:

1. Introduction
 - Introduction of Infsec group and speakers
 - Security meets SW engineering: an introduction
 - The activities of SW engineering, and where security fits in
 - Overview of this class
2. Requirements Engineering: Security Requirements and some Analysis
 - Overview: functional and non-functional requirements
 - Use cases, misuse cases, sequence diagrams
 - Safety and security
3. Modeling in the design activities
 - Structure, behavior, and data flow
 - Class diagrams, statecharts
4. Model-driven security for access control (Part I)
 - SecureUML as a language for access control
 - Combining Design Modeling Languages with SecureUML
 - Semantics, i.e., what does it all mean
 - Generation
 - Examples and experience
5. Model-driven security (Part II)
 - Continuation of above topics
6. Security patterns (design and implementation)
7. Implementation-level security
 - Buffer overflows
 - Input checking
 - Injection attacks
8. Code scanning
 - Static code analysis basics
 - Theoretical and practical challenges
 - Analysis algorithms
 - Common bug pattern search and specification
 - Dataflow analysis
9. Testing
 - Overview and basics
 - Model-based testing
 - Testing security properties
10. Risk analysis and management
 - “Risk”: assets, threats, vulnerabilities, risk
 - Risk assessment: quantitative and qualitative
 - Safeguards
 - Generic risk analysis procedure
 - The OCTAVE approach
 - Example of qualitative risk assessment
11. Threat modeling
 - Overview
 - Safety engineering basics: FMEA and FTA
 - Security impact analysis in the design phase
 - Modeling security threats: attack trees
 - Examples and experience
12. Evaluation criteria
 - NIST special papers
 - ISO/IEC 27000
 - Common criteria
 - BSI baseline protection
13. Guest lecture
 - TBA

Literature
- Further relevant books and journal/conference articles will be announced in the lecture.

Prerequisites / notice
Prerequisite: Class on Information Security

252-1411-00L Security of Wireless Networks W 6 credits 2V+1U+2A S. Capkun, K. Kostiainen
Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1183 of 2152
After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks.

Content

252-1414-00L System Security

Objective
The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.

Content
The first part of the lecture covers individual system's aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

Abstract
The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

Abstract
The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

263-4640-00L Network Security

Objective
- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

Abstract
This course will cover topics spanning four broad themes with a focus on the first two themes:
(1) network defense mechanisms such as public-key infrastructures, TLS, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems;
(2) network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
(3) analysis and inference topics such as traffic monitoring and network forensics; and
(4) new technologies related to next-generation networks.

Content
This course will cover topics spanning four broad themes with a focus on the first two themes:
(1) network defense mechanisms such as public-key infrastructures, TLS, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems;
(2) network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
(3) analysis and inference topics such as traffic monitoring and network forensics; and
(4) new technologies related to next-generation networks.

Prerequisites / notice
This course is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0215-00L or 252-0215-00L. Basic knowledge of information security or applied cryptography as taught in 252-0215-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

263-4657-00L Advanced Encryption Schemes

Abstract
Public-Key Encryption has had a significant impact by enabling remote parties to communicate securely via an insecure channel. Latest schemes go further by providing a fine-grained access to the encrypted data.

Objective
The student is comfortable with formal security definitions and proof techniques used to analyze the security of the latest encryption schemes with advanced features. This prepares the student to start reading research papers on the field.

Content
We will start by presenting the notion of Public-Key Encryption with its various security guarantees and some constructions. Then we will look into encryption schemes with fine-grained access control to the encrypted data, such as identity-based encryption or attribute-based encryption and present different methodology to prove their security.

Literature
Links to relevant research papers will be given in the course materials.

Prerequisites / notice
It is recommended for students to have prior exposure to cryptography, e.g. the D-INFK course "Digital Signatures" or "Applied Cryptography".

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1184 of 2152
Zero-Knowledge Proofs

The objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.

Abstract
This course is a detailed introduction to zero-knowledge proof protocols.

Objective
To understand various methods of constructing zero-knowledge proof protocols, and be able to analyse their security properties.

Content
The course will discuss interactive zero-knowledge proofs based on various commitment schemes, and explore connections to other areas like secure multi-party computation. The course may also describe some more advanced constructions of non-interactive proofs.

Lecture notes
The course notes will be written in English.

Prerequisites / notice
Students should have taken a first course in Cryptography (as taught in the Information Security course at Bachelor’s level). Confidence with algebra and probability is desirable.

Hardware Security

This course covers the security of commodity computer hardware (e.g., CPU, DRAM, etc.) with a special focus on cutting-edge hands-on research. The aim of the course is familiarizing the students with hardware security and more specifically microarchitectural and circuit-level attacks and defenses through lectures, reviewing and discussing papers, and executing some of these advanced attacks.

Abstract
This course covers the security of commodity computer hardware (e.g., CPU, DRAM, etc.) with a special focus on cutting-edge hands-on research. The aim of the course is familiarizing the students with hardware security and more specifically microarchitectural and circuit-level attacks and defenses through lectures, reviewing and discussing papers, and executing some of these advanced attacks.

Objective
By the end of the course, the students will be familiar with the art in commodity computer hardware attacks and defenses. More specifically, the students will learn about:

- security problems of commodity hardware that we use everyday and how you can defend against them.
- relevant computer architecture and operating system aspects of these issues.
- hands-on techniques for performing hardware attacks.
- writing critical reviews and constructive discussions with peers on this topic.

This is the course where you get credit points by building some of the most advanced exploits on the planet! The luckiest team will collect a Best Demo Award at the end of the course.

Prerequisites / notice
Knowledge of systems programming and computer architecture is a plus.

Minor in Machine Learning

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U+4A</td>
<td>J. M. Buhmann, C. Cotrini Jimenez</td>
</tr>
</tbody>
</table>

Abstract
Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Fundamentals:
 - What is data?
 - Bayesian Learning
 - Computational learning theory
- Supervised learning:
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks
- Unsupervised learning:
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

Lecture notes
No lecture notes, but slides will be made available on the course webpage.

Literature

Number of participants limited to 400.

Prerequisites / notice
The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

Natural Language Processing

Number of participants limited to 400.

Abstract
This course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

Objective
The objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.
This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

Lectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.

Reliable and Trustworthy Artificial Intelligence

W 6 credits 2V+2U+1A M. Vechev

Abstract
Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.

Objective
The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.

Content
This comprehensive course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/reliableai21):

- Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
- Defenses against attacks
- Combining gradient-based optimization with logic for encoding background knowledge
- Complete Certification of deep neural networks via automated reasoning (e.g., via numerical relaxations, mixed-integer solvers).
- Probabilistic certification of deep neural networks
- Training deep neural networks to be provably robust via automated reasoning
- Fairness (different notions of fairness, certifiably fair representation learning)
- Federated Learning (introduction, security considerations)

Prerequisites / notice
While not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in “Intro to ML” classes at most institutions (e.g., “Introduction to Machine Learning” at ETH).

For solving assignments, some programming experience in Python is expected.

Deep Learning

W 8 credits 3V+2U+2A F. Perez Cruz, A. Lucchi

Number of participants limited to 320.

Abstract
Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective
In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is to provide a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

 - Advanced Machine Learning
 https://ml2.inf.ethz.ch/courses/aml/
 - Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/
 - Introduction to Machine Learning
 https://las.inf.ethz.ch/teaching/introml-S19
 - Statistical Learning Theory
 http://ml2.inf.ethz.ch/courses/slt/
 - Computational Statistics
 https://stat.ethz.ch/lectures/ss19/comp-stats.php

Prerequisites / notice
This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

For solving assignments, some programming experience in Python is expected.

Artificial Intelligence in Education

W 5 credits 2V+1U+1A M. Sachan, T. Sinha

Number of participants limited to 75.

Abstract
Artificial Intelligence (AI) methods have shown to have a profound impact in educational technologies, where the great variety of tasks and data types enable us to get benefit of AI techniques in many different ways. We will review relevant methods and applications of AI in various educational technologies, and work on problem sets and projects to solve problems in education with the help of AI.

Objective
The course will be centered around exploring methodological and system-focused perspectives on designing AI systems for education and analyzing educational data using AI methods. Students will be expected to a) engage in presentations and active in-class discussion, b) work on problem-sets exemplifying the use of educational data mining techniques, and c) undertake a final course project with feedback from instructors.

Content
The course will start with a general introduction to AI, where we will cover supervised and unsupervised learning techniques (e.g., classification and regression models, feature selection and preprocessing of data, clustering, dimensionality reduction and text mining techniques) with a focus on application of these techniques in educational data mining. After the introduction of the basic methodologies, we will continue with the most relevant applications of AI in educational technologies (e.g., intelligent tutoring and student personalization, scaffolding open-ended discovery learning, socially-aware AI and learning at scale with AI systems). In the final part of the course, we will cover challenges associated with using AI in student facing settings.

Lecture notes
Lecture slides will be made available at the course Web site.

Literature
No textbook is required, but there will be regularly assigned readings from research literature, linked to the course website.
This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.

Objectives

How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.

Topics covered:

- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

Prerequisites and notice

Solid basic knowledge in statistics, algorithms and programming.

The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite.

263-5210-00L

Probabilistic Artificial Intelligence

W 8 credits

3V+2U+2A

A. Krause

Abstract

This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.

Objective

How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.

Content

Topics covered:

- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

Prerequisites / notice

The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite.

263-5255-00L

Foundations of Reinforcement Learning

W 5 credits

2V+2A

N. He

Abstract

Reinforcement learning (RL) has been in the limelight of many recent breakthroughs in artificial intelligence. This course focuses on theoretical and algorithmic foundations of reinforcement learning, through the lens of optimization, modern approximation, and learning theory. The course targets M.S. students with strong research interests in reinforcement learning, optimization, and control.

Objective

This course aims to provide students with an advanced introduction of RL theory and algorithms as well as bring them near the frontier of this active research field.

By the end of the course, students will be able to:

- Identify the strengths and limitations of various reinforcement learning algorithms;
- Formulate and solve sequential decision-making problems by applying relevant reinforcement learning tools;
- Generalize or discover "new" applications, algorithms, or theories of reinforcement learning towards conducting independent research on the topic.

Content

Basic topics include fundamentals of Markov decision processes, approximate dynamic programming, linear programming and primal-dual perspectives of RL, model-based and model-free RL, policy gradient and actor-critic algorithms, Markov games and multi-agent RL. If time allows, we will also discuss advanced topics such as batch RL, inverse RL, causal RL, etc. The course keeps strong emphasis on in-depth understanding of the mathematical modeling and theoretical properties of RL algorithms.

Lecture notes

Lecture notes will be posted on Moodle.

Literature

Dynamic Programming and Optimal Control, Vol I & II, Dimitris Bertsekas

Algorithms for Reinforcement Learning, Csaba Czepesvári.

Prerequisites / notice

Students are expected to have strong mathematical background in linear algebra, probability theory, optimization, and machine learning.

Minor in Networking

Number

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-1411-00L</td>
<td>Security of Wireless Networks</td>
<td>W</td>
<td>6 credits</td>
<td>2V+1U+2A</td>
<td>S. Capkun, K. Kostiainen</td>
</tr>
<tr>
<td>263-4640-00L</td>
<td>Network Security</td>
<td>W</td>
<td>8 credits</td>
<td>2V+2U+3A</td>
<td>A. Perrig, S. Frei, M. Legner, K. Paterson</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 1187 of 2152
This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L. Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

The course that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection.

Prerequisites / notice

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Course that covers advanced topics and technologies in computer networks, both theoretically and practically. It is offered each Fall semester, with rotating topics. Repetition for credit is possible with consent of the instructor. In the Fall 2021, the course will cover advanced topics in Internet routing and forwarding.

Objective

The last week of the semester will be dedicated to student presentations and demonstrations.

Lecture notes

Lecture notes and material will be made available before each course on the course website.

Literature

Relevant references will be made available through the course website.

Prerequisites / notice

Prerequisites: Communication Networks (227-0120-00L) or equivalents / good programming skills (in any language) are expected as both the exercises and the final project will involve coding.

Taught competencies

Concepts of Object-Oriented Programming

Course that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection.

Abstract

After this course, students will:
- Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features.
- Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs.
- Be able to learn new languages more rapidly.
- Be aware of many subtle problems of object-oriented programming and know how to avoid them.

Minor in Programming Languages and Software Engineering
The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages.

The topics discussed in the course include among others:

- The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing)
- The key problems of single and multiple inheritance and how different languages address them
- Generic type systems, in particular, Java generics, C# generics, and C++ templates
- The situations in which object-oriented programming does not provide encapsulation, and how to avoid them
- The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing
- How to maintain the consistency of data structures

Prerequisites:
- Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience

263-2400-00L Reliable and Trustworthy Artificial Intelligence

Abstract
Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.

Objective
The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.

Content
This comprehensive course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/reliableai21):

- Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, output-of-distribution)
- Defenses against attacks
- Combining gradient-based optimization with logic for encoding background knowledge
- Complete Certification of deep neural networks via automated reasoning (e.g., via numerical relaxations, mixed-integer solvers).
- Probabilistic certification of deep neural networks
- Training deep neural networks to be provably robust via automated reasoning
- Fairness (different notions of fairness, certifiably fair representation learning)
- Federated Learning (introduction, security considerations)

Prerequisites / notice
- While not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in "Intro to ML" classes at most institutions (e.g., "Introduction to Machine Learning" at ETH).

For solving assignments, some programming experience in Python is expected.

263-2800-00L Design of Parallel and High-Performance Computing

Abstract
Advanced topics in parallel and high-performance computing.

Objective
Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring, and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.

Content
We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites / notice
This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

Minor in Systems Software

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-2800-00L</td>
<td>Design of Parallel and High-Performance Computing</td>
<td>W</td>
<td>9 credits</td>
<td>3V+2U+3A</td>
<td>T. Hoefler, M. Püschel</td>
</tr>
</tbody>
</table>

Abstract
Advanced topics in parallel and high-performance computing.
Objective

Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.

Content

We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites / notice

This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung" (parallel programming) and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

263-3845-00L Data Management Systems W 8 credits 3V+1U+3A G. Alonso

Abstract

The course will cover the implementation aspects of data management systems using relational database engines as a starting point to cover the basic concepts of efficient data processing and then expanding those concepts to modern implementations in data centers and the cloud.

Objective

The goal of the course is to convey the fundamental aspects of efficient data management from a systems implementation perspective: storage, access, organization, indexing, consistency, concurrency, transactions, distribution, query compilation vs interpretation, data representations, etc. Using conventional relational engines as a starting point, the course will aim at providing an in-depth coverage of the latest technologies used in data centers and the cloud to implement large scale data processing in various forms.

Content

The course will first cover fundamental concepts in data management: storage, locality, query optimization, declarative interfaces, concurrency control and recovery, buffer managers, management of the memory hierarchy, presenting them in a system independent manner. The course will place an special emphasis on understating these basic principles as they are key to understanding what problems existing systems try to address. It will then proceed to explore their implementation in modern relational engines supporting SQL to then expand the range of systems used in the cloud: key value stores, geo-replication, query as a service, serverless, large scale analytics engines, etc.

Literature

The main source of information for the course will be articles and research papers describing the architecture of the systems discussed.

Prerequisites / notice

The list of papers will be provided at the beginning of the course.

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories assessed

Techniques and Technologies assessed

263-3850-00L Informal Methods W 5 credits 2G+2A D. Cock

Abstract

Formal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to such software systems, and how to get into the habit of thinking formally about systems design even when writing low-level C code.

Objective

This course is about equipping students whose focus is systems with the insights and conceptual tools provided by formal methods, and thereby enabling them to become better systems programmers. By the end of the course, students should be able to seamlessly integrate basic concepts form formal methods into how they conceive, design, implement, reason about, and debug computer systems.

Content

The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems (who may or may not have existing background knowledge of formal methods) with a basis for applying formal methods in their work.

Instead, the majority of the course will be about how to apply these techniques to actual, practical code in real systems. We will work from real systems code written both by students taking the course, and practical systems developed using formal techniques, in particular the verified seL4 microkernel will be a key case study. We will also focus on informal, pen-and-paper arguments for correctness of programs and systems rather than using theorem provers or automated verification tools; again these latter techniques are well covered in other courses and recommended as a complement to this one.

Minor in Theoretical Computer Science

Number Title Type ECTS Hours Lecturers

252-0417-00L Randomized Algorithms and Probabilistic Methods W 10 credits 3V+2U+4A A. Steger

Abstract

Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, random walks

Objective

After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.

Content

Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Lecture notes

252-0535-00L Advanced Machine Learning W 10 credits 3V+2U+4A J. M. Buhmann, C. Cotrini Jimenez

Abstract

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
- What is data?
- Bayesian Learning
- Computational learning theory

Supervised learning:
- Ensembles: Bagging and Boosting
- Max Margin methods
- Neural networks

Unsupervised learning:
- Dimensionality reduction techniques
- Clustering
- Mixture Models
- Non-parametric density estimation
- Learning Dynamical Systems

Lecture notes
No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice
The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.
The students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the mathematical treatment of optimization techniques for linear and combinatorial optimization problems.

Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenious and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools. One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to a linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvectors of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kaskey problem in finite fields, counterexample to Borsuk’s conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at https://people.inf.ethz.ch/gmohsen/A2A1/

Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely. Students are expected to have a mathematical background and should be able to write rigorous proofs.

Prerequisites / notice
This course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science, but it should also be accessible to last-year bachelor students.

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you’re ready for this class or not, please consult the instructor.
Elective Courses (only for Programme Regulations 2020)

Students can individually choose from the entire Master course offerings from ETH Zurich, EPF Lausanne, the University of Zurich and - but only with the consent of the Director of Studies - from all other Swiss universities.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0293-00L</td>
<td>Wireless Networking and Mobile Computing</td>
<td>W</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>S. Mangold</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course gives an overview about wireless standards and summarizes the state of art for Wi-Fi 802.11, Cellular 5G, and Internet-of-Things, including new topics such as contact tracing with Bluetooth, audio communication, cognitive radio, visible light communications. The course combines lectures with a set of assignments in which students are asked to work with a JAVA simulation tool.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objective of the course is to learn about the general principles of wireless communications, including physics, frequency spectrum regulation, and standards. Further, the most up-to-date standards and protocols used for wireless LAN IEEE 802.11, Wi-Fi, Internet-of-Things, sensor networks, cellular networks, visible light communication, and cognitive radios, are analyzed and evaluated. Students develop their own add-on mobile computing algorithms to improve the behavior of the systems, using a Java-based event-driven simulator. We also hand out embedded systems that can be used for experiments for optical communication.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>New: Starting 2020, we will address contact tracing, radio link budget, location distance measurements, and Bluetooth in more depth. Wireless Communication, Wi-Fi, Contact Tracing, Bluetooth, Internet-of-Things, 5G, Standards, Regulation, Algorithms, Radio Spectrum, Cognitive Radio, Mesh Networks, Optical Communication, Visible Light Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The course material will be made available by the lecturer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Literature** | (1) The course webpage (look for Stefan Mangold's site)
(2) The Java 802 protocol emulator "JEmula802" from https://bitbucket.org/lfield/jemula802
| **Prerequisites / notice** | Students should have interest in wireless communication, and should be familiar with Java programming. Experience with GNU Octave or Matlab will help too (not required). |
| 263-0600-00L | Research in Computer Science
Only for Computer Science MSc. | W | 5 credits | 11A | Professors |
| **Abstract** | Independent project work under the supervision of a Computer Science Professor. |
| **Objective** | Independent project work under the supervision of a Computer Science Professor. |
| **Prerequisites / notice** | Only students who fulfill one of the following requirements are allowed to begin a research project:
- 1 lab (interfocus course) and 1 focus course
- 2 core focus courses
- 2 labs (interfocus courses)
A task description must be submitted to the Student Administration Office at the beginning of the work. |
| 227-2210-00L | Computer Architecture
W | 8 credits | 6G+1A | O. Mutlu |
| **Abstract** | Computer architecture is the science & art of designing and optimizing hardware components and the hardware/software interface to create a computer that meets design goals. This course covers basic components of a modern computing system (memory, processors, interconnects, accelerators). The course takes a hardware/software cooperative approach to understanding and designing computing systems. |
| **Objective** | We will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest major research topics in Industry and Academia. We will extensively cover memory systems (including DRAM and new Non-Volatile Memory technologies, memory controllers, flash memory), parallel computing systems (including multicore processors, coherence and consistency, GPUs), heterogeneous computing, processing-in-memory, interconnection networks, specialized systems for major data-intensive workloads (e.g. genome analysis, brain imaging, machine learning), etc. |
| **Content** | The principles presented in the lecture are reinforced in the laboratory through 1) the design and implementation of a cycle-accurate simulator, where we will explore different components of a modern computing system (e.g., pipeline, memory hierarchy, branch prediction, prefetching, caches, multithreading), and 2) the extension of state-of-the-art research simulators (e.g., Ramulator) for more in-depth understanding of specific system components (e.g., memory scheduling, prefetching). |
| **Lecture notes** | All the materials (including lecture slides) will be provided on the course website: https://safari.ethz.ch/architecture/
The video recordings of the lectures are expected to be made available after lectures. |
Computer architecture is the science & art of designing and optimizing hardware components and the hardware/software interface to create systems. Security is a critical aspect of system design.

The course System Security involves participation in substantial development and/or evaluation projects involving distributed systems technology. It covers the implementation aspects of data management systems using relational database engines as a starting point to expand the range of systems used in the cloud.

The course covers basic components of modern computing systems (memory, processors, networks, and distributed applications on smartphones). The goal of the project is for the students to gain hands-on experience with real products and the latest technology in distributed systems.

The main source of information for the course will be articles and research papers describing the architecture of the systems discussed. Literature will include the course website: https://safari.ethz.ch/architecture/

We will provide required and recommended readings in every lecture. They will mainly consist of research papers presented in major conferences and journals. Prerequisites include Digital Design and Computer Architecture.

Focus Elective Courses Distributed Systems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-2210-00L</td>
<td>Computer Architecture</td>
<td>W</td>
<td>8</td>
<td>6G+1A</td>
<td>O. Mutlu</td>
</tr>
</tbody>
</table>

The course covers basic components of modern computing systems (memory, processors, interconnects, accelerators). The course takes a hardware/software cooperative approach to understanding and designing computing systems.

Literature

- We will provide required and recommended readings in every lecture. They will mainly consist of research papers presented in major conferences and journals.
- Prerequisites include Digital Design and Computer Architecture.

Master Studies (Programme Regulations 2009)

Focus Courses

Focus Courses in Distributed Systems

Focus Core Courses Distributed Systems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-1414-00L</td>
<td>System Security</td>
<td>W</td>
<td>7</td>
<td>2V+2U+2A</td>
<td>S. Capkun, A. Perrig</td>
</tr>
<tr>
<td>263-3845-00L</td>
<td>Data Management Systems</td>
<td>W</td>
<td>8</td>
<td>3V+1U+3A</td>
<td>G. Alonso</td>
</tr>
</tbody>
</table>

Lecturer Bios

- **T. Roscoe**
- **T. Hoefler**
- **A. Klimovic**
- **R. Wattenhofer**
- **C. Zhang**

Data: 11.11.2021 12:40 **Autumn Semester 2021** **Page 1194 of 2152**
This course does not assume prior knowledge of formal methods, and will start with a quick review of topics such as static vs. dynamic reasoning, variants and invariants, program algebra and refinement, etc. However, it is strongly recommended that students have already taken one of the introductory formal methods course at ETH (or equivalents elsewhere) before taking this course - the emphasis is on reinforcing these concepts by applying them, not to teach them from scratch.

The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems who may or may not have existing background knowledge of formal methods with a basis for applying formal methods in their work. The seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.

By the end of the course, students should be able to seamlessly integrate basic concepts from formal methods into how they conceive, design, implement, reason about, and debug computer systems.

The general application areas are big data and machine learning. The systems covered will include systems from computer architecture, high performance computing, data appliances, and data centers.

Prerequisites / notice

Students taking this seminar should have the necessary background in systems and low level programming.

Hardware Acceleration for Data Processing

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

Objectives

- The seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.
- The course will cover practical machine learning projects, using systems from computer architecture, high performance computing, data appliances, and data centers.
- Students taking this seminar should have the necessary background in systems and low level programming.

Prerequisites / notice

Students taking this seminar should have the necessary background in systems and low level programming.

Focus Courses in Visual Computing

Advanced Machine Learning

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Topics covered in the lecture include:

- Fundamentals:
- What is data?
- Bayesian Learning
- Computational learning theory
- Supervised learning:
- Ensembles: Bagging and Boosting
- Max Margin methods
- Neural networks
- Unsupervised learning:
- Dimensionality reduction techniques
- Clustering
- Mixture Models
- Non-parametric density estimation
- Learning Dynamical Systems

Lecture notes

No lecture notes, but slides will be made available on the course webpage.
This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods.

Computer Vision

V. da Costa de Azevedo

Type: Lecturers

5 credits, 3V+1U+3A

This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the principles of rendering and image synthesis. In addition, the course is intended to stimulate the students’ curiosity to explore the field of computer graphics in subsequent courses or on their own.

Objective

The objectives of this course are:

1. To introduce the fundamental problems of computer vision.
2. To introduce the main techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

Content

Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition.

It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.

Focus Elective Courses Visual Computing

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-5902-00L</td>
<td>Computer Vision</td>
<td>W</td>
<td>8</td>
<td>3V+3A</td>
<td>M. Pollefeys, S. Tang, F. Yu</td>
</tr>
</tbody>
</table>

Abstract

The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.

Objective

The objectives of this course are:

1. To introduce the fundamental problems of computer vision.
2. To introduce the main techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

Content

Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition.

It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0543-01L</td>
<td>Computer Graphics</td>
<td>W</td>
<td>8</td>
<td>3V+2A</td>
<td>B. Solenthaler, B. Thomaszewski</td>
</tr>
</tbody>
</table>

Abstract

This course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.

Objective

At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students’ curiosity to explore the field of computer graphics in subsequent courses or on their own.

Content

This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering.

The programming assignments will be in C++. This will not be taught in the class.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0546-00L</td>
<td>Physically-Based Simulation in Computer Graphics</td>
<td>W</td>
<td>5</td>
<td>2V+1U+1A</td>
<td>B. Solenthaler, B. Thomaszewski</td>
</tr>
</tbody>
</table>

Abstract

This lecture provides an introduction to physically-based animation in computer graphics and includes practical exercises. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.

Objective

This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.

Content

The lecture covers topics in physically-based modeling, such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-2400-00L</td>
<td>Reliable and Trustworthy Artificial Intelligence</td>
<td>W</td>
<td>6</td>
<td>2V+2U+1A</td>
<td>M. Vechev</td>
</tr>
</tbody>
</table>

Abstract

Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.

Objective

The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.
How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior?

The seminar "Advanced Topics in Machine Learning" familiarizes students with recent developments in pattern recognition and machine learning. This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics. The course is designed for graduate students.

Prerequisites / notice

While not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in "intro to ML" classes at most institutions (e.g., "Introduction to Machine Learning" at ETH).

For solving assignments, some programming experience in Python is expected.

Seminar in Visual Computing

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3713-00L</td>
<td>Advanced Topics in Human-Centric Computer Vision (Vision)</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>O. Hilliges</td>
</tr>
</tbody>
</table>

The goal of the seminar is not only to familiarize students with exciting new research topics, but also to teach basic scientific writing and oral presentation skills. The seminar will have a different structure from regular seminars to encourage more discussion and a deeper learning experience.

We will treat papers as case studies and discuss them in-depth in the seminar. Once per semester, every student will have to take one of the following roles:

- **Presenter:** Give a presentation about the paper that you read in depth.
- **Reviewer:** Perform a critical review of the paper.
- **All other students:** read the paper and submit questions they have about the paper before the presentation.

Prerequisites / notice

Participation will be limited subject to available topics. Furthermore, students will have to submit a motivation paragraph. Participants will be selected based on this paragraph.

Taught competencies

- **Domain B - Method-specific Competencies**
 - Analytical Competencies: assessed
 - Communication: assessed
 - Critical Thinking: assessed

Prerequisites / notice

The deadline for deregistering expires at the end of the third week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

Abstract

In this seminar we will discuss state-of-the-art literature on human-centric computer vision topics including but not limited to human pose estimation, hand and eye-gaze estimation as well as generative modelling of detailed human activities.

Objective

The learning objective is to analyze selected research papers published at top computer vision and machine learning venues. A key focus will be placed on identifying and discussing open problems and novel solutions in this space. The seminar will achieve this via several components: reading papers, technical presentations, writing analysis and critique summaries, class discussions, and exploration of potential research topics.

Content

The goal of the seminar is not only to familiarize students with exciting new research topics, but also to teach basic scientific writing and oral presentation skills. The seminar will have a different structure from regular seminars to encourage more discussion and a deeper learning experience.

We will treat papers as case studies and discuss them in-depth in the seminar. Once per semester, every student will have to take one of the following roles:

- **Presenter:** Give a presentation about the paper that you read in depth.
- **Reviewer:** Perform a critical review of the paper.
- **All other students:** read the paper and submit questions they have about the paper before the presentation.

Prerequisites / notice

Participation will be limited subject to available topics. Furthermore, students will have to submit a motivation paragraph. Participants will be selected based on this paragraph.

Taught competencies

- **Domain B - Method-specific Competencies**
 - Analytical Competencies: assessed
 - Communication: assessed
 - Critical Thinking: assessed

Prerequisites / notice

The deadline for deregistering expires at the end of the fourth week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

Abstract

In this seminar, recent papers of the pattern recognition and machine learning literature are presented and discussed. Possible topics cover statistical models in computer vision, graphical models and machine learning.

Objective

The seminar "Advanced Topics in Machine Learning" familiarizes students with recent developments in pattern recognition and machine learning. Original articles have to be presented and critically reviewed. The students will learn how to structure a scientific presentation in English which covers the key ideas of a scientific paper. An important goal of the seminar presentation is to summarize the essential ideas of the paper in sufficient depth while omitting details which are not essential for the understanding of the work. The presentation style will play an important role and should reach the level of professional scientific presentations.
Content

The seminar will cover a number of recent papers which have emerged as important contributions to the pattern recognition and machine learning literature. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. Frequently, papers are selected from computer vision or bioinformatics - two fields, which relies more and more on machine learning methodology and statistical models.

Literature

The papers will be presented in the first session of the seminar.

252-5701-00L Advanced Topics in Computer Graphics and Vision

Number of participants limited to 24.

Abstract

This seminar covers advanced topics in computer graphics, such as modeling, rendering, animation, real-time graphics, physical simulation, and computational photography. Each time the course is offered, a selection of research papers is selected and each student presents one paper to the class and leads a discussion about the paper and related topics.

Objective

The goal is to get an in-depth understanding of actual problems and research topics in the field of computer graphics as well as improve presentations and critical analysis skills.

Content

This seminar covers advanced topics in computer graphics, including both seminal research papers as well as the latest research results. Each time the course is offered, a selection of research papers are selected covering topics such as modeling, rendering, animation, real-time graphics, physical simulation, and computational photography. Each student presents one paper to the class and leads a discussion about the paper and related topics.

All students read the papers and participate in the discussion.

Lecture notes

no script

Literature

Individual research papers are selected each term. See http://graphics.ethz.ch/ for the current list.

Focus Courses General Studies

Core Focus Courses General Studies

Number	Title	Type	ECTS	Hours	Lecturers
252-0237-00L | Concepts of Object-Oriented Programming | W | 8 credits | 3V+2U+2A | P. Müller

Abstract

Course that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection

Objective

After this course, students will:

Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features.

Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs.

Be able to learn new languages more rapidly.

Be aware of many subtle problems of object-oriented programming and know how to avoid them.

Content

The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms.

In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages.

The topics discussed in the course include among others:

- The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing)
- The key problems of single and multiple inheritance and how different languages address them
- Generic type systems, in particular, Java generics, C# generics, and C++ templates
- The situations in which object-oriented programming does not provide encapsulation, and how to avoid them
- The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing
- How to maintain the consistency of data structures

Lecture notes

Will be announced in the lecture.

Prerequisites / notice

Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience

252-0417-00L Randomized Algorithms and Probabilistic Methods

Abstract

Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks

Objective

After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.

Content

Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Lecture notes

Yes.

Literature

252-0463-00L Security Engineering

Abstract

Subject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements & risk analysis, system modeling & model-based development methods, implementation-level security, and evaluation criteria for secure systems

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1198 of 2152
Objective

Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.

Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems
Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems

Modules taught:

1. Introduction
 - Introduction of Infsec group and speakers
 - Security meets SW engineering: an introduction
 - The activities of SW engineering, and where security fits in
 - Overview of this class

2. Requirements Engineering: Security Requirements and some Analysis
 - Overview: functional and non-functional requirements
 - Use cases, misuse cases, sequence diagrams
 - Safety and security

3. Modeling in the design activities
 - Structure, behavior, and data flow
 - Class diagrams, statecharts

4. Model-driven security for access control (Part I)
 - SecureUML as a language for access control
 - Combining Design Modeling Languages with SecureUML
 - Semantics, i.e., what does it all mean,
 - Generation
 - Examples and experience

5. Model-driven security (Part II)
 - Continuation of above topics

6. Security patterns (design and implementation)

7. Implementation-level security
 - Buffer overflows
 - Input checking
 - Injection attacks

8. Code scanning
 - Static code analysis basics
 - Theoretical and practical challenges
 - Analysis algorithms
 - Common bug pattern search and specification
 - Dataflow analysis

9. Testing
 - Overview and basics
 - Model-based testing
 - Testing security properties

10. Risk analysis and management
 - "Risk": assets, threats, vulnerabilities, risk
 - Risk assessment: quantitative and qualitative
 - Safeguards
 - Generic risk analysis procedure
 - The OCTAVE approach
 - Example of quantitative risk assessment

11. Threat modeling
 - Overview
 - Safety engineering basics: FMEA and FTA
 - Security impact analysis in the design phase
 - Modeling security threats: attack trees
 - Examples and experience

12. Evaluation criteria
 - NIST special papers
 - ISO/IEC 27000
 - Common criteria
 - BSI baseline protection

13. Guest lecture
 - TBA

Literature
- Further relevant books and journal/conference articles will be announced in the lecture.

Prerequisites / notice
Prerequisite: Class on Information Security

252-0535-00L Advanced Machine Learning W 10 credits 3V+2U+4A J. M. Buhmann, C. Cotrini Jimenez

Abstract
Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real-world data.

Topics covered in the lecture include:

Fundamentals:
- What is data?
- Bayesian Learning
- Computational learning theory

Supervised learning:
- Ensembles: Bagging and Boosting
- Max Margin methods
- Neural networks

Unsupervised learning:
- Dimensionality reduction techniques
- Clustering
- Mixture Models
- Non-parametric density estimation
- Learning Dynamical Systems

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

Literature

Prerequisites / notice

The course notes can be made available on the course webpage.

252-1414-00L System Security W 7 credits 2V+2U+2A S. Capkun, A. Perrig

Abstract

The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.

Objective

In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.

Content

The first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.

263-2800-00L Design of Parallel and High-Performance Computing W 9 credits 3V+2U+3A T. Hoefler, M. Püschel

Abstract

Advanced topics in parallel and high-performance computing.

Objective

Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space.

Content

We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites / notice

This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallel Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

263-3010-00L Big Data W 10 credits 3V+2U+4A G. Fourny

Abstract

The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.
The course will cover the implementation aspects of data management systems using relational database engines as a starting point to.

Objective

This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.

Content

This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form.

- physical storage: distributed file systems (HDFS), object store(S3), key-value stores
- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)
- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBLR, YAML, protocol buffers, Avro)
- data shapes and models (tables, trees, graphs, cubes)
- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?,?,*,+)
- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)
- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)
- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)
- resource management (YARN)
- what a data center is made of and why it matters (racks, nodes, ...)
- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)
- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)
- applications.

Literature

Large scale analytics and machine learning are outside of the scope of this course.

Papers from scientific conferences and journals. References will be given as part of the course material during the semester.

This course, in the autumn semester, is only intended for:
- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

For students of all other departements interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you:
- "Information Systems for Engineers" (SQL, relational databases); this Fall
- "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists); Spring 2021

There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers.

Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data.

Prerequisites / notice

This course requires to have completed the Data Modeling and Data Bases course at the Bachelor level as it assumes knowledge of databases and SQL.

263-3845-00L Data Management Systems

<table>
<thead>
<tr>
<th>W</th>
<th>8 credits</th>
<th>3V+1U+3A</th>
<th>G. Alonso</th>
</tr>
</thead>
</table>

Literature

The main source of information for the course will be articles and research papers describing the architecture of the systems discussed.

The list of papers will be provided at the beginning of the course.

Prerequisites / notice

The course requires to have completed the Data Modeling and Data Bases course at the Bachelor level as it assumes knowledge of databases and SQL.

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories: assessed
 - Techniques and Technologies: assessed
Network Security

263-4640-00L

Abstract

Some of today’s most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems.

This course provides an in-depth study of network attack techniques and methods to defend against them.

- Students are familiar with fundamental network-security concepts.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

Content

The course will cover topics spanning four broad themes with a focus on the first two themes:

1. network defense mechanisms such as public-key infrastructures, TLS, VPs, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems;
2. network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
3. analysis and inference topics such as traffic monitoring and network forensics; and
4. new technologies related to next-generation networks.

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.

Prerequisites

This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L. Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Taught</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>assessed</td>
<td></td>
</tr>
</tbody>
</table>

Computer Vision

636-0007-00L

Abstract

The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.

Objective

The objectives of this course are:

1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

Content

Camera models and calibration, invariant features, Mutual-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition

Prerequisites

It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.

Computational Systems Biology

636-0007-00L

Abstract

Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

Objective

The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.

Content

Biological networks are the basis for the design, implementation, and control of biological systems. Biological networks are highly interconnected and complex, and their study is fundamental to understanding the behavior of biological systems. The course focuses on the use of computational methods to analyze biological networks.

Lecture notes

http://www.csb.ethz.ch/education/lectures.html
Lecturers

The lecture covers topics in physically-based modeling, no

The Applied Security Laboratory addresses four major topics: operating system security (hardening, vulnerability scanning, access control, 2V+1U+1A

Recommended reading includes:

- C. Sprenger
- B. Solenthaler, B. Thomaszewski

Hands-on course on applied aspects of information security. Applied information security, operating system security, OS hardening, computer forensics, web application security, project work, design, implementation, and configuration of security mechanisms, risk analysis, system review.

Objective

The Applied Security Laboratory addresses four major topics: operating system security (hardening, vulnerability scanning, access control, logging), application security with an emphasis on web applications (web server setup, common web exploits, authentication, session handling, code security), computer forensics, and risk analysis and risk management.

Content

This course emphasizes applied aspects of Information Security. The students will study a number of topics in a hands-on fashion and carry out experiments in order to better understand the need for secure implementation and configuration of IT systems and to assess the effectiveness and impact of security measures. This part is based on a book and virtual machines that include example applications, questions, and answers.

The students will also complete an independent project: based on a set of functional requirements, they will design and implement a prototypical IT system. In addition, they will conduct a thorough security analysis and devise appropriate security measures for their systems. Finally, they will carry out a technical and conceptual review of another system. All project work will be performed in teams and must be properly documented.

Lecture notes

Literature

Recommended reading includes:

- "Various: OWASP Guide to Building Secure Web Applications, available online"
- "O'Reilly, Loukides: Unix Power Tools, O'Reilly & Associates."
- "Frisch: Essential System Administration, O'Reilly & Associates."
- "NIST: Risk Management Guide for Information Technology Systems, available online as PDF"
- "BSI: IT-Grundschutzhandbuch, available online"

Prerequisites / notice

The lab covers a variety of different techniques. Thus, participating students should have a solid foundation in the following areas: information security, operating system administration (especially Unix/Linux), and networking. Students are also expected to have a basic understanding of HTML, PHP, JavaScript, and MySQL because several examples are implemented in these languages.

* Students must be prepared to spend more than three hours per week to complete the lab assignments and the project. This applies particularly to students who do not meet the recommended requirements given above. Successful participants of the course receive 8 credits as compensation for their effort.

* All participants must sign the lab's charter and usage policy during the introduction lecture.

252-0546-00L Physically-Based Simulation in Computer Graphics W 5 credits 2V+1U+1A V. da Costa de Azevedo, B. Solenthaler, B. Thomaszewski

Abstract

This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.

Objective

This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.

Content

The lecture covers topics in physically-based modeling, such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation.

Prerequisites / notice

Fundamentals of calculus and physics, basic concepts of algorithms and data structures, basic programming skills in C++. Knowledge on numerical mathematics as well as ordinary and partial differential equations is an asset, but not required.

252-0811-00L Applied Security Laboratory W 8 credits 7P C. Sprenger

Abstract

Hands-on course on applied aspects of information security. Applied information security, operating system security, OS hardening, computer forensics, web application security, project work, design, implementation, and configuration of security mechanisms, risk analysis, system review.

Objective

The Applied Security Laboratory addresses four major topics: operating system security (hardening, vulnerability scanning, access control, logging), application security with an emphasis on web applications (web server setup, common web exploits, authentication, session handling, code security), computer forensics, and risk analysis and risk management.

Content

This course emphasizes applied aspects of Information Security. The students will study a number of topics in a hands-on fashion and carry out experiments in order to better understand the need for secure implementation and configuration of IT systems and to assess the effectiveness and impact of security measures. This part is based on a book and virtual machines that include example applications, questions, and answers.

The students will also complete an independent project: based on a set of functional requirements, they will design and implement a prototypical IT system. In addition, they will conduct a thorough security analysis and devise appropriate security measures for their systems. Finally, they will carry out a technical and conceptual review of another system. All project work will be performed in teams and must be properly documented.

Lecture notes

Literature

Recommended reading includes:

- "Garfinkel, Schwartz, Spafford: Practical Unix & Internet Security, O'Reilly & Associates."
- "Various: OWASP Guide to Building Secure Web Applications, available online"
- "O'Reilly, Loukides: Unix Power Tools, O'Reilly & Associates."
- "Frisch: Essential System Administration, O'Reilly & Associates."
- "NIST: Risk Management Guide for Information Technology Systems, available online as PDF"
- "BSI: IT-Grundschutzhandbuch, available online"

Prerequisites / notice

The lab allows flexible working since there are only few mandatory meetings during the semester.

* The lab covers a variety of different techniques. Thus, participating students should have a solid foundation in the following areas: information security, operating system administration (especially Unix/Linux), and networking. Students are also expected to have a basic understanding of HTML, PHP, JavaScript, and MySQL because several examples are implemented in these languages.

* Students must be prepared to spend more than three hours per week to complete the lab assignments and the project. This applies particularly to students who do not meet the recommended requirements given above. Successful participants of the course receive 8 credits as compensation for their effort.

* All participants must sign the lab's charter and usage policy during the introduction lecture.

252-0817-00L Distributed Systems Laboratory W 10 credits 9P G. Alonso, T. Hoefler, A. Klimovic.
This course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including wireless networks, ad-hoc networks, RFID, and distributed applications on smartphones.

Gain hands-on-on-experience with real products and the latest technology in distributed systems.

This course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed application on smartphones. The goal of the project is for the students to gain hands-on-experience with real products and the latest technology in distributed systems. There is no lecture associated to the course.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester</th>
<th>Credits</th>
<th>Prerequisites / Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-1407-00L</td>
<td>Algorithmic Game Theory</td>
<td>W</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>252-1411-00L</td>
<td>Security of Wireless Networks</td>
<td>W</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>252-1425-00L</td>
<td>Geometry: Combinatorics and Algorithms</td>
<td>W</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>227-2210-00L</td>
<td>Computer Architecture</td>
<td>W</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Abstract: This course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including wireless networks, ad-hoc networks, RFID, and distributed applications on smartphones.

Objective: Gain hands-on-on-experience with real products and the latest technology in distributed systems.

Content: This course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed application on smartphones. The goal of the project is for the students to gain hands-on-experience with real products and the latest technology in distributed systems. There is no lecture associated to the course.

Algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good.

This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth.

Outline:
- Introduction to classic game-theoretic concepts.
- Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity.
- Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization.
- Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy')
- Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium.
- Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange.

Lecture notes: Lecture notes will be usually posted on the website shortly after each lecture.

Prerequisites / Notice: Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Several copies of both books are available in the Computer Science library.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

Abstract: Game theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory.

Objective: Learning the basic concepts of game theory and mechanism design, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting.

Content: The Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a mathematical model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all.

Outline:
- Introduction to classic game-theoretic concepts.
- Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity.
- Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization.
- Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy')
- Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium.
- Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange.

Lecture notes: Lecture notes will be usually posted on the website shortly after each lecture.

Prerequisites / Notice: Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Several copies of both books are available in the Computer Science library.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

Abstract: Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.

Objective: After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks.

Lecture notes: Lecture notes will be usually posted on the website shortly after each lecture.

Prerequisites / Notice: Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Several copies of both books are available in the Computer Science library.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

Abstract: GEOMETRIC STRUCTURES: Planar triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?) algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?)

Objective: The goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains. In particular, we want to prepare students for conducting independent research, for instance, within the scope of a thesis project.

Content: Planar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theory, convexity in Rd, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations.

Lecture notes: Lecture notes will be usually posted on the website shortly after each lecture.

Prerequisites / Notice: Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Several copies of both books are available in the Computer Science library.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

Abstract: Geometry: Combinatorics and Algorithms

Objective: The course is aimed at students who want to learn about the main techniques and results in the field, as well as the most important algorithmic applications.

Content: The course is aimed at students who want to learn about the main techniques and results in the field, as well as the most important algorithmic applications.

Lecture notes: Lecture notes will be usually posted on the website shortly after each lecture.

Prerequisites / Notice: Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Several copies of both books are available in the Computer Science library.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.

Abstract: Computer architecture is the science & art of designing and optimizing hardware components and the hardware/software interface to create a computer that meets design goals. This course covers basic components of a modern computing system (memory, processors, interconnects, accelerators). The course takes a hardware/software cooperative approach to understanding and designing computing systems.
Objective
We will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest major research topics in Industry and Academia. We will extensively cover memory systems (including DRAM and new Non-Volatile Memory technologies, memory controllers, flash memory), parallel computing systems (including multicore processors, coherence and consistency, GPUs), heterogeneous computing, processing-in-memory, interconnection networks, specialized systems for major data-intensive workloads (e.g., graph analytics, bioinformatics, machine learning), etc.

Content
The principles presented in the lecture are reinforced in the laboratory through 1) the design and implementation of a cycle-accurate simulator, where we will explore different components of a modern computing system (e.g., pipeline, memory hierarchy, branch prediction, prefetching, caches, multithreading), and 2) the extension of state-of-the-art research simulators (e.g., Ramulator) for more in-depth understanding of specific system components (e.g., memory scheduling, prefetching).

Lecture notes
All the materials (including lecture slides) will be provided on the course website: https://safari.ethz.ch/architecture/

Literature
We will provide required and recommended readings in every lecture. They will mainly consist of research papers presented in major Computer Architecture and related conferences and journals.

Prerequisites / notice

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-2400-00L</td>
<td>Reliable and Trustworthy Artificial Intelligence</td>
<td>6</td>
<td>2V+2U+1A</td>
<td>M. Vechev</td>
</tr>
<tr>
<td>252-3005-00L</td>
<td>Natural Language Processing</td>
<td>5</td>
<td>2V+2U+1A</td>
<td>R. Cotterell</td>
</tr>
<tr>
<td>263-3210-00L</td>
<td>Deep Learning</td>
<td>8</td>
<td>3V+2U+2A</td>
<td>F. Perez Cruz, A. Lucchi</td>
</tr>
</tbody>
</table>

Abstract
Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.

The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

This comprehensive course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/reliableai21):

- Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
- Defenses against attacks
- Combining gradient-based optimization with logic for encoding background knowledge
- Complete Certification of deep neural networks via automated reasoning (e.g., via numerical relaxations, mixed-integer solvers).
- Probabilistic certification of deep neural networks
- Training deep neural networks to be provably robust via automated reasoning
- Fairness (different notions of fairness, certifiably fair representation learning)
- Federated Learning (introduction, security considerations)

While not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in "Intro to ML" classes at most institutions (e.g., "Introduction to Machine Learning" at ETH).

For solving assignments, some programming experience in Python is expected.

Number of participants
Limited to 400.

Literature
Lectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1206 of 2152
This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

- Advanced Machine Learning
 https://ml2.inf.ethz.ch/courses/aml/
- Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/
- Introduction to Machine Learning
 https://las.inf.ethz.ch/teaching/introml-S19
- Statistical Learning Theory
 http://ml2.inf.ethz.ch/courses/slt/
- Computational Statistics
 https://stat.ethz.ch/lectures/s18/comp-stats.php
- Probabilistic Artificial Intelligence
 https://las.inf.ethz.ch/teaching/pai-f18

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3850-00L</td>
<td>Informal Methods</td>
<td>W 5</td>
<td>This course familiarizes the students with some of the main tools and techniques in modern subareas of algorithm design.</td>
<td>Formal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to such software systems, and how to get into the habit of thinking formally about systems design even when writing low-level C code.</td>
</tr>
<tr>
<td>263-4500-00L</td>
<td>Advanced Algorithms</td>
<td>W 9</td>
<td>This is a graduate-level course on algorithm design (and analysis). It covers a range of topics and techniques in approximation algorithms, sketching and streaming algorithms, and online algorithms.</td>
<td>This course is about equipping students whose focus is systems with the insights and conceptual tools provided by formal methods, and thereby enabling them to become better systems programmers. By the end of the course, students should be able to seamlessly integrate basic concepts form formal methods into how they conceive, design, implement, reason about, and debug computer systems. The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems (who may or may not have existing background knowledge of formal methods) with a basis for applying formal methods in their work.</td>
</tr>
<tr>
<td>263-5210-00L</td>
<td>Probabilistic Artificial Intelligence</td>
<td>W 8</td>
<td>This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.</td>
<td>How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit “intelligent” behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.</td>
</tr>
<tr>
<td>263-5905-00L</td>
<td>Mixed Reality</td>
<td>W 5</td>
<td>The goal of this course is an introduction and hands-on experience on latest mixed reality technology at the cross-section of 3D computer graphics and vision, human machine interaction, as well as gaming technology.</td>
<td>Solid basic knowledge in statistics, algorithms and programming. The material covered in the course “Introduction to Machine Learning” is considered as a prerequisite.</td>
</tr>
</tbody>
</table>
The course introduces latest mixed reality technology and provides introductory elements for a number of related fields including; Introduction to Mixed Reality / Augmented Reality / Virtual Reality Introduction to 3D Computer Graphics, 3D Computer Vision. This will take place in the form of short lectures, followed by student presentations discussing the current state-of-the-art. The main focus of this course are student projects on mixed reality topics, where small groups of students will work on a particular project with the goal to design, develop and deploy a mixed reality application. The project topics are flexible and can reach from proof-of-concept vision/graphics/HMI research, to apps that support teaching with interactive augmented reality, or game development. The default platform will be Microsoft HoloLens in combination with C# and Unity3D - other platforms are also possible to use, such as tablets and phones.

Prerequisites / notice
- Good programming skills (C# / C++ / Java etc.)
- Computer graphics/vision experience: Students should have taken, at a minimum, Visual Computing. Higher level courses are recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

261-5100-00L Computational Biomedicine

Objective
After attending this course, students will:
1. Understand the foundations of 3D graphics, Computer Vision, and Human-Machine Interaction
2. Have a clear understanding on how to build mixed reality apps
3. Have a good overview of state-of-the-art Mixed Reality
4. Be able to critically analyze and assess current research in this area.

Abstract
The course critically reviews central problems in Biomedicine and discusses the technical foundations and solutions for these problems.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking

Prerequisites / notice

227-0575-00L Advanced Topics in Communication Networks

Abstract
This course covers advanced topics and technologies in computer networks, both theoretically and practically. It is offered each Fall semester. Repetition for credit is possible with consent of the instructor. In the Fall 2021, the course will cover advanced topics in Internet routing and forwarding.

Objective
The goals of this course is to provide students with a deeper understanding of the existing and upcoming Internet routing and forwarding technologies used in large-scale computer networks such as Internet Service Providers (e.g., Swisscom or Deutsche Telekom), Content Delivery Networks (e.g., Netflix and Data Centers (e.g., Google). Besides covering the fundamentals, the course will be "hands-on" and will enable students to play with the technologies in realistic network environments, and even implement some of them on their own during labs and a final group project.

Content
The course will cover advanced topics in Internet routing and forwarding such as:
- Tunneling
- Hierarchical routing
- Traffic Engineering and Load Balancing
- Virtual Private Networks
- Quality of Service/Queueing/Scheduling
- Fast Convergence
- Network virtualization
- Network programmability (OpenFlow, P4)
- Network measurements

The course will be divided in two main blocks. The first block (~8 weeks) will interleave classical lectures with practical exercises and labs. The second block (~6 weeks) will consist of a practical project which will be performed in small groups (~3 students). During the second block, lecture slots will be replaced by feedback sessions where students will be able to ask questions and get feedback about their project. The last week of the semester will be dedicated to student presentations and demonstrations.

Lecture notes
Lecture notes and material will be made available before each course on the course website.

Prerequisites / notice
Prerequisites: Communication Networks (227-0120-00L) or equivalents / good programming skills (in any language) are expected as both the exercises and the final project will involve coding.

Tought competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking

401-3901-00L Linear & Combinatorial Optimization

Abstract
Mathematical treatment of optimization techniques for linear and combinatorial optimization problems.

Objective
The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.
Content

Key topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and polyhedral techniques;
- Equivalence between optimization and separation.

Literature

Prerequisites / notice

Solid background in linear algebra.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B</td>
<td>Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C</td>
<td>Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D</td>
<td>Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

636-0017-00L

Computational Biology

The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.

Objective

Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:
- stochastic models in molecular evolution
- phylogenetic & phylodynamic inference
- maximum likelihood and Bayesian statistics

Attendees will apply these concepts to a number of applications yielding biological insight into:
- * epidemicology
- * pathogen evolution
- * macroevolution of species

Content

The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.

Lecture notes

Lecture slides will be available on moodle.

Literature

Prerequisites / notice

Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course “Introduction to Programming”, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date.

The Zurich-based students without R experience, we recommend the R course http://www.cbb.ethz.ch/news-events.html

For the D-BSSE students, we highly recommend the voluntary course “Introduction to Programming”, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date.

Seminar in General Studies

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-4601-00L</td>
<td>Current Topics in Information Security</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>S. Capkun, K. Paterson, A. Perrig, S. Shinde</td>
</tr>
</tbody>
</table>

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
The seminar covers various topics in information security: security protocols (models, specification & verification), trust management, access control, non-interference, side-channel attacks, identity-based cryptography, host-based attack detection, anomaly detection in backbone networks, key-management for sensor networks.

The main goals of the seminar are the independent study of scientific literature and assessment of its contributions as well as learning and practicing presentation techniques.

The seminar covers various topics in information security, including network security, cryptography and security protocols. The participants are expected to read a scientific paper and present it in a 35-40 min talk. At the beginning of the semester a short introduction to presentation techniques will be given.

Selected Topics
- security protocols: models, specification & verification
- trust management, access control and non-interference
- side-channel attacks
- identity-based cryptography
- host-based attack detection
- anomaly detection in backbone networks
- key-management for sensor networks

The reading list will be published on the course web site.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semester</th>
<th>Prerequisites / Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-5051-00L</td>
<td>Advanced Topics in Machine Learning</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>252-5701-00L</td>
<td>Advanced Topics in Computer Graphics and Vision</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>263-2100-00L</td>
<td>Research Topics in Software Engineering</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>263-3504-00L</td>
<td>Hardware Acceleration for Data Processing</td>
<td>2</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>
The seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.

Objective

The general application areas are big data and machine learning. The systems covered will include systems from computer architecture, high performance computing, data appliances, and data centers.

Content

Students taking this seminar should have the necessary background in systems and low level programming.

Prerequisites / notice

The seminar will cover topics related to data processing using new hardware in general and hardware accelerators (GPU, FPGA, specialized processors) in particular.

263-3713-00L Advanced Topics in Human-Centric Computer Vision

W 2 credits 2S O. Hilliges

Numbers of participants limited to 20.

Abstract

In this seminar we will discuss state-of-the-art literature on human-centric computer vision topics including but not limited to human pose estimation, hand and eye-gaze estimation as well as generative modeling of detailed human activities.

Objective

The learning objective is to analyze selected research papers published at top computer vision and machine learning venues. A key focus will be placed on identifying and discussing open problems and novel solutions in this space. The seminar will achieve this via several components: reading papers, technical presentations, writing analysis and critique summaries, class discussions, and exploration of potential research topics.

Content

We will treat papers as case studies and discuss them in-depth in the seminar. Once per semester, every student will have to take one of the following roles:

Presenter: Give a presentation about the paper that you read in depth.

Reviewer: Perform a critical review of the paper.

Prerequisites / notice

Participation will be limited subject to available topics. Furthermore, students will have to submit a motivation paragraph. Participants will be selected based on this paragraph.

Taught competencies

Domain B - Method-specific Competencies
Analytical Competencies
assessed

Domain C - Social Competencies
Communication
assessed

Domain D - Personal Competencies
Critical Thinking
assessed

Computer Science Elective Courses

The Elective Computer Science Courses can be selected from all Master level courses offered by D-INFK.

Number Title Type ECTS Hours Lecturers
252-0293-00L Wireless Networking and Mobile Computing W 4 credits 2V+1U S. Mangold

Abstract

This course gives an overview about wireless standards and summarizes the state of art for Wi-Fi 802.11, Cellular 5G, and Internet-of-Things, including new topics such as contact tracing with Bluetooth, audio communication, cognitive radio, visible light communications. The course combines lectures with a set of assignments in which students are asked to work with a JAVA simulation tool.

Objective

The objective of the course is to learn about the general principles of wireless communications, including physics, frequency spectrum regulation, and standards. Further, the most up-to-date standards and protocols used for wireless LAN IEEE 802.11, Wi-Fi, Internet-of-Things, sensor networks, cellular networks, visible light communication, and cognitive radios, are analyzed and evaluated. Students develop their own add-on mobile computing algorithms to improve the behavior of the systems, using a Java-based event-driven simulator. We also hand out embedded systems that can be used for experiments for optical communication.

Content

New: Starting 2020, we will address contact tracing, radio link budget, location distance measurements, and Bluetooth in more depth.

Lecture notes / Literature

(1) The course webpage (look for Stefan Mangold's site)
(2) The Java 802 protocol emulator "JEmula802" from https://bitbucket.org/field/jemula802

Prerequisites / notice

Students should have interest in wireless communication, and should be familiar with Java programming. Experience with GNU Octave or Matlab will help too (not required).

263-0600-00L Research in Computer Science

W 5 credits 11A Professors

Only for Computer Science MSc.

Abstract

Independent project work under the supervision of a Computer Science Professor.

Objective

Independent project work under the supervision of a Computer Science Professor.

Prerequisites / notice

Only students who fulfill one of the following requirements are allowed to begin a research project:

a) 1 lab (interfocus course) and 1 focus course
b) 2 core focus courses
c) 2 labs (interfocus courses)

A task description must be submitted to the Student Administration Office at the beginning of the work.

227-0423-00L Neural Network Theory

W 4 credits 2V+1U H. Bölcskei
The class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, fundamental limits of deep neural network learning, VC dimension.

After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.

1. Universal approximation with single- and multi-layer networks
2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory
3. Fundamental limits of deep neural network learning
4. Geometry of decision surfaces
5. Separating capacity of nonlinear decision surfaces
6. Vapnik-Chervonenkis (VC) dimension
7. VC dimension of neural networks
8. Generalization error in neural network learning

This course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.

Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0700-00L</td>
<td>Internship</td>
<td>W</td>
<td>0</td>
<td></td>
<td>external organisers</td>
</tr>
</tbody>
</table>

Abstract
An internship provides opportunities to gain experience in an industrial environment and creates a network of contacts.

Objective
The main objective of the internships is to expose students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institute.

Content
Internship in a computer science company, which is admitted by the CS Department at ETH. Minimum 10 weeks full-time employment.

Prerequisites / notice
To register the internship, please submit a document to the Student Administration Office containing the following information at the latest two weeks after beginning the internship:
- a detailed task description: task, technologies, milestones etc.
- start and end date of the internship
- supervisor: name and academic degree

Elective Courses (only for Programme Regulations 2009)

Students can individually choose from the entire Master course offerings from ETH Zurich, EPF Lausanne, the University of Zurich and - but only with the consent of the Director of Studies - from all other Swiss universities.

For further details, refer to Art. 31 of the Regulations 2009 for the Master Program in Computer Science.

Interfocus Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-0006-00L</td>
<td>Algorithms Lab</td>
<td>O</td>
<td>8</td>
<td>4P+3A</td>
<td>A. Steger, E. Welzl</td>
</tr>
</tbody>
</table>

Abstract
Students learn how to solve algorithmic problems given by a textual description (understanding problem setting, finding appropriate modeling, choosing suitable algorithms, and implementing them). Knowledge of basic algorithms and data structures is assumed; more advanced material and usage of standard libraries for combinatorial algorithms are introduced in tutorials.

Objective
The objective of this course is to learn how to solve algorithmic problems given by a textual description. This includes appropriate problem modeling, choice of suitable (combinatorial) algorithms, and implementing them (using C/C++, STL, CGAL, and BGL).

Literature

International Office

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-0009-00L</td>
<td>Information Security Lab</td>
<td>O</td>
<td>8</td>
<td>2V+1U+3P+1A</td>
<td>K. Paterson, S. Capkun, D. Hofheinz, A. Perrig, S. Shinde</td>
</tr>
</tbody>
</table>
This InterFocus Course will provide a broad, hands-on introduction to Information Security, introducing adversarial thinking and security by design as key approaches to building secure systems.

The course will introduce key concepts from Information Security, both from attack and defence perspectives. Students will gain an appreciation of the complexity and challenge of building secure systems.

The course is organised in two-week segments. In each segment, a new concept from Information Security will be introduced. The overall scope will be broad, including cryptography, protocol design, network security, system security.

Will be made available during the semester.

Paul C. van Oorschot, Computer Security and the Internet: Tools and Jewels.
Dan Boneh and Victor Shoup, A Graduate Course in Applied Cryptography.

Ideally, students will have taken the D-INFK Bachelors course "Information Security" or an equivalent course at Bachelors level.

GESS Science in Perspective

See GESS Science in Perspective: Language Courses
ETH/ÜZH

See GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-INFK.

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-0800-00L</td>
<td>Master's Thesis ■</td>
<td>O</td>
<td>30 credits</td>
<td>64D</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Only students who fulfill the following criteria are allowed to begin with their master thesis:

a. successful completion of the bachelor programme;
b. fulfilling any additional requirements necessary to gain admission to the master programme;
c. "Inter focus courses" (12 credits) completed;
d. "Focus courses" (26 credits) completed.

The Master's thesis concludes the study programme. Thesis work should prove the students' ability to independent, structured and scientific working.

To work independently and to produce a scientifically structured work under the supervision of a Computer Science Professor.

Independent project work supervised by a Computer Science professor. Duration 6 months.

Supervisor must be a professor at D-INFK or affiliated, see https://inf.ethz.ch/people/faculty.html

Computer Science Master - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>P</td>
<td>Practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>Independent project</td>
</tr>
<tr>
<td>D</td>
<td>Diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>Revision course / private study</td>
</tr>
</tbody>
</table>

Key for Hours

V	lecture
G	lecture with exercise
U	exercise
S	seminar
K	colloquium
P	practical/laboratory course
A	independent project
D	diploma thesis
R	revision course / private study

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Integrated Building Systems Master

Main Courses

Fundamental Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1633-00L</td>
<td>Energy Conversion for students outside of D-MAVT</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>I. Karin, G. Sansavini</td>
</tr>
</tbody>
</table>

Abstract
This course is intended for students outside of D-MAVT.

Objective
Thermodynamics is key to understanding and use of energy conversion processes in Nature and technology. Main objective of this course is to give a compact introduction into basics of Thermodynamics: Thermodynamic states and thermodynamic processes; Work and Heat; First and Second Laws of Thermodynamics. Students shall learn how to use energy balance equation in the analysis of power cycles and shall be able to evaluate efficiency of internal combustion engines, gas turbines and steam power plants. The course shall extensively use thermodynamic charts to build up students' intuition about opportunities and restrictions to increase useful work output of energy conversion. Thermodynamic functions such as entropy, enthalpy and free enthalpy shall be used to understand chemical and phase equilibrium. The course also gives introduction to refrigeration cycles, combustion and refrigeration. The course compactly covers the standard course of thermodynamics for engineers, with additional topics of a general physics interest (nonideal gas equation of state and Joule-Thomson effect) also included.

Content
1. Thermodynamic systems, states and state variables
2. Properties of substances: Water, air and ideal gas
3. Energy conservation in closed and open systems: work, internal energy, heat and enthalpy
4. Second law of thermodynamics and entropy
5. Energy analysis of steam power cycles
6. Energy analysis of gas power cycles
7. Refrigeration and heat pump cycles
8. Nonideal gas equation of state and Joule-Thomson effect
9. Maximal work and exergy
10. Mixtures
11. Chemical reactions and combustion systems; chemical and phase equilibrium

Lecture notes
Lecture slides and supplementary documentation will be available online.

Literature

Prerequisites / notice
This course is intended for students outside of D-MAVT.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Analytical Competencies

Domain B - Method-specific Competencies
- Techniques and Technologies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Mathematics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0203-00L</td>
<td>Mathematics</td>
<td>W</td>
<td>4 credits</td>
<td>3V+1U</td>
<td>C. Busch</td>
</tr>
</tbody>
</table>

Abstract
This course gives an introduction to the following subjects:
- Linear algebra (systems of linear equations, matrices, eigenvectors), calculus, multivariable calculus, differential equations.

Objective
Basic mathematical knowledge for engineers. Mathematics as a tool to solve engineering problems.

Content
This course gives an introduction to the following subjects:
- Linear algebra (systems of linear equations, matrices, eigenvectors), calculus, multivariable calculus, differential equations.

Literature
- Tom M. Apostol, Calculus, Volume 1, One-Variable Calculus
- Ulrich L. Rohde, Introduction to differential calculus: Systematic studies with engineering applications for beginners, Wiley

A list will be handed out in the lecture.

Design and Building Process MIBS

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>066-0427-00L</td>
<td>Design and Building Process MIBS</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>A. Paulus</td>
</tr>
</tbody>
</table>

Abstract
"Design and Building Process MIBS" is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of all involved parties through the design and building process. Lectures on twelve compact aspects gaining importance in an increasingly specialised, complex and international surrounding.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1214 of 2152
Introduction to Spatial Development and Transformation

Objective

Participants will come to understand how they can best navigate the design and building process, especially in relation to understanding their profession, gaining a thorough knowledge of rules and regulations, as well as understanding how involved parties’ minds work. They will also have the opportunity to investigate ways in which they can relate to, understand, and best respond to their clients’ wants and needs. Finally, course participants will come to appreciate the various tools and instruments, which are available to them when implementing their projects. The course will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship.

Content

“Design and Building Process MIBS” is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of involved parties through the design and building process. Twelve compact aspects regarding the establish building culture are gaining importance in an increasingly specialised, complex and international surrounding. Lectures on the topics of profession, service model, organisation, project, design quality, coordination, costing, tendering and construction management, contracts and agreements, life cycle, real estate market, and getting started will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship. The course introduces the key figures, depicts the criteria of the project and highlights the provided services of the consultants. In addition to discussing the basics, the terminologies and the tendencies, the lecture units will refer to the studios as well as the practice: Teaching-based case studies will compliment and deepen the understanding of the twelve selected aspects. The course is presented as a moderated seminar to allow students the opportunity for individual input: active collaboration between the students and their tutor therefore required.

Lecture notes

The recordings of the lectures are available on the MAP under the link https://map.arch.ethz.ch (book symbol at the top right).

Literature

https://map.arch.ethz.ch

Prerequisites / notice

ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.

ZoomLink: https://ethz.zoom.us/j/66588100789

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0527-10L</td>
<td>Materials and Constructions</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>G. Habert, D. Sanz Pont</td>
</tr>
</tbody>
</table>

Objective

- Building materials with a special focus on regenerative materials: earth, bio-based and reuse.
- Sourcing, properties and performance, building envelope integration and detailing, sustainable building construction

Abstract

Special focus on regenerative materials: earth, bio-based and reuse

Content

- Fundamentals of material performance
- Introduction to durability problems of building facades
- Materials for the building envelope:
 - Overview of structural materials and systems: concrete, steel, wood and bamboo, earth
 - Insulating materials (bio-based vs conventional)
 - Air barrier, vapour barrier and seals
 - Interior finishing
- Assessment of materials and components behaviour and performance
- Solutions for energy retrofitting of (historical) buildings
- Aspects of sustainability and durability
Lecture notes, exercises and reference material can be downloaded from Moodle.

This course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental challenge: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small. How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, guest speakers, simulations and group work.

The learning objectives of the course are:

- develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation
- master the most common methods and tools organizations deploy to innovate
- understand the core concepts necessary to analyze how innovation happens
- master the most common methods and tools organizations deploy to innovate
- develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programmes. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

The course content and methods are designed for students with some background in management and/or economics.

Principles of Microeconomics

3 credits

2G

M. Filippini

Principles of Microeconomics

Enrolment after agreement with the lecturer only.

Enthüllung in die Mikroökonomie.

This course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.

The learning objectives of the course are:

(1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems.

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

The course content and methods are designed for students with some background in management and/or economics.

Principles of Microeconomics

Einführung in die Mikroökonomie.

This course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.

The learning objectives of the course are:

(1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems.

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

The course content and methods are designed for students with some background in management and/or economics.

Principles of Microeconomics

S. Brusoni, A. Zeijen

This course focuses on the analysis of innovation as a pervasive process that cut across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change.

The learning objectives of the course are:

- be able to critically reflect on economic problems discussed in the society.
- argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

The course content and methods are designed for students with some background in management and/or economics.

Principles of Microeconomics

Einführung in die Mikroökonomie.

This course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.

The learning objectives of the course are:

(1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems.

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

The course content and methods are designed for students with some background in management and/or economics.

Principles of Microeconomics

Einführung in die Mikroökonomie.

This course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.

The learning objectives of the course are:

(1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems.

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

The course content and methods are designed for students with some background in management and/or economics.
N. Gregory Mankiw and Mark P. Taylor (2020), "Economics", 5th edition, South-Western Cengage Learning. The book can also be used for the course 'Principles of Macroeconomics' (Sturm)

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:

Complementary:

GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonome.

Prerequisites / notice
GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Subject-specific Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th>Method-specific Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain C - Social Competencies</th>
<th>Social Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain D - Personal Competencies</th>
<th>Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Application of CFD in Buildings

Limited number of participants. Enrolment is only possible in agreement with the chair.

066-0423-00L Application of CFD in Buildings

W 3 credits 3V D. Lakehal

Abstract
Fundamentals, Applications and Project works in the area of CFD in buildings.

Objective
I- Understanding:
- Basic principles of fluid flow & heat transfer
- Basic concepts of CFD
- Validation and verification, practical guidelines

II- Application and project works of CFD in buildings. Use of the CFD software www.transat-cfd.com only, which is installed in the computer room of the Archi. Department.

Students will have two projects:

1- Group projects: Beginning of Nov. Projects will be assigned by the tutors to the students organized in groups of 2. Projects will include canonical problems in two dimensions essentially. A report is to be handed out end of Nov.

2- Individual Projects: 2nd week of Nov. to Christmas. These are individual projects, chosen by students from the list of items below.

NOTE:
Students enrolled in the “Integrated Design Project” course can use their Individual Project (this class) for their IDP project, provided (1) they attend this course (CFD in Buildings) and use the CFD code TransAT to benefit the support of the tutors.

Content

I. Fundamentals
- Basic principles of fluid flow & heat transfer
- Laminar versus turbulent flow
- Forced vs. natural convection
- Basic concepts of CFD (Discretization, schemes, solvers, etc.)
- Turbulence modelling
- Near-wall treatment
- Validation and verification, practical guidelines

II. Application of CFD for real problems including (Projects):

1. Wind – Urban Scale: students would use the building shape to determine locations for wind inlets and outlets based on façade pressures
2. Wind – Cross-ventilation: using the interior shape of a building with inlets and outlets to determine flow rates
3. Stack effect: on a windless day with people in the building, how much airflow would be anticipated airflow rate given inlets and outlets
4. Wind & heat removal: Given inlets and outlets with people in the building, how much heat is removed from the building
5. Solar chimney: given a building with a chimney, how much extra airflow is created if the chimney is solar (absorbs radiation) vs. typical (not designed to absorb radiation)
6. Plant/vegetation effects: Given a building with a courtyard, how much is cross-ventilation affected by including plants vs. not having plants or how will the plants affect stack venting.
7. Air pollution and contaminant dispersion

Lecture notes
Material (pdf files) will be sent to the students before the start of the course.
We will update the material in due time.

Use cases done in part by your colleagues in this class, from year 2015 on:

Main reference for fluid mechanics:
J.H. Spurk, Fluid Mechanics, Springer

Main reference for CFD:Ferziger and Peric, Computational Methods for Fluid Mechanics, Springer

Main Wiki reference:

Other useful papers:

Abstract
Urban physics: wind, wind comfort, pollutant dispersion, natural ventilation, driving rain, heat islands, climate change and weather conditions, urban acoustics and energy use in the urban context.

Objective
- Basic knowledge of the global climate and the local microclimate around buildings
- Impact of urban environment on wind, ventilation, rain, pollutants, acoustics and energy, and their relation to comfort, durability, air quality and energy demand
- Application of urban physics concepts in urban design

Content
- Climate Change. The Global Picture: global energy balance, global climate models, the IPCC process. Towards regional climate scenarios: role of spatial resolution, overview of approaches, hydrostatic RCMs, cloud-resolving RCMs
- Urban micro climate and comfort: urban heat island effect, wind flow and radiation in the built environment, convective heat transport modelling, heat balance and ventilation of urban spaces - impact of morphology, outdoor wind comfort, outdoor thermal comfort,
- Urban energy and urban design. Energy performance of building quarters and cities, decentralized urban energy production and storage technologies, district heating networks, optimization of energy consumption at district level, effect of the micro climate, urban heat islands, and climate change on the energy performance of buildings and building blocks.
- Wind driving rain (WDR): WDR phenomena, WDR experimental and modeling, wind blocking effect, applications and moisture durability
- Pollutant dispersion. pollutant cycle : emission, transport and deposition, air quality
- Urban acoustics. noise propagation through the urban environment, meteorological effects, urban acoustic modeling, noise reduction measures, urban vegetation

Lecture notes
The course lectures and material are provided online via Moodle.

Prerequisites / notice
For MIBS Master students 151-8011-ooL Building Phyic Theory & Application is a pre-requisit for this course or instructor permission. For others no prior knowledge is required.

066-0421-00L Building Systems I O 3 credits 3G A. Schlüter, L. Baldini, I. Hischier, F. Khayatian, M. Sulzer

Abstract
Building Systems I gives an overview of fundamentals and concepts relevant for the design of building systems.

Objective
The course has the following learning objectives:
- Knowledge of the fundamentals, principles and technologies for building heating, cooling, ventilation and electricity supply.
- Knowledge of the integration and interdependencies of building systems and building structure, construction and aesthetics
- Ability to estimate relevant quantities and qualities for heating/cooling/ventilation/electricity of buildings and the related supply systems
- Ability to evaluate and choose an approach for sustainable heating/cooling/ventilation/electricity, the system and its components
- Synthesis in own integrated design projects

Content
1. Comfort & Environment
2. Heating / cooling concepts and demand
3. Natural / mechanical ventilation concepts and demand
4. Solar generation / electricity storage and demand
5. Information & Communication Technologies

101-0524-00L Lean, Integrated and Digital Project Delivery W 4 credits 3G D. Hall

Abstract
This course is an introduction to innovative construction project delivery through three strategies: integrated information, integrated organization, and integrated processes. Students will be introduced to project and production management concepts such as Lean Construction, Building Information Modeling, the Tri-Constraint Method, & Integrated Project Delivery.
Objective

By the end of the course, students will be able to plan and manage the lean, integrated, and digital project delivery of a construction project.

Students will know they are able to achieve this overall course goal when they can:

1. Apply the fundamental theories of lean production to the context of construction management. This includes the ability to describe the three views of production: transformation, flow and value generation; evaluate the benefits of a pull production system compared to push production systems; evaluate how production variability and uncertainty contributes to work-in-process and 'waste'; and apply the concepts of lean production to several construction management tools including the Last Planner System, Pull Planning, Target Value Design, and Takt Planning.

2. Understand the fundamentals of Virtual Design and Construction and Building Information Modeling. This includes the ability to prepare a model breakdown structure capable of integrating project information for all stakeholders; describe the upcoming transition to a common data environment for BIM that will use platforms such as Autodesk Forge; and describe the barriers to successful implementation of BIM within construction and design firms.

3. Plan and schedule an integrated '5D' scope schedule cost model using the Tri-Constraint Method. This includes the ability to understand the TCM algorithm, apply parametric logic to the creation of a virtual model for construction production; and evaluate the limitations of the critical path method when compared to resource- and space-constrained scheduling.

4. Evaluate benefits of integrated project governance compared to the organization of traditional construction project delivery systems. This includes the ability to evaluate the risks, benefits and considerations for integrated teams using multi-party relational contracts that cross disciplinary and firm boundaries; and explain to others the 'elements' of integrated projects (e.g. colocation, early involvement of key stakeholders, shared risk/reward, collaborative decision making).

Content

The construction industry is continually seeking to deliver High-Performance (HP) projects for their clients. HP buildings must meet the criteria of four focus areas – buildability, operability, usability, and sustainability. The project must be buildable, as measured by metrics of cost, schedule, and quality. It must be operable, as measured by the cost of maintaining the facility for the duration of its lifecycle. It must be usable, enabling productivity, efficiency and well-being of those who will inhabit the building. Finally, it must be sustainable, minimizing the use of resources such as energy and water. Buildings that succeed in all four of these areas can be considered HP projects.

The course will follow two main objectives and a third optional objective, depending on the design projects the students' choose. At the end of the course, the students will:

1. Know the methodology of LCA

2. Be able to apply LCA in the design process to assess and improve the environmental performance of their projects

3. Be able to use the parametric LCA tool and link it to additional performance assessment tools for a holistic optimisation.
The course will be structured into two parts, each making up about half of the semester.

Part I: Exercises with lectures on demand
The first six individual courses will follow the “lectures on demand” approach. Small “hands-on” exercises focusing on one specific aspect will be given out and the necessary background knowledge will be provided in the form of short input lectures when questions arise. The following topics will be discussed during the first part:
1) LCA basic introduction
2) System boundaries, functional unit, end of life
3) Carbon budget and LCA benchmarks
4) BIM/LCA, available calculation tools and databases
5) Integrated analysis of environmental and cost assessment
6) Bio-based carbon storage

Part II: Project-based learning
In the second part, the students will work on their individual project in groups of three. For the design task, the students will bring their own project and work on improving it. The projects can be chosen depending on the students background and range from buildings to infrastructure projects. Intermediate presentations will ensure the continuous work and make sure all groups are on the same level and learn from each other. During this part, the following hands-on tutorials will be given:
1) Introduction to Rhinoceros 6 and 7
2) Introduction to grasshopper
3) Integrated assessment tools (ladybird tools)
4) Introduction to in-house grasshopper plugin for LCA analysis

Lecture notes
As the course follows a lecture on demand approach, the lecture slides will be provided after each course.

Literature
A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.

Prerequisites / notice
Prerequisite: Sustainable construction (101-0577-00L). Otherwise a special permission by the lecturer is required.

No lecture will be given during Seminar week.

151-0209-00L
Renewable Energy Technologies
W 4 credits 3G

Abstract
Renewable energy technologies: solar PV, solar thermal, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects.

Objective
Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization.

Lecture notes
Lecture Notes containing copies of the presented slides.

Prerequisites / notice
Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT.

101-0123-00L
Structural Design
W 3 credits 2G

Abstract
The goal of the course is to introduce the civil engineering students to Structural Design, which is regarded as a discipline that relates structural behavior, construction technologies and architectural concepts. The course encourages the students to understand the relationship between the form of a structure and the forces within it by promoting the development of designed projects.

Objective
After successfully completing this course the students will be able to:
1. Critically question structural design concepts of historical and contemporary references
2. Use graphic statics and strut-and-tie models based on the Theory of Plasticity to describe the load bearing behavior of structures under static and dynamic loading conditions
3. Understand different construction technologies and have an awareness of their potential for structural design
4. Use contemporary digital tools for the design of structures in equilibrium
5. Design an appropriate structural system for a given design task taking into account architectural considerations

Content
The goal of the course is to introduce the civil engineering students to Structural Design, which is understood as a discipline that relates structural behavior, construction technologies and architectural concepts. Hence, the course encourages the students to develop an intuitive understanding of the relationship between the form of a structure and the forces within it by promoting the development of designed projects, in which the static and architectural aspects come together. The course is structured in two main parts, each developed in half of a semester; a mainly theoretical one (including the teaching of graphic statics) and a mainly applied one (focused on the development of a design project by the students using digital form-finding tools).

Theory:
Graphical statics is a graphical method developed by Prof. Karl Culmann and firstly published in 1864 at ETH Zurich. In this approach to structural analysis and design, geometric construction techniques are used to visualize the relation between the geometry of a structure and the forces acting in and on it, represented by geometrically dependent form and force diagrams.

The course will firstly review the main principles of graphical statics through a series of frontal lectures and discuss the relationship to analytical statics. Graphical statics is then used as an operative tool to design structures in equilibrium based on the lower bound theorem of the Theory of Plasticity. Additionally, the course will introduce contemporary methodologies and tools (parametric CAD software) for the interactive application of equilibrium modelling in the form of short workshops. The students will familiarize with the topic by solving exercises and confronting themselves with simple design tasks.

Design Project:
Specific structural design approaches and design methodologies based on graphic statics and references from construction history will be introduced to the students by means of seminars and workshops. By developing a design project, the students will apply these concepts and techniques in order to become proficient with open design tasks (such as the design of a bridge, a large span hall or a tower). At the end of the semester, the students present their projects to a jury of internal and external critics in a final review. The main criterion of evaluation is the students’ ability to integrate architectural considerations into their structural design.

"Faustformel Tragwerksentwurf" (Philippe Block, Christoph Gengangel, Stefan Peters, DVA Deutsche Verlags-Anstalt 2015, ISBN 978-3-421-04012-1)

529-0010-00L
Chemistry
W 3 credits 2V+1U

Abstract
This is a general chemistry course aimed at first year undergraduate students in the Department of Mechanical and Process Engineering (D-MAVT) and graduate students in the Department of Architecture (D-ARCH).
The course is based on "Chemistry: The Central Science" by Brown, LeMay, Bursten, Murphy, Woodward, and Stoltzfus, Pearson, 14th Edition in SI units (global edition).

Fundamentals of radiative heat transfer and its applications. Examples are combustion and solar thermal/thermochemical processes, and two-dimensional irrotational (potential) flows: stream function and potential, singularity method, unsteady flow, aerodynamic concepts.

Concepts and Theories
Techniques and Technologies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Advanced course in radiation heat transfer

Fluid Mechanics II

Concepts, phenomena and quantitative description of irrotational (potential), rotational, and one-dimensional compressible flows.

Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin. Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.

Numerical Methods

Lecture notes: Lecture notes containing copies of the presented slides.

Literature

Introduction to Mathematical Optimization

Introduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering. The goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.
An Introduction to Sustainable Development in the Built Environment

101-0577-00L

Abstract
In 2015, the UN Conference in Paris shaped future world objectives to tackle climate change. In 2016, other political bodies made these changes more difficult to predict.

What does it mean for the built environment?

This course provides an introduction to the notion of sustainable development when applied to our built environment.

Objective
At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmental aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.

Content
The following topics give an overview of the themes that are to be worked on during the lecture.

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world

- Synthesis: Transition to sustainable development

Lecture notes
All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.

Literature
A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.

Autumn Semester 2021
The course provides the necessary knowledge to develop models supporting the solution of given planning problems and also introduces cost-benefit analysis as a decision-making tool. Examples of such planning problems are the estimation of traffic volumes, prediction of estimated utilization of new public transport lines, and evaluation of effects (e.g. change in emissions of a city) triggered by building new infrastructure and changes to operational regulations.

To cope with that, the course is divided into sub-problems, which are solved using various statistical models (e.g. regression, discrete choice analysis) and algorithms (e.g. iterative proportional fitting, shortest path algorithms, method of successive averages).

The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/policy by means of cost-benefit analysis. Interim lab session take place regularly to guide and support students with the applied part of the course.

The course offers an introduction to computer simulation methods for physics problems and their implementation on PCs and super computers. The covered topics include classical equations of motion, partial differential equations (wave equation, diffusion equation, Maxwell's equations), Monte Carlo simulations, percolation, phase transitions, and N-Body problems.

Verlag für Bauwesen, Berlin.

http://www.sustec.ethz.ch/teaching/lectures/corporate-sustainability.html

A copy of the slides will be handed out at the beginning of each class.

Presentation slides will be made available on moodle prior to lectures.

Lecture notes

Literature

Prerequisites / notice

Successful completion of IM1: 101-0579-00 Evaluation tools is a prerequisite for this course.
Students learn to apply the following methods: Random number generators, Determination of percolation critical exponents, numerical solution of problems from classical mechanics and electrodynamics, canonical Monte-Carlo simulations to numerically analyze magnetic systems. Students also learn how to implement their own numerical frameworks and how to use existing libraries to solve physical problems. In addition, students learn to distinguish between different numerical methods to apply them to solve a given physical problem.

Introduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics as well as some interdisciplinary applications are used to introduce modern programming methods for numerical simulations using Julia. Furthermore, an overview of existing software libraries for numerical simulations is presented.

Lecture notes and slides are available online and will be distributed if desired.

Lecture notes and slides are available online and will be distributed if desired.

Lecture notes and slides are available online and will be distributed if desired.

Introduction to Computational Physics

Abstract

This course offers an introduction to computer simulation methods for physics problems and their implementation on PCs and super computers. The core topics include motion, partial differential equations (wave equation, diffusion equation, Maxwell's equations), Monte Carlo simulations, percolation, phase transitions, and N-Body problems.

Objective

Students learn to apply the following methods: Random number generators, Determination of percolation critical exponents, numerical solution of problems from classical mechanics and electrodynamics, canonical Monte-Carlo simulations to numerically analyze magnetic systems. Students also learn how to implement their own numerical frameworks in Julia and how to use existing libraries to solve physical problems. In addition, students learn to distinguish between different numerical methods to apply them to solve a given physical problem.

Content

Introduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics as well as some interdisciplinary applications are used to introduce modern programming methods for numerical simulations using Julia. Furthermore, an overview of existing software libraries for numerical simulations is presented.

Introduction to structural reliability and risk analysis

Abstract

Structural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment.

Objective

The goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field.

Content

Engineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro- codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making.

The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented.

The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information.

The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented.

Lecture notes and slides are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester.

The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis.

S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQlab-V0.92-107.

Basic course on probability theory and statistics

Carbon Mitigation

Number of participants limited to 100

Priority is given to the target groups: Bachelor and Master Environmental Sciences and PhD Environmental Sciences until September 21st, 2021.

Waiting list will be deleted October 1st, 2021.

Abstract

Future climate change can only kept within reasonable bounds when CO2 emissions are drastically reduced. In this course, we will discuss a portfolio of options involving the alteration of natural carbon sinks and carbon sequestration. The course includes introductory lectures, presentations by guest speakers from industry and the public sector, and final presentations by the students.

Objective

The goal of this course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences.

Content

From the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group.

Lecture notes
None

Literature

No final exam. Pass/No-Pass is assigned based on the quality of the presentation and ensuing discussion.

Data: 11.11.2021 12:40
Autumn Semester 2021
The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15062) contains announcements, course not assessed
This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. The course programme will closely follow the book of Thomas Sargent, 4th edition, 2019, London, UK: Pearson.

This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.

Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.

The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filippini).

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.

The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filippini).

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.

The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filippini).

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.

The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filippini).
Content
Three buildings case study will be presented.

Different certification schemes, including LEED (American standard), DGNB (German Standard with Swiss adaptation), Label SNBS, MINERGIE-ECCO and 2000-Watt-Site (Swiss standards) will be presented and explained by experts.

After this overall general presentation and in order to have a closer look to specific aspects of sustainability, students will work in groups and assess during one or two weeks this specific criteria on one of the case studies presented before. This practical hands on the label will end with a presentation and a discussion where we will highlight differences between the labels.

This alternance of working session on one specific criteria for one specific building followed by a group presentation and discussion to compare labels is repeated for the different focus point (operation energy, mobility, daylight, indoor air quality).

Lecture notes
The slides from the presentations will be made available.

Literature
All documents for certification labels as well as detail plans of the buildings will be available for the students.

063-0611-00L The Digital in Architecture II (Exercise) W 2 credits 1V+2U J. Medina Ibañez
Prerequisite: Successful completion of the course “Structural Design V” (063-0636-00L), “Design III” (052-0541/43/45) or “Das Digitale in der Architektur” (063-0610-00L).

This core course (ending with -00L-) can only be passed once! Please check before signing up.

ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.
ZoomLink: https://ethz.zoom.us/j/66588100789

Abstract
Subject of the course is robotic fabrication in architecture. Through exercises, basic skills such as robotic control are being taught and applied to a small design and fabrication project. The course teaches how to develop a simple fabrication and material aware digital design process linked to a robotic fabrication procedure.

Objective
Students learn to use industrial robots such as the Universal Robot UR5 and understand basic principles of robotic control. At the end of the course, students are able to translate simple design ideas into robotic fabrication processes, which they can run independently.

Furthermore students deepen their skills in Python and Grasshopper.

Prerequisites / notice
ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.
ZoomLink: https://ethz.zoom.us/j/66588100789

252-0839-00L Informatics W 2 credits 2G L. E. Fässler, M. Dahinden

Abstract
Students learn to apply selected concepts and tools from computer science for working on interdisciplinary projects. The following topics are covered: modeling and simulations, managing data with lists and tables and with relational databases, introduction to programming.

Objective
The students learn to
- choose and apply appropriate tools from computer science,
- process and analyze real-world data from their subject of study,
- handle the complexity of real-world data.

Content
1. Modeling and simulations
2. Data management with lists and tables
3. Data management with a relational database
4. Introduction to macro programming
5. Introduction to programming with Python

Lecture notes
All materials for the lecture are available at www.evim.ethz.ch

Prerequisites / notice
This course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available.

101-0007-00L Project Management for Construction Projects W 4 credits 3S J. J. Hoffman

Abstract
This course is designed to lay down the foundation of the different concepts, techniques, and tools for successful project management of construction projects.

Objective
The goal is that at the end of this course students should have a good understanding of the different project management knowledge areas, the phases required for successful project management, and the role of a project manager. To demonstrate this, students will work in groups in different case studies to apply the concepts, tools and techniques presented in the class.

Two 3 to 4 hours sessions towards the end of the lecture series will introduce a practical project to allow the teams to demonstrate the tools and techniques learned during the semester.

The course will have a final quiz that will be graded.

Content
The main content of the course is summarized in the following topics:
- Project and organization structures
- Project scheduling
- Resource management
- Project estimating
- Project financing
- Risk management
- Project Reporting
- Interpersonal skills

Lecture notes
The slides for the class will be available for download from Moodle at least one day before each class. Copies of all necessary documents will be distributed at appropriate times.

Literature
Relevant readings will be recommended throughout the course (and made available to the students via Moodle).

Prerequisites / notice
The students will be randomly assigned to teams. Students will be graded as a team based on the final Project report and the in-class oral presentation of the Project Proposal as well as a final exam (50% exam and 50% project report and presentation). Homework will not be graded but your final report and presentation will consist mostly of your homework assignments consolidated and put in a report and presentation format.

851-0589-00L Technology and Innovation for Development W 3 credits 2V P. Aerni

Abstract
Technological change plays a crucial role in efforts to create a more sustainable future. In this context, policy decision makers must design rules that minimize its risks and maximize its benefits for society at large. The course discusses this challenge from an interdisciplinary perspective taking into account legal, economic, historical, development and environmental aspects.
Science and Technology Policy is normally associated with the improvement of national competitiveness; yet, it is also an integral part of effective environmental and development policies. The course will discuss the challenges and opportunities of technological change in terms of sustainable development and show how public policy on the national and the international level is responding to this change.

In this context, students are to become familiar with the basic principles of political economy and New Growth Theory and how such theories help explain political decisions as well as political outcomes in the area of Science, Technology and Innovation. State interventions are either designed to regulate (e.g. environmental regulations, anti-trust law) or facilitate (e.g. intellectual property rights protection, public investment in R&D and technical education, technology transfer) technological change. This will be illustrated by looking at different industries and different national systems of innovation. Subsequently the positive and negative consequences for society and the natural environment will be discussed from a short-term and a long-term perspective.

In this context, students are to become familiar with the basic principles of political economy and New Growth Theory and how such theories help explain political decisions as well as political outcomes in the area of Science, Technology and Innovation. State interventions are either designed to regulate (e.g. environmental regulations, anti-trust law) or facilitate (e.g. intellectual property rights protection, public investment in R&D and technical education, technology transfer) technological change. This will be illustrated by looking at different industries and different national systems of innovation. Subsequently the positive and negative consequences for society and the natural environment will be discussed from a short-term and a long-term perspective.

Prerequisites / notice

The 2-hour course (5-7 p.m.) will be held as a series of lectures. The course materials will be available in form of an electronic Reader at the beginning of the semester.

The class will be taught in English. Students will be asked to make a contribution in class choosing one out of three options:

(a) presentation in class (15 Minutes) based on a paper to be discussed on a particular day in class
(b) review paper based on a selected publication in the course material
(c) preparation of questions for a selected invited speaker, and subsequent submission of protocol about the content of the talk and the discussion

In addition, they will have to pass a written test at the end of the course in order to obtain 3 credit points in the ECTS System. In the final mark (a) will have a weight of 40% and (b) 60%.

ETH Week 2021: Health for Tomorrow

All ETH Bachelor’s, Master’s and exchange students can take part in the ETH week. No prior knowledge is required.

Objective
- to recognize the challenges and opportunities of technological change in terms of sustainable development
- to become familiar with policy instruments to promote innovation
- to improve understanding of political decision-making processes in the regulation of science & technology
- improved understanding of the role of science and technology in the context of human and societal development

Content
- Science and Technology Policy is normally associated with the improvement of national competitiveness; yet, it is also an integral part of effective environmental and development policies.
- The course will discuss the challenges and opportunities of technological change in terms of sustainable development and show how public policy on the national and the international level is responding to this change.

Lecture notes
Reader with issue-specific articles. E-version is partly available under https://www.ethz.ch/content/specialinterest/gess/cis/international-relations/en/teaching/materials/tech.html

Literature

Objective
- Domain specific knowledge: Students have immersed knowledge about a certain complex, societal topic which will be selected every year. They understand the complex system context of the current topic, by comprehending its scientific, technical, political, social, ecological and economic perspectives.

- Analytical skills: The ETH Week participants are able to structure complex problems systematically using selected methods. They are able to acquire further knowledge and to critically analyse the knowledge in interdisciplinary groups and with experts and the help of team tutors.

- Design skills: The students are able to use their knowledge and skills to develop concrete approaches for problem solving and decision making to a selected problem statement, critically reflect these approaches, assess their feasibility, to transfer them into a concrete form (physical model, prototypes, strategy paper, etc.) and to present this work in a creative way (role-plays, videos, exhibitions, etc.).

- Self-competence: The students are able to plan their work effectively, efficiently and autonomously. By considering approaches from different disciplines they are able to make a judgment and form a personal opinion. In exchange with non-academic partners from business, politics, administration, nongovernmental organisations and media they are able to communicate appropriately, present their results professionally and creatively and convince a critical audience.

- Social competence: The students are able to work in multidisciplinary teams, i.e. they can reflect critically their own discipline, debate with students from other disciplines and experts in a critical-constructive and respectful way and can relate their own positions to different intellectual approaches. They can assess how far they are able to actively make a contribution to society by using their personal and professional talents and skills and as "Change Agents".

- Remote collaboration competence: The students work in a hybrid setting blending physical and virtual communication and collaboration methods and tools. They experience the potential and limitations of remote collaboration.

Content
The week is mainly about problem solving and design thinking applied to the complex world of health and well-being. During ETH Week students will have the opportunity to work in small interdisciplinary groups, allowing them to critically analyse both their own approaches and those of other disciplines, and to integrate these into their work.

While deepening their knowledge about health and well-being, students will be introduced to various methods and tools for generating creative ideas and understand how different people are affected by each part of the system. In addition to lectures and literature, students will acquire knowledge via excursions into the real world, empirical observations, and conversations with researchers and experts. A key attribute of the ETH Week is that students are expected to find their own problem, rather than just solve the problem that has been handed to them.

Therefore, the first three days of the week will concentrate on identifying a problem the individual teams will work on, while the last two days are focused on generating solutions and communicating the teams ideas.

No prerequisites. Programme is open to Bachelor and Masters from all ETH Departments. All students must apply through a competitive application process at www.eth.ch/ethweek. Participation is subject to successful selection through this competitive process.

Prerequisites / notice

Taught competencies

Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Media and Digital Technologies	assessed
Domain C - Social Competencies	Problem-solving	assessed
Domain D - Personal Competencies	Communication	assessed
Domain D - Personal Competencies	Cooperation and Teamwork	assessed
Domain D - Personal Competencies	Sensitivity to Diversity	assessed
Domain D - Personal Competencies	Negotiation	assessed
Domain D - Personal Competencies	Adaptability and Flexibility	assessed
Domain D - Personal Competencies	Creative Thinking	assessed
Domain D - Personal Competencies	Critical Thinking	assessed
Domain D - Personal Competencies	Self-direction and Self-management	assessed

Abstract
Strategies of human-system-interaction, individual needs, physical & mental abilities, and system properties are key factors affecting the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's health, well-being, and satisfaction as well as the overall system performance.

Objective
The goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.

Content
- Physiological, physical, and cognitive factors in sensation, perception, and action
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance, well-being, and comfort
- Usability engineering in system designs, product development, and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks

Literature
- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS

376-1177-00L
Human Factors I

W 3 credits 2V M. Menozzi Jäckli, R. Huang, M. Siegrist

Abstract
Strategies of human-system-interaction, individual needs, physical & mental abilities, and system properties are key factors affecting the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's health, well-being, and satisfaction as well as the overall system performance.

Objective
The goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.

Content
- Physiological, physical, and cognitive factors in sensation, perception, and action
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance, well-being, and comfort
- Usability engineering in system designs, product development, and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks

Literature
- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS

363-1065-00L
Design Thinking; Human-Centred Solutions to Real World Challenges

W 5 credits 5G S. Brusoni

Does not take place this semester.

Abstract
The goal of this course is to engage students in a multidisciplinary collaboration to tackle real world problems. Following a design thinking approach, students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.

Objective
During the course, students will learn about different design thinking methods and tools. This will enable them to:
- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).
- Engage in collaborative ideation with a multidisciplinary team.
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.
The purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validate them through quick iterations of prototyping and testing using different tools and materials. The students will work in multidisciplinary teams on a set of challenges that are organized as a one-week, a three-week, and a final six-week project with an external project partner. In this course, the students will learn about the different Design Thinking methods and tools that are needed to generate deep insights, to engage in collaborative ideation, rapid prototyping and iterative testing.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

For more information and the application visit: http://sparklabs.ch/

Open mind, ability to manage uncertainty and to work with students from various background. Class attendance and active participation is crucial as much of the learning occurs through the work in teams during class. Therefore, attendance is obligatory for every session.

Please also note that the group work outside class is an essential element of this course, so that students must expect an above-average workload.

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Linda Armbruster to learn about the requirements of the class.

063-0803-01L History and Theory in Architecture IX (Avermaete)

| W | 1 credit | 1V | T. Avermaete, H. Teerds |

This core course (ends with «01L») can only be passed once! Please check this before signing up.

Abstract

This survey course offers an introduction to urban theory for students of architecture and urban design, by exploring the past and current discourses on cities and urban development.

Objective

It is often said that we live in an ‘urban age’: cities are the most common habitat for the inhabitants of the world, today. Moreover, while more than half the global population lives in cities according to the reports of the UN, it is expected that within the next few decades this amount will increase to two-thirds. This ‘urban’ condition, however, cannot be generalized. Within the term ‘city’ a broad range of different urban conditions are taken together: from metropolises to suburban neighborhoods, and from shrinking (old industrial) cities to the new cities that prosper under the conditions of globalization. Nevertheless, because of the increase of the urbanized environments, the development of cities forms the topic of discussion among a wide range of people. Urban developments do concern politicians, economists, anthropologists, philosophers, citizens and activists, developers and designers. In turn, the urban realm has provoked thoughts, citizens, politicians, artists and designers to think and write about its form and functioning, appearance and structure. The discourse regarding the current growth of cities has a long pedigree in history, going back to the establishment of Greek and Roman city-states. In turn, urban planners have made valuable contributions to these discussions, in writings and in actual urban design projects and proposals.

This survey course aims to offer an introduction to urban theory for students of architecture and urban design, by exploring the past and current discourses on cities and urban development. By investigating a range of topics, from politics to poverty, and from modernization to commodification, it aims to show how urban and architectural design are related to theory. The aim of the course is to challenge the question how architects and urban designers can have an influence on urban development. With this question, also students are urged to reflect upon their own position regarding architectural interventions in the urban fabric.

This course aims to offer a survey of the history and current state of urban theory for students of urban design and architecture. Weekly, one-hour lectures address one particular topic at a time (e.g. politics, public space, capital). In each lecture, this theme is investigated through three case-studies (either of particular cities or seminal contributions by theorists or designers) that highlight crucial moments in the history and developments of cities. At the same time, the case studies will be structured so as to bridge between urban theories and concrete urban situations, design reflections and political ambitions. This will help convey to students the historical pedigree of current discourses on cities, whether simultaneously gain insight the role of designers in respect to the chosen topic. Students will prepare the meetings by reading fragments from core texts on the foreground.

Literature

For this course, each week students will read fragments from key readings on the topics addressed. These readings will be made available via the website of the course.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competencies</th>
<th>Methods/Tools</th>
<th>Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A</td>
<td>Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B</td>
<td>Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C</td>
<td>Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D</td>
<td>Personal Competencies</td>
<td>Leadership and Responsibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
</tbody>
</table>

103-0569-00L European Aspects of Spatial Development

| W | 3 credits | 2G | A. Peric Momcilovic |

Following the insight into historical perspective and contemporary models of governance and planning, the course focuses on the international dimension of spatial planning in Europe. This includes a discussion of how European spatial policy is made and by whom, how planners can participate in such process and how they can address transnational challenges of spatial development cooperatively.

Objective

Keeping the general aim of exploring the European dimension of spatial planning in mind, the specific course learning objectives are as follows:
- to interpret the history of spatial planning at the transnational scale
- to understand and explain the content of the European spatial policy agenda
- to describe and analyse the role of territorial cooperation in making European spatial development patterns and planning procedures
- to discuss the changing role of planners and evaluate the ways of their engagement in European spatial policy-making

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1229 of 2152
Students are taught a variety of analytic techniques that can be used to evaluate architectural design. The concept of evidence-based design is introduced, and complemented with theoretical background on space syntax and spatial cognition. This is a project-oriented course, students implement a range of methods on a sample project. The course is tailored for architecture design students. Additionally, the course is particularly suitable for students of D-ARCH. The course is only for master students, otherwise a special permission by the lecturer is required.
Objective
The course aims to teach students how to evaluate a design project from the perspective of the end user. The concept of evidence-based design is introduced through a series of case studies. Students are given a theoretical background in space syntax and spatial cognition, with a view to applying this knowledge during the design process. The course covers a range of methods including visibility analysis, network analysis, conducting real-world observations, and virtual reality for architectural design. Students apply these methods to a case study of their choice, which can be at building or urban scale. For students taking a B-ARCH or M-ARCH degree, this can be a completed or ongoing design studio project. The course gives students the chance to implement the methods iteratively and explore how best to address the needs of the eventual end-user during the design process.

The course is tailored for students studying for B-ARCH and M-ARCH degrees. As an alternative to obtaining D-GESS credit, architecture students can obtain course credit in "Vertiefungsfach" or "Wahlfach".

252-0834-00L Information Systems for Engineers
W 4 credits 2V+1U G. Fourny

Abstract
This course provides the basics of relational databases from the perspective of the user.

We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

Objective
This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Content
Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

13. Outlook

Literature
- Lecture material (slides).

Prerequisites / notice
For non-CS/DS students only, BSc and MSc (analytics).
Elementary knowledge of set theory and logic.
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

052-0707-00L Urban Design III
W 2 credits 2V H. Klumpner, M. Fessel
Students are introduced to a narrative of ‘Urban Stories’ through a series of three tools driven by social, governance, and environmental transformations in today’s urbanization processes. Each lecture explores one city’s spatial and organizational ingenuity born out of a particular place's realities, allowing students to transfer these inventions into a catalog of conceptual tools.

How can urban form be reduced to physical space? Cities result from social construction, under the influence of technologies, ecology, culture, the impact of experts, and accidents. Urban un-concluded processes respond to political interests, economic pressure, cultural inclinations, along with the imagination of architects and urbanists and the informal powers at work in complex adaptive systems. Current urban phenomena are the result of urban evolution. The facts stored in urban environments include contributions from its entire lifecycle, visible in the physical environment, and non-physical aspects. This imaginary city exists along with its potentials and problems and with the conflicts that have evolved. Knowledge and understanding, along with a critical observation of the actions and policies, are necessary to understand the diversity and instability present in the contemporary city and understand how urban form evolved to its current state.

How did cities develop into the cities we live in now? Urban plans, instruments, visions, political decisions, economic reasons, cultural inputs, and social organization have been used to operate in urban settlements in specific moments of change. We have chosen cities that exemplify how these instruments have been implemented and how they have shaped urban environments. We transcribe these instruments into urban operational tools that we have recognized and collected within existing tested cases in contemporary cities across the globe.

This lecture series will introduce urban knowledge and the way it has introduced urban models and operational modes within different concrete realities, therefore shaping cities. The lecture series translates urban knowledge into operational tools, extracted from cities where they have been tested and become exemplary samples, most relevant for understanding how the urban landscape has taken shape. The tools are clustered in twelve thematic clusters and three tool scales for better comparability and cross-reflection.

The Tool case studies are compiled into a global urbanization toolbox, which we use as typological models to read the city and critically reflect upon it. The presented contents are meant to serve as inspiration for positioning in future professional life and provide instruments for future design decisions.

In an interview with a local designer, we measure our insights against the most pressing design topics in cities today, including inclusion, affordable housing, provision of public spaces, and infrastructure for all.

The learning material, available via https://moodle-app2.let.ethz.ch/ is comprised of:
- Toolbox ‘Reader’ with an introduction to the lecture course and tool summaries
- Weekly exercise tasks
- Infographics with basic information of each city
- Quiz question for each tool
- Additional reading material
- Interviews with experts
- Archive of lecture recordings

Lecture notes

- Reading material will be provided throughout the semester.

<table>
<thead>
<tr>
<th>051-0911-21L</th>
<th>Seminar Week Autumn Semester 2021</th>
<th>W</th>
<th>2 credits</th>
<th>3A</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The seminar week is obligatory for students of all semesters. There are many and varied study contents.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students will be enabled to discuss narrowly formulated factual questions in small groups and in direct contact with the professors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>063-0607-00L</th>
<th>Energy- and Climate Systems III</th>
<th>W</th>
<th>2 credits</th>
<th>2V</th>
<th>A. Schlüter, C. Waibel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This core course (ending with «00L») can only be passed once! Please check before signing up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course ‘Energy- and Climate Systems III’ introduces computational design and analysis methods and tools for climate responsive architectural design. Exercises throughout the semester allow applying new concepts learnt in exemplary architectural design tasks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Content | • compare and assess passive and active design strategies for bioclimatic buildings
• analyze environmental site characteristics for its climate and (solar) energy potentials
• apply computational simulation tools to support performance-driven designs
• translate design ideas into parametric models and into optimization problems
• synthesize learnt content of the course in exemplary architectural design tasks, serving as a basis for the students’ future design studios and projects |

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1232 of 2152
Prerequisites / notice
ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.
ZoomLink: https://ethz.zoom.us/j/66588100789

Recommendations:
MSc Arch: Successful participation in the course 'Energie- und Klimasysteme I + II'.
MSc MIBS / Eng: Successful participation in the course 'Building Systems'.

All students need to be capable of working with 'Rhino / Grasshopper' modeling software on 'Windows' or willing to acquire the necessary skills before or during the course and are recommended to have completed the online blended learning course 'Climate responsive architecture with Hive'.

151-3209-00L
Engineering Design Optimization
W 4 credits
4G K. Shea, T. Stankovic

Number of participants limited to 60.

Abstract
The course covers fundamentals of computational optimization methods in the context of engineering design. It develops skills to formally state and model engineering design tasks as optimization problems and select appropriate methods to solve them.

Objective
The lecture and exercises teach the fundamentals of optimization methods in the context of engineering design. After taking the course students will be able to express engineering design problems as formal optimization problems. Students will also be able to select and apply a suitable optimization method given the nature of the optimization model. They will understand the links between optimization and engineering design in order to design more efficient and performance optimized technical products. The exercises are MATLAB based.

Content
1. Optimization modeling and theory
2. Unconstrained optimization methods
5. Stochastic and evolutionary search methods
6. Multi-objective optimization

Lecture notes
available on Moodle

101-0139-00L
Scientific Machine and Deep Learning for Design and Construction in Civil Engineering
W 3 credits
4G M. A. Kraus, D. Griego

Abstract
This course will present methods of scientific machine and deep learning (ML / DL) for applications in design and construction in civil engineering. After providing proper background on ML and the scientific ML (SciML) track, several applications of SciML together with their computational implementation during the design and construction process of the built environment are examined.

Objective
This course aims to provide graduate level introduction into Machine and especially scientific Machine Learning for applications in the design and construction phases of projects from civil engineering.

Upon completion of the course, the students will be able to:
1. understand main ML background theory and methods
2. assess a problem and apply ML and DL in a computational framework accordingly
3. Incorporating scientific domain knowledge in the SciML process
4. Define, Plan, Conduct and Present a SciML project

Content
The course will include theory and algorithms for SciML, programming assignments, as well as a final project assessment.

The topics to be covered are:
1. Fundamentals of Machine and Deep Learning (ML / DL)
2. Incorporation of Domain Knowledge into ML and DL
3. ML training, validation and testing pipelines for academic and research projects

Lecture notes
The course script is composed by lecture slides, which are available online and will be continuously updated throughout the duration of the course.

Literature
Suggested Reading:
Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong Mathematics for Machine Learning
S. Guido, A. Müller: Introduction to machine learning with python. O'Reilly Media, 2016
O. Martin: Bayesian analysis with python. Packt Publishing Ltd, 2016

Prerequisites / notice
Familiarity with MATLAB and / or Python is advised.

052-0639-00L
Climate Responsive Architecture with Hive
W 1 credit
2G A. Schlüter

Abstract
This Online course provides an introduction to climate-responsive design using the Hive tool and how to apply it in early building design stages. Hive allows architecture and building science students to understand the relation between architectural design, climate, comfort and energy. Hive is a plugin for the 3D modeling environment Rhino and its visual programming interface Grasshopper.

Objective
1. Recall general principles of climate responsive design and examples of it.
2. Utilize 3D building geometries to conduct simplified energy demand and supply simulations.
3. Observe relevant physical principles and interactions between climate, energy and geometry.
4. Implement passive and active concepts for Climate Responsive Design.
5. Apply Hive for building design analysis and integrate it into own designs or in design courses.
6. Identify and harness synergies and trade-offs between climate, energy and architectural design aspects.

Content
The course can be frequented individually, or as a prerequisite for other courses such as the master course 'Climate and Energy Systems' 3 or architectural design studios.

Modules:
1. Course overview.
2. Introduction to climate responsive design.
3. Introduction to Rhino, Grasshopper and HIVE.
4. Early solar analyses.
7. Real- world Applications and Examples.

Prerequisites / notice
A working Rhino 6 or 7 license is necessary.

851-0096-00L
Science in Society
W 3 credits
2G L. Wingert

Abstract
Whose voice should count how much? On the authority of the sciences in democracy.

Objective
Not a few members of the elites argue that important issues in democracy like policies against climate change, free trade agreements, urban planning are too complicate for the people. Experts should have a stronger say in politics. Less democracy = more rationality? The course should give an answer to this question.
During the studio students will work in groups on a contemporary integrated design project (urban and/or building scale) executing an ECTS A. Schütter Implementation of Environmental and Other Integrated Design MIBS Part I: Slides and background reading material will be available on lecture homepage Type 2 credits 6 credits A. E. Braunschweig 3V+3U Will be made available. Hours A literature list will be distributed at the beginning of the course. Part I (Advanced Environmental Assessments) 2G Skripts are specific to the design task and distributed at the beginning of the course. This course has the aim of deepening students' knowledge of the environmental, economic and social assessment methodologies and their various applications. Students must have successfully passed the first year of MIBS studies. Prerequisites / notice This course should only be elected by students of environmental engineering with a Module in Ecological Systems Design. All other students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other Sustainability Goals (with or without exercise and lab).

In particular, students completing the course should have the
- ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- knowledge about the current state of the scientific discussion and new research developments
- ability to properly plan, conduct and interpret environmental assessment studies

In the course element "Implementation of Environmental and other Sustainability Goals", students will learn to
- describe key sustainability problems of the current economic system and measuring units.
- describe the management system of an organisation and how to develop a sustainability orientation
- discuss approaches to measure environmental performance of an organisation, including 'organisational LCA' (Ecobalance)
- explain the pros and cons of single score environmental assessment methods
- demonstrate life cycle costing
- interpret stakeholder relations of an organisation
- (if time allows) describe sustainable supply chain management and stakeholder management

Part I (Advanced Environmental Assessments):
- Sustainability problems of the current economic system and its measuring units;
- The structure of a management system, and elements to integrate environmental management (ISO 14001) and social management (SA8000 as well as ISO 26000), especially into strategy development, planning, controlling and communication;
- Sustainability Opportunities and Innovation - The concept of 'Continuous Improvement' - Life Cycle Costing, Life Cycle Management - environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance), based on practical examples of companies and new concepts
- single score env. assessment methods (Swiss ecopoints) - stakeholder management and sustainability oriented communication - an intro into sustainability issues of supply chain management Students will get small exercises related to course issues.

Lecture notes Part I: Slides and background reading material will be available on lecture homepage Part II: Documents will be available on Ilias

Literature Will be made available.

This course should only be elected by students of environmental engineering with a Module in Ecological Systems Design. All other students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other Sustainability Goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. (2016). Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5,2)).

Project Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>066-0425-00L</td>
<td>Integrated Design MIBS ▶</td>
<td>W</td>
<td>6</td>
<td>3V+3U</td>
<td>A. Schütter</td>
</tr>
</tbody>
</table>

Abstract
During the integrated design studio students work on a selected integrated architectural / urban design project, considering both energy- and climate systems (HVAC) as well architectural and urban design in a specific site context. The objective is to follow an integrated design process to achieve synergistic solutions.

Objective
The integrated design studio enables students to identify site specific energy demand and potentials, develop integrated energy and climate systems on both the urban and building scale and evaluate their interactions and impact on building design and operation. Retrieving relevant concepts and technologies of energy and HVAC systems, students are able to develop and compare integrated concepts using appropriate methods and digital tools and present them to a mixed audience using drawings, renderings and reports.

Content
During the studio students will work in groups on a contemporary integrated design project (urban and / or building scale) executing an integrated design process from the analysis of site potentials, the identification of demands, the development of an urban scale energy concept and a matching building energy- and HVAC-systems concept. Input lectures from academics and professionals will highlight specific topics relevant to the task. The projects will be presented by the student groups and discussed with internal and external reviewers at midterm and at the final presentations.

Lecture notes
Scripts are specific to the design task and distributed at the beginning of the course.

Literature
A literature list will be distributed at the beginning of the course.

Prerequisites / notice
Students must have successfully passed the first year of MIBS studies.
The semester project can commence only after the first year of coursework is completed.

Abstract
The semester project focuses in solving specific research questions in the field of integrated building systems.

Objective
The semester project is designed to train students in solving specific research questions in the field of integrated building systems. The goal is to apply acquired knowledge which is gained throughout the first year of the master's program. The semester project is advised by a professor who is affiliated with one of the partner departments of the Master program "Integrated building systems”.

Content
The semester project is designed to train students in solving specific research questions in the field of integrated building systems. The goal is to apply acquired knowledge which is gained throughout the first year of the master's program. The semester project is advised by a professor who is affiliated with one of the partner departments of the Master program "Integrated building systems”.

GESS Science in Perspective

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0801-00L</td>
<td>Global History of Urban Design I</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>T. Avermaete</td>
</tr>
</tbody>
</table>

Abstract
This course focuses on the history of the design of cities, as well as on the ideas, processes and actors that engender and lead their development and transformation. The history of urban design will be approached as a cross-cultural field of knowledge that integrates scientific, economic and technical innovation as well as social and cultural advances.

Objective
The lectures deal mainly with the definition of urban design as an independent discipline, which maintains connections with other disciplines (politics, sociology, geography) that are concerned with the transformation of the city. The aim is to make students conversant with the multiple theories, concepts and approaches of urban design as they were articulated throughout time in a variety of cultural contexts, thus offering a theoretical framework for students’ future design work.

Content
In the first semester the genesis of the objects of study, the city, urban culture and urban design, are introduced and situated within their intellectual, cultural and political contexts:

01. The History and Theory of the City as Project
02. Of Rituals, Water and Mud: The Urban Revolution in Mesopotamia and the Indus
03: The Idea of the Polis: Rome, Greece and Beyond
04: The Long Middle Ages and their Counterparts: From the Towns of Tuscany to Delhi
05: Between Ideal and Laboratory: Of Middle Eastern Grids and European Renaissance Principles
06: Of Absolutism and Enlightenment: Baroque, Defense and Colonization
07: The City of Labor; Company Towns as Cross-Cultural Phenomenon
08: Garden Cities of Tomorrow: From the Global North to the Global South and Back Again
010: Civilized Wilderness and City Beautiful: The Park Movement of Olmsted and The Urban Plans of Burnham
011: The Extension of the European City: From the Viennese Ringstrasse to Amsterdam Zuid

Lecture notes
Prior to each lecture a chapter of the reader (Skript) will be made available through the webpage of the Chair. These chapters will provide an introduction to the lecture, the basic visual references of each lecture, key dates and events, as well as references to the compulsory and additional reading.

Literature
There are three books that will function as main reference literature throughout the course:

These books are reserved for consultation in the ETH Baubibliothek, and will not be available for individual loans.

Prerequisites / notice
A list of further recommended literature will be found within each chapter of the reader (Skript).

Open- and User Innovation

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>351-055S-00L</td>
<td>Governing the Energy Transition</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>T. Schmidt, N. Schmid, S. Sewerin</td>
</tr>
</tbody>
</table>

Abstract
This course addresses the role of policy and its underlying politics in the transformation of the energy sector. It covers historical, socio-economic, and political perspectives and applies various theoretical concepts to understand specific aspects of the governance of the energy transition.

Objective
- To gain an overview of the history of the transition of large technical systems
- To recognize current challenges in the energy system to understand the theoretical frameworks and concepts for studying transitions
- To gain knowledge on the role of policy and politics in energy transitions

Content
Climate change, access to energy and other societal challenges are directly linked to the way we use and create energy. Both the 2015 United Nations Paris climate change agreement and the UN Sustainable Development Goals make a fast and extensive transition of the energy system necessary. This lecture introduces the social and environmental challenges involved in the energy sector and discusses the implications of these challenges for the rate and direction of technical change in the energy sector. It compares the current situation with historical socio-technical transitions and derives the consequences for policy-making. It introduces theoretical frameworks and concepts for studying innovation and transitions. It then focuses on the role of policy and policy change in governing the energy transition, considering the role of political actors, institutions and policy feedback. The grade will be determined by a final exam.

Lecture notes
Slides and reading material will be made available via moodle.ethz.ch (only for registered students).

Literature
A reading list will be provided via moodle.ethz.ch at the beginning of the semester.

Prerequisites / notice
This course is particularly suited for students of the following programmes: MA Comparative International Studies; MSc Energy Science & Technology; MSc Environmental Sciences; MSc Management, Technology & Economics; MSc Science, Technology & Policy; ETH & UZH PhD programmes.
The course introduces the students to the long-standing tradition of actively involving users of technology and other knowledge-intensive products in the development and production process, and through own cases they develop an entrepreneurial understanding of product development under distributed, user-centered, or open innovation strategies.

Objective

The course includes both lectures and exercises alternately. The goal is to understand the opportunity of user innovation for management and develop strategies to harness the value of user-developed ideas and contributions for firms and other organizations.

The students actively participate in discussions during the lectures and contribute presentations of case studies during the exercises. The combination should allow to compare theory with practical cases from various industries.

The course presents and builds upon recent research and challenges the students to devise innovation strategies that take into account the availability of user expertise, free and public knowledge, and the interaction with communities that span beyond one organization.

Performance assessment will be: a written group essay based on the open/user innovation case that participants will research and present during the block seminar (including the slides). Each group will have to hand in a 15-20 page essay, details on the required format and the content will be distributed during the course. Active lass participation is required.

Content

This course on user innovation extends courses on knowledge management and innovation as well as marketing. The students are introduced to the long-standing tradition of actively involving users of technology and other knowledge-intensive products in the development and production process, and through own cases they develop an entrepreneurial understanding of product development under distributed, user-centered, or open innovation strategies. Theoretical underpinnings taught in the course include models of innovation, the structuration of technology, and an introduction to entrepreneurship.

Lecture notes

The slides of the lectures are made available and updated continuously through the SMI website:

Literature

Relevant literature for the exam includes the slides and the reading assignments. The corresponding papers are either available from the author online or distributed during class.

Reading assignments: please consult the SMI website:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>860-0023-00L</td>
<td>International Environmental Politics</td>
<td>W 3 credits 2V</td>
<td>T. Bernauer</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

Objective

The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.

Content

This course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

Lecture notes

Assigned reading materials and slides will be available via Moodle.

Literature

This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0101-74L</td>
<td>Sustainable Development - Bridging Art and Science</td>
<td>W 3 credits 2G</td>
<td>L. Hensgen, S. Patel</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

In this course students deepen their knowledge about global development and sustainability issues. We will show five movies each of them linked to one of the five P’s (Planet, People, Prosperity, Peace and Partnerships) reflecting the topics of the 2030 Agenda. Afterwards the movie will be critically discussed with researchers and relevant stakeholders from the broader society.
Objective
- Students get a broad understanding of some of the most important issues and discussions related to sustainable development.
- Students get exposed to diverse realities of young people in developing countries.
- Students can critically reflect upon the information that is presented to them in the movies and relate it to the broader discussions around sustainable development.

Content
The aim of the course is to deepen student’s knowledge about global issues and to inspire them to reflect critically upon complex topics, which are related to the broader discourse on sustainable development. In each class, we show a documentary film, which is linked to one of the five critical areas of the 2030 Agenda (Planet, People, Prosperity, Peace and Partnerships), putting specific focus on realities in developing countries. Following the movie screenings, we will discuss the topic of the film in the light of sustainable development with an expert from academia and/or a practitioner from the field of development cooperation. In preparation for each class, the students read an academic paper, which will also be considered in the discussion. The idea of “Bridging Art and Science” is to expose an interdisciplinary group of students to artistic and scientific perspectives alike and to challenge them to deal with bias and polarization, and the role that the media and films play in that regard. The participants of the course will be given the chance to embrace the complexity of sustainable global development.

Objective
- You know how risk and risk management is defined and applied in different industries
- You know the challenges of decision making under risk and uncertainty and its effects on organisations
- Gain some more in-depth knowledge in a selected field within risk management through the semester project (e.g. transport systems, IT, insurance)

Content
The course is organized into fourteen sessions. Sessions comprise a mixture of (guest) lectures, case discussions, and presentations. Through class discussion we will further deepen understanding of the topics and themes of the class. For each session you are required to prepare by reading the assigned literature or case material provided on the Moodle e-learning platform. Topics covered include:
- Elements of risk management:
 - Risk identification and evaluation
 - Risk mitigation
 - Risk communication
- Psychological and organizational concepts relevant in risk management
 - Decision-making under uncertainty
 - Risk perception
 - Resilient organizational processes for managing uncertainty
- Case studies on different elements of risk management (e.g., rule-making, training, managing project risks, automation)
- Group projects related to company case studies

Lecture notes
There is no script, but slides will be made available before the lectures.

Literature
There are texts for each of the course topics made available before the lectures.

Prerequisites / notice
The course is restricted to 40 participants who will work closely with the lecturers on case studies prepared by the lecturers on topics relevant in their own companies (SWICA, SWISS, University Hospital Zurich).
This course introduces mathematical and computational models to study techno-socio-economic systems and the process of scientific research. Students develop a significant project to tackle techno-socio-economic challenges in application domains of complex systems. They are expected to implement a model and communicating their results through a seminar thesis and a short oral presentation.

In Contract Design I, you will be asked to watch a series of videos (10-15 minutes each) that we produced for this course. These video episodes introduce you to key concepts of economic, behavioral, and experimental contract theory. We will cover topics such as moral hazard, adverse selection, elicitation mechanisms, relationship-specific investments, and relational contracting. You can find the welcome video at this link (https://www.youtube.com/watch?v=CvIdfG70zq0). However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

ETH students: Your final grade will consist of two components: 1) You are required to take weekly computer-based quizzes during class time. Thus, it is imperative that you attend the lectures to be able to finish the quizzes and pass this course. Moreover, we regularly post questions regarding the case studies that we examine in class. 2) You have to compose short responses to these questions and upload them. Note that UZH students enrolling in this course earn more ECTS on completing this course than ETH students. However, this course prioritizes applications of contract design. Therefore, we will use class time to discuss a selection of exciting real-world case studies, ranging from purchases & sales of assets, oil & gas exploration, movie production & distribution, construction & development, M&A deals, to executive compensation and many other types of transactions.

Handouts, prerecorded videos, slides, and other materials

Contract Design I is available to ETH students through the Science in Perspective (SIP) Program of D-GESS. This course is particularly suitable for students of D-ARCH, D-BAUG, D-CHAB, DMATH, D-MTEC, D-INFK, and D-MAVT. If you have any questions on Contract Design I, please send an e-mail to Professor Stremitzer’s Teaching Assistant Diego Caldera (diegoalberto.calderaherrera@uzh.ch).
Literature

Agent-Based Modeling
https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2

Social Self-Organization

Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Pedestrian, Crowd, and Evacuation Dynamics
https://www.research-collection.ethz.ch/handle/20.500.11850/45424

The hidden geometry of complex, network-driven contagion phenomena (relevant for modeling pandemic spread)
https://science.sciencemag.org/content/342/6164/1337

Further literature will be recommended in the lectures.

Prerequisites / notice

The number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Good programming skills and a good understanding of probability & statistics and calculus are expected.

851-0467-00L From Traffic Modeling to Smart Cities and Digital Democracies
Number of participants limited to 50.

Abstract
This seminar will present speakers who discuss the challenges and opportunities arising for our cities and societies with the digital revolution. Besides discussing questions of automation using Big Data, AI and other digital technologies, we will reflect on the question of how democracy could be digitally upgraded to promote innovation, sustainability, resilience, and quality of life. This includes questions around collective intelligence and digital platforms that support creativity, engagement, coordination and cooperation.

Objective
To collect credit points, students will have to give a 30-40 minute presentation in the seminar, after which the presentation will be discussed. The presentation will be graded.

Content
This seminar will present speakers who discuss the challenges and opportunities arising for our cities and societies with the digital revolution. Besides discussing questions of automation using Big Data, AI and other digital technologies, we will also reflect on the question of how democracy could be digitally upgraded, and how citizen participation could contribute to innovation, sustainability, resilience, and quality of life. This includes questions around collective intelligence and digital platforms that support creativity, engagement, coordination and cooperation.
Literature

Martin Treiber and Arne Kesting
Traffic Flow Dynamics: Data, Models and Simulation

Dirk Helbing
Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

Dirk Helbing
An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Michael Batty, Kay Axhausen et al.
Smart cities of the future

Books by Michael Batty
https://link.springer.com/article/10.1140/epjst/e2012-01703-3

How social influence can undermine the wisdom of crowd effect
https://www.pnas.org/content/108/22/2020

Evidence for a collective intelligence factor in the performance of human groups
https://science.sciencemag.org/content/330/6004/686.full

Optimal incentives for collective intelligence
https://www.pnas.org/content/114/20/5077.short

Collective Intelligence: Creating a Prosperous World at Peace
https://www.amazon.com/Collective-Intelligence-Creating-Prosperous-World/dp/097156661X/

Big Mind: How Collective Intelligence Can Change Our World
https://www.amazon.com/Big-Mind-Collective-Intelligence-Change/dp/0691170797/

Programming Collective Intelligence
https://www.amazon.com/Programming-Collective-Intelligence-Building-Applications/dp/0596529325/

Urban architecture as connective-collective intelligence. Which spaces of interaction?
https://www.mdpi.com/2071-1050/5/7/2928

Build digital democracy
https://www.nature.com/news/society-build-digital-democracy-1.18690

How to make democracy work in the digital age
http://www.huffingtonpost.com/entry/how-to-make-democracy-work-in-the-digital-age_us_57a2f48e4b0456cb7e17e0f

Digital Democracy: How to make it work?
http://futurict.blogspot.com/2020/06/digital-democracy-how-to-make-it-work.html

Proof of witness presence: Blockchain consensus for augmented democracy in smart cities

Iterative Learning Control for Multi-agent Systems Coordination
https://www.amazon.co.uk/Iterative-Learning-Control-Multi-agent-Coordination-ebook/dp/B06XJVQC41/ref=sr_1_fkmr1_1?dchild=1&keywords=coordinati+Jennings+multi-agent&qid=1601973480&sr=8-1-fkmr1

Decentralized Collective Learning for Self-managed Sharing Economies
https://dl.acm.org/doi/abs/10.1145/3277678

Further literature will be recommended in the lectures.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

Master’s Thesis

- Number: 066-0434-00L
- Title: Master’s Thesis
- Type: O
- ECTS: 30 credits
- Hours: 40D
- Lecturers: Professors

Only students who fulfill the following criteria are allowed to begin with their master thesis:
- a. successful completion of the bachelor programme;
- b. fulfilling of any additional requirements necessary to gain admission to the master programme.

Master thesis are supervised and reviewed by one or several professors and possibly by other persons at the same time. At least one professor has to be a member of a department involved in the study programme (article 2). This regulation is also valid for master thesis taking place outside ETH Zurich.

Abstract
A 6-months Master thesis completes the Master's program of Integrated Building Systems. With the thesis project students are expected to demonstrate their ability to independent and structured scientific thinking.

Objective
A 6-months Master thesis completes the Master's program of Integrated Building Systems. With the thesis project students are expected to demonstrate their ability to independent and structured scientific thinking.

Content
A 6-months Master thesis completes the Master's program of Integrated Building Systems. With the thesis project students are expected to demonstrate their ability to independent and structured scientific thinking. The thesis can be performed either at ETH Zurich, an industrial enterprise, or in a research institution, but has to be advised by one or more professors affiliated with the Master program "Integrated building systems".

The responsible supervisor defines the topic in consultation with the student, together with the scope of work, criteria of assessment, and dates of beginning and delivery of the work.

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0414-AAL</td>
<td>Transport Planning (Transportation I)</td>
<td>E-</td>
<td>3 credits</td>
<td>6R</td>
<td>K. W. Axhausen</td>
</tr>
</tbody>
</table>

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
The lecture course discusses the basic concepts, approaches and methods of transport planning in both their theoretical and practical contexts.

Objective
The course introduces the basic theories and methods of transport planning.

Content
Basic theoretical links between transport, space and economic development; basic terminology; measurement and observation of travel behaviour; methods of the four stage approach; cost-benefit analysis.

Literature
<table>
<thead>
<tr>
<th>Key for Hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS | European Credit Transfer and Accumulation System
■ Special students and auditors need special permission from the lecturers.
Compulsory Subjects First Year Examinations

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-1261-07L</td>
<td>Analysis I: One Variable</td>
<td>O</td>
<td>10 credits</td>
<td>6V+3U</td>
<td>M. Einsiedler</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the differential and integral calculus in one real variable: fundamentals of mathematical thinking, numbers, sequences, basic point set topology, continuity, differentiable functions, ordinary differential equations, Riemann integration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The ability to work with the basics of calculus in a mathematically rigorous way.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. Appell: Analysis in Beispielen und Gegenbeispielen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. Courant: Vorlesungen über Differential- und Integralrechnung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O. Forster: Analysis I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Amann, J. Escher: Analysis I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://link.springer.com/book/10.1007/978-3-7643-7756-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. Königsberger: Analysis 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. Walter: Analysis I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V. Zorich: Mathematical Analysis I (englisch)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Beutelspacher: "Das ist o.b.d.A. trivial"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Heuser: Lehrbuch der Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-1151-00L</td>
<td>Linear Algebra I</td>
<td>O</td>
<td>7 credits</td>
<td>4V+2U</td>
<td>R. Pink</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mastering basic concepts of Linear Algebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Introduction to mathematical methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Basics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vectorspaces and linear maps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Systems of linear equations and matrices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Determinants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Endomorphisms and eigenvalues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>We publish a summary of the content of the lecture course on the homepage: http://metaphor.ethz.ch/x/2021/hs/401-1151-00L/ Besides this we recommend one textbook about Linear Algebra, for instance one of these:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In addition we recommend this general introduction into studying mathematics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-1701-00L</td>
<td>Physics I</td>
<td>O</td>
<td>7 credits</td>
<td>4V+2U</td>
<td>K. Ensslin</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course gives a first introduction to Physics with an emphasis on classical mechanics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acquire knowledge of the basic principles regarding the physics of classical mechanics. Skills in solving physics problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0011-01L</td>
<td>General Chemistry (Physical Chemistry) I</td>
<td>O</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>H. J. Wörner</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Vorlesung vermittelt eine Einführung in einige physikalischen Grundlagen der Chemie, insbesondere in die Radioaktivität, die Quantenmechanik, den Aufbau der Materie und eines Atoms, des Periodensystems der Elemente und die chemische Bindung.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objective

Content

Atomic structure and structure of matter: atomic theory, elementary particles, atomic nuclei, radioactivity, nuclear reactions. Atomic orbitals and energy levels: ionization energies, atomic spectroscopy, term values and symbols. Quantum mechanical atom model: wave-particle duality, the uncertainty principle, Schrödinger's equation, the hydrogen atom, construction of the periodic table of the elements. Chemical bonding: ionic bonding, covalent bonding, molecular orbitals.

Lecture notes

See homepage of the lecture.

Literature

See homepage of the lecture.

Prerequisites / notice

Voraussetzungen: Maturastoff. Insbesondere Integral- und Differentialrechnung;

Taught competencies

Domain A - Subject-specific Competencies, Concepts and Theories, assessed

Additional First Year Compulsory Subjects

Number Title

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0011-04L</td>
<td>Practical Course General Chemistry</td>
<td>O</td>
<td>8 credits</td>
<td>12P</td>
<td>H. V. Schönberg, E. C. Meister</td>
</tr>
</tbody>
</table>

Information about the practical course will be given on the first day.

Abstract

Qualitative analysis (determination of cations and anions), acid-base-equilibria (pH-values, titrations, buffer), precipitation equilibria (gravimetry, potentiometry, conductivity, redox-reactions (syntheses, redox-titrations, galvanic elements), metal complexes (syntheses, complexometric titration). Analysis of measured data, vapour pressure, conductivity, calorimetry, solubility.

Objective

Qualitative analysis (simple cation and anion separation process, determination of cations and anions), acid-base-equilibria (strengths of acids and bases, pH- and pKa-values, titrations, buffer systems, Kjeldahl determination), precipitation equilibria (gravimetry, potentiometry, conductivity, oxidation state and redox behaviour (syntheses), redox-titrations, galvanic elements), metal complexes (syntheses of complexes, ligand exchange reactions, complexometric titration) analysis of measured values (measuring error, average value, error analysis), states of aggregation (vapour pressure), characteristics of electrolytes (conductivity measurements), thermodynamics (calorimetry, solubility).

Content

The general aim for the students of the practical course in general chemistry is an introduction in the scientific work and to get familiar with simple experimental procedures in a chemical laboratory. In general, first experiences with the principal reaction behaviour of a variety of different substances will be made. The chemical characteristics of these will be elucidated by a series of quantitative experiments alongside with the corresponding qualitative analyses. In order to get an overview of classes of substances as well as some general phenomena in chemistry suitable experiments have been chosen. In the second part of the practical course, i.e. physical chemistry, the behaviour of substances in their states of aggregation as well as changes of selected physical values will be recorded and discussed.

Lecture notes

http://www.gruetzmacher.ethz.ch/education/labcourses

Literature

Prerequisites / notice

Moodle Lernplattform

Compulsory: online enrolment latest one week after start of the semester Safety concept: https://chab.ethz.ch/studium/bachelor1.html

Electives

Number Title

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0011-02L</td>
<td>General Chemistry (Inorganic Chemistry) I</td>
<td>W+</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>A. Togni</td>
</tr>
</tbody>
</table>

Abstract

Introduction to the chemistry of ionic equilibria: Acids and bases, redox reactions, formation of coordination complexes and precipitation reactions

Objective

Understanding and describing ionic equilibria from both a qualitative and a quantitative perspective

Content

Chemical equilibrium and equilibrium constants, mono- and polyprotic acids and bases in aqueous solution, calculation of equilibrium concentrations, acidity functions, Lewis acids, acids in non-aqueous solvents, redox reactions and equilibria, Galvanic cells, electrode potentials, Nernst equation, coordination chemistry, stepwise formation of metal complexes, solubility.

Lecture notes

Copies of the course slides as well as other documents will be provided as pdf files via the moodle platform.

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0011-03L</td>
<td>General Chemistry (Organic Chemistry) I</td>
<td>W+</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>P. Chen</td>
</tr>
</tbody>
</table>

Abstract

Introduction to Organic Chemistry. Classical structure theory, stereochemistry, chemical bonds and bonding, symmetry, nomenclature, organic thermochemistry, conformational analysis, basics of chemical reactions.

Objective

Introduction to the structures of organic compounds as well as the structural and energetic basis of organic chemistry.
3. Semester (Physical-Chemical Direction)

Exam Block

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0422-00L</td>
<td>Physical Chemistry II: Chemical Reaction Kinetics</td>
<td>O</td>
<td>4</td>
<td>3V+1U</td>
<td>F. Merkt, U. Hollenstein</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to Chemical Reaction Kinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Fundamentals: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics up to new developments in femtosecond kinetics. Simple chemical reaction rate theories: temperature dependence of the rate constant and Arrhenius equation, collision theory, reaction cross-section, transition state theory. Reaction mechanisms and complex kinetic systems, approximation techniques, chain reactions, explosions and detonations. Homogeneous catalysis and enzyme kinetics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mathematik I und II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Allgemeine Chemie I und II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Physikalische Chemie I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-2883-00L</td>
<td>Physics III</td>
<td>O</td>
<td>7</td>
<td>4V+2U</td>
<td>U. Keller</td>
</tr>
<tr>
<td></td>
<td>Introductory course on quantum and atomic physics including optics and statistical physics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>A basic introduction to quantum and atomic physics, including basics of optics and equilibrium statistical physics. The course will focus on the relation of these topics to experimental methods and observations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Einführung in die Quantenphysik: Planck'sche Strahlung (Wärmestrahlung), Photonen, Photolektrischer Effekt, Thomson und Rutherford Streuung, Compton Streuung, Bohrsche Atommodell, de-Broglie Materiewellen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Optik-Wellenoptik; Linsen, Abbildungssysteme, Brechung und Fermatsches Prinzip, Beugung, Interferenz, Fabry-Perot, Interferometer, Spektrometer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantenmechanik: Dualismus Teilchen-Welle, Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialstufe und Potentialkasten, harmonischer Oszillator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>M. Alonso, E. F. Finn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantenphysik und Statistique Physik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. Oldenburg Verlag, München</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Auflage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISBN 978-3-486-71340-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electives
The Bachelor's programme in Interdisciplinary Sciences allows students to choose from any subject taught at ETH Zurich.

In consultation with the Director of Studies of Interdisciplinary Sciences, every student must establish his/her own individual study programme at the beginning of the 2nd year. See the Programme Regulations 2018 for further details.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0847-00L</td>
<td>Computer Science</td>
<td>W</td>
<td>5</td>
<td>2V+2U</td>
<td>R. Sasse, F. O. Friedrich Wicker</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required. Primary educational objective is to learn programming with C++. After having successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed. Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking like a computer scientist. The course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>English lecture notes will be provided during the semester. The lecture notes and the lecture slides will be made available for download on the course web page. Exercises are solved and submitted online.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-2303-00L</td>
<td>Complex Analysis</td>
<td>W</td>
<td>6</td>
<td>3V+2U</td>
<td>T. H. Willwacher</td>
</tr>
<tr>
<td>Abstract</td>
<td>Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem. Working knowledge of functions of one complex variables; in particular applications of the residue theorem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-2333-00L</td>
<td>Methods of Mathematical Physics I</td>
<td>W</td>
<td>6</td>
<td>3V+2U</td>
<td>G. Felder</td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Auf Moodle, in deutscher Sprache</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1246 of 2152
Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies
Communication
Cooperation and Teamwork

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

402-0255-00L Introduction to Solid State Physics

Objective
The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of insulators, metals, semiconductors, transport properties, magnetism, superconductivity.

Content
The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, thermal properties of insulators; metals (classical and quantum mechanical description of electronic states, thermal and transport properties of metals); semiconductors (bandstructure and n/p-type doping); magnetism, superconductivity.

Lecture notes
The script will be available on moodle.

Literature
Ibach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
W. Känzig, Kondensierte Materie

Prerequisites / notice
Voraussetzungen: Physik I, II, III wünschenswert

402-0263-00L Astrophysics I

Objective
This introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.

Content
The course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.

Lecture notes

Literature
In addition to the lecture notes, the following supplementary books can be recommended:

Prerequisites / notice
The course is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisite. Very ambitious students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English.
Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
assessed
assessed

Domain B - Method-specific Competencies
Analytical Competencies
Media and Digital Technologies
Problem-solving
assessed
assessed
not assessed

Domain C - Social Competencies
Communication
Self-presentation and Social Influence
Sensitivity to Diversity
not assessed
assessed
not assessed

Domain D - Personal Competencies
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-direction and Self-management
assessed
assessed
assessed
not assessed

402-2203-01L Classical Mechanics W 7 credits 4V+2U R. Renner

Abstract
A conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, spinning top, relativistic space-time structure, particles in an electromagnetic field, Hamiltonian mechanics, canonical transformations, integrable systems, Hamilton-Jacobi equation.

Objective
Fundamental understanding of the description of Mechanics in the Lagrangian and Hamiltonian formulation. Detailed understanding of important applications, in particular, the Kepler problem, the physics of rigid bodies (spinning top) and of oscillatory systems.

529-0051-00L Analytical Chemistry I W 3 credits 3G D. Günther, M.-O. Ebert, G. Schwarz, R. Zenobi

Abstract
Introduction into the most important spectroscopical methods and their applications to gain structural information.

Objective
Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications

Content
Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:
- Mass spectrometry; Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
- NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling.
- IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra;
- Raman spectroscopy.

Lecture notes
Script will be for the production price

Literature
- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995

Prerequisites / notice
Exercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounds" (4th semester) is recommended.

529-0121-00L Inorganic Chemistry I W 3 credits 2V+1U H. Grützmacher, P. Steinegger

Abstract
Discussion of syntheses, structures, and general reactivity of coordination compounds of the transition metals as well as the lanthanides and actinides. Introduction of methods of characterization, physical-chemical-properties of coordination compounds as well as principles of radiochemistry.

Objective
The students will learn and understand the methodological basics of binding theory in complexes of transition metals. They will be able to explain the structure, chemical bonding, spectroscopic properties as well as general strategies for the synthesis of complexes of transition metals. The students will acquire knowledge on the fundamentals of radioactive decay and radiochemistry. Furthermore, they will be familiar with the basics of inorganic chemistry of lanthanides and actinides.

Content
This course consists of the following parts, which introduce the students to the chemistry of transition metals as well as lanthanides and actinides: 1) General definitions and terms in coordination chemistry; 2) Coordination numbers and structures; 3) Ligand types; 4) The chemical bond in coordination compounds part A: Crystal field theory and ligand field theory; 5) The chemical bond in coordination compounds part B: Qualitative MO theory; 6) Reactivity and reaction mechanisms of coordination compounds; 7) Group theory and character tables; 8) Properties and characterization of coordination compounds; 9) Introduction to radiochemistry; 10) Principles of the chemistry of the lanthanides and actinides.

Lecture notes
Eine kommentierte Foliensammlung ist im HCI-Shop erhältlich.

Literature
Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Analytical Competencies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Literature

- C. Schär, Domain C - Social Competencies.

Content

- Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer.

Objective

- The students are able to:
 - explain basic measurement and analysis techniques that are relevant in atmospheric dynamics
 - to discuss the mathematical basics of atmospheric dynamics, based on selected atmospheric flow phenomena
 - to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
 - to explain how mountains influence the atmospheric flow on different scales
 - basic understanding of the role of moist adiabatic processes for weather systems and why stable water isotopes are useful in this context

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1249 of 2152
This course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation especially prediction of thunderstorm development, aerosol physics as well as artificial weather modification.

Objective
Students are able
- to explain the mechanisms of thunderstorm formation using knowledge of thermodynamics and cloud microphysics.
- to evaluate the significance of clouds and aerosol particles for artificial weather modification.

Content
The course starts with introducing selected concepts of thermodynamics for atmospheric processes: The students learn the concept of the thermodynamic equilibrium and derive the Clausius-Clayperon equation from the first law of thermodynamics. This equation is central for the phase transitions in clouds.

Students also learn to classify radiosondes with the help the thermodynamic charts (tephigrams) and to identify cloud base, cloud top, available convective energy in them. Atmospheric mixing processes are introduced for fog formation. The concept of the air parcel is used to understand convection.

Aerosol particles are introduced in terms of their physical properties and their role in cloud formation based on Köhler theory. Thereafter cloud microphysical processes including ice nucleation are discussed.

With these basics, the different forms of precipitation formation (convective vs. stratiform) is discussed as well as the formation and different stages of severe convective storms.

The concepts are applied to understand and judge the validity of different proposed artificial weather modification ideas.

Lecture notes
Powerpoint slides and chapters from the textbook will be made available on moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=15367

Literature

Prerequisites / notice
50% of the time we use the concept of "flipped classroom" (en.wikipedia.org/wiki/Flipped_classroom), which we introduce at the beginning.

We offer a lab tour, in which we demonstrate how some of the processes discussed in the lectures are measured with instruments.

There is a additional tutorial right after each lecture to give you the chance to ask further questions and discuss the exercises. The participation is recommended but voluntary.

Taught competencies
Domain A - Subject-specific Competencies
- Concepts and Theories
- Assessed

Domain B - Method-specific Competencies
- Analytical Competencies
- Assessed
- Problem-solving
- Assessed

Domain C - Social Competencies
- Communication
- Assessed

Domain D - Personal Competencies
- Critical Thinking
- Assessed
- Self-direction and Self-management
- Assessed

701-0501-00L Pedosphere

Abstract
Introduction to the formation and properties of soils as a function of parent rock, landscape position, climate, and soil organisms. Complex relationships between soil forming processes, physical and chemical soil properties, soil biota, and ecological soil properties are explained and illustrated by numerous examples.

Objective
Understanding of soils as integral parts of ecosystems, development and distribution of soils as a function of environmental factors, and processes leading to soil degradation.

Content
Definition of the pedosphere, soil functions, rocks as parent materials, minerals and weathering, soil organisms, soil organic matter, soil formation, principles of soil classification, global soil regions, physical soil properties and functions, chemical soil properties and functions, soil fertility, land use and soil degradation.

Lecture notes
Polybook

Prerequisites / notice
Prerequisites: Basic knowledge in chemistry, biology and geology.

701-0540-00L Microbiology

Abstract
Teaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.

Objective
Teaching of basic knowledge in microbiology.

Content

Lecture notes
Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms

Laboratory Courses, Seminar Papers, Proseminars, Field Trips
Further laboratory courses must be applied for at the respective Director of Studies.
Objective
Qualitative analysis (simple cation and anion separation process, determination of cations and anions), acid-base-equilibria (strengths of acids and bases, pH- and pK_a-values, titrations, buffer systems, K_jeldahl determination), precipitation equilibria (gravimetry, potentiometry, conductivity), oxidation state and redox behaviour (syntheses), redox-titrations, galvanic elements, metal complexes (syntheses of complexes, ligand exchange reactions, complexometric titration) analysis of measured values (measuring error, average value, error analysis), states of aggregation (vapour pressure), characteristics of electrolytes (conductivity measurements), thermodynamics (calorimetry, solubility).

Content
The general aim for the students of the practical course in general chemistry is an introduction in the scientific work and to get familiar with simple experimental procedures in a chemical laboratory. In general, first experiences with the principal reaction behaviour of a variety of different substances will be made. The chemical characteristics of these will be elucidated by a series of quantitative experiments alongside with the corresponding qualitative analyses. In order to get an overview of classes of substances as well as some general phenomena in chemistry suitable experiments have been chosen. In the second part of the practical course, i.e. physical chemistry, the behaviour of substances in their states of aggregation as well as changes of selected physical values will be recorded and discussed.

Lecture notes
http://www.gruetzmacher.ethz.ch/education/labcourses

Literature

Prerequisites / notice
Compulsory: online enrolment latest one week after start of the semester
Safety concept: https://chab.ethz.ch/studium/bachelor1.html

Table: Inorganic and Organic Chemistry II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0129-00L</td>
<td>Inorganic and Organic Chemistry II</td>
<td>W</td>
<td>11</td>
<td>16P</td>
<td>V. Mougel</td>
</tr>
</tbody>
</table>

Abstract
Latest online enrolment is one week before the beginning of the semester.

Objective
Introduction to the experimental methods of Inorganic Chemistry

Content
The teaching laboratory offers an insight into different aspects of Inorganic Chemistry, including solid state chemistry, organometallic chemistry, kinetics, etc. The synthesis, characterization and analysis of inorganic compound are a main topic. Special emphasis is given to experimental techniques of synthetic inorganic chemistry, in particular the safe handling of reactive and pyrophoric chemical and solvent purification and drying techniques.

Lecture notes
A manual is distributed in the teaching laboratory.

Prerequisites / notice
- Passed Basisprüfung
- Passed Practical Course General Chemistry (1. Semester, 529-0011-04)
- Passed Practical Course Inorg. and Org. Chemistry I (2. Sem., 529-0230)
- Continuous Attendance of Course Inorg. Chemistry 1 (3. Sem., 529-0121) and Analytical Chemistry 1 (3. Sem., 529-0051)

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies
Project Management
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

5. Semester (Physical-Chemical Direction)
Laboratory Courses, Semester Papers, Proseminars, Field Trips

Further laboratory courses must be applied for at the respective Director of Studies.

Number Title Type ECTS Hours Lecturers
529-0450-00L Semester Project W 18 18A Supervisors

Abstract
In a semester project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic.

Objective
Students are accustomed to scientific work and they get to know one specific research field.

402-0000-00L Physics Lab 3 W 7 13P M. Donegà, S. Gvasaliya

Abstract
This laboratory course provides basic training of experimental skills. These are experimental design, implementation, measurement, data analysis and interpretation, as well as error analysis. The experimental work has to be complemented by a concise written report, which trains the scientific writing skills. Manuals for the individual experiments are available in English.
Objective

Students learn to independently perform advanced experiments and document them scientifically correct.

Students are required to attend a safety lecture on the first day of the course and pass the corresponding online moodle-test before being allowed to access the laboratory rooms and perform the experiments.

The following aspects are emphasized:
- understanding complicated physical phenomena
- structured approach to experiments with complex instruments
- various practical aspects of experimenting and determining uncertainties
- learning the relevant statistical methods for data analysis
- interpretation of measurements and uncertainties
- describing the experiments and the results in a scientifically proper manner, in direct analogy to publishing
- ethical aspects of experimental research and scientific communication

Content

We offer experiments covering the following topics:
- Basic topics from mechanics, optics, thermodynamics, electromagnetism and electronics; as well as central topics from nuclear and particle physics, quantum electronics, quantum mechanics, solid state physics and astrophysics.
- From a variety of over 50 experiments, students have to perform 4 experiments covering different topics. The experimental work is complemented by writing a scientific report.

Prerequisites / notice

Lecture notes

Lecturers

Supervisors

Bachelor's Thesis

Number Title Type ECTS Hours Lecturers
529-0400-00L Bachelor's Thesis O 15 credits 15D Supervisors

Objective

It completes the Bachelor program and consists of a scientific project carried out independently.

Encourages students to show independence, to produce scientifically structured work and to apply engineering working methods.

Biochemical-Physical Direction

1. Semester (Biochemical-Physical Direction)

Compulsory Subjects First Year Examinations

Number Title Type ECTS Hours Lecturers
402-0043-00L Physics I O 4 credits 3V+1U J. Home

Objective

The concepts and tools in physics with the help of demonstration experiments: mechanics of point-like and ridged bodies, periodic motion and mechanical waves.

Content

Mechanics (motion, Newton's laws, work and energy, conservation of momentum, rotation, gravitation, fluids) Periodic Motion and Waves (periodic motion, mechanical waves, acoustics).

Lecture notes

The lecture follows the book “Physics” by Paul A. Tipler.

Literature

Paul A. Tipler and Gene P. Mosca, Physics (for Scientists and Engineers), W. H. Freeman and Company.

Number Title Type ECTS Hours Lecturers
551-0125-00L Fundamentals of Biology I: From Molecules to the Biochemistry of Cells O 6 credits 5G J. Vorholt-Zambelli, N. Ban, R. Glockshuber, K. Locher, J. Piel

Objective

Introduction to biochemistry, molecular biology and evolutionary principles

Content

Introduction to biochemistry, molecular biology and evolutionary principles

Lecture notes

The newly conceived lecture is supported by scripts.

Literature

Mathematical Foundations I: Analysis A O 5 credits 3V+2U L. Keller
Abstract
Introduction to calculus in one dimension. Building simple models and analysing them mathematically.

Content
Introduction to calculus in one dimension. Building simple models and analysing them mathematically.

Literature
- G. B. Thomas, M. D. Weir, J. Hass: *Analysis I*, Lehr- und Übungsbuch, Pearson-Verlag
- R. Sperb/M. Akveld: *Analysis I* (vdf)
- L. Papula: *Mathematik für Ingenieure und Naturwissenschaftler* (3 Bände), Vieweg

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>assessed</td>
<td></td>
</tr>
</tbody>
</table>

Course Descriptions

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Lecture notes</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0011-01L</td>
<td>General Chemistry (Physical Chemistry) I</td>
<td>3 credits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Die Studierenden sind nach der Vorlesung in der Lage,
- mit für die Chemie wichtigen physikalischen Grössen und deren Einheiten zu rechnen,
- einige Eigenschaften chemisch relevanter Teilchen zu benennen und experimentelle Methoden zur Bestimmung dieser Eigenschaften vorzuschlagen,
- Anwendungen und Gefahren der Radioaktivität zu benennen,
- radioaktive Zerfallsprozesse und den zeitlichen Verlauf von einfachen Zerfallsreaktionen mathematisch wiedzugeben sowie qualitativ vorzurüsten und darauszuleiten,
- Wellen- und Teilchengenschaften von elektromagnetischer Strahlung und Materie zu beschreiben und experimentelle Methoden zu deren Nachweis vorzuschlagen,
- die Grundlagen der Quantenmechanik (Bedeutung der Wellenfunktion, Heisenberg'sche Unschärferelation, Operatoren, Kommutatoren) zu erklären und einfache Rechnungen damit auszuführen,
- Absorptions- und Emissionspektren von Einkristallatomen zu analysieren und zu berechnen
- die Schrödingergleichung für ein molekulares Methylschwefelsäuremolekül aufzustellen,
- die Konzept eines Orbitals zu erklären und die qualitative Form der Orbitalformel der Wasserstoffatome mathematisch und bildlich wiederzugeben,
- den Aufbau des Periodensystems der Elemente mit Hilfe des Orbitalkonzepts zu erklären,
- Ähnlichkeiten in der elektronischen Struktur von Atomen zu erkennen und zu benutzen, um chemisch relevante Eigenschaften vorauszusagen und
- Termsymbole für atomare Grundzustände aufzustellen.

Content

Atomic structure and structure of matter: atomic theory, elementary particles, atomic nuclei, radioactivity, nuclear reactions. Atomic nuclei and energy levels: ionisation energies, atomic spectroscopy, term values and quantum numbers. Quantum mechanical atom model: wave-particle duality, the uncertainty principle, Schrödinger's equation, the hydrogen atom, construction of the periodical table of the elements. Chemical bonding: ionic bonding, covalent bonding, molecular orbits.

Lecture notes

See homepage of the lecture.

Literature

See homepage of the lecture.

Prerequisites / notice

Voraussetzungen: Maturastoff. Insbesondere Integral- und Differentialrechnung.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories

Assessed

Additional First Year Compulsory Subjects

Number

| 529-0011-04L | Practical Course General Chemistry |

Latest online enrolment is 20.9.2021

Abstract

Quantitative analysis (determination of cations and anions), acid-base-equilibria (pH-values, titrations, buffer), precipitation equilibria (gravimetry, potentiometry, conductivity), redox-reactions (syntheses, redox-titrations, galvanic elements), metal complexes (syntheses, complexometric titration).

Objective

Analysis of measured data, vapour pressure, conductivity, calorimetry, solubility.

Content

The general aim for the students of the practical course in general chemistry is an introduction in the scientific work and to get familiar with simple experimental procedures in a chemical laboratory. In general, first experiences with the principal reaction behaviour of a variety of different substances will be made. The chemical characteristics of these will be elucidated by a series of quantitative experiments alongside with the corresponding qualitative analyses. In order to get an overview of classes of substances as well as some general phenomena in chemistry suitable experiments have been chosen. In the second part of the practical course, i.e. physical chemistry, the behaviour of substances in their states of aggregation as well as changes of selected physical values will be recorded and discussed.

Lecture notes

http://www.gruetzmacher.ethz.ch/education/labcourses

Literature

Prerequisites / notice

Compulsory: online enrolment latest one week after start of the semester

Safety concept: https://chab.ethz.ch/studium/bachelor1.html

3. Semester (Biochemical-Physical Direction)

Examination Block

Number

| 401-0373-00L | Mathematics III: Partial Differential Equations |

Abstract

Objective

Classical tools to solve the most common linear partial differential equations.
Content

1) Examples of partial differential equations
 - Classification of PDEs
 - Superposition principle

2) One-dimensional wave equation
 - D'Alembert's formula
 - Duhamel's principle

3) Fourier series
 - Representation of piecewise continuous functions via Fourier series
 - Examples and applications

4) Separation of variables
 - Solution of wave and heat equation
 - Homogeneous and inhomogeneous boundary conditions
 - Dirichlet and Neumann boundary conditions

5) Laplace equation
 - Solution of Laplace's equation on the rectangle, disk and annulus
 - Poisson formula
 - Mean value theorem and maximum principle

6) Fourier transform
 - Derivation and definition
 - Inverse Fourier transformation and inversion formula
 - Interpretation and properties of the Fourier transform

7) Laplace transform (if time allows)
 - Definition, motivation and properties
 - Inverse Laplace transform of rational functions
 - Application to ordinary differential equations

Lecture notes

See the course web site (linked under Lernmaterialien)

Literature

Additional books:

4) E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons (chapters 1,2,11,12,6)

For additional sources, see the course web site (linked under Lernmaterialien)

Prerequisites / notice

Required background:

1) Multivariate functions: partial derivatives, differentiability, Jacobian matrix, Jacobian determinant

2) Multiple integrals: Riemann integrals in two or three variables, change of variables

2) Sequences and series of numbers and of functions

3) Basic knowledge of ordinary differential equations

529-0001-00L

Introduction to Computer Science

4 credits
4V+2U
P. H. Hünenberger

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Objective</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to UNIX, introduction to C++ programming, data representation and processing, computational errors, algorithms and scaling, sorting and searching, numerical algorithms, algorithmic strategies, computer simulation, computer architecture, operating systems, programming languages, computer networks, databases, representation of chemical structures, molecular simulation.</td>
<td>Acquire a starting package concerning the computational aspects of natural sciences; discuss fundamentals of computer architecture, languages, algorithms and programming with an eye to their application in the area of chemistry, biology and material science.</td>
<td>Lecture: Introduction to UNIX, introduction to C++ programming, data representation and processing, computational errors, algorithms and scaling, sorting and searching, numerical algorithms, algorithmic strategies, computer simulation, computer architecture, operating systems, programming languages, computer networks, databases, representation of chemical structures, molecular simulation; Exercises: Make students familiar with the UNIX operating system, C++ programming techniques, simple algorithms and computational applications in chemistry by means of exercise series at the computer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture notes</th>
<th>Literature</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script booklet (copies of powerpoint slides, in English), distributed at first or second lecture.</td>
<td>See: www.csms.ethz.ch/education/lifol</td>
<td>Since the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the written exam, the results of the exercises are taken into account when evaluating the results of the exam (compulsory performance component, 12% of the exam mark; in case of repetition of the exam, the exercise marks from a previous semester can be kept). For more information about the lecture: www.csms.ethz.ch/education/lifol</td>
</tr>
</tbody>
</table>

252-0027-00L

Introduction to Programming

7 credits
4V+2U
T. Gross

- Introduction to fundamental concepts of modern programming and operational skills for developing high-quality programs, including large programs as in industry. The course introduces software engineering principles with an object-oriented approach based.
Objective
Many people can write programs. The "Introduction to Programming" course goes beyond that basic goal: it teaches the fundamental concepts and skills necessary to perform programming at a professional level. As a result of successfully completing the course, students master the fundamental control structures, data structures, reasoning patterns and programming language mechanisms characterizing modern programming, as well as the fundamental rules of producing high-quality software. They have the necessary programming background for later courses introducing programming skills in specialized application areas.

Content
Basics of object-oriented programming. Objects and classes. Pre- and postconditions, class invariants, design by contract. Fundamental control structures. Assignment and references. Fundamental data structures and algorithms. Recursion. Inheritance and interfaces, basic concepts of Software Engineering such as the software process, specification and documentation, debugging, reuse and quality assurance.

Lecture notes
The lecture slides are available for download on the course page.

Literature
See the course page for up-to-date information.

Prerequisites / notice
There are no special prerequisites. Students are expected to enroll in the other courses offered to first-year students of computer science.

529-0422-00L
Physical Chemistry II: Chemical Reaction Kinetics

Abstract

Objective
Introduction to Chemical Reaction Kinetics

Content

Literature

Prerequisites / notice
Voraussetzungen:
- Mathematik I und II
- Allgemeine Chemie I und II
- Physikalische Chemie I

529-0221-00L
Organic Chemistry I

Abstract
Chemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.

Objective
Acquisition of a basic repertoire of synthetic methods including important reactions of aldehydes, ketones, carboxylic acids and carboxylic acid derivatives, as well as eliminations and fragmentations. Particular emphasis is placed on the understanding of reaction mechanisms and the correlation between structure and reactivity. A deeper understanding of the concepts presented during the lecture is reached by solving the problems handed out each time and discussed one week later in the exercise class.

Content
Chemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.

Lecture notes
A pdf file of the printed lecture notes is provided online. Supplementary material may be provided online.

Literature
No set textbooks. Optional literature will be proposed at the beginning of the class and in the lecture notes.

5. Semester (Biochemical-Physical Direction)

Laboratory Courses, Semester Papers, Proseminars, Field Trips
Further laboratory courses must be applied for at the respective Director of Studies.

Bachelor's Thesis
It completes the Bachelor program and consists of a scientific project carried out independently.

Second and Third Year Additional Subjects
The Bachelor's programme in Interdisciplinary Sciences allows students to choose from any subject taught at a Bachelor level at ETH Zurich.

In consultation with the Director of Studies of Interdisciplinary Sciences, every student must establish his/her own individual study programme at the beginning of the 2nd year. See the Programme Regulations 2010/2018 for further details.

Other Electives ETH
Further combinations of compulsory elective subjects arising upon specific written request by the students and permission by the Director of studies.

GESS Science in Perspective
Selection of courses from entire course catalogue of ETH, according to individual study plan

Science in Perspective
Recommended GESS Science in Perspective (Type B) for D-CHAB.

Language Courses

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1256 of 2152
Interdisciplinary Sciences Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
<th>Key for Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
<td></td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td></td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Interdisciplinary Sciences Master

The Master's programme in Interdisciplinary Sciences allows students to choose from any subject taught at the Master's level at ETH Zurich.

In consultation with the Director of Studies of Interdisciplinary Sciences, every student must establish his/her own individual study programme at the beginning of the Master's programme. See the Programme Regulations 2007/2020 for further details.

➤ Majors

The following list provides various Majors that can be chosen from: https://ethz.ch/content/dam/ethz/special-interest/chab/chab-dept/studies/documents/IN/WL_IN_SR19192101_EN.pdf

In addition it is possible to create an individual Major in accordance with the Programme Regulations (Art. 19 paragraph 3).

Selection of courses from entire course catalogue of ETH, according to individual study plan

➤ General Courses

Selection of courses from entire course catalogue of ETH, according to individual study plan

➤ Proseminars, Laboratory Courses, Research Projects and Sem. Papers

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0020-00L</td>
<td>Research Project</td>
<td>W</td>
<td>20</td>
<td>20A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
In a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student.

Objective
Students are accustomed to scientific work and they get to know one specific research field.

Selection of courses from entire course catalogue of ETH, according to individual study plan

➤ GESS Science in Perspective

see GESS Science in Perspective: Language Courses

ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-CHAB.

➤ Master's Thesis

Only students who fulfill the following criteria are allowed to begin with their Master's thesis:

a. successful completion of the Bachelor's programme;
b. fulfilling of any additional requirements necessary to gain admission to the Master's programme.

Duration of the Master's Thesis: 4 months.

In the Master's thesis students prove their ability to independent, structured and scientific working. The Master's thesis is usually carried out in a core or optional subject area as chosen by the student.

Abstract

In the Master's thesis students prove their ability to independent, structured and scientific working.

Objective

In the Master's Thesis students prove their ability to independent, structured and scientific working.

Only students who fulfill the following criteria are allowed to begin with their Master's thesis:

a. successful completion of the Bachelor's programme;
b. fulfilling of any additional requirements necessary to gain admission to the Master's programme.

Duration of the Master's Thesis: 6 months, possible only with permission of the Director of Studies.

In the Master thesis students prove their ability to independent, structured and scientific working. The Master thesis is usually carried out in a core or optional subject area as chosen by the student.

Abstract

In the Master thesis students prove their ability to independent, structured and scientific working.

Objective

In the Master Thesis students prove their ability to independent, structured and scientific working.

Interdisciplinary Sciences Master - Key for Type

<table>
<thead>
<tr>
<th>W+</th>
<th>Eligible for credits and recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>
Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
- European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
Landscape Architecture Master

► Basic Courses

All basic courses (in terms of content and methodology linked to "Foundation Studio I") must be completed.

★★ Compulsory Basic Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

Lectures, exercises and excursions serve as an introduction to atmospheric sciences, hydrology and soil science. Students gain a broad vision of the cutting edge topics that are being researched and studied at the Department of Environmental Systems Science at ETH, Eawag, WSL a.o. This will be the base for a future dialog between the field of landscape architecture and the field of sciences.

Objective

Students acquire basic knowledge in atmospheric sciences, hydrology and soil science:

- Understanding basic chemical and physical processes in the atmosphere that influence weather and climate
- Knowledge of water balance, principles of integral water management and climatic factors in the field of hydrology
- Fundamentals about the classification of soils, soil-forming processes, physical and chemical soil properties, soil biology and ecology, soil degradation and protection

Students develop an understanding of the relevance of these topics in the field of landscape architecture. Temporal and physical scale, research methods, units of measurement, lexicon, modes of representation and critical literature form the framework for the joint discourse.

Content

The course unit consists of the three courses "Climate", "Water" and "Soil", which are organized in modules.

Module 1 “Climate”, 20.–24.09.2021
- Atmospheric dynamics: weather conditions, precipitation formation, weather forecast
- Climate physics: past and future changes in global climate and scenarios for Switzerland
- Land-climate dynamics: interaction between the land surface and the climate system
- Hydrology and water cycle: extreme precipitation, influence of climate change on the cryosphere
- Atmospheric chemistry: aerosols, greenhouse gases, air pollution

Module 2 “Water”, 27.09.–1.10.2021
- Water supply: drinking water, hydropower, ecology
- Hydrological profile of the northern side of the Alps:
 - Alpine region (Grisel area): dominate role of snow and ice, dangerous processes, liquefaction of the water balance in the wake of climate change, uses (hydropower) and conflicts of use, new images of the Alpine region
 - From the Alps to the Mittelland (locations along the Aare): Lake Thun (role of lakes in the water cycle, river and lake shore planning), Utigen (conflicts of use between groundwater use, flood protection, revitalization and modes of transport) & Seeland (Jura water correction, conflicts of use in the Seeland)
 - Jura (Reigoldswil region): Jurassic landforms, water in the karst, water supply in the karst

Module 3 “Soil”, 4.10.–8.10.21
- Shotosturbation: definition, function, formation, classification and mapping
- Soil physics: soil texture, soil structure, soil water potentials, hydraulic conductivity
- Soil chemistry and fertility: clay minerals and oxides, cation exchange capacity, soil pH, essential plant nutrients
- Soil biology and ecology: soil fauna and microflora, fungi, bacteria, soil web, organic matter
- Hydrological profile of the northern side of the Alps:
 - External influencing factors: human influence in the historical dimension, global change

Prerequisites / notice

The course unit consists of the three courses “Climate”, “Water” and “Soil”, which are organized in modules. The weekly schedules will be provided with the course materials.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 1260 of 2152

061-0101-00L Energy and Plant Sciences – Only for Landscape Architecture MSc.

T. Galí-Izard, N. Guettler, A. Guggisberg, J. Hille Ris Lambers,
Abstract
This course introduces ecology and plant sciences. Through lectures, exercises and excursions, students will gain a broad vision of the cutting edge topics that are being researched and studied at the Department of Environmental Systems Science at ETH. This will be the base for a future dialog between the field of landscape architecture and the field of sciences.

Objective
Students acquire basic knowledge in ecology and plant sciences focusing in its application in the field of landscape architecture. Temporal and physical scale, research methods, units of measurement, lexicon, modes of representation and critical literature form the framework for the joint discourse.

Content
The fundamental course “Ecology and Plant Sciences” is an introduction to the field of living systems, starting with the history of ecology, followed by an introduction to plant systematics, taxonomy and physiology. The course will also introduce students to the specifics of grassland systems and forests. Lastly, the course will focus on the specifics of tree structure and function.

Lecture notes
Course material will be provided.

Literature
The course material includes a reading list.

Prerequisites / notice
The fundamental course is organized with the Fundamental Studio I as a joint two-week module. The weekly schedule is provided with the course documents.

Module 4 "Ecology and Plant Sciences", 11.10.–22.10.2021

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
</tbody>
</table>

061-0105-00L Designing with Plants I

Only for Landscape Architecture MSc.

Abstract
This fundamental course provides an introduction to the basics of botany and forms a solid foundation of knowledge for the following semesters. The course covers the following areas: Species knowledge of native shrubs and trees in autumn and winter conditions and their habitat requirements, introduction to the identification of plants and consolidation of botanical terms.

Objective
Students will be introduced to botany and after the course they will be able to identify about sixty native trees and shrubs in order to use them appropriately in their designs. They will be familiar with botanical terms, which will enable them to have a high level of understanding of botanical literature.

Content
This course focuses on excursions with a botanical expert. In addition, the students are supported by theoretical and conceptual lectures. This gives the students a good basis of botanical knowledge, which can be professionally integrated into their designs. This module is organized together with the Foundation Studio I, so that the knowledge imparted can directly influence the designs. In the morning they are taught in botany and in the afternoon they work on their designs.

The module is divided into different subject areas:

1) Consolidation of botanical terms. These form the basis for the identification and recognition of plants. The most important technical terms are explained and illustrated with suitable plant material.

2) Species knowledge is taught on regular field excursions and supplemented with theoretical input. The species can also be studied in the classroom using fresh material. In addition to site characteristics and seasonal changes, growth forms are also taught.

3) Through the introduction to identification, the students will understand how a simple identification key is constructed and how it is used, so that unknown species can be identified independently.

The fundamental course Designing with Plants I (1st – 12th November 2021) and the foundation studio I are interrelated modules. Taking part of the seminar week in Basel taking place just before this module is highly recommended (Gunther Vogt 061-0151-20L). The weekly schedule is published on the course website (and is included in the reader).

Lecture notes
The relevant literature and content for the examination will be indicated during the course.

Literature
The course is held in English or German.

Prerequisites / notice
The detailed course schedule is published on the course website (and is included in the reader).

The lectures might take place outside. It is necessary to foresee clothes adapted to the weather.
Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies

- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: not assessed

Domain D - Personal Competencies

- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

061-0107-00L

Materials and Construction I

Only for Landscape Architecture MSc.

O 2 credits 2G R. Voss, G. Vogt

Abstract
The fundamental course discusses current constructive problems in landscape architecture as part of the complex and multi-faceted urban space that is cultivated and animated by humans. The two parts of the lecture (Materials and Construction I and II) are designed as complementary modules.

Objective
The students learn comprehensive skills in dealing with constructive questions (regarding the topics of soil, water and topography). The goal is to promote a value-based critical and research-based thinking that is the prerequisite for discovering new questions and developing independent solutions.

Content
The course Materials and Construction I deals with constructive questions around the topic of soil, water and topography. The introductory lecture introduces the two parts of the lecture (Materials and Construction I and II) as a whole and illustrates with concrete examples how thinking about constructive possibilities co-determine and penetrate the design process.

Subsequently, in addition to principles in dealing with soil (floor structures, surface treatment) and water (physical state, element dynamics), a wide range of topics are discussed. These deal with current questions of today's urban landscapes in dealing with contaminated soil, flood protection, drinking water management, etc. The topic of topography represents the continuous and connecting moment.

The fundamental course Materials and Construction I (15th November – 26th November 2021) is closely linked to the foundation studio I. The weekly schedule is published on the course website (and is included in the reader).

Lecture notes
The reader will be distributed on Friday, 12th November 2021.

Literature
The reader contains all relevant literature (also relevant for the exam).

Prerequisites / notice
The course is aimed exclusively at the students of the master's programme in landscape architecture.

The detailed course schedule is published on the course website (and is included in the reader).

061-0109-00L

History and Theory in Landscape Architecture I

Only for Landscape Architecture MSc.

O 2 credits 2V A. Bucher

Abstract
The course deals with phenomena, terms and social contexts of designing nature since the 19th century, in order to derive a basis for ways of thinking and action for the present.

Objective
Students acquire an overview of the history of landscape architecture as well as an insight into the changing concepts and ways of thinking about designing nature. They become familiar with historical developments and their actuality and learn "from history". Students also analyse examples and design contexts and develop a basis for ways of thinking and action for current landscape architectural proposals.
Designing nature accompanies the history of mankind. Since industrialisation and with the establishment of landscape architecture as a profession, the understanding of nature and design concepts have changed from the green lung of cities to the current saving of the planet in the Anthropocene. The course deals with the relevant phenomena of designing nature (park, garden city, garden reform, new gardens, modern gardens, natural gardens, postmodern parks and landscapes, ecosystem repair, urban agriculture, slum upgrading, nature-cultures, etc.), terms (nature, landscape, garden, ecology, agriculture, etc.) and their wider contexts. Based on the history and theory of the profession, students develop a strong fundament for designing in the present.

The course takes place as a block course alternating with "Ethics in Landscape Architecture".

The course material includes a reading list.

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Analytical Competencies: assessed
- Decision-making: assessed
- Problem-solving: assessed
- Communication: assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: assessed
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed

Texts will be read in German and English.

Lecture material will be provided.

061-0111-00L Ethics in Landscape Architecture

Objective
This course covers basic positions of philosophical ethics with a strong emphasis on central debates in landscape architecture.

The course aims to provide basic knowledge of concepts and terms within moral philosophy; engage with current debates in landscape architecture through lectures, text analysis, discussions and presentations; develop an understanding of the relation between science/society/design as well as practice and theory; help establish one’s own design attitude; provide tools for argumentation; put to practice scientific working methods.

Content
Between the poles of theory and practice and through the development of a foundation in ethics, the students' sensitivity for ecological, political and social issues will be awakened and strengthened. In response to current issues touched upon in the disciplinary media or journalism, we will reflect upon the role of landscape architects in today's society as well as one's own individual attitude within the profession. The overall goal is for students to gain a critical understanding of a range of design approaches as well as an awareness of the specific role of design and design quality in the context of ethical debates.

Lecture notes
Detailed information regarding the course will be communicated at the beginning of the semester.

Course material will be provided.

061-0113-00L Digital Design Methods I

Objective
Students know the most relevant survey methods, landscape modelling tools as well as simulation and visualization techniques. They are able to use those methods independently in the following semesters and in practice.

Content
Based on a case study, the students work on the entire workflow of a landscape architectural project: From data collection in the field to 2D and 3D modelling in the Landscape Visualization and Modelling Lab (LVML), analysis and simulation with various software solutions to visualizations and physical prototypes, this course covers the most important digital methods in landscape architecture.

The course is divided into three parts:
1. Survey
2. Modelling
3. Analysis, Simulation, Visualization

The case study will serve as a synthesis project where the students can apply their acquired skills. During the course, students are supported by an interdisciplinary team in the development of their case study. The case study will be conducted in teams of two students.

Lecture notes
Digital and physical learning material is provided throughout the course.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies

Domain C - Social Competencies
- Communication

Domain D - Personal Competencies
- Creative Thinking
- Critical Thinking
- Self-awareness and Self-reflection

Core Courses

The core courses build on the basic courses and convey basic, broad knowledge in the core areas of landscape architecture in relation to design lessons. Some of the core courses are compulsory and some are freely selectable. Further details, in particular about taking these subjects, for performance assessments and for compensating for failed subjects, are regulated in Art. 27 and Art. 31 Paragraph 4.

Compulsory Core Courses

Courses are offered in Spring Semester.

Elective Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0569-21L</td>
<td>Lecture Series Design and Architecture: Architecture of ...</td>
<td>W</td>
<td>2 credits</td>
<td>1V</td>
<td>E. Christ, A. Caruso, C. Kerez, E. Mosayebi</td>
</tr>
</tbody>
</table>

Abstract
Specialists give lectures on current architecture-specific topics.

Objective
Obtaining knowledge from architectural practice after 2020.

Content
Specialists give lectures on current architecture-specific topics.

Prerequisites / notice
The lecture series take place on Tuesdays from 6-8 pm in HIL E4 (s. room reservations):

Speakers:
- 28.09.21: Prof. Patrick Heiz
- 05.10.21: PD Dr. Erik Wegerhoff - Note: This lectures takes place in the HIL underground carpark (follow the signs!)
- 12.10.21: Prof. Mike Guyer
- 02.11.21: Prof. Freek Persyn (ONA E7 Focushalle, Oerlikon)
- 16.11.21: GD Roger Boltshauser
- 30.11.21: GD Angela Deuber
- 07.12.21: Prof. Alexandre Theriot

Compensatory Course for Core Courses

In the first semester of the curriculum no compensation courses for compulsory courses offered.

Advanced Courses

In the first semester of the curriculum there are no main courses offered.

Design Studios

The design studios deal with problem and practice-related tasks on a local, regional, supra-regional, national and international level. Teaching of digital analysis, design and planning methods.

Foundation Studio I and II

- Fundamental Studio I: basic knowledge;
- Fundamental Studio II: Design tasks in the context of the contemporary landscape;

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>061-0141-21L</td>
<td>Foundation Studio I • Only for Landscape Architecture MSc. Classes and critiques are held in English and German.</td>
<td>O</td>
<td>14 credits</td>
<td>26U</td>
<td>G. Vogt</td>
</tr>
</tbody>
</table>

Abstract
The course introduces to the subject and complexity of the urbanized landscape and teaches the critical engagement with the challenges and potentials of current tendencies in Landscape Architecture. On the basis of theoretical inputs and short design exercises the students will develop analytical, methodical and design skills.

Objective
Students acquire basic analytical, design and methodological skills in the field of Landscape Architecture.

Content
The Foundation Studio I will be dealing with the urban territory of Basel in autumn semester 2021. The complexity of the region with its rich variety of geology and vegetation, the political boarders and an urge for urban renewal will be the background for the development of the design projects. The semester is composed of six modules, which are linked to the respective fundamental course, and a synthesis module:

Module 1 “Climate”, 20.–24.09.2020
Module 2 “Water”, 27.09.–1.10.2021
Module 3 “Soil”, 4.10.–8.10.21
Module 4 “Ecology and Plant Sciences”, 11.10.–22.10.21
Module 5 “Designing with Plants I”, 1.11.–12.11.21
Module 6 “Materials and Construction I”, 15.11.–26.11.21
Module “Synthesis”, 29.11.–22.12.21

In addition to the design professors, external experts of diverse fields will advise and support the students during the development of their design. The organization of the course intends to have lectures and other theoretical inputs in the morning (fundamental courses) and to deal with the same topics in more discursive way in the design studio in the afternoon.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1264 of 2152
The workbook will be handed in during the first semester week. The relevant literature is included in the workbook.

- The weekly schedule is published on the course website (and is included in the reader).

- Classes (and critiques) are held in English and German.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

Advanced Studio

Complex design tasks involving social, topographical, hydrological and ecological issues.

The advanced studio will be offered as of Spring Semester 2022.

Seminar Week and Internship Report

In MScLA at least one week of seminar must be completed. Furthermore, part of the course is a six-month internship in the field of landscape architecture, the achievements (work phases, learning success) must be documented in an internship report.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>
| 061-0151-21L | Seminar Week Autumn Semester 2021
Only for Landscape Architecture MSc. | W | 2 | 3S | S. Hassold, G. Vogt |

Abstract

Along five walks we explore the city vegetation of Basel and built connections to the conditions of the surrounding landscape. Obtaining a panoptical view of the “nature of the city” is the goal of intensive study of the territory.

Objective

In addition to a comprehensive insight into the vegetation of the city of Basel, the students receive an introduction to the method of walking as a way of exploring the urban landscape from a pedestrian perspective.

Content

Five walks lead us through the territory of the city of Basel. The tri-national area (Germany, Switzerland, France) with its exceptional geological, topographical, hydrological and climatic situation has a specific and diverse vegetation. We discover this diversity on the walks in the Petite Camargue, on the Tüllinger Hügel, during the crossing of the Jura and in the parks within the city.

The walks are led by proven experts. In conversations, Sonja Hassold (biologist), Günther Vogt (landscape architect) and Markus Ritter (ecologist) explain the relationships between the vegetation found and the conditions of the landscape. In doing so, references are made to the political, social and economic influencing factors that regulate the development of the landscape and significantly influence its shape.

The program is contextualized by dealing with the topic of walking science. Markus Ritter introduces the theory and method of promenadology in evening lectures, seminars and reading sessions, focusing on the person of Lucius Burckhardt (sociologist, 1925 - 2003).

Lecture notes

The reader will be given at the introductory course.

Literature

All relevant literature is included in the reader.

Prerequisites / notice

The weekly schedule is included in the reader.

The costs for the seminar trip (24.10.-30.10.) range between 251.- and 500.- (cost framework B). Included are: All overnight stays (including breakfast), a dinner together, transfers from the hotel to the excursions, reader and all costs for admission to museums.

The course is aimed exclusively at students of the master's program in landscape architecture.

It is highly recommended to participate this Seminar Week in preparation for the Module 5 (061-0105-00L Designing with Plants I) and the lecture Designing with Plants II (061-0106-00L)
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Problem-solving: assessed
- Project Management: not assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: not assessed

061-0153-00L Internship Report

Abstract
Part of the course is a six-month internship in the field of landscape architecture. The internship should include as many work phases as possible in the work of a landscape architect. The students prepare an internship report in which they describe the various internship activities in detail and reflect on the learning success.

Objective
The internship report should cover as many work phases as possible in the work of a landscape architect.

Content
Part of the course is a six-month internship in the field of landscape architecture. The internship should include as many work phases as possible in the work of a landscape architect. The students prepare an internship report in which they describe the various internship activities in detail and reflect on the learning success.

Prerequisites / notice
Internship report (of 6 months, within the field of landscape architecture). The report can be written in German or English language.

Science in Perspective
Courses of the "Science in Perspective" programme have to be completed (details see study guidelines Art. 27).
- see GESS Science in Perspective: Language Courses
 ETH/UZH
- see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-ARCH.

Master's Thesis
The master's thesis is the successful completion of the course. It confirms the ability to work independently in the field of landscape architecture and is tutored by D-ARCH professors (for details see Art. 30 of the study regulations).

Number Title Type ECTS Hours Lecturers
061-0900-00L Master's Thesis O 30 credits 64D Professors

Does not take place this semester.
The Master's Thesis is offered in HS22 for the first time.

Only students who fulfill the following criteria are allowed to begin with their master thesis:
- a. successful completion of the bachelor programme;
- b. fulfilling of any additional requirements necessary to gain admission to the master programme.

Abstract
Is offered as of HS22 only.

The master's thesis concludes the course. It shows the ability of the students to do independent design work and is proof of the successful completion of their studies. It is under the direction of professors from D-ARCH.

The processing time for the master's thesis is fourteen weeks.

Objective
The master's thesis concludes the course. It shows the ability of the students to do independent design work and is proof of the successful completion of their studies. It is under the direction of professors from D-ARCH.

The processing time for the master's thesis is fourteen weeks.

Landscape Architecture Master - Key for Type

<table>
<thead>
<tr>
<th>W+</th>
<th>Eligible for credits and recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
</tbody>
</table>

E- | Recommended, not eligible for credits |
Z | Courses outside the curriculum |
Dr | Suitable for doctorate |
<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

special students and auditors need special permission from the lecturers.
Educational Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>This lecture is only apt for students who intend to enrol in the programs "Teaching Diploma" or "Teaching Certificate". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course looks into scientific theories and also empirical studies on human learning and relate them to the school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way humans process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers are put in a position where they can further educate themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Themenatische Schwerpunkte: Lernen als Verhaltensänderung und als Informationsverarbeitung: Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information; Lernen als Wissenskonstruktion und Kompetenzverworbene unter besonderer Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und Erklärungen; Die Rolle von Emotion und Motivation beim Lernen; Interindividuelle Unterschiede in der Lernfähigkeit und ihre Ursachen: Intelligenztheorien, Geschlechtsunterschiede beim Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Folien werden zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>This lecture is only apt for students who intend to enrol in the programs "Lehrdiplom" or "Didaktisches Zertifikat". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-05L</td>
<td>Cognitively Activating Instructions in MINT Subjects ■ W</td>
<td>2 credits</td>
<td>2S</td>
<td>R. Schumacher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW1)".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Get to know cognitively activating instructions in MINT subjects - Get information about recent literature on learning and instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-07L</td>
<td>Human Intelligence</td>
<td>W</td>
<td>1</td>
<td>1S</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of participants limited to 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Understanding of research methods used in the empirical human sciences - Getting to know intelligence tests - Understanding findings relevant for education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-08L</td>
<td>Research Methods in Educational Science</td>
<td>W</td>
<td>1</td>
<td>2S</td>
<td>P. Edelsbrunner, T. Braas, C. M. Thurn</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Literature from the learning sciences is critically discussed with a focus on research methods. At the first meeting, working groups will be assembled and meetings with those will be set up. In the small groups students will write critical essays about the read literature. At the third meeting, we will discuss the essays and develop research questions in group work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>- Understand research methods used in the empirical educational sciences - Understand and critically examine information from scientific journals and media - Understand pedagogically relevant findings from the empirical educational sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-22L</td>
<td>Coping with Psychosocial Demands of Teaching (EW4 W DZ) ■</td>
<td>2 credits</td>
<td>3S</td>
<td>U. Markwalder, S. Maurer, S. Peteranderl-Rüschoff</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 20.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>In this class, students will learn concepts and skills for coping with psychosocial demands of teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Students possess theoretical knowledge and practical competences to be able to cope with the psychosocial demands of teaching.

(1) They know relevant rules of conversation and conflict management and are able to apply them in an appropriate way in the school context (e.g. in parental talks).

(2) They know core aspects of classroom management and know how to apply it concretely (e.g. promoting a positive learning atmosphere, avoiding disciplinary difficulties) and they are aware of possible contacts (e.g. illegal or psychological services).

Objective

- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- To integrate this knowledge with teacher's work.

Content

Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisites / notice

Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

Subject Didactics and Professional Training

Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-9020-00L</td>
<td>Teaching Internship Including Examination Lessons</td>
<td>W</td>
<td>6</td>
<td>13P</td>
<td>G. Kaufmann</td>
</tr>
<tr>
<td></td>
<td>Food Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The teaching internship can just be visited if all other courses of TC are completed. Repetition of the teaching internship is excluded even if the examination lessons are to be repeated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Students apply the insights, abilities and skills they have acquired within the context of an educational institution. They observe 10 lessons and teach 20 lessons independently. Two of them are as assessed as Examination Lessons.

Objective

- Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching.
- They are able to assess the significance of tuition topics for their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
- They learn the skills of the teaching trade.
- They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution.
- They learn to assess pupils’ work.
- Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.

Content

- The students apply their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching.
- They are able to assess the significance of tuition topics for their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
- They learn the skills of the teaching trade.
- They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution.
- They learn to assess pupils’ work.
- Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.

Prerequisites / notice

Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

Further Subject Didactics

For students enrolled from HS 2019: The courses offered here are credited under the category «Subject Didactics and Professional Training».

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-9005-00L</td>
<td>Mentored Work Specialised Courses in the Respective O</td>
<td>W</td>
<td>2</td>
<td>4A</td>
<td>G. Kaufmann, K. Koch, U. Lerch</td>
</tr>
<tr>
<td></td>
<td>Subject with an Educational Focus Food Sc. m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.

Objective

- To familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way.
- To independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership.
- To try out different options for specialist further training in their profession.
Content

Thematische Schwerpunkte:

Lernformen:

Lecture notes
Eine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt.

Literature
Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.

Prerequisites / notice
Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

Food Science TC - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Food Science Master

Major in Food Processing

Disciplinary Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-3103-00L</td>
<td>Food Rheology I</td>
<td>W+</td>
<td>3 credits</td>
<td>2V</td>
<td>P. A. Fischer</td>
</tr>
<tr>
<td>Abstract</td>
<td>Rheology is the science of flow and deformation of matter such as polymers, dispersions (emulsions, foams, suspensions), and colloidal systems. The fluid dynamical basis, measuring techniques (rheometry), and the flow properties of different fluids (Newtonian, non-Newtonian, viscoelastic) are introduced and discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course provides an introduction on the link between flow and structural properties of flowing material. Rheometrical techniques and appropriate measuring protocols for the characterization of complex fluids will be discussed. The concept of rheological constitutive equations and the application to different material classes are established.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Lectures will be given on general introduction (4h), fluid dynamics (2h), complex flow behavior (4h), influence of temperature (2h), rheometers (4h), rheological tests (6h) and structure and rheology of complex fluids (4h).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Notes will be handed out during the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Provided in the lecture notes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752-2003-00L</td>
<td>Selected Topics in Food Technology</td>
<td>W+</td>
<td>3 credits</td>
<td>2V</td>
<td>R. Stadler, R. Behringer</td>
</tr>
<tr>
<td>Abstract</td>
<td>Part 1 of the course deals with global market trends, food technologies, food health benefits. Physical and chemical fundamental knowledge help grasp the molecular composition of food. Part 2 entails management of risks across the food supply chain. The focus is on technological solutions to mitigate hazards, as well as their management upstream.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objectives of the course are for students to understand the key drivers (market and consumer trends, health benefits, sustainability, etc.) that impact innovation in a food business environment. The course also illustrates food safety and quality considerations across the whole supply chain, using concrete examples and how certain technologies assist in reducing or eliminating food safety risks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Lectures include interfacial tension (4h), protein aggregation in bulk and interfaces (4h), Pickering emulsions (2h), gels (2h), aggregation of complex mixtures (4h), and the use of light scattering in investigating complex food structures (8h). Most chapters include some hand-ons examples of the gain knowledge to common food products.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Notes will be handed out during the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Provided in the lecture notes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752-2314-00L</td>
<td>Physics of Food Colloids</td>
<td>W+</td>
<td>3 credits</td>
<td>2V</td>
<td>P. A. Fischer, R. Mezzenga</td>
</tr>
<tr>
<td>Abstract</td>
<td>In Physics of Food Colloids the principles of colloid science will applied to the aggregation of food materials based on proteins, polysaccharides, and emulsifiers. Mixtures of such raw material determine the appearance and performance of our daily food. In a number of examples, colloidal laws are linked to food science and the manufacturing and processing of food.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The aggregation of food material determines the appearance and performance of complex food system as well as nutritional aspects. The underlying colloidal laws reflect the structure of the individual raw material (length scale, time scale, and interacting forces). Once these concepts are appreciated the aggregation of most food systems falls into recognizable patterns that can be used to modify and structure exiting food or to design new products. The application and use of these concepts are discussed in light of common food production.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Lectures include interfacial tension (4h), protein aggregation in bulk and interfaces (4h), Pickering emulsions (2h), gels (2h), aggregation of complex mixtures (4h), and the use of light scattering in investigating complex food structures (8h). Most chapters include some hand-ons examples of the gain knowledge to common food products.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Notes will be handed out during the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Provided in the lecture notes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752-3021-00L</td>
<td>Food Process Design and Optimization</td>
<td>W+</td>
<td>4 credits</td>
<td>2G</td>
<td>E. J. Windhab</td>
</tr>
<tr>
<td>Objective</td>
<td>Quantitative process analysis and derivation of process-structure functions for complex liquid or semi-liquid food systems with non-Newtonian flow properties. Handling of optimisation and up-/down-scaling procedures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>S-PRO2 scheme, reverse engineering approach, dimension analysis, Metzner-Otto and Rieger Novaack design schemes of stirred reactors for non-Newtonian fluid processing, mixing/mixing statistics, mixing characteristics, power charac-teristics, dispersing characteristics, dispersing processes in rotor/ stator and membrane devices, spray processing, extrusion processing, diverse case studies for design and scaling of processes for food structure processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>printed handouts (ca. 180)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>List of ca. 30 papers and 5 books given in course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752-3023-00L</td>
<td>Process Measurements and Automation</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>E. J. Windhab</td>
</tr>
<tr>
<td>Abstract</td>
<td>Overview on Process Automation, Information Management in processes, process data handling and analysis, In-line measurements of complex food systems, Process control schemes, Overview of sensors and sensor principles, integrated process control case studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding the interplay of in-line measurements of complex food properties in processes, process data handling and data analysis as well as building blocks for process control.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Overview Process Automation, Process Control and process data management, Industrial design of automated/controlled processes, overview on sensors/sensor principles, case studies of in-line measurements and control in/of food production processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Printed script (120 pages, 80 figures), diverse publications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>List of publications and books given in course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752-3201-00L</td>
<td>Emerging Thermal and Non Thermal Food Processing</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>A. Mathys</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course is built on the holistic approach in sustainable food processing via the consideration of the total value chain. Selected mechanical, biotechnological, thermal and non-thermal techniques for best biomass and energy use efficiency will be investigated. Focused technologies are new thermal processes, high pressure techniques, electroproportion and different radiation based sources.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding of selected emerging food processing concepts with focus on lower process intensity for healthy and high quality food production, waste reduction as well as biomass and energy use efficiency. Updates from academia and industry around new trends in food process development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Emerging combined processes based on mechanical, thermal and non-thermal techniques, Multi hurdle technology concept for preservation, Extreme high temperature-short time processes, high pressure techniques, electroproportion, radiation, Biorefineries based on emerging process elements, Ongoing industry initiatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Script will be distributed before the course via Moodle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sustainable Food Processing Brijesh K. Tiwari (Editor), Tomas Norton (Editor), Nicholas M. Holden (Editor) ISBN: 978-0-470-67223-5 600 pages December 2013, Wiley-Blackwell

Methodology Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0625-01L</td>
<td>Applied Analysis of Variance and Experimental Design</td>
<td>W+</td>
<td>5 credits</td>
<td>2V+1U</td>
<td>L. Meier</td>
</tr>
</tbody>
</table>

Abstract
Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.

Objective
Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.

Content
Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.

Literature

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>W+</td>
<td>5 credits</td>
<td>2V+1U</td>
<td>M. Dettling</td>
</tr>
</tbody>
</table>

Abstract
This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning “good practice” that can be applied in every student’s own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.

Objective
The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.

Content
The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.

Lecture notes
A script will be available.

Literature
Faraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L “Applied Statistical Regression” and 401-3622-00L “Statistical Modelling” are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
The modern R&D chemical/food engineer should have a clear focus on the desired structure that needs to be achieved to design a process line or a processing equipment, coupled with in depth knowledge of the processed materials. Therefore the objective of this course is for students to be equipped with a skill set that will encompass basic digestion and sensory physiology knowledge and food structures. The students will be exposed to this interplay all along the GI tract, including taste, aroma and texture perception, swallowing mechanics and gastro intestinal digestion with an engineering or physical sciences angle.

Optional Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-3105-00L</td>
<td>Physiology Guided Food Structure and Process Design</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>E. J. Windhab, M. Devezeaux de Lavergne, S. Michlig Gonzalez, T. Wooster</td>
</tr>
</tbody>
</table>

Abstract

A “cook-and look” approach to process design is no longer applicable in the current environmental, nutritional and competitive constraints. The objective of this course is to highlight the intimate links between human physiology and product sensory and nutritional functions. To optimize these functions, an understanding of the physiological functions that interact and encode the actions of those product structures must be well understood.

Objective

The students will be exposed to this interplay all along the GI tract, including taste, aroma and texture perception, swallowing mechanics and gastro intestinal digestion with an engineering or physical sciences angle.
Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by recommendations given in the first lecture.

Special Topics in Toxicology

- Molecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc.) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnostics and antimicrobial intervention.

Lecture notes
Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.

Prerequisites / notice
Lectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), without break!

752-5103-00L
Functional Microorganisms in Foods

W+ 3 credits 2G C. Lacroix, A. Geinaert, A. Greppi

Abstract
This integration course will discuss new applications of functional microbes in food processing and products and in the human gut. Selected topics will be used to illustrate the rapid development but also limits of basic knowledge for applications of functional microorganisms to produce food with high quality and safety, and for health benefits for consumers.

Objective
To understand the principles, roles and mechanisms of microorganisms with metabolic activities of high potential for application in traditional and functional foods, and for benefiting human health. This course will integrate basic knowledge in food microbiology, physiology, biochemistry, and technology.

Content
This course will address selected and current topics targeting functional characterization and new applications of microorganisms in food and for promoting human health. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to different topics:

- Probiotics and Prebiotics: human gut microbiota, functional foods and microbial-based products for gastrointestinal health and functionality, diet-microbiota interactions, molecular mechanisms; challenges for the production and addition of probiotics to foods.
- Protective Cultures and Antimicrobial Metabolites for enhancing food quality and safety: antifungal cultures; bacteriocin-producing cultures (bacteriocins); long path from research to industry in the development of new protective cultures.
- Legal and protection issues related to functional foods
- Industrial biotechnology of flavor and taste development
- Safety of food cultures and probiotics

Lecture notes
Copy of the power point slides from lectures will be provided.

Literature
A list of topics for group projects will be supplied, with key references for each topic.

Prerequisites / notice
This lecture requires strong basics in microbiology.

752-1301-00L
Special Topics in Toxicology

W 2 credits 2G K. Hecht, S. Huber

Abstract
Journal-club style course involving student presentations and active discussion and critique of recent publications and modern experimental strategies. The focus is on chemical, biochemical, and nutritional aspects of selected topics in Toxicology, with a new group of topics addressed each semester.

Objective
- to stimulate student interest and provide advanced knowledge of current research in Toxicology and its related sciences
- to develop skills in critical evaluation of scientific literature, oral presentation and questioning
- to understand modern experimental techniques and research approaches relevant in toxicology

Content
The journal-club style course involves student presentations and active discussion of recent publications. The primary focus is on chemical, biochemical, and nutritional aspects of selected current topics in Toxicology. Participants are masters or PhD students in Food Sciences and related disciplines (i.e. Chemistry, Biochemistry, Pharmaceutical Sciences, etc.).

Literature
A selection of approximately 20 papers from recent primary scientific literature.

Prerequisites / notice
The course is open to Masters or PhD level students.

For Masters level participants, a strict prerequisite is (a) previously taken and passed “Introduction to Toxicology” (752-1300) and/or (b) previous courses supporting equivalent knowledge plus permission from the instructor. Please contact the instructor before the start of the class, explaining the basis of your previous knowledge other than the Introduction course, to request special permission.

If you would like to take "Special Topics in Toxicology", do not register at the same time for "Advanced Topics in Toxicology". It is only possible to take one, and it is only possible to take the advanced level after completing this course.

Methodology Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0625-01L</td>
<td>Applied Analysis of Variance and Experimental Design</td>
<td>W+</td>
<td>5</td>
<td>2+1U</td>
<td>L. Meier</td>
</tr>
<tr>
<td>Abstract</td>
<td>Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

401-0649-00L	Applied Statistical Regression	W+	5	2+1U	M. Dettling
Abstract
This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning “good practice” that can be applied in every student’s own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.

Objective
The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.

Content
The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.

Lecture notes
A script will be available.

Literature
Faraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L “Applied Statistical Regression” and 401-3622-00L “Statistical Modelling” are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

752-5500-00L Applied Bioinformatics: Microbiomes

Abstract
Learn to apply practical bioinformatics/computational skills for analysis of microbiomes in foods and human health! Students will apply basic programming skills for scientific computing and bioinformatics, and learn and discuss the importance of microbiomes to foods and human health, through recognition and comparison of ecological theory, methodology, and experimental design across systems.

Objective
Learn to apply bioinformatics and computational methods for analysis of microbiome next-generation sequencing data. A secondary goal is to critically examine the relevance of microbiomes to food quality, safety, and human health, through application of theory and appropriate experimental design. Students completing this course will thus be able to both apply appropriate methodology to study microbiomes (or other high-dimensional data) in different systems, as well as evaluate and interpret bioinformatics results.

Content
1. Introduction to microbiomes and microbial bioinformatics toolkit. UNIX/bash, Python, Pandas, Jupyter, git/GitHub, visualization libraries for Python.
3. Microbial diversity, function, and ecology. Molecular ecology, diversity metrics, ordination methods.

This course requires extensive engagement in learning outside of the classroom (using online resources and practical exercises), with a focus on active learning in the classroom.

Prerequisites / notice
No specific pre-requisites, but students should have some familiarity with microbiology, molecular biology, programming (UNIX/bash and/or Python), bioinformatics, and statistics.

Students will bring and work on their own laptop computers (students without a laptop should consult with their department’s ISG group).

All software used in the course is free and open-source. Installation instructions will be provided to students prior to the start of the course.

Optional Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-5111-00L</td>
<td>Gene Technology in Foods</td>
<td>W+</td>
<td>3</td>
<td>2V</td>
<td>F. Constancias, G. Broggini, A. Greppi, F. Orelli</td>
</tr>
</tbody>
</table>

Abstract
This course will increase basic knowledge on biotechnological constructions and application of genetically modified organisms (GMO), which are used worldwide in food production systems. The course discusses health issues, the legislation frame and food safety aspects of GMO applications in agriculture, food production and consumption in Switzerland and EU-countries.

Objective
This course will increase basic knowledge on biotechnological constructions and application of genetically modified organisms (GMO), and focus on active learning in the classroom.

Prerequisites / notice
No specific pre-requisites, but students should have some familiarity with microbiology, molecular biology, programming (UNIX/bash and/or Python), bioinformatics, and statistics.

Students will bring and work on their own laptop computers (students without a laptop should consult with their department’s ISG group).

All software used in the course is free and open-source. Installation instructions will be provided to students prior to the start of the course.
Content
Overview on application in gene technology, the gene transfer potential of bacteria, plants and other organisms and the mostly used transgenes in food as well as on GMO used for food production and their detection technologies in food; food safety assessment of GMO food; information on the legislation in Switzerland and EU-countries

Lecture notes
Copies of slides from lectures will be provided

Literature
Actual publications from literature will be provided

Prerequisites / notice
Good knowledge in biology, especially in microbiology and molecular biology are prerequisites. Some contents will be provided by registered students who will present as a group an actual publication.

752-1300-00L Advanced Topics in Toxicology

Type: W
ECTS: 2 credits
Hours: 2G
Lecturers: S. Huber, S. J. Sturla

Abstract
Journal-club style course that involves student presentations of selected topics in Toxicology on the basis of current primary research and review papers.

Objective
The goals are to stimulate student interest and provide advanced knowledge of current research in the interdisciplinary area of Food and Nutrition Toxicology and its related sciences. The student should develop skills in the critical evaluation of scientific literature, oral presentation and questioning, and understanding modern experimental techniques in Molecular Toxicology.

Content
The journal-club style course involves student presentations of recent publications. The primary focus is on chemical and biochemical aspects of selected topics in Toxicology. Participants are generally masters or PhD students in Food Sciences and related disciplines (i.e. Chemistry, Pharmaceutical Sciences, etc.), and strong knowledge of organic chemistry and biochemistry are prerequisite. Selected course topics change every semester.

Prerequisites / notice
Participants are required to have completed previously "Special Topics in Toxicology" (752-1301-00L). Both courses are run concurrently every semester. It is only possible to register for one course at a time. Do not register for "Advanced Topics in Toxicology" until after you have completed "Special Topics in Toxicology"

376-1353-00L Nanostructured Materials Safety

Type: W
ECTS: 2 credits
Hours: 1V
Lecturers: P. Wick

Abstract
Fundamentals in nanostructured material - living system interactions focusing on the main exposure routes, lung, gastrointestinal tract, skin and intravenous injection

Objective
Understanding the potential side effects of nanomaterials in a context-specific way, enabling to evaluate nanomaterial safety and provide knowledge to design safer materials.

Lecture notes
Handouts provided during the classes and references therein as well as primary literature as case studies will be posted to the course website

Prerequisites / notice
course "Introduction to Toxicology"

Major in Nutrition and Health

Disciplinary Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-2307-00L</td>
<td>Nutritional Aspects of Food Composition and Processing</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>B. E. Baumer, J. M. Sych</td>
</tr>
</tbody>
</table>

Abstract
Lecture type course with an interdisciplinary approach for the evaluation of nutritional aspects of changes in food composition due to processing.

Objective
Students should be able to
- describe and compare the major concepts /criteria used for the evaluation of the nutritional quality of food
- apply these criteria when assessing the effects of selected processing technologies on nutritional quality.
- evaluate recent formulation strategies aimed to achieve additional physiological benefits for targeted population groups (i.e. functional foods).

Content
The course gives inputs on compositional changes in food due to processing (with focus on thermal/chilling, enzymatic, chemical, emerging technologies) or new formulation strategies. Possible evaluation methods for these changes (e.g. nutritional profile) will be addressed.

Lecture notes
There is no script. Powerpoint presentations and relevant scientific articles will be available on-line for students. A selection of recommended readings will be given at the beginning of the course.

Prerequisites / notice
The course is open to Master and MAS students in food and science and nutrition or related. Basic knowledge of food chemistry and nutrition is expected, as well as an understanding of food processing.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-6101-00L</td>
<td>Dietary Etiologies of Chronic Disease</td>
<td>W+</td>
<td>3 credits</td>
<td>2V</td>
<td>M. B. Zimmermann</td>
</tr>
</tbody>
</table>

Abstract
To have the student gain understanding of the links between the diet and the etiology and progression of chronic diseases, including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Objective
To examine and understand the protective effect of foods and food ingredients in the maintenance of health and the prevention of chronic disease, as well as the progression of complications of the chronic diseases.

Content
The course evaluates food and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Lecture notes
There is no script. Powerpoint presentations will be made available on-line to students.

Literature
To be provided by the individual lecturers, at their discretion.

Prerequisites / notice
No compulsory prerequisites, but prior completion of the courses "Introduction to Nutritional Science" and "Advanced Topics in Nutritional Science" is strongly advised.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-6105-00L</td>
<td>Epidemiology and Prevention</td>
<td>W+</td>
<td>3 credits</td>
<td>2V</td>
<td>M. Puhan, R. Heusser</td>
</tr>
</tbody>
</table>

Abstract
The module Epidemiology and prevention describes the process of scientific discovery from the detection of a disease and its causes, to the development and evaluation of preventive and treatment interventions and to improved population health.

Objective
The overall goal of the course is to introduce students to epidemiological thinking and methods, which are critical pillars for medical and public health research. Students will also become aware on how epidemiological facts are used in prevention, practice and politics.

Content
The module Epidemiology and prevention follows an overall framework that describes the course of scientific discovery from the detection of a disease to the development of prevention and treatment interventions and their evaluation in clinical trials and real world settings. We will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples from nutrition, chronic and infectious diseases will be used in order to show the underlying concepts and methods.
Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by applied statistical regression and applied bioinformatics: microbiomes. The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear models.

Methodology Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0625-01L</td>
<td>Applied Analysis of Variance and Experimental Design</td>
<td>W+</td>
<td>5 credits</td>
<td>2V+1U</td>
<td>L. Meier</td>
</tr>
<tr>
<td>401-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>W+</td>
<td>5 credits</td>
<td>2V+1U</td>
<td>M. Dettling</td>
</tr>
<tr>
<td>752-5500-00L</td>
<td>Applied Bioinformatics: Microbiomes</td>
<td>W+</td>
<td>4 credits</td>
<td>2G</td>
<td>N. Bokulich</td>
</tr>
</tbody>
</table>

Abstract
- **Applied Analysis of Variance and Experimental Design**: Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
- **Applied Statistical Regression**: This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.

Objective
- **Applied Analysis of Variance and Experimental Design**: The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.
- **Applied Statistical Regression**: The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.

Content
- **Applied Analysis of Variance and Experimental Design**: The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.
- **Applied Statistical Regression**: The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.

Literature
- **Faraway (2005): Linear Models with R**
- **Fox (2008): Applied Regression Analysis and GLMs**
- **Montgomery et al. (2006): Introduction to Linear Regression Analysis**

Prerequisites / notice
- **401-0625-01L**: The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.
- **401-0649-00L**: The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.
- **752-5500-00L**: The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L “Applied Statistical Regression” and 401-3622-00L “Statistical Modelling” are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.

Prerequisites
- **Domain A - Subject-specific Competencies**: Concepts and Theories
- **Domain B - Method-specific Competencies**: Analytical Competencies
- **Domain C - Social Competencies**: Communication
- **Domain D - Personal Competencies**: Adaptability and Flexibility

Notice
- **Domain A - Subject-specific Competencies**: Techniques and Technologies
- **Domain B - Method-specific Competencies**: Decision-making, Media and Digital Technologies
- **Domain C - Social Competencies**: Leadership and Responsibility, Self-presentation and Social Influence
- **Domain D - Personal Competencies**: Integrity and Work Ethics, Self-awareness and Self-reflection

Assessment
- **Domain A - Subject-specific Competencies**: assessed
- **Domain B - Method-specific Competencies**: assessed
- **Domain C - Social Competencies**: assessed
- **Domain D - Personal Competencies**: assessed

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L “Applied Statistical Regression” and 401-3622-00L “Statistical Modelling” are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.

Objective
- Learn to apply practical bioinformatics/computational skills for analysis of microbiomes in foods and human health! Students will apply basic programming skills for scientific computing and bioinformatics, and learn and discuss the importance of microbiomes to foods and human health, through recognition and comparison of ecological theory, methodology, and experimental design across systems.

Objective
- Learn to apply bioinformatics and computational methods for analysis of microbiome next-generation sequencing data. A secondary goal is to critically examine the relevance of microbiomes to food quality, safety, and human health, through application of theory and appropriate experimental design. Students completing this course will thus be able to both apply appropriate methodology to study microbiomes (or other high-dimensional data) in different systems, as well as evaluate and interpret bioinformatics results.
This lecture requires strong basics in microbiology.

Students will bring and work on their own laptop computers. (students without a laptop should consult with their department’s ISG group).

All software used in the course is free and open-source. Installation instructions will be provided to students prior to the start of the course.

Optional Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-5103-00L</td>
<td>Functional Microorganisms in Foods</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>C. Lacroix, A. Geirnaert, A. Greppi</td>
</tr>
<tr>
<td>752-6301-00L</td>
<td>Nutrition-Related Physiology</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>F. von Meyenn</td>
</tr>
<tr>
<td>752-6403-00L</td>
<td>Nutrition and Performance</td>
<td>W*</td>
<td>2 credits</td>
<td>2V</td>
<td>S. Mettler, M. B. Zimmermann</td>
</tr>
<tr>
<td>752-5111-00L</td>
<td>Gene Technology in Foods</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>F. Constancias, G. Broggi, A. Greppi, F. Orell</td>
</tr>
</tbody>
</table>

The course integrates applications of functional microbes in food processing and products and in the human gut. This will be achieved by a combination of lectures, practical sessions, and projects. Lecturers will provide the slides and required handouts will be available on the ETH website (moodle). Students will be required to complete a Project on a selected current topic relating to functional culture development, application and claims. Project will involve information research and critical assessment to develop an opinion, developed in an oral presentation.

Students will bring and work on their own laptop computers. (students without a laptop should consult with their department’s ISG group).

All software used in the course is free and open-source. Installation instructions will be provided to students prior to the start of the course.

Prerequisites / notice

Students will bring and work on their own laptop computers. (students without a laptop should consult with their department’s ISG group).

All software used in the course is free and open-source. Installation instructions will be provided to students prior to the start of the course.
This course will provide knowledge and biological background on genetically modified organisms (GMO) and food produced with the help of GMO, especially on the molecular basis of GMO constructions with emphasis on genetically modified food in Switzerland and the EU. Criteria of rational food safety and health assessment in agriculture and food consumption will be elaborated.

Overview on application in gene technology, the gene transfer potential of bacteria, plants and other organisms and the mostly used transgenes in food as well as on GMO used for food production and their detection technologies in food; food safety assessment of GMO food; information on the legislation in Switzerland and EU-countries.

Copies of slides from lectures will be provided

Actual publications from literature will be provided

Good knowledge in biology, especially in microbiology and molecular biology are prerequisites. Some contents will be provided by registered students who will present as a group an actual publication.

752-1301-00L Special Topics in Toxicology
W 2 credits 2G K. Hecht, S. Huber

- to stimulate student interest and provide advanced knowledge of current research in Toxicology and its related sciences
- to develop skills in critical evaluation of scientific literature, oral presentation and questioning
- to understand modern experimental techniques and research approaches relevant in Toxicology

The practical course is accompanied by lectures on the basic principles of analytical chemistry that will be made available via Moodle.

Number of participants limited to 15. Permission from lecturers required for all students.

The journal-club style course involves student presentations and active discussion of recent publications. The primary focus is on critical thinking.

The course is open to Masters or PhD level students.

For Masters level participants, a strict prerequisite is (a) previously taken and passed “Introduction to Toxicology” (752-1300) and/or (b) previous courses supporting equivalent knowledge plus permission from the instructor. Please contact the instructor before the start of the class, explaining the basis of your previous knowledge other than the Introduction course, to request special permission.

If you would like to take “Special Topics in Toxicology”, do not register at the same time for “Advanced Topics in Toxicology”. It is only possible to take one, and it is only possible to take the advanced level after completing this course.

766-6205-00L Nutrient Analysis in Foods W 3 credits 3U J. Rigutto

Number of participants limited to 15. Permission from lecturers required for all students.

In this practical course, different meals are prepared and then analysed for nutritional content in the laboratory. The analyses comprise energy, macronutrients and specific micronutrients, as well as polyphenols and phytic acid. Based on these results, the nutritional value of each meal is critically evaluated and discussed.

The objectives of this practical course include learning about and experience with analytical methods to determine macro- and micronutrient content in foods, critical evaluation of analytical results, critical comparison with values from food composition tables, and interpretation in relation to nutritional value of meals.

The practical course Nutrient Analysis in Foods includes meal preparation (a half day between 6 and 10th December 2021, date to be defined) and chemical analysis of five meals from 5 different types of diets (students will work in groups; one meal per group). The content of macronutrients, specific micronutrients and secondary plant components (polyphenols and phytic acid) are analysed using common analytical methods. The analytical results are compared with calculated data from food composition databases using the nutrition software EbisPro and then critically evaluated.

The nutritional values of the meals are discussed, as well as their relation to specific chronic diseases and iron bioavailability. Discussion is facilitated by an oral presentation with colloquium and a written report.

The practical course is accompanied by lectures on the basic principles of analytical chemistry that will be made available via Moodle.

The cooking and laboratory methods will be described in the "script" which will be made available before the start of the course. All lectures will have full notes and a recording made available via Moodle.

There are no prerequisites to attend this course, however, students must be available to attend on all days of the course, as well as for the oral presentation and colloquium. Attendance is compulsory.

Students will work in groups, and will assess one group per meal.

Performance will be assessed by means of:
- A 5-page written report per group (deadline 25.02.2022);
- A written test on course content (via Moodle, completed by 11.02.2022);
- A 15 min oral presentation of laboratory results in a seminar with colloquium (active discussion) on 18.02.2022, afternoon;
- Contribution to laboratory practical work;

Domain A - Subject-specific Competencies
- Concepts and Theories

Domain B - Method-specific Competencies
- Analytical Competencies

Domain D - Personal Competencies
- Critical Thinking

The module Public Health is compulsory for all students in the major Human Health, Nutrition and Environment.

Module

Module Public Health

The module Public Health is compulsory for all students in the major Human Health, Nutrition and Environment.

401-0629-00L Applied Biostatistics

W+ 4 credits 3G M. Tanadini

This course covers the main methods used in Biostatistics. It starts by revising Linear Models (Regression, Anova), then moves to Generalised Linear Models (logistic regression and methods for count data) and finally introduces more advanced topics (Linear Mixed-Effects Models and Generalised Additive Models). The course strongly focuses on applied aspects of data analysis.
Domain A - Subject-specific Competencies

- Concepts and Theories
 - Assessed

Domain B - Method-specific Competencies

- Analytical Competencies
 - Assessed

- Decision-making
 - Assessed

- Problem-solving
 - Not assessed

Domain C - Social Competencies

- Communication
 - Not assessed

- Cooperation and Teamwork
 - Not assessed

Domain D - Personal Competencies

- Creative Thinking
 - Not assessed

- Critical Thinking
 - Assessed

Domain B - Method-specific Competencies

- Assessed

Domain C - Social Competencies

- Not assessed

Domain D - Personal Competencies

- Not assessed

The statistical software R will be used in the exercises. If you are unfamiliar with R, it is highly recommend to view the online R course "etutoR".

Module Infectious Diseases

Number

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1703-00L</td>
<td>Evolutionary Medicine for Infectious Diseases</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>A. Hall</td>
</tr>
</tbody>
</table>

Abstract

This course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively.

Objective

Students will learn to (i) identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses.

Content

We will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes: (i) determinants of pathogen host range and virulence, (ii) dynamics of host-parasite coevolution, (iii) pathogen adaptation to evade or suppress immune responses, (iv) antimicrobial resistance, (v) evolution-proof medicine. For each topic there will be a short (< 20 minutes) introductory lecture, before students independently research the primary literature and develop discussion points and questions, followed by interactive discussion in class.

Literature

The focus is on primary literature, but for some parts the following text books provide good background information:

- Schmid Hempel 2011 Evolutionary Parasitology
- Stearns & Medzhitov 2016 Evolutionary Medicine

Prerequisites / notice

A basic understanding of evolutionary biology, microbiology or parasitology will be advantageous but is not essential.

701-1471-00L

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1471-00L</td>
<td>Ecological Parasitology</td>
<td>W</td>
<td>3</td>
<td>1V+1P</td>
<td>J. Jokela, C. Vorburger</td>
</tr>
</tbody>
</table>

Notice

A minimum of 6 students is required that the course will take place.
Waiting list will be deleted on October 1st, 2021.

Abstract
Course focuses on the ecology and evolution of macroparasites and their hosts. Through lectures and practical work, students learn about diversity and natural history of parasites, adaptations of parasites, ecology of host-parasite interactions, applied parasitology, and human macroparasites in the modern world.

Objective
1. Identify common macroparasites in invertebrates.
2. Understand ecological and evolutionary processes in host-parasite interactions.
3. Conduct parasitological research

Content
Lectures:
1. Diversity and natural history of parasites (i.e. systematic groups and life-cycles).
2. Adaptations of parasites (e.g. evolution of life-cycles, host manipulation).
3. Ecology of host-parasite interactions (e.g. parasite communities, effects of environmental changes).
4. Ecology and evolution of parasitoids and their applications in biocontrol
5. Human macroparasites (schistosomiasis, malaria).

Practical exercises:
1. Examination of parasites in molluscs (identification and examination of host exploitation strategies).
2. Examination of parasites in amphipods (identification and examination of effects on hosts).
3. Examination of parasitoids of aphids.

Prerequisites / notice
The three practicals will take place at the 05.10.2021, the 19.10.2021 and the 09.11.2021 at Eawag Dübendorf from 08:15 - 12:00. Note that each practical takes 2 hours longer than the weekly lecture.

551-0223-00L Immunology III W 4 credits 2V M. Kopf, S. B. Freigang, J. Kisielow, M. Loessner

Abstract
This course provides a detailed understanding of
- development of T and B cells
- the dynamics of a immune response during acute and chronic infection
- mechanisms of immunopathology
- modern vaccination strategies

Objective
Obtain a detailed understanding of
- the development, activation, and differentiation of different types of T cells and their effector mechanisms during immune responses,
- Recognition of pathogenic microorganisms by the host cells and molecular events thereafter,
- events and signals for maturation of naive B cells to antibody producing plasma cells and memory B cells.
- Optimization of B cell responses by intelligent design of new vaccines

Content
- Development and selection of CD4 and CD8 T cells, natural killer T cells (NKT), and regulatory T cells (Treg)
- NK T cells and responses to lipid antigens
- Differentiation, characterization, and function of CD4 T cell subsets such as Th1, Th2, and Th17
- Overview of cytokines and their effector function
- Co-stimulation (signals 1-3)
- Dendritic cells
- Evolution of the "Danger" concept
- Cells expressing Pattern Recognition Receptors and their downstream signals
- T cell function and dysfunction in acute and chronic viral infections

Literature
Documents of the lectures are available for download at: https://moodle-app2.let.ethz.ch/course/view.php?id=2581¬ifyeditingon=1

Prerequisites / notice
Immunology I and II recommended but not compulsory

752-4009-00L Molecular Biology of Foodborne Pathogens W 3 credits 2V M. Loesener, M. Schmelcher, M. Schuupper, E. Wetter Slack

Abstract
The course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.

Objective
Detailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.

Content
- Molecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnostics and antimicrobial intervention.

Lecture notes
Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.

Literature
Recommendations will be given in the first lecture

Prerequisites / notice
Lectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), without break!

701-0263-01L Seminar in Evolutionary Ecology of Infectious Diseases W 3 credits 2G R. R. Regös, S. Bonhoeffer

Abstract
Students of this course will discuss current topics from the field of infectious disease biology. From a list of publications, each student chooses some themes that he/she is going to explain and discuss with all other participants and under supervision. The actual topics will change from year to year corresponding to the progress and new results occurring in the field.

Objective
This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific literature and trace the development of ideas related to understanding the ecological and evolutionary biology of infectious diseases.

Content
A core set of ~10 classic publications encompassing unifying themes in infectious disease ecology and evolution, such as virulence, resistance, metapopulations, networks, and competition will be presented and discussed. Pathogens will include bacteria, viruses and fungi. Hosts will include animals, plants and humans.

Lecture notes
Publications and class notes can be downloaded from a web page announced during the lecture.

Literature
Papers will be assigned and downloaded from a web page announced during the lecture.

Module Nutrition and Health

Number Title Type ECTS Hours Lecturers
Dietary Etiologies of Chronic Disease

Abstract
To have the student gain understanding of the links between the diet and the etiology and progression of chronic diseases, including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Objective
To examine and understand the protective effect of foods and food ingredients in the maintenance of health and the prevention of chronic disease, as well as the progression of complications of the chronic diseases.

Content
The course evaluates food and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Lecture notes
There is no script. Powerpoint presentations will be made available on-line to students.

Literature
To be provided by the individual lecturers, at their discretion.

Prerequisites / notice
No compulsory prerequisites, but prior completion of the courses "Introduction to Nutritional Science" and "Advanced Topics in Nutritional Science" is strongly advised.

Food and Consumer Behaviour

Abstract
This course focuses on food consumer behavior, consumer's decision-making processes and consumer's attitudes towards food products.

Objective
The course provides an overview about the following topics: Factors influencing consumer’s food choice, food and health, attitudes towards new foods and food technologies, labeling and food policy issues.

Functional Microorganisms in Foods

Abstract
This integration course will discuss new applications of functional microbes in food processing and products and in the human gut. Selected topics will be used to illustrate the rapid development but also limits of basic knowledge for applications of functional microorganisms to produce food with high quality and safety, and for health benefits for consumers.

Objective
To understand the principles, roles and mechanisms of microorganisms with metabolite activities of high potential for application in traditional and functional foods, and for benefiting human health. This course will integrate basic knowledge in food microbiology, physiology, biochemistry, and technology.

Content
This course will address selected and current topics targeting functional characterization and new applications of microorganisms in food and for promoting human health. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to different topics:

- Probiotics and Prebiotics: human gut microbiota, functional foods and microbial-based products for gastrointestinal health and functionality, diet-microbiota interactions, molecular mechanisms; challenges for the production and addition of probiotics to foods.
- Protective Cultures and Antimicrobial Metabolites for enhancing food quality and safety: antifungal cultures; bacteriocin-producing cultures (bacteriocins); long path from research to industry in the development of new protective cultures.
- Legal and protection issues related to functional foods
- Industrial biotechnology of flavor and taste development
- Safety of food cultures and probiotics

Lecture notes
Students will be required to complete a Project on a selected current topic relating to functional culture development, application and claims. Project will involve information research and critical assessment to develop an opinion, developed in an oral presentation.

Literature
A list of topics for group projects will be supplied, with key references for each topic.

Prerequisites / notice
This lecture requires strong basics in microbiology.

Module Environment and Health

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1341-00L</td>
<td>Water Resources and Drinking Water</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Hug, M. Berg, F. Hammes, U. von Gunten</td>
</tr>
<tr>
<td>376-1353-00L</td>
<td>Nanostructured Materials Safety</td>
<td>W</td>
<td>2 credits</td>
<td>1V</td>
<td>P. Wick</td>
</tr>
</tbody>
</table>

Term Paper

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1282 of 2152
Abstract

Writing of a review paper of scientific quality on a topic in the domain of Human Health, Nutrition and Environment based on critical evaluation of scientific literature.

Objective

- Acquisition of knowledge in the field of the review paper
- Assessment of original literature as well as synthesis and analysis of the findings
- Practising of academic writing in English
- Giving an oral presentation with discussion on the topic of the review paper

Content

Topics are offered in the domains of the major ‘Human Health, Nutrition and Environment’ covering ‘Public Health’, ‘Infectious Diseases’, ‘Nutrition and Health’ and ‘Environment and Health’.

Lecture notes

Guidelines will be handed out in the beginning.

Literature

Guidelines will be identified based on the topic chosen.

Methodology Subjects

The courses are offered in the spring semester

Minors

Food Biotechnology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-5105-00L</td>
<td>Biotechnology of Alcoholic Beverage Production</td>
<td>W+</td>
<td>2</td>
<td>2V</td>
<td>R. Mira de Orduna Heidinger,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>credits</td>
<td></td>
<td>A. Bühlmann, S. Schönemberg</td>
</tr>
</tbody>
</table>

Abstract

This course introduces fundamental aspects of the production of beer and grape wine.

Objective

The objective of the course is to provide participating students with a sound understanding of the raw materials, microorganisms, microbial and chemical transformations and processing aspects involved in the production of beer and grape wine. Sensory aspects and product stability will also be considered.

Content

>> Introduction of alcoholic beverage production within industrial microbiology
>> Brewing
- Raw materials, and malting
- Brewhouse processes, wort production, fermentations, lagering
- Sensory aspects and diacetyl management
>> Winemaking
- Grapegrowing and grape processing
- Crush and pressing
- Fermentations and microbial transformations
- Fining, stabilizations, filtration and bottling
- Aroma and macromolecule chemistry, climate change
- Sensory aspects and wine faults

Lecture notes

Lecture handouts will be provided either electronically or at the beginning of lectures.

Literature

A list of learning materials will be provided with the lecture handouts.

Prerequisites / notice

Students taking 752-5105-00L require a sound knowledge of basic chemistry, biochemistry, molecular genetics, microbiology and microbial physiology.

In order to decipher the costs of tastings, a financial participation of CHF30 will be required per student.

752-5117-00L Gene Technology in Foods

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-5117-00L</td>
<td>Gene Technology in Foods</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>F. Constancias, G. Broggini,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>credits</td>
<td></td>
<td>A. Greppi, F. Orelli</td>
</tr>
</tbody>
</table>

Abstract

This course will increase basic knowledge on biotechnological constructions and application of genetically modified organisms (GMO) which are used worldwide in food production systems. The course discusses health issues, the legislation frame and food safety aspects of GMO applications in agriculture, food production and consumption in Switzerland and EU-countries.

Objective

This course will provide knowledge and biological background on genetically modified organisms (GMO) and food produced with the help of GMO, especially on the molecular basis of GMO constructions with emphasis on genetically modified food in Switzerland and the EU. Criteria of rationale food safety and health assessment in agriculture and food consumption will be elaborated.

Content

Overview on application in gene technology, the gene transfer potential of bacteria, plants and other organisms and the mostly used transgenes in food as well as on GMO used for food production and their detection technologies in food; food safety assessment of GMO food; information on the legislation in Switzerland and EU-countries

Lecture notes

Copies of slides from lectures will be provided

Literature

Actual publications from literature will be provided

Prerequisites / notice

Some contents will be provided by registered students who will present as a group an actual publication.

752-5103-00L Functional Microorganisms in Foods

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-5103-00L</td>
<td>Functional Microorganisms in Foods</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>C. Lacroix, A. Geirnaert, A. Greppi</td>
</tr>
</tbody>
</table>

Abstract

This integration course will discuss new applications of functional microbes in food processing and products and in the human gut. Selected topics will be used to illustrate the rapid development but also limits of basic knowledge for applications of functional microorganisms to produce food with high quality and safety, and for health benefits for consumers.

Objective

To understand the principles, roles and mechanisms of microorganisms with metabolic activities of high potential for application in traditional and functional foods, and for benefiting human health. This course will integrate basic knowledge in food microbiology, physiology, biochemistry, and technology.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1283 of 2152
This course will address selected and current topics targeting functional characterization and new applications of microorganisms in food and for promoting human health. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to different topics:

- Probiotics and Prebiotics: human gut microbiota, functional foods and microbial-based products for gastrointestinal health and functionality, diet-microbiota interactions, molecular mechanisms; challenges for the production and addition of probiotics to foods.
- Protective Cultures and Antimicrobial Metabolites for enhancing food quality and safety: antifungal cultures; bacteriocin-producing cultures (bacteriocins); long path from research to industry in the development of new protective cultures.
- Legal and protection issues related to functional foods
- Industrial biotechnology of flavor and taste development
- Safety of food cultures and probiotics

Students will be required to complete a Project on a selected current topic relating to functional culture development, application and claims. Project will involve information research and critical assessment to develop an opinion, developed in an oral presentation.

Lecture notes
Copy of the power point slides from lectures will be provided.

Literature
A list of topics for group projects will be supplied, with key references for each topic.

Prerequisites / notice
This lecture requires strong basics in microbiology.

Food Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-1021-00L</td>
<td>Food Enzymology</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>L. Nyström, M. Erzinger</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course covers the fundamentals of food enzymology, application of endogenous and exogenous enzymes in food processing, as well as use of enzymes in analytics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students can describe what enzymes are and can explain their use and functions in food and food products. Students can argue why and how enzymes are used in food processing and analysis. Students execute a research project independently and defend their findings during a presentation to peer students and an expert panel.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Enzymes in foods: the use of added enzymes in food processing, control and/or utilization of endogenous enzymes, production of enzyme preparations for food use, and chemical analysis of food components by enzymatic methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The lectures are supplemented with handouts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Course prerequisites: Food Chemistry I/II and Food Analysis I/II (or equivalent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modern Mass Spectrometry, Hyphenated Methods, and Chemometrics (529-0041-00L)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0041-00L</td>
<td>Modern Mass Spectrometry, Hyphenated Methods, and Chemometrics</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>R. Zenobi, B. Hattendorf, P. Sinués Martinez-Lozano</td>
</tr>
<tr>
<td>Abstract</td>
<td>Modern mass spectrometry, hyphenated analytical methods, speciation, chemometrics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Comprehensive knowledge about the analytical methods introduced in this course and their practical applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Hyphenation of separation with identification methods such as GC-MS, LC-MS, GC-IR, LC-IR, LC-NMR etc.; importance of speciation. Modern mass spectrometry: time-of-flight, orbitrap and ion cyclotron resonance mass spectrometry, ICP-MS. Soft ionization methods, desorption methods, spray methods. Mass spectrometry imaging. Use of statistical and computer-assisted methods for processing analytical data (chemometrics).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes will be made available online.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Information about relevant literature will be available in the lecture & in the lecture notes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Exercises are an integral part of the lecture. Prerequisites: 529-0051-00 "Analytische Chemie I (3. Semester)" 529-0058-00 "Analytische Chemie II (4. Semester)" (or equivalent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Molecular Biology of Foodborne Pathogens (752-4009-00L)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-4009-00L</td>
<td>Molecular Biology of Foodborne Pathogens</td>
<td>W+</td>
<td>3</td>
<td>2V</td>
<td>M. Loesner, M. Schmelcher, M. Schuppler, E. Wetter Slack</td>
</tr>
<tr>
<td>Abstract</td>
<td>Concepts and Theories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Analytical Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Adaptability and Flexibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Integritiy and Work Ethics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Understanding the interplay of in-line measurements of complex food properties in processes, process data handling and data analysis

ECTS: 2 credits
2G

3 credits
Food and Consumer Behaviour

C. Hartmann

Quantitative process analysis and derivation of process-structure functions for complex liquid or semi-liquid food systems with non-S-PRO2 scheme, reverse engineering approach, dimension analysis, Metzner-Otto and Rieger Novack design schemes of stirred reactors

ECTS Recommendations will be given in the first lecture

W. E. J. Windhab

This course focuses on food consumer behavior, consumer's decision-making processes and consumer's attitudes towards food products.

3 credits

Lecturers

The course provides an overview about the following topics: Factors influencing consumer’s food choice, food and health, attitudes towards functional foods and for promoting human health. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to different topics:

- Probiotics and Prebiotics: human gut microbiota, functional foods and microbial-based products for gastrointestinal health and functionality, diet-microbiota interactions, molecular mechanisms; challenges for the production and addition of probiotics to foods.
- Protective Cultures and Antimicrobial Metabolites for enhancing food quality and safety: antifungal cultures; bacteriocin-producing cultures (bacteriocins); long path from research to industry in the development of new protective cultures.
- Legal and protection issues related to functional foods
- Industrial biotechnology of flavor and taste development
- Safety of food cultures and probiotics

Students will be required to complete a Project on a selected current topic relating to functional culture development, application and claims. Project will involve information research and critical assessment to develop an opinion, developed in an oral presentation.

Lecture notes

Copy of the power point slides from lectures will be provided.

Literature

A list of topics for group projects will be supplied, with key references for each topic.

Prerequisites / notice

This lecture requires strong basics in microbiology.

Food Process Design

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-3021-00L</td>
<td>Food Process Design and Optimization</td>
<td>W+</td>
<td>4 credits</td>
<td>2G</td>
<td>E. J. Windhab</td>
</tr>
<tr>
<td>Abstract</td>
<td>S-PRO2 scheme and quantitative understanding of process-structure functions. Process characterisation by dimension analysis. Optimization aspects/criteria for stirring, mixing, dispersing, spraying and extrusion flow processes of multiphase multi-scale structured food systems. Up- and down-scaling and industrial applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Quantitative process analysis and derivation of process-structure functions for complex liquid or semi-liquid food systems with non-Newtonian flow properties. Handling of optimisation and up-down-scaling procedures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>S-PRO2 scheme, reverse engineering approach, dimension analysis, Metzner-Otto and Rieger Novack design schemes of stirred reactors for non-Newtonian fluid processing, mixing/mixing statistics, mixing characteristics, power charac-teristics, dispersing characteristics, dispersing processes in rotor/ stator and membrane devices, spray processing, extrusion processing, diverse case studies for design and scaling of processes for food structure processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>printed handouts (ca. 180)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>List of ca. 30 papers and 5 books given in course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-3023-00L</td>
<td>Process Measurements and Automation</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>E. J. Windhab</td>
</tr>
<tr>
<td>Abstract</td>
<td>Overview on Process Automation, Information Management in processes, process data handling and analysis, In-line measurements of complex food systems, Process control schemes, Overview of sensors and sensor principles, integrated process control case studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding the interplay of in-line measurements of complex food properties in processes, process data handling and data analysis as well as building blocks for process control.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Overview Process Automation, Process Control and process data management, Industrial design of automated/controlled processes, overview on sensors/sensor principles, case studies of in-line measurements and control in/of food production processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Printed script (120 pages, 80 figures), diverse publications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>List of publications and books given in course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Food Sensory Science and Consumer Behaviour

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-2122-00L</td>
<td>Food and Consumer Behaviour</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>M. Siegrist, C. Hartmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course focuses on food consumer behavior, consumer’s decision-making processes and consumer’s attitudes towards food products.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course provides an overview about the following topics: Factors influencing consumer’s food choice, food and health, attitudes towards new foods and food technologies, labeling and food policy issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Public Nutrition and Health
Module: Epidemiology and Prevention

The module Epidemiology and prevention describes the process of scientific discovery from the detection of a disease and its causes, to the development of evaluation of preventive and treatment interventions and to improved population health.

Abstract
The overall goal of the course is to introduce students to epidemiological thinking and methods, which are critical pillars for medical and public health research. Students will also become aware on how epidemiological facts are used in prevention, practice and politics.

Content
The module Epidemiology and prevention follows an overall framework that describes the course of scientific discovery from the detection of a disease to the development of prevention and treatment interventions and their evaluation in clinical trials and real-world settings. We will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples from nutrition, chronic, and infectious diseases will be used in order to show the underlying concepts and methods.

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Analytical Competencies
 - Decision-making
 - Problem-solving
 - Project Management
 - Communication
 - Cooperation and Teamwork
 - Creative Thinking
 - Critical Thinking

Objective
To have the student gain understanding of the links between the diet and the etiology and progression of chronic diseases, including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Content
The course evaluates food and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Lecture notes
There is no script. Powerpoint presentations will be made available on-line to students.

Literature
To be provided by the individual lecturers, at their discretion.

Prerequisites / notice
No compulsory prerequisites, but prior completion of the courses "Introduction to Nutritional Science" and "Advanced Topics in Nutritional Science" is strongly advised.

Safety and Quality in Agri-Food Chain

Module: Food and Consumer Behaviour

This course focuses on food consumer behavior, consumer's decision-making processes and consumer's attitudes towards food products.

Objective
The course provides an overview about the following topics: Factors influencing consumer's food choice, food and health, attitudes towards new foods and food technologies, labeling and food policy issues.

Content
The course gives inputs on compositional changes in food due to processing (with focus on thermal/chilling, enzymatic, chemical, emerging technologies) or new formulation strategies. Possible evaluation methods for these changes (e.g. nutritional profile) will be addressed.

Lecture notes
There is no script. Powerpoint presentations and relevant scientific articles will be available on-line for students. A selection of recommended readings will be given at the beginning of the course.

Prerequisites / notice
The course is open to Master and MAS students in food and science and nutrition or related. Basic knowledge of food chemistry and nutrition is expected, as well as an understanding of food processing.

Module: Nutritional Aspects of Food Composition and Processing

Lecture type course with an interdisciplinary approach for the evaluation of nutritional aspects of changes in food composition due to processing.

Objective
Students should be able to:
- describe and compare the major concepts /criteria used for the evaluation of the nutritional quality of food
- apply these criteria when assessing the effects of selected processing technologies on nutritional quality.
- evaluate recent formulation strategies aimed to achieve additional physiological benefits for targeted population groups (i.e. functional foods).

Content
The course gives inputs on compositional changes in food due to processing (with focus on thermal/chilling, enzymatic, chemical, emerging technologies) or new formulation strategies. Possible evaluation methods for these changes (e.g. nutritional profile) will be addressed.

Lecture notes
There is no script. Powerpoint presentations and relevant scientific articles will be available on-line for students. A selection of recommended readings will be given at the beginning of the course.

Prerequisites / notice
The course is open to Master and MAS students in food and science and nutrition or related. Basic knowledge of food chemistry and nutrition is expected, as well as an understanding of food processing.

Module: Forum: Livestock in the World Food System

This forum is a platform for the critical reflection of relevant topics of livestock in the frame of the world food system comprising issues from basic knowledge to acceptance in society. The exchange is operated by scientific writing and presentation.

Objective
In the Forum "Livestock in the World Food System", a topic of significance for livestock agriculture is selected by the students and subsequently dealt with from various angles (from scientific basis to production systems, environmental aspects and to the acceptance by society). The students learn to present a scientific subject in writing and orally to an audience and to defend the presentation in a discussion.

Content
The Forum “Livestock in the World Food System” will take place in blocks of 2 hours each. Once the general topic has been selected, it comprises two elements:

Element 1. Oral presentation: The students form small groups and are lecturers. There are chair persons (moderators) from outside of these small groups and they also head the discussion. The remaining students and lecturer are the audience.

Element 2. Scientific writing:
1. preparation of a short scientific type of paper from a result table offered by the lecturers
2. writing of a critical review of a chosen topic.

There will be a discussion in small groups at several choosable dates.

Lecture notes
No script

Module: Dietary Etiologies of Chronic Disease

The module Dietary Etiologies of Chronic Disease describes the process of scientific discovery from the detection of a disease and its causes, to the development of evaluation of preventive and treatment interventions and to improved population health.

Objective
To examine and understand the protective effect of foods and food ingredients in the maintenance of health and the prevention of chronic diseases, as well as the progression of complications of the chronic diseases.

Content
The course evaluates food and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Lecture notes
There is no script. Powerpoint presentations will be made available on-line to students.

Literature
To be provided by the individual lecturers, at their discretion.

Prerequisites / notice
No compulsory prerequisites, but prior completion of the courses "Introduction to Nutritional Science" and "Advanced Topics in Nutritional Science" is strongly advised.
Prerequisites / notice
Requirements for allocation of the two credit points:
- Theatre presentation (with handout) at the forum
- Delivery of written documents of sufficient quality
- Active participation during the presentations by the other participants

752-5111-00L Gene Technology in Foods

Abstract
This course will increase basic knowledge on biotechnological constructions and application of genetically modified organisms (GMO) which are used worldwide in food production systems. The course discusses health issues, the legislation frame and food safety aspects of GMO applications in agriculture, food production and consumption in Switzerland and EU-countries.

Objective
This course will provide knowledge and biological background on genetically modified organisms (GMO) and food produced with the help of GMO, especially on the molecular basis of GMO constructions with emphasis on genetically modified food in Switzerland and the EU.

Content
Overview on application in gene technology, the gene transfer potential of bacteria, plants and other organisms and the mostly used transgenes in food as well as GMO used for food production and their detection technologies in food; food safety assessment of GMO food; information on the legislation in Switzerland and EU-countries

Lecture notes
Copies of slides from lectures will be provided

Literature
Actual publications from literature will be provided

Prerequisites / notice
Good knowledge in biology, especially in microbiology and molecular biology are prerequisites.

Some contents will be provided by registered students who will present as a group an actual publication.

751-7310-00L Bioactive Food and Feed Components

Abstract
The course provides students with the basic knowledge to understand the connection between the structure of nutritive and non-nutritive bioactive food and feed components and their effects on the nutrient supply and health of humans and livestock as well as on the quality of animal-derived foods.

Objective
At the end of this course, the students are aware of food and feed as sources of different bioactive compounds. By a comprehensive understanding of the connection between bioavailability, molecular mechanisms and biological effects, they are able to apply their knowledge on beneficial and detrimental effects of bioactive food and feed components in the fields of human and animal nutrition.

Content
The course gives an introduction into different classes of bioactive components present in food and including fatty acids and secondary plant compounds such as carotenoids, polyphenols, phytoestrogens, glucosinolates, protease inhibitors and monoterpenes.

Topics include:
- sources of bioactive food and feed components
- bioavailability and modification in the gastrointestinal tract
- beneficial and detrimental effects
- molecular mechanisms of biological effects
- species differences concerning metabolism and biological effects

Lecture notes
The teaching slides and other materials will be provided during the course.

Literature
Information about books and other references will be communicated during the course.

олод Физика Еда

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-3103-00L</td>
<td>Food Rheology</td>
<td>W+</td>
<td>3 credits</td>
<td>2V</td>
<td>P. A. Fischer</td>
</tr>
</tbody>
</table>

Abstract
Rheology is the science of flow and deformation of matter such as polymers, dispersions (emulsions, foams, suspensions), and colloidal systems. The fluid dynamical basis, measuring techniques (rheometry), and the flow properties of different fluids (Newtonian, non-Newtonian, viscoelastic) are introduced and discussed.

Objective
The course provides an introduction on the link between flow and structural properties of flowing material. Rheometrical techniques and appropriate measuring protocols for the characterization of complex fluids will be discussed. The concept of rheological constitutive equations and the application to different material classes are established.

Content
Lectures will be given on general introduction (4h), fluid dynamics (2h), complex flow behavior (4h), influence of temperature (2h), rheometers (4h), rheological tests (6h) and structure and rheology of complex fluids (4h).

Lecture notes
Notes will be handed out during the lectures.

Literature
Provided in the lecture notes.

Food Toxicology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-1301-00L</td>
<td>Special Topics in Toxicology</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>K. Hecht, S. Huber</td>
</tr>
</tbody>
</table>

Abstract
Journal-club style course involving student presentations and active discussion and critique of recent publications and modern experimental strategies. The focus is on chemical, biochemical, and nutritional aspects of selected topics in Toxicology, with a new group of topics addressed each semester.

Objective
- to stimulate student interest and provide advanced knowledge of current research in Toxicology and its related sciences
- to develop skills in critical evaluation of scientific literature, oral presentation and questioning
- to understand modern experimental techniques and research approaches relevant in toxicology

Content
The journal-club style course involves student presentations and active discussion of recent publications. The primary focus is on chemical, biochemical, and nutritional aspects of selected current topics in Toxicology. Participants are masters or PhD students in Food Sciences and related disciplines (i.e. Chemistry, Biochemistry, Pharmaceutical Sciences, etc.).

Literature
A selection of approximately 20 papers from recent primary scientific literature.
The module Epidemiology and prevention describes the process of scientific discovery from the detection of a disease and its causes, to

Analytical Competencies

A journal-club style course that involves student presentations of selected topics in Toxicology on the basis of current primary research and review papers.

The goals are to stimulate student interest and provide advanced knowledge of current research in the interdisciplinary area of Food and Nutrition Toxicology and its related sciences. The student should develop skills in the critical evaluation of scientific literature, oral presentation and questioning, and understanding modern experimental techniques in Molecular Toxicology.

The journal-club style course involves student presentations of recent publications. The primary focus is on chemical and biochemical aspects of selected topics in Toxicology. Participants are generally masters or PhD students in Food Sciences and related disciplines (i.e. Chemistry, Pharmaceutical Sciences, etc.), and strong knowledge of organic chemistry and biochemistry are prerequisite. Selected course topics change every semester.

Prerequisites / notice

Participants are required to have completed previously "Special Topics in Toxicology" (752-1301-00L). Both courses are run concurrently every semester. It is only possible to register for one course at a time. Do not register for "Advanced Topics in Toxicology" until after you have completed "Special Topics in Toxicology"

Molecular Biology of Foodborne Pathogens

The course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.

Detailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated microbial pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.

Molecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus), how and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnostics and antimicrobial intervention.

Lecture notes

Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.

Prerequisites / notice

Lectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), without break!

Epidemiology and Prevention

The module Epidemiology and prevention describes the process of scientific discovery from the detection of a disease and its causes, to the development and evaluation of preventive and treatment interventions and to improved population health.

The overall goal of the course is to introduce students to epidemiological thinking and methods, which are critical pillars for medical and public health research. Students will also become aware on how microbiological facts are used in prevention, practice and politics.

Domain A - Subject-specific Competencies

- Concepts and Theories: assed
- Analytical Competencies: assessed
- Decision-making: assessed
- Problem-solving: not assessed
- Project Management: not assessed
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed

Domain B - Method-specific Competencies

Domain C - Social Competencies

Domain D - Personal Competencies

The course is open to Masters or PhD level students.

For Masters level participants, a strict prerequisite is (a) previously taken and passed "Introduction to Toxicology" (752-1300) and/or (b) previous courses supporting equivalent knowledge plus permission from the instructor. Please contact the instructor before the start of the course, explaining the basis of your previous knowledge other than the Introduction course, to request special permission.

If you would like to take "Special Topics in Toxicology", do not register at the same time for "Advanced Topics in Toxicology". It is only possible to take one, and it is only possible to take the advanced level after completing this course.

Nanostructured Materials Safety

Fundamentals in nanostructured material - living system interactions focusing on the main exposure routes, lung, gastrointestinal tract, skin and intravenous injection.

Understanding the potential side effects of nanomaterials in a context-specific way, enabling to evaluate nanomaterial safety and provide knowledge to design safer materials.

Handouts provided during the classes and references therein as well as primary literature as case studies will be posted to the course website.

Prerequisites / notice

course "Introduction to Toxicology"

Elettes

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-0005-00L</td>
<td>Colloquium in Food and Nutrition Science</td>
<td>W</td>
<td>1 credit</td>
<td>2K</td>
<td>S. J. Sturla</td>
</tr>
</tbody>
</table>

The objectives are to become familiar with and stimulate interest in leading-edge science related to the research topics of the Institute of Food, Nutrition and Health. Participants attend weekly seminars given by external and internal speakers, and are also required to deliver a presentation on a recent research article inspired by a topic from the semester presentations.
Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-0230-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30</td>
<td>64D</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Only students who fulfill the following criteria are allowed to begin with their master thesis:

- a. successful completion of the bachelor programme;
- b. fulfilling of any additional requirements necessary to gain admission to the master programme;
- c. has acquired at least 30 CPs in the master programme.

The topic of the thesis and - if they are not Professors of D-HEST - the examiner and the co-examiner have to be approved by the D-HEST Department Conference.

Abstract
The Master thesis completes the master programme and is an independent scientific project. Generally, the topic is selected from the specific field of the major. It is supervised by a professor/Privatdozente at D-HEST or D-USYS, Agricultural Sciences.

Objective
The Master Thesis must demonstrate the student's ability to independent, structured and scientific working.

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-1000-AAL</td>
<td>Food Chemistry I</td>
<td>E-</td>
<td>3</td>
<td>6R</td>
<td>L. Nyström</td>
</tr>
</tbody>
</table>

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
To familiarise with the structure, properties and reactivity of food constituents. To understand the relationship between the multiple chemical reactions and the quality of food.

Objective
To familiarise with the structure, properties and reactivity of food constituents. To understand the relationship between the multiple chemical reactions and the quality of food.

Content
Descriptive chemistry of food constituents (proteins, lipids, carbohydrates, plant phenolics, flavour compounds). Reactions which affect the colour, flavour, texture, and the nutritional value of food raw materials and food products during processing, storage and preparation in a positive or in a negative way (e.g. lipid oxidation, Maillard reaction, enzymatic browning). Links to food analysis, food processing, and nutrition.

Lecture notes
The lectures are supplemented with handouts.

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-1101-AAL</td>
<td>Food Analysis I</td>
<td>E-</td>
<td>3</td>
<td>6R</td>
<td>L. Nyström</td>
</tr>
</tbody>
</table>

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
To understand the basic principles of analytical chemistry. To get acquainted with the principles and applications of important routine methods of instrumental food analysis (UV/VIS, IR, AAS, GC, HPLC).

Objective
To understand the basic principles of analytical chemistry. To get acquainted with the principles and applications of important routine methods of instrumental food analysis (UV/VIS, IR, AAS, GC, HPLC).

Content

Methods: Optical spectroscopy (basic principles, UV/VIS, IR, and atomic absorption spectroscopy). Chromatography (GC, HPLC).

Lecture notes
The lectures are supplemented with handouts.

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-3000-AAL</td>
<td>Food Process Engineering I</td>
<td>E-</td>
<td>4</td>
<td>9R</td>
<td>P. A. Fischer</td>
</tr>
</tbody>
</table>

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
To procure students with the basic physics of food process engineering, especially with the mechanical futures of food systems, i.e. basic principles of engineering mechanics, of thermodynamics, fluid dynamics and of dimension analyses for process design and Non-Newtonian fluid mechanics.

Objective

Content

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-6001-AAL</td>
<td>Introduction to Nutritional Science</td>
<td>E-</td>
<td>3</td>
<td>6R</td>
<td>M. B. Zimmermann, C. Wolfrum</td>
</tr>
</tbody>
</table>

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
This course introduces basic concepts of micro- and macronutrient nutrition. Micronutrients studied include fat-soluble and water-soluble vitamins, minerals and trace elements. Macronutrients include proteins, fat and carbohydrates. Special attention is given to nutrient digestion, bioavailability, metabolism and excretion with some focus on energy metabolism.

Objective
To introduce the students to the both macro- and micronutrients in relation to food and metabolism.
Content This is a self-study course. The course is divided into two parts: micronutrients are given by and macronutrients a. The micronutrients include fat-soluble vitamins, water-soluble vitamins, minerals and trace elements. The part on macronutrients introduces basic nutritional aspects of proteins, fats, carbohydrates and energy metabolism.

Lecture notes A reading list will be provided to the students detailing chapters and lecture slides to be studied.

551-0001-AAL General Biology I
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny.

Objective The understanding of basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.

Content The first semester focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34.

Week 1-7 by Alex Widmer, Chapters 12-25
12 Cell biology Mitosis
13 Genetics Sexual life cycles and meiosis
14 Genetics Mendelian genetics
15 Genetics Linkage and chromosomes
20 Genetics Evolution of genomes
21 Evolution How evolution works
22 Evolution Phylogetic reconstructions
23 Evolution Microevolution
24 Evolution Species and speciation
25 Evolution Macroevolution

Week 8-14 by Oliver Martin, Chapters 26-34
26 Diversity of Life Introduction to viruses
27 Diversity of Life Prokaryotes
28 Diversity of Life Origin & evolution of eukaryotes
29 Diversity of Life Nonvascular&seedless vascular plants
30 Diversity of Life Seed plants
31 Diversity of Life Introduction to fungi
32 Diversity of Life Overview of animal diversity
33 Diversity of Life Introduction to invertebrates
34 Diversity of Life Origin & evolution of vertebrates

Prerequisites / notice This is a virtual self-study lecture for non-german speakers of the "Allgemeine Biology I (551-0001-00L) lecture. The exam will be written jointly with the participants of this lecture.

Example exam questions will be discussed during the lectures, and old exam questions are kept by the various student organisations. If necessary, please contact Prof. Uwe Sauer (sauer@ethz.ch) for details regarding the exam.

406-0063-AAL Physics II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract Introduction to the "way of thinking" and the methodology in Physics. The Chapters treated are Magnetism, Refraction and Diffraction of Waves, Elements of Quantum Mechanics with applications to Spectroscopy, Thermodynamics, Phase Transitions, Transport Phenomena.

Objective Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve the latter.

Literature see "Content"

406-0603-AAL Stochastics (Probability and Statistics)
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.

Objective The objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".
Abstract
Self-study course in microbiology.

Objective
Teaching of basic knowledge in microbiology.

Content
This is a self-study course for students with microbiology as an admission requirement. The goal of the course is that students acquire basics in microbiology, including bacterial cell biology, genetics, growth and physiology, metabolism, phylogeny and microbial diversity, and applications of microbiology.

Literature
This self-study course is based on the book 'Brock, Biology of Microorganisms'.

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

E-2 credits
4R
M. Ackermann

Abstract
The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.

Objective
Learning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.

Content
Introduction to principles of models; one-dimensional linear box models; multi-dimensional linear box models; nonlinear box models; models in space and time

Lecture notes
Teaching material: book (see literature).

Literature

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
This lecture is the first part of a one-year course. It offers insights into the fundamentals and applications of Food Microbiology. Contents include basic microbiology of the different bacteria, yeasts and molds present in foods, as well as the occurrence and control of foodborne pathogens and spoilage organisms.

Objective
The lecture offers insights into the fundamentals and applications of Food Microbiology. Contents include basic microbiology of the different bacteria, yeasts, molds and protozoa in foods, as well as the occurrence and control of foodborne pathogens and spoilage organisms. The focus of this first part of the two part lecture (Food Micro II is offered in the FS) will be on the organisms, but also on the factors which determine spoilage and foodborne disease.

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
This is a self-study course for students with microbiology as an admission requirement. The goal of the course is that students acquire basics in microbiology, including bacterial cell biology, genetics, growth and physiology, metabolism, phylogeny and microbial diversity, and applications of microbiology.

Objective
Teaching of basic knowledge in microbiology.

Content
This self-study course is based on the book 'Brock, Biology of Microorganisms'.

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.

Objective
Learning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.

Content
Introduction to principles of models; one-dimensional linear box models; multi-dimensional linear box models; nonlinear box models; models in space and time

Lecture notes
Teaching material: book (see literature).

Literature

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
This lecture is the first part of a one-year course. It offers insights into the fundamentals and applications of Food Microbiology. Contents include basic microbiology of the different bacteria, yeasts and molds present in foods, as well as the occurrence and control of foodborne pathogens and spoilage organisms.

Objective
The lecture offers insights into the fundamentals and applications of Food Microbiology. Contents include basic microbiology of the different bacteria, yeasts, molds and protozoa in foods, as well as the occurrence and control of foodborne pathogens and spoilage organisms. The focus of this first part of the two part lecture (Food Micro II is offered in the FS) will be on the organisms, but also on the factors which determine spoilage and foodborne disease.
Content

1. History of Food Microbiology
 1.1. Short synopsis of foodborne microorganisms
 1.2. Spoilage of Foods
 1.3. Foodborne Disease
 1.4. Food Preservation
 1.5. VIP's of Food Microbiology
2. Overview of Microorganisms in Foods
 2.1. Origin of foodborne Microorganisms
 2.2. Bacteria
 2.3. Yeasts
 2.4. Molds
3. Microbial Spoilage of Foods
 3.1. Intrinsic and Extrinsic Parameters
 3.2. Meats, Seafoods, Eggs
 3.3. Milk and Milk Products
 3.4. Vegetable and Fruit Products
 3.5. Miscellaneous (baked goods, nuts, spices, ready-to-eat products)
 3.6. Drinks and Canned Foods
4. Foodborne Disease
 4.1. Significance and Transmission of Foodborne pathogens
 4.2. Staphylococcus aureus
 4.3. Gram-positive Sporeformers (Bacillus & Clostridium)
 4.4. Listeria monocytogenes
 4.5. Salmonella, Shigella, Escherichia coli
 4.6. Vibrio, Yersinia, Campylobacter
 4.7. Brucella, Mycobacterium
 4.8. Parasites
 4.9. Viruses and Bacteriophages
 4.10. Mycotoxins
 4.11. Bioactive Amines
 4.12. Miscellaneous (Antibiotic-resistant Bacteria, Biofilms)

Lecture notes
Electronic copies of the presentation slides (PDF) and additional material will be made available for download.

<table>
<thead>
<tr>
<th>551-0003-AAL</th>
<th>General Biology I+II</th>
<th>E-</th>
<th>7 credits</th>
<th>13R</th>
<th>U. Sauer, K. Bomblies, O. Y. Martin, A. Widmer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
General Biology I: Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny.

General Biology II: Molecular biology approach to teach the basic principles of biochemistry, cell biology, genetics, evolutionary biology and form and function of vascular plants.

Objective
General Biology I: The understanding of basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.

General Biology II: The understanding basic concepts of biology: the hierarchy of the structural levels of biological organisation, with particular emphasis on the cell and its molecular functions, the fundamentals of metabolism and molecular genetics, as well as form and function of vascular plants.
General Biology I: General Biology I focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34.

Week 1-7 by Alex Widmer, Chapters 12-25
12 Cell biology Mitosis
13 Genetics Sexual life cycles and meiosis
14 Genetics Mendelian genetics
15 Genetics Linkage and chromosomes
20 Genetics Evolution of genomes
21 Evolution How evolution works
22 Evolution Phylogentic reconstructions
23 Evolution Microevolution
24 Evolution Species and speciation
25 Evolution Macroevolution

Week 8-14 by Oliver Martin, Chapters 26-34
26 Diversity of Life Introduction to viruses
27 Diversity of Life Prokaryotes
28 Diversity of Life Origin & evolution of eukaryotes
29 Diversity of Life Nonvascular&seedless vascular plants
30 Diversity of Life Seed plants
31 Diversity of Life Introduction to fungi
32 Diversity of Life Overview of animal diversity
33 Diversity of Life Introduction to invertebrates
34 Diversity of Life Origin & evolution of vertebrates

General Biology II: The structure and function of biomacromolecules; basics of metabolism; tour of the cell; membrane structure and function; basic energetics of cellular processes; respiration, photosynthesis; cell cycle, from gene to protein; structure and growth of vascular plants, resource acquisition and transport, soil and plant nutrition.

Specifically the following Campbell chapters will be covered:
3 Biochemistry Chemistry of water
4 Biochemistry Carbon: the basis of molecular diversity
5 Biochemistry Biological macromolecules and lipids
7 Cell biology Cell structure and function
8 Cell biology Cell membranes
10 Cell biology Respiration: introduction to metabolism
10 Cell biology Cell respiration
11 Cell biology Photosynthetic processes
16 Genetics Nucleic acids and inheritance
17 Genetics Expression of genes
18 Genetics Control of gene expression
19 Genetics DNA Technology
35 Plant structure&function Plant Structure and Growth
36 Plant structure&function Transport in vascular plants
37 Plant structure&function Plant nutrition
38 Plant structure&function Reproduction of flowering plants
39 Plant structure&function Plants signal and behavior

Lecture notes
No script

Literature

Prerequisites / notice
Basic general and organic chemistry

This is a virtual self-study lecture for non-German speakers of the "Allgemeine Biology I (551-0001-00L) and "Allgemeine Biology II (551-0002-00L) lectures. The exam will be written jointly with the participants of this lecture.

752-0100-AAL Biochemistry 2 credits 4R C. Frei

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Basic knowledge of enzymology, in particular the structure, kinetics and chemistry of enzyme-catalysed reaction in vitro and in vivo.

Biochemistry of metabolism: Those completing the course are able to describe and understand fundamental cellular metabolic processes.

Objective
Based on the biology and chemistry courses in the 1. and 2. semester more detailed biochemical knowledge about enzymology, membrane biochemistry, and central metabolism will be presented

Content
Program
Introduction, basics, composition of cells, biochemical units, repetition of relevant organic chemistry
Structure and function of proteins
Carbohydrates, structure of DNA
Lipids an biological membranes
Enzymes and enzyme kinetics
Catalytic strategies
Metabolism: Basic concepts and design. Repetition of basic thermodynamics
Glycolysis
The citric acid cycle
Oxidative phosphorylation
Fatty acid metabolism

Lecture notes
by Laurence A. Moran (Author), Robert A Horton (Author), Gray Scrimgeour (Author), Marc Perry (Author)

Literature
by Laurence A. Moran (Author), Robert A Horton (Author), Gray Scrimgeour (Author), Marc Perry (Author)

Prerequisites / notice
Basic knowledge in biology and chemistry is a precondition.
Physiology and Anatomy II

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Imparts a basic understanding of physiology and anatomy in man, focusing on the close interrelations between morphology and function of the human organism. This is fostered by discussing all subjects from a functional point of view. A major topic of the lecture is food intake and digestion with its correlated endocrine and metabolic processes.

Objective
After this course the students are able to understand basic principles of systems physiology and the mechanisms of the function of the major organ systems.

Food Science Master - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Food Science Master - Key for Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Key for Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Food Science Bachelor
1. Semester
First Year Examinations

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-2001-02L</td>
<td>Chemistry I</td>
<td>O</td>
<td>4</td>
<td>2V+2U</td>
<td>J. Cvengros, J. E. E. Buschmann, P. Funck, E. C. Meister, R. Verel</td>
</tr>
</tbody>
</table>

Abstract
General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium.

Objective
Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.

Content
1. Stoichiometry
 Amount of substance and mass. Composition of chemical compounds. Reaction equation. Ideal gas law.
2. Atoms
 Elementary particles and atoms. Electron configuration of the elements. Periodic system.
4. Basics of chemical thermodynamics
 System and surroundings. Description of state and change of state of chemical systems.
5. First law of thermodynamics
6. Second law of thermodynamics
 Entropy. Change of entropy in chemical systems and universe. Reaction entropy.
7. Gibbs energy and chemical potential.
8. Chemical equilibrium
 Law of mass action. Reaction quotient and equilibrium constant. Phase transition equilibrium.
9. Acids and bases
10. Dissolution and precipitation.
 Heterogeneous equilibrium. Dissolution and solubility product. Carbon dioxide-carbonic acid-carbonate equilibrium.

Lecture notes
Online-Skript mit durchgerechneten Beispielen.

Literature
Weiterführende Literatur:
Catherine Housecroft, Edwin Constable, CHEMISTRY: AN INTRODUCTION TO ORGANIC, INORGANIC AND PHYSICAL CHEMISTRY, 3. Auflage, Prentice Hall, 2005.(englisch)

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competency</th>
<th>Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific</td>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td>Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Competencies</td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptable and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

401-0251-00L Mathematics I

Abstract
This course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.

Objective
Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
1. Single-Variable Calculus:
review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

2. Linear Algebra and Complex Numbers:
systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

3. Ordinary Differential Equations:
separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.

- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0001-00L</td>
<td>General Biology I</td>
<td>3</td>
<td>O. Sauer, O. Y. Martin, A. Widmer</td>
</tr>
</tbody>
</table>

- Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny.
- First in a series of two lectures given over two semesters for students of agricultural and food sciences, as well as of environmental sciences.

<table>
<thead>
<tr>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>The understanding of some basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1-7 by Alex Widmer, Chapters 12-25</td>
</tr>
<tr>
<td>Week 8-14 by Oliver Martin, Chapters 26-34</td>
</tr>
</tbody>
</table>

- Evolution of genomes
- Evolution How evolution works
- Evolution Phylogenetic reconstructions
- Evolution Microevolution
- Evolution Species and speciation
- Evolution Macroevolution

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture notes are available in Moddle. The lecture notes for the next lecture are available no later than Friday morning.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0243-01L</td>
<td>Essentials of Ecology</td>
<td>3</td>
<td>C. Buser Moser</td>
</tr>
</tbody>
</table>

- This introductory lecture in ecology covers basic ecological concepts and the most important levels of complexity in ecological research.
- Ecological concepts are exemplified by using aquatic and terrestrial systems; corresponding methodological approaches are demonstrated.
- Threats to biodiversity and the appropriate management are discussed.

<table>
<thead>
<tr>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>The objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Einfluss von Umweltfaktoren (Temperatur, Strahlung, Wasser, Nährstoffe etc.) auf Organismen; Anpassung an bestimmte Umweltbedingungen</td>
</tr>
<tr>
<td>- Populationsdynamik: Ursachen, Beschreibung, Vorhersage und Regulation</td>
</tr>
<tr>
<td>- Interaktionen zwischen Arten (Konkurrenz, Koexistenz, Prädation, Parasitismus, Nahrungsnetze)</td>
</tr>
<tr>
<td>- Lebensgemeinschaften: Struktur, Stabilität, Sukzession</td>
</tr>
<tr>
<td>- Ökosysteme: Kompartimente, Stoff- und Energieflusse</td>
</tr>
<tr>
<td>- Biodiversität: Variation, Ursachen, Gefährdung und Erhaltung</td>
</tr>
<tr>
<td>- Aktuelle Naturschutzprobleme und -massnahmen</td>
</tr>
<tr>
<td>- Evolutionäre Ökologie: Methodik, Spezialisierung, Koevolution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0027-00L</td>
<td>Environmental Systems I</td>
<td>2</td>
<td>C. Schar, N. Dubois, G. Velicer</td>
</tr>
</tbody>
</table>

- The lecture provides a science-based exploration of environmental aspects from three research fields: earth, climate, and health sciences.
- The students are able to explain important properties of the three environmental systems, to discuss critical drivers, trends and conflicts of their use, and to compare potential solutions.
Content

The lecture discusses the role of the environmental systems based on selected environmental problems, among these the exploration of raw materials and fossil fuels, climate change and its impacts on man and environment, and the spread and control of infectious diseases in the human population and agricultural systems.

Lecture notes

Slides are provided by instructors and are accessible via moodle.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-0013-00L</td>
<td>World Food System</td>
<td>O</td>
<td>4</td>
<td>4V</td>
<td>A. K. Giljen, J. Baumgartner, A. Bearth, R. Finger, M. Loessner, R. Mezzenga, B. Studer</td>
</tr>
</tbody>
</table>

Abstract

Knowledge about the World Food System will be provided, based on case studies along food value chains in countries with various development stages and dependent on multiple boundary conditions. This shall generate profound understanding of the associated global challenges especially food scarcity, suboptimal diet and nutrition, food quality and safety as well as effects on the environment.

Objective

Attending this course, the students will recognize the elements of the World Food System (WFS) approach and the problems it this supposed to treat. They will especially comprehend the four pillars of global food security, namely (I) food availability (including sustainable production and processing), (II) access to food (physical and monetary), (III) food use (including quality and safety as well as the impact on human health and well being) and (IV) resilience to the boundary conditions (environmental, economic and political). This insight will make them aware of the global driving forces behind our ETH research on food security and is expected to alleviate motivation and understanding for the association of subsequent specific courses within a general context. The course equivalently implements agricultural and food sciences, thus supporting the interdisciplinary view on the WFS scope.

Content

Case studies on certain foods of plant and animal origin serve to demonstrate the entire food value chain from the production of raw material to processed food and its consumer relevant property functions. In doing so, important corresponding aspects for developed, emerging and developing countries are demonstrated, by use of engineering as well as natural and social science approaches.

Literature

Handouts and links are provided online.

Lecture notes

Information on books and other literature references is communicated during the course.

Prerequisites /

The course shall particularly elucidate the cross section of Agro- and Food Sciences in the context of important global problems to be solved. Furthermore the students in the first year of studies shall be given some insight and outlook supporting the development of their views and interests in agricultural and food sciences further.

The course is part of the block exam after the first study year. Paper copies can be used ("Open Book") during the on-line exam, but no other means are not allowed. The course is taught in German.

Abstract

This course introduces basic economic concepts and theories. Beginning with microeconomics, the course starts with the topics of supply and demand, markets, and behavioral economics before moving on to the key macroeconomic concepts of national accounts, the labor market, trade, and monetary policy.

Objective

After successful completion of the course you will be able to:

- Describe the basic micro- and macroeconomic problems and theories.
- Introduce economic reasoning appropriately to a given topic.
- Evaluate economic measures.

Content

Households, firms, supply and demand: How are household preferences and consumption patterns formed? How does a household react to price changes? How are goods prices formed? At what prices are companies willing to offer goods? How do we make economic decisions?

Markets: What is "perfect competition" and how does a competitive market work? Are monopolies always a bad thing? How can the state influence the market?

Market failure: What happens when prices give wrong signals?

Labour market: How do supply and demand work in the labour market? What influences unemployment?

National accounts: How big is the Swiss economy?

Foreign trade: Why do countries trade with each other? What are the consequences for the domestic market?

Money and inflation: What exactly is money? How does money creation work and what happens when there is too much (or too little) money on the market?

Students will be asked to apply these concepts to issues in their own field of study and to current issues in society. This goal will be achieved through participation in exercises, class discussions and reading material from current media. By the end of the course, students should be able to apply economic analysis confidently and independently.

Lecture notes

No script available

Literature

Prerequisites / notice

They brauchen keine Vorkenntnisse, um dem Kurs zu folgen.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Analytical Competencies
Decision-making
Problem-solving

Domain B - Method-specific Competencies
Critical Thinking
Self-direction and Self-management

Domain D - Personal Competencies

Additional First Year Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0839-00L</td>
<td>Informatics</td>
<td>O</td>
<td>2</td>
<td>2G</td>
<td>L. E. Fässler, M. Dahinden</td>
</tr>
</tbody>
</table>

Abstract

Students learn to apply selected concepts and tools from computer science for working on interdisciplinary projects. The following topics are covered: modeling and simulations, managing data with lists and tables and with relational databases, introduction to programming.

Objective

The students learn to:
- choose and apply appropriate tools from computer science,
- process and analyze real-world data from their subject of study,
- handle the complexity of real-world data.
1. Modeling and simulations
2. Data management with lists and tables
3. Data management with a relational database
4. Introduction to macro programming
5. Introduction to programming with Python

Lecture notes
All materials for the lecture are available at www.evim.ethz.ch

Prerequisites / notice
This course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available.

751-0801-00L Fundamentals of Microscopy and Plant Biology O 1 credit 1V+2G E. B. Truernit

Abstract

Objective
Capability of preparing biological specimen, microscopy and documentation. Understanding the correlation between plant structure and function at the level of organs, tissues and cells.

Content
Awareness of the link between plant anatomy, systematics, physiology, ecology, and development.

Lecture notes
Handouts

Literature
For further reading (not obligatory):
Gerhard Wanner: Mikroskopisch-Botanisches Praktikum, Georg Thieme Verlag, Stuttgart.

Prerequisites / notice
Groups of a maximum of 30 students.

529-0030-00L Laboratory Course: Elementary Chemical Techniques O 3 credits 6P A. de Mello, F. Jenny, M. H. Schloth

Abstract
This practical course provides an introduction to elementary laboratory techniques. The experiments cover a wide range of techniques, including analytical and synthetic techniques (e.g. investigation of soil and water samples or the preparation of simple compounds). Furthermore, the handling of gaseous substances is practised.

Objective
This course is intended to provide an overview of experimental chemical methods. The handling of chemicals and proper laboratory techniques represent the main learning targets. Furthermore, the description and recording of laboratory processes is an essential part of this course.

Content
The classification and analysis of natural and artificial compounds is a key subject of this course. It provides an introduction to elementary laboratory techniques, and the experiments cover a wide range of analytic and synthetic tasks:
- Selected samples (e.g. soil and water) will be analysed with various methods, such as titrations, spectroscopy or ion chromatography. The chemistry of aqueous solutions (acid-base equilibria and solvitation or precipitation processes) is studied.
- The synthesis of simple inorganic complexes or organic molecules is practised.
- Furthermore, the preparation and handling of environmentally relevant gaseous species like carbon dioxide or nitrogen oxides is a central subject of the Praktikum.

Lecture notes
The script will be published on the web. Details will be provided on the first day of the semester.

Literature
A thorough study of all script materials is requested before the course starts.

Prerequisites / notice
Safety concept: https://chab.ethz.ch/studium/bachelor1.html

3. Semester

Basic Courses II

Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0063-00L</td>
<td>Physics II</td>
<td>O</td>
<td>5 credits</td>
<td>3V+1U</td>
<td>A. Vaterlaus</td>
</tr>
</tbody>
</table>

Abstract
Introduction to the concepts and tools in Physics, with the help of demonstration experiments. The Chapters treated are Electromagnetism, Refraction and Diffraction of Waves, Elements of Quantum Mechanics with applications to Spectroscopy, Thermodynamics, Phase Transitions, Transport Phenomena. Whenever possible, examples relevant to the students’ main field of study are given.

Objective
Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve them.

Lecture notes
A script will be distributed
Literature

- **Friedhelm Kuypers**
 Physik für Ingenieure und Naturwissenschaftler
 Band 2 Elektrizität, Optik, Wellen
 Wiley-VCH, 2012
 ISBN 3527411445, 9783527411443

- **Douglas C. Giancoli**
 Physik
 3. erweiterte Auflage
 Pearson Studium

- **Hans J. Paus**
 Physik in Experimenten und Beispielen
 Carl Hanser Verlag, München, 2002, 1068 S.

- **Paul A. Tipler**
 Physik
 Spektrum Akademischer Verlag, 1998, 1522 S., ca Fr. 120.-

- **David Halliday, Robert Resnick, Jearl Walker**
 Physik
 Wiley-VCH, 2003, 1388 S., Fr. 87.- (bis 31.12.03)
dazu gratis Online Ressourcen (z.B. Simulationen): www.halliday.de

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lectures</th>
<th>Tutorial</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0071-00L</td>
<td>Mathematics III: Systems Analysis</td>
<td>O 4</td>
<td>2V+1U</td>
<td>L. Brunner, R. Knutti, S. Schemm, H. Wernli, P. Zschenderlein</td>
<td></td>
</tr>
</tbody>
</table>

Abstract
The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.

Objective
Learning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance.

Content
https://iac.ethz.ch/edu/courses/bachelor/vorbereitung/systemanalyse.html

Lecture notes
Overhead slides will be made available through the course website.

Literature

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lectures</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-4001-00L</td>
<td>Microbiology</td>
<td>O 2</td>
<td>2V</td>
<td>M. Ackermann, M. Schuppler, J. Vorholt-Zambelli</td>
</tr>
</tbody>
</table>

Abstract
Teaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.

Objective
Teaching of basic knowledge in microbiology.

Content

Lecture notes
Wird von den jeweiligen Dozenten ausgegeben.

Literature
Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lectures</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-0100-00L</td>
<td>Biochemistry</td>
<td>O 2</td>
<td>2V</td>
<td>C. Frei</td>
</tr>
</tbody>
</table>

Abstract
Basic knowledge of enzymology, in particular the structure, kinetics and chemistry of enzyme-catalysed reaction in vitro and in vivo. Biochemistry of metabolism: Those completing the course are able to describe and understand fundamental cellular metabolic processes.

Objective
Students are able to understand
- the structure and function of biological macromolecules
- the kinetic bases of enzyme reactions
- thermodynamic and mechanistic basics of relevant metabolic processes

Content
Introduction, basics, composition of cells, biochemical units, repetition of relevant organic chemistry
Structure and function of proteins
Carbohydrates
Lipids an biological membranes
Enzymes and enzyme kinetics
Catalytic strategies
Metabolism: Basic concepts and design. Repetition of basic thermodynamics
Glycolysis, fermentation
The citric acid cycle
Oxidative phosphorylation
Fatty acid metabolism

Lecture notes
Horton et al. (Pearson) serves as lecture notes.

Prerequisites / notice
Basic knowledge in biology and chemistry is a prerequisite.
Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies not assessed
Decision-making assessed
Media and Digital Technologies not assessed
Problem-solving assessed

Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

ECTS
O
2 credits
2V

A. Biland
Einführung in die Wahrscheinlichkeitsrechnung (Grundregeln, Zufallsvariable, diskrete und stetige Verteilungen, Ausblick auf
2V+1U
A. Bieland

At the end of the course the students understand the basic functions of the organ systems and functionally important morphological
features. One focus of the course is on aspects related to nutrition and overweight including the resulting diseases.

ECTS
O
3 credits
2V

S. J. Sturla
Principles in Food Science

What is Food Science? The course will introduce students to the biological, physical and engineering basis of food and its role for society. It will center around 3 case examples in which students will be introduced to basic concepts integrating several key disciplines of food science. Each example will be comprised of significant active learning content and practice in scientific communication. To

1. Gain an introductory knowledge of the multi-disciplinary topics comprising Food Science.
2. Understand how the multiple disciplines of food science interrelate in an applied context via guided learning of selected examples of foods and human health.
3. Be prepared to make informed decisions about future steps in the food science education and career.
4. Be able to write a well-structured paragraph

ECTS
O
2 credits
4P

A. Biland, A. Müller
Laboratory Course in Physics for Students in Food Sciences

Enrollment is only possible under
https://www.lehrbetrieb.ethz.ch/laborpraktika.
No registration required via myStudies. For further

ECTS
O
7 credits
2V

2 credits
1U

D. Burkakow, D. Peleg-Raibstein

Imparts a basic understanding of physiology and anatomy, focusing on the interrelations between morphology and function of the human organism. This is fostered by discussing all subjects from a functional point of view. One major topic of the lecture is food intake, food taste, and digestion with its correlated neural, endocrine and metabolic processes.

ECTS
O
3 credits
2V

J. Erneaus

The students will learn the basic reaction mechanisms in organic chemistry. They will be able to understand and formulate simple organic reactions.

ECTS
O
2 credits
2V

K. McNeill

Descriptive chemistry of functional groups (alkyl halides, akenes, aromatic systems, carbonyls).

ECTS
O
3 credits
2V

D. Burdakov

Reaction mechanisms (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy).

ECTS
O
2 credits
2V+1U

K. McNeill

Basics of Organic Chemistry.

ECTS
O
4 credits
2V+1U

J. Ernest

Introduction to basic methods and fundamental concepts of statistics and probability theory for practitioners in natural sciences. The concepts will be illustrated with some real data examples and applied using the statistical software R.

ECTS
O
2 credits
2V

D. Burkakow, D. Peleg-Raibstein

Reaction mechanisms in organic chemistry (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy).

ECTS
O
2 credits
2V

K. McNeill

Descriptive chemistry of functional groups (alkyl halides, akenes, aromatic systems, carbonyls).

ECTS
O
2 credits
2V

D. Burdakov

Reaction mechanisms (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution).

ECTS
O
2 credits
2V

K. McNeill

Descriptive chemistry of functional groups (alkyl halides, akenes, aromatic systems, carbonyls).

ECTS
O
2 credits
2V

K. McNeill

Reaction mechanisms in organic chemistry (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy).

ECTS
O
2 credits
2V

K. McNeill

Descriptive chemistry of functional groups (alkyl halides, akenes, aromatic systems, carbonyls).

ECTS
O
2 credits
2V

K. McNeill

Reaction mechanisms in organic chemistry (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy).

ECTS
O
2 credits
2V

K. McNeill

Descriptive chemistry of functional groups (alkyl halides, akenes, aromatic systems, carbonyls).

ECTS
O
2 credits
2V

K. McNeill

Reaction mechanisms in organic chemistry (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy).

ECTS
O
2 credits
2V

K. McNeill

Descriptive chemistry of functional groups (alkyl halides, akenes, aromatic systems, carbonyls).

ECTS
O
2 credits
2V

K. McNeill

Reaction mechanisms in organic chemistry (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy).

ECTS
O
2 credits
2V

K. McNeill

Descriptive chemistry of functional groups (alkyl halides, akenes, aromatic systems, carbonyls).

ECTS
O
2 credits
2V

K. McNeill

Reaction mechanisms in organic chemistry (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy).

ECTS
O
2 credits
2V

K. McNeill

Descriptive chemistry of functional groups (alkyl halides, akenes, aromatic systems, carbonyls).

ECTS
O
2 credits
2V

K. McNeill

Reaction mechanisms in organic chemistry (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy).
The central aim is to provide an individual experience of the physical phenomena and the basic principles of the experiment. By conducting simple physical experiments the student will learn how to properly use physical instruments and how to evaluate the results correctly.

Content
Fehlerrechnung, 9 ausgewählte Versuche zu folgenden Themen:

Die Auswahl der Versuche kann zwischen den verschiedenen Studiengängen variieren.

Lecture notes
Anleitungen zum Physikalischen Praktikum

Prerequisites / notice
Performance of the students in this practical course is controlled by:
1. Attendance of all 7 course days
2. Handing in of written reports to selected experiments (in groups of 2 students)
3. Preparation of a poster to a selected topic of Microbiology (in groups of 4 students)

Participating doctoral students who collect credit points during their thesis are examined in a 30-minute oral exam at the end of the course.

Basics of Food Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-1000-00L</td>
<td>Food Chemistry I</td>
<td>W+</td>
<td>3</td>
<td>2V</td>
<td>L. Nyström, S. Boulos, M. Erzinger</td>
</tr>
</tbody>
</table>

Abstract
To familiarise with the structure, properties and reactivity of food constituents. To understand the relationship between the multiple chemical reactions and the quality of food.

Objective
Recognize chemical structures of the main ingredients and be able to draw them themselves
Being able to recognize functional groups and assess their properties
Understand chemical reactions and be able to estimate their influence on the quality of a food product
Being able to explain the Maillard reaction and lipid oxidation

Content
Descriptive chemistry of food constituents (proteins, lipids, carbohydrates, plant phenolics, flavour compounds).
Reactions which affect the colour, flavour, texture, and the nutritional value of food raw materials and food products during processing, storage and preparation in a positive or in a negative way (e.g. lipid oxidation, Maillard reaction, enzymatic browning).
Links to food analysis, food processing, and nutrition.

Topics:
- Structure, properties, reactivity of food ingredients
- Focus: Main ingredients (carbohydrates, proteins, lipids)
- Influence of chemical reactions on food quality
- Introduction Maillard, lipid oxidation
- Selected (possibly changing) food chemistry topics (e.g. baking, milk, flavor, alcoholic beverages, bioactive substances, etc.)

Lecture notes
The lectures Food Chemistry I and Food Chemistry II constitute a unit.

Literature
The lectures are supplemented with handouts.

5. Semester

Basics of Food Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-5001-00L</td>
<td>Food Biotechnology</td>
<td>W</td>
<td>4</td>
<td>3V</td>
<td>C. Lacroix, F. Constancias, B. Pugin</td>
</tr>
</tbody>
</table>
Objective
The main goal for this course is to provide students with basic information for understanding biotechnology applied to food processing. For the students, the aim will be:
- To understand the important role of microbial physiology and molecular tools for food biotechnology;
- To understand basic principles of fermentation biotechnology, with particular emphasis on metabolism and kinetics for food applications.

Content
Biotechnology has been defined as any technique that uses living organisms, or substances from those organisms, to make or modify a product, to improve plants or animals, or to develop microorganisms for specific uses. In this course, basic knowledge for understanding biotechnology as applied to food processing will be presented. This course builds on the application of principles learned from other basic courses in the Bachelor program, especially microbiology and microbial metabolism, molecular biology, biochemistry, physics and engineering. Students will learn about the physiology of important productive microorganisms (lactic acid bacteria, bifidobacteria, propionibacteria and fungi) used in food fermentations, closely related to applications in biotechnology. Microbial and fermentation kinetics, and design and operation of fermentations and bioreactors used for both research and industrial scale production of traditional foods and modern food ingredients will be presented. This part will be illustrated by examples of food fermentation processes, representative of specific challenges. Finally, the application of modern molecular tools to food biotechnology will be discussed.

Lecture notes
A copy of the power point slides from each lecture will be provided.

Literature
A list of references will be given at the beginning of the course for the different topics presented during the course.

572-6001-00L
Introduction to Nutritional Science

Abstract
This lecture introduces basic concepts of micro- and macronutrient nutrition. Macronutrients studied include fat-soluble and water-soluble vitamins, minerals, and trace elements. Macronutrients include proteins, fat, and carbohydrates. Special attention is given to nutrient digestion, bioavailability, metabolism and excretion with some focus on energy metabolism.

Objective
To introduce the students to the both macro- and micronutrients in relation to food and metabolism.

Content
The course is divided into two parts. The lectures on micronutrients are given by Prof. Zimmermann and the lectures on macronutrients are given by Prof. Wolfrum. Prof. Zimmermann discusses the micronutrients, including fat-soluble vitamins, water-soluble vitamins, minerals and trace elements. Prof. Wolfrum introduces basic nutritional aspects of proteins, fats, carbohydrates and energy metabolism. The nutrients are described in relation to digestion, absorption and metabolism. Special aspects of homeostasis and homeorhesis are emphasized.

752-4005-00L
Food Microbiology I

Abstract
This lecture is the first part of a one-year course. It offers insights into the fundamentals and applications of Food Microbiology. Contents include basic microbiology of the different bacteria, yeasts and molds present in foods, as well as the occurrence and control of foodborne pathogens and spoilage organisms.

Objective
The lecture offers insights into the fundamentals and applications of Food Microbiology. Contents include basic microbiology of the different bacteria, yeasts, molds and protozoa in foods, as well as the occurrence and control of foodborne pathogens and spoilage organisms. The focus of this first part of the two part lecture (Food Micro II is offered in the FS) will be on the organisms, but also on the factors which determine spoilage and foodborne disease.

Content
1. History of Food Microbiology
1.1. Short synopsis of foodborne microorganisms
1.2. Spoilage of Foods
1.3. Foodborne Disease
1.4. Food Preservation
1.5. VIP's of Food Microbiology
2. Overview of Microorganisms in Foods
2.1. Origin of foodborne Microorganisms
2.2. Bacteria
2.3. Yeasts
2.4. Molds
3. Microbial Spoilage of Foods
3.1. Intrinsic and Extrinsic Parameters
3.2. Meats, Seafoods, Eggs
3.3. Milk and Milk Products
3.4. Vegetable and Fruit Products
3.5. Miscellaneous (baked goods, nuts, spices, ready-to-eat products)
3.6. Drinks and Canned Foods
4. Foodborne Disease
4.1. Significance and Transmission of Foodborne pathogens
4.2. Staphylococcus aureus
4.3. Gram-positive Spoopenormers (Bacillus & Clostridium)
4.4. Listeria monocytogenes
4.5. Salmonella, Shigella, Escherichia coli
4.6. Vibrio, Yersinia, Campylobacter
4.7. Brucella, Mycobacterium
4.8. Parasites
4.9. Viruses and Bacteriophages
4.10. Mycotoxins
4.11. Bioactive Amines
4.12. Miscellaneous (Antibiotic-resistant Bacteria, Biofilms)

Lecture notes
Electronic copies of the presentation slides (PDF) and additional material will be made available for download.

Literature
A list of references will be given at the beginning of the course for the different topics presented during the course.

Food Science General Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-0317-00L</td>
<td>Immunology I</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>M. Kopf, A. Oxenius</td>
</tr>
</tbody>
</table>
Domest A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

752-2120-00L Consumer Behaviour I W 2 credits 2V M. Siegrist, A. Bearth, A. Berthold

Objective
Introduction in consumer research. The following aspects will be emphasized in the course: Consumer decision making, individual determinants of consumer behavior, environmental influences on consumer behavior, influencing consumer behavior

752-1003-00L Food Chemistry II W+ 3 credits 2V L. Nyström, S. Boulou, M. Erzinger

Objective
To familiarize with the structure, properties and reactivity of food constituents. To understand the relationship between the multiple chemical reactions and the quality of food.

Content
- Recognize chemical structures of the main ingredients and be able to draw them themselves
- Understand foods as complex systems and be able to make connections between chemical structures, chemical reactions and their influence on quality.
- Recognize chemical reactions of lipid oxidation, Maillard reaction and enzymatic reactions and be able to formulate them themselves.
- Descriptive chemistry of food constituents (proteins, lipids, carbohydrates, plant phenolics, flavour compounds).
- Reactions which affect the colour, flavour, texture, and the nutritional value of food raw materials and food products during processing, storage and preparation in a positive or in a negative way (e.g. lipid oxidation, Maillard reaction, enzymatic browning).
- Links to food analysis, food processing, and nutrition.

Topics:
- Lipid oxidation, Maillard reaction, structural proteins/enzymes
- Food as complex systems
- Chemical reactions and reaction mechanisms
- Selected (possibly changing) food chemistry topics (e.g. sweeteners, polysaccharides, from olive to margarine, etc.)

Lecture notes
The lectures Food Chemistry I and Food Chemistry II constitute a unit.

752-1103-00L Food Analysis II W+ 3 credits 2V T. Gude

Objective
To get acquainted with the principles and applications of mass spectrometry in food analytics.

Content
- Main focus: Mass spectrometry, applications of mass spectrometry (MS).

Lecture notes
The lectures are supplemented with handouts.

752-3001-00L Food Process Engineering II W+ 3 credits 3G E. J. Windhak

Objective
To procure students with the basics of mechanical process engineering with main focus on mechanical unit operations used in the food industry.

Content
- Training in mechanical unit operations and understanding of the related impact on food structure and properties.
- Darstellung von Partikelgrössenverteilungen, Trennen, Zerkleinern, Agglomerieren, Beschreibung von Haufwerken, Haftkräfte, Kapillarröhren, Sedimentation, Fest Flüssig Trennung
- Es werden Übungen durchgeführt

Lecture notes
- Script (ca. 100 pages, 80 figures), Lecturing slides

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1303 of 2152
752-2000-00L | Food Materials Science | W+ | 4 credits | 3G | R. Mezzenga, G. Nyström
Abstract: Principles of soft condensed matter applied to food polymers, surfactants and colloids.
Objective: Understanding the fundamental physical principles ruling the self-assembly, aggregation, processing and structure-properties relationship in food systems constituted by polysaccharides (polymers), proteins (colloids) and lipids (surfactants).

752-6307-00L | Physiology and Anatomy III | W | 3 credits | 2V | D. Burdakov, D. Peleg-Raibstein
Abstract: Imparts an advanced understanding of physiology, focusing on the link between nutrition and function of the mammalian organism. This is fostered by discussing all subjects from a viewpoint of health and disease. A major topic of the lectures is the link between nutrition and brain function, including mental health and neurodegenerative disorders.
Objective: At the end of the course, the students understand the biological and nutritional underpinnings of physiology with specific examples relating to brain functions.
Lecture notes: Handouts for each topic will be made available on Moodle.

752-0300-00L | Scientific Practices in Food Science | W+ | 3 credits | 2V | L. Nyström, P. A. Fischer
Abstract: Only for Food Science BSc.
Objective: Understanding of the scientific approach to literature research, documentation, reporting, and communication of scientific projects and their results.
Content:
- Literature (scientific publishing, sources and their quality), literature research, databases
- Writing scientific reports in German and English
- Practical statistics with examples and exercises
- Create graphics and tables
- Creation of a poster
- Assessment, processing, reduction, and storage of data
- Ethics in research (plagiarism, acknowledgements)
- Other relevant topics
Prerequisites / notice: keine

Food Science Laboratory Practice

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-4007-00L</td>
<td>Experimental Food Microbiology</td>
<td>W+</td>
<td>3</td>
<td>4P</td>
<td>M. Schuppler</td>
</tr>
</tbody>
</table>
Abstract: Number of participants limited to 48.
Registration only after having attended the course Lebensmittel-Mikrobiologie I (752-4005-00L).
Objective: Teaching of basic experimental knowledge for detection and identification of relevant microorganisms in food. Various practical experiments were accompanied by theoretic introductions to the different topics. The students become acquainted with state-of-the-art methods with main focus on modern molecular techniques for the rapid detection of foodborne pathogens.
Content: Grundtechniken für die mikrobiologische Untersuchung von Lebensmitteln, Qualitätssicherung, Anwendung von antimikrobiellen Wirkstoffen, Nachweismethoden für die wichtigsten pathogenen Keime aus Lebensmitteln und einzelnen Keimen aus fermentierten oder probiotischen Lebensmitteln mit klassischen Methoden (u. a. Anreicherungssysteme, ELISA, Enzymsysteme) und Methoden der Molekularbiologie (PCR, Hybridisierung, in-situ-Nachweis), Durchführung von Gentransfermethoden mit Mikroorganismen (Konjugation, Transformation) und Bakteriophagen in Lebensmitteln
Lecture notes: Wird am Praktikumsanfang abgegeben.
Literature:
- Krämer: "Lebensmittel-Mikrobiologie" (Ulmer; UTB)
- Süssmuth et al.: "Mikrobiologisch-Biochemisches Praktikum" (Thieme)
Prerequisites / notice: During the course we will work with the food-borne pathogen Listeria monocytogenes. Listeria monocytogenes represents a particular threat in case of pregnancy. Due to biosecurity reasons participation is not allowed in case of pregnancy.

752-2002-00L | Food Technology Laboratory Course | W | 2 | 4P | H. Adelmann |
Abstract: "Food Technology".
Objective: Practical laboratory work on pilot plant scale on important processes for selected foods from the raw material to the final product. Evaluation of food quality.
Content: This practical course contains different experimental blocks:
- Production of sterile canned goods, determination of sterilization conditions (obligation for all studying)
- Production of long paste goods (humidification, drying process and Characteristic)
- Production and processing of meat-loaf (employment of nitrite salts and their effect)
- Production of potato flakes (Characteristic of the ingredients among other things content of strength and drying process)
- Production of Tofu (from the soy bean to finished Tofu)
- Hot extruding of corn semolina
- Characteristic of wheat flour and production of bread (paste preparing/computations and various analyses)
Lecture notes: All information and the program will be sent to enrolled students prior to the start of the laboratory course by e-mail. The scripts for this course on the page of the course catalogue in learning materials are available online and can be viewed after login.
Literature: References are given in the manuscript.
Prerequisites / notice: Prerequisite is the participation in the course 752-2001-00L Food Technology.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-1221-00L</td>
<td>Biological and Bio-Inspired Materials</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>A. R. Studart, I. Burgert, R. Nicolesi Libanori, G. Panzarasa</td>
</tr>
<tr>
<td></td>
<td>Students that already enrolled in this course during their Bachelor's degree studies are not allowed to enrol again in their Master's.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The aim of this course is to impart knowledge on the underlying principles governing the design of biological materials and on strategies to fabricate synthetic model systems whose structural organization resembles those of natural materials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course mainly based on the books listed below. Additional references will be provided during the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-1100-00L</td>
<td>Fragrance Chemistry</td>
<td>W</td>
<td>1</td>
<td>1V</td>
<td>Safety conceptt: https://chab.ethz.ch/studium/bachelor1.html</td>
</tr>
<tr>
<td></td>
<td>The course does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The lecture provides a journey into the molecular world of scents from the chemical secrets behind Chanel N°5 to structure-odor relationships, industrial processes, and total synthesis of terpenoids. Each subunit is centered on one odorant family and highlights a certain class of chemical reactions, illustrated by prominent perfumery examples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After completion of this lecture module the students know all the major perfumery materials of the important odor families with their academic and industrial usages, their olfactory properties, their usage, their historic perspective, and today's economic importance. The students can explain the significance of important building blocks and industrial transformations, and can estimate how attractive chemical processes are on large scale. They can retrosynthetically plan academic and industrial syntheses of fragrant compounds and terpenoids, and the acquired knowledge on structure-odor relationships enables them to predict and design new odorants. The students can approximate the conformational space of odorants and especially macrocycles on the basis of simple rules, and know how olfactophore models are used. The students understand and can explain the molecular mechanism of smell, the biosynthesis of terpenes, and the basics of perfumery composition. The latter enables them to further their education in perfumery at specialized Universities such as the ISIPCA in Versailles; yet, the student also knows about the links of Fragrance Chemistry with Pharmaceutical Chemistry and the Specialty Chemicals business in general.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course is mainly based on the books listed below. Additional references will be provided during the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535-0230-00L</td>
<td>Medicinal Chemistry I</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>J. Hall</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The lectures give an overview of selected drugs and the molecular mechanisms underlying their therapeutic effects in disease. The historical and modern-day methods by which these drugs were discovered and developed are described. Structure-function relationships and the biological processes underlying ligand-target interactions will be discussed and illustrated with examples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molecular mechanisms of action of drugs. Structure function and biophysical basis of ligand-target interactions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Will be provided in parts before each individual lecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice Safety conceptt: https://chab.ethz.ch/studium/bachelor1.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0626-01L</td>
<td>International Aid and Development</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>K. Hartgern, I. Günther</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course gives economic and empirical foundations for a sound understanding of the instruments, prospects and limitations of international development aid.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students have a theoretically and empirically sound understanding of the prospects and limitations of international development aid. Students are able to critically discuss the various aid instruments of bi- and multilateral donors and NGOs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Includes an introduction to the determinants of underdevelopment; history of aid; aid and development; theories and empirics; political economy of aid; experience and impact of aid; new instruments of aid; e.g. micro-finance, budget-support, fair-trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature Articles and book abstracts will be uploaded to a course website.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>363-1027-00L</td>
<td>Introduction to Health Economics and Policy</td>
<td>W</td>
<td>2</td>
<td>1V</td>
<td>C. Waibel</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course gives economic and empirical foundations for a sound understanding of the instruments, prospects and limitations of international development aid.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students have a theoretically and empirically sound understanding of the prospects and limitations of international development aid. Students are able to critically discuss the various aid instruments of bi- and multilateral donors and NGOs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Includes an introduction to the determinants of underdevelopment; history of aid; aid and development; theories and empirics; political economy of aid; experience and impact of aid; new instruments of aid; e.g. micro-finance, budget-support, fair-trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature Articles and book abstracts will be uploaded to a course website.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract
Health expenditures constitute about 10% of GDP in OECD countries. Extensive government intervention is a typical feature in health markets. Risk factors to health have been changing with growing importance of lifestyle factors such as smoking, obesity and lack of physical activity. This course gives an introduction to the economic concepts and empirical findings in health economics.

Objective
Introduce students without prior economic background to the main concepts of health economics and policy to enhance students understanding of how health care institutions and markets function.

Please note that we will apply basic economic concepts to health care markets. Hence, master students with an economic background have to expect that a large share of the concepts will overlap with their previous courses. However, they are, of course, welcome to join the course.

Content
The course gives an introduction to the economic concepts and empirical findings in health economics to enhance students understanding of how health care institutions and markets function. Motivated by the fact that health care markets are designed differently across countries, this course looks at the challenges in regulating health care markets. First, two important decisions of individuals will be analyzed: What types and amount of personal health care services does an individual demand? How much will health insurance coverage be purchased? In the second part, the supply side of health care markets will be discussed. What are the financial incentives of physicians, and how do these influence physicians’ treatment choices? What does it mean and imply that a physician is an agent for a patient? The choices made by societies about how health care services are financed and about the types of organizations that supply health care will be addressed in the third part. One important choice is whether a country will rely on public financing of personal health care services or encourage private health insurance markets. How could and should a public health insurance system be designed? The advantages and disadvantages of the alternatives will be discussed to provide a framework for analyzing specific types of health care systems.

Literature

Prerequisites / notice
Although we apply basic economic concepts to health care questions, students should be aware that this course requires some mathematical skills in terms of maximization problems.

Please be prepared that this course might (partially) be run via zoom, depending on the situation.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>W</th>
<th>Credits</th>
<th>V</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>860-0023-00L</td>
<td>International Environmental Politics</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>T. Bernauer</td>
</tr>
</tbody>
</table>

Abstract
This course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

Objective
The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.
Content
This course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:
1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

Assigned reading materials and slides will be available via Moodle.

This course will take place fully online. Course units have three components:
1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Lecture Time</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0735-10L</td>
<td>Business Law</td>
<td>2</td>
<td>2V</td>
<td>P. Peyrot</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particularly suitable for students of D-ITET, D-MAVT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The students shall obtain a basic knowledge about business law. They shall be able to recognize and evaluate issues in the area of business law and suggest possible solutions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students shall obtain the following competence:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They shall obtain a working knowledge on the legal aspects involved in setting up and managing an enterprise.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They shall be acquainted with corporate functions as contracting, negotiation, claims management and dispute resolution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They shall be familiar with the issues of corporate compliance, i.e., the systems to ascertain that all legal and ethical rules are observed,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They shall be able to contribute to the legal management of the company and to discuss legal issues.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- They shall have an understanding of the law as a part of the corporate strategy and as a valuable resource of the company.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>A comprehensive script will be made available online such as Moodle platform.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-0515-00L</td>
<td>Project Management</td>
<td>2</td>
<td>2G</td>
<td>C. G. C. Marxt</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course gives a detailed introduction on various aspects of professional project management out of theory and practice. Established concepts and methods for project organization, planning, execution and evaluation are introduced and major challenges discussed. The course includes an introduction on specialized project management software as well as agile project management concepts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Projects are not only the base of work in modern enterprises but also the primary type of cooperation with customers. Students of ETH will often work in or manage projects in the course of their career. Good project management knowledge is not only a guarantee for individual, but also for company wide success.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The goal of this course is to give a detailed introduction into project management. The students should learn to plan and execute a project.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project planning (aims, appointments, capacities, efforts and costs), project organization, scheduling and risk analysis, project execution, supervision and control, project evaluation, termination and documentation, conflict management, multinational project management, IT support as well as agile project management methods such as SCRUM.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>No. The lecture slides and other additional material will be available for download from Moodle a week before each class.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0757-00L</td>
<td>Environmental Management</td>
<td>2</td>
<td>2G</td>
<td>R. Züst</td>
</tr>
<tr>
<td>Abstract</td>
<td>An environmental management system has the objective to continuously improve the environmental performance of the activities, products and services of a company. The company has to introduce different management procedures. The goal of this lecture is to provide basics and specific procedure to implement the environmental dimension in the planning and decision making processes of an organisation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Overview on environmental management and environmental management systems, general methods and principles.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Introduction to environmental management / environmental management systems, energy and material flows; economical and ecological problems in industry; characterisation of an enterprise (incl. management handbook); structure and contents of an environmental management system; overview on the ISO 14001 ff. series; methods for environmental evaluation and assessment; integrated management systems; planning methodology and life-cycle-design design; planning exampl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Participants of the course Research Ethics will assessed

Creative Thinking assessed

Strategic Supply Chain Management assessed

Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course notice.

Delivery of a case study, worked out in groups. Language: Teaching in English on request.

851-0180-00L Research Ethics m W 2 credits 2G G. Achermann, P. Emch

Number of participants limited to 40

Particularly suitable for students of D-BIOL, D-CHAB, D-HEST

Abstract

Students are able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different normative perspectives and to create their own well-justified reasoning for taking decisions to the kind of ethical problems a scientist is likely to encounter during the different phases of biomedical research.

Objective

Participants of the course Research Ethics will assessed

• Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
• Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles); and their ability to use these skills in assessing other people’s arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;

Content

I. Introduction to Moral Reasoning

1. Ethics - the basics
1.1 What ethics is not... 1.2 Recognising an ethical issue (awareness) 1.3 What is ethics? Personal, cultural and ethical values, principles and norms 1.4 Ethics: a classification 1.5 Research Ethics: what is it and why is it important?

2. Normative Ethics

2.1 What is normative ethics? 2.2 Types of normative theories – three different ways of thinking about ethics: Virtue theories, duty-based theories, consequentialist theories 2.3 The plurality of normative theories (moral pluralism); 2.4 Roles of normative theories in “Research Ethics”

3. Decision making: How to solve a moral dilemma

3.1 How (not) to approach ethical issues 3.2 What is a moral dilemma? Is there a correct method for answering moral questions? 3.3 Methods of making ethical decisions 3.4 Is there a “right” answer?

II. Research Ethics - Internal responsibilities

1. Integrity in research and research misconduct

1.1 What is research integrity and why is it important? 1.2 What is research misconduct? 1.3 Questionable/Detrimental Research Practice (QRP/DRP) 1.4 What is the incidence of misconduct? 1.5 What are the factors that lead to misconduct? 1.6 Responding to research wrongdoing 1.7 The process of dealing with misconduct 1.8 Approaches to misconduct prevention and for promoting integrity in research

2. Data Management

2.1 Data collection and recordkeeping 2.2 Analysis and selection of data 2.3 The (mis)representation of data 2.4 Ownership of data 2.5 Retention of data 2.6 Sharing of data (open research data) 2.7 The ethics of big data

3. Publication ethics / Responsible publishing

3.1 Background 3.2 Criteria for being an author 3.3 Ordering of authors 3.4 Publication practices

III. Research Ethics – External responsibilities

1. Research involving human subjects

1.1 History of research with human subjects 1.2 Basic ethical principles – The Belmont Report 1.3 Requirements to make clinical research ethical 1.4 Social value and scientific validity 1.5 Selection of study participants – the concept of vulnerability 1.6 Favourable risk-benefit ratio 1.7 Independent review - Ethics Committees 1.8 Independent consent 1.9 Respect for potential and enrolled participants

2. Social responsibility

2.1 What is social responsibility? a) Social responsibility of the individual scientist b) Social responsibility of the scientific community as a whole; 2.2 Participation in public discussions: a) Debate & Dialogue b) Communicating risks & uncertainties c) Science and the media 2.3 Public advocacy (policy making)

3. Dual use research

3.1 Introduction to Dual use research 3.2 Case study – Censuring science? 3.3 Transmission studies for avian flu (H5N1) 3.4 Synthetic biology

Lecture notes

Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.

Prerequisites / notice

What are the requirements?

First and foremost your strong willingness to seriously achieve the main learning outcomes as indicated in the Course Catalogue (specific learning outcomes for each module will be provided at the beginning of the course). For successfully completing the course Research Ethics, the following commitment is absolutely necessary (but not sufficient) observed success factors for many years!:

1. Your regular presence is absolutely required (so please no double, parallel enrollment for courses taking place at the identical time!) connected with your active participation during class, e.g. taking notes, contributing to discussions (in group as well as in plenary class), solving exercises.

2. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more…).

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed

Decision-making assessed

Problem-solving assessed

Domain C - Social Competencies

Communication assessed

Cooperation and Teamwork assessed

Domain D - Personal Competencies

Creative Thinking assessed

Critical Thinking assessed

Integrity and Work Ethics assessed

Self-awareness and Self-reflection assessed

363-0453-00L Strategic Supply Chain Management W 3 credits 2G S. Wagner

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1308 of 2152
The course offers an introduction to the theory and practice of supply chain management. Students will learn to develop supply chain strategies and supply chain networks based on firms competitive strategies and marketing priorities.

After completing this course:
1. Students can explain the importance of supply chain management for a firm’s strategy and success
2. Students are able to apply the tools and methods used to optimize a supply chain structure
3. Students can differentiate supply chain designs and their applicability in specific company and sector settings
4. Students can describe and evaluate fundamental logistics and supply chain concepts
5. Students are able to explain elements of a supply chain structure and their importance for supply chain strategy
6. Students are familiar with current developments and trends in supply chain practices

Modern supply chains are not only essential to ensure functioning logistics but also help firms develop and maintain competitive advantage in globalized (supply) markets with numerous partners and competitors. While taking into account future opportunities and risks, effective supply chains ought to be aligned with and support the achievement of the firm’s corporate, business and product strategies. This course will familiarize students with modern supply chain management theory and practice to develop and manage supply chains.

Starting with the corporate strategy, firms align their supply chain strategy. They have to manage trade-offs, such as efficiency and responsiveness. Understanding a supply chain’s role within a firm and the implications of supply chain strategies for firm performance are the foundations of the course. Building on the foundations, students get familiarized with the development of a supportive supply chain structure. This structure is in its core made up by logistical elements, such as facilities, inventory management and transportation. At the same time, supply chain management is inevitably cross-functional. As such, information and information infrastructure, sourcing decisions and pricing are further drivers to define a supply chain structure. Students will learn important elements in supply chain structure, including for example forecasting methods and network design modeling and optimization. Case study assignments and practical exercises within lectures allow students to gain hands-on experience and enhance their knowledge.

The wide range of topics involved in supply chain management makes the field very open to innovation and further development. In the course of the lecture, students have the chance to learn and discuss both overall trends and practical insights on development. The course furthermore encourages student involvement within lectures, in exchange with peers and with guest speakers. Case study assignments and tools for self-assessment help students to learn actively and continuously throughout the course.

The following textbook is supplementary:

The following textbook is recommended:

Case study assignments make up 30% of the final grade. Details on submission and grading are provided within the course and on “Performance Assessment”. The maximum grade can only be achieved if both the exam is taken and all case studies are submitted.

Students should install MS Excel and the Excel Solver before class, as it is used for within-class exercises. Students without the program and add-in installed may nevertheless participate within groups during the exercises.
The procedure for accumulating CP will be explained at the start of term. We expect participants to engage in and contribute to discussions for keeping the course interesting and lively.

376-1581-00L Cancer: Fundamentals, Origin and Therapy

Abstract

Objective
Students are able to describe selected chemicals, biological and molecular processes that occur in cells spontaneously or after physical or chemical exposure and resulting in a tumor. They are able to list important cancer-inducing agents and explain the respective mechanism of action. They have knowledge of significant risk factors for cancer diseases. They are confronted with the basics of toxicology and they can explain the principle of the most common therapeutic strategies.

Content
The lecture deals with problems of tumor epidemiology (causes, mortality, incidence). Cancer is delineated as a multi-step process. Classes of chemical compounds that induce cancer are discussed as well as the reactive metabolites that may be built from. Covalent binding to DNA is discussed and different types of mutations resulting therof. A selection of proto-oncogenes and tumor suppressor genes is presented. Their function will be discussed as well as the changes which are found in these genes in tumor cells, starting from single nucleotide exchanges up to large deletions. The reason for genetic predisposition to cancer will be discussed as well as cancer relevant aspects of cell cycle regulation. The role of tumor microenvironments and phenomenons like angiogenesis and metastasis are presented as well as the mechanisms that protect the genome from mutagenic damage. Further subjects address old and new strategies of cancer treatment. Personalised cancer treatment.

Lecture notes
Handouts with reproductions of all presented transparencies will be distributed.

Literature

Prerequisites / notice
The lecture requires an active participation of the students. All students will participate in individual or group work focussing on specific subject of the lecture. Students will have ample time for preparation during lecture time.

Bachelor's Thesis

Number
752-0220-20L

Title
Bachelor's Thesis

Type

<table>
<thead>
<tr>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>15</td>
<td>32D</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Abstract
The Bachelor Thesis completes the Bachelor programme and consists of a scientific project carried out independently under the tutorship of a lecturer at D-HEST.

Objective
The Bachelor Thesis aims at fostering the student's ability to independent, structured and scientific working and at deepening their knowledge in a specific field.

Food Science Bachelor - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship. In particular, the aims of the course are to:

1. broaden understanding of management principles and frameworks
2. advance insights into the sources of corporate and entrepreneurial success
3. develop skills to apply this knowledge to real-life managerial problems

The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / or appreciate the challenges that entrepreneurs and managers deal with.

The course consists of a set of theory and practice sessions, which will be taught on a weekly basis. The course will cover business management knowledge in corporate as well as entrepreneurial contexts.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.

The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam. All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle.

These course materials will form the point of departure for the lectures, class discussions and team work.

The course consists of a set of theory and practice sessions, presented by a set of area specialists at D-MTEC. These course materials will form the point of departure for the lectures, class discussions and team work.

Students following this course should also be enrolled for course 351-0778-00L, "Discovering Management". The course offers an additional exercise.

Discovering Management (Exercises) thus focuses on developing the skills and competences to apply management theory to a real-life exercise from practice.

Students who are enrolled for "Discovering Management Exercises" are asked to write an essay about a particular management issue of choice, using your insights from Discovering Management (Exercises). The course can be complemented with Discovering Open- and User Innovation (351-0555-00L), "Discovering Management Exercises".

To facilitate this, students at all levels not belonging to D-MTEC. This course can be complemented with Discovering Open- and User Innovation (351-0555-00L). Prerequisite: Participation and successful completion of the module Discovering Management (351-0778-00L) is mandatory.

This course is offered complementary to the basis course 351-0778-00L, "Discovering Management". The course offers an additional exercise.

The general objective of Discovering Management (Exercises) is to complement the course "Discovering Management" with one larger additional exercise.

Discovering Management (Exercises) thus focuses on developing the skills and competences to apply management theory to a real-life exercise from practice.

Students have the option to either write this alone or in a group of two students.

All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle.

Students following this course should also be enrolled for course 351-0778-00L, "Discovering Management".

The course introduces the students to the long-standing tradition of actively involving users of technology and other knowledge-intensive products in the development and production process, and through own cases they develop an entrepreneurial understanding of product development under distributed, user-centered, or open innovation strategies.
Objective

The course includes both lectures and exercises alternately. The goal is to understand the opportunity of user innovation for management and develop strategies to harness the value of user-developed ideas and contributions for firms and other organizations. The students actively participate in discussions during the lectures and contribute presentations of case studies during the exercises. The combination should allow to compare theory with practical cases from various industries. The course presents and builds upon recent research and challenges the students to devise innovation strategies that take into account the availability of user expertise, free and public knowledge, and the interaction with communities that span beyond one organization.

Performance assessment will be: a written group essay based on the open/user innovation case that participants will research and present during the block seminar (including the slides). Each group will have to hand in a 15-20 page essay, details on the required format and the content will be distributed during the course. Activelass participation is required.

Content

This course on user innovation extends courses on knowledge management and innovation as well as marketing. The students are introduced to the long-standing tradition of actively involving users of technology and other knowledge-intensive products in the development and production process, and through own cases they develop an entrepreneurial understanding of product development under distributed, user-centered, or open innovation strategies. Theoretical underpinnings taught in the course include models of innovation, the structuration of technology, and an introduction to entrepreneurship.

Lecture notes

The slides of the lectures are made available and updated continuously through the SMI website:

Literature

Relevant literature for the exam includes the slides and the reading assignments. The corresponding papers are either available from the author online or distributed during class.

Reading assignments: please consult the SMI website:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0511-00L</td>
<td>Managerial Economics</td>
<td>Z 4 credits</td>
<td>3V</td>
</tr>
<tr>
<td></td>
<td>Not for MSc students belonging to D-MTEC!</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. Köthenbürger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

“Managerial Economics” provides an introduction to the theories and methods from Economics and Management Science to analyze economic decision-making in the context of markets. The course targets students with no prior knowledge in Economics and Management.

Objective

The objective of this course is to provide an introduction to microeconomic thinking. Based on the fundamental principles of economic analysis (optimization and equilibrium), the focus lies on understanding key economic concepts relevant for understanding and analyzing economic behavior of firms and consumers in the context of markets. Market demand and supply are derived from the individual decision-making of economic agents and market outcomes under different assumptions about the market structure and market power (perfect competition, monopoly, oligopoly, game theory) are studied. This introductory course aims at providing essential knowledge from the fields of Economics and Management relevant for economic decision-making in the context of both the private and public sector.

Literature

Prerequisites / notice

The course targets both Bachelor and Master students. No prior knowledge in the areas of Economics and Management is required.

Management, Technology and Economics (General Courses) - Key for Type

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Core Courses

General Management and Human Resource Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0341-00L</td>
<td>Introduction to Management</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>Z. Zagorac-Uremovic, J. O'Neil</td>
</tr>
</tbody>
</table>

Abstract

This course is an introduction to the critical management skills involved in planning, organizing, leading and controlling an organization. By the end of this course, students understand management as a set of skills, processes, tools and methods that enable organizations to achieve their goals and to coordinate routine operations in order to meet evolving customers’ and societal needs. The students will achieve these goals by being able to:
- Analyze organizations as open systems, and describe their critical elements,
- Apply conceptual tools and methods that help to analyze or approach the critical elements,
- Compare different notions of organizational performance, and explain why they matter,
- Discuss the relationships that connect the critical elements of an organization on the basis of real cases,
- Explain how change, internally or externally initiated, impact such relationships

Content

This course is an introduction to critical management skills involved in planning, organizing, leading and controlling an organization. This course follows a 'systemic' view of organizations and adopts the congruence model as a framework to analyze the critical, interconnected elements of organizations: Input (i.e., from external environment), strategy, people, work, formal and informal structure of the organization, and its outputs. In this course we will introduce these critical elements and learn how managers can analyze and approach these elements through a series of lectures. They introduce you to a series of critical thinking exercises and build a foundation for your group work. In the 2nd half of the semester, students work in teams on sustainability challenges related to water, energy, mobility, and food.

Lecture notes

The content of the course will rely on different readings, cases and selected chapters of following book:

Selected readings from the book and additional learning materials will be available on the course Moodle:
https://moodle-app2.let.ethz.ch/course/view.php?id=15262

Prerequisites / notice

Throughout the course different session preparation assignments, like book chapters or case studies will be handed out to the students on moodle. This preparation is required to participate in the lectures. The final exam of the present course is online exam.

The final exam is requested for all types of students (BSc, MSc, MA, PhD, and Exchange students). It is not possible to retake the exam within the same term or academic year.

We strongly recommend Exchange students to take it into consideration when selecting the courses to attend.

Strategy, Markets and Technology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0387-00L</td>
<td>Corporate Sustainability</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>V. Hoffmann, C. Bening-Bach, N. U. Blum, J. Meuer</td>
</tr>
</tbody>
</table>

Abstract

The lecture explores current challenges of corporate sustainability and prepares students to become champions for sustainable business practices. In the beginning, traditional lectures are complemented by e-modules that allow students to train critical thinking skills. In the 2nd half of the semester, students work in teams on sustainability challenges related to water, energy, mobility, and food.

Objective

Students
- assess the limits and the potential of corporate sustainability for sustainable development
- develop critical thinking skills (argumentation, communication, evaluative judgment) that are useful in the context of corporate sustainability using an innovative writing and peer review method.
- recognize and realize opportunities through team work for corporate sustainability in a business environment
- present strategic recommendations in teams with different output formats (tv-style debate, consultancy pitch, technology model walkthrough, campaign video)

Content

In the first part of the semester, Prof. Volker Hoffmann and Dr. Johannes Meuer will share his insights on corporate sustainability with you through a series of lectures. They introduce you to a series of critical thinking exercises and build a foundation for your group work. In the second part of the semester, you participate in one of four tracks in which SusTec researchers will coach your groups through a seven-step program. Our ambition is that you improve your analytic and organizational skills and that you can confidently stand up for corporate sustainability in a professional setting. You will share the final product of your work with fellow students in a final puzzle session at the end of the semester.

Lecture notes

http://www.sustec.ethz.ch/teaching/lectures/corporate-sustainability.html

Prerequisites / notice

TEACHING FORMAT / ATTENDANCE: Please note that we aim to offer you the course in-class and online, but at this point we cannot guarantee that a purely online participation is possible. Irrespective of the format (in-class or online), the course includes several mandatory sessions that participants must attend to successfully earn credit points.
363-0403-00L

Introduction to Marketing

W+ 3 credits 2G

S. Brüggemann, F. von Wangenheim

Abstract

Students who take this course will increase their knowledge of marketing, its effect on consumer behavior and its role in creating long-term value. The course will introduce important concepts, frameworks and methods for marketing decision-making. A focus will be on managing customer relationships with the help of targeted promotions and data collected through digital technologies.

Objective

After taking the class, students will be able to

1) Define what marketing is and describe its role at different stages of the value chain
2) Apply psychological theories to analyze behavior (e.g., purchase behavior) and identify the needs of (prospective) customers in consumer and business markets
3) Design elements of the marketing mix—e.g., develop new products and set prices—in a way that creates long-term value
4) Create an efficient and effective marketing mix that attracts and engages customers, e.g., by running targeted promotions
5) Use quantitative methods and customer data to manage relationships with customers

Content

The course will center on the importance of marketing as an activity that creates long-term value for the benefit of organizations and their customers. It will teach concepts, frameworks and methods for marketing decision making.

The structure of the course will roughly follow the different steps of the value chain, i.e., the set of activities necessary for offering valuable products to customers. First, it will introduce students to psychological theories that help explain behavior, e.g., purchase behavior. It will also familiarize students with different methods from marketing research, which can be used to identify the needs of customers. Next, the course will look at the role of the marketing mix in satisfying customer needs. For example, the course will consider new product development and pricing. A focus will be on managing profitable, long-term relationships with customers. To this end, students will gain in-depth knowledge on the use of targeted promotions and marketing data to (1) attract, (2) convert and engage and (3) retain customers.

The course is designed to be “hands-on”, with opportunities to apply skills on business cases involving real-world marketing data. It will feature guest lectures from industry experts.

The class might be taught in an in-person, remote or in a hybrid format.

Literature

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed
Decision-making assessed
Media and Digital Technologies assessed
Problem-solving assessed

Domain C - Social Competencies

Project Management not assessed
Communication not assessed
Cooperation and Teamwork not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Negotiation not assessed

Domain D - Personal Competencies

Creative Thinking not assessed
Critical Thinking not assessed
Self-direction and Self-management not assessed

363-0392-00L

Strategic Management

W+ 3 credits 2G

Y. R. Shrestha

Number of participants limited to 80.

Abstract

This course conveys concepts and methods in strategic management, with a focus on competitive strategy. Competitive strategy aims at improving and establishing position of firms within an industry.

Objective

The lecture “Strategic Management” is designed to teach relevant competences in strategic planning and -implementation, for both professional work-life and further scientific development. The course provides an overview of the basics of strategy and the most prevalent concepts and methods in strategic management. The course is given as a combination of lectures about concepts/methods, and case studies where the students solve strategic issues of the case companies. In two sessions, the students will also be addressing real-time strategic issues of firms that are represented by executives.

Content

Contents:
27.09.2021: Guest Lecture (Dr. Berg) and Introduction
04.10.2021: Strategy concepts
18.10.2021: Industry dynamics I: Industry analysis + Case Studies
25.10.2021 Guest Lecture (Patrick Warnking, Google) + Case Studies
01.11.2021 Industry dynamics II: Analysis of technology and innovation + Cases
15.11.2021: The resource-based theory of the firm + Cases
22.11.2021: The knowledge-based theory of the firm + Cases
29.11.2021: Guest Lecture (Andy Staubli, PwC) and course summary

Strategic Management offers a combination of lectures about concepts/methods, and case studies where the students solve strategic issues of the involved companies. This aims at offering students a profound theoretical understanding of important and current topics and also offer an opportunity to present these concepts in front of an audience.

This course conveys concepts and methods in strategic management, with a focus on competitive strategy. Competitive strategy aims at analyzing and establishing position of firms within an industry, securing firm performance. Thus, the course focuses on a number of important topics, such as the evolution of industry, industry structure, the analysis of a firm's resources- and knowledge, and innovation. In addition, student groups will hold presentations on the four main topics of this class, to further develop concepts and enhance understanding. The presentations will cover Industry Dynamics I, Industry Dynamics II, Resource Based View of the Firm, Knowledge Based View of the Firm. For all presentations, selected Harvard Business Cases will be used as a common ground for students to start from.

Students are also expected to read and understand the required readings (approx. 15 items) that cover the most important papers and articles from the past 30 years in management and strategy research.

To underline the relevance of Strategic Management in firms, decision makers from companies in Switzerland will be holding guest lectures and give their talk on strategy in practice and give insight on current topics in the field.
This lecture provides a theory- and practice-based understanding of how today's information technologies enable new digital business models. This course focuses on the analysis of innovation as a pervasive process that cut across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change.

Objective
This course intends to enable all students to:
- understand the core concepts necessary to analyze how innovation happens
- master the most common methods and tools organizations deploy to innovate
- develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation

Content
This course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small.

How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, guest speakers, simulations and group work.

Lecture notes
Slides will be available on the Moodle page

Literature
Readings will be available on the Moodle page

Prerequisites / notice
The course content and methods are designed for students with some background in management and/or economics.

Information Management and Operations Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0389-00L</td>
<td>Technology and Innovation Management</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>S. Brusoni, A. Zeijen</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course focuses on the analysis of innovation as a pervasive process that cut across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course intends to enable all students to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- understand the core concepts necessary to analyze how innovation happens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- master the most common methods and tools organizations deploy to innovate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, guest speakers, simulations and group work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, guest speakers, simulations and group work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Slides will be available on the Moodle page</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The course content and methods are designed for students with some background in management and/or economics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional skills: Students acquire experience in teamwork, report writing, and presentation.

Prerequisites / notice
Number of participants limited to 80. Registration through myStudies (first come, first served). We do not use the mystudies-Waiting List, but a separate internal system. A lot of people deregister at the start of the semester so stay in the waiting list at any point!

For further questions and if you are unable to sign up through myStudies, please contact the course assistant: http://www.smi.ethz.ch/education/strategic-management.html

For participants of the MAS-MTEC program we offer a complentary course Practicing Strategy in which students will apply the concepts of Strategic Management to their real-life contexts and organizations. Please register simultaneously for both courses if you want to take part in this course.

For more information please see: http://www.smi.ethz.ch/education/practicing-strategy.html

363-0211-00L | Mastering Digital Business Models | W+ | 3 | 2G | E. Fleisch |
Abstract	This lecture provides a theory- and practice-based understanding of how today's information technologies enable new digital business models and disrupt existing markets.
Objective	A. After the lecture, the student is able to evaluate digital business models from different angles, including theory-based views:
	- Definition and classification of business models
	- Digital business model patterns
	- Theoretical frameworks that explain why and how digital business models function
	- Impact of digital business model patterns on P&L and balance sheet
	Students know how to measure & evaluate investments into the digital space as
	- a decision maker in an established company (should I invest in project A or B?)
	- an entrepreneur (should I pursue this venture?)
	- an investor (should I invest in start-up xy?)
Content	B. The student knows different tools to design digital business model patterns.
	Uber, Airbnb, Nest and Jawbone - A wide range of innovative companies exist, which successfully implemented ICT enabled business models and continue to grow at a rapid pace. Examples, illustrating how digitalization, including the "Internet of Things" currently fosters business model innovation across various industries. This course is designed to help students to understand and critically assess such newly immersing (digital) business models.
	Course materials will be made available on the Moodle platform through which students can solve online exercises and submit a short educational video as part of a course assignment.
Key Topics:	Business model innovation; (digital) business model patterns; business value of IT; the concept of integration; transaction cost perspective; network economics perspective; essentials and impact of web 2.0, internet of things, mobile computing, market places, social analytics, and big data; IT governance and portfolio management; entrepreneurship in the digital space, etc.

363-0445-00L | Production and Operations Management | W+ | 3 | 2G | T. Netland |
Abstract	This core course provides insights into the basic theories, principles, concepts, and techniques used to design, analyze, and improve the operational capabilities of an organization.
Objective	This course provides students a broad theoretical basis for understanding, analyzing, designing, and improving operations. After completing this course:
	1. Students can apply key concepts of POM to detail an operations strategy,
	2. Students can conduct basic process mapping analysis and elaborate on the limitations of the chosen method,
	3. Students can calculate the needed capacity to meet demand,
	4. Students can select and use problem-solving tools and methods,
	5. Students can select and use the basic tools of lean thinking to improve the productivity of production and service operations,
	6. Students can explain how new technologies and servitization affect production and operations management,
	7. Additional skills: Students acquire experience in teamwork, report writing, and presentation.
The course covers the most fundamental strategic and tactical concepts in production and operations management (POM). POM is concerned with the business processes that transform input into output and deliver products and services to customers. POM is much more than what takes place inside the production facilities of companies like ABB, Boeing, BMW, LEGO, Nestlé, Roche, TESLA, and Toyota. To mention a few (although factory management is important and a big part of POM), finance firms, professional service firms, media organizations, non-profit organizations, and public service companies are dependent on their operational capabilities. With the ongoing globalization and digitization of operations, POM has won a deserved status for providing a competitive advantage.

The following three fundamental areas in POM are covered: (1) Introduction to POM and operations strategy, (2) Operations design and management, including demand and capacity management, production planning and control, the role of inventory, lean management, service operations, and performance measurement, (3) Operations improvement, including problem-solving and the use of new technologies in POM (“Industry 4.0” / digitalization). Students can expect to learn a range of useful concepts, principles, and methods that can be used to design, analyze, and improve value-creating processes.

POM is concerned with the productivity of technology, people, and processes. Hence, POM is a generic research field, relevant to all business sectors. Yet, many of the examples and concepts of POM stem from the manufacturing sector, which for many years have been subject to global competition and learned how to develop effective and efficient operations.

The course material will be made available for download on Moodle: Empirical Methods in Management

Concerning qualitative research, students learn how to conduct and evaluate interviews. In the area of quantitative research, they learn how to apply measurement and scaling methods and conduct experiments. In addition, basic statistical analyses like a variance analysis and how to conduct it in a standard statistical software package like SPSS are also part of the lecture. The lessons learned from the lecture will empower students to critically assess the quality and outcomes of studies published in the media and scientific journals, which might form a basis for their decision-making. The lecture also to students without basic statistical skill, who plan to attend more advanced lectures in the field of artificial intelligence such as Marketing Analytics.

Additional lectures within the Fall semester will be held online. The lecture will be taught online this fall semester. Therefore, it involves group work, where students form groups in order to create small learning videos, which cover small parts of the lecture. These videos will be shown and discussed in the online lecture and will make up 30% of the final grade. Part of this assignment will be the evaluation of videos from other students. The preparation of the videos will also prepare students for the final exam. In addition to that, there will be some nonmandatory online exercises as an additional opportunity to prepare for the exam.
Literature and readings will be announced. For a basic understanding we recommend the Handbook of Good Research by Jürgen Brock and Florian von Wangenheim.

The course includes out-of-class assignments and projects to give students some hands-on experience in conducting empirical research in management. Projects will focus on one particular aspect of empirical research, like the formulation of a research question or the design of a study. Students will form groups and create a learning video regarding one specific topic. Assignments will be graded and need to be turned in on time as they will be shown and discussed in class. Students will also have to evaluate the videos of other student groups. Online class participation is encouraged and can greatly improve students’ learning. In this spirit, students are expected to attend class regularly and come to class prepared.

363-1004-00L Operations Research

Abstract

This course provides an introduction to operations research methods in the fields of management science and economics. Requisite mathematical concepts are introduced with a practical, problem-solving perspective.

Mathematical optimization models are used to precisely formulate operational decision problems so that they can subsequently be analysed and optimized using suitable solution methods. A large number of quantitative real-world problems can be formulated and solved in this general framework. Applications of operations research comprise, for instance, decision problems in production planning, supply chain management, transportation networks, machine and workforce scheduling, blending of components, telecommunication network design, airline fleet assignment and revenue management.

Objective

- Introduction to building and using quantitative models in a business / industrial environment
- Introduction to basic optimization techniques (Linear Programming and extensions, network flows, integer programming, dynamic and stochastic optimization)
- Understanding the integration of quantitative models into the managerial decision process

Content

The economic environment of today's companies is characterized by high cost pressure, declining margins, intensified international competition, rising customer requirements and increasingly strict regulations. Strategic and operational decisions at all management levels are becoming more and more complex due to the increasing amount of data, interrelationships, conditions and target criteria to be considered. Often it is no longer possible to solve operational tasks with experience and common sense alone and to adequately estimate the consequences of decisions without software support.

Quantitative models and methods of operations research and operations management offer decision support for complex problems. Mandatory optimization models are used to precisely formulate operational decision problems so that they can subsequently be analysed and optimized using suitable solution methods. A large number of quantitative real-world problems can be formulated and solved in this general framework. Applications of operations research comprise, for instance, decision problems in production planning, supply chain management, transportation networks, machine and workforce scheduling, blending of components, telecommunication network design, airline fleet assignment and revenue management.

This course offers an introduction to operations research, emphasising basic methodologies and underlying mathematical structures. The following topics are covered in detail:

- Introduction to system modelling and operations research
- Linear models and the importance of linear programming
- Dual theory in linear programming and shadow prices
- Integer programming
- Dynamic optimization (under uncertainty) and applications in inventory management.

Lecture notes

A printed script will be made available.

Literature

Any standard textbook in Operations Research is a useful complement to the course.

Prerequisites / notice

Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

363-0541-00L Systems Dynamics and Complexity

Abstract

Finding solutions: what is complexity, problem solving cycle.

Implementing solutions: project management, critical path method, quality control feedback loop.

Controlling solutions: Vensim software, feedback cycles, control parameters, instabilities, chaos, oscillations and cycles, supply and demand, production functions, investment and consumption

A successful participant of the course is able to:

1. Find project solutions
2. Implement solutions
3. Controlling solutions

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions.

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed.

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles.

Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM. Another objective of the self-study tasks is to practice efficient communication of such concepts.

These are provided as home work and two of these will be graded (see "Prerequisites").

The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture.

Lecture notes

The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture.

Micro and Macroeconomics

Lecture notes

- The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture.

Literature

- Handbook of Good Research by Jürgen Brock and Florian von Wangenheim

Prerequisites / notice

- Undergraduate calculus
- Linear algebra
- Probability and statistics

Literature

- Any standard textbook in Operations Research is a useful complement to the course.

Prerequisites / notice

- Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Literature

- Any standard textbook in Operations Research is a useful complement to the course.

Prerequisites / notice

- Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Literature

- Any standard textbook in Operations Research is a useful complement to the course.

Prerequisites / notice

- Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Literature

- Any standard textbook in Operations Research is a useful complement to the course.

Prerequisites / notice

- Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Literature

- Any standard textbook in Operations Research is a useful complement to the course.

Prerequisites / notice

- Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Literature

- Any standard textbook in Operations Research is a useful complement to the course.

Prerequisites / notice

- Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Literature

- Any standard textbook in Operations Research is a useful complement to the course.

Prerequisites / notice

- Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Literature

- Any standard textbook in Operations Research is a useful complement to the course.

Prerequisites / notice

- Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Literature

- Any standard textbook in Operations Research is a useful complement to the course.

Prerequisites / notice

- Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Literature

- Any standard textbook in Operations Research is a useful complement to the course.
The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:
- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filippini).
For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:

Complementary:

GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.

363-0537-00L Resource and Environmental Economics

Abstract
Relationship between economy and environment, market failures, external effects and public goods, contingent valuation, internalisation of externalities, economics of non-renewable resources, economics of renewable resources, environmental cost-benefit analysis, sustainability economics, and international resource and environmental problems.

Objective
A successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and environmental economics and the ability to solve typical problems using appropriate tools consisting of concise verbal explanations, diagrams or mathematical expressions. Concrete goals are first of all the acquisition of knowledge about the main questions of resource and environmental economics and about the foundation of the theory with different normative concepts in terms of efficiency and fairness. Secondly, students should be able to deal with environmental externalities and internalisation through appropriate policies or private negotiations, including knowledge of the available policy instruments and their relative strengths and weaknesses. Thirdly, the course will allow for in-depth economic analysis of renewable and non-renewable resources, including the role of stock constraints, regeneration functions, market power, property rights and the impact of technology. A fourth objective is to successfully use the well-known tool of cost-benefit analysis for environmental policy problems, which requires knowledge of the benefits of an improved natural environment. The last two objectives of the course are the acquisition of sufficient knowledge about the economics of sustainability and the application of environmental economic theory and policy at international level, e.g. to the problem of climate change.

Content
The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

Literature

Financial Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0711-00L</td>
<td>Accounting for Managers</td>
<td>W+</td>
<td>3</td>
<td>2V</td>
<td>J.-P. Chardonnens</td>
</tr>
</tbody>
</table>

Abstract
The course Accounting for Managers offers an introduction to financial accounting and management accounting. It provides managers with the necessary knowledge for decision making using accounting information.

Objective
By attending this course, students will be able to:
- record business transactions on the different types of accounts.
- establish a balance sheet and an income statement.
- prepare the different financial reports.
- understand the principles of cost accounting.
- determine the cost of production.
- make decisions based on cost information.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1319 of 2152
The first part of the course is devoted to financial accounting. It teaches the principles of double-entre accounting and deals with the recording of commercial transactions on accounts. It describes the work to be carried out at the closing in order to prepare the financial reports according to the generally accepted accounting principles. This type of accounting information is primarily intended for investors and shareholders.

The second part of the course describes the principles of management accounting and explains the different costing methods. It aims to determine the manufacturing cost of production of the different products and services using full and variable costing methods. The accounting information focuses on the internal needs of managers for the purpose of budget preparation and profitability analysis.

This course is a prerequisite for the course Financial Management.
Elective Courses

Technology and Innovation

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0861-00L</td>
<td>Alliance Advantage - Exploring the Value Creation Potentials of Collaborations</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>C. G. C. Marxt</td>
</tr>
</tbody>
</table>

Abstract
The development of new business models coping with the constantly augmenting complexity of technologies and systems as well as the ever increasing global competition force organizations to focus on close collaboration with key partners. These alliances are key value creation opportunities and constitute the core part of this lecture.

Objective
Learning outcomes professional competence
- The students learn and understand the management basics of inter-firm cooperation and organizational networks (business models, incl. risk, communication, etc.)
- Realize the value creation potentials of alliances (added value)
- Understand underlying theoretical models (Transaction cost theory, principal agent, game theory)
- Identify and understand specific forms of collaboration (Strat. All., JV, Networks, M&A, etc.)
- Apply tools hands on in real companies (in coll. with companies)

Learning outcomes methodological competence
- Writing academic papers
- Developing structured documentation of interviews
- Transferring theory directly into application
- Contributing to the learning journey

Learning outcomes social competence
- Work together with industrial partners
- Improving communication skills as basics for collaboration
- Developing and applying team work skills
- Coping with conflicts resolution in teams

Content
The constantly augmenting complexity of technologies and systems, the increased pressure caused by competition, the need for shortening time-to-market and the thereby implied growing risks force organizations to increasingly focus on core competencies. Collaboration with external partners is a key value creation opportunity for successful ventures. This type of cooperation also has implications on daily management activities. This lecture will provide a better understanding of special requirements needed for management of cooperation issues.

Learning journey:
In an introductory lecture we will give an overview of the theoretical framework and explain the concept of the lecture (first week of semester, Sept. 19, 2019). In weeks 2-5 you will work on a first assignment on six different aspects of the underlying framework: strategy and activities, structure and process, culture and people orientation, interaction and roles, risk and trust, knowledge and learning. This first assignment will give you the basics to participate in the second part (Nov. 7-8, 2019) of this seminar. There you will present the results of the first assignment and get additional theoretical input to perform the 2nd assignment. The second assignment will be to analyze real alliance projects in the partner companies. The final lesson will be used as a best practice exchange (Dec. 19, 2019).

Lecture notes
- Lecture script
- Current course material
- Harvard Case Studies
- Reader with current papers

Literature
A list with recommended publications will be distributed in the lecture.

Classic Books:
- HBR Collaborating Effectively ISBN 978-1-4221-6264-4
- HBR on Mergers and Acquisitions: ISBN 1-57851-555-6

Prerequisites / notice
The number of students participating in the lecture is limited to 30.

363-1051-00L

Cases in Technology Marketing

Number of participants limited to 20.

Students have to apply for this course by sending a CV and an one-page motivation letter until 10.09.2021 to Theresa Schachner: tschachner@ethz.ch.

All additionaly please enroll via myStudies. Places will be assigned on the basis of your motivation letter.

Abstract
The seminar “Cases in Technology Marketing” introduces students to key concepts and tools in technology marketing and familiarizes them subsequently with the challenges that (marketing) managers face in technology intensive markets by using real life cases.

Objective
1. Understanding and applying common business tools and frameworks
2. Understanding current challenges of managers in technology intensive markets
3. Defining and analyzing comprehensive business problems using the example of a leading Swiss manufacturing company (Bühler AG)
4. Developing and evaluating different alternative case solutions
5. Making decisions on case solutions, justifying and defending them
6. Transferring case solutions into practice by formulating specific instructions for the management
7. Creating novel, innovative ideas that help the company to gain a competitive edge
8. Cooperation in teams and coordination of team tasks
9. Adequate communication to and eye-level discussions with C-level managers

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1321 of 2152
Content

The seminar “Cases in Technology Marketing” introduces students to key concepts and tools in technology marketing and familiarizes them with the challenges that (marketing) managers face in technology-intensive markets by using real-life cases. Students will have to work in groups and solve real-world problems from current and future managerial problems in the form of cases. The team member composition will rotate for each case, enabling students to foster their teamwork abilities besides the application of theoretical concepts to the applied case questions. The students will have to present their case solutions to the lecturer and a top executive of a leading Swiss company (details see below). Also, they will be enabled to compare their solutions with what has actually been done or is yet to be done.

The three case studies presented in this course cover real managerial issues of the Swiss manufacturer Bühler AG (www.buhlergroup.com). A Bühler top executive will present the cases and discuss the students’ presentations and solutions. As such, the course allows for in-depth discussions of the real-life case solution with the C-level manager and thereby enables students to transfer their learnings from theoretical considerations to the applied field. The course will be rounded off with a visit to the Bühler facilities in Uzwil, Switzerland, where students will have the chance to further connect with management and discuss the acquired key concepts, tools, and case study insights on site.

Prerequisites / notice

In addition to course enrolment, students have to apply for this course by sending a CV and a short motivation letter until 20.08.2021 to Theresa Schachner: tschachner@ethz.ch.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>W</th>
<th>credits</th>
<th>2V</th>
<th>S. Ben-Menahem</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0393-00L</td>
<td>Corporate Strategy</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>S. Ben-Menahem</td>
</tr>
<tr>
<td>Objective</td>
<td>Abstract</td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Abstract</td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course focuses on the challenges in managing multi-business corporations, and covers topics related to the vertical and horizontal scope of business activities.</td>
<td>Large- and medium-sized corporations play a central role in the economic activity of most developed and developing countries. Many of these organizations perform multiple business activities in multiple markets. In the face of increasing international competition, globalization, technological development, deregulation, and the emergence of new markets and industries, operating such a portfolio of business activities poses important managerial challenges forcing corporations to continuously reconsider their vertical and horizontal scope and boundaries.</td>
<td>Having participated in the course Strategic Management by Prof. Georg von Krogh/Dr. Stephan Herting is an advantage but not a requirement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course Corporate Strategy draws from a wide range of theories and methods to develop an understanding of the conceptual frameworks, debates, and developments concerning decisions associated with the management of multi-business corporations. We will cover the key questions driving a firm's corporate strategy, including:</td>
<td>The course homepage can be found at: http://www.smi.ethz.ch/education/corporate-strategy.html</td>
<td>The course homepage can be found at: http://www.smi.ethz.ch/education/corporate-strategy.html</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- In what markets to compete with which businesses?</td>
<td>- In what markets to compete with which businesses?</td>
<td>- In what markets to compete with which businesses?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Which activities should be performed by the firm and which should be outsourced (i.e., "make" or "buy" decisions)?</td>
<td>- Which activities should be performed by the firm and which should be outsourced (i.e., "make" or "buy" decisions)?</td>
<td>- Which activities should be performed by the firm and which should be outsourced (i.e., "make" or "buy" decisions)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What are the most appropriate approaches to growth and divestiture?</td>
<td>- What are the most appropriate approaches to growth and divestiture?</td>
<td>- What are the most appropriate approaches to growth and divestiture?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specifically, we will examine how organizations manage their portfolio of business activities and markets to achieve competitive advantage through vertical integration, cooperative strategies such as strategic alliances and joint ventures, corporate diversification, mergers and acquisitions, divestitures, and globalization/international strategies, and strategic renewal.</td>
<td>Specifically, we will examine how organizations manage their portfolio of business activities and markets to achieve competitive advantage through vertical integration, cooperative strategies such as strategic alliances and joint ventures, corporate diversification, mergers and acquisitions, divestitures, and globalization/international strategies, and strategic renewal.</td>
<td>Specifically, we will examine how organizations manage their portfolio of business activities and markets to achieve competitive advantage through vertical integration, cooperative strategies such as strategic alliances and joint ventures, corporate diversification, mergers and acquisitions, divestitures, and globalization/international strategies, and strategic renewal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course Corporate Strategy draws from a wide range of theories and methods to develop an understanding of the conceptual frameworks, debates, and developments concerning decisions associated with the management of multi-business corporations. We will cover the key questions driving a firm's corporate strategy, including:</td>
<td>The course Corporate Strategy draws from a wide range of theories and methods to develop an understanding of the conceptual frameworks, debates, and developments concerning decisions associated with the management of multi-business corporations. We will cover the key questions driving a firm's corporate strategy, including:</td>
<td>The course Corporate Strategy draws from a wide range of theories and methods to develop an understanding of the conceptual frameworks, debates, and developments concerning decisions associated with the management of multi-business corporations. We will cover the key questions driving a firm's corporate strategy, including:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites / notice

The course Corporate Strategy draws from a wide range of theories and methods to develop an understanding of the conceptual frameworks, debates, and developments concerning decisions associated with the management of multi-business corporations. We will cover the key questions driving a firm's corporate strategy, including:

- In what markets to compete with which businesses?
- Which activities should be performed by the firm and which should be outsourced (i.e., "make" or "buy" decisions)?
- What are the most appropriate approaches to growth and divestiture?
- How do institutional forces impact corporate strategy?

Specifically, we will examine how organizations manage their portfolio of business activities and markets to achieve competitive advantage through vertical integration, cooperative strategies such as strategic alliances and joint ventures, corporate diversification, mergers and acquisitions, divestitures, and globalization/international strategies, and strategic renewal.

The course homepage can be found at: http://www.smi.ethz.ch/education/corporate-strategy.html

Having participated in the course Strategic Management by Prof. Georg von Krogh/Dr. Stephan Herting is an advantage but not a requirement.

The course homepage can be found at: http://www.smi.ethz.ch/education/corporate-strategy.html

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>W</th>
<th>credits</th>
<th>5G</th>
<th>S. Brusoni</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1065-00L</td>
<td>Design Thinking: Human-Centred Solutions to Real World Challenges</td>
<td>W</td>
<td>5 credits</td>
<td>5G</td>
<td>S. Brusoni</td>
</tr>
<tr>
<td>Abstract</td>
<td>The goal of this course is to engage students in a multidisciplinary collaboration to tackle real world problems. Following a design thinking approach, students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.</td>
<td>Information and application: http://sparklabs.ch/</td>
<td>Information and application: http://sparklabs.ch/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>During the course, students will learn about different design thinking methods and tools. This will enable them to:</td>
<td>During the course, students will learn about different design thinking methods and tools. This will enable them to:</td>
<td>During the course, students will learn about different design thinking methods and tools. This will enable them to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).</td>
<td>- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).</td>
<td>- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Engage in collaborative ideation with a multidisciplinary team.</td>
<td>- Engage in collaborative ideation with a multidisciplinary team.</td>
<td>- Engage in collaborative ideation with a multidisciplinary team.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.</td>
<td>- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.</td>
<td>- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validated them through quick iterations of prototyping and testing using different tools and materials.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

For more information and the application visit: http://sparklabs.ch/

Open mind, ability to manage uncertainty and to work with students from various backgrounds. Class attendance and active participation is crucial as much of the learning occurs through the work in teams during class. Therefore, attendance is obligatory for every session.

Please also note that the group work outside class is an essential element of this course, so that students must expect an above-average workload.

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Linda Armbruster to learn about the requirements of the class.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1028-00L</td>
<td>Entrepreneurial Leadership</td>
<td>4 credits</td>
<td>3S</td>
<td>Z. Erden Özkol, S. Brusoni, T. Netland, P. Tinguely</td>
</tr>
<tr>
<td>363-0404-00L</td>
<td>Industry and Competitive Analysis</td>
<td>3 credits</td>
<td>3G</td>
<td>V. He, Y. R. Shrestha</td>
</tr>
</tbody>
</table>

Prerequisites / notice

Students apply for this course via the official website no later than August 23 (https://www.mtec.ethz.ch/studies/special-programmes/els.html).

Once your application is confirmed, registration in myStudies is possible.

Abstract

This seminar provides master and PhD students at MTEC with the challenging opportunity of a real case on strategy, innovation and leadership in close collaboration with the top management of a leading Swiss manufacturing company: Georg Fischer.

Objective

The general objective of the course is to enable MTEC students to develop leadership skills by dealing with real-world business problems, thinking critically about the concepts discussed in their study programs and learning how to apply these concepts to provide practical implications. It provides students with coaching and mentoring from senior leaders in the company and professors from D-MTEC to bridge the gap between theory and practice.

Content

This seminar provides ambitious ETH students and doctoral candidates with a rewarding learning opportunity: a real case study of strategy and innovation in close collaboration with the top management of an outstanding company: Georg Fischer.

What you can expect:

You will work in teams on specific high priority assignments that flow from the company. Delving into the assignments you will both contribute to solving strategic issues and have an impact on their implementation at the company.

To gain insight into the company and its culture you will receive briefings from senior management, conduct interviews with experts and run workshops with your case managers. In the final presentations you will pitch your findings to key stakeholders and top management representatives and receive valuable feedback.

Furthermore you will be coached and supported by MTEC professors on the topics of project scoping, problem definition and solving, process improvement, strategy and board presentation.

The course is directed and organised by PD Dr. Zeynep Erden and Dr. Isabel Spicker as part of the MTEC Leadership Development Programme.

What we expect from you:

You are an ambitious ETH student or doctoral candidate who is looking for a rewarding learning opportunity and is eager to go the extra mile. You will work on a real case study of strategy, technology and innovation in close collaboration with the top management of an outstanding Swiss company. The recommendations that you formulate in collaboration with members of your team as well as with internal and external experts will be discussed at the Partner and Director levels. This demands a deep understanding of the company’s leadership culture.

In this endeavour you are coached and supported by

- Stefano Brusoni, Chair of Technology and Innovation Management
- Georg von Krogh, Chair of Strategic Management and Innovation
- Torbjorn Netland, Chair of Production and Operations Management
- Zeynep Erden, Vlerick Business School/ D-MTEC

Literature

Literature and readings will be announced in the coaching sessions.

Please apply for this course via the official website (www.mtec.ethz.ch). Apply no later than August 22.

The number of participants is limited to 18.

ECTS: 4

Participants receive a certificate.

Prerequisites / notice

Due to didactic reasons originating from the group-work based approach, the number of participants is limited to 30. First come first served by order of enrollment in myStudies.

Experience in statistical analysis with tools such as SPSS or equivalents is an advantage.

Industry and Competitive Analysis (ICA) is a part of any strategy development. It contains a very practical set of methods to quickly obtain a good grasp of an industry. The purpose of ICA is to understand factors that impact on the financial performance of the industry, and as well the financial performance of firms within the industry.
You will learn how to approach management research from various perspectives, how to evaluate empirical research, and how to develop your own research project. The successful completion of the course will help you to:

- Think critically and make compelling arguments about the strengths and weaknesses of published management research
- Find and review appropriate literature and previous research for your thesis
- Develop and frame interesting and relevant research questions and problem statements
- Design your research and choose an appropriate methodology for analysis (specific research methods and techniques are not discussed in this course)
- Structure your manuscript
- Plan and manage your thesis project

The course is organized as a combination of lectures, case studies, and tutored group work involving the selection and analysis of industries, analysis and development of strategies for selected competitors, and presentation of results.

Grades:
50% paper/industry report (group)
50% final presentation (group)

This course is built upon a management classic (Competitive Strategy: Techniques for Analyzing Industries and Competitors by Porter, 2004). More recent research findings and practitioner-oriented papers in the area of strategy are also included. Readings associated with each lecture should be done before the lecture day.

To access the journal articles listed below, you have to be within the ETH domain (either directly connected to the ETH network within ETH or using VPN). PDF versions of the Harvard Business Review articles are only available via the class Moodle.

Competitive strategy
- Chapter 2 of Porter (2004)
- Case study: Southwest Airlines
- Industry Dynamics
- Chapter 3 of Porter (2004)
- Case study: Southwest Airlines
- Strategic groups & firm membership
- ICA in the Digital Age
- Opportunities & Resources
- Competitive Analysis

Prerequisites / notice
Due to intensity of the tutoring format, the number of students is limited to 30 participants. Students will be accepted according to the order of enrollment in myStudies. Exchange students can register by sending e-mail to evilar@ethz.ch. If facing problems with registration to myStudies, Registration will be handled individually, case by case. E-mails that are sent before the starting date of registration to myStudies will not be accepted.
An electronic confirmation of the registration will be sent out shortly before the start of the semester, which contains an access link to the Moodle-Website of the course (readings, resources for group works, group assignment)
Note that class participation is important. Students should judge if full commitment can be made to attending the lectures before registration.

363-0887-00L Management Research

<table>
<thead>
<tr>
<th>W</th>
<th>1 credit</th>
<th>1S</th>
<th>N. Geilinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in both sessions and completion of all assignments is required to receive the credit. This course requires preparation time and completion of an assignment before the first course day. Please check the Moodle course page for more information.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
Students learn how to approach management research from various perspectives, how to evaluate empirical research, and how to develop their own research projects.

Objective
You will learn how to approach management research from various perspectives, how to evaluate empirical research, and how to develop your own research project. The successful completion of the course will help you to:
- Think critically and make compelling arguments about the strengths and weaknesses of published management research
- Find and review appropriate literature and previous research for your thesis
- Develop and frame interesting and relevant research questions and problem statements
- Design your research and choose an appropriate methodology for analysis (specific research methods and techniques are not discussed in this course)
- Structure your manuscript
- Plan and manage your thesis project
This course combines lectures, group discussions and individual assignments.

Day 1: Course introduction, group analysis exercises and discussions, lectures on main topics.

Between course days 1 and 2: Individual and group work on assignments.

Day 2: Assignment review and discussion, lectures on main topics, conclusion session.

Target audience:
The course is designed with two groups of students in mind: first, students who write their master thesis at the SMI chair and second, students who write their master thesis in the field of management at other MTEC chairs. For both groups, the focal topics of this course will arise frequently during the journey of writing their thesis, and the majority of topics are relevant for all students. However, we will provide some specific content (grading guidelines, thesis format) which might not be applicable for students tutored at other MTEC chairs.

Course topics:
1. Thesis topic and thesis proposal:
 - Choice of thesis topic, identification of research gap, formulation of research questions, writing of thesis proposal
2. Literature review:
 - Search and evaluation of academic literature, use of reference tools, writing of theoretical background chapter of thesis
3. Empirical research design:
 - Types of empirical research designs, choice of methodology, overview of data collection and analysis methods
4. Research output and report:
 - Writing of introduction, results and conclusion, thesis format and structure
5. Thesis assessment:
 - SMI grading criteria, MTEC guidelines

References:

Prerequisites / notice
This course is for all students who write their master thesis at the Department of Management, Technology, and Economics.

The course is required for all M.Sc. students and MAS students who write their master thesis at the Chair of Strategic Management and Innovation.

The course is graded based on the assignments, peer feedback, and participation in group discussions.

The first assignment is due before the first course day. Please check the assignments on the Moodle coursepage. If you sign up for the course on short notice before the first course day, please advise the lecturer of your registration by email.

Supply Chain and Information Systems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0425-00L</td>
<td>Transformation: Corporate Development and IT</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>T. Gutzwiller</td>
</tr>
</tbody>
</table>

Abstract
The lecture treats the main challenges of business transformation and the alignment of corporate development and IT activities. It presents a holistic approach to business transformation projects by introducing an integrated model dealing with three main design areas “strategy”, “processes and information systems” and applying this model to various case studies.

Objective
The goal of the lecture is to understand the main challenges of corporate transformation and to demonstrate the application of a holistic project procedure model for corporate transformation projects with special emphasis on the alignment of business and IT.

The student should understand and be able to explain
- the main reasons for corporate transformation,
- the relevant management processes to manage corporate transformation,
- the interdependencies between strategy, processes and information systems, especially how this three levels interrelate,
- the critical success factors for the successful accomplishment of large scale corporate transformation projects,
- the main instruments of project, quality and change management and
- the different types of resulting IT projects.

Content
The globalization of the world leads to an increasingly faster pace in business transformation. Enterprises have to adapt faster and even faster to the environmental changes in a global economy to remain competitive and to make sure they stay in business. In todays information age this does not only mean to adapt business strategy and business processes but also to adapt information systems to the new circumstances. The fast adaptation trough large scale corporate transformation projects that change strategy, business processes and information systems is critical to ensure competitiveness for tomorrow. The introduction of new business processes and information systems typically takes years in very complex large scale projects. Many projects fail because of insufficient alignment between decision makers in business and IT. Unclear understanding of the overall project scope, undefined roles and responsibilities, unclear project processes, quality problems and resistance to change are some typical problems found in such projects. The lecture is subdivided into following modules:

- Corporate development introduction and motivation,
- Parallelization of corporate development and complexity reduction,
- Planning process and project portfolio management in corporate development,
- Management of large scale projects integration of strategy, processes and information systems,
- Quality management in large scale projects,
- Change management within projects.

The lecture is accompanied by four case studies that are used to exemplify the contents of the lecture by applying the concepts to real situations in corporate life.

| 363-1135-00L | Digital Health Project | W | 3 credits | 2V | T. Kowatsch |

Abstract
Today, we face the challenge of chronic conditions. Personal coaching approaches are neither scalable nor financially sustainable. The question arises therefore to which degree Digital Health Interventions (DHIs) are appropriate to address this challenge. In this lecture, students will learn about the need for, as well as the design, implementation and assessment of DHIs.
Objective

The increasing prevalence of chronic conditions leads to the important question of how to develop evidence-based digital health interventions (DHIs) that allow medical doctors and other caregivers to scale and tailor long-term treatments to individuals in need at sustainable costs. At the intersection of health economics, information systems research, computer science, and behavioral medicine, this lecture has the objective to help students and upcoming healthcare executives interested in the multi-disciplinary field of digital health to better understand the need, design, implementation, and assessment of DHIs. After the course, students will be able to:

1. understand the importance of DHIs for the management of chronic conditions
2. discuss the opportunities and challenges related to DHIs
3. better understand the design, implementation and evaluation of smartphone-based and chatbot-delivered DHIs.

Content

Today, we face the challenge of dealing with the specific characteristics of chronic conditions. These are now responsible for around 70% of all deaths worldwide and are associated with an estimated economic loss of $7 trillion between 2011 and 2025. Chronic conditions require an intervention paradigm that focuses on prevention and lifestyle change. A corresponding change in lifestyle is, however, only implemented by a fraction of those affected, partly because of missing or inadequate interventions or health literacy, partly due to socio-cultural influences. Individual personal coaching of these individuals is neither scalable nor financially sustainable.

Against this background, the question arises on how to develop evidence-based digital health interventions (DHIs) that allow medical doctors and other caregivers to scale and tailor long-term treatments to individuals in need at sustainable costs. At the intersection of health economics, information systems research, computer science, and behavioral medicine, this lecture has the objective to help students and upcoming healthcare executives interested in the multi-disciplinary field of digital health to better understand the need, design, implementation, and assessment of DHIs. After the course, students will be able to:

1. understand the importance of DHIs for the management of chronic conditions
2. discuss the opportunities and challenges related to DHIs
3. better understand the design, implementation and evaluation of smartphone-based and chatbot-delivered DHIs.

To reach the learning objectives, students will work on the following topics:

1. Motivation for Digital Health
 • The rise of chronic diseases in developed countries
 • Lifestyle as medicine and prevention of chronic diseases

2. Design of a Digital Health Intervention (DHI)
 • Overview of design frameworks for health interventions
 • Design of a conceptual model for a DHI
 • Implementation of a smartphone-based and chatbot-delivered DHI

3. Evaluation of DHIs
 • Overview of evaluation methods and evaluation criteria for DHIs
 • Evaluation of a smartphone-based and chatbot-delivered DHI

Course structure

The lecture is structured in two parts and follows the concept of a blended treatment consisting of online-based self-learning sessions and complementary “support” sessions via Zoom. In the first part, students will learn about the topics of the three learning modules in weekly online sessions. Complementary learning material (e.g., video clips), multiple-choice questions, and exercises are provided online via Moodle. In the second part, students work in teams and will use their knowledge from the first part to develop a smartphone-based and chatbot-delivered health intervention with MobileCoach (www.mobile-coach.eu), an open-source software platform for digital interventions and ecological momentary assessments. Each team will then present and discuss their resulting digital health intervention and evaluation results with their fellow students who will provide peer-reviews. Additional online coaching sessions are offered to support the teams with the design and evaluation of their digital health intervention, and with the preparation of their presentations.

Literature

Data: 11.11.2021 12:40

Abstract

Objective

Content

Prerequisites / notice

Due to its practical format, this course is limited to ca 30 students. Note that we offer this course primarily for students who need the extra credit (total of 4 ECTS) to complete their study plans. This will typically be students from D-MAVT and, in some cases, exchange students. Students from all other departments (including D-MTEC) are welcome to apply to the lecturer. If capacity allows, applicants may receive written acceptance by the teaching team to join.

Systems Design and Risks

Number 363-1162-00L

Title Resilience in the New Age of Risk

Type W

ECTS 3 credits

Hours 2V

Lecturers H. Schernberg, C. Hölscher, J. Jörin, G. Sansavini

Abstract

Objective

Autumn Semester 2021

Page 1327 of 2152
Our increasingly complex and connected systems face continuously emerging disruptions. Resilience constitutes a fundamental departure from the philosophy of risk-management. With resilience, stakeholders adopt risk mitigation strategies aligned to the theories of complex systems.

It is, however, difficult to learn about resilience, since it applies to an extremely large array of systems and contexts. Moreover, the topic of resilience is surprisingly absent from most university curricula. This course fills a gap and walks you through a mode of thinking that is bound to shape the way risks and disasters are dealt with in our increasingly connected society. Hence, tomorrow's risk managers will and shall also be "resilience managers".

This course breaks down the concept of complex systems and their resilience. It introduces some of the different flavors of resilience and provides tools for building it in various socially relevant areas (social resilience, engineered systems resilience, organizational resilience...).

The course is divided in 4 parts.
- Part 1: Foundations of Resilience (4 hours)
- Part 2: Resilience Analysis: Infrastructure Systems (10 hours)
- Part 3: Organizational resilience and sensemaking (6 hours)
- Part 4: Resilience in Practice (4 hours)

Part 1 introduces the concept of resilience, and the framework in which it is applied. The distinction between resilience and risk management is highlighted, as well as how these approaches complement each other. The founding concepts of resilience are explained and illustrated: vulnerability, disruption, absorption, recovery, adaptation, etc.

Part 2 walks you through the analysis of the resilience of infrastructure systems. It introduces the useful metrics of resilience. It provides examples of building resilience into complex systems, by increasing the robustness and recoverability of systems, and reducing vulnerabilities. Finally, students will explore the optimization of infrastructure systems.

Part 3. Every system subject to potential disruptions is managed by a human organization. Sensemaking describes how humans frame the problem. It is a process whereby organizational actors attach meaning to external events to resolve the uncertainty surrounding them. Investing in mindfulness improves personal and organizational resilience and success. Finally, the management of organizational resilience is discussed.

Part 4 will provide examples of the use of resilience by practitioners, with guest speakers from the public and private sector.

This course is aimed at MSc and MAS students, from MTEC and other departments. Ideally, students have a quantitative background and some knowledge of risk management.

The Science and Practice of Resilience, Book by Benjamin D. Trump and Igor Linkov

The course is hybrid (in-person or remote).

Literature

Prerequisites / notice

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Economic Dynamics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1137-00L</td>
<td>Applied Econometrics in Environmental and Energy Economics</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>D. Cerruti, N. Kumar, S. Srinivasan</td>
</tr>
</tbody>
</table>

It is highly recommended to take 363-0570-00L Principles of Econometrics first.

Number of participants limited to 40.

Abstract

The course introduces to the most common empirical methods for the analysis of issues in environmental, energy, and resource economics. The course includes computer laboratory sessions, and covers the following broad topics: demand models, discrete choice models, empirical methods in policy evaluation, field- and quasi-experiments.

Objective

At the end of the course, the students will be able to: understand the most common empirical methodologies used in environmental, energy, and resource economics; understand the problems the methodologies learnt in class aim to address; appreciate the importance of causal inference in empirical economics; read and understand the research papers in the literature; apply the empirical methods learnt in class using the software R.
The course introduces students to empirical statistical methods that have wide application in environmental, energy, and resource economics and it is divided in four blocks. The first block is a quick review of the basic econometric methodology and concepts (OLS, standard errors, logit/probit models); the second block introduces demand models like the Almost Ideal Demand System, discrete choice models, and their evolutions; the third block explores causal inference in empirical economics and the main reduced-form econometric techniques used in policy evaluation, such as difference-in-differences, regression discontinuity and synthetic control; the fourth block introduces field experiments and instrumental variables, and their characteristics.

At the end of each block there will be a computer laboratory class in which the student will learn to apply the methodologies learnt in class using the statistical open-source software R. Throughout the course, students will have the chance to work on actual data used for analysis in economics papers.

The lectures will make use of current research papers in the literature to illustrate practical examples in which the methodologies learnt in class have been used. Students will be expected to read in advance the paper that will be explained during the lecture.

The evaluation policy has the aim to allow students to get practical experience on the econometric methodologies learnt in class. Thus, beyond a final computer exercise exam (60% of the grade), the course includes short takehome computer exercises (40% of the grade).

As the course will be centered on econometric methods, it is recommended that students have taken 363-0570-00L Principles of Econometrics first, or have otherwise a solid knowledge of basic econometric methodologies as detailed in Part 1 of Wooldridge, Jeffrey M. (2018) Introductory Econometrics : A Modern Approach. Seventh ed. ISBN: 978-1-337-55886-0. Knowledge of statistical software R is helpful, but not required and will be taught in the computer laboratory sessions.

It is highly recommended to take 363-0570-00L Principles of Econometrics first.

Prerequisites / notice

Students who have successfully completed the course "Dynamic Macroeconomics" (364-0559-00L) or "Economics of Innovation and Growth" (363-0562-01L) can not register for this course.

Abstract

Introducing dynamic models and workhorses in macroeconomics, understanding the role of innovation and institutions for economic development and discussing policies to foster innovation and economic growth, with a perspective on how digitization and artificial intelligence will affect our economies.

Objective

After the course, students will be familiar with dynamic general equilibrium theory and the basic workhorses in macroeconomics. Participants will be able to speak the Arrow-Debreu and recursive language and apply the frameworks to interesting issues, such as innovation and growth. Moreover, students will understand how the world has developed over the last centuries and the proximate and fundamental causes of innovation and economic growth. Students will understand and apply the basic models of economic growth and will be able to identify policies to foster innovation and growth and to reduce the large wealth differences in the world. Finally, they understand how digitization and artificial intelligence will drive the economies.

Content

1. Introduction

2. The Arrow-Debreu Approach and Sequential Markets

3. The Neoclassical Growth Model and the Representative Agent Model (with Mathematical Background)

4. Technological Progress and how the World has developed

5. Innovations and Growth (New Growth Theory)

6. Growth Policies and Fundamental Causes for Growth

7. Digitization and Artificial Intelligence

Literature

14. Current Literature on Digitization and Artificial Intelligence

Prerequisites / notice

Students who have successfully completed the course "Dynamic Macroeconomics" (364-0559-00L) or "Economics of Innovation and Growth" (363-0562-01L) can not register for this course.

Abstract

Who are the 86 laureates of the economics "Nobel prize", and what are their scientific contributions? This course will present the major concepts, theories and results in modern economics, through an overview of the work of a selection of economics "Nobel prize" as well as Leontief prize laureates.
Objective
- Have an overview of the discipline of economics in all its diversity.
- Know the main school of thoughts in economics, such as Keynesian, neoclassical and neoklassisch economics, behaviorism, institutionalism, empiricism.
- Understand major concepts of various fields within economics such as macroeconomics, microeconomics, public economics, econometrics. These concepts include (but are not restricted to): preferences, utility, social welfare, discounting, factors of production and their marginal products, potential output, the paradox of thrift, the Phillips curve, the natural interest rate, rational expectations, Nash equilibrium, incentive-compatibility, Pigou taxes, asymmetry of information, market efficiency, market imperfections, the equity-efficiency trade-off, risk aversion, loss aversion, capabilities, common goods, endogeneity, instrumental variable.
- Name major post-war economists, talk about their main contributions, and situate them in the history of economic thought.
- Be able to have a critical understanding of some articles in journals like the Financial Times, and to skim-read peer-reviewed articles in economics.

Content
- Target group: The course will be open to master students as well as PhD students. There is no prerequisite apart from being curious about economics and the society.
- Relevance: As the content of the course is voluntary broad, the course will teach concepts relevant for many different types of interests. Indeed, economics is connected to various other domains (politics, finance, management, statistics, psychology...) and concepts from economics may be applied in a variety of contexts. Besides, the course will help students think about important contemporary issues (public debt, fairness of tax redistribution, the role of government, climate change...). More generally, the course will be valuable for the students' general culture.
- Outline: Each lesson will present the theories, concepts and results introduced by a few major economists, grouped by theme and school of thought, and loosely following a chronological order. About half of economics "Nobel prize" laureates will be presented, as well as several prejudices of the Leontief prize (an annual award to outstanding economists who have significantly contributed to research and support just and sustainable societies”). The fourteen lessons will cover: Keynesianism; libertarianism; neoclassical macro; neoklassisch macro; foundations of micro; game theory; behavioral micro; micro of organizations and contracts; public economics; econometrics; finance; economics and society (i.e. institutions, development, well-being, environment); development (through Leontief prize winners); macroeconomics (also Leontief).
- Expectations: Students are expected to retain two to three key concepts in each lesson. Readings between the lessons will help them to do so. Students will also have to read, digest, and situate an entire book or peer-reviewed economics article.
- Course assessments: Some lessons might begin with pop quizzes to check whether students have integrated key concepts of the previous lessons. Assessment may also include an individual essay or a presentation. This will consist of a contextualised summary of a highly cited economics writing (article or book), preferably from an economist studied in class. By dispensation, this final work could instead deal with several writings (instead of one), or describe a specific approach, theory or controversy in economics.
- References (for an updated list, go to sites.google.com/view/adrien-fabre/teaching):
 - Dostaler, Gilles, Economics: A History and Dictionary of Major Economists, (Routledge, 2005)
 - Karier, Tom, Intellectual Capital: Forty Years of the Nobel Prize in Economics (Cambridge University Press, 2010)
 - Voyer, Michel, A History of Macroeconomics from Keynes to Lucas and Beyond (Cambridge University Press, 2016)

363-1037-00L Fiscal Competition and Multinational Firms

Abstract
The course enables students to understand how multinational firms respond to differential tax regimes in a global economy and how they are related to tax policy.

Objective
- Understand how taxes influence decisions of multinational firms
 - Develop thinking about the strategic use of differential tax systems for multinational firms
 - Evaluate options for governments to respond to the tax planning behavior of multinational firms

Content
- Multinational firms have grown in importance in recent decades. Given that their affiliates are located in different countries, they face various tax systems. This creates a complex tax environment for multinational firms. The course will analyze the impact of tax systems on multinational firms and how they allocate taxable profits across countries.
- The course covers the economic concepts and empirical findings in health economics to enhance students' understanding of how health care institutions and markets function.

363-1027-00L Introduction to Health Economics and Policy

Abstract
Health expenditures constitute about 10% of GDP in OECD countries.Extensive government intervention is a typical feature in health markets. Risk factors to health have been changing with growing importance of lifestyle factors such as smoking, obesity and lack of physical activity. This course gives an introduction to the economic concepts and empirical findings in health economics.

Objective
Introduce students without prior economic background to the main concepts of health economics and policy to enhance students understanding of how health care institutions and markets function.

Content
- Introduce students without prior economic background to the main concepts of health economics and policy to enhance students understanding of how health care institutions and markets function. Motivated by the fact that health care markets are designed differently across countries, this course looks at the challenges in regulating health care markets. First, two important decisions of individuals will be analyzed: What types and amount of personal health care services does an individual demand? How much will health insurance coverage be purchased? In the second part, the supply side of health care will be discussed. What is the financial incentives of physicians, and how do these influence physicians' treatment choices? What does it mean and imply that a physician is an agent for a patient? The choices made by societies about how health care services are financed and about the types of organizations that supply health care will be addressed in the third part. One important choice is whether a country will rely on public financing of personal health care services or encourage private health insurance markets. How could and should a public health insurance system be designed? The advantages and disadvantages of the alternatives will be discussed to provide a framework for analyzing specific types of health care systems.
How will the overall economy develop during the next quarters and years? What is the impact of the exchange rate on economic activity?

The course introduces the methods for analyzing and forecasting macroeconomic activity using multivariate time series analysis. We will study econometric models that central banks, government agencies and other research institutions use to analyze and forecasts macroeconomic variables.

Objective
How will the overall economy develop during the next quarters and years? What is the impact of the exchange rate on economic activity? After completing this course, students will be able to tackle these and related questions using multivariate time series methods as applied by researchers and professional forecasters.

Content
The course covers the following topics:
- Vector autoregressive (VAR) models
- Identification of macroeconomic shocks
- Conditional forecasting (macroeconomic scenario analysis)
- State space models
- Macroeconometrics and Big Data

During computer exercises, we utilize the time series models to study real world examples using R.

Prerequisites:
- Principles of Macroeconomics
- Principles of Econometrics

Literature

Prerequisites / notice
Although we apply basic economic concepts to health care questions, students should be aware that this course requires some mathematical skills in terms of maximization problems.

Please be prepared that this course might (partially) be run via zoom, depending on the situation.

363-1161-00L Time Series Econometrics and Macroeconomic Forecasting

Abstract
This course introduces the methods for analyzing and forecasting macroeconomic activity using multivariate time series analysis. We will study econometric models that central banks, government agencies and other research institutions use to analyze and forecasts macroeconomic variables.

Objective
How will the overall economy develop during the next quarters and years? What is the impact of the exchange rate on economic activity? After completing this course, students will be able to tackle these and related questions using multivariate time series methods as applied by researchers and professional forecasters.

Content
The course covers the following topics:
- Vector autoregressive (VAR) models
- Identification of macroeconomic shocks
- Conditional forecasting (macroeconomic scenario analysis)
- State space models
- Macroeconometrics and Big Data

During computer exercises, we utilize the time series models to study real world examples using R.

Prerequisites:
- Principles of Macroeconomics
- Principles of Econometrics

363-1124-00L The Economics of Societal Decisions under Risk

Abstract
Societal decisions often involve risk: Should a new drug or pesticide be approved, given the unknown side-effects to human health and the environment? What principles should guide such decisions? This course provides the theoretical toolkit (in particular Cost-Benefit Analysis) for societal decision-making under risk and contrasts theoretical recommendation with the actual regulatory practice.

Objective
By the end of the course, students will be able to:
1. Name the building blocks of cost-benefit analysis under risk
2. Describe the connections and differences between welfare economics under uncertainty and cost-benefit analysis under risk
3. List real-world examples of risk regulation and explain differences between practice and theoretical recommendation
4. Analyze real-world risk-regulatory problems by breaking them up into relevant components
5. Select an appropriate framework for evaluating stylized risk regulatory tasks
6. Prepare a well-founded and comprehensive recommendation and discuss limitations and robustness

In addition to these course-specific learning objectives, students shall also develop their skills in:
- Working successfully in a team: Agree on a topic for a joint project, execute the project together, and prepare a joint report
- Convey complex information succinctly and effectively in a written report
- Provide fellow students with useful feedback on their work

Content
- 01 Welcome and course logic: Introduction to decision theory
- The Precautionary Principle: Basic narrative and context
- Reality of Risk Management: Pesticide regulation
- Microeconomic Foundations of Cost-Benefit Analysis
- Reality of Risk Regulation: Violation of the equimarginal principle
- Uncertainty in CBA: the dominant, naïve approach
- Risk Assessment in Practice
- Value of Learning: sequential models of risk regulation
- Risk assessment: compatible with models of value of learning?
- Option price and option value: Theory
- Option price and option value: Practice
- Uncertainty and the social discount rate
- Discounting in the real world
- Midterm Quiz
- Student projects: Discuss which tool they use
- Welfare economics: utilitarianism and ex-ante egalitarianism
- Welfare economics: the long way from theory to practice
- Risk-risk trade-off: theory and practice
- Some time allocated to student projects
- Welfare economics beyond risk: ambiguity and alternatives
- Limitations of CBA: Climate Risk and fat tails
- Political Economy of Risk Regulation: Actors and Incentives
- Some time allocated to student projects
- International Dimension of Risk Regulation
- The reality of precaution
- Project Presentations
- Wrap-up and outlook

Lecture notes
n/a

Literature
The lecture provides an introduction to some of the central issues in labor economics, including the determinants of labor supply, firms' market policies. A second target group is students that want to learn how modern empirical research in labor economics uses big data to analyze central issues in labor economics.

After presenting how modern labor economics conceptualizes these issues, the course discusses state-of-the-art empirical research papers on these issues and discusses the empirical challenges related to their research design.

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:

While there is no required textbook for the course, we draw from the following texts, which are also recommend for the preparation of the exam:

The main aim of this course is to analyse the goals of monetary policy and to review the instruments available to central banks in order to pursue these goals. It will focus on the transmission mechanisms of monetary policy and the differences between monetary policy rules and discretionary policy. It will also make connections between theoretical economic concepts and current real world issues.

This lecture will introduce the fundamentals of monetary economics and explain the working and impact of monetary policy. The main aim of this course is to describe and analyze the goals of monetary policy and to review the instruments available to central banks in order to pursue these goals. It will focus on the transmission mechanisms of monetary policy, the effectiveness of monetary policy actions, the differences between monetary policy rules and discretionary policy, as well as in institutional issues concerning central banks, transparency of monetary authorities and monetary policy in a monetary union framework. Moreover, we discuss the implementation of monetary policy in practice and the design of optimal policy.

For the functioning of today's economy, central banks and their policies play an important role. Monetary policy is the policy adopted by the monetary authority of a country, the central bank. The central bank controls either the interest rate payable on very short-term borrowing or the money supply, often targeting inflation or the interest rate to ensure price stability and general trust in the currency. This monetary policy course looks into today's major questions related to policies of central banks. It provides insights into the monetary policy process using core economic principles and real-world examples.

The main objective of this course is to provide students with some basic tools to analyze the fundamental economic forces at play in urban systems (i.e., agglomeration and congestion forces), and the role of transport networks in shaping the structure of these systems. Why do urban areas grow or decline? How do transport networks affect the location of individuals and firms? Does the location of a firm determine its productivity? Can transport infrastructure investments reduce economic disparities? These are some of the questions that students should be able to answer after having completed the course.

The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15063) contains announcements, course information and lecture slides.

Basic knowledge in international economics and a good background in macroeconomics.

363-1139-00L

Population aging challenges the financial sustainability of social security systems and increases the individual responsibility for retirement security. This course provides an overview of the economics of savings and pensions, introducing the theoretical tools and the quantitative methods to analyze topical questions about individual saving and retirement behavior.

At the end of the course, students will be able to:
- understand the basic economic aspects related to population aging;
- explain the structure and functioning of public and private pension systems, and analyze related issues of insurance and incentives;
- understand how the most common empirical methods in program evaluation are used to causally identify the effects of pension policies;
- analyse and critically discuss policy-relevant questions about individual savings and retirement behavior.

The course introduces students to the key theoretical tools and quantitative methods used in household finance to analyze topical questions around individual saving, portfolio and retirement behavior, with a focus on the role of pension systems and the ongoing demographic transition.

The first part provides an overview of causes and economic consequences of population aging, presents an account of public and private pension systems and discusses options for reform.

In the second part, the course introduces intertemporal models of individual behavior. This will provide a framework to examine the economic determinants of savings (savings for retirement and precautionary savings), portfolio allocation and retirement.

The third part of the course presents and discusses recent empirical evidence from research papers on how individuals save, invest their wealth and plan for retirement, the role of social security and the effects of pension policies. Topics include: the relation between social security wealth and private wealth, the effect of retirement saving incentives on individual behavior, the effect of pension reforms, longevity risk and annuities, the importance of financial knowledge for retirement planning. The lectures offer an introduction to the quantitative methods used to analyze these issues, such as basic model simulation techniques and econometric methods for policy evaluation.

No formal prerequisites. The assessment policy is designed to allow students to apply the concepts and methods learnt in class to real-world issues. The assessment will be based on the critical presentation (35%) of one country's pension system and a final project (65%), in which students may apply the relevant methods to analyze questions related to issues in the economics of aging, pensions and savings.

363-1047-00L

This course is an introduction to urban and regional economics. It focuses on the formation and development of urban systems, and highlight how transport infrastructure investments can affect the location, size and composition of such systems.

The main objective of this course is to provide students with some basic tools to analyze the fundamental economic forces at play in urban systems (i.e., agglomeration and congestion forces), and the role of transport networks in shaping the structure of these systems. Why do urban areas grow or decline? How do transport networks affect the location of individuals and firms? Does the location of a firm determine its productivity? Can transport infrastructure investments reduce economic disparities? These are some of the questions that students should be able to answer after having completed the course.

Basic knowledge in international economics and a good background in macroeconomics.
Content
The course is organized in four parts. I start with the key observation that economic activity (both in terms of population density and productivity) is unevenly distributed in space. For instance, the share of the population living in urban centers is increasing globally, from 16% in 1900 and 50% in 2000 to about 68% by the year 2050 (UN, World Economic Prospects, 2014). The goal of the first part is then to understand the economic forces at play behind these trends, looking at the effects within and across urban areas. I will also discuss how natural or man-made geographical characteristics (e.g., rivers, mountains, borders, etc.) affect the development of such urban systems.

In the second part, I discuss the planning and pricing of transport networks, moving from simple local models to more complex transport models at a global scale. The key aspects include: the first and second best road pricing, the public provision of transport networks and the demographic effects of transport networks.

In the third part, I combine the previous two parts and analyze the interaction between urban systems and transportation. Thereby, the main focus is to understand the economic mechanisms that can lead to a general equilibrium of all actors involved. However, as the study of the historical development of urban systems and transport networks provides interesting insights, I will discuss how their interaction in the past shapes today’s economic geography.

Finally, I broaden the scope of the course and explore related topics. There will be a particular emphasis on the relation between urban systems and fiscal federalism as well as environmental policies. Both aspects are important determinants of the contemporary developments of urban systems, and as such deserve our attention.

In general, this class focuses on the latest research developments in urban and regional economics, though it does not require prior knowledge in this field. It pays particular attention to economic approaches, which are based on theoretical frameworks with strong micro-foundations and allow for precise policy recommendations.

Lecture notes
Course slides will be made available to students prior to each class.

Literature
Course slides will be made available to students.

363-1107-00L Youth Labor Market Outcomes, Institutions and Governance of Education and Training Systems

Abstract
Finding and retaining talent for companies is becoming increasingly important nowadays. While Switzerland has a comparatively efficient labor-market-oriented education system, other countries find it more challenging to develop the skills needed by the labor market. We will consider contributions of economics and other social sciences to understanding outcomes of education and training systems.

Objective
Using internationally comparable data, students can measure, compare and assess the human capital performance of education systems.

Content
In the context of digitalization and rapid technological change, finding and retaining talent for companies is becoming increasingly important. While Switzerland has a comparatively efficient labor-market-oriented education system, other countries find it much more challenging to develop the skills needed by the labor market. Without strong education and training systems, it is difficult to secure the volume of labor, quantitatively and qualitatively, that is necessary for prosperity and social development.

The course will take a macro perspective to show how we can measure the performance of different education and training systems. It will also describe the institutional challenges countries face when companies complain that a shortage of skilled professionals is limiting growth. We will consider the contributions of economics and other social sciences to understanding the performance of diverse education and training systems, which we regard as both as economic and institutional phenomena.

Students are able to deduce the consequences of countries’ different initial institutional situations, to locate them culturally, and to point out problem-solving measures from the perspective of a company seeking improved skills preparation.

Students can use case studies to identify and evaluate the different institutional features of labor-market-oriented education systems, and use those features to explain certain outcome effects on the youth labor market.

851-0735-09L Workshop & Lecture Series on the Law & Economics of Innovation

Abstract
This series is a joint project by ETH Zurich and the Universities of St. Gallen and Zurich. It provides an overview of interdisciplinary research on intellectual property, innovation, antitrust, privacy and technology policy. Scholars from law, economics, management and related fields present their current research. All speakers are internationally well-known experts from Europe, the U.S. & beyond.

Objective
After the workshop and lecture series, participants should be acquainted with interdisciplinary approaches towards intellectual property, innovation, antitrust, privacy and technology policy research. They should also have an overview of current topics of international research in these areas.

Content
The workshop and lecture series will present a mix of speakers who represent the wide range of current social science research methods applied to intellectual property, innovation, antitrust, privacy and technology policy issues. In particular, theoretical models, empirical and experimental research as well as legal research methods will be represented.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Communication	assessed
Domain D - Personal Competencies	Creative Thinking	assessed

Human and Entrepreneurial Behaviour

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1044-00L</td>
<td>Applied Negotiation Seminar</td>
<td>W</td>
<td>3 credits</td>
<td>2S</td>
<td>A. Knobel</td>
</tr>
</tbody>
</table>

Prerequisites: Successful completion of lectures “363-1039-00L Introduction to Negotiation”.

Abstract
The block-seminar combines lectures introducing negotiation and negotiation engineering with the respective application through in-class negotiation case studies and games.
This elective is relevant for students who have developed a technology and are keen to evaluate the steps in starting a startup. This is also
 Students have technology competence or an idea that they would like to convert into a startup. They are now in the process of evaluating
This block seminar is an extension of the course "Introduction to Negotiation" and provides more detailed insight into key aspects of the
Enabling Entrepreneurship: From Science to Startup
The students would cover the following topics, as the build their idea into a business case:
• a series of brief lectures will outline foundational aspects of negotiation science, such as rationality, fairness, and trust, as well as the
• three practitioners will describe lessons learnt in their negotiation domains (diplomacy, labor, and business) and allow time for Q&A and
discussion
• students will apply course input in a number of challenging simulations (ranging from simple 30 minute games to full-fledged international
ten party negotiations). In each game they will be asked to represent a party and negotiate as skillfully as they possibly can within the
constraints of their mandate
• each student will be assigned a scholarly paper (20 to 30 pages) between the two blocks to read. They will give a 20 minute group
presentation with one or two of their peers and submit a brief reflection report after the seminar

The course size is deliberately limited (30 maximum) to enable ample opportunity to interact with the lecturers, guests and each other.

<table>
<thead>
<tr>
<th>363-1082-00L</th>
<th>Enabling Entrepreneurship: From Science to Startup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students should provide a brief overview (unto 1 page) of their business ideas that they would like to commercialise through the course. If they do not have an idea, they are required to provide a motivation letter stating why they would like to do this elective. If you are unsure about the readiness of your idea or technology to be converted into a startup, please drop me a line to schedule a call or meeting to discuss.</td>
<td></td>
</tr>
<tr>
<td>The total number of students will be limited to 40. It is preferable that the students already form teams of at least two persons, where both the team-members would like to do the course. The names of the team-members should be provided together with the business idea or the motivation letter submitted by the students.</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This elective is relevant for students who have developed a technology and are keen to evaluate the steps in starting a startup. This is also relevant for students who would like to start a startup but do not have a technology, but are clear on a specific market and the impact they would like to create.

Objective

1. Students want to become entrepreneurs
2. The students can be from business or science & technology
3. The course will enable the students to identify the relevance of their technology or idea from the market relevance perspective and thereby create a business case to take it to market.
4. The students will have exposure to investors and entrepreneurs (with a focus on ETH spin-offs) through the course, to gain insight to commercialise their idea

Content

1. Technology excellence: this assumes that the student has achieved a certain degree of competence in the area of technology that he or she expects to bring to the market
2. Market need and market relevance: The student would then be expected to identify the possible markets that may find the technology of relevance. Market relevance implies the process of identification of how relevant the market perceives the technology, and whether this can sustain over a longer period of time
3. IP and IP strategy: Intellectual property, whether in the form of a patent or a trade secret, implies the secret ingredient that enables the student to achieve certain results that competitors are unable to copy. This enables the student (and subsequently the startup) to hold on to the market that they create with customers
4. Team including future capabilities required: a startup requires multiple people with complementary capabilities. They also need to be motivated while at the same time protecting the interests of the startup
5. Financials: There is a need of funding to achieve milestones. This includes funding for salaries and running of the company
6. Investors and funding options: There are multiple funding options for a startup. They all come with different advantages and limitations. It's important for a startup to recognise its needs and find the investors that fit these needs and are best aligned with the vision of the founders
7. Preparation of business case: The students will finally prepare the business case that can help them to articulate the link of the technology with the market need and its willingness to pay
8. Legal overview, company forms and shareholders' agreements (including pitfalls)

The seminar includes talks from invited investors, entrepreneurs and legal experts regarding the importance of the various elements being covered in content, workshops and teamwork. There is a particular emphasis on market validation on each step of the journey, to ensure relevance.

Lecture notes

Since the course will revolve around the ideas of the students, the notes will be for the sole purpose of providing guidance to the students to help convert their technologies or ideas into business cases for the purpose of forming startups. Theoretical subject matter will be kept to a minimum and is not the focus of the course.

Literature

Sethi, A. "From Science to Startup" ISBN 978-3-319-30422-9
The goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications.

Creative Thinking

Students will learn about different leadership styles and how power and leadership play out in social interactions. Emphasis is placed on strategies of human-system-interaction, individual needs, physical & mental abilities, and system properties affecting the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's health, well-being, and satisfaction as well as the overall system performance.

Abstract

The objective is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.

Objective

- Physiological, physical, and cognitive factors in sensation, perception, and action
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance, well-being, and comfort
- Usability engineering in system designs, product development, and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks

Content

Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.

Literature

- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBiS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS

Prerequisites / notice

This course is relevant for those students who aspire to become entrepreneurs.

Students applying for this course are requested to submit a 1 page business idea or, in case they don't have a business idea, a brief motivation letter stating why they would like to do this course.

If you are unsure about the readiness of your idea or technology to be converted into a startup, please drop me a line to schedule a call or meeting to discuss.

Taught competencies

- **Domain B - Method-specific Competencies**
 - Media and Digital Technologies: not assessed
 - Project Management: not assessed

- **Domain C - Social Competencies**
 - Cooperation and Teamwork: not assessed
 - Customer Orientation: assessed
 - Leadership and Responsibility: not assessed

- **Domain D - Personal Competencies**
 - Creative Thinking: assessed
 - Critical Thinking: not assessed
 - Self-awareness and Self-reflection: not assessed
 - Self-direction and Self-management: not assessed

Coursework

- Writing a leadership skills training report (~30 hours)
- Providing feedback to two of your classmates on their leadership skills (~6 hours)
- Preparation of a video of a 2-min speech (incl. training, ~12 hours)
- Analysis of Visionary Speeches (~10 hours)
- Leadership styles and theories: Universalist theories, behavioral theories, contingency theories, "new leadership" theories
- Leadership, communication, and interpersonal skills (3 sessions); 1. Effective communication: Listening and speaking, running effective meetings, delegating effectively, giving performance feedback, 2. Hierarchy and communications: Pitfalls and solutions, communication training, 3. Importance of social skills for leadership effectiveness
- Agility in teams: Overview of the Scrum Framework in the context of software development, leadership in agile teams, the role of motivation, training: experiencing first-hand how to develop a product in an agile way
- Power abuses, ethics in leadership: Why do leaders behave unethically? Destructive leadership: theories, examples, and consequences
- Diversity and discrimination in relation to power and leadership: Expectations, bias, and discrimination the workplace, sources of bias, how to reduce bias and discrimination
- Leadership and innovation: Which are the particular paradoxes and trade-offs leaders face when they are leading for innovation? How could they successfully manage those challenges?

Homework

- Analysis of Visionary Speeches (~10 hours)
- Preparation of a video of a 2-min speech (incl. training, ~12 hours)
- Providing feedback to two of your classmates on their leadership skills (~6 hours)
- Writing a leadership skills training report (~30 hours)
- Mandatary and facultative readings and exercises (~10 hours)

Mandatory readings:

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories

Domain B - Method-specific Competencies
- Analytical Competencies
- Communication
- Cooperation and Teamwork
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity

Domain C - Social Competencies
- Adaptability and Flexibility
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Sensitivity to Diversity

Domain D - Personal Competencies
- Adaptability and Flexibility
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Psychological Aspects of Risk Management and Technology

Number of participants limited to 65.

Abstract

Using uncertainty management by organizations and individuals as conceptual framework, risk management and risk implications of new technologies are treated. Three components of risk management (risk identification/evaluation, risk mitigation, risk communication) and underlying psychological and organizational processes are discussed, using company case studies to promote in-depth understanding.

Objective

- You know how risk and risk management is defined and applied in different industries
- You know the challenges of decision making under risk and uncertainty and its effects on organisations
- Gain some more in-depth knowledge in a selected field within risk management through the semester project (e.g. transport systems, IT, insurance)

This course consists of three main elements:

A) Attendance of lectures that provide the theoretical foundations of "Psychological Aspects of Risk Management and Technology" together with reading assignments for each lecture.

B) Attendance of guest lectures that provide a rich source of practical insights and enable the transfer of theory into practice by discussing real-life cases with experts from various industries.

C) Furthermore, this course enables you to apply what you have learned in the classroom into practice by participating in a group assignment in which you gain insights into various risk industries (e.g., aviation, healthcare, insurance) and topics (e.g., risks in cyber-attacks, mountaineering, autonomous vehicles). These projects help students understand key aspects through in-depth application of the course material on real-life topics. Each group project will be mentored and graded by one of the lecturers (70% of course grade). To round off the course at the end of the year, you will have the opportunity to present your group’s findings to the lecturers and to your peers (30% of course grade).

Content

The course is organized into fourteen sessions. Sessions comprise a mixture of (guest) lectures, case discussions, and presentations. Through class discussion we will further deepen understanding of the topics and themes of the class. For each session you are required to prepare by reading the assigned literature or case material provided on the Moodle e-learning platform. Topics covered include:

- Elements of risk management:
 - Risk identification and evaluation
 - Risk mitigation
 - Risk communication

- Psychological and organizational concepts relevant in risk management
 - Decision-making under uncertainty
 - Risk perception
 - Resilient organizational processes for managing uncertainty

- Case studies on different elements of risk management (e.g., rule-making, training, managing project risks, automation)

Lecture notes

There is no script, but slides will be made available before the lectures.

Literature

There are texts for each of the course topics made available before the lectures.

Prerequisites / notice

The course is restricted to 40 participants who will work closely with the lecturers on case studies prepared by the lecturers on topics relevant in their own companies (SWICA, SWISS, University Hospital Zurich).

Simulation of Negotiations

Limited number of participants.

Abstract

The Global Studies Institute (University of Geneva) is organizing a simulation seminar on Nagorno-Karabakh in collaboration with MGIMO Moscow (TBC) and the Chair of Negotiation and Conflict Management (ETHZ).

Objective

Students who wish to register for this course have to apply no later than 18 September. Please send your application to Andreas Knobel: aknobel@ethz.ch, additionally register in mystudies (technical note for the registration: All registered students will initially be placed on a waiting list).

Students will have the possibility to participate in simulated diplomatic negotiations and to analyse and assess the negotiation logic behind the situation. During the course, they should gain insight into the negotiations between Armenia, Azerbaijan, and the international community, as well as negotiation techniques in general.
Technology ventures are significantly changing the global economic picture. Technological skills increasingly need to be complemented by technological entrepreneurship.

The Global Studies Institute (University of Geneva) is organizing a simulation seminar on the conflict in Nagorno-Karabakh in collaboration with MGIMO Moscow (TBC) and the Chair of Negotiation and Conflict Management (ETHZ).

The two main aims of the exercises are: 1) to become familiar with the historical, economic, political dimensions of the conflict in Nagorno-Karabakh (first session); 2) to work on the mandates for the simulation under supervision of the lecturers (second session).

Evaluation

I. Active participation in class (50%)

1. Attend all seminar sessions either in person or via video conference and actively participate in discussions.
2. Participate in person in the two-day simulation exercise (19-20 November 2020).

II. Texts to be submitted before, during and after the simulation (50%)

1. Before the simulation: Prepare a 4-5 page summary of your group's negotiating mandate, including a description of the positions of all the parties (group evaluation).
2. During the simulation: Draft and present an introductory and final statement (group evaluation).
3. After the simulation: Prepare a report on the negotiation outcomes to the organization, state or region you represent (3-4 pages) and a press release (max. 1 page). The report and press release are individually evaluated.

Prerequisites / notice

363-1050-01L Simulation of Negotiations (Exercises)

<table>
<thead>
<tr>
<th>W</th>
<th>1 credit</th>
<th>1U</th>
<th>M. Ambühl, A. Knobel</th>
</tr>
</thead>
</table>

Abstract
The Global Studies Institute (University of Geneva) is organizing a simulation seminar on the conflict in Nagorno-Karabakh in collaboration with MGIMO Moscow (TBC) and the Chair of Negotiation and Conflict Management (ETHZ).

Objective
The two main aims of the exercises are: 1) to become familiar with the historical, economic, political dimensions of the conflict in Nagorno-Karabakh (first session); 2) to work on the mandates for the simulation under supervision of the lecturers (second session).

Content
For the first session students will be asked to prepare and deliver a 15 minute talk on some aspect of the conflict.

Dates, Time:
First session: 12 October 2021, 13-17 h
Second session: 9 November 2021, 8-12 h

Prerequisites / notice
In order to participate in this module students also need to apply and register for the lecture 363-1050-00 L Simulation of Negotiations.

363-0790-00L Technology Entrepreneurship

<table>
<thead>
<tr>
<th>W</th>
<th>2 credits</th>
<th>2V</th>
<th>F. Hacklin</th>
</tr>
</thead>
</table>

Abstract
Technology ventures are significantly changing the global economic picture. Technological skills increasingly need to be complemented by entrepreneurial understanding.

Objective
This course provides theory-grounded knowledge and practice-driven skills for founding, financing, and growing new technology ventures. A critical understanding of dos and don'ts is provided through highlighting and discussing real life examples and cases.

Content
See course website: http://www.entrepreneurship.ethz.ch/education/fall/technology-entrepreneurship.html

Lecture notes
Lecture slides and case material

363-0301-00L Work Design and Organizational Change

<table>
<thead>
<tr>
<th>W</th>
<th>3 credits</th>
<th>2G</th>
<th>G. Grote</th>
</tr>
</thead>
</table>

Abstract
Good work design is crucial for individual and company effectiveness and a core element to be considered in organizational change. Meaning of work, organization-technology interaction, and uncertainty management are discussed with respect to work design and sustainable organizational change. As course project, students learn and apply a method for analyzing and designing work in business settings.

Objective
- Know effects of work design on competence, motivation, and well-being
- Understand links between design of individual jobs and work processes
- Know basic processes involved in systematic organizational change
- Understand the interaction between organization and technology and its impact on organizational change
- Understand relevance of work design for company performance and strategy
- Know and apply methods for analyzing and designing work
The course is organized in a highly interactive fashion, where discussion in class is as important as the input by the lecturer. Understanding the dynamics in organizations is helped enormously by concrete examples, which will be provided by the lecturer, by talks by guest lecturers, and also the students themselves based on their prior experience from working in various roles (as employees, volunteers, student assistants etc.). Through class discussion we aim to deepen the understanding of the themes covered in the course. The current changes in organizations brought about by Covid-19 will also be an important example which allows to illustrate and discuss many of the key concepts of the course.

Specifically, the course will cover the following topics:
- Work design: From Adam Smith to job crafting
- Effects of work design on performance and well-being
- Approaches to analyzing and designing work
- Modes of organizational change and change methods
- Balancing stability and flexibility in organizations as design criterion
- The organization-technology interaction and its impact on work design and organizational change
- Example Flexible working arrangements (e.g. home office)
- Strategic choices for work design

All through the course, students will be guided to work on their projects also, with about 25% of class time devoted to the projects. In the final session, students will present the main results of their projects and discuss main insights also across projects.

Literature
A list of required readings will be provided at the beginning of the course.

The course includes the completion of a course project to be conducted in groups of four students. The project entails applying a particular method for analyzing and designing work processes and is carried out by means of interviews and observations in companies chosen by the students.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1036-00L</td>
<td>Empirical Innovation Economics</td>
<td>W</td>
<td>3 credits</td>
<td>1G</td>
<td>M. Wörter</td>
</tr>
</tbody>
</table>

Abstract
The course focuses on important factors that drive the innovation performance of firms, like innovation capabilities, the use of digital technologies, environmental and innovation policy and it shows how innovation activities relate to firm performance and to the technological dynamic of industries. We also discuss the implications of the findings for effective economic policy-making.

Objective
The course provides students with the basic skills to understand and assess empirically the technological activities of firms and the technological dynamics of industries. In addition, the aim is to promote the understanding of the essential criteria for innovation policy-making.

Personal and social skills are also addressed during the course. In particular, there is the possibility to improve communication and presentation skills, the ability to develop arguments for the positions of political representatives, policy-makers, pressure groups, or NGOs in connection with innovation policy-making.

Content
The course consists of two parts. Part I provides an introduction into important topics in the field of the economics of innovation. Part II consists of empirical exercises based on various firm-level data sets, e.g., the KOF Innovation data, data about the digitization of firms, data about environmentally friendly innovations, or patent data. In part I we will learn about ... a) market conditions that encourage firms to invest in R&D (Research and Development) and develop new products and processes. ... b) the role of competition and market structure for the R&D activities of companies. ... c) how digital and environmentally friendly technologies diffuse among firms. ... d) how the R&D activities of firms are affected by economic crises and how firms finance their R&D activities. ... e) how we can measure the returns to R&D activities. ... f) how environmental policies and innovation policies affect the technological activities of a firm. In part II we will use the KOF Innovation Survey data, patent data, data on digitization of firms, or other longitudinal data sources, to investigate empirically the technological activities of firms in relation to the topics introduced in part I.

Lecture notes
Will be provided in the course and in the e-learning environment: https://moodle-app2.let.ethz.ch/course/view.php?id=15120

Literature

Prerequisites / notice
Course is directed to advanced Master-Students and PhD Students with an interest in empirical work.

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1339 of 2152
The introductory part will explain why climate change represents a main issue for our societies. We will see the anthropogenic causes (i.e. greenhouse gas (GHG) emissions), the physical mechanism and the economic consequences of climate change. Then, we will introduce economic science modeling with the notion of externality to explain the excessive GHG emissions and characterize the societal challenge raised by climate change.

The second part of the course will present the different policy instruments for reducing GHG emissions (emission taxes, abatement subsidies, cap-and-trade system, standards). We will compare their performance and their distributional effects with regard to several aspects, with a special focus on the impact of uncertainty.

The third part of the course will focus on the level at which climate policies should be implemented, which depends on the cost of emission abatement and the benefit of climate change mitigation. We will detail the economic models developed to evaluate the optimal GHG emission abatement, namely Integrated Assessment Models. We will then analyze the main drivers of the optimal abatement level, in particular discounting and technological change.

The last part of the course will address the reasons why policy makers have only weakly implemented climate change policies up to now. We will discuss the difficulties of finding an international agreement for GHG emission reduction in a world with a large number of countries. We will also see why the time delay between GHG emissions and climate change may make society and policy makers reluctant to implement significant climate change policies.

Lecture notes
Lecture Notes of the course will be sent by email to officially subscribed students.

Literature
The main reference of the course is the set of lecture notes; students will also be encouraged to read some influential academic articles dealing with the issues under study.

Prerequisites / notice
Elementary knowledge of economic theory is a plus but not a prerequisite.

Finance and Investment

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1081-00L</td>
<td>Asset Liability Management and Treasury Risks</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>P. Mangold, M. Eichhorn</td>
</tr>
</tbody>
</table>

Number of participants limited to 40.

Abstract
Asset Liability Management (ALM) is key to the financial success of any corporation. The goal is to develop a comprehensive understanding of the nature of corporate balance sheet and off-balance sheet positions and related profits and losses, including identification and mitigation of undue risks taken. This course is geared towards preparing students to apply these concepts in practical settings.

Objective
The main learning objectives of this course are:
- develop a comprehensive understanding of the nature of corporate balance sheet and off-balance sheet positions and their respective contribution to profits and losses
- measure and assess exposures to risk factors such as interest and FX rates, equity and commodity prices, as well as liquidity events
- trading and hedging to mitigate undue risks incurred

Content
The course is organized around a series of case studies. We will first discuss and develop an understanding of the fundamentals on different aspects of the management and risk management of the balance sheet. Using real life case studies each concept will then be directly applied and tested. In-class discussions, presentations and one written assignment are used to facilitate active and interactive learning in a stimulating environment. During the case studies students will frequently work in small groups. Therefore, the number of participants is limited to 40.

The course focuses on the application of finance concepts to the financial management of corporations and is geared towards preparing students to apply these concepts in practical settings. Executives of all sectors are expected to have a sound understanding of the content covered. As such, the course is not exclusively targeted at students who are considering a career in the financial services sector. It also recommended for students who want to work in the finance, treasury or risk area of corporates. It is also suitable for students who want to work for a consultancy firm.

Literature
No single textbook covers the course, below we list some useful references. Further materials will be made available to students prior to the lectures

Prerequisites / notice
Participants should have a basic understanding of financial management, gained, for example, from prior undergraduate economics, business, or accounting studies.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0723-00L</td>
<td>Corporate Finance</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>A. Kind</td>
</tr>
</tbody>
</table>

Abstract
"Corporate Finance" is an introductory course that presents those fundamental principles of finance that find direct application in the financial decisions of modern corporations. The course is structured in three parts: (i) Corporate Finance and Corporate Governance, (ii) Investment Decisions/Valuation, (iii) Financial Policy.

Objective
Upon successful conclusion of the course, students will ...
1) know what corporate finance and corporate governance are about;
2) be able to price a wide array of corporate securities, assets, and projects, e.g., stocks, bonds, and options;
3) master three valuation approaches (discounted cash-flow valuation, relative valuation, and real-options valuation) and know about their applicability, their strengths, and their weaknesses;
4) know how to finance firms at different stages of their lifecycle;
5) be familiar with terms, acronyms, and concepts in the world of finance;
6) know how to relate real-world corporate events (past and current) to concepts learnt in class;
7) have increased their appeal as future manager, employee or entrepreneur by relevant knowledge in the field of finance in general and corporate finance in particular.
Content

"Corporate Finance" is an introductory course that presents those fundamental principles of finance that find direct application in the financial decisions of modern corporations. The course is structured in three parts: (i) Corporate Finance and Corporate Governance, (ii) Investment Decisions/Valuation, (iii) Financial Policy.

In the following, for each of the three parts of the course, key aspects are listed.

Part I: Corporate Finance and Corporate Governance
- Corporations and their characteristics (e.g., centralized management, limited liability, free transferability of economic claims, legal personality)
- Corporate finance and its goals (e.g., shareholder-value approach vs. stakeholder-value approach)
- Corporate governance problems and possible solutions (e.g., over-investment, under-investment, self-dealing, monetary incentives, board of directors, the market of corporate control, leverage, product-market competition)

Part II: Investment Decisions/Valuation
- Discounting and compounding
- Present value tools (e.g., perpetuities, growing perpetuities, annuities, growing annuities)
- Bond pricing and interest rates (e.g., types of bonds, term structure of interest rates, yield-to-maturity, duration concepts, forward rates, "riding the yield curve")
- Risk and return (e.g., moments of stock returns, modern portfolio theory, capital market line, systematic risk vs. unsystematic risk)
- CAPM in practice (e.g., computation of the risk-free interest rate, beta, and the market risk premium; security market line)
- DCF Analysis: Cost of capital and cash flow estimation
- Relative valuation (e.g., earnings multiples, book multiples, sales multiples, fundamental drivers of multiples)
- Real options (e.g., option to abandon, option to delay, option to expand)

Part III: Financial Policy
- Corporate financing (e.g., instruments, internal vs. external financing, equity financing vs. debt financing, crowdfunding, M&M and beyond)
- Payout policy (e.g., dividends, par value reductions, share buybacks, M&M and beyond)

Lecture notes
- Slides in English (and any other relevant material) will be available for download on the following website: https://moodle-app2.let.ethz.ch/course/view.php?id=4479

Literature
- For the exam, only the material provided will be relevant. However, interested students may refer to the following textbook for an alternative, or a complementary, reading:

Additional Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0881-00L</td>
<td>Semester Project Small ▶</td>
<td>W</td>
<td>3 credits</td>
<td>6A</td>
<td>Professors</td>
</tr>
<tr>
<td>Abstract</td>
<td>The semester project (90 hours) is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The semester project (90 hours) is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>363-0883-00L</td>
<td>Semester Project Large ▶</td>
<td>W</td>
<td>6 credits</td>
<td>13A</td>
<td>Professors</td>
</tr>
<tr>
<td>Abstract</td>
<td>The semester project (180 hours) is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The semester project (180 hours) is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>363-1042-00L</td>
<td>Strategic Career Development</td>
<td>Z</td>
<td>0 credits</td>
<td>1V</td>
<td>P. Cettier</td>
</tr>
<tr>
<td>Abstract</td>
<td>The offer Strategic Career Development has the goal to support students in the development and alignment of their personal & professional goals. Orientation, Goal setting, action plan development, motivation letter, CV, interview training. We will include high level external guest speakers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>We will discuss and develop answers to the following questions: What do I want to achieve in my life? Why is it so important to define goals? What decision criteria can I use as a guide? How do potential career paths look like? What are the possibilities? How does the life cycle of a career look like? What are the alternatives? How do I increase my chances of success/reaching my goals? How did others do it? What kind of advice can experienced captains of industry give? Why is a periodic check of my goals and my progress necessary?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1341 of 2152
INTRODUCTION
Awareness building / Overview on the career life cycle / Examples from praxis / Exchange of experiences / Approach for goal setting / Introduction to the success secrets of a career

ORIENTATION AND GOAL SETTING
Class discussion of the success secrets of a career / Orientation on career options / Discussion of possible decision criteria / Initial formulation of concrete goals

External guest speaker: Inspiring Start-up Entrepreneur

CAREER DEVELOPMENT PLANS
Exchange w/ representatives of industries / Personal Values & Norms vs Corporate Identity / Work-Life Balance Gender / Diversity / Summary of discussions / Best practice / Modification/Sharpening of goals

External guest speaker: Representatives from Hilti AG Switzerland

DETAILING OF INDIVIDUAL CAREER PLANS
Development of detailed individual career plans / Next steps / action plan / Tips & Tricks for careers in organizations and entrepreneurship

EXTERNAL GUEST SPEAKER

REVIEW & APPLICATION COUNSELING
Review/check of goals and career plans / Motivation letter / CV / Preparation for interviews

INTERVIEW TRAINING

Lecture notes
In today’s world of everything is possible it becomes an every increasing challenge to find orientation, to define a goal for which it is worth to work for with focus and energy. But this is exactly what is so important in today’s work environment. Only with a definite goal one can decide if the taken path is right, one can develop enough motivation to go beyond the comfort zone. With a definite goal, one increases the chances of success of one’s education and career. The earlier one has defined what he/she wants to achieve, the bigger the effect.

Prerequisites / notice
Motivation. Strategic long-term view.

Supplementary Courses
The students have to deepen their knowledge in the area(s) of engineering/natural sciences in consultation with the responsible professor (tutor). Core courses and electives of D-MTEC can not be used as supplementary courses.

Course Catalogue of ETH Zurich

Industrial Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0879-00L</td>
<td>Practical Training</td>
<td>O</td>
<td>6 credits</td>
<td></td>
<td>external organisers</td>
</tr>
</tbody>
</table>

Abstract
The practical experience gained by the student complets the studies at the Swiss Federal Institute of Technology and prepares her/him for future activities in industry.

Objective
The practical experience gained by the student completes the studies at the Swiss Federal Institute of Technology and prepares her/him for future activities in industry.

Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0600-00L</td>
<td>Master’s Thesis</td>
<td>O</td>
<td>30 credits</td>
<td>57D</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Abstract
In the Master thesis students prove their ability to independent, structured and scientific working. The Master thesis is supervised by the tutor and normally deals with a subject contained in the major fields. The research will be performed normally within a private company or at the ETH Zurich.

Objective
In the Master thesis students prove their ability to independent, structured and scientific working. The Master thesis is supervised by the tutor and normally deals with a subject contained in the major fields. The research will be performed normally within a private company or at the ETH Zurich.

Academic Writing Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1063-00L</td>
<td>Academic Writing Course</td>
<td>O</td>
<td>0 credits</td>
<td>1G</td>
<td>R. Mihalka</td>
</tr>
</tbody>
</table>

Abstract
This course for MTEC master’s students will focus on developing and refining students’ English writing skills and their understanding of the requirements and conventions of academic writing.

Objective
This course develops a range of practical and transferrable writing skills. Its first aim is to improve the academic writing skills necessary for the successful completion of an MSc thesis. The course provides theoretical input, practical writing exercises, and detailed individual feedback. It is organized into an initial group lecture and four subsequent workshops in smaller tutorial groups.

The group lecture raises awareness about academic conduct, especially with regard to plagiarism. Afterwards, students take placement tests so that the areas where they need improvement can be identified. The following workshops concentrate on these highlighted areas, and feedback on placement tests is integrated into the input and practice during these sessions.

Students can use the skills developed on the course to improve the overall quality of their MSc theses and to produce their thesis more rapidly and efficiently. These skills can also be used beyond the MSc, whether students go on to complete a PhD or to produce reports and other documents in industry.
Content

Group lecture:
an introduction to writing an MSc thesis in D-MTEC
selecting topic and supervisor
academic expectations
avoiding plagiarism

Workshop 1:
the writing process
reading, note taking and planning
overview of the thesis structure
building academic vocabulary

Workshop 2:
writing methods sections
embedding figures and tables
structuring sentences and paragraphs
noun phrases and articles

Workshop 3:
introductions; results and discussion sections
writing critically
relative clauses

Workshop 4:
abstracts and conclusions
editing your own text
punctuation, spelling, and grammar

Lecture notes
Notes will be available after registration.

Management, Technology and Economics Master - Key for Type

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
</tr>
</tbody>
</table>

Key for Hours

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td>P</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
MAS in Applied Technology

Major in Applied Information Technology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>265-0100-00L</td>
<td>Foundations of Programming</td>
<td>O</td>
<td>3</td>
<td>2A</td>
<td>L. E. Fässler</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Applied Information Technology and MAS in Applied Technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The initial module offers a practical introduction to some basic concepts and techniques for information processing as well as practical applications of them. The programming language are Python and SQL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students learn...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- how to encode a problem into a program, test the program, and correct errors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- to understand and improve existing code.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- to implement mathematical models as a simulation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The following programming concepts are introduced during this module:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Variables, data types</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Condition check, Loops, logics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Arrays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Matrices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Data management (SQL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>In the practical part of the course, students work on small programming projects with a context from natural sciences. Electronic tutorials are available as preparation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notice</td>
<td>No prior knowledge is required for this course. It is based on application-oriented learning. The students spend most of their time working through programming projects and discussing their results with teaching assistants. To learn the programming basics there are electronic tutorials available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

265-0101-00L	Data Science	O	3	3V	B. Gärtner
	Only for CAS in Applied Information Technology and MAS in Applied Technology.				
Abstract	In this module, basic paradigms and techniques in working with data will be discussed, especially towards data security, managing data decentrally, and learning from data.				
Objective	Participants learn about some important computer science concepts necessary for data science. They understand some of these concepts in detail and see the mathematics behind them.				
Content	Participants will get an introduction to key computer science concepts underlying current and upcoming technology. The module in particular covers cryptography and digital signatures, networking and distributed algorithms, distributed ledger technology, as well as machine learning (supervised and unsupervised learning). Each topic will be discussed in two different ways: (i) a hands-on and in-depth introduction that allows participants to gain a technical understanding of key ideas. This is supported by simple and concrete examples as well as programming assignments; (ii) a context part that addresses the challenges and limitations encountered in practical applications.				

265-0102-00L	Humans & Machines	O	3	2V	E. Konukoglu
	Only for CAS in Applied Information Technology and MAS in Applied Technology.				
Abstract	This module offers practical knowledge in visual information processing and human computer interactions.				
Objective	Participants understand basic concepts of visual recognition and human-computer interaction systems.				
Content	The first part of the module will cover basic theoretical knowledge on visual recognition systems of the last two decades, mostly focusing on the most recent advancements in deep learning and convolutional neural networks. The theoretical knowledge will be supported with practical sessions that will allow participants to gain hands-on experience with most commonly used tools and deepen their understanding of the key concepts. The second part provides an introduction to the field of human-computer interaction, emphasising the central role of the user in system design. Through detailed case studies, students will be introduced to different methods used to analyse the user experience and shown how these can inform the design of new interfaces, systems and technologies.				

265-0103-00L	Applied Information Technology	O	3	3V	M. Brandis
	Only for CAS in Applied Information Technology and MAS in Applied Technology.				
Abstract	This integration module for CAS “Applied Information Technology” links technical understanding of technology with business strategy based on a set of case studies from practice.				
Objective	Participants will learn how technology affects businesses and practical issues when using new technologies in incumbent organizations based on a set of case studies.				
Content	Participants will explore how new information technologies change different aspects of a business, and learn how to evaluate specific risks, costs, and benefits of such technologies. The module will shed light on success factors and common pitfalls when implementing new technologies and respective business changes, and it will specifically address the communication between technical experts and business management. The studied cases are currently planned to focus on artificial intelligence, IoT including edge and cloud computing, blockchain and distributed ledger technologies, and cybersecurity and data protection regulations (subject to change).				

Major in Applied Manufacturing Technology

Offered only in the Spring Semester.

Major in Applied Technology in Energy

Offered only in the Spring Semester.

Major in CAS in Applied Technology: R&D and Innovation

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>247-0200-00L</td>
<td>Organization of R&D in Tech Companies</td>
<td>O</td>
<td>4</td>
<td>2G</td>
<td>U. Grossner</td>
</tr>
<tr>
<td></td>
<td>Only for CAS in Applied Information Technology and MAS in Applied Technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This course provides an introduction to research & development, both as a general activity and as a dedicated function within a corporation. Participants will learn how to organize, conduct and manage individual R&D projects as well as groups of projects. We will also look at the various roles that R&D serves within a corporation and how choices regarding the organization of R&D align with these roles.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The aim of this course is to develop the participants’ ability to articulate a coherent plan for R&D activities linked to the business needs of a corporation, including the ability to explain convincingly the rationale, structure, resources and intended outcomes of the R&D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Innovation Opportunity Analysis

Only for CAS in Applied Technology: R&D and Innovation and MAS in Applied Technology.

Abstract
The Innovation Opportunity Analysis course is designed as a practical introduction to evaluating technology-based innovation opportunities in a corporate setting. The course will cover several fundamental innovation frameworks and principles before diving deeper into individualized content using the principle of Guided Learning.

Objective
The primary goal of the course is to develop the skills needed for identifying technology-based innovation opportunities and for planning successful innovation projects. An additional goal is to prepare participants for their Master’s thesis and for life-long learning in technology-based innovation.

Innovation and Technology Tools

Only for CAS in Applied Technology: R&D and Innovation and MAS in Applied Technology.

Abstract
This module will provide an introduction to some of the fundamental tools that can be used for evaluating technologies and innovation opportunities.

Objective
The goal is to enable participants to use basic innovation and technology evaluation tools within their work setting.

Experiment Selection & Design

Only for CAS in Applied Technology: R&D and Innovation and MAS in Applied Technology.

Abstract
This module prepares participants to conduct an experimental project in an ETH lab beginning in the following January as part of the MAS in Applied Technology programme. Participants will prepare a plan and design for the experimental project under the direction of the CAS Programme Director and the relevant ETH lab.

Objective
The goal is for participants to learn standard procedures for the planning and design of experiments and to gain practical experience in planning and designing an individual experimental project.

Experimental Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>247-0550-00L</td>
<td>Project</td>
<td>O</td>
<td>10</td>
<td>18A</td>
<td>U. Grossner</td>
</tr>
</tbody>
</table>

Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>247-0500-00L</td>
<td>Master’s Thesis</td>
<td>O</td>
<td>10</td>
<td>21D</td>
<td>Professors</td>
</tr>
</tbody>
</table>

MAS in Applied Technology - Key for Type

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>W+</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>E-</td>
<td>Z</td>
<td>Dr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Courses outside the curriculum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Suitable for doctorate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>G</td>
<td>U</td>
<td>S</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>A</td>
<td>D</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>lecture</td>
<td>practical/laboratory course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>independent project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>diploma thesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>revision course / private study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
The MAS Digital Fabrication is a 1 year full-time programme and is structured as a series of teaching modules with an independent master thesis. Lessons within the modules are given in the form of lectures, practical workshops, and projects as the main modus for developing skills. Learning will be supported through one on one mentoring in studio, group critiques, symposia, and excursions.

Module

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>069-0001-00L</td>
<td>Digital Foundations</td>
<td>O</td>
<td>20</td>
<td>2G</td>
<td>B. Dillenburger, P. Aejmelaeus-Lindström</td>
</tr>
</tbody>
</table>

Abstract

Digital Foundations introduces students to information technology in architecture, to computational design and how robotic fabrication processes as well as 3D printing technologies are used to translate computational design models into physical objects and building components.

Objective

Students learn basic programming paradigms such as control structures and object oriented programming, the foundations of computational geometry and explore generative form-finding. Using Python as a main programming language within the frameworks of Processing, Rhino and Grasshopper, students learn to translate design thinking into computational algorithms. Furthermore, students learn about data preparation and toolpath creation for 3D printing (predominantly binder jet-printing and fused-deposition-modelling), and familiarise themselves with various mechatronic setups, materials and control-strategies of additive manufacturing.

Students are taught the basic principles of working with industrial robotic arms in the field of architecture. Students practice different concepts of robotic control, which enables them to execute basic routines. They are able to write their own programmes and directly control the robotic set-up using UR-Script and custom Python modules. Through multiple exercises, students learn how to design and robotically build small-scale spatial structures exhibiting the potential of robotic fabrication processes. Additionally, they employ simple feedback loops for improving the accuracy of the fabrication process and as design-drivers.

MAS in Architecture and Digital Fabrication - Key for Type

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Construction Industry and Real Estate Market

Number: 072-0001-00L

Type: O

ECTS: 3 credits

Hours: 7G

Lecturers: A. Paulus

Abstract:
In the first term of MAS ETH ARC, the students’ knowledge of the construction sector and the real estate market will be reinforced and deepened, along for an informed interpretation of the stakeholders’ decision making processes. It explores the topics of involved parties and perception of demand. Additionally, it will guide students in developing their research proposals and research questions.

Objective:
The first term of MAS ETH ARC supports the students’ expertise and personal skills and develops their reasoning and creative thinking. It compels the students to understand both ambitious projects and complex properties, to pursue long-term intentions, to carry out specific tasks, and to become aware of the consequences of their decisions. Over the course unit, students review and closely examine the expertise which they have gained so far. The course directs students to draw independent conclusions and to set forecasts as professionals. Ultimately, the knowledge and expertise which is gained throughout the unit will allow the students to fully realise their role as a professional in their field.

Content:
In the first term of MAS ETH ARC, the students’ knowledge of the construction sector and the real estate market will be reinforced and deepened, along for an informed interpretation of the stakeholders’ decision making processes and interests. It also explores the topics of involved parties and perception of demand. Additionally, it will guide students in developing their research proposals and research questions.

Key words of the course unit:
- Project and property, design and building process, involved parties and services, interests, basic knowledge and terms, perception and dissociation, sustainable decisions, and life cycle
- MAS thesis
- Advising students on potential research, in light of students’ interests, work and academic experience, and their professional aims.
- Assisting students with determining the relevance of the study area. Discourse, developing the research objectives and devising the research questions. Public presentation of the initial objectives.

Lecture notes:
Scripts, documents, studies, dates and addresses are stored on the server of the program.

Literature:
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Methodology

Number: 072-0003-00L

Type: O

ECTS: 1 credit

Hours: 2G

Lecturers: A. Paulus

Abstract:
In the fourth term of MAS ETH ARC, the students will guide through the process of methodology which is the ability to put their attitude into practice. Additionally, the course unit puts emphasis on the research findings and finalisation of the written work.

Objective:
The fourth term of MAS ETH ARC supports the students’ attitude and practice and methodology. It compels the students to analyse issues and carry out solutions. Ultimately, the knowledge and expertise which is gained throughout the unit will allow the students to fully realise their role as a professional in their field.

Content:
In the fourth term of MAS ETH ARC, the students will guide through the process of methodology which is the ability to put their attitude into practice. Additionally, the course unit puts emphasis on the research findings and finalisation of the written work.

Key words of the course unit:
- MAS thesis
- Advising students on potential research, in light of students’ interests, work and academic experience, and their professional aims.
- Assisting students with determining the relevance of the study area. Discourse, developing the research objectives and devising the research questions. Public presentation of the initial objectives.

Lecture notes:
Scripts, documents, studies, dates and addresses are stored on the server of the program.

Literature:
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Major in Digitalisation

Core Courses

Number: 072-0101-00L

Title: Module 1: Foundations of Digitalisation

Type: W

ECTS: 1 credit

Hours: 2G

Lecturers: A. Paulus

Abstract:
Key terms: Digital transformation is more than digitisation of existing processes and information

Objective:
Independently of the building industry, Module 1 initially provides information about the characteristics of digitalisation through its principles and rules, enabling the participants to independently recognise the short-term and long-term changes that are resulting from it.

Content:
The first module addresses the topic of digitalisation and digital transformation in a holistic sense. It is much more than converting documents into PDFs or using software. It is about transforming processes, resources and information into a consistent and efficient digital system to make life easier for employees and customers. This journey always involves change. From the perspective of other industries, we first build up a basic understanding and discuss the opportunities and risks.

How do the experiences of other industries help us? What can be derived from them? Why is BIM only a small part and why is the future of BIM not BIM?

Lecture notes:
Scripts, documents, studies, dates and addresses are stored on the server of the program and accessible to students on the Miro Board.

Literature:
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Number: 072-0102-00L

Title: Module 2: Behaviour for Collaboration Foundation

Type: W

ECTS: 1 credit

Hours: 2G

Lecturers: A. Paulus

Abstract:
Key terms: “Behaviour for Collaboration” - Structural questions on collaboration and the patterns of behaviour.

Objective:
In Module 2, we break from the theoretical idea of a purely technology-based, better collaboration and look at the situation realistically in order to be able to understand and develop new solutions and requirements.

Content:
The usual approach towards digital transformation is to train people to use new technologies. In contrary, we ask for the specific challenges and problems people have with change. We learn to understand viewpoints of different partners within building projects and new solutions to specific problems.

Lecture notes:
Scripts, documents, studies, dates and addresses are stored on the server of the program and accessible to students on the Miro Board.

Literature:
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch
Module 3: Foundation of Automation

Only for CAS ARC in Digital and MAS in Architecture, Real Estate, Construction.

Abstract
Key terms: Managed data, semantics and file formats

Objective
Module 3 leaves behind the negative images from the early days of automation. A gloomy and misanthropic image of automation - both a bliss and a curse. We get to know the positive sides and learn to apply them. How do we become a sustainable "Formula 1"?

Content
What does it take to be able to work together in a digitally networked environment? How many "techie genes" are needed to work efficiently and effectively with structured data? The third module gives an insight into the principles of data architectures, data formats, attributes and platform technology. Machine readability as an important requirement but also as a clear challenge e.g. to security requirements.

Lecture notes
The module offers the opportunity to prepare for the voluntary buildingSMART Professional Certification.

Literature
Scripts, documents, studies, dates and addresses are stored on the server of the program and accessible to students on the Miro Board.

Module 4: Foundation of Value Creation

Only for CAS ARC in Digital and MAS in Architecture, Real Estate, Construction.

Abstract
Key terms: Added value of digital transformation, distributed data management, digital twin, logistics and robotics.

Objective
Using specific examples, Module 4 illustrates the foundations and versatility of building information modeling (BIM), enabling participants to deal with the concepts, applications and mechanisms involved.

Content
"Highway to hell or highway to haven" - the question of a clear and simple roadmap is always at the heart of a digital transformation. "Value creation" is a central goal. Digitalisation is often seen as a strategy from the productivity gap. The fourth module shows how strategic goals can be developed in a roadmap and implemented in practice and how the individual shareholders and stakeholders participate.

We learn to consciously look at the topic of added value and digital transformation from different perspectives. Collision checking and quantity take-offs (QTO) are very useful. But they are only basics when it comes to real value creation.

Lecture notes
Scripts, documents, studies, dates and addresses are stored on the server of the program and accessible to students on the Miro Board.

Literature
The teaching material, the further readings and Information on our server.

Module 5: New Business Modelle

Only for CAS ARC in Digital and MAS in Architecture, Real Estate, Construction.

Abstract
Key terms: Business models, cultural change, disruption, evolution, lean methods

Objective
Module 5 focuses on cultural change, innovation, disruption or evolution? In this last model, we learn to question and discover what the 17 Sustainable Goals mean for our industry.

Content
As a final module, new business models are discussed and explored. Examples will be used to explore patterns and interfaces and to analyse what is needed today and in the future for a successful and sustainable development of the sector. How can innovative ideas move us forward? What can we learn from design thinking? Why is it important for people to have useful and understandable measurable values? How do the 17 Sustainable Goals influence our industry?

We will analyse the topic on the basis of two concrete examples, familiarise ourselves with them and observe their further development as a result.

Lecture notes
Scripts, documents, studies, dates and addresses are stored on the server of the program.

Literature
The teaching material, the further readings and Information on our server.

Term Paper
The Term Paper is offered in spring semesters only.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>072-0201-00L</td>
<td>Module 1: Understanding of Roles</td>
<td>W</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Project and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to understand the following terminologies, processes and competences. They are able to put them into practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Please find the teaching material, the further readings and Information on our server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>www.map.arch.ethz.ch/en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0202-00L</td>
<td>Module 2: Collaboration</td>
<td>W</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Project and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to understand the following terminologies, processes and competences. They are able to put them into practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Please find the teaching material, the further readings and Information on our server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>www.map.arch.ethz.ch/en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0203-00L</td>
<td>Module 3: Services and tasks</td>
<td>W</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Project and MAS in Architecture,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field ‘objective’.

Module 1: Perception of Demand

Abstract

In Module 1, by interpreting the snapshot of one’s own enterprise and opportunities and dangers.

Objective

- Phases and services
- Due diligence and duty of loyalty
- Duties and tasks, liability
- Working packages
- Management and coordination

Module 2: State of the Art

Abstract

In Module 2, the students are able to understand the following terminologies, processes and competences. They are able to put them into practice.

Objective

- Decision making
- Future perspectives
- Micro and macro environment
- Strength and flexibility

Module 3: Economic Interest

Abstract

The students are able to understand the following terminologies, processes and competences. They are able to put them into practice.

Objective

- Knowledge about type, extent and change of the building Switzerland and the main questions.
- Change in value, demolition / replacement, potential for compression
- Key words: construction and real estate market, micro and macro environment
- Access to international markets are examined. Accompanying the basics of a general business model for service companies are taught and key criteria defined.

Module 4: Guiding/Steering/Leading

Abstract

In Module 4, the students are able to understand the following terminologies, processes and competences. They are able to put them into practice.

Objective

- Management of unknowns
- Future perspectives
- Micro and macro environment
- Decision making

Module 5: Project

Abstract

In Module 5, the students are able to understand the following terminologies, processes and competences. They are able to put them into practice.

Objective

- Team performance
- Management and coordination
- Motivation and conflict resolution

Term Paper

The Term Paper is offered in spring semesters only.

Major in Real Estate Strategies urban-peri-urban

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>072-0301-00L</td>
<td>Module 1: Perception of Demand</td>
<td>W</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Key words: construction and real estate market,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>micro and macro environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In Module 1, by interpreting the snapshot of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>one's own enterprise and opportunities and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dangers to appreciate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0302-00L</td>
<td>Module 2: State of the Art</td>
<td>W</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Key words: Bauwerk Schweiz, new construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and renovation, economy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change in value, demolition / replacement,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>potential for compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072-0303-00L</td>
<td>Module 3: Economic Interest</td>
<td>W</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Key words: intention development, realization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The participants understand a property in the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>context of a life cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content
The importance of a life-cycle-oriented approach has arrived in the Swiss construction and real estate sector. Cumulative management costs can exceed the cost of construction after just a few years. In this module, a systematic consideration of the phases and processes in the life cycle of a property takes place. Study I explores various aspects of life-cycle planning and construction.

Lecture notes
Scripts, documents, studies, dates and addresses are stored on the server of the program.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>072-0304-00L</td>
<td>Module 4: Course of Action</td>
<td>W</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Real Estate Strategies urban-peri-urban and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Key words: maintenance, change, replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preservation of value, increase in value, destruction of value and replacement construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The various depths of intervention in dealing with a existing property and their effects are known.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The structure and nomenclature of the interventions in the stock are presented and models for the registration and calculation of the structural interventions are presented. It focuses specifically on ongoing maintenance, the periodic repair and planning of renewal cycles, as well as on structural interventions and value-enhancing measures. Based on the study II, the learning content is applied and various options for action in dealing with the building stock are evaluated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Literature
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Term Paper
The Term Paper is offered in spring semesters only.

Major in Company Management

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>072-0305-00L</td>
<td>Module 5: Life Cycle and Resources</td>
<td>W</td>
<td>1</td>
<td>2G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only for CAS ARC in Real Estate Strategies urban-peri-urban and MAS in Architecture, Real Estate, Construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Key words: building fabric, material cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Producibility and reusability of building fabric, energy flows, pollutants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Building and breaking off is understood as an energy and material flow.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The total weight of all properties in Switzerland is estimated at around 1 billion tonnes. Every year around 10 million m³ of buildings are demolished and more than 60 million t of raw materials are used in new buildings. This module examines the cycle principle and its implications for selective decommissioning, disposal, landfilling, recycling and reuse, as well as the importance of the gray matter energy of materials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Continuation, reuse, demolition / new construction - stakeholders, goals and conflicting goals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objective
The aim is to become familiar with the tools used in marketing and able to use them in specific situations.

Content
Marketing means orienting company activities towards market demands. Communication between suppliers, clients and the competition plays the decisive role here. The “marketing” module illustrates the foundations of marketing planning for architects and engineers. The essential definitions are provided and the core tasks involved in marketing are described. On this basis, the way in which a marketing plan is developed is explained and strategic and operational marketing planning is described in detail. The topics of branding and the opportunities represented by press and public relations work for architects and planners round out the “marketing” module.

Lecture notes
Scripts, documents, studies, dates and addresses are stored on the server of the program.

Literature
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 1350 of 2152
Architecture, Real Estate, Construction.

Abstract
Key terms: Cost accounting, budgeting and controlling

Objective
The aim is to become able to analyse one's own company's financial resources in detail, interpret key parameters for the current situation and test them.

Content
Financial management means achieving the target company output with costs that are as low as possible, and in the longer term to create secure asset and capital structures. The tasks involved in financial management in a planning office include establishing a well-structured accounting department, careful cost accounting, sound budgeting and an effective controlling system. On the basis of a practical financial structure for architecture and engineering offices, the “financial management” module presents the information needed to carry these tasks out in a professional and responsible way.

Lecture notes
Scripts, documents, studies, dates and addresses are stored on the server of the program.

Literature
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Module Title</th>
<th>Credit Hours</th>
<th>Module Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>072-0405-00L</td>
<td>Module 5: Digitalisation</td>
<td>1 credit</td>
<td>A. Paulus</td>
</tr>
</tbody>
</table>

Abstract
Key terms: Strategy, potentials and digital planning

Objective
The aim is to become familiar with the current practical work involved in IT in planning companies and be able both to analyze the specific challenges it implies and also to infer one's own prospects for development in this context. In addition, thought needs to be given to the way in which the value creation provided by digitalisation influences one's own company.

Content
IT refers on the one hand to information and data processing in a company, and on the other to the hardware and software components needed for the purpose. This “information technology” module focuses on potential strategies for company management in the IT field. The focus is not on the use of any individual programme, but on taking conscious decisions for or against IT components in one's own company in order to obtain helpful support in one's everyday work. The strengths, weaknesses, opportunities and risk of this strategy suggest possible potentials.

The participants will present their own theses on entrepreneurship and open them up for discussion in the plenary session.

Lecture notes
Scripts, documents, studies, dates and addresses are stored on the server of the program.

Literature
Literature recommendations at www.bauprozess.arch.ethz.ch and www.kompetenz.arch.ethz.ch

Term Paper
The Term Paper is offered in spring semesters only.

MAS in Architecture, Real Estate, Construction - Key for Type

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
MAS in Development and Cooperation

The lectures and advanced training courses of NADEL are accessible only for students of the MAS in Development and Cooperation and for qualified employees with at least two years experience in development cooperation and a Master's level or equivalent level of education as recognized by ETH. PhD students doing empirical research in development cooperation may be admitted "sur Dossier".

Advanced Training Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>865-0065-00L</td>
<td>VET between Poverty Alleviation and Economic Development</td>
<td>W</td>
<td>2 credits</td>
<td>3G</td>
<td>K. Harttgen, F. Kehl, M. Maurer</td>
</tr>
</tbody>
</table>

ETH doctoral students working on topics related to poverty reduction in low- and middle income countries may also be admitted.

Registration only through the NADEL administration office.

Abstract

The course aims at strengthening the capacity in portfolio management for VET, skills development and active labor market policies. It deals with basic issues and challenges of Vocational Education and Training (VET) in Developing Countries. In view of the many of school leavers VET has to place itself between the contracting intensions of quality education and short-term training interventions.

Objective

The participants are able to
- Assess project proposals and ongoing project regarding their relevance and suitability in the specific country context
- Explain strengths and weaknesses of the opposing approaches "dual apprenticeship" and "competency based training" as well as synergies and incompatibilities between the two
- Describe the competent use of tools currently applied in VET

Content

- Basic concepts and terms
- Differences and commonalities between VET and neighboring systems
- Planning, assessment of VET interventions with different objectives: economic development, poverty alleviation, creation of self-employment or systems development
- VET as a cooperation system of stakeholders with different duties, interests and competencies
- Background, potential use and limitations of (national) qualification frameworks
- Half-day visit to important actors of the Swiss VET landscape

Prerequisites / notice

Students of the course must fulfill requirements specified on the homepage of NADEL. Electronic registration may be done only after registration with NADEL secretariate.

| 865-0000-06L | Impact Evaluations in Practice | W | 2 credits | 3G | I. Günther, A. Rom, K. Schneider |

ETH doctoral students working on topics related to poverty reduction in low- and middle income countries may also be admitted.

Registration only through the NADEL administration office.

Abstract

The course gives an introduction to the most important methods for rigorous impact analysis of development programs and projects. The course is designed to both cover the most fundamental methods of impact analysis and introduce real world case studies from national, international and non-governmental development organizations and asks how rigorous impact analysis has influenced their policies.

Objective

Participants understand the most important methods of impact analysis. They are able to conduct small scale studies to evaluate the impact of their own programs as well as manage larger impact evaluations for their organizations. Participants are able to use the results of own and external impact studies.

Content

- Introduction to rigorous impact analysis; Case studies and their policy implications; Introduction to the required statistical knowledge;
- Potentials and limitations of quantitative analysis; Experimental and quasi-experimental methods; Relevant and feasible indicators for the measurement of outcomes and impacts; Data collection and analysis; Project management of an impact analysis.

Prerequisites / notice

Students of the course must fulfill requirements specified on the homepage of NADEL. Electronic registration may be done only after registration with NADEL secretariate.

| 865-0042-00L | Financial Management of Projects | W | 2 credits | 2G | I. Günther, M. Stöhrer |

ETH doctoral students working on topics related to poverty reduction in low- and middle income countries may also be admitted.

Registration only through the NADEL administration office.

Abstract

The course conveys basic knowledge of methods and instruments for the financial management and the economic analysis of development projects. Case studies and exercises are used to make students familiar with methods and instruments of financial management.

Objective

The course conveys basic knowledge of methods and instruments for the financial management and the economic analysis of development projects. Case studies and exercises are used to make students familiar with methods and instruments of financial management.

Prerequisites / notice

Students of the course must fulfill requirements specified on the homepage of NADEL.

| 865-0064-00L | Decolonizing Aid | W | 2 credits | 3G | K. Schneider, L. Hensgen |

ETH doctoral students dealing with empirical research in the area of development and cooperation (EZA) may be admitted "sur Dossier".

Registration only through the NADEL administration office.
The course is designed to increase awareness of how cultural perceptions and power structures have influenced society and our understanding of and practice in aid. It promotes alternatives to aid as linear and progressive Eurocentric narrative. The course draws on different theoretical perspectives and scrutinizes practical examples of aid interventions and similar initiatives.

Objective
The course goes beyond awareness raising of personal cultural characteristics and recognizing cultural values within development concepts. It unfolds traces of colonialism and power structures in day to day live and the aid industry. It promotes searching and initiating alternatives to aid as a Eurocentric narrative. Participants get familiar with different theoretical perspectives on decoloniality and scrutinize practical examples of aid interventions and similar initiatives.

Content
- Decolonialism key terms and concepts
- Conceptions of and alternatives to development (cooperation)
- Cultural (self-) awareness, diversity
- The role of culture in aid / development cooperation
- Implications of decolonialism for aid policy making and practice

865-0070-00L The Private Sector and Development Organizations: Building Successful Alliances

Objective
This course seeks to increase the participants’ understanding of the multifaceted and dialectic relationships between civil society, governments and private sector. It equips participants with knowledge and tools required for a strategic interaction between private sector actors and development organizations and development agencies. The course enables participants to contribute effectively to policy debates on the role of private sector actors and development.

Prerequisites / notice
Students of the course must fulfill requirements specified on the homepage of NADEL.

865-0021-00L Fraud and Corruption: Prevent, Detect, Investigate, Sanction

Objective
The following topics will be discussed: The political economy of the Corporate Social Responsibility discourse, voluntary governance regimes and development: theory of change and effectiveness of soft law approaches, PPPs: introducing concepts and taking stock of experience, analysis of private sector strategies from selected governance actors, engaging with the private sector.

Prerequisites / notice
Students of the course must fulfill requirements specified on the homepage of NADEL.

865-0006-00L Leveraging Private Impact Investors in Development Cooperation

Objective
This two-day course demystifies impact investing for people working in development cooperation. The course provides an introduction to understanding the terminology and instruments involved in impact investing and evaluating opportunities and trade-offs for development.

Content
- Different types of impact investor and their incentives
- Overview of instruments such as loans, equity investments, syndication and impact bonds
- How to define and measure “impact”
- Techniques used by development agencies to leverage private investor resources
- Considering what impact investing can and cannot achieve for development goals

Study Semester

Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>865-0001-00L</td>
<td>Cultural and Social Aspects of Development</td>
<td>O</td>
<td>3 credits</td>
<td>3G</td>
<td></td>
</tr>
</tbody>
</table>
Abstract In this course, central development issues are discussed from a historical, sociological, and anthropological perspective. Themes such as decolonization, migration, gender, racism, religion and education are used to shed light on one's own Western ideas and critically reflect on their influence on the design of interventions in development cooperation.

Objective The students will be able to:
- consider which social, cultural and psychological factors influence human action, and discuss their importance for development cooperation
- explain different conceptions of development in Western and non-Western cultures and indicate possible consequences for development projects
- display basic knowledge of selected topics on social and cultural development

Content Raising awareness on selected cultural and social aspects of development issues and their relevance for development cooperation (DC):
- Importance of the concept of "culture" in DC
- Colonialism, decolonization and its consequences
- Promotion of education systems
- Role of religion in development interventions
- Migration - challenges and opportunities
- Cross-cutting issues in DC: gender and disability
- Art and peacebuilding

865-0003-00L Development Economics O 3 credits 3G I. Günther
Does not take place this semester.
Only for MAS in Development and Cooperation.

Abstract This course is an introduction to theoretical and empirical discussions on economic development, with a focus on the challenges of developing countries over the last 50 years. The course provides answers to the following questions: How can and should development be measured? What factors drive economic growth and contribute to poverty reduction?

Objective Students are able to:
- critically discuss economic questions in the context of developing countries
- critically discuss policy recommendations for economic development.

Content - measurement of development, poverty and inequality,
- growth theories
- trade and development
- education, health, population and development
- states and institutions
- economic policies for economic growth and poverty reduction
- economics of development aid

865-0007-00L History and Forms of International Development Cooperation O 3 credits 3G
Does not take place this semester.
Only for MAS in Development and Cooperation.

Abstract This course presents the origins and evolution of the International Development Cooperation during the last six decades and relates the changing paradigms to their political and socio-economic contexts. It looks at the different actors with their specific roles, approaches and challenges from a Swiss as well as a global perspective.

Objective The students are able to:
- analyse the evolution of the International Development Cooperation, selected development theories and their practical application in the historic context
- describe the Swiss landscape of actors in Development Cooperation and its integration into the international community of donors.
- assess possible implications of the Agenda 2030 for the structure and practice of the International Cooperation

Content - History of international Development Cooperation: beginnings, change of development theories over time
- International efforts to increase sustainability and aid effectiveness
- Swiss bilateral agencies for development: SDC and SECO
- Multilateral development banks: Bretton Woods Institutions
- Non-governmental Organisations: Challenges today - in Switzerland and in partner countries
- Economy, private foundation and philanthropy: New actors with high aspirations
- Humanitarian Aid between intervention in crises, prevention and development tasks

865-0010-00L Politics and Governance O 2 credits 2G
Does not take place this semester.
Only for MAS in Development and Cooperation.

Abstract The course focuses on selected issues of governance systems in developing countries, and on possible interventions of development cooperation to improve the quality of governance.

Objective The course introduces students to the basics of governance systems in developing countries and to possible interventions of development cooperation to improve the quality of governance.

865-0010-01L Environment and Natural Resources O 3 credits 3G
Does not take place this semester.
Only for MAS in Development and Cooperation.

Abstract Degradation of the environment and non-sustainable use of natural resources, including land, water, forests and biodiversity is threatening individual livelihoods as well as local, national and international economies. This lecture series will address conflicts related to unsustainable resource use and discuss trade-offs between environmental sustainability and economic development.

Objective The student will be able to:
- describe the current status and threats of natural resource use and environmental degradation
- portray the management of natural resources such as land, forest, water, and biodiversity in different contexts and discuss the key challenges in each sector
- examine the implications of climate change on development and the sustainable management of natural resources
- analyze conflicts and trade-offs between natural resource use and economic development
- discuss the global priorities relating to human-induced changes to the environment, and how these can be met

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>865-0010-02L</td>
<td>Food Security and Agriculture</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td></td>
</tr>
</tbody>
</table>

Abstract Food security has been on top of the policy agenda for decades, but still a considerable proportion of the population in developing countries remains hungry and malnourished. This lecture series will explore how we produce and distribute food; analyse the concept of food security; and discuss ways and means for increasing the availability and accessibility of food in developing countries.
The student will be able to:
- describe the most important milestones in the history of food and agriculture
- understand the concept of food security and discuss causes and impact of food insecurity
- compare different approaches to promote and increase crop- and livestock production in a sustainable manner
- reflect on some of the main economic challenges of the world food system and understand some of the tradeoffs between smallholders' decisions of labor, consumption, and production of food.
- give insights in how international organizations work with farmers and governments in developing countries to ensure availability and equal access to food.

Objective:

The following topics will be discussed:
- Basic principles of epidemiology and global burden of disease distribution
- Health systems and health system strengthening including economic aspects and health insurance, communicable diseases such as HIV/AIDS, Malaria, tuberculosis and neglected tropical diseases, mother and child health, non-communicable diseases and transition in health in LAMICs
- Health system strengthening including economic aspects and health insurance, communicable diseases such as HIV/AIDS, Malaria, tuberculosis and neglected tropical diseases, mother and child health, non-communicable diseases and transition in health in LAMICs.

Objective:

Health and Development - Health Related Aspects of International Development Aid

Does not take place this semester.

Only for MAS in Development and Cooperation.

Abstract:

The course discusses ethical questions of development relevant for international cooperation. Examples include: possibilities and limits of normative justification of development aid; theories of justice, human rights and the 'rights-based' approach to development, epistemological foundations of development theories, ethical questions of globalization.

Objective:

The participants are able to:
- present the global situation and development trends in the sector of sanitation, water supply, waste management and for its main actors;
- discuss the relationships between water supply, sanitation and health;
- explain the principles of technologies for drinking water treatment, the management of sewage and waste, as well as appraise their strengths and weaknesses;
- explain which sustainable concepts are implemented and how they can be inserted into the technical, institutional and social structures so that they are economically, ecologically and socially sustainable;
- provide information where good professional resources are available.

Objective:

- can apply all the steps involved in a policy impact evaluation.
- are able to use the statistical software R for data analysis.
- are able to critically read and assess published studies on policy evaluation.
- are able to formulate and implement a research design for a particular policy question and a particular type of data.

Objective:

Students are able to:
- know strategies to test causal hypotheses using experimental methods and regression analysis.
- are able to critically read and assess published studies on policy evaluation.
- are able to use the statistical software R for data analysis.
- can apply all the steps involved in a policy impact evaluation.

Content:

Policy impact evaluation employs a wide variety of research methods, such as statistical analysis of secondary data, surveys or laboratory and field experiments. The course will begin with an overview of the various methodological approaches, including their advantages and disadvantages and the conditions under which their use is appropriate. It will continue with a discussion of the different stages of a policy impact evaluation, including hypothesis generation, formulating a research design, measurement, sampling, data collection and data analysis. For data analysis, linear regression models will be revised, with a focus on difference-in-difference methods, regression discontinuity design and randomized controlled trials used for policy evaluation. Students, who already have a solid background in these methods can skip these sessions.

Throughout the course, students will work on a self-selected project on a suitable topic. In addition, students will have to solve bi-weekly assignments.

Semester Thesis

Objective:

- Practice scientific collaboration in a multidisciplinary team
- Present and discuss study results and policy implications in front of different audiences

Objective:

- Practice scientific collaboration in a multidisciplinary team
- Present and discuss study results and policy implications in front of different audiences

Objective:

The thesis is a literature study with a strong application-oriented or empirical character based on scientific publications, expert opinions and reports from organizations. The work may also include limited information surveys.

Objective:

- Practice scientific collaboration in a multidisciplinary team
- Present and discuss study results and policy implications in front of different audiences

Objective:

- Practice scientific collaboration in a multidisciplinary team
- Present and discuss study results and policy implications in front of different audiences

Objective:

The course introduces students to key methods for quantitative policy impact evaluation and covers the different stages of the research process. Acquired skills are applied in a self-selected project applying experimental methods. Students also learn how to perform simple statistical analyses with the statistical Software R.

Objective:

Students are able to:
- know strategies to test causal hypotheses using experimental methods and regression analysis.
- are able to critically read and assess published studies on policy evaluation.
- are able to use the statistical software R for data analysis.
- can apply all the steps involved in a policy impact evaluation.

Content:

Policy impact evaluation employs a wide variety of research methods, such as statistical analysis of secondary data, surveys or laboratory and field experiments. The course will begin with an overview of the various methodological approaches, including their advantages and disadvantages and the conditions under which their use is appropriate. It will continue with a discussion of the different stages of a policy impact evaluation, including hypothesis generation, formulating a research design, measurement, sampling, data collection and data analysis. For data analysis, linear regression models will be revised, with a focus on difference-in-difference methods, regression discontinuity design and randomized controlled trials used for policy evaluation. Students, who already have a solid background in these methods can skip these sessions.

 Throughout the course, students will work on a self-selected project on a suitable topic. In addition, students will have to solve bi-weekly assignments.

Semester Thesis
MAS in Development and Cooperation - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
The cooking and laboratory methods will be described in the "script" which will be made available before the start of the course.

In this practical course, different meals are prepared and then analysed for nutritional content in the laboratory. The analyses comprise:

1. **Concepts and Theories**
2. **Analytical Competencies**
3. **Creative Thinking**
4. **Communication**
5. **Critical Thinking**
6. **Domain A - Subject-specific Competencies**
7. **Domain B - Method-specific Competencies**
8. **Domain C - Social Competencies**
9. **Domain D - Personal Competencies**

The overall goal of the course is to introduce students to epidemiological thinking and methods, which are critical pillars for medical and public health research. Students will also become aware of how epidemiological facts are used in prevention, practice, and politics. The course will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples from nutrition, chronic and infectious diseases will be used in order to show the underlying concepts and methods.

Prerequisites

The course is open to Master and MAS students in food and science and nutrition or related. Basic knowledge of food chemistry and nutrition is expected, as well as an understanding of food processing.

Taught competencies

- Students should be able to:
 - describe and compare the major concepts/criteria used for the evaluation of the nutritional quality of food
 - apply these criteria when assessing the effects of selected processing technologies on nutritional quality.
 - evaluate recent formulation strategies aimed to achieve additional physiological benefits for targeted population groups (i.e. functional foods).

Content

The course gives inputs on compositional changes in food due to processing (with focus on thermal/chilling, enzymatic, chemical, emerging technologies) or new formulation strategies. Possible evaluation methods for the changes (e.g. nutritional profile) will be addressed.

Lecture notes

There is no script. Powerpoint presentations and relevant scientific articles will be available on-line for students. A selection of recommended readings will be given at the beginning of the course.

Pedagogical approach

- Lecture type course with an interdisciplinary approach for the evaluation of nutritional aspects of changes in food composition due to processing.

Disciplinary Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-6105-00L</td>
<td>Epidemiology and Prevention</td>
<td>W+</td>
<td>3</td>
<td>2V</td>
<td>M. Puhan, R. Heusser</td>
</tr>
<tr>
<td>752-2307-00L</td>
<td>Nutritional Aspects of Food Composition and Processing</td>
<td>W+</td>
<td>3</td>
<td>2V</td>
<td>B. E. Baumer, J. M. Sych</td>
</tr>
<tr>
<td>752-6301-00L</td>
<td>Nutrition-Related Physiology</td>
<td>W+</td>
<td>3</td>
<td>2V</td>
<td>F. von Meyenn</td>
</tr>
<tr>
<td>766-6205-00L</td>
<td>Nutrient Analysis in Foods</td>
<td>W+</td>
<td>3</td>
<td>3U</td>
<td>J. Rigutto</td>
</tr>
</tbody>
</table>
Prerequisites / notice

There are no prerequisites to attend this course, however, students must be available to attend on all days of the course, as well as for the oral presentation and colloquium. Attendance is compulsory.

Students will work in groups, and will assess one group per meal.

Performance will be assessed by means of:
1) Contribution to laboratory practical work;
2) A written test on course content (via Moodle, completed by 11.02.2022);
3) A 15 min oral presentation of laboratory results in a seminar with colloquium (active discussion) (on 18.02.2022, afternoon);
4) A 5-page written report per group (deadline 25.02.2022).

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies

Domain D - Personal Competencies
- Critical Thinking

752-6101-00L Dietary Etiologies of Chronic Disease

Abstract
To have the student gain understanding of the links between the diet and the etiology and progression of chronic diseases, including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Objective
To examine and understand the protective effect of foods and food ingredients in the maintenance of health and the prevention of chronic disease, as well as the progression of complications of the chronic diseases.

Content
The course evaluates foods and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Lecture notes
There is no script. Powerpoint presentations will be made available on-line to students.

Literature
To be provided by the individual lecturers, at their discretion.

No compulsory prerequisites, but prior completion of the courses "Introduction to Nutritional Science" and "Advanced Topics in Nutritional Science" is strongly advised.

752-6403-00L Nutrition and Performance

Abstract
The course introduces basic concepts of the interaction between nutrition and exercise performance.

Objective
To understand the potential effects of nutrition on exercise performance, with a focus on concepts and principles of nutrition before, during and after exercise.

Content
The course will cover elementary aspects of sports nutrition physiology, including carbohydrate, glycogen, fat, protein and energy metabolism. A main focus will be to understand nutritional aspects before exercise to be prepared for intensive exercise bouts, how exercise performance can be supported by nutrition during exercise and how recovery can be assisted by nutrition after exercise. Although this is a scientific course, it is a goal of the course to translate basic sports nutrition science into practical sports nutrition examples.

Lecture notes
Lecture slides and required handouts will be available on the ETH website (moodle).

Literature
Information on further reading will be announced during the lecture. There will be some mandatory as well as voluntary readings.

The course is designed for 3rd year Bachelor students, Master students and postgraduate students (MAS/CAS).

It is strongly recommended to attend the lectures. The lecture (including the handouts) is not designed for distance education.

766-6304-00L Introduction to the Nutrition Research Process

Abstract
This course provides students interested in nutrition with fundamental tools and concepts in human nutrition research, including topics such as study design, statistical analysis, scientific writing and communicating results. Preparation of a research proposal will consolidate student learning.

Objective
This course will familiarise students with the fundamental concepts, methodologies and terminology that apply to human nutrition research. The course features both didactic presentations and in-class practical exercises including topics such as study design, statistics, scientific writing and communicating results. Students will have the opportunity to consolidate their learning by preparing a research protocol to study a nutrition-related health problem, which will be submitted for grading and presented in an end-of-semester graded poster presentation.

On completion of this course, students will have improved:
- Understanding of experimental study design in basic and clinical research
- Familiarity with the research process and methods used in human nutrition
- Understanding of basic statistics and analytical skills used in preparing and reporting research, including in tables and graphs
- Ability to report scientific results in writing and orally
- Skills in scientific writing and an understanding of the publication process
- Proficiency in retrieval and interpretation of scientific literature

Lecture notes
The teaching slides used in the lectures will be made available weekly on Moodle before each class, as pdf files.

Literature
There is no recommended textbook or prior reading required for this class. Students will be provided with recommendations for further reading where relevant, with the lecture notes.

Students are expected to attend and actively participate in the course, which includes the preparation of a research protocol that will be presented and graded during a poster presentation at the end of the semester.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Problem-solving

Domain D - Personal Competencies
- Creative Thinking

- Critical Thinking

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-2122-00L</td>
<td>Food and Consumer Behaviour</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>M. Siegrist, C. Hartmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course focuses on food consumer behavior, consumer's decision-making processes and consumer's attitudes towards food products.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course provides an overview about the following topics: Factors influencing consumer's food choice, food and health, attitudes towards new foods and food technologies, labeling and food policy issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752-0801-00L</td>
<td>Food Law and Legislation</td>
<td>W</td>
<td>1 credit</td>
<td>1V</td>
<td>C. Spinner, E. Zbinden Kaessner</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to the principles of the EU and international Organisations, Principles of the Swiss food law.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objective
Knowledge of the principles and the structure of the EU in general and in the area of food safety, overview of the relevant bilateral agreements CH-EU as well as on the most important international organisations (Codex Alimentarius and WTO) and their influence on the Swiss regulations on food safety.

Knowledge of the structure of Swiss food legislation and the most important regulations of the Swiss food law. The general principles, institutions and execution of the Swiss food law as well as the implementation of food law in the context of self-supervision are known. Analytical data and premises and their equipment can be judged in the legal context of food law.

Content
General introduction into the EU and in the area of food safety (regulation on food safety), legislative procedures in the EU, introduction into the relevant bilateral agreements CH-EU, introduction into international organisations (e.g. Codex Alimentarius), general principles of the Swiss food law and the most important regulations as well as the most important legal procedures, legal settlement and the duties and responsibilities of the Food control authorities.

Lecture notes
Copies of the presentations will be handed out.

Literature
Documents about Codex Alimentarius, the EU regulation as well as the Swiss food law and some regulations will be handed out.

Prerequisites / notice
Qualifications: General knowledge of the food sciences.
The lecture will be held in German.

752-5103-00L Functional Microorganisms in Foods

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Functional Microorganisms in Foods</td>
<td>3</td>
<td>2G</td>
<td>C. Lacroix, A. Geinaert, A. Greppi</td>
</tr>
</tbody>
</table>

Abstract
This integration course will discuss new applications of functional microbes in food processing and products and in the human gut. Selected topics will be used to illustrate the rapid development but also limits of basic knowledge for applications of functional microorganisms to produce food with high quality and safety, and for health benefits for consumers.

Objective
To understand the principles, roles and mechanisms of microorganisms with metabolic activities of high potential for application in traditional and functional foods, and for benefiting human health. This course will integrate basic knowledge in food microbiology, physiology, biochemistry, and technology.

Content
This course will address selected and current topics targeting functional characterization and new applications of microorganisms in food and for promoting human health. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to different topics:

- **Probiotics and Prebiotics:** human gut microbiota, functional foods and microbial-based products for gastrointestinal health and functionality, diet-microbiota interactions, molecular mechanisms; challenges for the production and addition of probiotics to foods.
- **Protective Cultures and Antimicrobial Metabolites** for enhancing food quality and safety: antifungal cultures; bacteriocin-producing cultures (bacteriocins); long path from research to industry in the development of new protective cultures.
- **Legal and protection issues related to functional foods**
- **Industrial biotechnology of flavor and taste development**
- **Safety of food cultures and probiotics**

Lecture notes
Students will be required to complete a Project on a selected current topic relating to functional culture development, application and claims. Project will involve information research and critical assessment to develop an opinion, developed in an oral presentation.

Literature
A list of topics for group projects will be supplied, with key references for each topic.

Prerequisites / notice
This lecture requires strong basics in microbiology.

752-5111-00L Gene Technology in Foods

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Gene Technology in Foods</td>
<td>3</td>
<td>2V</td>
<td>F. Constancias, G. Broggiini, A. Greppi, F. Orelli</td>
</tr>
</tbody>
</table>

Abstract
This course will increase basic knowledge on biotechnological constructions and application of genetically modified organisms (GMO) which are used worldwide in food production systems. The course discusses health issues, the legislation frame and food safety aspects of GMO applications in agriculture, food production and consumption in Switzerland and EU-countries.

Objective
This course will provide knowledge and biological background on genetically modified organisms (GMO) and food produced with the help of GMO, especially on the molecular basis of GMO constructions with emphasis on genetically modified food in Switzerland and the EU. Criteria of rationale food safety and health assessment in agriculture and food consumption will be elaborated.

Content
Overview on application in gene technology, the gene transfer potential of bacteria, plants and other organisms and the mostly used transgenes in food as well as on GMO used for food production and their detection technologies in food; food safety assessment of GMO food; information on the legislation in Switzerland and EU-countries.

Lecture notes
Copies of slides from lectures will be provided.

Literature
Actual publications from literature will be provided.

Prerequisites / notice
Good knowledge in biology, especially in microbiology and molecular biology are prerequisites. Some contents will be provided by registered students who will present as a group an actual publication.

551-0317-00L Immunology I

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Immunology I</td>
<td>3</td>
<td>2V</td>
<td>M. Kopf, A. Oxenius</td>
</tr>
</tbody>
</table>

Abstract
Introduction into structural and functional aspects of the immune system.

Basic knowledge of the mechanisms and the regulation of an immune response.

Objective
Introduction into structural and functional aspects of the immune system.

Basic knowledge of the mechanisms and the regulation of an immune response.

Content
- Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histocompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions

Lecture notes
Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien".

Literature
- Kuby, Immunology, 9th edition, Freeman Co., New York, 2020

Prerequisites / notice
For D-BIOL students Immunology I (WS) and Immunology II (SS) will be examined as one learning entity in a "Sessionsprüfung". All other students write separate exams for Immunology I and Immunology II. All exams (combined exam Immunology I and II, individual exams) are offered in each exam session.
Translational science is a cross-disciplinary scientific research that is motivated by the need for practical applications that help people. The module "public health concepts" offers an introduction to key principles of public health. Students get acquainted with the concepts and theories of descriptive and analytical epidemiology, study designs, measures of effect, confounding and bias, screening, surveillance, public health action cycle, epidemiology and prevention of infectious and chronic diseases.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Content

Translational Science for Health and Medicine

- **376-0225-00L**
 - **Physical Activities and Health**
 - **Abstract**: This course introduces/explorers the complex relationship between physical activity, sedentary behavior, and health. It will discuss the evolution of current physical activity recommendations and the identified physical activity as a key modifiable lifestyle behavior contributing to disease and mortality.
 - **Objective**: On completion of this course students will be able to demonstrate:
 1. knowledge of and critical awareness of the role of physical activity and sedentary behavior in the maintenance of health and the prevention and treatment of disease.
 2. thorough knowledge and critical awareness of current recommendations for physical activity, and current prevalence and trends of physical activity and associated diseases
 3. awareness of current national and international physical activity policies and how these impact on global challenges
 - **Content**: Introduction to Physical Activity for Health, including sedentary behavior
 - Physical activity epidemiology: concepts principles and approaches
 - Physical activity and all cause morbidity and mortality
 - Physical activity and chronic disease; Coronary heart disease, diabetes, bone health, cancer and obesity
 - Physical activity and brain health
 - Physical activity and sedentary behavior recommendations
 - Population prevalence of physical activity and sedentary behavior
 - Physical activity policies
 - Physical activity assessment

- **752-0300-00L**
 - **Public Health Concepts**
 - **Abstract**: The module "public health concepts" offers an introduction to key principles of public health. Students get acquainted with the concepts and methods of epidemiology. Students also learn to use epidemiological data for prevention and health promotion purposes. Public health concepts and intervention strategies are presented, using examples from infectious and chronic diseases.
 - **Objective**: At the end of this module students are able:
 - to interpret the results of epidemiological studies
 - to critically assess scientific literature
 - to know the definition, dimensions and determinants of health
 - to plan public health interventions and health promotion projects
 - to draw a bridge from evidence to policies and politics
 - **Content**: Concepts of descriptive and analytical epidemiology, study designs, measures of effect, confounding and bias, screening, surveillance, definition of health and health promotion, health dimensions and health determinants, prevention strategies, public health interventions, public health action cycle, epidemiology and prevention of infectious and chronic diseases (HIV, COVID-19, Obesity, Iodine/PH nutrition).

- **376-6151-00L**
 - **Translational Science for Health and Medicine**
 - **Abstract**: The course should help to clarify basics of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.
 - **Objective**: After completing this course, students will be able to understand:
 - Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication)
 - **Content**: The evolution of current physical activity recommendations and that identified physical activity as a key modifiable lifestyle behavior contributing to disease and mortality.
 - Disease concepts and consequences for research
 - Basics about incidence, prevalence etc., and orphan indications
 - How to choose the appropriate research type and methodology
 - Ethical considerations including ethics application
 - Pros and cons of different types of research
 - Coordination of complex approaches incl. timing and resources
 - How to measure success?
 - Outcome variables
 - Improving the translational process
 - Challenges of communication?
 - How independent is translational science?
 - Academic boundary conditions vs. industrial influences
 - Positive and negative examples will be illustrated by distinguished guest speakers.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1360 of 2152
Literature
Core texts for this course are:

Selective journal articles from relevant journals such as Journal of Physical Activity and Health and Journal of Aging and Physical Activity

Prerequisites / notice
From the BSc-course the following book is recommended: ‘Essentials of strength training and conditioning’ T. Baechle, R. Earle (3rd Edition)

Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>766-6500-00L</td>
<td>MAS Master’s Thesis</td>
<td>O</td>
<td>20 credits</td>
<td>43D</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Only for MAS in Nutrition and Health.

Abstract
The study program is completed with the Master thesis, an independent scientific work. Topics are selected within the domains of the MAS program. The work is supervised by a lecturer of the MAS program.

Objective
The Master thesis must demonstrate the student's ability to independent, structured and scientific working.

Mas in Nutrition and Health - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
MAS in Fire Safety Engineering

Four-semester, part-time MAS programme, starting in autumn semester (even years).

Next start: Autumn Semester 2022

Module

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>121-0100-00L</td>
<td>Module 1: Fire Science</td>
<td>O</td>
<td>10 credits</td>
<td>9G</td>
<td>A. Frangi</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only for MAS ETH in Fire Safety Engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121-0110-00L</td>
<td>Module 2: Fire Safety Design</td>
<td>O</td>
<td>10 credits</td>
<td>9G</td>
<td>A. Frangi</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only for MAS ETH in Fire Safety Engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121-0140-00L</td>
<td>Module 5: Technical Fire Safety</td>
<td>O</td>
<td>6 credits</td>
<td>5G</td>
<td>A. Frangi</td>
</tr>
<tr>
<td></td>
<td>Only for MAS ETH in Fire Safety Engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key for Type

- **O**: Compulsory
- **W+**: Eligible for credits and recommended
- **W**: Eligible for credits
- **E-**: Recommended, not eligible for credits
- **Z**: Courses outside the curriculum
- **Dr**: Suitable for doctorate

Key for Hours

- **V**: lecture
- **G**: lecture with exercise
- **U**: exercise
- **S**: seminar
- **K**: colloquium
- **P**: practical/laboratory course
- **A**: independent project
- **D**: diploma thesis
- **R**: revision course / private study

ECTS

- European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
MAS in Building Process Leadership
The MAS in "Gesamtprojektleitung Bau" is of a duration of 2 years, starting in autumn semester (n-service).
Start of the next course: Autumn Semester 2021

Module

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>067-0101-00L</td>
<td>Involved Parties</td>
<td>O</td>
<td>10 credits</td>
<td>21G</td>
<td>A. Paulus</td>
</tr>
<tr>
<td>Abstract</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to understand the following terminologies, processes and competences. They are able to put them into practice. - Expertise and personal skills - Organisational forms and SWOT analysis - Role, contracting and authority to issue directives - Responsibility - Leadership</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Our advanced studies' lectures are given in German. Please find an English written abstract and/or keywords in the field 'objective'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Please find the teaching material, the further readings and Information on our server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>www.map.arch.ethz.ch/en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taught competencies

- **Domain A - Subject-specific Competencies**
 - Concepts and Theories
 - Techniques and Technologies

- **Domain B - Method-specific Competencies**
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Project Management

- **Domain C - Social Competencies**
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity
 - Negotiation

- **Domain D - Personal Competencies**
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection

<table>
<thead>
<tr>
<th>Number</th>
<th>Interests</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>067-0103-00L</td>
<td>Interests</td>
<td>O</td>
<td>10 credits</td>
<td>11G</td>
</tr>
<tr>
<td>Abstract</td>
<td>In our third semester, we reconsider and re-evaluate our identity as a leading consultant. For this we see how the concept of leadership works on and shapes our skills. In line with our acquired knowledge we now pay attention to all involved interests: the perception of demand. Furthermore, it is a necessity to understand the tasks and duties of every role which you can take on.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to understand the following terminologies, processes and competences. They are able to put them into practice. - Interests and positions, perception of demands - Concept of leadership - Construction industry and real estate market</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>In our third semester, we reconsider and re-evaluate our identity as a leading consultant. For this we see how the concept of leadership works on and shapes our skills. In line with our acquired knowledge we now pay attention to all involved interests: the perception of demand. Furthermore, it is a necessity to understand the tasks and duties of every role which you can take on.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>www.map.arch.ethz.ch/en</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAS in Building Process Leadership - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
MAS in History and Theory of Architecture (GTA)

The MAS-programm in “History and Theory of Architecture” is a two-year half-time course and contains 60 CP. The course starts in the autumn semester.

Attendance of classes supplemented by independent research; practical training periods and excursions; lectures/seminars on one to two days per week, in total 600 ca. contact hours, in addition private study ca. 600 hours (for each in-class day one day of work preparation), two individually tutored seminar papers on chosen subjects (200 hours) and credited Master’s thesis (600 hours).

1. Semester

Lectures, Seminars

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>056-0001-01L</td>
<td>Architecture and the City I</td>
<td>O</td>
<td>4</td>
<td>4S</td>
<td>S. Schindler Kilian, A. J. Bideau</td>
</tr>
<tr>
<td></td>
<td>Only for MAS in History and Theory of Architecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Land and the ways in which humans divide, construct, and value it exert a profound influence on architecture and building activity. Conversely, architecture shapes how land, a limited resource, is allocated—often in unequal terms. This leads to conflicts, for instance in the urban realm. What is the role of architectural criticism in negotiating these kinds of conflicts?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students gain an understanding of different approaches to architectural criticism. They write and revise their own texts in short, middle and long form, and also edit their peers’ work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Analysis of key texts; site visits of current building and planning projects; weekly writing assignments; reviews and lectures with invited critics from general-audience and professional publications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Will be posted on the MAS platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>None.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Workshop

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>056-0005-01L</td>
<td>Methods of Academic Writing I</td>
<td>O</td>
<td>1</td>
<td>3U</td>
<td>S. Schindler Kilian, M.-A. Lerjen</td>
</tr>
<tr>
<td></td>
<td>Only for MAS in History and Theory of Architecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Through hands-on teaching, the methods workshops introduce students to the various approaches to academic writing in the humanities and convey the methodological foundations of architectural history. Lecturers and students discuss and work on research papers and master's theses as well as the group's research project.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students learn to identify and apply different methods of academic writing in architectural history. They acquire the ability to recognize and independently solve problems related to research and writing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Essays

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>056-0201-01L</td>
<td>Scientific Home Work (1)</td>
<td>O</td>
<td>4</td>
<td></td>
<td>S. Schindler Kilian, M. Delbeke</td>
</tr>
<tr>
<td></td>
<td>Only for MAS in History and Theory of Architecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Students write a seminar paper on a subject of their choice in consultation with a lecturer, developing the skills to pursue independent academic work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students write an academic paper of approx. 3.000 words/20.000 characters.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Semester

Lectures, Seminars

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>056-0003-01L</td>
<td>Architecture and the City III</td>
<td>O</td>
<td>4</td>
<td>4S</td>
<td>S. Schindler Kilian, A. J. Bideau</td>
</tr>
<tr>
<td></td>
<td>Only for MAS in History and Theory of Architecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Land and the ways in which humans divide, construct, and value it exert a profound influence on architecture and building activity. Conversely, architecture shapes how land, a limited resource, is allocated—often in unequal terms. This leads to conflicts, for instance in the urban realm. What is the role of architectural criticism in negotiating these kinds of conflicts?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students gain an understanding of different approaches to architectural criticism. They write and revise their own texts in short, middle and long form, and also edit their peers’ work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Analysis of key texts; site visits of current building and planning projects; weekly writing assignments; reviews and lectures with invited critics from general-audience and professional publications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Will be posted on the MAS platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>None.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Workshop

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>056-0009-01L</td>
<td>Architecture and the City V</td>
<td>W</td>
<td>4</td>
<td>9S</td>
<td>S. Schindler Kilian</td>
</tr>
<tr>
<td></td>
<td>Architecture and the City V serves as the container to register in the transcript the two electives at 2 credit points each which are required from MAS gta students for their degree. Students should register both for this course and for the electives.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of requiring two electives is to expose MAS gta students to the range of content and methods being taught at gta/DARCH.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Workshop

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>056-0007-01L</td>
<td>Research Methods in the History and Theory of Architecture I</td>
<td>O</td>
<td>1</td>
<td>3U</td>
<td>C. Rachele, S. Schindler Kilian</td>
</tr>
<tr>
<td></td>
<td>Nur für MAS Studierende in Geschichte und Theorie der Architektur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to methodological approaches in the history and theory of architecture; presentation and discussion of individual projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course in the first year of the doctoral program in the history and theory of architecture has a twofold objective: First, method sessions on central approaches in the history and theory of architecture provide a methodological basis for the doctorate at the Institute gta. Secondly, in booklet and review sessions, the doctoral students get support for their individual research projects and guidance for the production of the Research Plan they have to present at the end of the first year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The seminar course prepares the doctoral students for their Research Plan submission at the end of their first year. The weekly seminar will frame group discussions on a variety of topics, group presentations, and preparatory exercises. Students are encouraged to consider the course readings not only in terms of their content, but also as illustrations of formatting, structuring and argumentation methods, that can serve as research models.

There are four types of seminar classes. Toolkit classes focus on the individual components of the Research Plan: abstract, hypothesis, literature survey, research structure etc. Method classes cover research strategies and disciplinary traditions relevant for doctoral studies in the history and theory of architecture. Theory seminars focus on specific intellectual traditions and their comparison. The in-seminar Review sessions, leading up to the formal end-of-semester Doctoral Reviews with external guests, comprise work-in-progress presentations and peer-review appraisals.

The course schedule will be available at the beginning of HS 2021 on the course website: https://doctoral-program.gta.arch.ethz.ch/courses/research-methods-in-the-history-and-theory-of-architecture

Lecture notes: Scans of selected texts for discussion and exercises will be provided at the beginning of HS 2021 on the course website: https://doctoral-program.gta.arch.ethz.ch/courses/research-methods-in-the-history-and-theory-of-architecture

The following titles offer background and detailed information regarding research methodologies for a variety of disciplines.

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>056-0210-01L</td>
<td>MAS Thesis Preparation</td>
<td>O</td>
<td>5 credits</td>
<td>9A</td>
<td>S. Schindler Kilian, M. Delbeke</td>
</tr>
</tbody>
</table>

Abstract
This one-semester module is dedicated to identifying the topic for the Master's thesis and developing the research plan. The Master's thesis itself is written in the following spring semester.

Objective
The aim is to develop a relevant hypothesis and research question for the Master's thesis that is based on an analysis of the current state of the field. Additionally, the research plan includes preparing an annotated bibliography, elaborating the methodological approach and a timeline of deliverables.

Content
The topic of the MAS master thesis is chosen by the students and further refined through individual consultation with the docents. At the end of the semester, the students present their research plan to external guest critics. The research plan comprises about 25,000 characters.

Literature
See internal MAS platform

MAS in History and Theory of Architecture (GTA) - Key for Type

<table>
<thead>
<tr>
<th></th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th></th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>057-0103-10L</td>
<td>Module 1: Global Housing Issues, Challenges and Strategies for MAS in Housing</td>
</tr>
<tr>
<td>057-0104-10L</td>
<td>Module 2: Innovative Housing: Case Studies and Exercises for MAS in Housing</td>
</tr>
<tr>
<td>057-0101-10L</td>
<td>Module 3: Housing Research Methods for MAS in Housing</td>
</tr>
<tr>
<td>057-0102-10L</td>
<td>Module 4: Writing and Communication Skills for Built Environment Professionals for MAS in Housing</td>
</tr>
</tbody>
</table>

Module 1: Global Housing Issues, Challenges and Strategies for MAS in Housing

Abstract

Globally over one billion people lack adequate housing. Meeting their housing needs requires innovative solutions that are affordable, inclusive, sustainable and scalable. We will critically reflect on the causes and consequences of the current housing crisis and the various strategies through which a wide range of actors at local, national and international level are addressing the housing question.

Objective

The students will learn to understand the meaning of housing in relation to its broader socioeconomic, cultural, political, and spatial context and to critically reflect on the viability, effectiveness and sustainability of different housing strategies.

Content

Housing is a human right but also one of the most daunting challenges of urbanisation globally. Currently over one billion people lack adequate and affordable housing, a number that may increase to 1.6 billion people within a decade. Ensuring access to adequate, safe and affordable housing to all is one of the targets of the 2030 Agenda for Sustainable Development. However, this target is unlikely to be met without a radical change in housing policies and practices. Indeed, meeting millions of people’s housing needs requires innovative solutions that are inclusive, sustainable and scalable. The course focuses on the causes and consequences of the global housing crisis. Further it will critically reflect upon the concept of adequate housing and on the various strategies through which national governments, municipalities, the private sector, and communities in different contexts have, or are currently addressing the housing question.

Lecture notes

A reader will be distributed at the beginning of the semester containing an overview of all lectures, the involved exercises, and required readings.

Prerequisites / notice

Course only open to students enrolled in the ETH MAS in Housing.

Module 2: Innovative Housing: Case Studies and Exercises for MAS in Housing

Abstract

With the aim of understanding the role of architecture in responding to the constantly changing housing needs and demands we will visit and analyze a selected number of housing projects that are innovative from a social, institutional and architectural perspective.

Objective

The students will gain a better understanding of the socioeconomic, cultural and institutional factors determining innovation in the housing sector.

Content

All over the world a wide range of public and private organizations are responding to the qualitative and/or quantitative housing deficits through innovative projects. With the aim of understanding the role of architecture in responding to the constantly changing societal needs and aspirations we will visit and analyze a selected number of ground-breaking housing projects. Interactions with relevant stakeholders will enable students to reflect upon their innovative character from a social, institutional and architectural perspective. These visits will be followed by individual and group exercises; based on a common analytical framework the students will identify through secondary sources additional paradigm-shifting housing projects in different parts of the world with the aim of gaining a better understanding of the links between housing initiatives and their societal context.

Lecture notes

A reader will be distributed at the beginning of the semester containing an overview of all lectures, the involved exercises, and required readings.

Prerequisites / notice

Course only open to students enrolled in the ETH MAS in Housing.

Module 3: Housing Research Methods for MAS in Housing

Abstract

This course offers an introduction to a wide range of research methods currently used in housing and neighborhood studies. Students will be invited to reflect on the value of using different tools to inform evidence-based design processes and to provide rigorous answers to research question by covering all the steps of the research cycle.

Objective

Students will acquire the theoretical and methodological skills to design and carry out an independent scientific research project.

Content

This course offers an introduction to a wide range of research methods currently used in housing and neighborhood studies. Students will be invited to reflect on the value of using different tools to inform evidence-based design processes and to provide rigorous answers to research questions by covering all steps of the research cycle. Particular emphasis will be given to qualitative and participatory research methods and to research question by covering all steps of the research cycle. Particular emphasis will be given to qualitative and participatory research methods that will enable the students to critically reflect upon the concept of adequate housing and on the various strategies through which national governments, municipalities, the private sector, and communities in different contexts have, or are currently addressing the housing question.

Lecture notes

A reader will be distributed at the beginning of the semester containing an overview of all lectures, the involved exercises, and required readings.

Prerequisites / notice

Course only open to students enrolled in the ETH MAS in Housing.

Module 4: Writing and Communication Skills for Built Environment Professionals for MAS in Housing

Abstract

The course is intended to support the students to develop their individual research proposals and to attain the necessary skills to work independently and with scientific rigour on a project leading to their final MAS thesis.

Objective

In the framework of Module 4, students will learn the fundamentals of conducting their own research project, from defining a clear research question, to formulating valid hypotheses, and developing a feasible research design. The course is intended to support the students to develop their individual proposals and to attain the necessary skill to work independently and with scientific rigour on a project leading to their final MAS thesis.

Content

A core element of the MAS ETH in Housing is the elaboration of a research-based individual thesis. This module offers 10 ECTS credit points. In the framework of Module 4, students will learn the fundamentals of conducting their own research project, from defining a clear research question, to formulating valid hypotheses, and developing a feasible research design. The course is intended to support the students to develop their individual proposals and to possess the necessary skill to work independently and with scientific rigour on a project leading to their final MAS thesis.

Lecture notes

A reader will be distributed at the beginning of the semester containing an overview of all lectures, the involved exercises, and required readings.
Elective Courses
At least 3 elective courses for a total of 6 ECTS have to be followed by the MAS students. These can be selected from the courses offered by the Department of Architecture or from other ETH departments.

<table>
<thead>
<tr>
<th>Mas in Housing - Key for Type</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System
Special students and auditors need special permission from the lecturers.
MAS in Management, Technology, and Economics
MAS MTEC Introductory Event for 1st Semester Students.
Monday, 20.09.2021, 16.00 - 17.15 h, HG E 1.2 (tbc)

1. Semester

Core Courses

General Management and Human Resource Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0341-00L</td>
<td>Introduction to Management</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>Z. Zagorac-Uremovic, J. O'Neil</td>
</tr>
</tbody>
</table>

Abstract
By the end of this course, students will understand management as a set of skills, processes, tools and methods that enable organizations to achieve their goals and to coordinate routine operations in order to meet evolving customers' and societal needs. The students will achieve these goals by being able to:
- Analyze organizations as open systems, and describe their critical elements,
- Apply conceptual tools and methods that help to analyze or approach the critical elements,
- Compare different notions of organizational performance, and explain why they matter,
- Discuss the relationships that connect the critical elements of an organization on the basis of real cases,
- Explain how change, internally or externally initiated, impact such relationships

Objective

1. Semester

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0301-00L</td>
<td>Work Design and Organizational Change</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>G. Grote</td>
</tr>
</tbody>
</table>

Abstract
Good work design is crucial for individual and company effectiveness and a core element to be considered in organizational change. Meaning of work, organization-technology interaction, and uncertainty management are discussed with respect to work design and sustainable organizational change. As course project, students learn and apply a method for analyzing and designing work in business settings.

Objective
- Know effects of work design on competence, motivation, and well-being
- Understand links between design of individual jobs and work processes
- Know basic processes involved in systematic organizational change
- Understand the interaction between organization and technology and its impact on organizational change
- Understand relevance of work design for company performance and strategy
- Know and apply methods for analyzing and designing work
The class will center on the importance of marketing as an activity that creates long-term value for the benefit of organizations and their customers. The course will introduce important concepts, frameworks and methods for marketing decision making. A focus will be on managing customer relationships with the help of targeted promotions and data collected through digital technologies. The class might be taught in an in-person, remote or in a hybrid format.

The course might comprise mandatory and supplemental reading material. Other literature may be assigned in class. The structure of the course will roughly follow the different steps of the value chain, i.e., the set of activities necessary for offering valuable products to customers. First, it will introduce students to psychological theories that help explain behavior, e.g., purchase behavior. It will also familiarize students with different methods from marketing research, which can be used to identify the needs of customers. Next, the course will look at the role of the marketing mix in satisfying customer needs. For example, the class will cover new product development and pricing. A focus will be on managing profitable, long-term relationships with customers. To this end, students will gain in-depth knowledge on the use of targeted promotions and marketing data to (1) attract, (2) convert and engage and (3) retain customers. The course is designed to be “hands-on”, with opportunities to apply skills on business cases involving real-world marketing data. It will feature guest lectures from industry experts.

The class might be taught in an in-person, remote or in a hybrid format. The structure of the course will roughly follow the different steps of the value chain, i.e., the set of activities necessary for offering valuable products to customers. First, it will introduce students to psychological theories that help explain behavior, e.g., purchase behavior. It will also familiarize students with different methods from marketing research, which can be used to identify the needs of customers. Next, the course will look at the role of the marketing mix in satisfying customer needs. For example, the class will cover new product development and pricing. A focus will be on managing profitable, long-term relationships with customers. To this end, students will gain in-depth knowledge on the use of targeted promotions and marketing data to (1) attract, (2) convert and engage and (3) retain customers.

The course is designed to be “hands-on”, with opportunities to apply skills on business cases involving real-world marketing data. It will feature guest lectures from industry experts. The class might be taught in an in-person, remote or in a hybrid format. The structure of the course will roughly follow the different steps of the value chain, i.e., the set of activities necessary for offering valuable products to customers. First, it will introduce students to psychological theories that help explain behavior, e.g., purchase behavior. It will also familiarize students with different methods from marketing research, which can be used to identify the needs of customers. Next, the course will look at the role of the marketing mix in satisfying customer needs. For example, the class will cover new product development and pricing. A focus will be on managing profitable, long-term relationships with customers. To this end, students will gain in-depth knowledge on the use of targeted promotions and marketing data to (1) attract, (2) convert and engage and (3) retain customers.

The course is designed to be “hands-on”, with opportunities to apply skills on business cases involving real-world marketing data. It will feature guest lectures from industry experts. The class might be taught in an in-person, remote or in a hybrid format. The structure of the course will roughly follow the different steps of the value chain, i.e., the set of activities necessary for offering valuable products to customers. First, it will introduce students to psychological theories that help explain behavior, e.g., purchase behavior. It will also familiarize students with different methods from marketing research, which can be used to identify the needs of customers. Next, the course will look at the role of the marketing mix in satisfying customer needs. For example, the class will cover new product development and pricing. A focus will be on managing profitable, long-term relationships with customers. To this end, students will gain in-depth knowledge on the use of targeted promotions and marketing data to (1) attract, (2) convert and engage and (3) retain customers.
Objective

A. After the lecture, the student is able to evaluate digital business models from different angles, including theory-based views:

- Definition and classification of business models
- Digital business model patterns
- Theoretical frameworks that explain why and how digital business models function
- Impact of digital business model patterns on P&L and balance sheet

Students know how to measure & evaluate investments into the digital space as

- a decision maker in an established company (should I invest in project A or B?)
- an entrepreneur (should I pursue this venture?)
- an investor (should I invest in start-up xy?)

B. The student knows different tools to design digital business model patterns.

Content

Uber, Airbnb, Nest and Jawbone - A wide range of innovative companies exist, which successfully implemented ICT enabled business models and continue to grow at a rapid pace. Examples, illustrating how digitalization, including the "Internet of Things" currently fosters business model innovation across various industries. This course is designed to help students to understand and critically assess such newly immerging (digital) business models.

Course materials will be made available on the Moodle platform through which students can solve online exercises and submit a short educational video as part of a course assignment.

Key Topics:
Business model innovation; (digital) business model patterns; business value of IT; the concept of integration; transaction cost perspective; network economics; essentialities and impact of web 2.0, internet of things, mobile computing, market places, social analytics, and big data; IT governance and portfolio management; entrepreneurship in the digital space, etc.

Literature

Suggested literature is provided in the syllabus.

Table: Quantitative and Qualitative Methods for Solving Complex Problems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0541-00L</td>
<td>Systems Dynamics and Complexity</td>
<td>W+</td>
<td>3</td>
<td>3G</td>
<td>F. Schweitzer</td>
</tr>
</tbody>
</table>

Abstract

Finding solutions: what is complexity, problem solving cycle.

Implementing solutions: project management, critical path method, quality control feedback loop.

Controlling solutions: Vensim software, feedback cycles, control parameters, instabilities, chaos, oscillations and cycles, supply and demand, production functions, investment and consumption

Objective

A successful participant of the course is able to:

- understand why most real problems are not simple, but require solution methods that go beyond algorithmic and mathematical approaches
- apply the problem solving cycle as a systematic approach to identify problems and their solutions
- calculate project schedules according to the critical path method
- setup and run systems dynamics models by means of the Vensim software
- identify feedback cycles and reasons for unintended systems behavior
- analyse the stability of nonlinear dynamical systems and apply this to macroeconomic dynamics
Communication

Why are problems not simple? Why do some systems behave in an unintended way? How can we model and control their dynamics? The course provides answers to these questions by using a broad range of methods encompassing systems oriented management, classical systems dynamics, nonlinear dynamics and macroeconomic modeling. The course is structured along three main tasks:

1. Finding solutions
2. Implementing solutions
3. Controlling solutions

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions.

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed.

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles.

Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM. Another objective of the self-study tasks is to practice efficient communication of such concepts. These are provided as home work and two of these will be graded (see “Prerequisites”).

Lecture notes

The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture.

Micro and Macroeconomics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0565-00L</td>
<td>Principles of Macroeconomics</td>
<td>W+</td>
<td>3 credits</td>
<td>2V</td>
<td>J.-E. Sturm</td>
</tr>
</tbody>
</table>

Abstract

This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective

This lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems.

Content

This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.

Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.

Lecture notes

The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15062) contains announcements, course information and lecture slides.

Literature

This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filipini).

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.

Domin A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: not assessed

Domin B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domin C - Social Competencies

- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domin D - Personal Competencies

- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

363-0503-00L Principles of Microeconomics

W+ 3 credits 2G M. Filipini

Einführung in die Mikroökonomie

Abstract

This course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.
The course Accounting for Managers offers an introduction to financial accounting and management accounting. It provides managers with the necessary knowledge for decision making using accounting information.

Topics covered by the course are:
- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

Lecture notes
Lecture notes, exercises and reference material can be downloaded from Moodle.

Literature

Prerequisites / notice
For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:

GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.

Complementary:

Domain A - Subject-specific Competencies
Concepts and Theories: assessed
Techniques and Technologies: not assessed

Domain B - Method-specific Competencies
Analytical Competencies: assessed
Decision-making: not assessed
Media and Digital Technologies: not assessed
Problem-solving: not assessed
Project Management: not assessed

Domain C - Social Competencies
Communication: not assessed
Cooperation and Teamwork: not assessed
Customer Orientation: not assessed
Leadership and Responsibility: not assessed
Self-presentation and Social Influence: assessed
Sensitivity to Diversity: not assessed
Negotiation: not assessed

Domain D - Personal Competencies
Adaptability and Flexibility: not assessed
Creative Thinking: not assessed
Critical Thinking: assessed
Integrity and Work Ethics: not assessed
Self-awareness and Self-reflection: assessed
Self-direction and Self-management: not assessed

Financial Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0711-00L</td>
<td>Accounting for Managers</td>
<td>W+</td>
<td>3 credits</td>
<td>2V</td>
<td>J.-P. Chardonnens</td>
</tr>
</tbody>
</table>

Abstract
The course Accounting for Managers offers an introduction to financial accounting and management accounting. It provides managers with the necessary knowledge for decision making using accounting information.

Objective
By attending this course, students will be able to:
- record business transactions on the different types of accounts.
- establish a balance sheet and an income statement.
- prepare the different financial reports.
- understand the principles of cost accounting.
- determine the cost of production.
- make decisions based on cost information.

Content
The first part of the course is devoted to financial accounting. It teaches the principles of double-entre accounting and deals with the recording of commercial transactions on accounts. It describes the work to be carried out at the closing in order to prepare the financial reports according to the generally accepted accounting principles. This type of accounting information is primarily intended for investors and shareholders.

The second part of the course describes the principles of management accounting and explains the different costing methods. It aims to determine the manufacturing cost of production of the different products and services using full and variable costing methods. The accounting information focuses on the internal needs of managers for the purpose of budget preparation and profitability analysis.

Prerequisites / notice
This course is a prerequisite for the course Financial Management.

3. Semester
Core Courses

Strategy, Markets and Technology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0387-00L</td>
<td>Corporate Sustainability</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>V. Hoffmann, C. Bening-Bach, N. U. Blum, J. Meuer</td>
</tr>
</tbody>
</table>

Abstract
The lecture explores current challenges of corporate sustainability and prepares students to become champions for sustainable business practices. In the beginning, traditional lectures are complemented by e-modules that allow students to train critical thinking skills. In the second half of the semester, students work in teams on sustainability challenges related to water, energy, mobility, and food.

Objective
- assess the limits and the potential of corporate sustainability for sustainable development
- develop critical thinking skills (argumentation, communication, evaluative judgment) that are useful in the context of corporate sustainability using an innovative writing and peer review method.
- recognize and realize opportunities through team work for corporate sustainability in a business environment
- present strategic recommendations in teams with different output formats (tv-style debate, consultancy pitch, technology model walk-through, campaign video)

Content
In the first part of the semester, Prof. Volker Hoffmann and Dr. Johannes Meuer will share their insights on corporate sustainability with you through a series of lectures. They introduce you to a series of critical thinking exercises and build a foundation for your group work. In the second part of the semester, you participate in one of four tracks in which SusTec researchers will coach your groups through a seven-step program. Our ambition is that you improve your analytic and organizational skills and that you can confidently stand up for corporate sustainability in a professional setting. You will share the final product of your work with fellow students in a final puzzle session at the end of the semester.

Prerequisites / notice
TEACHING FORMAT: ATTENDANCE: Please note that we aim to offer you the course in-class and online, but at this point we cannot guarantee that a purely online participation is possible. Irrespective of the format (in-class or online), the course includes several mandatory sessions that participants must attend to successfully earn credit points.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0392-00L</td>
<td>Strategic Management</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>Y. R. Shrestha</td>
</tr>
</tbody>
</table>

Abstract
This course conveys concepts and methods in strategic management, with a focus on competitive strategy. Competitive strategy aims at improving and establishing positions of firms within an industry.

Objective
The lecture "Strategic Management" is designed to teach relevant competences in strategic planning and -implementation, for both professional work-life and further scientific development. The course provides an overview of the basics of strategy and the most prevalent concepts and methods in strategic management. The course is given as a combination of lectures about concepts/methods, and case studies where the students solve strategic issues of the case companies. In two sessions, the students will also be addressing real-time strategic issues of firms that are represented by executives.

Content
Contents:
- 27.09.2021: Guest Lecture (Dr. Berg) and Introduction
- 04.10.2021: Strategy concepts
- 25.10.2021: Guest Lecture (Patrick Warnding, Google) + Case Studies
- 01.11.2021: Industry dynamics II: Analysis of technology and innovation + Cases
- 15.11.2021: The resource-based theory of the firm + Cases
- 22.11.2021: The knowledge-based theory of the firm + Case
- 29.11.2021: Guest Lecture (Andy Staubli, PwC) and course summary

Prerequisites / notice
Number of participants limited to 80. Registration through myStudies (first come, first served). We do not use the myStudies-Waiting List, and give their take on strategy in practice and give insight on current topics in the field.

For further questions and if you are unable to sign up through myStudies, please contact the course assistant: http://www.smi.ethz.ch/education/strategic-management.html

For participants of the MAS-MTEC program we offer a complemantary course Practicing Strategy in which students will apply the concepts of Strategic Management to their real-life contexts and organizations. Please register simultaneuously for both courses if you want to partake in this course.

For more information please see: http://www.smi.ethz.ch/education/practicing-strategy.html

Information and Operations Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0453-00L</td>
<td>Strategic Supply Chain Management</td>
<td>W+</td>
<td>3</td>
<td>2G</td>
<td>S. Wagner</td>
</tr>
</tbody>
</table>

Abstract
The course offers an introduction to the theory and practice of supply chain management. Students will learn how to develop supply chain strategies and supply chain networks based on firms competitive strategies and marketing priorities.
In this class, students learn how to understand and conduct empirical research. It will enable them to manage a business based on evident-based decision-making. The class includes group assignments, where students will cover small parts of the lecture content in self-created lecture by applying the concepts to real situations in corporate life.

Building on the foundations, students get familiarized with the development of a supportive supply chain structure. This structure is in its core made up by logistical elements, such as facilities, inventory management and transportation. At the same time, supply chain management is inevitably cross-functional. As such, information and information infrastructure, sourcing decisions and pricing are further drivers to define a supply chain structure. Students will learn important elements in supply chain structure, including for example forecasting methods and network design modeling and optimization. Case study assignments and practical exercises within lectures allow students to gain hands-on experience and enhance their knowledge.

The wide range of topics involved in supply chain management makes the field very open to innovation and further development. In the course of the lecture, students have the chance to learn and discuss both overall trends and practical insights on development. The course furthermore encourages student involvement within lectures, in exchange with peers and with guest speakers. Case study assignments and tools for self-assessment help students to learn actively and continuously throughout the course.

Objective

After completing this course:
1. Students can explain the importance of supply chain management for a firm’s strategy and success
2. Students are able to apply the tools and methods used to optimize a supply chain structure
3. Students can differentiate supply chain network designs and their applicability in specific company and sector settings
4. Students can describe and evaluate fundamental logistics and supply chain concepts
5. Students are able to explain elements of a supply chain structure and their importance for supply chain strategy
6. Students are familiar with current developments and trends in supply chain practices

Content

Modern supply chains are not only essential to ensure functioning logistics but also help firms develop and maintain competitive advantage in globalized (supplied) markets with numerous partners and competitors. While taking into account future opportunities and risks, effective supply chains ought to be aligned with and support the achievement of the firm’s corporate, business and product strategies. This course will familiarize students with modern supply chain management theory and practice to develop and manage supply chains.

Starting with the corporate strategy, firms align their supply chain strategy. They have to manage trade-offs, such as efficiency and responsiveness. Understanding a supply chain’s role within a firm and the implications of supply chain strategies for firm performance are the foundations of the course.

Students should install MS Excel and the Excel Solver before class, as it is used for within-class exercises. Students without the program and add-in installed may nevertheless participate within groups during the exercises.

363-0425-00L

Transformation: Corporate Development and IT

Objective

The goal of the lecture is to understand the main challenges of corporate transformation and to demonstrate the application of a holistic project procedure model for corporate transformation projects with special emphasis on the alignment of business and IT.

The student should understand and be able to explain
- the main reasons for corporate transformation,
- the relevant management processes to manage corporate transformation,
- the interdependencies between strategy, processes and information systems, especially how this three levels interrelate,
- the critical success factors for the successful accomplishment of large scale corporate transformation projects,
- the main instruments of project, quality and change management and
- the different types of resulting IT projects.

Content

The globalization of the world leads to an increasingly faster pace in business transformation. Enterprises have to adapt faster and even faster to the environmental changes in a global economy to remain competitive and to make sure they stay in business. In todays information age this does not only mean to adapt business strategy and business processes but also to adapt information systems to the new circumstances. The fast adaptation trough large scale corporate transformation projects that change strategy, business processes and information systems is critical to ensure competitiveness for tomorrow. The introduction of new business processes and information systems typically takes years in very complex large scale projects. Many projects fail because of insufficient alignment between decision makers in business and IT. Unclear understanding of the overall project scope, undefined roles and responsibilities, unclear project processes, quality problems and resistance to change are some typical problems found in such projects. The lecture is subdivided into following modules:

- Corporate development introduction and motivation,
- Parallelization of corporate development and complexity reduction,
- Planning process and project portfolio management in corporate development,
- Management of large scale projects integration of strategy, processes and information systems,
- Quality management in large scale projects,
- Project management in large scale projects,
- Change management within projects. The lecture is accompanied by four case studies that are used to exemplify the contents of the lecture by applying the concepts to real situations in corporate life.

Quantitative and Qualitative Methods for Solving Complex Problems

Number	Title	Type	ECTS	Hours	Lecturers
363-0305-00L | Empirical Methods in Management | W+ | 3 credits | 2G | S. Tillmanns

Abstract

In this class, students learn how to understand and conduct empirical research. It will enable them to manage a business based on evidence-based decision-making. The class includes group assignments, where students will cover small parts of the lecture content in self-created videos.

Objective

The general objective of the course is to enable students to understand the basic principles of empirical studies. After successfully passing the class, they will be able to formulate research questions, design empirical studies, and analyze data by using basic statistical approaches.
Data has become an important resource in today’s business environment, which can be used to make better management decisions. However, evidence-based decision-making comes along with challenges and requires a basic understanding of statistical approaches. Therefore, this class introduces problems and key concepts of empirical research, which might be qualitative or quantitative in its nature. Concerning qualitative research, students learn how to conduct and evaluate interviews. In the area of quantitative research, they learn how to apply measurement and scaling methods and conduct experiments. In addition, they learn how to conduct it in a standard statistical software package like SPSS and learn how to analyze the data. The lessons learned from the lecture will enhance students’ ability to critically assess the quality and outcomes of studies published in the media and scientific journals. In the second part of the course, students are introduced to microeconomic and macroeconomic theory. Students will learn how to apply microeconomic and macroeconomic models in the field of artificial intelligence such as Marketing Analytics.

The lecture will be taught online this fall semester. Therefore, it involves group work, where students form groups in order to create small learning videos, which cover small parts of the lecture. These videos will be shown and discussed in the online lecture and will make up 30% of the final grade. Part of this assignment will be the evaluation of videos from other students. The preparation of the videos will also prepare students for the final exam. In addition to that, there will be some non-mandatory online exercises as an additional opportunity to prepare for the exam.

Literature

Literature and readings will be announced. For a basic understanding we recommend the Handbook of Good Research by Jürgen Brock and Florian von Wangenheim.

Prerequisites / notice

The course includes out-of-class assignments and projects to give students some hands-on experience in conducting empirical research in management. Projects will focus on one particular aspect of empirical research, like the formulation of a research question or the design of a study. Students will form groups and create a learning video regarding one specific topic. Assignments will be graded and need to be turned-in on time as they will be shown and discussed in class. Students will also have to evaluate the videos of other student groups. Online class participation is encouraged and can greatly improve students’ learning. In this spirit, students are expected to attend class regularly and come to class prepared.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0537-00L</td>
<td>Resource and Environmental Economics</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>L. Bretschger</td>
</tr>
</tbody>
</table>

Objective

A successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and environmental economics and the ability to solve complex issues. This includes contracts, statistical answers, and models, including knowledge of the available policy instruments and their relative strengths and weaknesses. Thirdly, the course will also give in-depth environmental economic analysis of renewable and non-renewable resources, including the role of social and environmental costs, benefits and costs of renewable resources, environmental cost-benefit analysis, sustainability economics and more.

Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Micro and Macroeconomics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0537-00L</td>
<td>Resource and Environmental Economics</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>L. Bretschger</td>
</tr>
</tbody>
</table>
The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power.

When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

Financial Management

Number

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0723-00L</td>
<td>Corporate Finance</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>A. Kind</td>
</tr>
</tbody>
</table>

Abstract

"Corporate Finance" is an introductory course that presents those fundamental principles of finance that find direct application in the financial decisions of modern corporations. The course is structured in three parts: (i) Corporate Finance and Corporate Governance, (ii) Investment Decisions/Valuation, (iii) Financial Policy.

Objective

Upon successful conclusion of the course, students will ...

1. know what corporate finance and corporate governance are about;
2. be able to price a wide array of corporate securities, assets, and projects, e.g., stocks, bonds, and options;
3. master three valuation approaches (discounted cash-flow valuation, relative valuation, and real-options valuation) and know about their applicability, their strengths, and their weaknesses;
4. know how to finance firms at different stages of their lifecycle;
5. be familiar with terms, acronyms, and concepts in the world of finance;
6. know how to relate real-world corporate events (past and current) to concepts learnt in class;
7. have increased their appeal as future manager, employee or entrepreneur by relevant knowledge in the field of finance in general and corporate finance in particular.

Content

"Corporate Finance" is an introductory course that presents those fundamental principles of finance that find direct application in the financial decisions of modern corporations. The course is structured in three parts: (i) Corporate Finance and Corporate Governance, (ii) Investment Decisions/Valuation, (iii) Financial Policy.

In the following, for each of the three parts of the course, key aspects, are listed.

Part I: Corporate Finance and Corporate Governance

- Corporations and their characteristics (e.g., centralized management, limited liability, free transferability of economic claims, legal personality)
- Corporate finance and its goals (e.g., shareholder-value approach vs. stakeholder-value approach)
- Corporate governance problems and possible solutions (e.g., over-investment, under-investment, self-dealing, monetary incentives, board of directors, the market of corporate control, leverage, product-market competition)

Part II: Investment Decisions/Valuation

- Discounting and compounding
- Present value tools (e.g., perpetuities, growing perpetuities, annuities, growing annuities)
- Bond pricing and interest rates (e.g., types of bonds, term structure of interest rates, yield-to-maturity, duration concepts, forward rates, "riding the yield curve")
- Risk and return (e.g., moments of stock returns, modern portfolio theory, capital market line, systematic risk vs. unsystematic risk)
- CAPM in practice (e.g., computation of the risk free interest rate, beta, and the market risk premium; security market line)
- DCF Analysis: Cost of capital and cash flow estimation
- Relative valuation (e.g., earnings multiples, book multiples, sales multiples, fundamental drivers of multiples)
- Real options (e.g., option to abandon, option to delay, option to expand)

Part III: Financial Policy

- Corporate financing (e.g., instruments, internal vs. external financing, equity financiing vs. debt financing, crowdfunding, M&M and beyond)
- Payout policy (e.g., dividends, par value reductions, share buybacks, M&M and beyond)

Lecture notes

Slides in English (and any other relevant material) will be available for download on the following website: https://moodle-app2.let.ethz.ch/course/view.php?id=4479

Literature

For the exam, only the material provided will be relevant. However, interested students may refer to the following textbook for an alternative, or a complementary, reading:

Financial Market Risks

Number

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0561-00L</td>
<td>Financial Market Risks</td>
<td>W+</td>
<td>3 credits</td>
<td>2G</td>
<td>D. Sornette</td>
</tr>
</tbody>
</table>

Abstract

I aim to introduce students to the concepts and tools of modern finance and to make them understand the limits of these tools, and the many problems met by the theory in practice. I will put this course in the context of the on-going financial crises in the US, Europe, Japan and China, which provide fantastic opportunities to make the students question the status quo and develop novel solutions.

Objective

The course explains the key concepts and mechanisms of financial economics, their depth and then stresses how and why the theories and models fail and how this is impacting investment strategies and even a global view of citizenship, given the present developing crises in the US since 2007 and in Europe since 2010.

- Development of the concepts and tools to understand these risks and master them.
- Working knowledge of the main concepts and tools in finance (Portfolio theory, asset pricing, options, real options, bonds, interest rates, inflation, exchange rates)
- Strong emphasis on challenging assumptions and developing a systemic understanding of financial markets and their many dimensional risks
1- The Financial Crises: what is really happening? Historical perspective and what can be expected in the next decade(s). Bubbles and crashes. The illusion of he perpetual money machine.

2- Risks in financial markets
 - What is risk?
 - Measuring risks of financial assets
 - Introduction to three different concepts of probability
 - History of financial markets, diversification, market risks

3- Introduction to financial risks and its management.
 - Relationship between risk and return
 - Portfolio theory: the concept of diversification and optimal allocation
 - How to price assets: the Capital Asset Pricing Model
 - How to price assets: the Arbitrage Pricing Theory, the factor models and beyond

4- Financial markets: role and efficiency
 - What is an efficient market?
 - Financial markets as valuation engines: exogeneity versus endogeneity (reflexivity)
 - Deviations from efficiency, puzzles and anomalies in the financial markets
 - Financial bubbles, crashes, systemic instabilities

5- An introduction to Options and derivatives
 - Calls, Puts and Shares and other derivatives
 - Financial alchemy with options (options are building blocks of any possible cash flow)
 - Determination of option value; concept of risk hedging

6- Valuation and using options
 - A first simple option valuation model
 - The Binomial method for valuing options
 - The Black-scholes model and formula
 - Practical examples and implementation
 - Realized prices deviate from these theories: volatility smile and real option trading
 - How to imperfectly hedge with real markets?

7- Real options
 - The value of follow-on investment opportunities
 - The timing option
 - The abandonment option
 - Flexible production
 - Conceptual aspects and extensions

8- Government bonds and their valuation
 - Relationship between bonds and interest rates
 - Real and nominal rates of interest
 - Term structure and yields to maturity
 - Explaining the term structure
 - Different models of the term structure

9- Managing international risks
 - The foreign exchange market
 - Relations between exchanges rates and interest rates, inflation, and other economic variables
 - Hedging currency risks
 - Currency speculation
 - Exchange risk and international investment decisions

Lecture notes
Lecture slides will be available on the site of the lecture

Literature
Corporate finance
Brealey / Myers / Allen
Eight edition

+ additional paper reading provided during the lectures

Prerequisites / notice
none

➤ Skill-Based Training, 1. and 3. Semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>365-1099-00L</td>
<td>Design Thinking: A Human-Centred Approach to Problem Solving</td>
<td>W</td>
<td>1 credit</td>
<td>1S</td>
<td>L. Armbruster</td>
</tr>
</tbody>
</table>

Exclusively for MAS MTEC students (3rd semester).
Minimum number of participants: 15 students.

Abstract
In this course, students get to know Design Thinking, which is an innovation method that can be applied to solve a broad range of problems from product development to social innovation. The students will engage in collaborative team exercise to learn about and directly apply the five typical design thinking steps – empathize, define, ideate, prototype and test – by solving a real-world challenge.

Objective
During the course, students will...

... get to know the design thinking process working on a specific real-world challenge
... learn when to apply design thinking methodology
... learn how to empathize with users, how to formulate a clear problem statement, develop ideas, prototype as well as test them with potential users
Content

During the course, students will...

...get to know the thinking process as:
- a methodology to develop ideas and concepts – typically in the early phase of the innovation process (the fuzzy-front end)
- a methodology used for product, service and business model innovation
- a methodology used for organizational development: process improvements, redesign of organizational structures, etc.
- learn how to apply the design thinking methodology or parts of it
- learn how to empathize with users: simple interview techniques, observation, etc.
- learn how to formulate a clear problem statement
- learn how to develop ideas: potentially alternative brainstorming techniques
- learn how to prototype ideas with simple means
- learn how to test them with potential users: simple test structures

What the students should learn from the course:
- Students will be able to assess whether Design Thinking is useful methodology to solve challenges they face in their daily business activities
- Students will be able to use elements (i.e. a novel brainstorming technique, a novel feedback method, etc.) in their daily business activities

What the students will NOT learn:
- This 2-day training is by not extensive enough to provide a full-scale design thinking training that enables students to design, organize and run their own design thinking workshops and projects. For this, further courses, trainings and self-guided learning is necessary.

References to institutes, books and other material will be provided.

Lecture notes

There is no script available.

<table>
<thead>
<tr>
<th>365-1019-00L</th>
<th>Human Resource Management: Skills in Practice</th>
<th>W</th>
<th>2 credits</th>
<th>2S</th>
<th>M. Gubler, M. Kolbe</th>
</tr>
</thead>
</table>

Based on several Human Resource Management processes, this seminar teaches practical skills in HRM and leadership in teams. Using a variety of interactive methods and discussions of real-life situations, it provides a highly practice-oriented approach to dealing with potential HRM- and team-related conflicts at work.

Participants are able to cope with potentially difficult HRM-related situations they may encounter as line managers and team leaders.

The seminar will be a mixture of theory inputs, discussions, self-reflecting moments, group work with short presentations as well as some role plays to give you the opportunity not only to get to know the relevant theories and models, but also to apply and test them. This shall enable you to return to your daily work life and be ready for the challenges of being a (future) leader.

The success of this seminar depends greatly on active student participation. Sharing real-life examples from participants' various organizational and professional backgrounds provides the material for engaged and insightful discussions in class as well as in small groups. Also, in order to maximize the learning effect of this seminar, participants will be asked to complete a variety of short assignments prior to and between the three modules. The assignments will help them to prepare for the modules and reflect on the various themes in more depth. Based on the assignments, the discussions during the seminar will be much more focused and effective.

Topics covered in the seminar include (but are not limited to) questions around hiring new staff, employee motivation (or a lack thereof), measuring performance, fair and effective compensation, pros and cons of monetary incentives, opportunities and limitations of career development in organizations. Furthermore, participants will learn and practically apply techniques that help them to deal with team-related conflicts. Thereby, they gain a better understanding of how and why conflicts in teams may arise and how they can be solved.

Participants are able to cope with potentially difficult HRM-related situations they may encounter as line managers and team leaders.

The seminar will be a mixture of theory inputs, discussions, self-reflecting moments, group work with short presentations as well as some role plays to give you the opportunity not only to get to know the relevant theories and models, but also to apply and test them. This shall enable you to return to your daily work life and be ready for the challenges of being a (future) leader.

The success of this seminar depends greatly on active student participation. Sharing real-life examples from participants' various organizational and professional backgrounds provides the material for engaged and insightful discussions in class as well as in small groups. Also, in order to maximize the learning effect of this seminar, participants will be asked to complete a variety of short assignments prior to and between the three modules. The assignments will help them to prepare for the modules and reflect on the various themes in more depth. Based on the assignments, the discussions during the seminar will be much more focused and effective.

There is no script available.

Prior participation in Prof. Grote's lecture 'Human Resource Management: Leading Teams' is highly recommended.

<table>
<thead>
<tr>
<th>365-1092-00L</th>
<th>Personal Leadership Skills</th>
<th>W</th>
<th>2 credits</th>
<th>3S</th>
<th>P. Romann</th>
</tr>
</thead>
</table>

Based on four Human Resource Management core processes (recruitment, performance management, compensation, training and development), this seminar focuses on practical skills in HRM and leadership in teams from a managerial point of view. Using a variety of interactive methods (e.g. role plays) and discussions of real-life situations, it provides a highly practice-oriented, yet theoretically grounded approach to dealing with potential HRM- and team-related conflicts at work.

Content: Personal Leadership Skills

- 1 Fundamentals of Communication
- 2 Communication in Business Life
- 3 Self-Management
- 4 Personality and Understanding Human Nature
- 5 Fundamentals of Leadership
- 6 Leadership Tools

Participants are introduced to practical frameworks for negotiations and advocacy and apply them in discussions, cases and exercises.
In this course participants are introduced to the practical dimensions of how organization's represent their interests vis-a-vis external stakeholders. Participants will learn basic frameworks and theories for

- stakeholder mapping and management
- advocacy campaign design
- negotiations preparation and execution

and apply them to practical contexts through discussions, group exercises and simulations.

This two-day skills course gives students a basic introduction to how organizations represent their interests vis-a-vis external stakeholders. In particular, it examines negotiations (exchanges between parties designed to reconcile their differences and produce a settlement) and advocacy (imparting or exchanging information through speaking, writing or some other medium with the aim of influencing another party). The course comprises a mixture of lectures, discussions, group work and simulations. It complements the material covered in Introduction to Negotiation, a required pre-requisite to this course.

The first day focuses on negotiations skills and covers the following topics:

- Planning and preparation for negotiations
- Common frameworks for negotiations
- Social dimensions (power, influence, persuasion, behavior cues, culture, and gender) of negotiations
- Ethics and ethical dilemmas in negotiations and advocacy

The main group exercise of the first day is a negotiation simulation.

The second day focuses on advocacy and covers the following topics:

- Lobbying communications foundations
- Stakeholder mapping and management
- Advocacy campaign design
- Message and presentation design

The main group exercise of the second day is a case study discussion and presentation.

The course is structured to give an introductory overview of the topics. Recommended readings for further studies will be provided on moodle. Students will be required to read the instructions for the negotiation simulation and the case study before arriving in class. Attendance and participation is required on both course days.

Pre-session reading is composed of:

- a short case study
- instructions/mandate for a negotiation simulation

All required and recommended readings will be available on moodle.

Exclusively for MAS MTEC students (1st and 3rd semester). Priority will be given to the 3rd semester students.

Students who have already successfully completed the course “Presentation Skills” (365-0351-00) can’t register again.

We all have a “personal brand” - whenever you are interacting others, you are projecting an image of yourself. Are you ready to take charge of your own brand story and proactively guide your image? Would you like to learn how to effectively tell your story in a memorable way? This course will teach you skills you can rely on throughout your career to help you achieve your goals.

This highly interactive course will help you to understand and then define your own brand story. By carefully looking at your own values, attributes and strengths from an internal and external perspective, you will first define a genuine and meaningful personal brand for yourself and then learn the storytelling skills you will need to authentically connect with and influence your audience. In addition, you will look at the various channels of communication you can use to proactively build your personal brand.

Specific take-aways from this course:

- Your current personal brand
- Your desired personal “brand house”
- Storytelling frameworks
- Building of your personal story and practice giving them
- Elevator Pitches and practice giving them
- Review of online & offline communication channels with an action plan to activate
- Your Personal Journal to keep and reflect on throughout your career.

The Personal Branding and Storytelling course will be divided into the following sessions:

Pre-Work: you will be expected to distribute a survey to 5-6 members of your trusted network (e.g. friends, family and work colleagues). The surveys are private and only you will see the information. The survey will be the basis of defining your current personal brand.

Brand Basics: gain a common understanding of what a brand really is and why it is important. We will explore the difference between a corporate brand and a personal brand.

Brand Building: using the pre-work material, we will look at your current personal brand vs. your desired brand. We will take an in-depth look at all parts of a brand house and help you define your own Unique Selling Points (USPs). We will have exercises and break into small teams as needed.

Storytelling Basics: gain a common understanding of the importance of storytelling and different frameworks to approach it.

Storytelling Practice: you will spend time developing your personal story and Elevator Pitch. We will have exercises and break into small teams as needed. You will be given the opportunity to tell your story and obtain feedback.

Communication Channels: we will review the various online and offline communications channels open to you to build your brand with a strong focus on LinkedIn. You will develop a personal action plan based on the channels most relevant to your industry and profession.

Attendance at both days of the course and active participation in the exercises is mandatory for successful completion of the course. Students will be expected to fully complete the pre-work required, including gathering the Trusted Network Survey data and filling in the first part of the Personal Journal. Literature and readings will be announced beforehand.

Electives, 1. and 3. Semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>365-1145-00L</td>
<td>Applied Finance and Investment for Managers</td>
<td>W</td>
<td>1</td>
<td>1S</td>
<td>S. Zaker</td>
</tr>
</tbody>
</table>

Exclusively for MAS MTEC students (3rd semester).
Abstract
The focus is on how financial and investment theory is applied to real world problems. We compete in the economy, but are also exposed to financial markets. The specific point of view, the language of financial markets are discussed using illustrative case studies. Managers will learn how their company is rated for debt financing; and how its value reflects in the “mirror” of private equity funds.

Objective
The course aims to support managers in:
1) Understanding the mechanisms, language, and drivers of the debt and equities markets
2) Apply this understanding to specific corporate situations, such as optimizing the cost of capital (debt and equity) of the firm or projects
3) Use these insights to learn to think and act as an investor e.g. for the firm’s own pension fund

Content
Part 1: A Practical Introduction to the Financial Markets

You can count on financial markets. How would experts analyze your company, its strengths, and weaknesses?

The financial market eco-system. Understanding the cogs and wheels of financial markets, and the existing checks and balances.

Key actors in the financial markets. How central banks, commercial banks, and institutional investor influence market trends.

The business cycles: How and why economies rhyme into and out of growth? The mechanism of boom and bust and recessions.

The debt capital market. How companies can benefit from an understanding of the debt market? The importance of financing choices as a competitive advantage.

The equities capital market. How and why equities are issued? How investors categorize the equities markets?

The derivatives market. The origins and importance of derivative markets. The specific characteristics that make them both very useful and extremely hazardous.

The currency markets. Mechanisms of currency hedging in the International markets. The importance of a sound currency strategy to avoid large losses.

Private equity and venture capital. The actors in private debt and equities. The rise of start-ups within a new financial infrastructure.

Hedge Funds. An important new actor in the financial markets.

Initial public offering. How IPOs are organized and executed. The intricacies of the pricing process. When and how are participants disappointed. IPOs as an indicator for the overall market sentiment.

Part 2: Case Studies
Case study 1. How does your pension fund work?
Case study 2. When Activist Hedge Funds approach a company.
Case study 3. Merger and Acquisitions.
Case study 4. A Financial Market View of your Firm

Abstract
Digitalization changes our life and how companies do business. As a consequence, the role of IT and Cybersecurity changes, and these changes create new and unknown disruptive challenges for organizations. Based on practical experience we will look into some of these areas like Cybersecurity, governance, organization etc. always with a risk management focus.

Objective
The course will help you understand:
1. How digital transformation affects businesses (insights across industries), processes and organizations
2. That this is not only a technology but a human change as well
3. How today’s governance and organization need to be adopted to these trends
4. How current Cybersecurity approaches look like integrating the cloud

Content
The role of IT and Cybersecurity changed dramatically over time. The movement to the Cloud and the digital transformation as such is in the process of shaping a new world, cybersecurity (and privacy) being at the core of it. Digital transformation as well as security arrived now at the board level.

This drives a lot of changes in a lot of different areas: The role of internal IT has to be re-defined; governance processes have to be changed; even the impact on finance and budgeting is not to be underestimated. This course focuses on these challenges and how they can be approached (and have been approached) in the industry. It will be based on practical experience with companies across Europe and in different industries.

Besides touching on the basics of Cybersecurity it gives a broader view on the challenges in today’s architectural and governance frameworks and how you can approach these challenges on the technological as well as on the human side. We will jointly work on how the Cloud influences these developments and what changes are necessary to capture the opportunities while maintaining an acceptable risk level.

We want to approach this in an interactive format, while adding background information over the course of the first day (e.g. an introduction to Cybersecurity). Between the first full day and the day 2 (half-day) you work on a case study to be prepared and discussed on day 2. On the final day we will wrap up and fill the blanks and address the questions which remained open.

365-1083-00L Leading the Technology-Driven Enterprise Exclusively for MAS MTEC students (1st and 3rd semester). Priority will be given to the 3rd semester students.

Abstract
An introduction to Management (i.e., the transformation process by Nadler and Tushman, 1980) and their own professional challenges.

Objective
The general objective of the course is to enable MAS students with post work experience to think critically about concepts discussed in class during the course on Introduction to Management. It will be about change leadership. It provides MAS students with coaching and mentoring from two senior change leaders in the industry. The bloc-course is about change leadership. It provides MAS students with coaching and mentoring from two senior change leaders in the industry. The bloc-course is about change leadership. It provides MAS students with coaching and mentoring from two senior change leaders in the industry. The bloc-course is about change leadership. It provides MAS students with coaching and mentoring from two senior change leaders in the industry. The bloc-course is about change leadership. It provides MAS students with coaching and mentoring from two senior change leaders in the industry.

An enrolment for the lecture “Introduction to Management” (363-0341-00) is mandatory.
In today’s VUCA world that is Volatile, Uncertain, Complex and Ambiguous, how will you lead disruptive change due to Innovation and Technology evolution instead of being swept away by it? Have you mastered the process of leading change? Do you have a specific plan of action for the most critical problem you are trying to solve right now? If not, this is the course for you. You will learn lessons from relevant, current case studies that will bring out specific learnings in each of the 4 modules of the class – Innovation, Change Management, Leadership and Application.

The first module explores how you can be a practical and effective Innovator as an Intrapreneur Leading an established Technology Driven Enterprise, or as an Entrepreneur. Starting with clear definitions of the ‘problem’ and the ‘customer’, you will work through the steps of clarifying the value proposition of the innovative process or product, testing, pivoting and fast iterations, and moving with confidence to implementation.

With Technology and Innovation being necessary but insufficient starting points, the next two modules will dig deep into successful Change Management and Leadership at all levels to ensure aligned and effective execution. The case studies will highlight both successes, and failures, of prior experiences.

This class is taught ‘by practitioners for practitioners’ with the final module focused on a customized Framework of Application introduced during prior modules. You will bring your priority challenge to the class, and through small group work and individual coaching, you will develop a plan of action. A final ‘elevator speech’ will give immediate feedback with which you can enhance the plan and apply it immediately back in your organization.

Separately, the D-MTEC MAS Mentoring Programme is available, should you desire continuing help to support your planning and execution after the course, or more generalized career development ideas.

Literature
Literature and readings will be announced beforehand.
The block-seminar combines lectures introducing negotiation and negotiation engineering with the respective application through in-class activities. Students can expect to:

- Become familiar with tools and procedures to prevent, identify and resolve corporate fraud and crime in organizations
- Understand the mutual relationship between financial, relational and ethical drivers in managerial decision making
- Become familiar with tools and procedures to prevent and resolve corporate crises and scandals
- Understand the opportunities associated with the corporate social responsibility (CSR) movement and how to integrate CSR in organizational and strategic planning
- Create an effective CSR strategic planning process to successfully develop and implement a CSR package
- Become familiar with creating deep destructive change in pursuit of dual economic and social value

Why incredibly intelligent people do incredibly stupid things? What are the most frequent dynamics associated with corporate fraud and corruption? What should be done to avoid mobbing or discrimination in organizations? And how organizational crises can be prevented and eventually resolved? What is economic corporate social responsibility?

On a more positive tone, how companies could create a culture that fosters personal and professional development? How do companies contribute to the development of societies where they operate? How do they contribute to alleviate the global problems and to promote a sustainable development?

This course will address these questions through case discussions, lectures and the presentations of invited speakers.

The main objective is to develop multiple, alternative, provocative, critical but constructive, perspectives of main ethical issues affecting the management of organizations today. We will “think out of the box”, learn how to look using the different perspectives of multiple stakeholders, take the defense of forgotten people, look at corporate power as an opportunity for organizational and social welfare… said in other terms, this is a course to think alternatively and creatively!

In this seminar students can expect to:

- learn more theory of negotiation and apply this learning in simulated negotiations
- have their perceptions of rationality, fairness and trust challenged through little embedded experiments
- learn to recognize and analyze negotiation contexts and interests and generate creative solutions
- learn to negotiate under pressure (with time and mandate restrictions) and experience (and potentially chair) a formal negotiation
- learn to read, analyze and present a scholarly paper

This block seminar is an extension of the course “Introduction to Negotiation” and provides more detailed insight into key aspects of the field of negotiation and negotiation engineering.

In particular,

- a series of brief lectures will outline foundational aspects of negotiation science, such as rationality, fairness, and trust, as well as the possible application of machine learning in negotiation
- three practitioners will describe lessons learnt in their negotiation domains (diplomacy, labor, and business) and allow time for Q&A and discussion
- Professor Ambühl will elucidate further current cases from his professional experience
- students will apply course input in a number of challenging simulations (ranging from simple 30 minute games to full-fledged international ten-party negotiations). In each game they will be asked to represent a party and negotiate as skillfully as they possibly can within the constraints of their mandate
- each student will be assigned a scholarly paper (20 to 30 pages) between the two blocks to read. They will give a 20 minute group presentation with one or two of their peers and submit a brief reflection report after the seminar

The course size is deliberately limited (30 maximum) to enable ample opportunity to interact with the lecturers, guests and each other.

This course is based on mini-cases.

363-1044-00L Applied Negotiation Seminar

Number of participants limited to 30.

Prerequisites: Successful completion of lectures "363-1039-00L Introduction to Negotiation".

Abstract

The block-seminar combines lectures introducing negotiation and negotiation engineering with the respective application through in-class activities.

Objective

In this seminar students can expect to:

- learn more theory of negotiation and apply this learning in simulated negotiations
- have their perceptions of rationality, fairness and trust challenged through little embedded experiments
- learn to recognize and analyze negotiation contexts and interests and generate creative solutions
- learn to negotiate under pressure (with time and mandate restrictions) and experience (and potentially chair) a formal negotiation
- learn to read, analyze and present a scholarly paper

Content

This block seminar is an extension of the course “Introduction to Negotiation” and provides more detailed insight into key aspects of the field of negotiation and negotiation engineering.

In particular,

- a series of brief lectures will outline foundational aspects of negotiation science, such as rationality, fairness, and trust, as well as the possible application of machine learning in negotiation
- three practitioners will describe lessons learnt in their negotiation domains (diplomacy, labor, and business) and allow time for Q&A and discussion
- Professor Ambühl will elucidate further current cases from his professional experience
- students will apply course input in a number of challenging simulations (ranging from simple 30 minute games to full-fledged international ten-party negotiations). In each game they will be asked to represent a party and negotiate as skillfully as they possibly can within the constraints of their mandate
- each student will be assigned a scholarly paper (20 to 30 pages) between the two blocks to read. They will give a 20 minute group presentation with one or two of their peers and submit a brief reflection report after the seminar

The course size is deliberately limited (30 maximum) to enable ample opportunity to interact with the lecturers, guests and each other.

363-0861-00L Alliance Advantage - Exploring the Value Creation Potential of Collaborations

Abstract

The development of new business models coping with the constantly augmenting complexity of technologies and systems as well as the ever increasing global competition force organizations to focus on close collaboration with key partners. These alliances are key value creation opportunities and constitute the core part of this lecture.

Objective

Learning outcomes professional competence
- The students learn and understand the management basics of inter-firm cooperation and organizational networks (business models, incl. risk, communication, etc.)
- They realize the value creation potentials of alliances (added value)
- They understand underlying theoretical models (Transaction cost theory, principal agent, game theory)
- They identify and understand specific forms of collaboration (Strat. All., JV, Networks, M&A, etc.)
- They apply tools hands on in real companies (in coll. with companies)

Learning outcomes methodological competence
- Writing academic papers
- Developing structured documentation of interviews
- Transferring theory directly into application
- Contributing to the learning journey

Learning outcomes social competence
- Work together with industrial partners
- Improving communication skills as basics for collaboration
- Developing and applying team work skills
- Coping with conflicts resolution in teams

Prerequisites: Successful completion of lectures "363-1039-00L Introduction to Negotiation".

Number of participants limited to 30.
Content
The constantly augmenting complexity of technologies and systems, the increased pressure caused by competition, the need for shortening time-to-market and the thereby implied growing risks force organizations to increasingly focus on core competencies. Collaboration with external partners is a key value creation opportunity for successful ventures. This type of cooperation also has implications on daily management activities. This lecture will provide a better understanding of special requirements needed for management of cooperation issues.

- Introduction to theory and management of inter-firm collaboration and networks.
- Description of the formation, management and evolution of collaborations and networks.
- Collaborations in marketing, development, manufacturing (e.g. NUMMI).
- Special forms of collaborations: mergers & acquisition (e.g. pre- and post-merger activities, joint venture, strategic alliances (e.g. Doz & Hamel, networks, virtual communities)

Learning journey:
In an introductory lecture we will give an overview of the theoretical framework and explain the concept of the lecture (first week of semester, Sept. 19, 2019). In weeks 2-5 you will work on a first assignment on six different aspects of the underlying framework: strategy and activities, structure and process, culture and people orientation, interaction and roles, risk and trust, knowledge and learning. This first assignment will give you the basics to participate in the second part (Nov. 7-8, 2019) of this seminar. There you will present the results of the first assignment and get additional theoretical input to perform the 2nd assignment. The second assignment will be to analyze real alliance projects in the partner companies. The final lesson will be used as a best practice exchange (Dec. 19, 2019).

Lecture notes
- Lecture script
- Current course material
- Harvard Case Studies
- Reader with current papers

Prerequisites / notice
The number of students participating in the lecture is limited to 30.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>W</th>
<th>Credits</th>
<th>V</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1051-00L</td>
<td>Cases in Technology Marketing</td>
<td>3</td>
<td>1G</td>
<td>F. von Wangenheim, S. Schär</td>
<td></td>
</tr>
</tbody>
</table>

Objective
1. Understanding and applying common business tools and frameworks
2. Understanding current challenges of managers in technology intensive markets
3. Defining and analyzing comprehensive business problems using the example of a leading Swiss manufacturing company (Bühler AG)
4. Developing and evaluating different alternative case solutions
5. Making decisions on case solutions, justifying and defending them
6. Transferring case solutions into practice by formulating specific instructions for the management
7. Creation of novel, innovative ideas that help the company to gain a competitive edge
8. Cooperation in teams and coordination of team tasks
9. Adequate communication to and eye-level discussions with C-level managers

Prerequisites / notice
In addition to course enrolment, students have to apply for this course by sending a CV and a one-page motivation letter until 20.08.2021 to Theresa Schachner: tschachner@ethz.ch. Additionally please enroll via myStudies. Places will be assigned on the basis of your motivation letter.

Abstract
The seminar “Cases in Technology Marketing” introduces students to key concepts and tools in technology marketing and familiarizes them subsequently with the challenges that (marketing) managers face in technology intensive markets by using real life cases.

Content
The seminar “Cases in Technology Marketing” introduces students to key concepts and tools in technology marketing and familiarizes them subsequently with the challenges that (marketing) managers face in technology intensive markets by using real life cases. Students will have to work in groups and together solve past, current and future managerial problems in the form of cases. The team member composition will rotate for each case, enabling students to foster their teamwork abilities besides the application of theoretical concepts to the applied case questions. The students will have to present their case solutions to the lecturer and a top executive of a leading Swiss company (details see below). Also, they will be enabled to compare their solutions with what has actually been done or is yet to be done.

The three case studies presented in this course cover real managerial issues of the Swiss manufacturer Bühler AG (www.buhlergroup.com). A Bühler top executive will present the cases and discuss the students' presentations and solutions. As such, the course allows for in-depth discussions of the real-life case solution with the C-level manager and hereby enables students to transfer their learnings from theoretical considerations to the applied field. The course will be rounded off with a day-visit to the Bühler facilities in Uzwil, Switzerland, where students will have the chance to further connect with management and discuss the acquired key concepts, tools, and case study insights on site.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>W</th>
<th>Credits</th>
<th>V</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0393-00L</td>
<td>Corporate Strategy</td>
<td>3</td>
<td>2V</td>
<td>S. Ben-Menahem</td>
<td></td>
</tr>
</tbody>
</table>

Objective
The course is a combination of lectures about concepts/methods, guest lectures, case studies, and individual assignments.
Large- and medium-sized corporations play a central role in the economic activity of most developed and developing countries. Many of these organizations perform multiple business activities in multiple markets. In the face of increasing international competition, globalization, technological development, deregulation, and the emergence of new markets and industries, operating such a portfolio of business activities poses important managerial challenges forcing corporations to continuously re-consider their vertical and horizontal scope and boundaries.

The course Corporate Strategy draws from a wide range of theories and methods to develop an understanding of the conceptual frameworks, debates, and developments concerning decisions associated with the management of multi-business corporations. We will cover the key questions driving a firm's corporate strategy, including:

- In what markets to compete with which businesses?
- Which activities should be performed by the firm and which should be outsourced (i.e. "make" or "buy" decisions)?
- What are the most appropriate approaches to growth and divestiture?
- How do institutional forces impact corporate strategy?

Specifically, we will examine how organizations manage their portfolio of business activities and markets to achieve competitive advantage through vertical integration, cooperative strategies such as strategic alliances and joint ventures, corporate diversification, mergers and acquisitions, divestitures, and globalization/international strategies, and strategic renewal.

Prerequisites / notice

Having participated in the course Strategic Management by Prof. Georg von Krogh/Dr. Stephan Herting is an advantage but not a requirement.

Taught competencies

- Critical Thinking
- Problem-solving
- Creative Thinking
- Self-direction and Self-management

Objective

The increasing prevalence of chronic conditions leads to the important question of how to develop evidence-based digital health interventions (DHIs) to allow medical doctors and other caregivers to scale and tailor long-term treatments to individuals in need at sustainable costs. At the intersection of health economics, information systems research, computer science, and behavioural medicine, this lecture has the objective to help students and upcoming healthcare executives interested in the multi-disciplinary field of digital health to better understand the need, design, implementation, and assessment of DHIs. After the course, students will be able to...

1. understand the importance of DHIs for the management of chronic conditions
2. discuss the opportunities and challenges related to DHIs
3. better understand the design, implementation and evaluation of smartphone-based and chatbot-delivered DHIs.

Course structure

The lecture is structured in two parts and follows the concept of a blended treatment consisting of online-based self-learning sessions and complementary “support” sessions via Zoom. In the first part, students will learn about the topics of the three learning modules in weekly online sessions. Complementary learning material (e.g., video clips), multiple-choice questions, and exercises are provided online via Moodle. In the second part, students work in teams and will use their knowledge from the first part to develop a smartphone-based and chatbot-delivered health intervention with MobileCoach (www.mobile-coach.eu), an open-source software platform for digital interventions and ecological momentary assessments. Each team will present and discuss their resulting digital health intervention and evaluation results with their fellow students who provide peer-reviews. Additional online coaching sessions are offered to support the teams with the design and evaluation of their digital health intervention, and with the preparation of their presentations.

Number of participants limited to 30.

363-1135-00L Digital Health Project W 3 credits 2V T. Kowatsch

Abstract

Today, we face the challenge of chronic conditions. Personal coaching approaches are neither scalable nor financially sustainable. The question arises therefore to which degree Digital Health Interventions (DHIs) are appropriate to address this challenge. In this lecture, students will learn about the need for, as well as the design, implementation and assessment of DHIs.

Today, we face the challenge of dealing with the specific characteristics of chronic conditions. These are now responsible for around 70% of all deaths worldwide and are associated with an estimated economic loss of $7 trillion between 2011 and 2025. Chronic conditions require an intervention paradigm that focuses on prevention and lifestyle change. A corresponding change in lifestyle is, however, only implemented by a fraction of those affected, partly because of missing or inadequate interventions or health literacy, partly due to socio-cultural influences. Individual personal coaching of these individuals is neither scalable nor financially sustainable.

Against this background, the question arises on how to develop evidence-based digital health interventions (DHIs) that allow medical doctors and other caregivers to scale and tailor long-term treatments to individuals in need at sustainable costs. At the intersection of health economics, information systems research, computer science, and behavioral medicine, this lecture has the objective to help students and upcoming healthcare executives interested in the multi-disciplinary field of digital health to better understand the need, design, implementation, and assessment of DHIs. After the course, students will be able to...

1. understand the importance of DHIs for the management of chronic conditions
2. discuss the opportunities and challenges related to DHIs
3. better understand the design, implementation and evaluation of smartphone-based and chatbot-delivered DHIs.

To reach the learning objectives, students will work on the following topics:

1. Motivation for Digital Health
 - The rise of chronic diseases in developed countries
 - Lifestyle as medicine and prevention of chronic diseases

2. Design of a Digital Health Intervention (DHI)
 - Overview of design frameworks for health interventions
 - Development of a conceptual model for a DHI
 - Implementation of a smartphone-based and chatbot-delivered DHI

3. Evaluation of DHIs
 - Overview of evaluation methods and evaluation criteria for DHIs
 - Evaluation of a smartphone-based and chatbot-delivered DHI

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Enabling Entrepreneurship: From Science to Startup

W 3 credits 2V A. Sethi

Abstract

This elective is relevant for students who have developed a technology and are keen to evaluate the steps in starting a startup. This is also relevant for students who would like to start a startup but do not have a technology, but are clear on a specific market and the impact they would like to create.

Objective

Students have technology competence or an idea that they would like to convert into a startup. They are now in the process of evaluating the steps necessary to do so. In summary:

1. Students want to become entrepreneurs
2. The students can be from business or science & technology
3. The course will enable the students to identify the relevance of their technology or idea from the market relevance perspective and thereby create a business case to take it to market.
4. The students will have exposure to investors and entrepreneurs (with a focus on ETH spin-offs) through the course, to gain insight to commercialise their idea.
The students would cover the following topics, as they build their idea into a business case:

1. **Technology excellence**: This assumes that the student has achieved a certain degree of competence in the area of technology that he or she expects to bring to the market.
2. **Market need and market relevance**: The student would then be expected to identify the possible markets that may find the technology of relevance. Market relevance implies the process of identification of how relevant the market perceives the technology, and whether this can sustain over a longer period of time.
3. **IP and IP strategy**: Intellectual property, whether in the form of a patent or a trade secret, implies the secret ingredient that enables the student to achieve certain results that competitors are unable to copy. This enables the student (and subsequently the startup) to hold on to the market that they create with customers.
4. **Team including future capabilities required**: A startup requires multiple people with complementary capabilities. They also need to be motivated while at the same time protecting the interests of the startup.
5. **Financials**: There is a need for funding to achieve milestones. This includes funding for salaries and running of the company.
6. **Investors and funding options**: There are multiple funding options for a startup. They all come with different advantages and limitations. It’s important for a startup to recognize its needs and find the investors that fit these needs and are best aligned with the vision of the founders.
7. **Preparation of business case**: The students will finally prepare the business case that can help them to articulate the link of the technology with the market and its willingness to pay.
8. **Legal overview, company forms and shareholders’ agreements (including pitfalls)**

The seminar includes talks from invited investors, entrepreneurs, and legal experts regarding the importance of the various elements being covered in content, workshops and teamwork. There is a particular emphasis on market validation on each step of the journey, to ensure relevance.

Since the course will revolve around the ideas of the students, the notes will be for the sole purpose of providing guidance to the students to help convert their technologies or ideas into business cases for the purpose of forming startups. Theoretical subject matter will be kept to a minimum and is not the focus of the course.

This course is relevant for those students who aspire to become entrepreneurs.

Students applying for this course are requested to submit a 1 page business idea or, in case they don't have a business idea, a brief motivation letter stating why they would like to do this course.

If you are unsure about the readiness of your idea or technology to be converted into a startup, please drop me a line to schedule a call or meeting to discuss.

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>Cooperation and Teamwork</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>Customer Orientation</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
</tr>
</tbody>
</table>

363-1028-00L Entrepreneurial Leadership

Students apply for this course via the official website no later than August 23 (https://www.mtec.ethz.ch/studies/special-programmes/els.html). Once your application is confirmed, registration in myStudies is possible.

The general objective of the course is to enable MTEC students to develop leadership skills by dealing with real-world business problems, thinking critically about the concepts discussed in their study programs and learning how to apply these concepts to provide practical implications. It provides students with coaching and mentoring from senior leaders in the company and professors from D-MTEC to bridge the gap between theory and practice.
This course combines lectures, group discussions and individual assignments. You will work in teams on specific high priority assignments that flow from the company. Delving into the assignments you will both contribute to solving strategic issues and have an impact on their implementation at the company.

To gain insight into the company and its culture you will receive briefings from senior management, conduct interviews with experts and run workshops with your case managers. In the final presentations you will pitch your findings to key stakeholders and top management representatives and receive valuable feedback.

Furthermore you will be coached and supported by MTEC professors on the topics of project scoping, problem definition and solving, process improvement, strategy and board presentation.

The course is directed and organised by PD Dr. Zeynep Erden and Dr. Isabel Spicker as part of the MTEC Leadership Development Programme.

What you expect from you:

You are an ambitious ETH student or doctoral candidate who is looking for a rewarding learning opportunity and is eager to go the extra mile. You will work on a real case study of strategy, technology and innovation in close collaboration with the senior management of an outstanding Swiss company. The recommendations that you formulate in collaboration with members of your team as well as with internal and external experts will be discussed at the Partner and Director levels. This demands a deep understanding of the company’s leadership culture.

In this endeavour you are coached and supported by

- Stefano Brusoni, Chair of Technology and Innovation Management
- Georg von Krogh, Chair of Strategic Management and Innovation
- Torbjorn Netland, Chair of Production and Operations Management
- Zeynep Erden, Veniwick Business School/ D-MTEC

Please apply for this course via the official website (www.mtec.ethz.ch). Apply no later than August 22. The number of participants is limited to 18.

ECTS: 4

Participants receive a certificate.

Literature and readings will be announced in the coaching sessions.

References:

- SMI grading criteria, MTEC guidelines
- Writing of introduction, results and conclusion, thesis format and structure
- Types of empirical research designs, choice of methodology, overview of data collection and analysis methods
- Development and frame interesting and relevant research questions and problem statements
- Design your research and choose an appropriate methodology for analysis (specific research methods and techniques are not discussed in this course)
- Structure your manuscript
- Plan and manage your thesis project

Content

This course combines lectures, group discussions and individual assignments.

Day 1: Course introduction, group analysis exercises and discussions, lectures on main topics.
Day 2: Assignment review and discussion, lectures on main topics, conclusion session.

Target audience:

The course is directed and organised with two groups of students in mind: first, students who write their master thesis at the SMI chair and second, students who write their master thesis in the field of management at other MTEC chairs.

For both groups, the focal topics of this course will arise frequently during the journey of writing their thesis, and the majority of topics are relevant for all students. However, we will provide some specific content (grading guidelines, thesis format) which might not be applicable for students tutored at other MTEC chairs.

Course topics:

1. Thesis topic and thesis proposal:
 - Choice of thesis topic, identification of research gap, formulation of research questions, writing of thesis proposal
2. Literature review:
 - Search and evaluation of academic literature, use of reference tools, writing of theoretical background chapter of thesis
3. Empirical research design:
 - Types of empirical research designs, choice of methodology, overview of data collection and analysis methods
4. Research output and report:
 - Writing of introduction, results and conclusion, thesis format and structure
5. Thesis assessment:
 - SMI grading criteria, MTEC guidelines

References:

363-1080-00L **Power and Leadership**

W 3 credits **2S** **P. Schmid**

Does not take place this semester.

Abstract

Students will learn about different leadership styles and how power and leadership play out in social interactions. Emphasis is placed on personal development and the implementation and application of topics to the workplace context.

Objective

This course will enhance students’ understanding of the complexity of hierarchical relationships in the workplace in weekly lessons that include lectures, analyses of leadership situations (e.g., case studies), exercises, and group discussions. More specifically, students will be informed about how power shapes people’s behaviors and decision-making processes. They will learn to analyze the different elements that make a good leader such as personality traits, behavior, and skills. With case studies and small group exercises, students will learn to evaluate different types of social and emotional skills related to leadership. Students will be encouraged to reflect upon their own communication skills and leadership potential and will be given the opportunity to train their leadership skills. The course further addresses integrity and ethics in leadership.

Content

Lectures will include:

- Introduction to the course and the topic of power and leadership, definitions
- Leadership styles and theories: Universalist theories, behavioral theories, contingency theories, “new leadership” theories
- Leadership, communication, and interpersonal skills (3 sessions): 1. Effective communication: Listening and speaking, running effective meetings, delegating effectively, giving performance feedback, 2. Hierarchy and communications: Pitfalls and solutions, communication training, 3. Importance of social skills for leadership effectiveness
- Agility in teams: Overview of the Scrum Framework in the context of software development, leadership in agile teams, the role of motivation, training: experiencing first-hand how to develop a product in an agile way
- Power abuses, ethics in leadership: Why do leaders behave unethically? Destructive leadership: theories, examples, and consequences
- Diversity and discrimination in relation to power and leadership: Expectations, bias, and discrimination the workplace, sources of bias, how to reduce bias and discrimination
- Leadership and innovation: Which are the particular paradoxes and trade-offs leaders face when they are leading for innovation? How could they successfully manage those challenges?

Homework

- Analysis of Visionary Speeches (~10 hours)
- Preparation of a video of a 2-min speech (incl. training, ~12 hours)
- Providing feedback to two of your classmates on their leadership skills (~6 hours)
- Writing a leadership skills training report (~30 hours)
- Mandatory and facultative readings and exercises (~10 hours)

Literature

Mandatory readings:

Taught competencies

<table>
<thead>
<tr>
<th>Domain A</th>
<th>Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B</td>
<td>Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C</td>
<td>Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D</td>
<td>Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

363-0445-02L **Production and Operations Management – Supplement Credit**

W 1 credit **1A** **T. Netland**

Does not take place this semester.

Abstract

A parallel enrolment to the lecture 363-0445-00L. Production and Operations Management is mandatory.

Objective

This course strengthens the learning objectives of the POM core course (see separate syllabus). After completing this course, students can use lean thinking to improve the productivity of production processes, students can conduct fundamental process mapping analyses, students can select and implement many lean production techniques, students can select and use problem-solving tools and methods, and students understand the role of management in manufacturing.

Content

This course is an extension to the course 363-0445-00 Production and Operations Management. Participants get an extra deep dive into key concepts of POM.

The lectures in this course are highly interactive. To pass this course, students need to complete a course assignment in pairs. The course assignment consists of two parts: preparations for the lecture and a reflection essay after the lecture.
Prerequisites / notice

This course (1ECTS) is offered as an extension to the D-MTEC core course 363-0445-02 Production and Operations Management (3 ECTS). To take this course, you have to follow the core course.

Due to its practical format, this course is limited to ca 30 students. Note that we offer this course primarily for students who need the extra credit (total of 4 ECTS) to complete their study plans. This will typically be students from D-MAVT and, in some cases, exchange students. Students from other departments (inducing D-MTEC) are welcome to apply to the lecturer. If capacity, applicants may receive written acceptance by the teaching team to join.

363-0311-00L Psychological Aspects of Risk Management and Technology

Number of participants limited to 65.

Abstract

Using uncertainty management by organizations and individuals as conceptual framework, risk management and risk implications of new technologies are treated. Three components of risk management (risk identification/evaluation, risk mitigation, risk communication) and underlying psychological and organizational processes are discussed, using company case studies to promote in-depth understanding.

Objective

- You know how risk and risk management is defined and applied in different industries
- You know the challenges of decision making under risk and uncertainty and its effects on organisations
- Know about (and partially) apply some risk management tools
- Gain some more in-depth knowledge in a selected field within risk management through the semester project (e.g. transport systems, IT, insurance)

This course consists of three main elements:

A) Attendance of lectures that provide the theoretical foundations of "Psychological Aspects of Risk Management and Technology" together with reading assignments for each lecture.

B) Attendance of guest lectures that provide a rich source of practical insights and enable the transfer of theory into practice by discussing real-life cases with experts from various industries.

C) Furthermore, this course enables you to apply what you have learned in the classroom into practice by participating in a group assignment in which you gain insights into various risk industries (e.g., aviation, healthcare, insurance) and topics (e.g., risks in cyber-attacks, mountaineering, autonomous vehicles). These projects help students understand key aspects through in-depth application of the course material on real-life topics. Each group project will be mentored and graded by one of the lecturers (70% of course grade). To round off the course at the end of the year, you will have the opportunity to present your group’s findings to the lecturers and to your peers (30% of course grade).

Content

The course is organized into fourteen sessions. Sessions comprise a mixture of (guest) lectures, case discussions, and presentations. Through class discussion we will further deepen understanding of the topics and themes of the class. For each session you are required to prepare by reading the assigned literature or case material provided on the Moodle e-learning platform. Topics covered include:

- Elements of risk management:
 - Risk identification and evaluation
 - Risk mitigation
 - Risk communication

- Psychological and organizational concepts relevant in risk management
 - Decision-making under uncertainty
 - Risk perception
 - Resilient organizational processes for managing uncertainty

- Case studies on different elements of risk management (e.g., rule-making, training, managing project risks, automation)

- Group projects related to company case studies

Lecture notes

There is no script, but slides will be made available before the lectures.

Literature

There are texts for each of the course topics made available before the lectures.

Prerequisites / notice

The course is restricted to 40 participants who will work closely with the lecturers on case studies prepared by the lecturers on topics relevant in their own companies (SWICA, SWISS, University Hospital Zurich).

363-0790-00L Technology Entrepreneurship

Number of participants limited to 65.

Abstract

Technology ventures are significantly changing the global economic picture. Technological skills increasingly need to be complemented by entrepreneurial understanding.

This course offers the fundamentals in theory and practice of entrepreneurship in new technology ventures. Main topics covered are success factors in the creation of new firms, including founding, financing and growing a venture.

Objective

- You know how risk and risk management is defined and applied in different industries
- You know the challenges of decision making under risk and uncertainty and its effects on organisations
- Know about (and partially) apply some risk management tools
- Gain some more in-depth knowledge in a selected field within risk management through the semester project (e.g. transport systems, IT, insurance)

This course consists of three main elements:

A) Attendance of lectures that provide the theoretical foundations of "Psychological Aspects of Risk Management and Technology" together with reading assignments for each lecture.

B) Attendance of guest lectures that provide a rich source of practical insights and enable the transfer of theory into practice by discussing real-life cases with experts from various industries.

C) Furthermore, this course enables you to apply what you have learned in the classroom into practice by participating in a group assignment in which you gain insights into various risk industries (e.g., aviation, healthcare, insurance) and topics (e.g., risks in cyber-attacks, mountaineering, autonomous vehicles). These projects help students understand key aspects through in-depth application of the course material on real-life topics. Each group project will be mentored and graded by one of the lecturers (70% of course grade). To round off the course at the end of the year, you will have the opportunity to present your group’s findings to the lecturers and to your peers (30% of course grade).

Content

The course is organized into fourteen sessions. Sessions comprise a mixture of (guest) lectures, case discussions, and presentations. Through class discussion we will further deepen understanding of the topics and themes of the class. For each session you are required to prepare by reading the assigned literature or case material provided on the Moodle e-learning platform. Topics covered include:

- Elements of risk management:
 - Risk identification and evaluation
 - Risk mitigation
 - Risk communication

- Psychological and organizational concepts relevant in risk management
 - Decision-making under uncertainty
 - Risk perception
 - Resilient organizational processes for managing uncertainty

- Case studies on different elements of risk management (e.g., rule-making, training, managing project risks, automation)

- Group projects related to company case studies

Lecture notes

There is no script, but slides will be made available before the lectures.

Literature

There are texts for each of the course topics made available before the lectures.

Prerequisites / notice

The course is restricted to 40 participants who will work closely with the lecturers on case studies prepared by the lecturers on topics relevant in their own companies (SWICA, SWISS, University Hospital Zurich).

Master’s Thesis

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
365-0899-00L | Master’s Thesis in a Company Exclusively for MAS MTEC students. | O | 12 credits | 24D | Professors

Abstract

In the Master thesis students prove their ability to independent, structured and scientific working. The Master thesis is supervised by the tutor and is performed within a private company.

Objective

In the Master thesis students prove their ability to independent, structured and scientific working. The Master thesis is supervised by the tutor and is performed within a private company.

MAS in Management, Technology, and Economics - Key for Type

<table>
<thead>
<tr>
<th>Letter</th>
<th>Type</th>
<th>Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
</tr>
</tbody>
</table>
Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Mas in Medical Physics

Compulsory Courses (for both specialisations)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>465-0957-00L</td>
<td>Anatomy and Physiology for Medical Physicists I</td>
<td>O</td>
<td>2 credits</td>
<td>2V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to structure and function of the human body. The lectures will be based on current clinical practices in Radiology, Neuroradiology and Nuclear Medicine.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>'Anatomy and physiology for medical physicists I & II' provides insights into structure and function of the human body. The content is presented in an accessible manner targeted to physicist working in a medical environment. The lectures will be based on current clinical practices in Radiology, Neuroradiology and Nuclear Medicine. After an introduction to cells and tissues the following systems will be addressed: 1) Support & Movement (musculoskeletal system, biomechanics); 2) Neuroscience (central and peripheral nervous system); 3) Auto-regulation (endocrine system) & Internal Transport (blood & cardiovascular system); 4) Environmental Exchange (respiratory, urinary, digestive & reproductive system).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>465-0953-00L</td>
<td>Biostatistics</td>
<td>O</td>
<td>4 credits</td>
<td>2V+1U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does not take this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course deals with simple quantitative and graphical as well as more complex methods of biostatistics. Contents: Descriptive statistics, testing hypotheses, confidence intervals, correlation, simple and multiple linear regression, classification and prediction, diagnostic tests, measurement of agreement, causality versus association.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- know the commonly used methods in biostatistics - perform simple data analysis with R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>465-0966-00L</td>
<td>Physics in Radiodiagnostic and Nuclear Medicine</td>
<td>O</td>
<td>2 credits</td>
<td>3G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does not take this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course is dedicated to introduce MAS students from Medical Physics to the field of radiodiagnostic and nuclear medicine. Dedicated practicals will illustrate the theory with an emphasis on the relationship between dose and image quality as well as the security problems related to the work with radiations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This 1-week theory and practical class offers the possibility to enjoy a variety of research and clinical areas in diagnostic and nuclear medicine. It gives insight into practical concepts and techniques that are discussed thoroughly as the class is performed within actual laboratories with real radiation sources.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>License notes</td>
<td>Lecture notes and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>P. Manser, Medical Physics I & II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specialisation in Radiation Therapy

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0341-00L</td>
<td>Medical Physics I</td>
<td>O</td>
<td>6 credits</td>
<td>2V+1U</td>
<td>P. Manser</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding the fundamental chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The lecture covering the basic principles of ionizing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the exercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelerator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiology, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1391 of 2152
By the end of this course the participants will be able to:

- Interpret the 5 Rs of radiation oncology in the context of the hallmarks of cancer.
- Understand factors which underpin the differing radiosensitivities of different tumors.
- Follow rational strategies for combined treatment modalities of ionizing radiation with targeted agents.
- Understand differences in the radiation response of normal tissue versus tumor tissue.
- Understand different treatment responses of the tumor and the normal tissue to differential clinical-related parameters of radiotherapy (dose rate, LET etc.).

Radiobiology

Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the clinical radiation effect. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.

Course Content

- Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.

Literature

- Basic Clinical Radiobiology, edited by Joiner, van der Kogel, 2011
- Strahlenanwendung.
- der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung.

Prerequisites

- The former number of this course unit is 465-0951-00L.

Practical Work

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>465-0956-00L</td>
<td>Dosimetry</td>
<td>O</td>
<td>4</td>
<td>6G</td>
<td>M. Pruschy</td>
</tr>
</tbody>
</table>

Abstract

Dosimetry in radiotherapy. Planning and implementation of a percutaneous radiation exposure on an anthropomorphic phantom. Verification of the resulting dose distribution.

Objective

Praktische Umsetzung der Lerninhalte der Vorlesungen Medizinphysik I & II bezüglich Dosimetrie bei perkutanen Strahlenexpositionen.

Content

Einführung in die Strahlenbiologie ionisierender Strahlen: Allgemeine Grundlagen und Begriffsbestimmungen; Mechanismen der biologischen Strahlenwirkung; Strahlenwirkung auf Zellen, Gewebe und Organe; Modifikation der biologischen Strahlenwirkung; Strahlenzüchtung: Chromosomenveränderungen, DNA-Defekte, Reparaturprozesse; Molekulare Strahlenbiologie: Bedeutung inter- und intrazellulärer Signalübermittlungsprozesse, Apoptose, Zellzyklus-Checkpoints; Strahlensyndrome. Krebsinduktion, Mutationsauslösung, pränatale Strahlenwirkung; Strahlenbiologische Grundlagen des Strahlenschutzes; Nutzen-Risiko-Abwägungen bei der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung.

Prerequisites

- A script will be provided.

Literature

- Beilagen mit zusammenfassenden Texten, Tabellen, Bild- und Grafikdarstellungen werden abgegeben

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0341-00L</td>
<td>Medical Physics I</td>
<td>W</td>
<td>6</td>
<td>2V+1U</td>
<td>P. Manser</td>
</tr>
</tbody>
</table>

Abstract

Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations.

Objective

Praktische Umsetzung der Lerninhalte der Vorlesungen Medizinphysik I & II bezüglich Dosimetrie bei perkutanen Strahlenexpositionen.

Content

Dosimetrie in der Strahlentherapie. Planung und Durchführung einer perkutanen Strahlenexposition an einem anthropomorphen Phantom. Überprüfung der resultierenden Dosisverteilungen.

Prerequisites

- A script will be provided.

Major in Radiation Therapy

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0943-00L</td>
<td>Radiobiology</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>M. Pruschy</td>
</tr>
</tbody>
</table>

Abstract

The purpose of this course is to impart basic knowledge in radiobiology in order to handle ionizing radiation and to provide a basis for predicting the radiation risk.

Objective

By the end of this course the participants will be able to:

- Interpret the 5 Rs of radiation oncology in the context of the hallmarks of cancer.
- Understand factors which underpin the differing radiosensitivities of different tumors.
- Follow rational strategies for combined treatment modalities of ionizing radiation with targeted agents.
- Understand differences in the radiation response of normal tissue versus tumor tissue.
- Understand different treatment responses of the tumor and the normal tissue to differential clinical-related parameters of radiotherapy (dose rate, LET etc.).

Prerequisites

- For students of the MAS in Medical Physics (Specialization A) the performance assessment is offered at the earliest in the second year of the studies.

Literature

- Basic Clinical Radiobiology, edited by Joiner, van der Kogel, 2011
- Strahlenanwendung.
- der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung.
This lecture will provide a detailed introduction to radiotherapy treatment planning. The course considers the physical interactions of radiation in tissue, the mathematical aspects of treatment planning and additional aspects of central importance for radiotherapy planning.

The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0965-00L</td>
<td>Micro and Nano-Tomography of Biological Tissues</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>M. Stampanoni, F. Marone Welford</td>
</tr>
</tbody>
</table>

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0941-00L</td>
<td>Physics and Mathematics of Radiotherapy Planning (University of Zurich)</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

The course includes an introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Practical Work

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>465-0956-00L</td>
<td>Dosimetry</td>
<td>W</td>
<td>4</td>
<td>6G</td>
<td>only for MAS in Medical Physics</td>
</tr>
</tbody>
</table>

The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>465-0800-00L</td>
<td>Practical Work</td>
<td>W</td>
<td>4</td>
<td>external organisers</td>
<td></td>
</tr>
</tbody>
</table>

The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.

Content

Einführung in die Strahlenbiologie ionisierender Strahlen: Allgemeine Grundlagen und Begriffsbestimmungen; Mechanismen der biologischen Strahlenwirkung; Strahlenzytogenetik; Chromosomenveränderungen, DNA-Defekte, Reparaturprozesse; Molekularer Strahlenbiologie: Bedeutung inter- und intrazellulärer Signalübermittlungsprozesse, Apoptose, Zellzyklus-Checkpoints; Strahlenskisko: Strahlensyndrome; Krebsinduktion, Mutationsauslösung, pränatale Strahlenwirkung; Strahlenbiologische Grundlagen des Strahlenschutzes; Nutzen-Risiko-Abwägungen bei der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung.

Literature

Beilagen mit zusammenfassenden Texten, Tabellen, Bild- und Grafikdarstellungen werden abgegeben.

Prerequisites / notice

The former number of this course unit is 465-0951-00L.

Practical Work

- **465-0956-00L**
 - **Dosimetry**
 - **Abstract**: Dosimetry in radiotherapy. Planning and implementation of a percutaneous radiation exposure on an anthropomorphic phantom. Verification of the resulting dose distribution.
 - **Objective**: The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.

- **465-0800-00L**
 - **Practical Work**
 - **Abstract**: The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.
 - **Objective**: The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.

Electives

- **227-0965-00L**
 - **Micro and Nano-Tomography of Biological Tissues**
 - **Abstract**: The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics.
 - **Objective**: Synchronous-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

- **227-0941-00L**
 - **Physics and Mathematics of Radiotherapy Planning (University of Zurich)**
 - **Abstract**: This lecture will provide a detailed introduction to radiotherapy treatment planning. The course considers the physical interactions of radiation in tissue, the mathematical aspects of treatment planning and additional aspects of central importance for radiotherapy planning.
 - **Objective**: Students shall develop a thorough understanding of the foundations of radiotherapy from a physics and mathematics perspective, focusing on algorithmic components. After completing the course students should be able to implement the main components of a radiotherapy treatment planning system.
Radiotherapy is one of the main treatment options against cancer. Today, more than 50% of cancer patients receive radiation as part of their treatment. Modern radiotherapy is a highly technology driven field.

Research and development in medical physics has improved the precision of radiotherapy substantially. Using intensity-modulated radiotherapy (IMRT), radiation can be delivered precisely to tumors while minimizing radiation exposure of healthy organs surrounding the tumor. Thereby, medical physics has provided radiation oncologists with new curative treatment approaches where previously only palliative treatments were possible. This lecture will provide a detailed introduction to radiotherapy treatment planning and will consists of three blocks:

1. The first part of the course considers the physical interactions of radiation in tissue. The physical interactions give rise to dose calculation algorithms, which are used to calculate the absorbed radiation dose based on a CT scan of the patient.

2. The second part considers the mathematical aspects of treatment planning. Mathematical optimization techniques are introduced, which are used in intensity-modulated radiotherapy to determine the external radiation fields that optimally irradiate the tumor while minimizing radiation dose to healthy organs.

3. The third part deals with additional aspects of central importance for radiotherapy planning. This includes biomedical imaging techniques for treatment planning and target delineation as well as image registration algorithms.

The lectures are followed by computational exercises where students implement the main components of a radiotherapy treatment planning systems in two dimensions in Matlab.

Lecture notes: Lecture slides and handouts.

Prerequisites / notice: Basic programming skills in Matlab (or willingness to learn) are needed for the exercises. Basic knowledge of calculus is needed, approximately corresponding to the 3rd year of a bachelor degree in physics, mathematics, computer science, engineering or comparable discipline.

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0386-00L</td>
<td>Biomedical Engineering</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong</td>
</tr>
</tbody>
</table>

Abstract: Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.

Objective: Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.

The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application.

Lecturers

M. Stampanoni, F. Marone Welford

Objective

Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications.

Content

Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Lecture notes

Available online

Literature

Will be indicated during the lecture.

227-0965-00L Micro and Nano-Tomography of Biological Tissues*

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0965-00L</td>
<td>Micro and Nano-Tomography of Biological Tissues</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>M. Stampanoni, F. Marone Welford</td>
</tr>
</tbody>
</table>

Abstract

The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics.

Objective

Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications.

Content

Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Lecture notes

Available online

Literature

Will be indicated during the lecture.

376-1561-00L Clinical and Movement Biomechanics*

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1561-00L</td>
<td>Clinical and Movement Biomechanics</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>N. Singh, R. List, P. Schütz</td>
</tr>
</tbody>
</table>

Number of participants limited to 50.

Objective

The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application.

Content

This course includes study design, measurement techniques, clinical testing, accessing movement data and analysis as well as modeling with regards to human movement.

Lecture notes

Handouts will be made available.

Literature

Taught competencies

- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain A - Subject-specific Competencies

- Knowledge about the basic principles of trauma biomechanics.
- Ability to perform calculations and analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Domain B - Method-specific Competencies

- Knowledge about the basic principles of trauma biomechanics.
- Ability to perform calculations and analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Practical Work

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>465-0800-00L</td>
<td>Practical Work</td>
<td>O</td>
<td>4 credits</td>
<td>external organisers</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.

Objective

The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused program.

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Data: 11.11.2021 12:40 **Autumn Semester 2021** **Page 1395 of 2152**
Continuum Mechanics I

The lecture deals with constitutive models that are relevant for design and calculation of structures. These include anisotropic linear elasticity, linear viscoelasticity, plasticity, viscoplasticity. Homogenization theories and laminate theory are presented. Theoretical models are complemented by examples of engineering applications and experiments.

Objective
Basic theories for solving continuum mechanics problems of engineering applications, with particular attention to material models.

Content
Anisotropic elasticity, Linear elastic and linear viscous material behavior, Viscoelasticity, Micro-macro modelling, Laminate theory, Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments.

Lecture notes
yes

Image Analysis and Computer Vision

Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.

Objective
The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.

Content
Main topics of the course include:
- Scaling laws at micro/nano scales
- Electrostats
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots

Lecture notes
The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.

Prerequisites / notice
The lecture will be taught in English.

Biomechanics of Sports Injuries and Rehabilitation

This lectures introduces the basic principles of injury mechanics and rehabilitation focussing on sports injuries.

Objective
Within the scope of this lecture you will learn the basic principles of trauma biomechanics. Based on examples from sports, you will get to know different mechanisms that can possibly result in injury. Investigating the background and cause of injury should allow you to assess the injury risk for sports activities. Furthermore you should be able to develop measures to prevent such injury.

Content
This lecture deals with the basic principles of injury mechanics and rehabilitation. Mechanisms that can result in injury are presented. Furthermore possibilities to prevent injuries are discussed. Thereby the lecture focuses on sports injuries.

Lecture notes
Handouts will be made available.

Literature

Prerequisites / notice
A course work is required. The mark of this course work contributes to the final credits for this lecture. Details will be given during the first lecture.

Major in Bioimaging

Biomedical Engineering

Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.

Objective
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.

Content

Lecture notes
Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino

AND

https://lbb.ethz.ch/education/biomedical-engineering.html

Image Analysis and Computer Vision

Objective
Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Practical Work

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
465-0800-00L | Practical Work Only for MAS in Medical Physics | O | 4 credits | | external organisers

Abstract
The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.

Objective
The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.

Electives

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
151-0605-00L | Nanosystems | W | 4 credits | 4G | A. Stemmer

Abstract
- From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.
- Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.
- Self-assembly and directed assembly of 2D and 3D structures.
- Special emphasis on the emerging field of molecular electronic devices.

Objective
- Familiarize students with basic science and engineering principles governing the nano domain.

Content
The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Familiarity with basic concepts of quantum mechanics is expected.

- Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled.

Topics are treated in 2 blocks:

(I) From Quantum to Continuum
- From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.
- Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.
- Self-assembly and directed assembly of 2D and 3D structures.

Lectures and Mini-Review presentations: Thursday 10-13

Prerequisites / notice

Homework: Mini-Review

(compulsory continuous performance assessment)

Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. Each Mini-Review will be presented both orally and as a written paper.

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
227-0965-00L | Micro and Nano-Tomography of Biological Tissues | W | 4 credits | 3G | M. Stampanoni, F. Marone Welford

Abstract
The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics.

Objective
- Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications.
Content

Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Lecture notes

Available online

Literature

Will be indicated during the lecture.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture Blocks</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0967-00L</td>
<td>Computational Neuroimaging</td>
<td>3</td>
<td>2V</td>
<td>K. Stephan</td>
</tr>
<tr>
<td>227-0969-00L</td>
<td>Methods & Models for fMRI Data Analysis</td>
<td>6</td>
<td>4V</td>
<td>K. Stephan</td>
</tr>
<tr>
<td>402-0674-00L</td>
<td>Physics in Medical Research: From Atoms to Cells</td>
<td>6</td>
<td>2V+1U</td>
<td>B. K. R. Müller</td>
</tr>
<tr>
<td>227-2037-00L</td>
<td>Physical Modelling and Simulation</td>
<td>6</td>
<td>4G</td>
<td>J. Smajic</td>
</tr>
</tbody>
</table>

Abstract

- **227-0967-00L**
 - Prerequisite: Successful completion of course "Methods & Models for fMRI Data Analysis".
 - Objective:
 1. Conservation of theoretical knowledge (obtained in the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuroimaging' or "Computational Psychiatry")
 2. Acquisition of practical problem solving strategies for computational modeling of neuroimaging data.
 - Content:
 - This seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data.
 - Prerequisites / notice:
 - The participants are expected to have successfully completed at least one of the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuroimaging', 'Computational Psychiatry'.

- **227-0969-00L**
 - Objective:
 - To obtain in-depth knowledge of the theoretical foundations of SPM and DCM and of their practical application to empirical fMRI data.
 - Content:
 - This course teaches state-of-the-art methods and models for fMRI data analysis in lectures and exercises. It covers all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, frequentist and Bayesian inference, multiple comparison corrections, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data. A particular emphasis of the course will be on methodological questions arising in the context of clinical studies in psychiatry and neurology. Practical exercises serve to consolidate the skills taught in lectures.

- **402-0674-00L**
 - Objective:
 - As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.
 - The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.
 - High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.
 - Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants. Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function. X rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue's anisotropies of biopsies.

- **227-2037-00L**
 - Objective:
 - This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.

 - Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.
The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiscale simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS.

In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.

Major in Bioengineering

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1103-00L</td>
<td>Micro and Nano-Tomography of Biological Tissues</td>
<td>W</td>
<td>4 credits</td>
<td>4V</td>
<td>V. Vogel, further lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Available online</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Will be indicated during the lecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376-1714-00L</td>
<td>Biocompatible Materials</td>
<td>W</td>
<td>4 credits</td>
<td>3V</td>
<td>K. Maniura, M. Rottmar, M. Zenobi-Wong</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course covers the following topics: 1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Handouts are deposited online (moodle).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on
microrobotics.

The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus
on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the
field.

The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected
MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as
monitor the overall execution.

The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization
program towards the solution of a focused problem.

Practical Work

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>465-0800-00L</td>
<td>Practical Work</td>
<td>O</td>
<td>4</td>
<td></td>
<td>external organisers</td>
</tr>
<tr>
<td></td>
<td>Only for MAS in Medical Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract:
The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected
MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as
monitor the overall execution.

Objective:
The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization
program towards the solution of a focused problem.

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0604-00L</td>
<td>Microrobotics</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>B. Nelson, N. Shamsudhin</td>
</tr>
</tbody>
</table>

Abstract:
Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and
materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the
students apply these concepts in assignments. The course concludes with an end-of-semester examination.

Objective:
The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus
on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the
field.

Content:
Main topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots

Lecture notes:
The lecture will be taught in English.

Prerequisites /

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0386-00L</td>
<td>Biomedical Engineering</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>J. Váróš, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong</td>
</tr>
</tbody>
</table>

Abstract:
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on
learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In
addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.

Objective:
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an
overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in
selecting their specialized classes and project locations.

Content:
Introduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous
system. Electromyograms, evoked potentials. Audiology, optometry, Functional electrostimulation: Cardiac pacemakers. Function of the heart
and the circulatory system, transport and exchange of substances in the human body, pharmakokinetics. Endoscopy, medical television
Biosensors. Microcirculation: Metabolism.

Lecture notes:
Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino

AND

https://ibb.ethz.ch/education/biomedical-engineering.html

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-1101-00L</td>
<td>Biomineralization</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>K.-H. Ernst</td>
</tr>
</tbody>
</table>

Abstract:
The course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biomineralization.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1400 of 2152
Objective The course aims to introduce the basic concepts of biomineralization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field.

Content Biomineralization is a multidisciplinary field. Topics dealing with biology, molecular and cell biology, solid state physics, mineralogy, crystallography, organic and physical chemistry, biochemistry, dentistry, oceanography, geology, etc. are addressed. The course covers definition and general concepts of biomineralization (BM) / types of biominerals and their function / crystal nucleation and growth / biological induction of BM / control of crystal morphology, habit, shape and orientation by organisms / strategies of compartmentalization / the interface between biomolecules (peptides, polysaccharides) and the mineral phase / modern experimental methods for studying BM phenomena / inter-, intra, extra- and epicellular BM / organic templates and matrices for BM / structure of bone, teeth (vertebrates and invertebrates) and mollusk shells / calcification / silification in diatoms, radiolaria and plants / calcium and iron storage / impact of BM on lithosphere and atmosphere / evolution / taxonomy of organisms.

Lecture notes Script with more than 600 pages with many illustrations will be distributed free of charge.

Literature

Prerequisites / notice No special requirements are needed for attending. Basic knowledge in chemistry and cell biology is expected.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1622-00L</td>
<td>Practical Methods in Tissue Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0674-00L</td>
<td>Physics in Medical Research: From Atoms to Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535-0423-00L</td>
<td>Drug Delivery and Drug Targeting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
1. Introduction and overview
2. Biominerals and their functions
3. Chemical control of biomineralization
4. Control of morphology: Organic templates and additives
5. Modern methods of investigation of BM
6. BM in matrices: bone and nacre
7. Vertebrate teeth
8. Invertebrate teeth
9. BM within vesicles: calcite of coccoliths
10. Silica
11. Iron storage and mineralization

Prerequisites / notice A Windows laptop (or Windows on Mac) is required for certain of the lab modules.

Objective
The goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine.

Objective
Practical exercises on topics including sterile cell culture, light microscopy and histology, and biomaterials are covered. Practical work on manufacturing and evaluating hydrogels and scaffolds for tissue engineering will be performed in small groups. In addition to practical lab work, the course will teach skills in data acquisition/analysis.

Abstract
The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

Abstract
Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitalial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metals to complex organic materials. The knowledge is expanded to optical properties as well as to proteins and cells.

Objective
As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

Objective
The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM), low energy and common force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure’s shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

Objective
High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complicated dynamical theory. Electron diffraction is not only correlated with elastic scattering but also inelastic excitations that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Objective
Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Objective
Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1401 of 2152
Abstract

The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.

Objective

During this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field

Content

L1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons
L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes
L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation
L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning

Literature

- Plonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)

227-0393-10L

Bioelectronics and Biosensors
W
6 credits
2V+2U
J. Vörös, M. F. Yanik

Autumn Semester 2021
Major in Bioelectronics

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0604-00L</td>
<td>Microrobotics</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>B. Nelson, N. Shamsudhin</td>
</tr>
<tr>
<td>Abstract</td>
<td>Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites/notice</td>
<td>The lecture will be taught in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0386-00L</td>
<td>Biomedical Engineering</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zentobi-Wong</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td>https://lbb.ethz.ch/education/biomedical-engineering.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1037-00L</td>
<td>Introduction to Neuroinformatics</td>
<td>W</td>
<td>6</td>
<td>2V+1U+1A</td>
<td>V. Mante, M. Cook, B. Grew, G. Indiveri, D. Kiper, W. van der Behrens</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocolures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1714-00L</td>
<td>Biocompatible Materials</td>
<td>W</td>
<td>4</td>
<td>3V</td>
<td>K. Maniura, M. Rottmar, M. Zentobi-Wong</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course covers the following topics: 1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated.

Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Lecture notes

Handouts are deposited online (moodle).

Literature

(available online via ETH library)

Handouts and references therein.

227-0393-10L Bioelectronics and Biosensors W 6 credits 2V+2U J. Vörös, M. F. Yanik

Abstract

The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.

Objective

During this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field

Content

L1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning

Prerequisites

The course requires an open attitude to the interdisciplinary approach of bioelectronics. In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.).

Practical Work

Number Title Type ECTS Hours Lecturers
465-0800-00L Practical Work Only for MAS in Medical Physics O 4 credits external organisers

Abstract

The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.

Objective

The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.
Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will build upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-behavior. Students will learn to design and develop new methods to address major medical challenges. The course will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start thinking about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently sizzling in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the-art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.

Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.

All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1033-00L</td>
<td>Neurorhaptic Engineering I</td>
<td>W</td>
<td>6</td>
<td>2V+3U</td>
<td>T. Delbrück, G. Indiveri, S.-C. Liu</td>
</tr>
<tr>
<td>227-2037-00L</td>
<td>Physical Modelling and Simulation</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>J. Smajic</td>
</tr>
<tr>
<td>376-1103-00L</td>
<td>Frontiers in Nanotechnology</td>
<td>W</td>
<td>4</td>
<td>4V</td>
<td>V. Vogel, further lecturers</td>
</tr>
<tr>
<td>402-0674-00L</td>
<td>Physics in Medical Research: From Atoms to Cells</td>
<td>W</td>
<td>6</td>
<td>2V+1U</td>
<td>B. K. R. Müller</td>
</tr>
</tbody>
</table>

Abstract

This course covers analog circuits with emphasis on neurorhaptic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.

Objective

Understanding of the characteristics of neurorhaptic circuit elements.

Content

Neurorhaptic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neurorhaptic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neurorhaptic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characteristics of neurorhaptic circuits, from elementary devices to systems.

Prerequisite / Notice

Particular: The course is highly recommended for those who intend to take the spring semester course ‘Neurorhaptic Engineering II’, that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Literature

S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.

B. K. R. Müller

Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for field simulations, and (c) practical examples solved in form of small projects.

Content

In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.

Lecture notes

- The module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.
- Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.
- The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS.
- The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently sizzling in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.
- Each lecturer will first give an overview of the state-of-the-art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.
- Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biomedical nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.
- All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1405 of 2152
The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxide and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

X-rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue’s anisotropies of biopsies.

<table>
<thead>
<tr>
<th>529-0837-01L</th>
<th>Biomicrofluidic Engineering</th>
<th>W</th>
<th>6 credits</th>
<th>3G</th>
<th>A. de Mello</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Microfluidics describes the behaviour, control and manipulation of fluids geometrically constrained within sub-ul environments. Microfluidic devices enable physical and chemical processes to be controlled with exquisite precision and in an fast and efficient manner. This course introduces the underlying concepts, features and applications of microfluidic systems in the chemical and life sciences.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>We will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis. A central component of this course is a research project. This will allow students to develop a practical understanding of the benefits of miniaturization in chemical and biological experimentation. Projects will be performed in groups of between four and six students and will include both experimental and simulation aspects. Each group, under the guidance of a mentor, will plan and execute a novel research project. The results of this activity will be disseminated through an "academic-style" research article and a "conference-style" oral presentation. Course grades will be evaluated through both a written exam and the project grade.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Specific topics covered in the course include, but are not limited to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Heat Transfer Phenomena</td>
<td>Key features of thermal transport in microfluidic systems, conduction, convection, heat transfer by convection in internal flows, heat transfer processes in microfluidic devices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Point-of-Care Diagnostics</td>
<td>Microscale tests for diagnostics, challenges associated with point-of-care (PoC) diagnostic testing, requirements for PoC devices, common PoC device formats, applications of PoC diagnostics in the developing world.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Microscale DNA Amplification</td>
<td>Amplification and analysis of nucleic acids using batch, continuous flow and droplet-based microfluidic reactors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Small volume Molecular Detection</td>
<td>Spectroscopic approaches for analyte detection in small volumes with a particular focus on single molecule detection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Single Cell Analysis</td>
<td>Applications of microfluidic tools in cellular analysis, flow cytometry, enzymatic assays and single cell analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture handouts, background literature, problem sheets and notes will be provided electronically through the course Moodle site.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>There is no set text for the course. All relevant literature will be provided electronically through the course Moodle site.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>636-0108-00L</th>
<th>Biological Engineering and Biotechnology</th>
<th>W</th>
<th>4 credits</th>
<th>3V</th>
<th>M. Fussenegger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture notes Handout during the course.

Major in Neuroinformatics

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1037-00L</td>
<td>Introduction to Neuroinformatics</td>
<td>W</td>
<td>6</td>
<td>2V+1U+1A</td>
<td>V. Mante, M. Cook, B. Grewe, G. Indiveri, D. Kiper, W. von der Behrens</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enforcements and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-0393-10L</td>
<td>Bioelectronics and Biosensors</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td>J. Vörös, M. F. Yanik</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Objective | During this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field |

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1407 of 2152
Deep Learning (DL) is a brain-inspired weak form of AI that allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas and methods that are presented in today's neuroscience papers.

After this course students will be able to:
- read and understand the main ideas and methods that are presented in today's neuroscience papers
- explain the basic ideas and concepts of plasticity in the mammalian brain
- implement alternative ANN learning algorithms to 'error backpropagation' in order to train deep neuronal networks.
- use a diverse set of ANN regularization methods to improve learning
- simulate spiking neuronal networks that learn simple (e.g. digit classification) tasks in a supervised manner.

Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas and methods that are presented in today's neuroscience papers.

After this course students will be able to:
- read and understand the main ideas and methods that are presented in today's neuroscience papers
- explain the basic ideas and concepts of plasticity in the mammalian brain
- implement alternative ANN learning algorithms to 'error backpropagation' in order to train deep neuronal networks.
- use a diverse set of ANN regularization methods to improve learning
- simulate spiking neuronal networks that learn simple (e.g. digit classification) tasks in a supervised manner.

Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas and methods that are presented in today's neuroscience papers.

After this course students will be able to:
- read and understand the main ideas and methods that are presented in today's neuroscience papers
- explain the basic ideas and concepts of plasticity in the mammalian brain
- implement alternative ANN learning algorithms to 'error backpropagation' in order to train deep neuronal networks.
- use a diverse set of ANN regularization methods to improve learning
- simulate spiking neuronal networks that learn simple (e.g. digit classification) tasks in a supervised manner.

Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas and methods that are presented in today's neuroscience papers.

After this course students will be able to:
- read and understand the main ideas and methods that are presented in today's neuroscience papers
- explain the basic ideas and concepts of plasticity in the mammalian brain
- implement alternative ANN learning algorithms to 'error backpropagation' in order to train deep neuronal networks.
- use a diverse set of ANN regularization methods to improve learning
- simulate spiking neuronal networks that learn simple (e.g. digit classification) tasks in a supervised manner.
The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.

Objective
The practical work is aimed at training the student's capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.

Practicals

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>465-0800-00L</td>
<td>Practical Work Only for MAS in Medical Physics</td>
<td>O</td>
<td>4 credits</td>
<td></td>
<td>external organisers</td>
</tr>
</tbody>
</table>

Abstract
The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.

Objective
The practical work is aimed at training the student's capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1033-00L</td>
<td>Neuromorphic Engineering I</td>
<td>W</td>
<td>6 credits</td>
<td>2V+3U</td>
<td>T. Delbrück, G. Indiveri, S.-C. Liu</td>
</tr>
</tbody>
</table>

Abstract
This course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.

Objective
Understanding of the characteristics of neuromorphic circuit elements.

Content
Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.

Literature
S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.

Prerequisites / notice
For doctoral students of the Neuroscience Center Zurich (ZNZ).

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>237-1791-00L</td>
<td>Introductory Course in Neuroscience I (University of Zurich)</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

Abstract
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: SPV0Y005

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadline.s.html

Objective
The course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.

Content
1) Human Neuroanatomy I&II
2) Comparative Neuroanatomy
3) Building a central nervous system I,II
4) Synapses I,II
5) Glia and more
6) Excitability
7) Circuits underlying Emotion
8) Visual System
9) Auditory & Vestibular System
10) Somatosensory and Motor Systems
11) Learning in artificial and biological neural networks

Prerequisites / notice
For doctoral students of the Neuroscience Center Zurich (ZNZ).
This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.

Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.

The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical-thermal analysis of MEMS.

In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.

227-1051-00L Systems Neuroscience (University of Zurich)

Objective
This course focuses on basic aspects of central nervous system physiology, including perception, motor control and cognitive functions.

Content
To understand the basic concepts underlying perceptual, motor and cognitive functions.

Prerequisites / notice
None

Literature
"Principles of Neural Science", Kandel, Schwartz, and Jessel

Lecturers
M. Rottmar, M. Zenobi-Wong

Hours
- W 4 credits
- 2V+1U 4P

Type
Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Literature
Will be indicated during the lecture.

Prerequisites / notice
A Windows laptop (or Windows on Mac) is required for certain of the lab modules.

Lecturers
M. Zenobi-Wong, S. J. Ferguson, M. Grad, S. Schürle-Finke

Number of participants limited to 12.

376-1624-00L Practical Methods in Biofabrication (offered in the Spring Semester) and 376-1714-00L

Objective
- Number of participants limited to 12.
- Ability (a) to develop own simple field simulation programs, (b) to use and select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.

Content
Overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.

Abstract
The goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine.

Literature
Will be indicated during the lecture.

Prerequisites / notice
A Windows laptop (or Windows on Mac) is required for certain of the lab modules.

Lecturers
M. Rottmar, M. Zenobi-Wong

Number of participants limited to 12.

376-1714-00L Biocompatible Materials

Objective
- The course covers the following topics: 1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications.

Prerequisites / notice
- None
- "Principles of Neural Science", Kandel, Schwartz, and Jessel
- A Windows laptop (or Windows on Mac) is required for certain of the lab modules.

Lecturers
M. Rottmar, M. Zenobi-Wong

Number of participants limited to 12.

Notice
- Mind the enrolment deadlines at UZH:
- Book the corresponding module directly at UZH as an incoming student.

Major in Biocompatible Materials

Core Courses

376-1622-00L Practical Methods in Tissue Engineering (offered in the Autumn Semester) and 376-1624-00L Practical Methods in Biofabrication (offered in the Spring Semester) are mutually exclusive to be eligible for credits.

Number
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0965-00L</td>
<td>Micro and Nano-Tomography of Biological Tissues</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>M. Stampanoni, F. Marone Weloff</td>
</tr>
<tr>
<td>376-1622-00L</td>
<td>Number of participants limited to 12.</td>
<td>W</td>
<td>5 credits</td>
<td>4P</td>
<td>M. Zenobi-Wong, S. J. Ferguson, M. Grad, S. Schürle-Finke</td>
</tr>
<tr>
<td>376-1714-00L</td>
<td>Biocompatible Materials</td>
<td>W</td>
<td>4 credits</td>
<td>3V</td>
<td>K. Maniura, M. Rottmar, M. Zenobi-Wong</td>
</tr>
</tbody>
</table>

Abstract
- The course provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Literature
- Will be indicated during the lecture.

Prerequisites / notice
- A Windows laptop (or Windows on Mac) is required for certain of the lab modules.

Lecturers
- M. Rottmar, M. Zenobi-Wong

Number of participants limited to 12.

Notice
- Mind the enrolment deadlines at UZH:
- Book the corresponding module directly at UZH as an incoming student.

Core Courses

376-1622-00L Practical Methods in Tissue Engineering (offered in the Autumn Semester) and 376-1624-00L Practical Methods in Biofabrication (offered in the Spring Semester) are mutually exclusive to be eligible for credits.

Number
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0965-00L</td>
<td>Micro and Nano-Tomography of Biological Tissues</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>M. Stampanoni, F. Marone Weloff</td>
</tr>
<tr>
<td>376-1622-00L</td>
<td>Number of participants limited to 12.</td>
<td>W</td>
<td>5 credits</td>
<td>4P</td>
<td>M. Zenobi-Wong, S. J. Ferguson, M. Grad, S. Schürle-Finke</td>
</tr>
</tbody>
</table>

Abstract
- The course provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Literature
- Will be indicated during the lecture.

Prerequisites / notice
- A Windows laptop (or Windows on Mac) is required for certain of the lab modules.

Lecturers
- M. Rottmar, M. Zenobi-Wong

Number of participants limited to 12.
Content

Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Lecture notes

Handouts are deposited online (moodle).

Literature

(available online via ETH library)

Handouts and references therein.

Practical Work

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>465-0800-00L</td>
<td>Practical Work</td>
<td>O</td>
<td>4</td>
<td></td>
<td>external organisers</td>
</tr>
</tbody>
</table>

Abstract

The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.

Objective

The practical work is aimed at training the student's capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-1101-00L</td>
<td>Biominalization</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>K.-H. Ernst</td>
</tr>
</tbody>
</table>

Abstract

The course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biominalization.

Objective

The course aims to introduce the basic concepts of biominalization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field.

Content

Biominalization is a multidisciplinary field. Topics dealing with biology, molecular and cell biology, solid state physics, mineralogy, crystallography, organic and physical chemistry, biochemistry, dentistry, oceanography, geology, etc. are addressed. The course covers definition and general concepts of biominalization (BM) / types of biominalers and their function / crystal nucleation and growth / biological induction of BM / control of crystal morphology, habit, shape and orientation by organisms / strategies of compartmentalization / the interface between biomolecules (peptides, polysaccharides) and the mineral phase / modern experimental methods for studying BM phenomena / inter-, intra-, extra- and epicellular BM / organic templates and matrices for BM / structure of bone, teeth (vertebrates and invertebrates) and mollusk shells / calcification / siliification in diatoms, radiolaria and plants / calcium and iron storage / impact of BM on lithosphere and atmosphere / evolution / taxonomy of organisms.

1. Introduction and overview
2. Biominalers and their functions
3. Chemical control of biominalization
4. Control of morphology: Organic templates and additives
5. Modern methods of investigation of BM
6. BM in matrices: bone and nacre
7. Vertebrate teeth
8. Invertebrate teeth
9. BM within vesicles: calcite of coccoliths
10. Silica
11. Iron storage and mineralization

Lecture notes

Script with more than 600 pages with many illustrations will be distributed free of charge.

Literature

3) P. M. Dove, J. J. DeYoreo, S. Weiner (Eds.) Biomineralization, Reviews in Mineralogy & Geochemistry Vol. 54, 2003

Prerequisites / notice

No special requirements are needed for attending. Basic knowledge in chemistry and cell biology is expected.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1103-00L</td>
<td>FRONTIERS IN NANO-TECHNOLOGY</td>
<td>W</td>
<td>4</td>
<td>4V</td>
<td>V. Vogel, further lecturers</td>
</tr>
</tbody>
</table>

Abstract

Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biominalization.

Objective

Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently sizzling in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.
Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.

Lecture notes

All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.

402-0674-00L

Physics in Medical Research: From Atoms to Cells

W 6 credits 2V+1U B. K. R. Müller

Abstract

Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.

Objective

The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

X rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue's anisotropies of biopsies.

227-0393-10L

Bioelectronics and Biosensors

W 6 credits 2V+2U J. Vörös, M. F. Yanik

Abstract

The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.

Objective

During this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1412 of 2152
L1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning

Literature
Plonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)

Prerequisites / notice
The course requires an open attitude to the interdisciplinary approach of bioelectronics. In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.).

376-1353-00L
Nanostructured Materials Safety
W 2 credits 1V P. Wick

Abstract
Fundamentals in nanostructured material - living system interactions focusing on the main exposure routes, lung, gastrointestinal tract, skin and intravenous injection

Objective
Understanding the potential side effects of nanomaterials in a context-specific way, enabling to evaluate nanomaterial safety and provide knowledge to design safer materials

Lecture notes
Handouts provided during the classes and references therein as well as primary literature as case studies will be posted to the course website

Prerequisites / notice
course "Introduction to Toxicology"

Major in Molecular Biology and Biophysics

Core Courses

Number Title Type ECTS Hours Lecturers
227-0945-00L Cell and Molecular Biology for Engineers I W 3 credits 2G C. Frei

This course is part I of a two-semester course.

Abstract
The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.

Objective
After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.

Content
Lectures will include the following topics (part I and II): DNA, chromosomes, genome engineering, RNA, proteins, genetics, synthetic biology, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer and stem cells.

In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 40% for the final grade.

Lecture notes
Scripts of all lectures will be available.

Literature
Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:

- stochastic models in molecular evolution
- phylogenetic & phylodynamic inference
- maximum likelihood and Bayesian statistics

Attendees will apply these concepts to a number of applications yielding biological insight into:

- epidemiology
- pathogen evolution
- macroevolution of species

The topics include:

- The molecules of life - properties of biological macromolecules: Discussion of structure and function of proteins, quantitative description molecular interactions and of enzyme function.
- Introduction to methods to study biological macromolecules: purification techniques, optical spectroscopy, X-ray crystallography, electron microscopy (EM) and nuclear magnetic resonance (NMR) spectroscopy.
- Introduction to the genetic system of E.coli bacteria: DNA, RNA and protein biosynthesis (transcription and translation) and biotechnological applications.

Literature

- Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.

Prerequisites / notice

Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course „Introduction to Programming“, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date.

For the Zurich-based students without R experience, we recommend the R course http://www.cbb.ethz.ch/news-events.html at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date.

http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2018W&ansicht=KATALOGDATEN&lerneinheitId=123546&lang=de, or working through the script provided as part of this R course.

Notice

Prerequisites:

- Students should have a basic knowledge of linear algebra, analysis, and statistics.
- Basic programming skills in R are required.
- Familiarity with computational tools is beneficial.

Lecture slides will be available on moodle.

Practical Work

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1601-00L</td>
<td>Biophysics of Biological Macromolecules</td>
</tr>
<tr>
<td>636-0017-00L</td>
<td>Computational Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concepts and Theories</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Competencies</td>
</tr>
<tr>
<td>Decision-making</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
</tr>
<tr>
<td>Problem-solving</td>
</tr>
<tr>
<td>Project Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain C - Social Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
</tr>
<tr>
<td>Customer Orientation</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
</tr>
<tr>
<td>Negotiation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td>Creative Thinking</td>
</tr>
<tr>
<td>Critical Thinking</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
</tr>
</tbody>
</table>

Autumn Semester 2021

ECTS

Type

Hours

Lecturers

Data: 11.11.2021 12:40

Page 1414 of 2152
The practical work is aimed at training the student's capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-1101-00L</td>
<td>Biomineralization</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>K.-H. Ernst</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biomineralization.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course aims to introduce the basic concepts of biomineralization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biomineralization is a multidisciplinary field. Topics dealing with biology, molecular and cell biology, solid state physics, mineralogy, crystallography, organic and physical chemistry, biochemistry, dentistry, oceanography, geology, etc. are addressed. The course covers definition and general concepts of biomineralization (BM)/ types of biominerals and their function / crystal nucleation and growth / biological induction of BM / control of crystal morphology, habit, shape and orientation by organisms / strategies of compartmentalization / the interface between biomolecules (peptides, polysaccharides) and the mineral phase / modern experimental methods for studying BM phenomena / inter-, intra, extra- and epicellular BM / organic templates and matrices for BM / structure of bone, teeth (vertebrates and invertebrates) and mollusk shells / calcification / siflication in diatoms, radiolarians and plants / calcium and iron storage / impact of BM on lithosphere and atmosphere/ evolution / taxonomy of organisms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) P. M. Dove, J. J. DeYoreo, S. Weiner (Eds.) Biomineralization, Reviews in Mineralogy & Geochemistry Vol. 54, 2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No special requirements are needed for attending. Basic knowledge in chemistry and cell biology is expected.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376-1103-00L</td>
<td>Frontiers in Nanotechnology</td>
<td>W</td>
<td>4</td>
<td>4V</td>
<td>V. Vogel, further lecturers</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently sizzling in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1415 of 2152
The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxide and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

X rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue's anisotropies of biopsies.

535-0423-00L Drug Delivery and Drug Targeting

Objective

The students gain an overview on current principles, methodologies and systems for controlled delivery and targeting of drugs. This enables the students to understand and evaluate the field in terms of scientific criteria.

Abstract

The students dispose of an overview on current principles and systems for the controlled delivery and targeting of drugs. The focus of the course lies on developing a capacity to understand the involved technologies and methods, as well as an appreciation of the chances and constraints of their therapeutic usage, with prime attention on anticancer drugs, therapeutic peptides, proteins, nucleic acids and vaccines.

Literature

Further references will be provided in the course.

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

551-1615-00L NMR Methods for Studies of Biological Macromolecules

Prerequisites: Basic knowledge in biological NMR spectroscopy.

Abstract

Seminar series on technical aspects of high resolution nuclear magnetic resonance (NMR) spectroscopy with biological macromolecules. This seminar series is targeted at Master students and PhD students conducting research projects in the field of biomolecular NMR in solution.

Objective

Introduction and discussion of advanced methods for recording and analysis of NMR data with biological macromolecules.

Content

Seminar series on technical aspects of high-resolution nuclear magnetic resonance (NMR) spectroscopy with biological macromolecules. This seminar series is targeted at Master students and PhD students conducting research projects in the field of biomolecular NMR in solution.

551-1619-00L Structural Biology

Objective

The seminar series on technical aspects of high resolution nuclear magnetic resonance (NMR) spectroscopy with biological macromolecules.

Content

Seminar series on technical aspects of high-resolution nuclear magnetic resonance (NMR) spectroscopy with biological macromolecules. This seminar series is targeted at Master students and PhD students conducting research projects in the field of biomolecular NMR in solution.
The course consists of a series of research seminars on Structural Biology, Biochemistry and Biophysics, given by both scientists of the National Center of Competence in Research (NCCR) in Structural Biology and external speakers. Information on the individual seminars is provided on the following websites:
http://www.structuralbiology.uzh.ch/educ002.asp
http://www.biophysics.uzh.ch/biol-cal/index

The goal of this course is to provide doctoral and postdoctoral students with a broad overview on the most recent developments in biochemistry, structural biology and biophysics.

Molecular and Structural Biology I: Protein Structure and Function

Abstract
Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNA, current topics in protein biophysics and structural biology.

Objective
Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysical methods as well as modern methods for protein purification and microanalytics.

Lecture notes
Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching.

Literature
- Creighton, T.E., Proteins, Freeman, (1993)
- Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman.

Current topics: References will be given during the lectures.
MAS in Future Transport Systems

Four-semester, part-time MAS programme.

Start of the next course: Spring Semester 2023.

► Major in Systemic Aspects of Future Transport

The Major in “Systemic Aspects of Future Transport” takes place only in Spring Semester

Start of the next course: Spring Semester 2023
Course duration: Six months part time
Periodicity: Every two years

► Major in Technology Potential

The Major in “Major in Technology Potential” takes place only in Autumn Semester

Start of the next course: Autumn Semester 2021
Course duration: Six months part time
Periodicity: Every two years

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The module provides a foundation in the current situation and short- and middle-term development directions of powertrain and automotive engineering in the context of passenger & goods transport. Corresponding energy sources and resulting consequences for the energy system are addressed. Participants will be enabled to identify potentials of these technologies and apply them to concrete problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Familiarity with conventional and alternative powertrain and automotive systems for future sustainable mobility, and the ability to identify and deploy their potential to address concrete problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Drive component efficiency rates and core fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Drive and non-drive energy flow / Vehicle "driving resistance"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Energy chains (operating power only) and CO2 emissions to primary energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed at start of module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed at start of module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Announced to students of the of the MAS / CAS at the beginning of the term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	Abstract				
	The digital revolution, spatial information and communication systems in particular, have a significant influence on the development of new transport systems. Participants acquire an in-depth understanding of the functionality and application potential of spatial information systems and services and of communication technologies for deployment in future transport systems and applications.				
	Objective				
	Familiarity with information and communication technologies (ICT) and spatial information technologies, and the ability to identify and utilise their potential to address concrete problems.				
	Content				
	- Functionality and application of geographic information systems (GIS) to represent and analyse transport systems (acquire, model, analyse and visualise geodata)				
	- Deployment potentials of GIS and ICT for efficient transport solutions (tangible, non-tangible)				
	- Functionality and application of mobile spatial information technologies in future transport systems				
	- Methods of spatiotemporal analysis and geodata analysis				
	- Technical aspects of information and communication technologies (ICT)				
	- Modelling, simulation and assessment of traffic behaviour				
	- Basics of autonomous driving				
	- Legal aspects of geodata				
	- Applications: Traffic behaviour in Switzerland; location based services for energy-efficient behaviour; GIS for the Zurich traffic system (multimodal)				
	Lecture notes				
	Distributed at start of module				
	Literature				
	Distributed at start of module				
	Prerequisites / notice				
	Announced to students of the of the MAS / CAS at the beginning of the term.				

	Abstract				
	The module provides a solid introduction to integrated technology assessment with regard to economic, ecological and social criteria. It introduces life cycle assessment (LCA), cost assessment, risk assessment and multi-criteria decision analysis. It also presents scenario analyses based upon energy-economic models which explicitly represent transport and energy-supply technologies.				
	Objective				
	An overview of suitable methods for analysing and evaluating technical systems (transport systems) and the ability to choose among them to address concrete problems				
Content
(1) Introduction to and overview of integrated assessment
- Current status of transport in Switzerland and internationally
- Scope and goals of integrated assessment
- Sustainability: concept and practical implementation via criteria and indicators
- Overview of concepts and implementation methods

(2) Selected methods for assessing transport technologies and their application to current and future options
- Ecobalance / life cycle assessment (LCA)
- Location-specific assessment of health hazards and environmental pollution
- Risk analysis
- Internal cost assessment
- External cost assessment

(3) Integrated assessment of transport technologies
- Overall costs (internal and external)
- Multi-criteria analysis

(4) Analysis of transport scenarios
- Scenarios, influencing factors, policy and sustainability
- Approaches to scenario modelling
- Global mobility scenarios examples
- Transport scenarios for Switzerland using energy system models

Lecture notes
Distributed at start of module

Literature
Distributed at start of module

Prerequisites / notice
Announced to students of the of the MAS / CAS at the beginning of the term

166-0203-00L Energy Carrier for the Mobility of the Future
O 3.5 credits 3G C. Bach

Abstract
The module includes the supply of the road mobility of the future with renewable energy. The generation, transport, processing, transfer of energy to the vehicles (refueling, charging) and the energetic evaluation are presented. Electricity, hydrogen, biogenic and synthetic fuels are considered.

Objective
- The energy system of the future; biogenic and electric renewable primary energy
- End energy processing
- Transfer from the energy system to mobility and influences on the overall energy system

Lecture notes
Distributed at start of module

Literature
Distributed at start of module

Prerequisites / notice
Announced to students of the of the MAS / CAS at the beginning of the term

166-0290-00L CAS Thesis on Technology Potentials
O 3 credits 5D M. A. Streicher-Porte

Abstract
The participants, in heterogeneous teams, deal with a current problem from the topics of the CAS Technology Potential.

Objective
- Deal with a specific problem from the CAS Technology Potentials subject area.
- Be able to work interdisciplinary and across sectors, where appropriate together with relevant other parties.
- Communicate the results appropriately.

Lecture notes
Distributed at start of module

Literature
Distributed at start of module

Prerequisites / notice
Announced to students of the of the MAS / CAS at the beginning of the term

重大新业务模式

重大运输工程

Master's Thesis

Number Title Type ECTS Hours Lecturers
166-0490-00L Master's Thesis O 15 credits 27D M. A. Streicher-Porte
Only for MAS in Future Transport Systems.

Abstract
Individually and independently, students address a practice-related problem in the area of future transport systems. To do this they deploy, under the supervision of an expert, what they have learned in the MAS programme. They set out the problem, the procedure and the solution in a written report which they present and defend in front of a specialist audience.

Objective
- Ability to draw up solutions in the context of future transport systems.
- Ability to communicate these solutions in a manner suited to a particular target audience.
Content
- Introductory colloquium: Working scientifically and presenting a project idea
- Individual and independent work on a problem selected by the participant
- Interim colloquium: Presentation of the status quo
- Individual supervision by the lecturer
- Compilation of the written thesis and preparation of the presentation
- Examination colloquium: Presentation and defence

Lecture notes
Distributed at start of module

Literature
Distributed at start of module

Prerequisites / notice
Announced to students of the of the MAS at the beginning of the term.

<table>
<thead>
<tr>
<th>MAS in Future Transport Systems - Key for Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
</tr>
<tr>
<td>W+</td>
</tr>
<tr>
<td>W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key for Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>K</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
MAS in Spatial Planning
Four-semester, part-time MAS programme.

Start of the next course: Autumn Semester 2021

Lectures and Seminars

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-0500-00L</td>
<td>Preliminary Course: Introduction to Swiss Spatial Planning</td>
<td>O</td>
<td>3</td>
<td>3G</td>
<td>D. Jerjen, A. Schneider</td>
</tr>
<tr>
<td></td>
<td>Tasks of spatial planning; objectives and principles; instruments of spatial planning; federal planning; cantonal structural planning; constructing outside of building zones; communal planning; land use planning; compensation of benefits released by planning; environmental protection and spatial planning; energy and spatial planning; densification with quality; case studies and exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The preliminary course introduces students to the fundamentals of formal spatial planning in Switzerland. It gives a first overview over background and context of spatial planning as well as instruments of spatial planning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115-0500-01L</td>
<td>Introduction to the Programme and Study Project 1</td>
<td>W</td>
<td>2</td>
<td>1G</td>
<td>M. Nollert, J. Van Wezemael</td>
</tr>
<tr>
<td></td>
<td>Discussion of the individual basic understanding of spatial planning; Personal preconditions for and expectations of MAS-program; program concept; knowledge portfolio and learning contract; work environments and tools; introduction to study project 1 with excursion; theoretical background for interdisciplinary team work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115-0501-00L</td>
<td>Lecture Week 01: Spatial Planning: Tasks and Methods</td>
<td>W</td>
<td>2</td>
<td>1G</td>
<td>M. Nollert</td>
</tr>
<tr>
<td></td>
<td>Only for MAS, DAS and CAS in Spatial Planning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A reader with central elements of the course and background information will be provided</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concepts and Theories</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analytical Competencies</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td></td>
<td></td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td></td>
<td></td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>115-0502-00L</td>
<td>Lecture Week 02: Urban Planning and Urban Design I</td>
<td>W</td>
<td>2</td>
<td>1G</td>
<td>S. Kretz, C. Salewski</td>
</tr>
<tr>
<td></td>
<td>Only for MAS, DAS and CAS in Spatial Planning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contemporary urbanization phenomena and urban design methods and tools. Lectures are accompanied by urban design exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115-0503-00L</td>
<td>Lecture Week 03: Landscape Architecture</td>
<td>W</td>
<td>2</td>
<td>1G</td>
<td>G. Vogt</td>
</tr>
<tr>
<td></td>
<td>Only for MAS, DAS and CAS in Spatial Planning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods, tools and processes in large scale landscape architectural design. On the basis of a case study, «Basel», we shall discuss these themes in lectures and practical exercises. The design-led approach will be extended with a series of talks that will establish a theoretical grounding in current issues of landscape- and urban design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115-0504-00L</td>
<td>Lecture Week 04: Landscape and Environmental Planning</td>
<td>W</td>
<td>2</td>
<td>1G</td>
<td>A. Grét-Regamey, U. Wissen Hayek</td>
</tr>
<tr>
<td></td>
<td>Only for MAS, DAS and CAS in Spatial Planning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion of the proposition of sustainability in landscape and environmental planning; comprehending landscape development with a system dynamics approach; planning of landscape development across cantonal and communal boundaries; negotiating various stakeholder interests based on the example of current practical cases; instruments and approaches for sustainable landscape development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Projects and Individual Work

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1421 of 2152
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-0701-00L</td>
<td>Study Project 1 (Part 1)</td>
<td>O</td>
<td>0 credits</td>
<td>10U</td>
<td>M. Nollert, F. Argast, O. Hagen, A. Näf-Clasen, M. Sandtner</td>
</tr>
</tbody>
</table>

Only for MAS in Spatial Planning.

Project 1 takes 2 semesters, continuation in the following spring semester, taking part 2 is obligatory.

Abstract

Development of strategies for sustainable development in Basel: spatial planning analysis of the situation (goals and problems, potentials and risks, strengths and weaknesses); concept design (goals and measures); program development (objective and temporal priorities); preparation for implementation (instruments and procedures); independent group work.

Objective

Detect, assess and classify the main conflicts of spatial developments and detect need for planning action. Concentrate resources and design and evaluate different solutions and demonstrate their feasibility exemplarily. Recognize possibilities and limits of formal and informal planning and applying them practically. Efficient and interdisciplinary work in groups, using individual knowledge and skills of the group members optimally.

MAS in Spatial Planning - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
The Master of Advanced Studies in Sustainable Water Resources is a 12 month full time postgraduate diploma programme. The focus of the programme is on issues of sustainability and water resources in Latin America, with special attention given to the impacts of development and climate change on water resources. The programme combines multidisciplinary coursework with high level research. Sample research topics include: water quality, water quantity, water for agriculture, water for the environment, adaptation to climate change, and integrated water resource management.

Language: English. **Credit hours:** 66 ECTS.

For further information please visit: http://www.mas-swr.ethz.ch/

Core Courses

Foundation courses: 12 credits have to be achieved.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>118-0101-00L</td>
<td>Water Resources Seminars</td>
<td>O</td>
<td>3 credits</td>
<td>3S</td>
<td>D. Molnar, P. Burlando</td>
</tr>
</tbody>
</table>

Abstract
The Seminar Series features invited experts from a wide range of disciplines who present their experiences working with water related topics in international settings. The students are exposed to many different perspectives and are asked to apply the information they learn to specific case studies.

Objective
The Seminar Series provides students with background information on a wide range of topics related to water resources. Invited experts challenge the students to consider water resources and water resource management in new ways, using tools that have been successfully implemented in real case scenarios. The seminars include theory, interactive discussions, and the assessment of methodologies. Student participation is highly encouraged.

Content
The Seminar Series is aimed at offering students the opportunity to learn about water resources in a multi-disciplinary fashion, with a focus on international examples. Selected topics include: Water & Climate Change, Water & Sanitation, Water Management in Central Asia, Water & Agriculture, Nature Based Solutions, Water Hazards (floods), Water & Business, and Water Stewardship. For additional details see the course website https://mas-swr.ethz.ch/curriculum/courses/core-courses/water-resources-seminars.html.

Prerequisites / notice
For further information, contact Dr. Darcy Molnar (darcy.molnar@ifu.baug.ethz.ch)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>118-0114-00L</td>
<td>Nature-Based Solutions and Blue Green Infrastructure</td>
<td>O</td>
<td>3 credits</td>
<td>2G</td>
<td>D. Molnar, P. M. Bach</td>
</tr>
</tbody>
</table>

Abstract
Nature-based solutions (NbS) are effective means of addressing global societal challenges such as the need for water and food security, disaster risk reduction, and adaptation to climate change. Students are exposed to a variety of topics around NbS and Blue Green Infrastructure, gaining insight into how societies can incorporate ecosystem-based solutions to become more resilient and sustainable.

Objective
Nature-based solutions leverage water resources management to not only provide basic water servicing needs, but also a range of ecosystem services for the benefits of humans and the environment. At the urban and peri-urban level, multi-functional Blue Green Infrastructure solutions (inspired by nature-based concepts) are being developed that involve a broad range of stakeholders and a complex policy environment.

The course will provide students with an overarching picture of how Nature-based solutions and Blue Green infrastructure are being used to make societies and cities greener, more resilient, climate-adaptive, more liveable, sustainable, and especially, how water resources management is being leveraged to accomplish this. Students will gain insight into suitable tools and approaches to navigating interactions between relevant stakeholders, hands-on experience through a scenario-based real-world project, a field visit to an urban case study, as well as insights from leading public and private sector experts in Nature-based Solutions and Blue Green Infrastructure.

Content
The course is designed to expose students to different ways of thinking across multiple disciplines, but with a focus on how, as future professionals, they can facilitate and provide tangible solutions that are multi-functional and accepted by a wide array of decision-makers. Selected topics include: (1) Understanding how Nature-based Solutions and Blue Green Infrastructure can be used to address global societal challenges, (2) understanding the need for different levels of planning in order to design effective solutions and policies that will ensure sustainable development, (3) identifying and understanding the function of suitable infrastructure to complement existing systems, (4) support tools and quantitative approaches for evidence-based performance evaluation, and (5) planning and decision-making around Nature-based solutions.

Lecture notes
There is no textbook. Learning materials consist of lectures, videos, and references provided by the instructors on the course Moodle page.

Literature
Literature consists of research papers and journal articles provided by the instructors on the course Moodle page.

Prerequisites / notice
Bachelor studies in environmental engineering or environmental sciences.

For further information, contact the MAS coordinator, Darcy Molnar (darcy.molnar@ifu.baug.ethz.ch)

Foundation Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0287-00L</td>
<td>River Basin Erosion</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>P. Molnar</td>
</tr>
</tbody>
</table>

Abstract
The course presents a view of the catchment processes of sediment production and transport that shape the landscape. Focus is on sediment fluxes from sources on hillslopes to the river network. Students learn about how a fluvial system functions, how to identify sediment sources and sinks, how to make predictions with numerical models, develop sediment budgets, and quantify geomorphic change.

The course has two fundamental aims: (1) The first aim is to provide environmental engineers with the physical process basis needed to understand fluvial system change, using the right language and terminology to describe landforms. We will cover the main geomorphic concepts of landscape change, e.g. thresholds, equilibrium, criticality, to describe change. Students will learn about the importance of the concepts of connectivity and timescales of change. (2) The second aim is to provide quantitative skills in making simple and more complex predictions of change and the data and models required.

We will learn about typical landscape evolution models, and about hillslope erosion model concepts like RUSLE. We will learn how to identify sediment sources and sinks, and develop simple sediment budgets with the right data needed for this purpose. Finally we will learn about methods to describe the topology of river networks as conduits of sediment through the fluvial system.

Content
The course consists of four sections: (1) Introduction to fluvial forms and processes and geomorphic concepts of landscape change, including climatic and human activities acting on the system. Concepts like thresholds, equilibrium, self-organised criticality, etc. are presented. (2) Landscape evolution modelling as a tool for describing the shape of the land surface. Soil formation and sediment production at long timescales. (3) The processes of sediment production, upland sheet-rill-gully erosion, basin sediment yield, rainfall-triggered landsliding, sediment budgets, and the modelling of the individual processes involved. Here we combine model concepts with field observations and look at many examples. (4) Processes in the river, floodplain and riparian zone, including river network topology, channel geometry, aquatic habitat, role of riparian vegetation, including basics of fluvial system management. The main focus of the course is on the hydrology-sediment connections at the field and catchment scale.

Lecture notes
There is no script.

Literature
The course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from textbooks, professional papers, and ongoing research activities of the instructor. All material is on the course webpage.

Prerequisites / notice
Prerequisites: Basic Hydrology and Watershed Modelling (or contact instructor).

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0267-001L</td>
<td>Numerical Hydraulics</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>M. Holzner</td>
</tr>
</tbody>
</table>

In the course Numerical Hydraulics the basics of numerical modelling of flows are presented.
The goal of the course is to develop the understanding of the students for numerical simulation of flows to an extent that they can later use commercial software in a responsible and critical way.

All methods discussed are applied practically. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generally available softwares such as BASEMENT for non-steady shallow water flows are used.

Copies of overheads will be made available.

Given in lecture:

Lecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German.

Process Engineering Ia

The goal of the course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.

Given in lecture:

Lecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German.

E. Morgenroth

The course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:

- Biological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.

- Introduction to design and modeling of activated sludge processes.

- Principles of process control and process control strategy. Introduction of parameter optimization and error propagation. Demonstration of process control strategies in the field of process engineering in urban water management.

- Introduction into modeling and simulation - The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation) - Ideal reactors - Hydraulic residence time distribution and modeling of real reactors - Dynamic behavior of reactor systems - Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation - Introduction to process control (PID controller, fuzzy control)

There will be a required textbook that students need to purchase: Willi Gujer (2008): Systems Analysis for Water Technology. Springer-Verlag, Berlin Heidelberg

Prerequisites:

Students should have a general understanding of urban water management as many examples are taken from processes relevant to related systems. This course is offered in parallel with the course Process Engineering Ia. It is beneficial but not necessary to follow both courses simultaneously.

Taught competencies:

Domain A - Subject-specific Competencies: Concepts and Theories, Techniques and Technologies, assessed

Domain B - Method-specific Competencies: Analytical Competencies, Decision-making, Media and Digital Technologies, Problem-solving, assessed

Domain C - Social Competencies: Communication, Cooperation and Teamwork, Customer Orientation, Leadership and Responsibility, Self-presentation and Social Influence, Sensitivity to Diversity, Negotiation, not assessed

Domain D - Personal Competencies: Adaptability and Flexibility, Creative Thinking, Critical Thinking, Integrity and Work Ethics, Self-awareness and Self-reflection, Self-direction and Self-management, not assessed

102-0227-00L Systems Analysis and Mathematical Modeling in Urban Water Management

W 6 credits 4G E. Morgenroth, M. Maurer

Abstract:

Number of participants limited to 50.

Objective:

The course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:

Content:

- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)

Lecture notes:

Copies of overheads will be made available.

Literature:

There will be a required textbook that students need to purchase:

Prerequisites:

Students should have a general understanding of urban water management as many examples are taken from processes relevant to related systems. This course is offered in parallel with the course Process Engineering Ia. It is beneficial but not necessary to follow both courses simultaneously.

102-0217-00L Process Engineering Ia

W 3 credits 2G E. Morgenroth

Abstract:

Biological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.

Objective:

Students should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.

Content:

- Stoichiometry
- Microbial transformation processes
- Introduction to design and modeling of activated sludge processes
- Anaerobic processes, industrial applications, sludge stabilization

Literature:

There will be a required textbook that students need to purchase: Willi Gujer (2008): Systems Analysis for Water Technology. Springer-Verlag, Berlin Heidelberg

Prerequisites:

For detailed information on prerequisites the student should consult the course program and important information (syllabus) of Process Engineering Ia that can be downloaded at http://www.ww2.informatik.ethz.ch/education/lectures/process-engineering-ia.html

Autumn Semester 2021
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

102-0617-00L Basics and Principles of Radar Remote Sensing for Environmental Applications

W 3 credits 2G I. Hajnsek

Abstract
The course will provide the basics and principles of Radar Remote Sensing (specifically Synthetic Aperture Radar (SAR)) and its imaging techniques for the use of environmental parameter estimation.

Objective
At the end of the course the student has the understanding of
1. SAR basics and principles,
2. SAR polarimetry,
3. SAR interferometry and
4. environmental parameter estimation from multi-parametric SAR data

Content
The course is giving an introduction into SAR techniques, the interpretation of SAR imaging responses and the use of SAR for different environmental applications. The outline of the course is the following:
1. Introduction into SAR basics and principles
2. Introduction into electromagnetic wave theory
3. Introduction into scattering theory and decomposition techniques
4. Introduction into SAR interferometry
5. Introduction into polarimetric SAR interferometry
6. Introduction into bio/geophysical parameter estimation (classification/segmentation, soil moisture estimation, earth quake and volcano monitoring, forest height inversion, wood biomass estimation etc.)

Lecture notes
Handouts for each topic will be provided

Literature
First readings for the course:
Complete literature listing will be provided during the course.

102-0215-00L Urban Water Management II

W 4 credits 2G M. Maurer, P. Staufert

Abstract

Objective
Consolidation of the basic procedures for design and operation of technical networks in water engineering.

Content
Demand Side Management versus Supply Side Management
Optimierung von Wasserverteilnetzen
Kalkausfällung, Korrosion von Leitungen
Hygiene in Verteilnetzwerken
Siedlungswasserbau: Niederschlag, Abflussbildung
Instationäre Strömungen in Kanalisationen
Stofftransport in der Kanalisation
Einleitbedingungen bei Regenwetter
Versickerung von Regenwasser
Generelle Entwässerungsplanung (GEP)

Lecture notes
Written material will be available digital.

Prerequisites / notice
Prerequisite: Introduction to Urban Water Management

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Cooperation and Teamwork: not assessed

Domain D - Personal Competencies
- Critical Thinking: assessed

701-1253-00L Analysis of Climate and Weather Data

W 3 credits 2G C. Frei

Abstract
An introduction into methods of statistical data analysis in meteorology and climatology. Applications of hypothesis testing, extreme value analysis, evaluation of deterministic and probabilistic predictions, principal component analysis. Participants understand the theoretical concepts and purpose of methods, can apply them independently and know how to interpret results professionally.

Does not take place this semester.
Objective

Students understand the theoretical foundations and probabilistic concepts of advanced analysis tools in meteorology and climatology. They can conduct such analyses independently, and they develop an attitude of scrutiny and an awareness of uncertainty when interpreting results. Participants improve skills in understanding technical literature that uses modern statistical data analyses.

Content

The course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the theoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interpret results critically.

Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis.

The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results.

R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course.

Lecture notes

Documentation and supporting material:
- slides used during the lecture
- exercise sets and solutions
- R-packages with software and example datasets for workshop sessions

All material is made available via the lecture web-page.

Literature

For complementary reading:

Prerequisites / notice

Prerequisites: Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umweltwissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology.

Literature

Election Courses

Electives: 6 credits has to be achieved.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-6215-00L</td>
<td>Using R for Data Analysis and Graphics (Part I)</td>
<td>W</td>
<td>1.5 credits</td>
<td>1G</td>
<td>M. Mächler</td>
</tr>
</tbody>
</table>

The course provides the first part an introduction to the statistical software R (https://www.r-project.org/) for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.

Objective

The students will be able to use the software R for simple data analysis and graphics.
The course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part I of the course covers the following topics:
- What is R?
- R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics;
- Types of data: numeric, character, logical and categorical data, missing values;
- Simple (statistical) functions: summary, mean, var, etc., simple statistical tests;
- Writing simple functions;
- Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots.

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org

Note: Part I of UsingR is complemented and extended by Part II, which is offered during the second part of the semester and which can be taken independently from Part I.

Prerequisites / notice: The course resources will be provided via the Moodle web learning platform. As from FS 2019, subscribing via Mystudies should “automatically” make you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=15518

651-4077-00L Quantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich)

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: GEO815

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmss/en/studies/application/deadline.s.html

Abstract: Overview of the most important earth surface processes and landforms in cold regions (regions with glaciers and intense frost) with emphasis on high-mountain aspects. Discussion of present research challenges.

Objective: Knowledge of the most prominent climate-related geomorphological processes and phenomena in high-mountain regions, understanding of primary research challenges.

Content: Erosion and sedimentation by glaciers as a function of topography, englacial temperature, sediment balance, sliding and melt water runoff. Processes and landforms in regions of seasonal and perennial frost (frost weathering, rock falls, debris cones/talus, solifluction, permafrost creep/rock glaciers, debris flows).

Lecture notes: Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 pages.

Literature: references in script

Prerequisites / notice: Basic knowledge about geomorphology and glaciers/permafrost from corresponding courses at ETH/UZH or from the related lecture notes

701-1341-00L Water Resources and Drinking Water

The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.

Objective: The goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.

Content: The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.

Lecture notes: Handouts will be distributed

Literature: Will be mentioned in handouts

651-4101-00L Physics of Glaciers

Understanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of the ice sheets of Greenland and Antarctica.

Objective: After the course the students are able understand and interpret measurements of ice flow, subglacial water pressure and ice temperature. They will have an understanding of glaciology-related physical concepts sufficient to understand most of the contemporary literature on the topic. The students will be well equipped to work on glacier-related problems by numerical modeling, remote sensing, and field work.

Content: The dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydraulics. The specific dynamics of tide water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate).

Lecture notes: http://people.ee.ethz.ch/~luethim/teaching.html

Literature: A list of relevant literature is available on the class web site.

Prerequisites / notice: High school mathematics and physics knowledge required.

701-1631-00L Foundations of Ecosystem Management

This course introduces the broad variety of conflicts that arise in projects focusing on sustainable management of natural resources. It explores case studies of ecosystem management approaches and considers their practicability, their achievements and possible barriers to their uptake.
This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

Objective
Students should be able to
a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales.
b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management.

Content
Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

Objective
Students should be able to
a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales.
b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management.

Content
Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

Objective
Students should be able to
a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales.
b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management.

Content
Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

Objective
Students should be able to
a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales.
b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management.

Content
Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

Objective
Students should be able to
a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales.
b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management.

Content
Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.
The course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability. The format of the course is seminar-like, interactive.

The course is structured as follows:
- overview of the concept of social justice as guiding principle of the social dimension of sustainability (approx. 20%)
- overview of the concept of social justice as guiding principle of the social dimension of sustainability (approx. 20%)
- analysis of a selection of concepts and methodologies to assess sustainable development in a variety of contexts (approx. 65%)

The course presents a process-based view of the hydrology, biogeochemistry, and geomorphology of mountain streams. Students learn how to integrate process knowledge, data, and models to understand how landscapes regulate the fluxes of water, sediment, nutrients, and pollutants in streams, and to anticipate how streams will respond to changes in land use, atmospheric deposition, and climate.

Streams are integrated monitors of the health and functioning of their surrounding landscapes. Streams integrate the fluxes of water, solutes, and sediment from their contributing catchment area; thus they reflect the spatially integrated hydrological, ecophysiological, biogeochemical, and geomorphological processes in the surrounding landscape. At a practical level, there is a significant public interest in managing forested upland landscapes to provide a reliable supply of high-quality surface water and to minimize the risk of catastrophic flooding and debris flows, but the scientific background for such management advice is still evolving.

Using a combination of lectures, field exercises, and data analysis, we explore the processes controlling the delivery of water, solutes, and sediment to streams, and how those processes are affected by changes in land cover, land use, and climate. We review the connections between process understanding and predictive modeling in these complex environmental systems. How well can we understand the processes controlling watershed-scale phenomena, and what uncertainties are unavoidable? What are the relative advantages of top-down versus bottom-up approaches? How much can “black box” analyses reveal about what is happening inside the black box? Conversely, can small-scale, micro-mechanistic approaches be successfully “scaled up” to predict whole-watershed behavior? Practical problems to be considered include the effects of land use, atmospheric deposition, and climate on streamflow, water quality, and sediment dynamics, illustrated with data from experimental watersheds in North America, Scandinavia, and Europe.
Lecture notes

Handouts will be available as they are developed.
Recommended and required reading will be specified at the first class session (with possible modifications as the semester proceeds).

<table>
<thead>
<tr>
<th>701-1251-00L</th>
<th>Land-Climate Dynamics</th>
<th>W</th>
<th>3 credits</th>
<th>2G</th>
<th>S. I. Seneviratne, R. Padhrón Flasher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. Priority is given to the target groups: - Master Environmental Science, - Master Atmospheric and Climate Science and - PhD D-USYS until September 20th, 2021. Waiting list will be deleted September 27th, 2021.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students can understand the role of land processes and associated feedbacks in the climate system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Powerpoint slides will be made available</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>401-6217-00L</th>
<th>Using R for Data Analysis and Graphics (Part II)</th>
<th>W</th>
<th>1.5 credits</th>
<th>1G</th>
<th>M. Mächler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions. Note: This part builds on "Using R... (Part I)", but can be taken independently if the basics of R are already known.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students will be able to use the software R efficiently for data analysis, graphics and simple programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course provides the second part of an introduction to the statistical software R (https://www.r-project.org/) for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R. Part II of the course builds on part I and covers the following additional topics: - Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects; - More on R functions; - Applying functions to elements of vectors, matrices and lists; - Object oriented programming with R: classes and methods; - Tayloring R: options - Extending basic R: packages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Basic knowledge of R equivalent to "Using R ... (part I") (= 401-6215-00L) is a prerequisite for this course. The course resources will be provided via the Moodle web learning platform. As from FS 2019, subscribing via Mystudies should automatically make you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=15522</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>118-0121-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>24</td>
<td>51D</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Students propose relevant research topics from their home countries or from ongoing research projects at ETH, around which individual study programmes are devised, and on which they write their thesis. The Master thesis is supervised by scientific staff at ETH and collaborating institutions, and is based on the student's academic or professional experience.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The Master Thesis research takes place throughout the duration of the MAS Programme (12 months), complimented by Master level coursework and seminars focusing on water resources and sustainability. Students become familiar with new research techniques and receive guidance from experts. The topic of the research should address a current water resources challenge in the student's home country or in Switzerland, and is aimed at enhancing collaboration between academics and professionals in Switzerland and abroad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAS in Sustainable Water Resources - Key for Type

O Compulsory
W+ Eligible for credits and recommended
W Eligible for credits

E- Recommended, not eligible for credits
Z Courses outside the curriculum
Dr Suitable for doctorate

Key for Hours

V lecture
G lecture with exercise
U exercise
S seminar
K colloquium

P practical/laboratory course
A independent project
D diploma thesis
R revision course / private study

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Lecturers: S. Marot and guests. As a guiding principle that remains to be defined, the transition can be critically confronted with broader disciplines, the studio also constitutes the main tool to develop interdisciplinarity within the design practice.

Objective
Different urban conditions will be considered in order to understand, read and manage the thick complexity of the contemporary habitat where densities, distances, relations and practices shape heterogeneous spaces and ecologies. Conceived as a place of interaction among external organisers, the studio also constitutes the main tool to develop interdisciplinarity within the design practice.

Content
A series of lectures will deal with ecology; the organism and its environment; population and community ecology; and biodiversity. Others external organisers lectures on design as knowledge production and on representation—GIS, video and photography—will be embedded within the activities of the studio. Fieldwork is integral to the design studio.

Lecturer: P. Viganò. The last period of the semester in January will consist of a post-production session, related to the results at EPFL. It mainly concerns the products of the Core Studio, but will also be implemented by the associated teaching.

Objective
All research and design materials produced during the studio, courses and sessions (e.g. texts, maps, drawings, etc.) will be evaluated, edited and curated in a “Semester Report” by the core teaching team and a graphic designer. At the end, the “Report” will be available online.

Lecturers: P. Viganò with C. Fivet, L. Rossi and guests. The Core Studio will reflect on the “transition”, assuming its multiple dimensions (ecological, social and economic) and developing transcalar design operations in concrete territories. The territory of Greater Geneva will be the test-bed for radical design explorations of possible futures.

Objective
Taking the form of a course - seminar, the proposed teaching aims to show the interest of methodologies from the social sciences of the city to develop critical urban and territorial design. Planned to last 12 weeks, it proposes to take up each week a theme related to the relation between city, habitat and mobility.

Content
Each session is organized in two parts: (1) a presentation by one of the students of an article on the week’s theme, followed by a discussion, and (2) a presentation by the teaching team to identify the knowledge and debates of social sciences related to urban and territorial design issues. Two sessions will be devoted to field visits.

City, Habitat and Mobility (EPFL)
Lecturers: V. Kaufmann with L. Pattaroni. The course aims to understand the political and social conditions of urban lifestyles and mobilities patterns in the environment to explore the lever of action available to professionals to support the critical emergence of renewed urban models.

Objective
While introducing students to the concept of the circular economy and its applications to building design, the class provides ready-to-use techniques and aims at developing a critical mindset towards their use. Following a ‘flipped classroom’ methodology, the class devies into recent literature and practice by means of adversarial open debates. Examination consists in the writing of a short personal essay on a chosen topic and its oral defence.

Urban Hydrology (EPFL)
Lecturers: L. Rossi. This course addresses water management from a global point of view, including in particular the impacts of rain discharges on receiving environments. The qualitative aspects (risk of contamination) are considered as a priority, in parallel with the quantitative risks (floods).

Objective
The course aims to understand the means and issues of management and maintenance of sewerage systems, finalized to the control of impacts in receiving environments, and more generally to raise the importance of hydraulic management in the urban and territorial project.

Content
General introduction - Legislative aspects related to urban hydrology - Simplified design methods and technical solutions: from source control to solutions at the end of the network - Field visits.

Histories of Environment (EPFL)
Lecturers: S. Marot and guests. As a guiding principle that remains to be defined, the transition can be critically confronted with broader disciplines, the studio also constitutes the main tool to develop interdisciplinarity within the design practice.

Objective
This session aims to understand how and to what extent environmental concerns can influence urban and territorial design. From a critical point of view, it also intends to question the notion of transition under the prism of its antecedents in ecological thinking.

Systemic Thinking in the Age of Transition (EPFL)
Lecturers: E. Cogato-Lanza, A. Pagani, guests. Systems thinking has regained its topicality due to the need to apprehend interdependencies that characterize our inhabited environment. The technicist approach, which had favored complexity without relating it to systems, has given way to interdisciplinarity, contextual and holistic frameworks of understanding and action that lead to new prototypes.

Objective
The seminar intends to draw up a cartography of the most current theoretical references and strategic experiments of systemic thinking in the field of the territorial project. The two envisaged formats will associate the series of conferences, bringing together protagonists and researchers, with more strictly seminar sessions with a comparative, inventory or bibliographical tone.

Content
The seminar is structured in four modules: Polemics; Concepts; Representations; Projects.
Electives

MAS in Urban and Territorial Design - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Modules

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>868-0001-00L</td>
<td>Module 1: Mediation in Context</td>
<td>O</td>
<td>10</td>
<td>9G</td>
<td>L.-E. Cederman, to be announced</td>
</tr>
<tr>
<td></td>
<td>Only for MAS Mediation in Peace Processes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This module defines and contextualises peace mediation in relation to other conflict resolution approaches. The module focuses heavily on conflict analysis, introducing the students to the latest knowledge about conflict typologies, trends, and causes in addition to providing them with various opportunities to practice conflict analysis using diverse methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This module defines and contextualises peace mediation in relation to other conflict resolution approaches. The module focuses heavily on conflict analysis, introducing the students to the latest knowledge about conflict typologies, trends, and causes in addition to providing them with various opportunities to practice conflict analysis using diverse methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>868-0004-00L</td>
<td>Module 4: Mediation Process Design</td>
<td>O</td>
<td>10</td>
<td>9G</td>
<td>L.-E. Cederman</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester. Only for MAS Mediation in Peace Processes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Mediators help the parties reach a peace agreement by designing and structuring the process. This module covers the basic elements of process design and how they differ. Important to process design is the reflection on theory and practice in sequencing the content to be examined. The module then explores the implications and challenges facing the implementation of peace agreements for mediators.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Mediators help the parties reach a peace agreement by designing and structuring the process. This module covers the basic elements of process design and how they differ. Important to process design is the reflection on theory and practice in sequencing the content to be examined. The module then explores the implications and challenges facing the implementation of peace agreements for mediators.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>868-0006-00L</td>
<td>Module 6: Mediation Processes</td>
<td>O</td>
<td>6</td>
<td>9G</td>
<td>L.-E. Cederman</td>
</tr>
<tr>
<td></td>
<td>Only for MAS Mediation in Peace Processes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This module seeks to integrate all the knowledge, skills, and techniques from previous modules in a multi-day mediation simulation based on a real-life mediation case. It focuses on linking theory and practice, communicating with actors in conflict, and transferring the programme’s content to a professional environment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This module seeks to integrate all the knowledge, skills, and techniques from Modules 1-5 in a multi-day mediation simulation. The module focuses on how to link theory and practice, how to communicate this to actors in conflict, and how the content of the programme can be transferred into the professional environment of the participants. On a more strategic/political level, this final module allows participants to introduce, discuss – and maybe influence – the future path of the field in the various countries represented and analysed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAS Mediation in Peace Processes - Key for Type

- **O** Compulsory
- **W+** Eligible for credits and recommended
- **W** Eligible for credits
- **E-** Recommended, not eligible for credits
- **Z** Courses outside the curriculum
- **Dr** Suitable for doctorate

Key for Hours

- **V** lecture
- **G** lecture with exercise
- **U** exercise
- **S** seminar
- **K** colloquium
- **P** practical/laboratory course
- **A** independent project
- **D** diploma thesis
- **R** revision course / private study

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
First Year Examinations: Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0261-00L</td>
<td>Analysis I</td>
<td>O</td>
<td>8 credits</td>
<td>5V+3U</td>
<td>A. Steiger</td>
</tr>
<tr>
<td>Abstract</td>
<td>Differential and integral calculus for functions of one and several variables; vector analysis; ordinary differential equations of first and of higher order, systems of ordinary differential equations; power series. The mathematical methods are applied in a large number of examples from mechanics, physics and other areas which are basic to engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to the mathematical foundations of engineering sciences, as far as concerning differential and integral calculus.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>U. Stammbach: Analysis I/II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites/notice</td>
<td>Exercises and online quizzes are an important aspect of this course. Attempts at solving these problems will be honored with a bonus on the final grade. See "Performance assessment" for more information.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-0171-00L</td>
<td>Linear Algebra I</td>
<td>O</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>N. Hungerbühler</td>
</tr>
<tr>
<td>Abstract</td>
<td>Linear algebra is an indispensable tool of engineering mathematics. The course offers an introduction into the theory with many applications. The new notions are practised in the accompanying exercise classes. The course will be continued as Linear Algebra II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Upon completion of this course, students will be able to recognize linear structures, and to solve corresponding problems in theory and in practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Systems of linear equations, Gaussian elimination, solution space, matrices, LR decomposition, Determinants, structure of linear spaces, normed vector spaces, inner products, method of least squares, QR decomposition, introduction to MATLAB, applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* K. Meyberg / P. Vachenauer, Höhere Mathematik 1, Springer 2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites/notice</td>
<td>Active participation in the exercises is part of this course. It is expected, that students submit 3/4 of all exercises for control.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0501-00L</td>
<td>Mechanics 1: Kinematics and Statics</td>
<td>O</td>
<td>5 credits</td>
<td>3V+2U</td>
<td>E. Mazza</td>
</tr>
<tr>
<td>Abstract</td>
<td>Basics: Position of a material point, velocity, kinematics of rigid bodies, forces, reaction principle, mechanical power. Statics: Groups of forces, moments, equilibrium of rigid bodies, reactions at supports, parallel forces, center of gravity, statics of systems, principle of virtual power, trusses, frames, forces in beams and cables, friction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The understanding of the fundamentals of statics for engineers and their application in simple settings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Grundlagen: Lage eines materiellen Punktes; Geschwindigkeit; Kinematik starrer Körper, Translation, Rotation, Kreiselung, ebene Bewegung; Kräfte, Reaktionsprinzip, innere und äussere Kräfte, verteilte Flächen- und Raumkräfte; Leistung.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Statik: Äquivalenz und Reduktion von Kräftegruppen; Ruhe und Gleichgewicht, Hauptsatz der Statik; Lagerbindungen und Lagerkräfte, Lager bei Balkenträgern und Wellen, Vorgehen zur Ermittlung der Lagerkräfte, Parallele Kräfte und Schwerpunkt; Statik der Systeme, Behandlung mit Hauptsatz, mit Prinzip der virtuellen Leistungen, statisch unbestimmte Systeme; Statisch bestimmte Fachwerke, ideale Fachwerke, Pendelstützen, Knotengleichgewicht, räumliche Fachwerke; Reibung, Haftreibung, Gleitreibung, Gelenk und Lagereibung, Rollreibung; Seilstatik; Beanspruchung in Stabträgern, Querkraft, Normalkraft, Biege- und Torsionsmoment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Übungsbücher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0711-00L</td>
<td>Engineering Materials and Production I</td>
<td>O</td>
<td>4 credits</td>
<td>4G</td>
<td>K. Wegener</td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture covers the structure and the properties of metallic materials. In the focus are the branches: microscopic structure; thermally activated processes; solidification; elastic, plastic deformation, creep. Generally the lecture also refers to manufacturing, to the processing, and application of the concerning materials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding the basics of metallic materials for engineers who are confronted with material decisions in design and production.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The lecture covers the structure and the properties of metallic materials. In the focus are the branches: microscopic structure as ideal and real structure, alloying, thermally activated processes e.g. diffusion, recovery, recrystallization, solidification, elastic and plastic deformation and creep. Generally the lecture also refers to manufacturing, to the processing, and application of the concerning materials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0301-00L</td>
<td>Machine Elements</td>
<td>O</td>
<td>2 credits</td>
<td>1V+1U</td>
<td>M. Meboldt, Q. Lohmeyer</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to machine elements and mechanical systems as basics of product development. Case studies of their application in products and systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students get an overview of the main mechanical components (machine elements) which are used in mechanical engineering. Selected examples will demonstrate how these can be assembled into functional parts and complete systems such as machinery, tools or actuators. At the same time, also the problem of production (production-oriented design) is discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>In concurrent lectures / exercises "technical drawing and CAD" the design implementation will be practiced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The idea of machine elements is complemented by case studies and illustrated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites/notice</td>
<td>The lecture slides will be published beforehand on the website of the pdz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529-0010-00L</td>
<td>Chemistry</td>
<td>O</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>A. de Mello, F. Jenny, C. Mondelli, D. J. Norris, S. Stavrakis</td>
</tr>
<tr>
<td>Abstract</td>
<td>This is a general chemistry course aimed at first year undergraduate students in the Department of Mechanical and Process Engineering (D-MAVT) and graduate students in the Department of Architecture (D-ARCH).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objective
The aims of the course are as follows:
1) To provide a thorough understanding of the basic principles of chemistry and its application.
2) To develop an understanding of the atomic and molecular nature of matter and of the chemical reactions that describe its transformations.
3) To emphasize areas considered most relevant in an engineering context.

Content
Electronic structure of atoms, chemical bonding, molecular geometry and bonding theories, intermolecular forces, gases, thermodynamics, chemical thermodynamics, chemical kinetics, equilibria, liquids and solutions, acids and bases, redox- and electrochemistry.

Lecture notes
Slides are available prior to every lecture and can be downloaded from Moodle.

Literature
The course is based on "Chemistry The Central Science" by Brown, LeMay, Bursten, Murphy, Woodward, and Stoltzfus. Pearson, 14th Edition in SI units (global edition).

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Techniques and Technologies	assessed
	Analytical Competencies	assessed
	Decision-making	not assessed
	Media and Digital Technologies	not assessed
	Problem-solving	assessed
	Project Management	not assessed
Domain C - Social Competencies	Communication	not assessed
	Cooperation and Teamwork	not assessed
	Customer Orientation	not assessed
	Leadership and Responsibility	not assessed
	Self-presentation and Social Influence	not assessed
	Sensitivity to Diversity	not assessed
	Negotiation	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed
	Critical Thinking	not assessed
	Integrity and Work Ethics	not assessed
	Self-awareness and Self-reflection	not assessed
	Self-direction and Self-management	not assessed

Additional First Year Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0321-00L</td>
<td>Technical Drawing and CAD</td>
<td>O</td>
<td>4</td>
<td>4G</td>
<td>K. Shea</td>
</tr>
</tbody>
</table>

Only for Mechanical Engineering BSc.

Abstract

Objective
The lecture and exercises teach the fundamentals of technical drawing and CAD. After taking the course students will be able to create accurate technical drawings of parts and assemblies as well as read them. Students will also be able to create models of parts and assemblies in a 3D, feature-based CAD system. They will understand the links with simulation, product data management (PDM) and additive manufacturing.

Content
Introduction to Engineering Design
Sketching in Engineering Design

- Technical Drawing:
 - projections and views
 - cuts
 - notations
 - primitives
 - ISO norm elements
 - dimensioning
 - tolerances
 - assemblies
 - documentation

- CAD:
 - CAD basics
 - CAD modeling methods
 - sketch modeling
 - modeling operations
 - feature-based modeling
 - assemblies
 - creating 2D drawings from 3D parts
 - links to simulation, e.g. kinematics
 - links to model variants and Product Data Management (PDM)
 - links to additive manufacturing (3D printing)

Lecture notes
Lecture slides and exercise handouts are available on the course Moodle website: https://moodle-app2.let.ethz.ch/course/index.php?categoryid=56
In addition to the lecture material the following books are recommended (only in German):

TZ
Technisches Zeichnen: selbstständig lernen und effektiv üben
Susanna Labisch und Christian Weber
2008 Vieweg
eBook (accessible from the ETH domain): http://link.springer.com/book/10.1007/978-3-8348-9451-9/page/1

VSM Normen-Auszugs 2010
(kann in den Übungen bestellt und gekauft werden)

CAD
Marcel Schmid
CAD mit NX: NX 8
J.Schlembach Fachverlag
ISBN: 978-3-935340-72-4

Prerequisites / notice
This course is given as a lecture (1h/week) and an exercise (3h/week). Students are split into working groups for the exercises with a maximum of 20 students per group.

Semester Fee
A fee is charged for printed copies of the course handouts.

First Year Optional Colloquia

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0501-02L</td>
<td>Mechanics 1: Kinematics and Statics (Colloquium)</td>
<td>Z</td>
<td>0</td>
<td>1K</td>
<td>R. Hopf</td>
</tr>
</tbody>
</table>

Abstract: Basics: Position of a material point, velocity, kinematics of rigid bodies, forces, reaction principle, mechanical power
Statics: Groups of forces, moments, equilibrium of rigid bodies, reactions at supports, parallel forces, center of gravity, statics of systems, principle of virtual power, trusses, frames, forces in beams and cables, friction

Objective
The understanding of the fundamentals of Statics for engineers and their application in simple settings.

Content
Basics: Position of a material point; velocity; kinematics of rigid bodies; translation, rotation, planar motion; forces, action-reaction principle, internal and external forces, distributed forces; mechanical power.
Statics: equivalence and reduction of groups of forces; rest and equilibrium; basic theorem of statics; kinematic and static boundary conditions, applications to supports and clamps of rods and beams; procedures for determination of forces at supports and clamps; parallel forces and centre of gravity; statics of systems, solution using basic theorem and using the principle of virtual power, statically indeterminate systems; statically determine truss structures, ideal truss structures, nodal point equilibrium, methods for truss force determination; friction, static friction, sliding friction, friction at joints and supports, rolling resistance; forces in cables; beam loading, force and moment vector.

Lecture notes Übungsblätter

Literature
Sayir, M.B., Dual J., Kaufmann S., Ingenieurmechanik 1: Grundlagen und Statik, Teubner

3. Semester

Compulsory Courses

Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0363-10L</td>
<td>Analysis III</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>A. Iozzi</td>
</tr>
</tbody>
</table>

Abstract
Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics.

Objective
Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations.

Content
Laplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform

Lecture notes
Lecture notes by Prof. Dr. Alessandra Iozzi:
https://polybox.ethz.ch/index.php/s/D3k0TayOxvpC4A
Lecture notes (a scriptum) will be available on Moodle. Students are strongly encouraged to take their own notes during class.

Introduction to the fundamentals of technical thermodynamics.

Introduction to Dimensioning of components and machine parts. Basic structural theories are introduced and a short introduction to finite elements is given. Further, elements from fracture mechanics, plasticity and stability of structures are presented.

The goal of the lecture is to build on and extend the theories from Mechanics 2. Students learn how to implement adequate models for practical dimensioning problems in mechanical engineering and how to solve and critically interpret these models.

This course provides Bachelor students of mechanical and civil engineering with fundamental knowledge of the kinematics and dynamics of mechanical systems. By studying the motion of a single particle, systems of particles, rigid bodies and of deformable bodies, we introduce essential concepts such as kinematics, kinetics, work and energy, equations of motion, and forces and torques. Further topics include the stability of equilibria and vibrations as well as an introduction to the dynamics of deformable bodies and waves in elastic rods. Throughout the course, the basic principles and application-oriented examples presented in the lectures and weekly exercise sessions help students acquire a proficient background in engineering dynamics, learn and embrace problem-solving techniques for dynamical engineering problems, gain cross-disciplinary expertise (by linking concepts from, among others, mechanics, mathematics, and physics), and prepare students for advanced courses and work on engineering applications.

1. Motion of a single particle: kinematics (trajectory, velocity, acceleration), forces and torques, constraints, active and reaction forces, balance of linear and angular momentum, work-energy balance, conservative systems, equations of motion.
2. Motion of systems of particles: internal and external forces, balance of linear and angular momentum, work-energy balance, rigid body systems of particles, particle collisions, mass accretion/loss.
3. Motion of rigid bodies in 2D and 3D: kinematics (angular velocity, velocity and acceleration transfer, instantaneous center and axis of rotation), balance of linear and angular momentum, work-energy balance, rigid body transport, inertial vs. moving reference frames, apparent forces, Euler equations.
5. Introduction to waves and vibrations in deformable elastic bodies: local form of linear momentum balance, waves and vibrations in slender elastic rods.

Lecture notes (a scriptum) will be available on Moodle. Students are strongly encouraged to take their own notes during class.

A complete set of lecture notes (a scriptum) is available on Moodle. Further reading materials are suggested but not required for this class.

All course materials (including lecture notes, exercise problems, etc.) are available on Moodle.

1. Motion of a single particle: kinematics (trajectory, velocity, acceleration), forces and torques, constraints, active and reaction forces, balance of linear and angular momentum, work-energy balance, conservative systems, equations of motion.
2. Motion of systems of particles: internal and external forces, balance of linear and angular momentum, work-energy balance, rigid body systems of particles, particle collisions, mass accretion/loss.
3. Motion of rigid bodies in 2D and 3D: kinematics (angular velocity, velocity and acceleration transfer, instantaneous center and axis of rotation), balance of linear and angular momentum, work-energy balance, rigid body transport, inertial vs. moving reference frames, apparent forces, Euler equations.
5. Introduction to waves and vibrations in deformable elastic bodies: local form of linear momentum balance, waves and vibrations in slender elastic rods.

Lecture notes (a scriptum) will be available on Moodle. Students are strongly encouraged to take their own notes during class.

A complete set of lecture notes (a scriptum) is available on Moodle. Further reading materials are suggested but not required for this class.

All course materials (including lecture notes, exercise problems, etc.) are available on Moodle.

1. Motion of a single particle: kinematics (trajectory, velocity, acceleration), forces and torques, constraints, active and reaction forces, balance of linear and angular momentum, work-energy balance, conservative systems, equations of motion.
2. Motion of systems of particles: internal and external forces, balance of linear and angular momentum, work-energy balance, rigid body systems of particles, particle collisions, mass accretion/loss.
3. Motion of rigid bodies in 2D and 3D: kinematics (angular velocity, velocity and acceleration transfer, instantaneous center and axis of rotation), balance of linear and angular momentum, work-energy balance, rigid body transport, inertial vs. moving reference frames, apparent forces, Euler equations.
5. Introduction to waves and vibrations in deformable elastic bodies: local form of linear momentum balance, waves and vibrations in slender elastic rods.

Lecture notes (a scriptum) will be available on Moodle. Students are strongly encouraged to take their own notes during class.

A complete set of lecture notes (a scriptum) is available on Moodle. Further reading materials are suggested but not required for this class.

All course materials (including lecture notes, exercise problems, etc.) are available on Moodle.

1. Motion of a single particle: kinematics (trajectory, velocity, acceleration), forces and torques, constraints, active and reaction forces, balance of linear and angular momentum, work-energy balance, conservative systems, equations of motion.
2. Motion of systems of particles: internal and external forces, balance of linear and angular momentum, work-energy balance, rigid body systems of particles, particle collisions, mass accretion/loss.
3. Motion of rigid bodies in 2D and 3D: kinematics (angular velocity, velocity and acceleration transfer, instantaneous center and axis of rotation), balance of linear and angular momentum, work-energy balance, rigid body transport, inertial vs. moving reference frames, apparent forces, Euler equations.
5. Introduction to waves and vibrations in deformable elastic bodies: local form of linear momentum balance, waves and vibrations in slender elastic rods.
1. Konzepte und Definitionen
2. Der erste Hauptsatz, der Begriff der Energie und Anwendungen für geschlossene Systeme
3. Eigenschaften reiner kompressibler Substanzen, quasistatische Zustandsänderungen
4. Elemente der kinetischen Gastheorie
5. Der erste Hauptsatz in offenen Systemen - Energieanalyse in einem Kontrollvolumen
6. Der zweite Hauptsatz - Der Begriff der Entropie
7. Nutzbarkeit der Energie - Exergie
8. Thermodynamische Beziehungen für einfache, kompressible Substanzen.

Lecture notes available

Literature

151-0591-00L Control Systems I

Objective
Identify the role and importance of control systems in everyday life. Obtain models of single-input single-output (SISO) linear time invariant (LTI) dynamical systems. Linearization of nonlinear models. Interpret stability, observability and controllability of linear systems. Describe and associate building blocks of linear systems in time and frequency domain with equations and graphical representations (Bode plot, Nyquist plot, root locus). Design feedback controllers to meet stability and performance requirements for SISO LTI systems. Explain differences between expected and actual control results. Notions of robustness and other nuisances such as discrete time implementation.

Content
Modeling and linearization of dynamic systems with single input and output signals. State-space description. Analysis and controller synthesis for linear time invariant systems with one input and one output signal (SISO); transition matrix; stability; controllability; observability; Laplace transform; transfer functions; transient and steady state responses. PID control; dynamic compensators; Nyquist theorem.

Lecture notes

In addition, the slides of the lecture will be put online.

Literature

Prerequisites / notice
Basic knowledge of (complex) analysis and linear algebra.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Assessed
Techniques and Technologies
Not assessed

Domain B - Method-specific Competencies
Analytical Competencies
Assessed
Decision-making
Not assessed
Media and Digital Technologies
Not assessed
Problem-solving
Not assessed

Domain C - Social Competencies
Communication
Not assessed
Cooperation and Teamwork
Not assessed
Customer Orientation
Not assessed
Leadership and Responsibility
Not assessed
Self-presentation and Social Influence
Not assessed
Sensitivity to Diversity
Not assessed
Negotiation
Not assessed

Domain D - Personal Competencies
Adaptability and Flexibility
Not assessed
Critical Thinking
Not assessed
Integrity and Work Ethics
Not assessed
Self-awareness and Self-reflection
Not assessed
Self-direction and Self-management
Not assessed

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1438 of 2152
Engineering Tools

The Engineering Tools courses are for MAVT Bachelor's degree students only.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0021-00L</td>
<td>Engineering Tool: Introduction to MATLAB</td>
<td>W+</td>
<td>0.4 credits</td>
<td>1K</td>
<td>B. Berisha</td>
</tr>
<tr>
<td></td>
<td>The Engineering Tools courses are for MAVT Bachelor's degree students only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: previous course title in German until HS18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Ingenieur-Tool: Numerisches Rechnen".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to MATLAB; vectors and matrices; graphics in MATLAB; calculus, differential equations; programming with MATLAB; data analysis and statistics; interpolation and polynomials. Excercises with solutions: using MATLAB commands, technical applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to numerical calculations with MATLAB.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Introduction to MATLAB; vectors and matrices; graphics in MATLAB; calculus, differential equations; programming with MATLAB; data analysis and statistics; interpolation and polynomials. Excercises with solutions: using MATLAB commands, technical applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Course material:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://moodle-app2.let.ethz.ch/course/view.php?id=15113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Der Kurs findet in einem Hörsaal statt und es stehen keine Rechner zur Verfügung. Es wird empfohlen, dass pro zwei Studierenden mindestens ein Laptop mit installiertem Matlab mitgebracht wird.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation Matlab:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- es funktionieren alle Versionen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- netzunabhängige Node-Lizenz (z.B. zum Download im ETH IT Shop)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- folgende Toolboxes/Features müssen installiert sein: Simulink (wird für RT1 benutzt), Curve Fitting Toolbox, Optimization Toolbox, Symbolic Toolbox, Global Optimization Toolbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- es funktionieren alle Versionen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- netzunabhängige Node-Lizenz (z.B. zum Download im ETH IT Shop)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- folgende Toolboxes/Features müssen installiert sein: Simulink (wird für RT1 benutzt), Curve Fitting Toolbox, Optimization Toolbox, Symbolic Toolbox, Global Optimization Toolbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: previous course title in German until HS18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Ingenieur-Tool: Numerisches Rechnen".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>All Engineering Tool courses are for MAVT-Bachelor students only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-0863-00L</td>
<td>Engineering Tool: Advanced Programming with C++</td>
<td>W+</td>
<td>0.4 credits</td>
<td>1K</td>
<td>F. O. Friedrich Wicker</td>
</tr>
<tr>
<td></td>
<td>The programming model of C++ is discussed in some depth. In particular the mechanisms for efficient memory management and generic programming with C++ are covered.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Ability to implement memory-efficient data structures and efficient generic algorithms using C++.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Vectors, pointers and iterators, range for, keyword auto, a class for vectors, subscript-operator, move-construction and iteration. RAIL (Resource Allocation is Initialization) Principle, Templates and Generic Programming, Functions and Lambda Expressions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Detailed, bilingual slides of the lectures will be made available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Lecture Series Informatik I 252-0832-00L or equivalent knowledge in programming with C++.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course can only be taken if the programming project is executed and submitted. If no solution to the programming project is submitted, the course is considered failed (<no show>).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Semester

Compulsory Courses Examination Block 3

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0261-00L</td>
<td>Thermodynamics III</td>
<td>O</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>R. S. Abhari, A. Steinfeld</td>
</tr>
<tr>
<td>Abstract</td>
<td>Technical applications of engineering thermodynamics. Extension of thermodynamical fundamentals taught in Thermodynamics I and II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understand and apply thermodynamic principles and processes for use in a range of cycles used commonly in practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0103-00L</td>
<td>Fluid Dynamics II</td>
<td>O</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>P. Jenny</td>
</tr>
<tr>
<td>Objective</td>
<td>Expand basic knowledge of fluid dynamics. Concepts, phenomena and quantitative description of irrotational (potential), rotational, and one-dimensional compressible flows.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content
Two-dimensional irrotational (potential) flows: stream function and potential, complex notation, singularity method, unsteady flow, aerodynamic concepts.
Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin.
Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.

Lecture notes
Lecture notes are available (in German).
(See also info on literature below.)

Literature
Relevant chapters (corresponding to lecture notes) from the textbook

Prerequisites / notice
Analysis I/II, Knowledge of Fluid Dynamics I, thermodynamics of ideal gas

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0573-00L</td>
<td>System Modeling</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>L. Guzzella</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to system modeling for control. Generic modeling approaches based on first principles, Lagrangian formalism, energy approaches and experimental data. Model parametrization and parameter estimation. Basic analysis of linear and nonlinear systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Learn how to mathematically describe a physical system or a process in the form of a model usable for analysis and control purposes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This class introduces generic system-modeling approaches for control-oriented models based on first principles and experimental data. The class will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>A list of references is included in the handouts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The handouts in English will be available in digital form.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0575-01L</td>
<td>Signals and Systems</td>
<td>W</td>
<td>4</td>
<td>2V+2U</td>
<td>A. Carron</td>
</tr>
<tr>
<td>Abstract</td>
<td>Signals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Master the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes available on course website.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Control Systems I is helpful but not required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0917-00L</td>
<td>Mass Transfer</td>
<td>W</td>
<td>4</td>
<td>2V+2U</td>
<td>S. E. Pratsinis, V. Mavrantzas, C.-J. Shih</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0973-00L</td>
<td>Introduction into Process Engineering I</td>
<td>W</td>
<td>4</td>
<td>2V+2U</td>
<td>F. Donat, C. Müller</td>
</tr>
</tbody>
</table>
Objective: To expand fundamentals in process engineering
Content: Overview of process engineering, reactions, balances and residence time analysis; overview of the thermal separation processes; equilibria for multiphase systems; introduction into mechanical process engineering and particle technology
Lecture notes: script in German available

151-3207-00L Lightweigh
Abstract: The elective course Lightweight includes numerical methods for the analysis of the load carrying and failure behavior of lightweight structures, as well as construction methods and design principles for lightweight design.
Content: Lightweight design
- Thin-walled beams and structures
- Instability behavior of thin walled structures
- Reinforced shell structures
- Load introduction in lightweight structures
- Joining technology
- Sandwich design
Lecture notes: Script, Handouts, Exercises

227-0076-00L Electrical Engineering II
Abstract: Sinusoidal signals and systems in the time and frequency domain, principle of operation and design of basic analog and digital circuits as well as analog-digital conversion. Basic power electronic circuits, design of magnetic components, electromechanical energy conversion, principle of operation and characteristics of transformers and selected rotating electrical machines.
Objective: see above

363-0511-00L Managerial Economics
Abstract: "Managerial Economics" provides an introduction to the theories and methods from Economics and Management Science to analyze economic decision-making in the context of markets. The course targets students with no prior knowledge in Economics and Management.
Objective: The objective of this course is to provide an introduction to microeconomic thinking. Based on the fundamental principles of economic analysis (optimization and equilibrium), the focus lies on understanding key economic concepts relevant for understanding and analyzing economic behavior of firms and consumers in the context of markets. Market demand and supply are derived from the individual decision-making of economic agents and market outcomes under different assumptions about the market structure and market power (perfect competition, monopoly, oligopoly, game theory) are studied. This introductory course aims at providing essential knowledge from the fields of Economics and Management relevant for economic decision-making in the context of both the private and public sector.
Prerequisites / notice: The course targets both Bachelor and Master students. No prior knowledge in the areas of Economics and Management is required.

401-0435-00L Computational Methods for Engineering Applications
Abstract: The course gives an introduction to the numerical methods for the solution of ordinary and partial differential equations that play a central role in engineering applications. Both basic theoretical concepts and implementation techniques necessary to understand and master the methods will be addressed.
Objective: At the end of the course the students should be able to:
- implement numerical methods for the solution of ODEs (ordinary differential equations);
- identify features of a PDE (partial differential equation) based model that are relevant for the selection and performance of a numerical algorithm;
- implement the finite difference, finite element and finite volume method for the solution of simple PDEs using C++;
- read engineering research papers on numerical methods for ODEs or PDEs.
Content: Elliptic equations: Green's function representation of solutions, Maximum principle, finite difference schemes, stability analysis.
Hyperbolic equations: Hyperbolic equations, Linear advection equation, method of characteristics, upwind schemes and their stability.
Lecture notes: Script will be provided.
Literature: Chapters of the following book provide supplementary reading and are not meant as course material:
Prerequisites / notice: (Suggested) Prerequisites: Analysis I-III (for D-MAVT), Linear Algebra, Models, Algorithms and Data: Introduction to Computing, basic familiarity with programming in C++.

401-0603-00L Stochastics (Probability and Statistics)
Abstract: The following concepts are covered: probabilities, random variables, probability distributions, joint and conditional probabilities and distributions, law of large numbers, central limit theorem, descriptive statistics, statistical inference, parameter estimation, confidence intervals, statistical tests, two-sample tests, linear regression.
Objective: Knowledge of the basic principles of probability theory and statistics.
Content: Introduction to probability theory and statistics.
Focus Projects in Mechatronics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0073-10L</td>
<td>Geranos</td>
<td>W</td>
<td>0</td>
<td>15A</td>
<td>R. Siegwart</td>
</tr>
<tr>
<td></td>
<td>This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For MAVT BSc and ITET BSc only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites for the focus projects:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Basis examination successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Block 1 and 2 successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For enrollment, please contact the D-MAVT Student Administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The various objectives of the Focus Project are:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Team organization, work in teams, increase of interpersonal skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Independence, initiative, independent learning of new topic contents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Problem structuring, solution identification in indistinct problem definitions, searches of information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- System description and simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Presentation methods, writing of a document</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ability to make decisions, implementation skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Workshop and industrial contacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Learning and recess of special knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>151-0073-20L</th>
<th>AITHON</th>
<th>W</th>
<th>0</th>
<th>15A</th>
<th>R. Siegwart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For MAVT BSc and ITET BSc only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites for the focus projects:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Basis examination successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Block 1 and 2 successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For enrollment, please contact the D-MAVT Student Administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The various objectives of the Focus Project are:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Team organization, work in teams, increase of interpersonal skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Independence, initiative, independent learning of new topic contents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Problem structuring, solution identification in indistinct problem definitions, searches of information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- System description and simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Presentation methods, writing of a document</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ability to make decisions, implementation skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Workshop and industrial contacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Learning and recess of special knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>151-0073-30L</th>
<th>Guidance, Navigation and Control for Recovery of a Sounding Rocket</th>
<th>W</th>
<th>0</th>
<th>15A</th>
<th>M. Zeilinger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For MAVT BSc and ITET BSc only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites for the focus projects:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Basis examination successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Block 1 and 2 successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For enrollment, please contact the D-MAVT Student Administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)

For MAVT BSc and ITET BSc only.

Objective

SpaceHopper

This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.

For MAVT BSc and ITET BSc only.

Prerequisites for the focus projects:
- a. Basis examination successfully passed
- b. Block 1 and 2 successfully passed

For enrollment, please contact the D-MAVT Student Administration.

Objective

The various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)

For MAVT BSc and ITET BSc only.

Prerequisites for the focus projects:
- a. Basis examination successfully passed
- b. Block 1 and 2 successfully passed

For enrollment, please contact the D-MAVT Student Administration.

Objective

The various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)

Content

In this focus project, you will develop the platform RAPTOR. The acronyms stands for "RAPTOR - Rapid Aerial Pick-Transfer of Objects by Robots". Together with your team, you design, build and test a flying platform that swoops down towards an object to dynamically pick it up, just like an eagle swoops down to pick up its prey.

The flying system will consist of a soft robot gripper attached to a quadcopter or vertical take-off and landing (VTOL) aircraft. The team's design will first be tested in simulation using tools including Matlab, Gazebo, Drake, and the soft robotics simulator SOFA. A testbed made out of a five bar linkage will facilitate the testing of the design and control of the soft gripper. The testbed emulates quadcopter trajectories on a plane. The testbed will validate the robustness of our gripping experiments in simulation. Successful designs and control algorithms will eventually be tested on a dynamically maneuverable aerial vehicle with self-built gripper.

Project Outline:

https://drive.google.com/open?id=1-B3NYD58Wq3afy3gVJa8S2yWN0kjiRK&authuser=1&authuser=1

If you like to see the project slides or learn more about this project, please email Prof. Katzschmann.

Prerequisites / Notice

Optional but helpful: Basics of control theory, machine design, and dynamics. Previous exposure to mechatronics or robotic systems will also be helpful.

Autumn Semester 2021
Focus Projects in Manufacturing

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0075-10L</td>
<td>E-Sling RE</td>
<td>W</td>
<td>0 credits</td>
<td>15A</td>
<td>K. Wegener</td>
</tr>
<tr>
<td></td>
<td>This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites for the focus projects:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Basis examination successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Block 1 and 2 successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For enrollment, please contact the D-MAVT Student Administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective The various objectives of the Focus Project are:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Team organization, work in teams, increase of interpersonal skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Independence, initiative, independent learning of new topic contents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Problem structuring, solution identification in indistinct problem definitions, searches of information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- System description and simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Presentation methods, writing of a document</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ability to make decisions, implementation skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Workshop and industrial contacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Learning and recess of special knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0075-20L</td>
<td>Formula Student</td>
<td>W</td>
<td>0 credits</td>
<td>15A</td>
<td>D. Mohr</td>
</tr>
<tr>
<td></td>
<td>This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites for the focus projects:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Basis examination successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Block 1 and 2 successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For enrollment, please contact the D-MAVT Student Administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective The various objectives of the Focus Project are:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Team organization, work in teams, increase of interpersonal skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Independence, initiative, independent learning of new topic contents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Problem structuring, solution identification in indistinct problem definitions, searches of information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- System description and simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Presentation methods, writing of a document</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ability to make decisions, implementation skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Workshop and industrial contacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Learning and recess of special knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0075-30L</td>
<td>Paris Hybrid</td>
<td>W</td>
<td>0 credits</td>
<td>15A</td>
<td>A. Kunz</td>
</tr>
<tr>
<td></td>
<td>This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites for the focus projects:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Basis examination successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Block 1 and 2 successfully passed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For enrollment, please contact the D-MAVT Student Administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective The various objectives of the Focus Project are:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Team organization, work in teams, increase of interpersonal skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Independence, initiative, independent learning of new topic contents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Problem structuring, solution identification in indistinct problem definitions, searches of information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- System description and simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Presentation methods, writing of a document</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ability to make decisions, implementation skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Workshop and industrial contacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Learning and recess of special knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Focus Projects in Energy, Flows and Processes

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0076-10L</td>
<td>SOWA (Solar Water) – Drinking Water from Saline and Brackish Water Using Solar Energy</td>
<td>W</td>
<td>0 credits</td>
<td>15A</td>
<td>M. Mazzotti</td>
</tr>
</tbody>
</table>

This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.

For MAVT BSc and ITET BSc only.

Prerequisites for the focus projects:
- Basis examination successfully passed
- Block 1 and 2 successfully passed

For enrollment, please contact the D-MAVT Student Administration.

Abstract

Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).

Objective

The various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)

Focus Projects in Biomedical Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0077-10L</td>
<td>VIEshunt</td>
<td>W</td>
<td>0 credits</td>
<td>15A</td>
<td>M. Meboldt</td>
</tr>
</tbody>
</table>

This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus-Project in FS2022.

For MAVT BSc and ITET BSc only.

Prerequisites for the focus projects:
- Basis examination successfully passed
- Block 1 and 2 successfully passed

For enrollment, please contact the D-MAVT Student Administration.

Abstract

Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).

Objective

The various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)

Focus Projects in Design, Mechanics and Materials

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0079-10L</td>
<td>HRC3D - High Resolution 3D Printing of Continuous Fiber Reinforced Composites</td>
<td>W</td>
<td>0 credits</td>
<td>15A</td>
<td>P. Ermanni</td>
</tr>
</tbody>
</table>

This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.

For MAVT BSc and ITET BSc only.

Prerequisites for the focus projects:
- Basis examination successfully passed
- Block 1 and 2 successfully passed

For enrollment, please contact the D-MAVT Student Administration.

Abstract

Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
The various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)

151-0079-20L Hybrid Rocket Engine 21

This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.

For MAVT BSc and ITET BSc only.

Prerequisites for the focus projects:
- a. Basis examination successfully passed
- b. Block 1 and 2 successfully passed

For enrollment, please contact the D-MAVT Student Administration.

Abstract
Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).

Objective
The various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)

151-0079-30L Swissloop

This course is part of a one-year course. The 14 credit points will be issued at the end of FS2022 with new enrolling for the same Focus Project in FS2022.

For MAVT BSc and ITET BSc only.

Prerequisites for the focus projects:
- a. Basis examination successfully passed
- b. Block 1 and 2 successfully passed

For enrollment, please contact the D-MAVT Student Administration.

Abstract
Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).

Objective
The various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)

Courses Eligible for Focus Projects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0079-99L</td>
<td>Vacuum Transport Seminar: Insights into Hyperloop</td>
<td>E</td>
<td>0</td>
<td>1S</td>
<td>D. Kochmann</td>
</tr>
</tbody>
</table>

Abstract
The Vacuum Transport Seminar series enters its third round following the successful editions in spring and autumn semesters. It is held online via Zoom and offered internationally across a number of European Universities. The seminar was founded and is held by Swissloop and the EuroTube Foundation, and partnered by other European institutes.
Objective

Students present their work in Hyperloop research. Additionally, industry experts contribute insight talks. The seminar is open to all students, everyone is welcome to join join at any of the dates.

About the seminar's background:

Swissloop, the Hyperloop Team based at ETH Zürich, is pursuing long-term support for research and education in vacuum transport. In addition to the active team constructing and building a Hyperloop pod every year, various research projects at ETH are pursued in cooperation with EuroTube. The EuroTube Foundation accelerates the development of sustainable vacuum transportation technologies to provide publicly accessible research and testing infrastructures for universities and industry.

About Vacuum Transportation:

The demand for air transport has more than doubled in the last 20 years and is growing yearly by about 6.5%. Global demand for cargo and passenger transportation can barely be met today -- let alone in a sustainable manner. Vacuum transport can replace short to medium distance flights and can significantly reduce CO2 emissions. The market of high-speed transportation is a global megatrend set to affect our lives in years to come.

151-0761-00L Practice Course Product Development W 1 credit 1G M. Meboldt, C. R. Dietzsch, C. Schorno, M. Schütz

Abstract

This course provides comprehensive input to ongoing focus project teams in the areas of project management, communication and presentation, as well as dealing with the media, coaches and patents and safety issues.

Objective

Participants will receive tips, hints and background information from experienced tutors applicable to current projects.

Content

Project Management
- Creating a solid project base
- Project planning and controlling
- Product validation and testing
- Problem solving cycle and decision taking transparent for others

Communication
- Communication within the team and with coaches
- Public Relations in a Nutshell
- How to acquire and manage suppliers and sponsors
- Transfer of technical drawings to suppliers
- Technical reports
- Review presentations

Handling of and guidance to
- Expectation management and dealing with conflicts
- Burnout prevention, time management, work disturbances
- Safety issues
- Issues regarding patents

Lecture notes and documentation will be electronically available.

Prerequisites / notice

- for students only participating in a Focus Project in the same semester
- the exact schedule will be communicated during the course
- it is expected, that every team is visiting each leacture with typically at least 2 team members

151-0763-00L Practice Course to Focus Projects on CAD and CAE Based on Siemens NX W 3 credits 3G J.-L. Emery, M. Schütz

Abstract

This course provides comprehensive input to ongoing Focus Projects teams in the areas of CAD and CAE mit Siemens NX.

Objective

Participants will receive tips, hints and background information from experienced tutors applicable to current projects.

Content

CAD with Siemens NX
- 2 day of intensive training (2x4h, 1x8L)

CAE mit Siemens NX
- 2 separate days of intensive training (2x8L)

Lecture notes and documentation will be electronically available.

Prerequisites / notice

- only for students participating in a Focus Project in the same semester
- use of Siemens NX CAD/CAE in the corresponding Focus Project required

Focus Specialization

Energy, Flows and Processes

Focus Coordinator: Prof. Christoph Müller

In order to achieve the required 20 credit points for the Focus Specialization Energy, Flows and Processes you need to choose at least 2 core courses (W+) (HS/FS) and at least 2 of the elective courses (HS/FS), according to the presentation of the Focus Specialisation (see https://ethz.ch/content/dam/ethz/special-interest/mavt/department-dam/studium/bachelor/documents/EFP_Focus.pdf). One course can be selected among all the courses offered by D-MAVT (Bachelors and Masters).

Number Title Type ECTS Hours Lecturers

151-0123-00L Experimental Methods for Engineers W+ 4 credits 2V+2U T. Rösgen, B. Schuermans, M. Tibbitt

Abstract

The course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial class introduction, laboratory exercises from different application areas (especially in thermo/fluids and process engineering) are attended by students in small groups.

Objective

Introduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic applications.

Understanding of various sensing technologies and analysis procedures.

Exposure to typical experiments, diagnostics hardware, data acquisition and processing.

Study of applications in the laboratory.

Fundamentals of scientific documentation & reporting.
151-0293-00L Combustion and Reactive Processes in Energy and Materials Technology

Abstract
The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials.

Objective
The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus "Energy, Flows & Processes" on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering.

Content

Lecture notes
No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed:

Teaching language, assignments and lecture slides in English

151-0221-00L Introduction to Modeling and Optimization of Sustainable Energy Systems

Abstract
This course introduces the fundamentals of energy system modeling for the analysis and the optimization of the energy system design and operations.

Objective
At the end of this course, students will be able to:
- select and apply appropriate models for conversion, storage and transport of energy;
- develop mathematical models for the design, analysis and operation of multi-energy systems and solve them with appropriate mathematical tools;
- select and apply methodologies for the uncertainty analysis on energy systems models;
- apply the acquired knowledge to tackle the challenges of the energy transition.

Content
The global energy transition: Key performance indicators of sustainable energy systems; Optimization models; Heat integration and heat exchanger networks; Life-cycle assessment; Models for conversion, storage and transport technologies; Multi-energy systems; Design, operations and analysis of energy systems; Uncertainties in energy system modeling.

Lecture notes
Lecture slides and supplementary documentation will be available online. Reference to appropriate book chapters and scientific papers will be provided.

151-0109-00L Turbulent Flows

Abstract
Basic physical phenomena of turbulent flows, quantitative and statistical description, basic and averaged equations, principles of turbulent flow computation and elements of turbulence modelling

Objective
- Properties of laminar, transitional and turbulent flows.
- Origin and control of turbulence. Instability and transition.
- Statistical description, averaging, equations for mean and fluctuating quantities, closure problem.
- Wall-bounded turbulent flows.
- Turbulent flow computation and modeling.

Lecture notes
Lecture notes are available

151-0913-00L Introduction to Photonics

Abstract
This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light.

Objective
Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds.
I- BASICS OF WAVE THEORY
1) General concepts
2) Differential wave equation
3) Wavefront
4) Plane waves and Fourier decomposition of optical fields
5) Spherical waves and Huygens-Fresnel principle

II- ELECTROMAGNETIC WAVES
1) Maxwell equations
2) Wave equation for EM waves
3) Dielectric permittivity
4) Refractive index
5) Nonlinear optics
6) Polarisation and polarisation control

III- PROPAGATION OF LIGHT
1) Waves at an interface
2) The Fresnel equations
3) Total internal reflection
4) Evanscent waves
5) Dispersion diagram

IV- INTERFERENCES
1) General considerations
2) Temporal and spatial coherence
3) The Young double slit experiment
4) Diffraction gratings
5) The Michelson interferometer
6) Multi-wave interference
7) Antireflecting coating and interference filters
8) Optical holography

V- LIGHT MANIPULATION
1) Optical waveguides
2) Photonic crystals
3) Metamaterials and metasurfaces
4) Optical cavities

VI- INTRODUCTION TO OPTICAL MICROSCOPY
1) Basic concepts
2) Direct and Fourier imaging
3) Image formation
4) Fluorescence microscopy
5) Scattering-based microscopy
6) Digital holography
7) Computational imaging

VII- OPTICAL FORCES AND OPTICAL TWEETERS
1) History of optical forces
2) Theory of optical trapping
3) Atom cooling
4) Optomechanics
5) Plasmonic trapping
6) Applications of optical tweezers

Abstract
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Objective
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Content
- Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.

Literature

Prerequisites
Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.
The content of the document is not visible in the image provided.
Content
- Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS)
- Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition.
- Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties.

Application of selected technologies will be demonstrated on case studies.

Lecture notes
Handouts (available online)

Literature
- S.M. Sze: Semiconductor Devices, Physics and Technology
- W. Menz, J. Mohr, O. Paul: Microsystem Technology
- Hong Xiao: Introduction to Semiconductor Manufacturing Technology
- T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications

Prerequisites / notice
Prerequisites: Physics I and II

<table>
<thead>
<tr>
<th>151-0640-00L</th>
<th>Studies on Mechatronics</th>
<th>W</th>
<th>5 credits</th>
<th>11A</th>
<th>Supervisors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Overview of Mechatronics topics and study subjects. Identification of minimum 10 pertinent refereed articles or works in the literature in consultation with supervisor or instructor. After 4 weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After feedback on the substance and technical writing by the instructor, project commences.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are familiar with the challenges of the fascinating and interdisciplinary field of Mechatronics and Microsystems. They are introduced in the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The students work independently on a study of selected topics in the field of Mechatronics or Microsystems. They start with a selection of scientific papers to continue literature research. The results (e.g. state-of-the-art, methods) are evaluated with respect to predefined criteria. Then the results are presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>will be available</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>151-0913-00L</th>
<th>Introduction to Photonics</th>
<th>W</th>
<th>4 credits</th>
<th>2V+2U</th>
<th>R. Quidant, J. Ortega Arroyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I- BASICS OF WAVE THEORY
1) General concepts
2) Differential wave equation
3) Wavefront
4) Plane waves and Fourier decomposition of optical fields
5) Spherical waves and Huygens-Fresnel principle

II- ELECTROMAGNETIC WAVES
1) Maxwell equations
2) Wave equation for EM waves
3) Dielectric permittivity
4) Refractive index
5) Nonlinear optics
6) Polarisation and polarisation control

III- PROPAGATION OF LIGHT
1) Waves at an interface
2) The Fresnel equations
3) Total internal reflection
4) Evanescent waves
5) Dispersion diagram

IV- INTERFERENCES
1) General considerations
2) Temporal and spatial coherence
3) The Young double slit experiment
4) Diffraction gratings
5) The Michelson interferometer
6) Multi-wave interference
7) Antireflecting coating and interference filters
8) Optical holography

V- LIGHT MANIPULATION
1) Optical waveguides
2) Photonic crystals
3) Metamaterials and metasurfaces
4) Optical cavities

VI- INTRODUCTION TO OPTICAL MICROSCOPY
1) Basic concepts
2) Direct and Fourier imaging
3) Image formation
4) Fluorescence microscopy
5) Scattering-based microscopy
6) Digital holography
7) Computational imaging

VII- OPTICAL FORCES AND OPTICAL TWEEZERS
1) History of optical forces
2) Theory of optical trapping
3) Atom cooling
4) Optomechanics
5) Plasmonic trapping
6) Applications of optical tweezers

Abstract
Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components.

Objective
Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components.

Content
Fields of application and application examples of power electronic converters, basic concept of switch-mode voltage and current conversion, pulse-width modulation (PWM); derivation and operating modes (continuous and discontinuous current mode) of DC/DC converter topologies, buck / boost / buck-boost converter; extension to DC/AC conversion using differences of unipolar output voltages varying over time; single-phase diode rectifier; boost-type PWM rectifier featuring sinusoidal input current; tolerance band AC current control and cascaded output voltage control with inner constant switching frequency current control; local and global averaging of switching frequency discontinuous quantities for calculation of component stresses; three-phase AC/DC conversion, center-tap rectifier with impressed output current, thyristor function, thyristor center-tap and full-bridge converter, rectifier and inverter operation, control angle and recovery time, inverter operation limit; basics of inductors and single-phase transformers, design based on scaling laws; isolated DCDC converter, flyback and forward converter, single-switch and two-switch circuit; single-phase DC/AC conversion, four-quadrant converter, unipolar and bipolar modulation, fundamental frequency model of AC-side operating behaviour; three-phase DC/AC converter with star-connected three-phase load, zero sequence (common-mode) and current forming differential-mode output voltage components, fundamental frequency modulation and PWM with singe triangular carrier and individual carrier signals of the phases.

Lecture notes
Lecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.

Prerequisites / notice
Prerequisites: Basic knowledge of electrical engineering / electric circuit analysis and signal theory.
An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The course covers theoretical and practical aspects of embedded system design and includes a series of lab sessions.

Understanding specific requirements and problems arising in embedded system applications.

Using the formal models and methods in embedded system design in practical applications using the programming language C, the operating system FreeRTOS, a commercial embedded system platform and the associated design environment.

An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. For example, they are part of industrial machines, agricultural and process industry devices, automobiles, medical equipment, cameras, household appliances, airplanes, sensor networks, internet-of-things, as well as mobile devices.

The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the operating systems FreeRTOS, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment.

Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis.

More information is available at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html.
This course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems.

Objective

The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de-sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1) identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2) compare and select mechatronic components that optimally fulfill the defined design requirements;
3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system;
4) design control hardware and software and implement and test human-interactive control strategies on the physical setup;
5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.

Content

This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.

Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (https://relab.ethz.ch/downloads/open-hardware/haptic-paddle.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.

Lecture notes

Will be distributed on Moodle before the lectures.

Literature

Prerequisites / notice

The registration is limited to 26 students.
There are 4 credit points for this lecture.
The lecture will be held in English.
The students are expected to have basic control knowledge from previous classes.

http://www.relab.ethz.ch/education/courses/phri.html

Microsystems and Nanoscale Engineering

Focus Coordinator: Prof. Christofer Hierold

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0621-00L</td>
<td>Microsystems I: Process Technology and Integration</td>
<td>W+</td>
<td>6</td>
<td>3V+3U</td>
<td>M. Haluska, C. Hierold</td>
</tr>
</tbody>
</table>

Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of Microsystems and -devices by a sequence of defined processing steps (process flow).
Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps (process flow).

- Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS)
- Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition.
- Specific Microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties.

Application of selected technologies will be demonstrated on case studies.

Handouts (available online)

- S.M. Sze: Semiconductor Devices, Physics and Technology
- W. Menz, J. Mohr, O.Paul: Microsystem Technology
- Hong Xiao: Introduction to Semiconductor Manufacturing Technology
- T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications

Prerequisites: Physics I and II

<table>
<thead>
<tr>
<th>151-0509-00L</th>
<th>Microscale Acoustofluidics</th>
<th>W</th>
<th>4 credits</th>
<th>3G</th>
<th>J. Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>In this lecture the basics as well as practical aspects (from modeling to design and fabrication) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding acoustophoresis, the design of devices and potential applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobots to surface acoustic wave devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions (both compulsory) and hand in homework.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>151-0604-00L</th>
<th>Microrobotics</th>
<th>W</th>
<th>4 credits</th>
<th>3G</th>
<th>B. Nelson, N. Shamsudhin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The lecture will be taught in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>151-0643-00L</th>
<th>Studies on Micro and Nano Systems</th>
<th>W</th>
<th>5 credits</th>
<th>11A</th>
<th>Supervisors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This course is not available to incoming exchange students. The students get familiarized with the challenges of the fascinating and interdisciplinary field of Micro- and Nanosystems. They are introduced to the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students get familiarized with the challenges of the fascinating and interdisciplinary field of Micro- and Nanosystems. They are introduced to the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Students work independently on a study of selected topics in the field of Micro- and Nanosystems. They start with a selection of scientific papers, and continue with an independent literature research. The results (e.g. state-of-the-art, methods) are evaluated with respect to predefined criteria. Then the results are presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Literature will be provided</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>151-0902-00L</th>
<th>Micro- and Nanoparticle Technology</th>
<th>W</th>
<th>6 credits</th>
<th>2V+2U</th>
<th>S. E. Pratsinis, G. Kelesidis, V. Mavrantzas, K. Wegner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants is limited to 20.</td>
<td>Additional ones could be enrolled by permission of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract

Particles are everywhere and nano is the new scale in science & engineering as micro was ~200 years ago. For highly motivated students, this exceptionally demanding class gives a flavor of nanotechnology with hands-on student projects on gas-phase particle synthesis & applications capitalizing on particle dynamics (diffusion, coagulation etc.), shape, size distribution and characterization.

Objective

This course aims to familiarize motivated M/BSc students with some of the basic phenomena of particles at the nanoscale, thereby illustrating the links between physics, chemistry, materials science through hands-on experience. Furthermore it aims to give an overview of the field with motivating lectures from industry and academia, including the development of technologies and processes based on particle technology with introduction to design methods of mechanical processes, scale-up laws and optimal use of materials and energy. Most importantly, this course aims to develop the creativity and sharpen the communication skills of motivated students through their individual projects, a PERFECT preparation for the M/BSc thesis (e.g. efficient & critical literature search, effective oral/written project presentations), the future profession itself and even life, in general, are always there!

Content

The course objectives are best met primarily through the individual student projects which may involve experiments, simulations or critical & quantitative reviews of the literature. Projects are conducted individually under the close supervision of MSc, PhD or post-doctoral students. Therein, a 2-page proposal is submitted within the first two weeks semester addressing explicitly, at least, 10 well-selected research articles and thoughtful meetings with the project supervisor. The proposal address 3 basic questions: a) how important is the project; b) what has been done already in that field and c) what will be done by the student. Detailed feedback on each proposal is given by the supervisor, assistant and professor two weeks later. Towards the end of the semester, a 10-minute oral presentation is given by the student followed by 10 minutes Q&A. A 10-page final report is submitted by noon of the last day of the semester. The project supervisor will provide guidance throughout the course. Lectures include some of the following:

- Overview & Project Presentation
- Particle Size Distribution
- Particle Diffusion
- Coagulation
- Agglomeration & Coalescence
- Particle Growth by Condensation
- Control of particle size & structure during gas-phase synthesis
- Multi-scale design of aerosol synthesis of particles
- Particle Characterization
- Aerosol manufacture of nanoparticles
- Forces acting on Single Particles in a Flow Field
- Fixed and Fluidized Beds
- Separations of Solid-Liquid & Solid-Gas systems
- Emulsions/droplet formation/microfluidics
- Gas Sensors
- Coaching for proposal & report writing as well as oral presentations

Literature

- FluidMechanik I, Thermodynamik I & II & “clean” 5th semester BSc student standing in D-MAVT (no block 1 or 2 obligations). Students attending this course are expected to allocate sufficient additional time within their weekly schedule to successfully conduct their project. As exceptional effort will be required! Having seen “Chasing Mavericks” (2012) by Apted & Henson, “Unbroken” (2014) by Angelina Jolie and, in particular, “The Salt of the Earth” (2014) by Wim Wenders might be helpful and even motivating. These movies show how methodic effort can bring superior and truly unexpected results (e.g. stay under water for 5 minutes to overcome the fear of riding huge waves or merciless Olympic athlete training that help survive 45 days on a raft in Pacific Ocean followed by 2 years in a Japanese POW camp during WWII).

Prerequisites / notice

For highly motivated students, this exceptionally demanding class gives a flavor of nanotechnology with hands-on student projects on gas-phase particle synthesis & applications capitalizing on particle dynamics (diffusion, coagulation etc.), shape, size distribution and characterization.

Abstract

Electromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.

Content

- Fundamentals of Plasmonics
 - Basic electromagnetic theory
 - Optical properties of metals
 - Surface plasmon polaritons on surfaces
 - Surface plasmon polariton propagation
 - Localized surface plasmons

- Applications of Plasmonics
 - Waveguides
 - Extraordinary optical transmission
 - Enhanced spectroscopy
 - Sensing
 - Metamaterials

- Lecture notes
 - Class notes and handouts

- Literature

151-0911-00L Introduction to Photonics

- Credits: W 4 credits
- Lecture hours: 2V+2U

This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light.
Objective
Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practice. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds.

Content
I- BASICS OF WAVE THEORY
1) General concepts
2) Differential wave equation
3) Wavefront
4) Plane waves and Fourier decomposition of optical fields
5) Spherical waves and Huygens-Fresnel principle

II- ELECTROMAGNETIC WAVES
1) Maxwell equations
2) Wave equation for EM waves
3) Dielectric permittivity
4) Refractive index
5) Nonlinear optics
6) Polarisation and polarisation control

III- PROPAGATION OF LIGHT
1) Waves at an interface
2) The Fresnel equations
3) Total internal reflection
4) Evansent waves
5) Dispersion diagram

IV- INTERFERENCES
1) General considerations
2) Temporal and spatial coherence
3) The Young double slit experiment
4) Diffraction gratings
5) The Michelson interferometer
6) Multi-wave interference
7) Antireflecting coating and interference filters
8) Optical holography

V- LIGHT MANIPULATION
1) Optical waveguides
2) Photonic crystals
3) Metamaterials and metasurfaces
4) Optical cavities

VI- INTRODUCTION TO OPTICAL MICROSCOPY
1) Basic concepts
2) Direct and Fourier imaging
3) Image formation
4) Fluorescence microscopy
5) Scattering-based microscopy
6) Digital holography
7) Computational imaging

VII- OPTICAL FORCES AND OPTICAL TWEEZERS
1) History of optical forces
2) Theory of optical trapping
3) Atom cooling
4) Optomechanics
5) Plasmonic trapping
6) Applications of optical tweezers

Lecture notes
Class notes and handouts

Literature
Optics (Hecht) - Pearson

Prerequisites / notice
Physics I, Physics II

Additional Case for the Focus Specialization
Exclusive for D-MAVT Bachelor's students in Focus Specialization.
For enrollment, please contact the D-MAVT Student Administration.

Abstract
Independent studies on a defined field within the selected Focus Specialization.

Objective
Independent studies on a defined field within the selected Focus Specialization.
To understand assembly in its full complexity and its paramount importance regarding cost and financial success. An introduction into a

The lecture teaches on the basic knowledge of major processes in sheet metal, tube and bulk metal forming technologies. In particular it focuses on fundamental computation methods, which allow a fast assessment of process behaviour and a rough layout. Process-specific states of stress and deformation are analysed and process limits are identified.

The students learn the application of the event-driven and computer-based simulation for layout and operational improvement of production facilities by means of practical examples. The simulation provides an essential basis for digital twins in Industry 4.0.

The students learn the right use of (Who? When? How?) of the event-driven and computer-based simulation in the illustration of the operating procedures and the production facilities. The simulation is an important basis for creating a digital twin in the context of Industry 4.0. Operating simulation in the productions, logistic and scheduling will be shown by means of practical examples. The students should make their first experiences in the use of computer-based simulation.

The knowledge is enhanced by practice-oriented exercises and an excursion. A guest speaker will present a practical example.

The students should make their first experiences in the use of computer-based simulation.

Operating simulation in the productions, logistic and scheduling will be shown by means of practical examples. The simulation provides an essential basis for digital twins in Industry 4.0.

The students should make their first experiences in the use of computer-based simulation.

To understand assembly in its full complexity and its paramount importance regarding cost and financial success. An introduction into a

Assembly as combination of several classes of action like, e.g., joining, handling, fine adjustments, etc. Techniques for joining objects temporarily or permanently. Assembly systems.

The study of metal working processes: sheet metal forming, folding die cutting, cold bulk metal forming, ro extrusion, plunging, open die forging, drop forging, milling, active principle; elementary methods to estimate stress and strain; fundamentals of process design; manufacturing limits and machining accuracy; tools and operation; machinery and machine usage.

Coating Technology

Majority of lecturers from the industry.

Coating processes and their specific applications, with particular emphasis on corrosion protection.

Coating processes and their specific applications, with particular emphasis on corrosion protection.

Deepened insight in the machining processes and their optimisation, chip removal by undefined cutting edge such as grinding, honing and lapping, machining processes without cutting edges such as EDM, ECM, outlook on additional areas as NC-technique, machine- and process dynamics including chattering and process monitoring

Domain A - Subject-specific Competencies

Concepts and Theories

Techniques and Technologies

Domain B - Method-specific Competencies

Analytical Competencies

Decision-making

Media and Digital Technologies

Problem-solving

Domain C - Social Competencies

Cooperation and Teamwork

Customer Orientation

Sensitivity to Diversity

Domain D - Personal Competencies

Adaptability and Flexibility

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Self-awareness and Self-reflection

Self-direction and Self-management

Understanding of the complexity of the assembly process as well as its meaning as success and cost factor. The assembly with the different aspects of adding, moving, adjusting, controlling parts etc. Adding techniques; solvable and unsolvable connections. Assembly plants. Coating techniques and their tasks, in particular corrosion protection.

To understand assembly in its full complexity and its paramount importance regarding cost and financial success. An introduction into a choice of selected joining and coating techniques.

Assembly as combination of several classes of action like, e.g., joining, handling, fine adjustments, etc. Techniques for joining objects temporarily or permanently. Assembly systems.

Coating processes and their specific applications, with particular emphasis on corrosion protection.

Recommended to the focus production engineering.

The course "Machine tool metrology" deals with the principal design of machine tools, their spindles and linear axes, with possible geometric, kinematic, thermal and dynamic errors of machine tools and testing these errors, with the influence of errors on the workpiece (error budgeting), with testing of drives and numerical control, as well as with checking the machine tool capability.
Most problems in engineering are of nonlinear nature. The nonlinearities are caused basically due to the nonlinear material behavior, contact conditions and instability of structures. The principles of the nonlinear Finite-Element-Method (FEM) will be introduced for treating such problems. The finite element program ABAQUS is introduced to investigate real engineering problems.

The lecture concludes with an excursion to a large manufacturing company. Here, students can see the application and realization of the manufacturing of electric and electronic devices. The lecture starts with a brief introduction of electronic components and the planning of integrated circuits. Next, an overview will be provided about electronic functional units assembled from these electronic components, on printed circuit boards as well as in hybrid technology. Value added process steps are shown as well as their quality check and their combination for planning a complete manufacturing line. The lecture further describes the manufacturing of integrated circuits, starting from the wafer via the structuring and bonding to the packaging. As an example, the manufacturing of micro-electromechanic and electro-optical systems and actuators is described. Due to similar processes in the electronic production, the value added process sequence for photovoltaics will be described too.

The lecture is partly given by experts from industry. It is supported by an excursion to one of the industry partners.
The goal of the lecture is to provide the students with the fundamentals of the nonlinear Finite Element Method (FEM). The lecture focuses on the principles of the nonlinear Finite-Element-Method based on explicit and implicit formulations. Typical applications of the nonlinear Finite-Element-Methods are simulations of:

- Crash
- Collapse of structures
- Material behavior (metals and rubber)
- General forming processes

Special attention will be paid to the modeling of the nonlinear material behavior, thermo-mechanical processes and processes with large plastic deformations. The ability to independently create a virtual model which describes the complex nonlinear systems will be acquired through accompanying exercises. These will include the Matlab programming of important model components such as constitutive equations. The FEM Program ABAQUS will be introduced to investigate real engineering problems.

Content

- introduction into FEM
- Fundamentals of continuum mechanics to characterize large plastic deformations
- Elasto-plastic material models
- Lagrange and Euler approaches
- FEM implementation of constitutive equations
- Element formulations
- Implicit and explicit FEM methods
- FEM formulations of coupled thermo-mechanical problems
- Modeling of tool contact and the influence of friction
- Solvers and convergence
- Instability problems

Objective

- To provide the students with the fundamentals of the nonlinear Finite Element Method (FEM).
- To focus on the principles of the nonlinear Finite-Element-Method based on explicit and implicit formulations.
- To cover typical applications of the nonlinear Finite-Element-Methods.
- To introduce the Matlab programming of important model components such as constitutive equations.
- To familiarize students with the FEM Program ABAQUS.

Abstract

What is leadership in a real world? What are the preconditions of personal leadership? What is the difference between Leadership and Management? What is the price to be payed to be a Leader? What are the core competences of a Leader? How to become an inspiring Leader? How to experience exciting leadership in a thrilled real business world.

Objective

The objective of this course is to understand the impact of Leadership and to learn based on longterm international leadership experiences very practical competences and skills needed to be a leader.

Content

Definitions and methods what leadership is about based on real industrial examples. Levels of Leadership. Conflicts, challenges and risks of Leaders. Competences of a leader such as: decision making processes, communication, emotional intelligence, change processes and understanding of people behaviours.

Lecture notes

Yes, always after lecture via mail.

Literature

Not mandatory, but to be recommended: "The Effective Executive" from Peter Drucker, Verlag Vahlen; ISBN 978 3 8006 46715 from 2014.

151-0725-00L Exciting Leadership in a Thrilling Real Business

W 4 credits 3G A. Halbleib

World

Abstract

What is leadership in a real world? What are the preconditions of personal leadership? What is the difference between Leadership and Management? What is the price to be payed to be a Leader? What are the core competences of a Leader? How to become an inspiring Leader? How to experience exciting leadership in a thrilled real business world.

Objective

The objective of this course is to understand the impact of Leadership and to learn based on longterm international leadership experiences very practical competences and skills needed to be a leader.

Content

Definitions and methods what leadership is about based on real industrial examples. Levels of Leadership. Conflicts, challenges and risks of Leaders. Competences of a leader such as: decision making processes, communication, emotional intelligence, change processes and understanding of people behaviours.

Lecture notes

Yes, always after lecture via mail.

Literature

Not mandatory, but to be recommended: "The Effective Executive" from Peter Drucker, Verlag Vahlen; ISBN 978 3 8006 46715 from 2014.

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Power Electronics

W 6 credits 4G J. W. Kolar

Abstract

Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components.

Objective

Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components.

Content

Fields of application and application examples of power electronic converters, basic concept of switch-mode voltage and current conversion, pulse-width modulation (PWM); derivation and operating modes (continuous and discontinuous current mode) of DC/DC converter topologies, buck / boost / buck-boost converter; extension to DC/AC conversion using differences of unipolar output voltages varying over time; single-phase diode rectifier; boost-type PWM rectifier featuring sinusoidal input current; tolerance band AC current control and cascaded output voltage control with inner constant switching frequency current control; local and global averaging of switching frequency discontinuous quantities for calculation of component stresses; three-phase AC/DC conversion, center-tap rectifier with impressed output current, thyristor function, thyristor center-tap and full-bridge converter, rectifier and inverter operation, control angle and recovery time, inverter operation limit; basics of inductors and single-phase transformers, design based on scaling laws; Isolated DCDC converter, flyback and forward converter, single-switch and two-switch circuit; single-phase DC/AC conversion, four-quadrant converter, unipolar and bipolar modulation, fundamental frequency model of AC-side operating behaviour; three-phase DC/AC converter with star-connected three-phase load, zero sequence (common-mode) and current limiting differential-mode output voltage components, fundamental frequency modulation and PWM with singe triangular carrier and individual carrier signals of the phases.
Lecture notes
Lecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.

Prerequisites / notice
Prerequisites: Basic knowledge of electrical engineering / electric circuit analysis and signal theory.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: not assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

>>> Engineering for Health
Focus Coordinator: Prof. Bradley Nelson

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0509-00L</td>
<td>Microscale Acoustofluidics</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>J. Dual</td>
</tr>
</tbody>
</table>

Abstract
In this lecture the basics as well as practical aspects (from modelling to design and fabrication) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.

Objective
Understanding acoustophoresis, the design of devices and potential applications

Content
Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices

Literature

Prerequisites / notice
Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions (both compulsory) and hand in homework.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

151-0524-00L | Continuum Mechanics I | W | 4 credits | 2V+1U | E. Mazza, A. E. Ehret |

Abstract
The lecture deals with constitutive models that are relevant for design and calculation of structures. These include anisotropic linear elasticity, linear viscoelasticity, plasticity, viscoplasticity. Homogenization theories and laminate theory are presented. Theoretical models are complemented by examples of engineering applications and experiments.

Objective
Basic theories for solving continuum mechanics problems of engineering applications, with particular attention to material models.

Content
Anisotropic elasticity, Linear elastic and linear viscous material behavior, Viscoelasticity, Micro-macro modelling, Laminate theory, Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments.

Lecture notes
Yes

151-0604-00L | Microrobotics | W | 4 credits | 3G | B. Nelson, N. Shamsudhin |

Abstract
Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.

Objective
The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
Since Europe surrendered their colonial assets, engineers from rich countries have returned to the African continent to address the real

6 credits

The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.

Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques

Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011

This course is meant for engineers who are interested in pursuing an ethical and relevant career internationally, and who are willing to

Role of international engineering during colonialism

The paradox of International funding

• Formulate a vision for the international engineer of the future
• Recommend equitable, just funding models to achieve more sustainable outcomes
• Formulate a vision for the international engineer of the future

Content

- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging

Lecture notes

Lecture notes and handouts

Literature

Handouts (available online)

Lecture notes

Lecture notes

Lecture notes

Prerequisites / notice

Prerequisites: Physics I and II

Prerequisites / notice

151-0621-00L

Microsystems I: Process Technology and Integration

W 6 credits 3V+3U

M. Haluska, C. Hierold

Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and devices by a sequence of defined processing steps (process flow).

Objective

Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps (+ process flow)

Content

- Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition.
- Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties.

Application of selected technologies will be demonstrated on case studies.

Lecture notes

Handouts (available online)

Prerequisites / notice

151-8101-00L

International Engineering: from Hubris to Hope

W 4 credits

E. Tilley, M. Kalina

Since Europe surrendered their colonial assets, engineers from rich countries have returned to the African continent to address the real and perceived ills that they felt technology could solve. And yet, 70 years on, the promise of technology has largely failed to deliver widespread, substantive improvements in the quality of life. Why?

Objective

This course is meant for engineers who are interested in pursuing an ethical and relevant career internationally, and who are willing to examine the complex role that well-meaning foreigners have played and continue to play in the disappointing health outcomes that characterize much of the African continent.

After completing the course, participants will be able to

• critique the jargon and terms used by the international community, i.e. “development”, “aid”, “cooperation”, “assistance” “third world” “developing” “global south” “low and middle-income” and justify their own chosen terminology
• recognize the role of racism and white-supremacy in the development of the Aid industry
• understand the political, financial, and cultural reasons why technology and infrastructure have historically failed
• Debate the merits of international engineering in popular culture and media
• Propose improved SDG indicators that address current shortcomings
• Compare the engineering curricula of different countries to identify relative strengths and shortcomings
• Explain the inherent biases of academic publishing and its impact on engineering failure
• Analyse linkages between the rise of philanthropy and strategic priority areas
• Recommend equitable, just funding models to achieve more sustainable outcomes
• Formulate a vision for the international engineer of the future

Content

Role of international engineering during colonialism

Transition of international engineering following colonialism

White saviourism and racism in international engineering

International engineering in popular culture

The missing role of Engineering Education

Biases academic publishing

The emerging role in Global Philanthropy

The paradox of International funding

Literature

The paradox of International funding

Biomedical Imaging

W 6 credits 5G

S. Kozerke, K. P. Prüssmann

Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.

Objective

To understand the physical and technical principles underlying X-ray imaging, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.

Content

- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging

Lecture notes

Lecture notes and handouts

Literature

Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011
L1. Bioelectronics history, its applications and overview of the field
- Farrar and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning

Prerequisites
- Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming
- Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective.
- Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants.
- course website on Moodle

Abstract
The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.

Objective
- Be able to solve typical problems in biosensing and bioelectronics
- Learn about the remaining challenges in this field

Content
- Fundamentals of quantum and classical noise in measuring biological signals

Literature
- Plonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)
- Introduction to Biomedical Engineering, 3rd Edition 2011
- Autor: John Enderle, Joseph Bronzino, ISBN 9780123749796
- Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.)
- Electron transfer: Marcus theory, Gerischer theory
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory
- Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective.
- Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants.
- course website on Moodle

Copyright Text © 2021, by the Associated Departments of Bioelectronic, and Biochemical Engineering. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
Objective

The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and design safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1. Identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2. Compare and select mechatronic components that optimally fulfill the defined design requirements;
3. Derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system;
4. Design control hardware and software and implement and test human-interactive control strategies on the physical setup;
5. Characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6. Investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.

Content

This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.

Lecture notes

Will be distributed on Moodle before the lecture.

Literature

Prerequisites / notice

Notice:
The registration is limited to 26 students.
There are 4 credit points for this lecture.
The lecture will be held in English.
The students are expected to have basic control knowledge from previous classes.
http://www.relab.ethz.ch/education/courses/phri.html

376-1714-00L

Biocompatible Materials

W 4 credits 3V K. Maniura, M. Rottmar, M. Zenobi-Wong

Abstract

Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.

Objective

The course covers the following topics:

1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1464 of 2152
Finding solutions: what is complexity, problem solving cycle.

Implementing solutions: project management, critical path method, quality control feedback loop.

Controlling solutions: Vensim software, feedback cycles, control parameters, instabilities, chaos, oscillations and cycles, supply and demand, production functions, investment and consumption.
Objective

A successful participant of the course is able to:
- understand why most real problems are not simple, but require solution methods that go beyond algorithmic and mathematical approaches
- apply the problem solving cycle as a systematic approach to identify problems and their solutions
- calculate project schedules according to the critical path method
- setup and run systems dynamics models by means of the Vensim software
- identify feedback cycles and reasons for unintended systems behavior
- analyse the stability of nonlinear dynamical systems and apply this to macroeconomic dynamics

Content

Why are problems not simple? Why do some systems behave in an unintended way? How can we model and control their dynamics? The course provides answers to these questions by using a broad range of methods encompassing systems oriented management, classical systems dynamics, nonlinear dynamics and macroeconomic modeling.

The course is structured along three main tasks:
1. Finding solutions
2. Implementing solutions
3. Controlling solutions

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions.

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed.

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles.

Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM.

Lecture notes

The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture

363-0541-02L Systems Dynamics and Complexity (Additional Cases) W+ 1 credit G. Casiraghi

Only for Mechanical Engineering BSc.

Abstract

This module is an addition to the course Systems Dynamics and Complexity. It offers additional study cases to MAVT Bachelor students who enroll in the main course.

Objective

MAVT Bachelor students learn how to develop and analyze more sophisticated systems dynamics models from different areas, e.g. from biology (population dynamics, cooperation), management (inventory modeling, technology adoption and economics (supply and demand, investment and consumption), to name but a few. The goal is to apply analytical and numeric techniques to gain a deeper understanding of the dynamics of complex systems.

Content

1. Modelling path dependence and formation of standards
 - Why do clocks go clockwise? Why do people in most nations drive on the right? Why do nearly all computer keyboards have the QWERTY layout, even though it is more inefficient compared to DVORAK? It turns out that many real-world processes are path dependent, i.e. small random events early in their history determine the ultimate end state, even when all end states are equally likely at the beginning. Students will learn how to model such processes, to understand the feedback mechanisms that lead to path dependence. As a case in point, we will study the ‘war’ between the Betamax and the VHS standards.

2. Optimal migration as promoter of cooperation
 - Mechanisms to promote cooperative behaviour is a vibrant research topic in various fields - economics, evolutionary biology and management science to name but a few. Students will be introduced to one such mechanism - migration. They will develop and analyse a macroscopic model to study how the rate of migration affects the long-term cooperation rate in a population.

3. Information transfer
 - Information flow in a social system (e.g. about the location of resources or appearance of a competitor) is an important component of group living. For example, it is well known that ants can achieve remarkable feats in finding an optimal route to a food patch through pheromone trails. The goal of this study case is to model information transfer in such systems by investigating the dynamics of trail formation in ants. The students will learn that the complexity in navigating to a food source may nevertheless be explained as a simple dynamical system with one control parameter only.

4. Decisions in social societies
 - In many situations individuals have to decide between two or more options. Such decisions often have a profound impact on the system as a whole, especially regarding group cohesion. Group cohesion is preferred, as individuals can benefit from living in groups and demand splitting.

5. Antigenic variation of HIV
 - One of the characteristic traits of HIV is that a host can be a carrier and a transmitter of the virus without experiencing symptoms for up to 10 years. This case is concerned with finding the mechanism of HIV disease progression. The students will develop a general population-based model for the interaction of an infectious agent with the host immune system. The model is applicable to a variety of infectious agents, ranging from acute lethal infections to chronic illness. Through analysing and simulating the model, the students will understand how the HIV virus interacts with the host and how the mutation rate of the virus is ultimately responsible for this long asymptomatic period.

6. Compartmental models in epidemiology
 - Many diffusive processes in social systems, such as epidemics, can be understood as a result of the interaction between a few groups (compartment) of individuals. The most common example is to divide a population into those who are susceptible (S) to a disease, those who are infected (I), and those who have recovered (R) and are immune, and to model their interactions. These so called SIR models find wide application in studying non-biological diffusive processes, e.g. instead of chemical or biological reactions, computer networks, etc. In this study case, students will become familiar with the basic components of an SIR model and the conditions under which a disease can cause the outbreak of an epidemic. Students will extend the basic model to investigate more realistic scenarios relevant to e.g. different vaccination strategies.
The lecture teaches on the basic knowledge of major processes in sheet metal, tube and bulk metal forming technologies. In particular it focuses on fundamental computation methods, which allow a fast assessment of process behaviour and a rough layout. Process-specific states of stress and deformation are analysed and process limits are identified.

Objective
Acquaintance with forming processes. Determination of forming processes. Interpretation of forming manufacturing

Content
The study of metal working processes: sheet metal forming, folding die cutting, cold bulk metal forming, ro extrusion, plunging, open die forging, drop forging, milling, active principle; elementary methods to estimate stress and strain; fundamentals of process design, manufacturing limits and machining accuracy; tools and operation; machinery and machine usage.

Lecture notes
ja

351-0778-00L
Discovering Management

W 3 credits 3G

Abstract
Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC.

Objective
The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship. In particular, the aims of the course are to:
(1) broaden understanding of management principles and frameworks
(2) advance insights into the sources of corporate and entrepreneurial success
(3) develop skills to apply this knowledge to real-life managerial problems

The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / or appreciate the challenges that entrepreneurs and managers deal with.

Content
The course consists of a set of theory and practice sessions, which will be taught on a weekly basis. The course will cover business management knowledge in corporate as well as entrepreneurial contexts.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.

The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.

Lecture notes
All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle. These course materials will form the point of departure for the lectures, class discussions and team work.

Taught competencies

Domain A - Subject-specific Competencies Concepts and Theories assessed
Domain B - Method-specific Competencies Analytical Competencies assessed
Problem-solving assessed
Domain C - Social Competencies Communication assessed
Self-presentation and Social Influence assessed
Domain D - Personal Competencies Creative Thinking assessed
Critical Thinking assessed

351-0778-01L
Discovering Management (Exercises)

Complementary exercises for the module Discovering Management.

W 1 credit 1U

B. Clarysse, L. P. T. Vandeweghe

Abstract
This course is offered complementary to the basis course 351-0778-00L, "Discovering Management". The course offers an additional exercise.

Objective
The general objective of Discovering Management (Exercises) is to complement the course "Discovering Management" with one larger additional exercise.

Discovering Management (Exercises) thus focuses on developing the skills and competences to apply management theory to a real-life exercise from practice.

Content
Students who are enrolled for "Discovering Management Exercises" are asked to write an essay about a particular management issue of choice, using your insights from Discovering Management.

Students have the option to either write this alone or in a group of two students.

Literature
All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle. Students following this course should also be enrolled for course 351-0778-00L, "Discovering Management".

Taught competencies

Domain A - Subject-specific Competencies Concepts and Theories assessed
Domain B - Method-specific Competencies Analytical Competencies assessed
Problem-solving assessed
Domain C - Social Competencies Communication assessed
Domain D - Personal Competencies Creative Thinking assessed
Critical Thinking assessed

363-0387-00L
Corporate Sustainability

W 3 credits 2G

V. Hoffmann, C. Bening-Bach, N. U. Blum, J. Meuer

Abstract
The lecture explores current challenges of corporate sustainability and prepares students to become champions for sustainable business practices. In the beginning, traditional lectures are complemented by e-modules that allow students to train critical thinking skills. In the 2nd half of the semester, students work in teams on sustainability challenges related to water, energy, mobility, and food.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Term</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0389-00L</td>
<td>Technology and Innovation Management</td>
<td>3</td>
<td>W</td>
<td>S. Brusoni, A. Zeijen</td>
</tr>
<tr>
<td></td>
<td>(Additional Cases)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>363-0389-02L</td>
<td>Technology and Innovation Management</td>
<td>1</td>
<td>U</td>
<td>S. Brusoni</td>
</tr>
<tr>
<td></td>
<td>(For Mechanical Engineering BSc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>363-0565-00L</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
<td>V</td>
<td>J.-E. Sturm</td>
</tr>
</tbody>
</table>

Objective:
- Students
- Present strategic recommendations in teams with different output formats (e.g., debate, consultancy pitch, technology model walk-through, campaign video)

Content:
- In the first part of the semester, Prof. Volker Hoffmann and Dr. Johannes Meuer will share their insights on corporate sustainability with you through a series of lectures. They introduce you to a series of critical thinking exercises and build a foundation for your group work. In the second part of the semester, you participate in one of four tracks in which SusTec researchers will coach your project groups through a seven-step program. Our ambition is that you improve your analytic and organizational skills and that you can confidently stand up for corporate sustainability in a professional setting. You will share the final product of your work with fellow students in the final puzzle session at the end of the semester.
- Readings will be available on the Moodle page
- Literature recommendations will be distributed during the lectures
- Technology and Innovation Management needs to be taken in order to participate in this module
- Literature
- The course content and methods are designed for students with some background in management and/or economics

Prerequisites / notice:
- TEACHING FORMAT / ATTENDANCE: Please note that we aim to offer you the course in-class and online, but at this point we cannot guarantee that a purely online participation is possible. Irrespective of the format (in-class or online), the course includes several mandatory sessions that participants must attend to successfully earn credit points.
- Literature
- Presentation slides will be made available on Moodle prior to lectures.
- Slides will be available on the Moodle page
- Readings will be available on the Moodle page
- The course content and methods are designed for students with some background in management and/or economics

Lecture notes:
- Prerequisites
- Literature
- Notice

Course Code:
- 363-0389-00L Technology and Innovation Management
- 363-0389-02L Technology and Innovation Management (Additional Cases)
- 363-0565-00L Principles of Macroeconomics

Abstract:
- This course focuses on the analysis of innovation as a pervasive process that cut across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change.

Objective:
- Students
- Master the most common methods and tools organizations deploy to innovate
- Develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation

Content:
- This course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small.

Objective:
- This course intends to enable all students to:
 - Understand the core concepts necessary to analyze how innovation happens
 - Master the most common methods and tools organizations deploy to innovate
 - Develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation

Content:
- This course focuses on the analysis of innovation as a pervasive process that cuts across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change.

Objective:
- This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? How have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.

Content:
- This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective:
- This lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to everyday economic problems.

Content:
- This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective:
- This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Content:
- This lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to everyday economic problems.

Objective:
- This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Content:
- This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective:
- This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Content:
- This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective:
- This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Content:
- This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?
Students have technology competence or an idea that they would like to convert into a startup. They are now in the process of evaluating the steps necessary to do so. In summary:

1. Students want to become entrepreneurs.
2. The students can be from business or science & technology.
3. The course will enable the students to identify the relevance of their technology or idea from the market relevance perspective and thereby create a business case to take it to market.
4. The students will have exposure to investors and entrepreneurs (with a focus on ETH spin-offs) through the course, to gain insight to commercialise their idea.
The students would cover the following topics, as the build their idea into a business case:

1. Technology excellence: this assumes that the student has achieved a certain degree of competence in the area of technology that he or she expects to bring to the market
2. Market need and market relevance: The student would then be expected to identify the possible markets that may find the technology of relevance. Market relevance implies the process of identification of how relevant the market perceives the technology, and whether this can sustain over a longer period of time
3. IP and IP strategy: Intellectual property, whether in the form of a patent or a trade secret, implies the secret ingredient that enables the student to achieve certain results that competitors are unable to copy. This enables the student (and subsequently the startup) to hold on to the market that they create with customers
4. Team including future capabilities required: a startup requires multiple people with complementary capabilities. They also need to be motivated while at the same time protecting the interests of the startup
5. Financials: There is a need of funding to achieve milestones. This includes funding for salaries and running of the company
6. Investors and funding options: There are multiple funding options for a startup. They all come with different advantages and limitations. It's important for a startup to recognise its needs and find the investors that fit these needs and are best aligned with the vision of the founders
7. Preparation of business case: The students will finally prepare the business case that can help them to articulate the link of the technology with the market need and its willingness to pay
8. Legal overview, company forms and shareholders’ agreements (including pitfalls)

The seminar includes talks from invited investors, entrepreneurs and legal experts regarding the importance of the various elements being covered in content, workshops and teamwork. There is a particular emphasis on market validation on each step of the journey, to ensure relevance.

Lecture notes

Since the course will revolve around the ideas of the students, the notes will be for the sole purpose of providing guidance to the students to help convert their technologies or ideas into business cases for the purpose of forming startups. Theoretical subject matter will be kept to a minimum and is not the focus of the course.

Literature

Sethi, A. “From Science to Startup” ISBN 978-3-319-30422-9

Prerequisites / notice

This course is relevant for those students who aspire to become entrepreneurs.

Students applying for this course are requested to submit a 1 page business idea or, in case they don't have a business idea, a brief motivation letter stating why they would like to do this course.

If you are unsure about the readiness of your idea or technology to be converted into a startup, please drop me a line to schedule a call or meeting to discuss.

Taught competencies

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th>Media and Digital Technologies</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Social Competencies</td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

363-1109-00L Introduction to Microeconomics

GESS - Science in Perspective

This course is only for students enrolled in a Bachelor's degree programme.

Students enrolled in a Master’s degree programme may attend “Principles of Microeconomics” (LE 363-0503-00L) instead.

Note for D-MAVT students: If you have already successfully completed “Principles of Microeconomics” (LE 363-0503-00L), then you will not be permitted to attend it again.

Abstract

The course introduces basic principles, problems and approaches of microeconomics. It describes economic decisions of households and firms, and their coordination through perfectly competitive markets.

Objective

Students acquire a deeper understanding of basic microeconomic models. They acquire the ability to apply these models in the interpretation of real world economic contexts.

Students acquire a reflective and contextual knowledge on how societies use scarce resources to produce goods and services and distribute them among themselves.

Content

Market, budget constraint, preferences, utility function, utility maximisation, demand, technology, profit function, cost minimisation, cost functions, perfect competition, information and communication technologies

Lecture notes

Course material in e-learning environment https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php

Literature

Prerequisites / notice

This course "Einführung in die Mikroökonomie” (363-1109-00L) is intended for Bachelor students and LE 363-0503-00 “Principles of Microeconomics” for Master students.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

Design, Mechanics and Materials

Focus Coordinator: Prof. Kristina Shea

In order to achieve the required 20 credit points for the Focus Specialization Design, Mechanics and Material you are free to choose any of the courses offered within the focus and are encouraged to select among those recommended. If you wish to take one of the Master level courses, you must get approval from the lecturer.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0364-00L</td>
<td>Lightweight Structures Laboratory</td>
<td>W+</td>
<td>4 credits</td>
<td>5A</td>
<td>M. Zogg, P. Ermanni</td>
</tr>
</tbody>
</table>

Abstract

Teams of 2 to 3 students have to design, size, and manufacture a lightweight structure complying with given specifications. An aircraft wing spar prototype as well as a later second improved spar will be tested and assessed regarding design and structural mechanical criteria.

Objective

To develop the skills to identify and solve typical problems of the structure mechanics on a real application. Other important aspects are to foster team work and team spirit, to link theoretical knowledge and practice, to gather practical experiences in various fields related to lightweight structures such as design, different CAE-methods and structural testing.

Content

The task of each team (typically 2-2 students) is the realization of a reduced-scale aircraft wing spar, a typical load-carrying structure, with selected materials. The teams are free to develop and implement their own ideas. In this context, specified requirements include information about loads, interface to the surrounding structures.

The project is structured as described below:

- Concept development
- Design of the component including FEM simulation and stability checks
- Manufacturing and structural testing of a prototype
- Manufacturing and structural testing of an improved component
- Cost assessment
- Report

The project work is supported by selected teaching units.

Lecture notes

handouts for selected topics are available

151-3207-00L | Lightweight | W+ | 4 credits | 2V+2U | P. Ermanni

Abstract

The elective course Lightweight includes numerical methods for the analysis of the load carrying and failure behavior of lightweight structures, as well as construction methods and design principles for lightweight design.

Objective

The goal of this course is to convey substantiated background for the understanding and the design and sizing of modern lightweight structures in mechanical engineering, vehicle and airplane design.

Content

Lightweight design
- Thin-walled beams and structures
- Instability behavior of thin walled structures
- Reinforced shell structures
- Load introduction in lightweight structures
- Joining technology
- Sandwich design

Lecture notes

Script, Handouts, Exercises

151-3213-00L | Integrative Ski Building Workshop | W+ | 4 credits | 9P | K. Shea

To apply, please send the following information to jchapuis@ethz.ch by 31.08.2021: Letter of Motivation (one page), CV, Transcript of Records.

Abstract

This course introduces students to engineering design and fabrication by building their own skis or snowboard. Theoretical and applied engineering design skills like CAD, analysis and engineering of mechanical properties, 3D printing, laser cutting and practical handcrafting skills are acquired in the course.

Objective

The objectives of the course are to use the practical ski/board design and building exercise to gain hands-on experience in design, mechanics and materials. A selection of sustainable materials are also used to introduce students to sustainable design. The built skis/boards will be mechanically tested in the lab as well as together out in the field on a ski day and evaluated from various perspectives. Students can keep their personal built skis/boards after the course.
This practical ski/board design and building workshop consists of planning, designing, engineering and building your own alpine ski or snowboard. Students learn and execute all the needed steps in the process, such as engineering design, CAD, material selection, analysis of the mechanical properties of a composite layup, fabrication, routing wood cores, 3D printing of plastic protectors, milling side walls from wood or ABS plastic, laying up the fibers from carbon, glass, basalt or flax, laminating with resins, sanding and finishing, as well as laser engraving and veneer wood inlays.

Willingness to engage in the practical building of your ski/board also beyond the course hours in the evening.

151-0509-00L
Microscale Acoustofluidics
W 4 credits 3G J. Dual

Abstract
In this lecture the basics as well as practical aspects (from modelling to design and fabrication) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.

Objective
Understanding acoustophoresis, the design of devices and potential applications

Content
Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices

Lecture notes

Literature

Prerequisites / notice
Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions (both compulsory) and hand in homework.

Domain A - Subject-specific Competencies
- Concepts and Theories
 - assessed
- Techniques and Technologies
 - assessed

Domain B - Method-specific Competencies
- Analytical Competencies
 - assessed
- Decision-making
 - not assessed
- Media and Digital Technologies
 - not assessed
- Problem-solving
 - assessed
- Project Management
 - not assessed

Domain C - Social Competencies
- Communication
 - assessed
- Cooperation and Teamwork
 - assessed
- Customer Orientation
 - not assessed
- Leadership and Responsibility
 - not assessed
- Self-presentation and Social Influence
 - assessed
- Sensitivity to Diversity
 - not assessed
- Negotiation
 - not assessed

Domain D - Personal Competencies
- Critical Thinking
 - assessed
- Integrity and Work Ethics
 - assessed
- Self-direction and Self-management
 - assessed

151-0524-00L
Continuum Mechanics I
W 4 credits 2V+1U E. Mazza, A. E. Ehret

Abstract
The lecture deals with constitutive models that are relevant for design and calculation of structures. These include anisotropic linear elasticity, linear viscoelasticity, plasticity, viscoplasticity. Homogenization theories and laminate theory are presented. Theoretical models are complemented by examples of engineering applications and experiments.

Objective
Basic theories for solving continuum mechanics problems of engineering applications, with particular attention to material models.

Content
Anisotropic elasticity, Linear elastic and linear viscous material behavior, Viscoelasticity, Micro-macro modelling, Laminate theory, Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments.

Lecture notes
yes

151-0544-00L
Metal Additive Manufacturing - Mechanical Integrity and Numerical Analysis
W 4 credits 3G E. Hosseini

Abstract
An introduction to Metal Additive Manufacturing (MAM) (e.g. different techniques, the metallurgy of common alloy-systems, existing challenges) will be given. The focus of the lecture will be on the employment of different simulation approaches to address MAM challenges and to enable exploiting the full advantage of MAM for the manufacture of structures with desired property and functionality.

Objective
The main objectives of this lecture are:
- Acknowledging the possibilities and challenges for MAM (with a particular focus on mechanical integrity aspects),
- Understanding the importance of material science and metallurgical considerations in MAM,
- Appreciating the importance of thermal, fluid, mechanical and microstructural simulations for efficient use of MAM technology,
- Using different commercial analysis tools (COMSOL, ANSYS, ABAQUS) for simulation of the MAM process.

Content
- Introduction to MAM (concept, application examples, pros & cons),
- Powder-bed and powder-blown metal additive manufacturing,
- Thermo-fluid analysis of additive manufacturing,
- Continuum-based thermal modelling and experimental validation techniques,
- Residual stress and distortion simulation and verification methods,
- Microstructural simulation (basics, analytical, kinetic Monte Carlo, cellular automata, phase-field),
- Mechanical property prediction for MAM,
- Microstructure and mechanical response of MAM material (steels, Ti6Al4V, Inconel, Al alloys),
- Design for additive manufacturing
- Artificial intelligence for AM

Exercise sessions use COMSOL, ANSYS, ABAQUS packages for analysis of MAM process. Detailed video instructions will be provided to enable students to set up their own simulations. COMSOL, ANSYS and ABAQUS agreed to support the course by providing licenses for the course attendees and therefore the students can install the packages on their own systems.

Lecture notes
Handouts of the presented slides.

Literature
No textbook is available for the course (unfortunately), since it is a dynamic and relatively new topic. In addition to the material presented in the course slides, suggestions/recommendations for additional literature/publications will be given (for each individual topic).

Prerequisites / notice
A basic knowledge of mechanical analysis, metallurgy, thermodynamics is recommended.
This course attempts to prepare the student for a job as a materials engineer in industry. The gap between fundamental materials science and the materials engineering of products should be bridged. The focus lies on the practical application of fundamental knowledge allowing the students to experience application related materials concepts with a strong emphasis on case-study mediated learning.

Lectures and case studies encompass the following topics:

- Strategic Materials (where do raw materials come from, who owns them, who owns the IP and can they be substituted)
- Materials Selection (what is the optimal material (class) for a specific application)
- Materials systems (subdivisions include all classical materials classes) Processing
- Joining (assembly)
- Shaping
- Materials and process scaling (from nm to m and vice versa, from mg to tons)
- Sustainable materials manufacturing (cradle to cradle) Recycling (Energy recovery)

After a general part of materials selection, critical materials and materials and design four parts consisting of polymers, metals, ceramics and coatings will be addressed.

In the fall semester the focus is on the general part, polymers and alloy case studies in metals. The course is accompanied by hands-on analysis projects on everyday materials.

Teaching goals:

- to learn how materials are selected for a specific application
- to understand how materials around us are produced and manufactured
- to understand the value chain from raw material to application
- to be exposed to state of the art technologies for processing, joining and shaping
- to be exposed to industry related materials issues and the corresponding language (terminology) and skills
- to create an impression of how a job in industry „works“, to improve the perception of the demands of a job in industry

This course is designed as a two semester class and the topics reflect the contents covered in both semesters.

Number of participants limited to 60.

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Problem-solving

Domain D - Personal Competencies
Creative Thinking
Critical Thinking

151-3209-00L Engineering Design Optimization
W 4 credits 4G
K. Shea, T. Stankovic

Abstract
The course covers fundamentals of computational optimization methods in the context of engineering design. It develops skills to formally state and model engineering design tasks as optimization problems and select appropriate methods to solve them. After taking the course students will be able to express engineering design problems as formal optimization problems. Students will also be able to select and apply a suitable optimization method given the nature of the optimization model. They will understand the links between optimization and engineering design in order to design more efficient and performance optimized technical products. The exercises are MATLAB based.

Content

Lecture notes available on Moodle

327-0501-00L Metals I
W 3 credits 2V+1U
R. Spolenak

Abstract
Offered for the last time in HS 2021.

Objective
The lecture and exercises teach the fundamentals of optimization methods in the context of engineering design. After taking the course students will be able to express engineering design problems as formal optimization problems. Students will also be able to select and apply a suitable optimization method given the nature of the optimization model. They will understand the links between optimization and engineering design in order to design more efficient and performance optimized technical products. The exercises are MATLAB based.

Content

Lecture notes available on Moodle

327-1204-00L Materials at Work I
W 4 credits 4S
R. Spolenak, E. Dufresne, R. Koopmans

Abstract
This course attempts to prepare the student for a job as a materials engineer in industry. The gap between fundamental materials science and the materials engineering of products should be bridged. The focus lies on the practical application of fundamental knowledge allowing the students to experience application related materials concepts with a strong emphasis on case-study mediated learning.

Objective
Teaching goals:

- to learn how materials are selected for a specific application
- to understand how materials around us are produced and manufactured
- to understand the value chain from raw material to application
- to be exposed to state of the art technologies for processing, joining and shaping
- to be exposed to industry related materials issues and the corresponding language (terminology) and skills
- to create an impression of how a job in industry "works“, to improve the perception of the demands of a job in industry

Content
This course is designed as a two semester class and the topics reflect the contents covered in both semesters.

Lectures and case studies encompass the following topics:

- Strategic Materials (where do raw materials come from, who owns them, who owns the IP and can they be substituted)
- Materials Selection (what is the optimal material (class) for a specific application)
- Materials systems (subdivisions include all classical materials classes) Processing
- Joining (assembly)
- Shaping
- Materials and process scaling (from nm to m and vice versa, from mg to tons)
- Sustainable materials manufacturing (cradle to cradle) Recycling (Energy recovery)

After a general part of materials selection, critical materials and materials and design four parts consisting of polymers, metals, ceramics and coatings will be addressed.

In the fall semester the focus is on the general part, polymers and alloy case studies in metals. The course is accompanied by hands-on analysis projects on everyday materials.

Literature

Manufacturing, Engineering & Technology
Serego Kalpakjian, Steven Schmid
ISBN: 978-0131489653
Engineering Tools

The Engineering Tools courses are for MAVT Bachelor's degree students only.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0015-10L</td>
<td>Engineering Tool: Experimental Modal Analysis</td>
<td>W</td>
<td>0.4</td>
<td>1K</td>
<td>D. Spescha</td>
</tr>
<tr>
<td></td>
<td>All Engineering Tools courses are for MAVT Bachelor's degree students only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 16.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>Measuring and analysis methods for the determination of transfer functions of mechanical structures. Evaluation and preparation of the measured data for visualisation and interpretation of the dynamic behaviour.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>Introduction into the practical application of measuring and analysis methods for determination of transfer functions of mechanical structures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td>Handling of accelerometers and force transducers, measurement of transfer functions of mechanical structures, determination and visualisation of vibration modes using practical examples, introduction to vibration theory and its fundamental terms.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td>German documents are provided during the course.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td>In the practical part of the course, the participants will carry out measurements on structures themselves and then analyse them with respect to natural frequencies and vibration modes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0025-10L</td>
<td>Engineering Tool: Introduction to CAM and Motion Simulation</td>
<td>W</td>
<td>0.4</td>
<td>1K</td>
<td>M. Schmid</td>
</tr>
<tr>
<td></td>
<td>All Engineering Tools courses are for MAVT Bachelor's degree students only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 40.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>Introduction of integrated CAD applications CAM (Computer Aided Manufacturing), Motion Simulation (Kinematics)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>The participants learn the possibilities of integrated CAD applications. The goal is to understand the procedures and the most important functions of these applications.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | Content | CAM (Computer Aided Manufacturing):
 - Introduction to CAM
 - Practical examples for 3-axle milling machine and Feature Based Machining
 Motion Simulation (Kinematics/Dynamics):
 - Introduction and practical examples | | | |
| | Prerequisites / notice | Voraussetzungen:
 - CAD-Grundkenntnisse in Siemens NX (CAD 1. Semester)
 - Verwenden Sie zur Durchführung der Übungen wenn möglich Ihr eigenes Laptop. Siemens NX kann im ETH IT-Shop kostenlos bestellt werden. Es stehen einige Rechner zur Verfügung. | | | |
| 151-0027-10L | Engineering Tool: Programming with LabView | W | 0.4 | 1K | L. Prochazka |
| | All Engineering Tools courses are for MAVT Bachelor's degree students only. | | | | |
| | Number of participants limited to 16. | | | | |
| | Abstract | An introduction is given to the LabView programming environment. The basic concepts of “virtual instruments” and data flow programming are presented. Computer-based exercises are solved during class. A simple electronic data acquisition module is used to demonstrate basic concepts of interface management and data acquisition. | | | |
| | Objective | Introduction to the LabView programming environment. Understanding of fundamental concepts: virtual instruments, data flow programming, control structures, data types etc. Development of basic programming skills using in-class exercises on computers. | | | |
| | Prerequisites / notice | Information: LabVIEW Engineering Tools course in Fall Semester 2021 | | | |
| | Notice | Due to the current Corona situation, the Engineering Tools course in LabVIEW programming will take place online in the Fall Semester 2021. Please, consider the following information:
 1. On Monday (20.9.21), you will receive an invitation for a Zoom conference meeting containing a link, you can join the course on all 3 afternoons.
 2. Before the course start, every participant has to install the student version of LabVIEW. The Software is available in the IT Shop (ITSM) for free. During the installation, you have to verify that the driver package for National Instruments data acquisition devices (NI DAQmx) is installed properly. Therefore, consult the corresponding installation instructions. The link for document download can be found in the document repository accessible via “myStudies” or “course catalog”.
 3. During the course, we will work with a data acquisition device from National Instruments. The hardware will be distributed to all participants for the duration of the course. Please, collect the material in the IFD secretariat (ML H31, Maria Halbleib) on Monday (20.9.21) between 1:30 pm and 5 pm and on Tuesday (21.9.21) between 9 am and 11:30 am. Also, you will receive a MEMS-Gyro and an exercise book. You have to acknowledge receipt of the hardware with your signature and the device ID (see the number on the packaging) and pay a deposit of CHF 50. The hardware must be returned to the secretariat within few days after the end of the course. Please, return complete and nicely packed. You can keep the exercise book.
 4. The first exercise requires a start-file (Audio Equalizer Starting Point 2.vi) which can be downloaded from the teaching document repository as well. Furthermore, you need an MP3-player such as a smartphone or a PC with an audio output (3.5mm jack). Depending on where you follow the course headphones are recommended. | | | |
| 151-0030-10L | Engineering Tool: Modelling and Servo Axis Control of Machine Tool Manipulators | W | 0.4 | 1K | O. Zirn |
| | All Engineering Tools courses are for MAVT Bachelor's degree students only. | | | | |
| | Number of participants limited to 30. | | | | |
This course covers model building and the applied simulation of power-assisted axles on production machinery using MATLAB/Simulink and provides a practical example of how drive parameters may be set up, how through simulation an optimal axis design can be developed and which characteristics of a production machine can be reliably estimated in advance.

Objective

The students are able to model servo axes considering all relevant components and process influences to simulate the achievable productivity.

Content

1. Introduction, complexity levels in model building for production machines.
2. Complexity level 1: Power-assisted axles, transmission systems, general structural model.
3. Complexity level 2: Robotic models, kinematics and dynamics.
5. Regulation of power-assisted axles, cascade regulator and state regulator extensions.
7. Master slave and gantry operations with dispersed servo drive.
8. Simulation examples in MATLAB/Simulink (Swivel axle, 5-axle milling machine, parallel kinematic milling machine, industrial robots).

Lecture notes

Wird abgegeben.

Prerequisites / notice

Prerequisites: Matlab skills; your laptop with Matlab/Simulink may be useful.

151-0032-10L Engineering Tool: Introduction to the Methods of Six Sigma Quality Control and Lean Production

All Engineering Tools courses are for MAVT Bachelor's degree students only.

Number of participants limited to 36.

Abstract

The course introduces to Six Sigma quality management and quality improvement, which aims to reduce process variation and to sustain process capability. It introduces also to the Lean production principles, aiming to reduce waste within the processes as well as aiming to a customer taked JIT pull-production.

Objective

The participant gets an overview to the Operational Excellence philosophy and the working methods of these two approaches. He learns the most important tools and the interaction of these two approaches. Introduction to the theory-specific aspects of Lean.

Content

1. Understanding the changing environment - Globalization, customer requirements, production systems
 - Six Sigma quality philosophy
 - Lean Manufacturing and TPS (Toyota Production System)

2. Quality management with Six Sigma
 - What is Six Sigma
 - DMAIC problem solving approach
 - Use of different control charts
 - Evaluate process capability, DPMO, Cp, Cpk, Taguchi
 - Cause-effect diagram
 - Control plan and sustainability, PDCA

3. Introduction to the Lean approach
 - TPS model, Lean goals and principles
 - A3 project management
 - The 9 types of waste
 - Value add and non value add activities
 - The 8 Lean-Tools, whereof 4
 - 5S workplace organization
 - Value stream mapping (exercise), Little's law, process metrics
 - Continuous flow vs batch
 - Pull Principles, Kanban, DBR
 - Cell design
 - Linear Programming

4. Lean and Six Sigma in practice
 - How fits Lean and Six Sigma together
 - Continuous Improvement/Kaizen organization
 - Change-Management, risks
 - Inspire OPEX deployment approach

Lecture notes

Notes will be distributet.

Literature

Ohno, Toyota Production System - Beyond Large Scale Production, Productivity Press, New York, 1988

Töpfer, Six Sigma - Konzeption und Erfolgssbeispiele für praktizierte Null-Fehler Qualität, Springer, 2007

151-0047-00L Engineering Tool: Agile Product Development

All Engineering Tools courses are for MAVT Bachelor's degree students only.

Number of participants limited to 12.

Abstract

Agile product development is gaining high interest in many industries. Still, only few hardware developing firms have adopted Agile approaches into their daily development work due to inadequate trainings. Within this course, students will be introduced to the culture and mindset behind Agile by solving a practical development task in a team of 4 students.

Objective

Students shall experience and internalize the key principles and practices of Agile product development.

Content

Introduction to Agile (principles & methods), team-based development task.
The course is about a methodical basis of systematic project work, with a focus on demanding interdisciplinary problems. The participants will be shown how to use it appropriately and correctly in their projects. This short course is based on the "Systems Engineering" (SE) method, which was developed at the ETH.

The goals of this compact course are:
- Goal-oriented identification and perception of relevant problem areas and project goal setting.
- Deduction and development of procedures for a promising project, including systematic planning of the project content.
- Development of work packages including efficient methodology
- Simple embedding of the projects in the organization, including relationships with buyers, users and securing project participation.

Number of participants limited to 60.

Abstract

The participants learn about the procedures and tools that are necessary to develop technical products. The focus is on computer-based Engineering Tool: CAD-Methodology and PDM-Technology in the Focus Project.

Objective

The participants will deepen their existing CAD knowledge and learn new PDM knowledge, so that these may be directly applied and used in the focus project:
- CAD refresh (Modelling, Assembling, Drafting, etc.) and CAD mythology for construction (Top-Down modelling)
- Introduction to the Team Center (Siemens PDM System)
- TeamCenter data flow, in particular the process of creating and managing new Items and Parts, the approval procedure and creating different versions of Parts

The following topics will be dealt with in depth in the lectures supporting the focus project (Praxiskurs): CAD-Methodology, FE calculations, motion simulation and construction methodology.

The participants will learn and experiment with procedures by working on concrete examples so that they will subsequently be able to begin with independent product construction.

Number of participants limited to 25.

Content

1. Nachmittag:
 - Einstieg ins Systems Engineering; Entstehung, Inhalt und Werdegang; Voraussetzungen (anspruchsvolle Fragestellungen, institutionelle Einbettung, Systemdenken und heuristic Prinzipien);
 - Grundstruktur und Inhalt Lebensphasenmodell; Grundstruktur in Inhalt Problemlösungszyklus;
 - Zusammenspiel von Lebensphasenmodell & Problemlösungszyklus in Projekten
2. Nachmittag:
 - Situationsanalyse: Systemanalyse (Systemabgrenzung (gestaltbarer Bereich, relevante Bereiche des Umsystems)), Methoden der Analyse und Modellierung, Umgang mit Vernetzung, Dynamik und Unsicherheit; wichtigste Methoden der IST-Zustands- und Zukunftsanalyse);
 - Zielformulierung (wichtigsten Methoden der Zielformulieren),
 - Konzeptsynthese und Konzeptanalyse (u.a. Kreativität; wichtigsten Methoden der Synthese und Analyse),
3. Nachmittag:
 - Beurteilung (u.a. Methoden für mehrdimensionale Kriterienvergleich, z.B. Kosten-Wirksamkeits-Analyse); Diskussion von Planungsbeispielen
 - Diskussion von Planungsbeispielen: Analyse des Methodeneinsatzes, Entwickeln alternativer Vorgehensschlüsse und Auswahl des zweckmässigsten Vorgehens

Lecture notes

Zusammenfassung wird in elektronischer Form abgegeben.
Lecture notes

Anwendungsbeispiele: 8 konkrete Anwendungen von Systems Engineering sind in einem Case-Book beschrieben.

Prerequisites / notice

151-0059-10L Engineering Tool: CAD-Methodology and PDM-Technology in the Focus Project

Abstract

The participants learn about the procedures and tools that are necessary to develop technical products. The focus is on computer-based design and development and the management in an integrated software environment.

Objective

The participants will deepen their existing CAD knowledge and learn new PDM knowledge, so that these may be directly applied and used in the focus project.
- CAD refresh (Modelling, Assembling, Drafting, etc.) and CAD mythology for construction (Top-Down modelling)
- Introduction to the Team Center (Siemens PDM System)
- TeamCenter data flow, in particular the process of creating and managing new Items and Parts, the approval procedure and creating different versions of Parts

The following topics will be dealt with in depth in the lectures supporting the focus project (Praxiskurs): CAD-Methodology, FE calculations, motion simulation and construction methodology.

The participants will learn and experiment with procedures by working on concrete examples so that they will subsequently be able to begin with independent product construction.

Number of participants limited to 25.

Content

1. Afternoon: CAD refresher and top down modelling
 - To refresh already existing knowledge of CAD functionality.
 - Sketch and features as well as manipulation and optimizing models.
 - Assembling
 - Drafting
 - Organisation. working methods, conventions.
 - Top down modelling CAD
 - Introduction to top down modelling and concept modelling
 - Case study of top down modelling
2. Afternoon: Introduction to TC (Team Center)
 - Short introduction to PLM (What is the idea of PLM? PLM is more than the pure management of drawings!).
 - Lesson 1 - Team Center Rich Client Interface
 - Lesson 2 - TC data types
 - Lesson 3 - Construction from data in TC
 - Lesson 4 - Searching for and examining data.
3. Afternoon: TC application
 - Lesson 5 - Unit lists (PSE)
 - Lesson 6 - Cross-referencing
 - Lesson 7 - Data release
 - Lesson 8 - Product data examination

Prerequisites / notice

- at least two students of a Focus-Team should sign in for this course, if teh use of Siemens TeamCenter PLM is given for the Team.
- only for students participating in a Focus Project in the same semester
- not more than 25 students
Vector Graphics
All Engineering Tools courses are for MAVT Bachelor's degree students only.

Number of participants limited to 80.

Abstract
This course provides insights into the structure and compilation of scientific papers and publications using LaTeX as well as open source software for image editing and the creation of vector graphics. LaTeX is a typesetting tool that separates text format and layout. It is widely used for reports and publications in the scientific domain.

Objective
By looking at specific examples during class you will obtain an overview on composing scientific papers (e.g. bachelor theses, semester theses, master theses) using LaTeX and acquire the most important commands to typeset complex formulas, tables and graphics.

Content
-- layout of scientific reports
-- writing with LaTeX (structure, formatting, formulas, tables, graphics, references, table of contents, hyperlinks, packages) based on a template for bachelor/ semester/ master theses.
-- graphic design and illustration using open source software and Matlab
-- including PDF files in the report (project description, data sheets)
-- managing bibliography databases

Literature
http://www.relab.ethz.ch/education/courses/engineering-tools-latex.html

Prerequisites / notice
Particular: The exercises will be done on your personal laptop (at least one laptop per two students). The complete (full) LaTeX package, Inkscape and Gimp should be installed in advance.

151-0062-10L Engineering Tool: Computer-Aided Design Methods
All Engineering Tools courses are for MAVT Bachelor's degree students only.

Number of participants limited to 25.

Abstract
Participants will learn about the Computer-Aided Design fundamentals and methods that are necessary to model complex technical products. The focus will be placed on feature-based and parametric modelling that is common to all modern CAD tools used in mechanical engineering design.

Objective
CAD knowledge and skills will be further developed to enable students to recognize both the advantages and the limitations of current Computer-Aided Design tools. Examples of how to build feature-based and parametric models including design automation will be given along with common pitfalls. After taking the course students should be able to independently create effective feature-based and parametric models of mechanical parts.

Content
1. CAD Methods and Feature-Based Design (2 afternoons):
 * CAD in the context of the design process
 * Feature types and their relation to mechanical design
 * Strategies for building feature-based assemblies
 * Integration of digital part libraries
 * Common issues and difficulties with feature interaction

2. CAD and Parametric Modeling (1 afternoon):
 * Designing and building parametric models
 * Design automation to create design variants
 * Common issues and difficulties with parametric modelling

Lecture notes
available on Moodle

151-0067-10L Engineering Tool: Sketching and Visualization of Technical Concepts
All Engineering Tools courses are for MAVT Bachelor's degree students only.

Number of participants limited to 20.

Abstract
This course is offered by the Design and Technology Lab Zurich. Effective visualizations of ideas are essential to communicate technical concepts. This course focusses on the basics of a coherent draft design through forms of sketches using various simple techniques.

Objective
Mastering various simple techniques for the visualization of technical ideas.

Content
Basics in: Perspective, line drawing, proportions, implementation of the plan views of perspective

Lecture notes
will be distributed

Prerequisites / notice
Max 20 participants
Material: Paper and pens

151-0091-10L Engineering Tool: Scientific Writing
All Engineering Tools courses are for MAVT Bachelor's degree students only.

Number of participants limited to 60.

Abstract
Participants acquire scientific writing basics as a core competency to communicate with different audiences. They apply important methods and tools to refine a scientific question, research and evaluate the necessary information, quote and paraphrase, and to plan the structure of their own text.

Objective
Students are able to
- derive and structure ideas for a text starting from a scientific question using simple techniques
- find literature sources, check their relevance and completeness, organize them with a suitable tool and cite correctly
- apply a reading technique for summarizing a text
- distinguish plagiarism, quotation and paraphrase in texts using the presented criteria and correctly cite or paraphrase external content
- use and cite information from the Internet correctly
- plan and structure specialized texts that refer to different target groups

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1477 of 2152
KURSPROGRAMM

LEHRFORMEN
- Inputs: Kurzvorträge und Selbstlernsequenzen
- Übungen: Hausaufgaben und während des Nachmittags selbständig in Moodle anhand von Fallstudien
- Feedback und Diskussion: Lösungen der Studierenden werden gemeinsam mit den Dozierenden besprochen und diskutiert

Zu allen Inhaltsteilen gibt es Übungsteile in Moodle, für die ein Laptop mit funktionierendem Internetanschluss benötigt wird.

Prerequisites / notice

252-0864-00L Engineering Tool: Parallel and Concurrent Programming in C++
All Engineering Tool courses are for MAVT-Bachelor students only.

Abstract
This course provides an introduction to parallel and concurrent programming, using C++. Basic challenges and concepts will be introduced and illustrated, and applied by students in small projects.

Objective
Students develop a basic understanding of the advantages and pitfalls of concurrency, and gain an overview of the field and its concepts. They learn how to solve small problems using concurrent programs.

Prerequisites / notice
The course can only be passed if the projects are executed and submitted. If no or insufficient solutions are submitted, the course is considered failed ("drop out").

Workshop Training

Number	Title	Type	ECTS	Hours	Lecturers
151-0003-00L | Workshop Training | O | 5 credits | external organisers

Abstract
The main objective of the minimum five-week internship is to provide Bachelor's students with practical experience in producing components as well as knowledge and understanding about materials and their machining and finishing.

Objective
The main objective is to provide Bachelor's students with practical experience in producing components as well as knowledge and understanding about materials and their machining and finishing.

Prerequisites / notice
The minimum duration of the workshop training is five weeks.

Laboratory Practice

Students attend at least 10 Laboratory Practices during the 4th and 5th semester. 4 of them must be Physics laboratories. All laboratory works are graded "pass" or "fail". After completion of 10 laboratory training units, 2 credit points will be issued.

Please register online at www.mavt.ethz.ch/praktika

Number	Title	Type	ECTS	Hours	Lecturers
151-0029-10L | Laboratory Practice | O | 2 credits | 4P | Lecturers

GESS Science in Perspective

see GESS Science in Perspective: Language Courses ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-MAVT.

Bachelor's Thesis

Number	Title	Type	ECTS	Hours	Lecturers
151-0001-10L | Bachelor's Thesis | W | 14 credits | 30D | Supervisors

Abstract
The Bachelor's Thesis is the culmination of the program. The thesis corresponds to a work load of 420 hours and can be done in part- or full-time.

Objective
The students develop, enhance and demonstrate their methodological abilities to independently tackle and solve a given research problem.

Content
The topics for the bachelor's thesis are published by the professorship or they can be set in consultation between the professors and the students. Thesis projects in cooperation with the industry are also possible.

Prerequisites / notice
The Bachelor's Thesis can be only started when the First Year Examinations, the Additional First Year Courses, the Examination Block 1 and 2 are passed. It is insistently recommended for students to only begin the Bachelor's Thesis if 150 credit points have been achieved. The declaration of originality is an integral part of the Bachelor's Thesis

151-3630-00L Bachelor's Thesis (Focus Specialization Management, Technology and Economics)
Supervisor for the Bachelor's Thesis: All D-MTEC

Number	Title	Type	ECTS	Hours	Lecturers
151-3630-00L | Bachelor's Thesis (Focus Specialization Management, Technology and Economics) | W | 14 credits | 30D | Professors
Abstract The Bachelor's Thesis is the culmination of the program. The thesis corresponds to a work load of 420 hours and can be done in part- or full-time.

Objective The students develop, enhance and demonstrate their methodological abilities to independently tackle and solve a given research problem.

Content The topics for the bachelor's thesis are defined by the professorship or can be set in consultation between the professors and the students.

Prerequisites / notice The Bachelor's Thesis can be only started when the First Year Examinations, the Additional First Year Courses, the Examination Block 1 and 2 are passed. Exclusively D-MAVT students who have enrolled for the Focus Specialization Management, Technology and Economy are eligible for this type of Bachelor's Thesis.

It is strongly recommended for students to only begin the Bachelor's Thesis if 150 credit points have been achieved.

The declaration of originality is an integral part of the Bachelor's Thesis.

Mechanical Engineering Bachelor - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Mechanical Engineering Master

Core Courses

Energy, Flows and Processes

The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0105-00L</td>
<td>Quantitative Flow Visualization</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>T. Rösgen</td>
</tr>
<tr>
<td>151-0107-20L</td>
<td>High Performance Computing for Science and Engineering (HPCSE) I</td>
<td>W</td>
<td>4 credits</td>
<td>4G</td>
<td>P. Koumoutsakos, S. M. Martin</td>
</tr>
<tr>
<td>151-0109-00L</td>
<td>Turbulent Flows</td>
<td>W</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>P. Jenny</td>
</tr>
<tr>
<td>151-0125-00L</td>
<td>Hydrodynamics and Cavitation</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>C. Bourlard, L. Biasiori-Poulanges</td>
</tr>
</tbody>
</table>

Abstract

The course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include image velocimetry, laser induced fluorescence, liquid crystal thermography and interferometry. The physical foundations and measurement configurations are explained. Image analysis algorithms are presented in detail and programmed during the exercises.

Objectives

- Understanding of hardware and software requirements and solutions.
- Development of basic programming skills for (generic) imaging applications.
- Frequently used image processing techniques (filtering, correlation processing, FFTs, color space transforms).
- Laser induced fluorescence.
- Image Velocimetry (tracking, pattern matching, Doppler imaging).
- Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography).
- Pattern recognition and feature extraction, proper orthogonal decomposition.

Lecture notes

- Handouts will be made available.

Prerequisites

- Fluid dynamics I, Numerical Mathematics, programming skills.

Language:

- German on request.

Objective

This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.

Content

- 1. Hardware and Architecture: Moore’s Law, instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)
- 2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)
- 3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models
- 4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis
- 5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods

Lecture notes

- https://www.cse-lab.ethz.ch/teaching/hpcse-i_hs21/

Literature

- An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
- Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
- Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
- Lecture notes

Prerequisites

- Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++.

The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.

Content

- Basic physical phenomena of turbulent flows, quantitative and statistical description, basic and averaged equations, principles of turbulent flow computation and elements of turbulence modelling
- Properties of laminar, transitional and turbulent flows.
- Origin and control of turbulence. Instability and transition.
- Statistical description, averaging, equations for mean and fluctuating quantities, closure problem.
- Scalings, homogeneous isotropic turbulence, energy spectrum.
- Turbulent free shear flows. Jet, wake, mixing layer.
- Wall-bounded turbulent flows.
- Turbulent flow computation and modeling.

Lecture notes

- Lecture notes are available

Literature

Abstract

This course builds on the foundations of fluid dynamics to describe hydrodynamic flows and provides an introduction to cavitation.
Objective
The main learning objectives of this course are:
1. Identify and describe dominant effects in liquid fluid flows through physical modelling.
2. Identify hydrodynamic instabilities and discuss the stability region
3. Describe fragmentation of liquids
4. Explain tension, nucleation and phase-change in liquids.
5. Describe hydrodynamic cavitation and its consequences in physical terms.
6. Recognise experimental techniques and industrial and medical applications for cavitation.

Content
The course gives an overview on the following topics: hydrostatics, capillarity, hydrodynamic instabilities, fragmentation. Tension in liquids, phase change. Cavitation: single bubbles (nucleation, dynamics, collapse), cavitating flows (attached, cloud, vortex cavitation). Industrial applications and measurement techniques.

Lecture notes
Class notes and handouts

Literature
Literature will be provided in the course material.

Prerequisites / notice
Fluid dynamics I & II or equivalent

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
<th>Additional Credits</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0185-00L</td>
<td>Radiation Heat Transfer</td>
<td>W</td>
<td>4 credits</td>
<td>A. Steinfeld, P. Pozivil</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced course in radiation heat transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture Notes containing copies of the presented slides.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
<th>Additional Credits</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0209-00L</td>
<td>Renewable Energy Technologies</td>
<td>W</td>
<td>4 credits</td>
<td>A. Steinfeld, E. I. M. Casati</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renewable energy technologies: solar PV, solar thermal, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture Notes containing copies of the presented slides.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
<th>Additional Credits</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0213-00L</td>
<td>Fluid Dynamics with the Lattice Boltzmann Method</td>
<td>W</td>
<td>4 credits</td>
<td>I. Karlin</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

The course builds upon three parts:

I. Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.

II. Theoretical basis of statistical mechanics and kinetic equations.

III. Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory;
 - Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory; Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
 - Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
 - Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
 - Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
 - Lattice Boltzmann simulations of turbulent flows;
 - Numerical stability and accuracy.

5. Microflow:
 - Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
 - Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB methods beyond hydrodynamics:
 - Relativistic fluid dynamics; flows with phase transitions.

Prerequisites / notice

The course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Curriculum</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0215-00L</td>
<td>Introduction to Modeling and Optimization of Sustainable Energy Systems</td>
<td>4 credits</td>
<td>3G</td>
<td>G. Sansavini, A. Bardow</td>
</tr>
<tr>
<td>151-0212-00L</td>
<td>Basics of Air Transport (Aviation I)</td>
<td>4 credits</td>
<td>3G</td>
<td>P. Wild</td>
</tr>
<tr>
<td>151-0216-00L</td>
<td>Wind Energy</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>N. Chokani</td>
</tr>
<tr>
<td>151-0215-00L</td>
<td>Engineering Acoustics I</td>
<td>4 credits</td>
<td>3G</td>
<td>N. Noiray, B. Van Damme</td>
</tr>
</tbody>
</table>

Literature

Books will be recommended for each chapter.

Lecture notes

Lecture notes on the theoretical parts of the course will be made available. Selected original and review papers are provided for some of the lectures on advanced topics.

Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.

Handouts will be distributed during the class.

Books will be recommended for each chapter.
Objective
The goal is to understand and explain basics, principles and contexts of the broader air transport industry. Further, we provide the tools for starting a career in the air transport industry. The knowledge may also be used for other modes of transport.

Content
Weekly: 1h independent preparation; 2h lectures and 1h training with an expert in the respective field

Concept
This course will be taught as Aviation I. A subsequent course - Aviation II - covers the "Management of Air Transport".

Literature
Preparation materials & slides are provided prior to each class

The lecture is planned as class teaching with live-streaming and recordings.

Taught Competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain A - Subject-specific Competencies	Techniques and Technologies	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain B - Method-specific Competencies	Decision-making	not assessed
Domain B - Method-specific Competencies	Media and Digital Technologies	assessed
Domain B - Method-specific Competencies	Problem-solving	assessed
Domain C - Social Competencies	Communication	assessed
Domain C - Social Competencies	Cooperation and Teamwork	not assessed
Domain C - Social Competencies	Customer Orientation	assessed
Domain C - Social Competencies	Leadership and Responsibility	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed
Domain D - Personal Competencies	Critical Thinking	assessed
Domain D - Personal Competencies	Creative Thinking	assessed

151-0251-00L Principles, Efficiency Optimization and Future Applications of IC Engines

W 4 credits 2V+1U Y. M. Wright, P. Soltic

Course Title: Principles, Efficiency Optimization and Future Applications of IC Engines

Note: Previous course title until HS20 "IC-Engines: Principles, Thermodynamic Optimization and Future Applications".

Abstract
Future Relevance of IC engines for transportation and Power-on-Demand. Characteristic performance parameters, operating maps and duty cycles, Thermodynamic cycles and energetic optimization, in-cylinder flows, convective and radiative heat transfer, combustion modes, boosting and simulation methods. Hybrid powertrains, decentralized power/heat cogeneration and use of renewable/e-fuels.

Objective
The students get familiar with operating characteristics and efficiency maximization methods of IC engines for propulsion and decentralized electricity (and heat) generation. To this end, they learn about simulation methods and related experimental techniques for performance assessment in a combination of lectures and exercises.

Content
This lecture aims at introducing the students to the working principles and efficiency optimization methods for Internal Combustion (IC) engines which are expected to continue to play a very important role in transportation (long-haul heavy duty, marine) and decentralized combined heat and power generation. Following an overview of different applications and powertrains, the course will focus on the following topics: First, a generic overview of the history of IC-Engines is given, and the basic dimensions and specific engine-relevant terminology are introduced. Next, operating maps for different duty cycles are discussed, highlighting the benefits of individual powertrain configurations for different usage scenarios. The high-pressure thermodynamic process and combustion-induced heat release are analyzed in detail and the design of the combustion processes is discussed in view of further optimization of the energy conversion efficiency. The concept of boosting, its challenges and potential are also presented. In addition, flow field characteristics, convective and radiative heat transfer and combustion modes (Otto, Diesel and "multi-mode" cycles) will be discussed along with possible simulation methods. The course consists of lectures combined with exercises. In addition, several invited guest talks will be held by representatives from Swiss industrial companies active in this field. Provided the pandemic measures allow, visits to different engine test facilities are further envisioned.

Literature

Prerequisites
This course provides background for the course 151-0254-00L "Environmental Aspects of Future Mobility" held in the Spring Semester, where the focus is on emission formation and minimization, exhaust gas after treatment systems and potentials of future synthetic/e-fuels in IC engines; all given in the broader context of a future mobility/transportation options (battery electric, hybrids, fuel cells etc.) and transformation pathways towards sustainability.

Taught Competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain A - Subject-specific Competencies	Techniques and Technologies	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed

151-0368-00L Aeroelasticity

W 4 credits 2V+1U M. Righi

Abstract
Introduction to the basics and methods of Aeroelasticity. An overview of the main static and dynamic phenomena arising from the interaction between structural and aerodynamic loads.

Objective
The course will provide a basic physical understanding of flow-structure interaction. You will get to know the most important phenomena in the static and dynamic aeroelasticity, as well as a presentation of the most relevant analytical and numerical prediction methods.
Introduction to steady and unsteady thin airfoil theory, extension to three dimension wing aerodynamics, strip theory, overview of numerical methods available (panel methods, CFD).

Introduction to unsteady aerodynamics (theory): Theodorsen and Wagner functions. Unsteady aerodynamics observed from numerical experiments (CFD). Generalization of simplified mathematical models.

Presentation of steady aerelasticity: equations of equilibrium for the typical section, aeroelastic deformation, effectiveness of the aeroelastic system, stability (definition), divergence condition, role played by a control surface, control effectiveness, sweep angle, aeroelastic tailoring of bending-torsion coupling. Ritz model to model beams, use of FEM, modal condensation, choice of generalized coordinates.

Numerical aerelasticity (Test Cases extracted from the latest AIAA Aeroelastic Prediction Workshops).

Aerelasticity of modern aircraft: assessment of the effects induced by the control surfaces and control systems (Aeroveloelasticity), active controlled aircraft, flutter-suppression systems, certification (EASA, FAA).

Planning and execution of Wind Tunnel experiments with aeroelastic models. Live-execution of an experiment in the WT of the ETH.

Brief presentation of non-linear phenomena like Limit-Cycle Oscillations (LCO)

Lecture notes
A script in English language is available.

Literature
Bispilnghoff Ashley, Aeroelasticity
Abbott, Theory of Wing sections,

151-0709-00L Stochastic Methods for Engineers and Natural Scientists

Abstract
The course provides an introduction into stochastic methods that are applicable for example for the description and modeling of turbulent and subsurface flows. Moreover, mathematical techniques are presented that are used to quantify uncertainty in various engineering applications.

Objective
By the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, you should be able to develop basic stochastic models of such systems.

Content
- Probability theory, single and multiple random variables, mappings of random variables
- Estimation of statistical moments and probability densities based on data
- Stochastic differential equations, Ito calculus, PDF evolution equations
- Monte Carlo integration with importance and stratified sampling
- Markov-chain Monte Carlo sampling
- Control-variate and multi-level Monte Carlo estimation

All topics are illustrated with engineering applications.

Lecture notes
Detailed lecture notes will be provided.

Literature
Some textbooks related to the material covered in the course:

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories

Domain B - Method-specific Competencies

- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving

Domain D - Personal Competencies

- Critical Thinking
- Integrity and Work Ethics
- Self-direction and Self-management

Prerequisites / notice

- The contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.

151-0851-00L Robot Dynamics

Abstract
We will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.

Objective
The primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.

Content
The course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.

Prerequisites / notice

- Does not take place this semester.

151-0911-00L Introduction to Plasmonics

Abstract
This course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.

Objective
Electromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.
Fundamentals of Plasmonics
- Basic electromagnetic theory
- Optical properties of metals
- Surface plasmon polaritons on surfaces
- Surface plasmon polariton propagation
- Localized surface plasmons

Applications of Plasmonics
- Waveguides
- Extraordinary optical transmission
- Enhanced spectroscopy
- Sensing
- Metamaterials

Lecture notes
Class notes and handouts

Literature

Prerequisites / notice
Physics I, Physics II

151-0917-00L Mass Transfer W 4 credits 2V+2U S. E. Pratsinis, V. Mavrantzas, C.-J. Shih

Abstract
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Objective
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Content
Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.

Literature

Prerequisites / notice
Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.

151-0927-00L Rate-Controlled Separations in Fine Chemistry W 6 credits 3V+1U M. Mazzotti, V. Becattini

Abstract
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications.

Objective
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology.

Content
The class covers separation techniques that are central in the purification and downstream processing of chemicals and biopharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation.

Prerequisites / notice
Requirements (recommended, not mandatory): Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00)

151-0951-00L Process Design and Safety W 4 credits 2V+1U F. Trachsel, C. Hutter

Abstract
The lecture Process Design and Safety deals with the fundamentals of project management, scale-up, dimensioning and safety of chemical process equipment and plants.

Objective
The objective of the lecture is to expound the engineering design approach of important elements in chemical plant design.
Preparation materials & slides are provided prior to each class. The lecture slides will be distributed.

Literature

Prerequisites

A 1-day excursion including a visit of a chemical plant will be part of the lecture.

151-1116-00L Introduction to Aircraft and Car Aerodynamics

Abstract

Objective

An introduction to the basic principles and interrelationships of aircraft and automotive aerodynamics. To understand the basic relations of the origin of aerodynamic forces (i.e. lift, drag). To quantify the aerodynamic forces for basic configurations of aircraft and car components.

Content

- Aircraft aerodynamics: atmosphere, aerodynamic forces (ascending force: profile, wings. Resistance, residual resistance, induced resistance; thrust (overview of the propulsion system, aerodynamics of the propellers), introduction to static longitudinal stability.

lecture notes

Preparation materials & slides are provided prior to each class.

101-0187-00L Structural Reliability and Risk Analysis

Abstract

Structural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment.

Objective

The goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field.

Content

Engineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro-codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making.

The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented.

The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples.

By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information.

The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented.

The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis.

lecture notes

Slides of the lectures are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester.

252-0834-00L Information Systems for Engineers

Prerequisites

Basic course on probability theory and statistics.

Literature

- S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107.
Abstract
This course provides the basics of relational databases from the perspective of the user.

We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

Objective
This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Content
Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

13. Outlook

Literature
- Lecture material (slides).
 (It is not required to buy the book, as the library has it)

Prerequisites / notice
For non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logic
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

636-0507-00L Synthetic Biology II W 8 credits 4A S. Panke, Y. Benenson, J. Stelling

Abstract
7 months biological design project, during which the students are required to give presentations on advanced topics in synthetic biology (specifically genetic circuit design) and then select their own biological system to design. The system is subsequently modeled, analyzed, and experimentally implemented. Results are presented at an international student competition at the MIT (Cambridge).

Objective
The students are supposed to acquire a deep understanding of the process of biological design including model representation of a biological system, its thorough analysis, and the subsequent experimental implementation of the system and the related problems.

Content
Presentations on advanced synthetic biology topics (eg genetic circuit design, adaptation of systems dynamics, analytical concepts, large scale de novo DNA synthesis), project selection, modeling of selected biological system, design space exploration, sensitivity analysis, conversion into DNA sequence, (DNA synthesis external) implementation and analysis of design, summary of results in form of scientific presentation and poster, presentation of results at the iGEM international student competition (www.igem.org).
Virtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technolgy for net-based collaboration, the transmission of images and other data, security; cryptography; definition of free-form surfaces; digital factory; new research fields of virtual reality background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.

This project takes place between end of Spring Semester and beginning of Autumn Semester. Registration in April.

Please note that the number of ECTS credits and the actual work load are disconnected.

Mechanics, Materials, Structures

The courses listed in this category "Core Courses" are recommended. Alternative courses can be chosen in agreement with the tutor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0107-20L</td>
<td>High Performance Computing for Science and Engineering (HPCE I)</td>
<td>W</td>
<td>4 credits</td>
<td>4G</td>
<td>P. Koumoutsakos, S. M. Martin</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering. With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind. The aim of the course is to introduce the student to the fundamentals of parallel programming. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.</td>
<td>Objective</td>
<td>With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.</td>
<td>Content</td>
<td>1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86) 2. Shared memory parallelism; Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP) 3. Distributed memory parallelism; Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models 4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis 5. Applications; HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods</td>
</tr>
<tr>
<td>151-0215-00L</td>
<td>Engineering Acoustics I</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>N. Noiray, B. Van Damme</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course provides an introduction to acoustics. It focusses on fundamental phenomena of airborne and structure-borne sound waves. The lecture combines theoretical principles with practical insights and interpretations. This course is proposed for Master and PhD students interested in getting knowledge in acoustics. Students will be able to understand, describe analytically and interpret sound generation, absorption and propagation. First, magnitudes characterizing sound propagation are reviewed and the constitutive equations for acoustics are derived. Then the different types of sources (monopole/dipole/quadropole, punctual, non-compact) are introduced and linked to the noise generated by turbulent flows, corotational vortical structures or fluctuating heat release. The scattering of sound by rigid bodies is given in basic configurations. Analytical, experimental and numerical methods utilized to analyze sound in ducts and rooms are presented (Green functions, Galerkin expansions, Helmholtz solvers). The second part covers elastic wave phenomena, such as dispersion and vibration modes, in infinite and finite structures.</td>
<td>Objective</td>
<td>This course is proposed for Master and PhD students interested in getting knowledge in acoustics. Students will be able to understand, describe analytically and interpret sound generation, absorption and propagation. First, magnitudes characterizing sound propagation are reviewed and the constitutive equations for acoustics are derived. Then the different types of sources (monopole/dipole/quadropole, punctual, non-compact) are introduced and linked to the noise generated by turbulent flows, corotational vortical structures or fluctuating heat release. The scattering of sound by rigid bodies is given in basic configurations. Analytical, experimental and numerical methods utilized to analyze sound in ducts and rooms are presented (Green functions, Galerkin expansions, Helmholtz solvers). The second part covers elastic wave phenomena, such as dispersion and vibration modes, in infinite and finite structures.</td>
<td>Content</td>
<td>1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86) 2. Shared memory parallelism; Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP) 3. Distributed memory parallelism; Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models 4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis 5. Applications; HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods</td>
</tr>
<tr>
<td>151-0317-00L</td>
<td>Visualization, Simulation and Interaction - Virtual Reality II</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>A. Kunz</td>
</tr>
<tr>
<td>Abstract</td>
<td>This lecture provides deeper knowledge on the possible applications of virtual reality, its basic technology, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes. Virtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technology for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems. The goal of the lecture is to provide a deeper knowledge of today’s VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.</td>
<td>Objective</td>
<td>This course provides deeper knowledge on the possible applications of virtual reality, its basic technology, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes. Virtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technology for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems. The goal of the lecture is to provide a deeper knowledge of today’s VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.</td>
<td>Content</td>
<td>1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86) 2. Shared memory parallelism; Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP) 3. Distributed memory parallelism; Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models 4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis 5. Applications; HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1488 of 2152
Mechanics of Composite Materials

Abstract
Focus is on laminated fibre reinforced polymer composites. The course treats aspects related to micromechanics, elastic behavior of unidirectional and multidirectional laminates, failure and damage analysis, design and analysis of composite structures.

Objective
To introduce the underlying concept of composite materials and give a thorough understanding of the mechanical response of materials and structures made from fibre reinforced polymer composites, including elastic behaviour, fracture and damage analysis as well as structural design aspects. The ultimate goal is to provide the necessary skills to address the design and analysis of modern lightweight composite structures.

Content
The course is addressing following topics:
- Introduction
- Elastic anisotropy
- Micromechanics aspects
- Classical Laminate Theory (CLT)
- Failure hypotheses and damage analysis
- Analysis and design of composite structures
- Variable stiffness structures

Lecture notes
Script, handouts, exercises and additional material are available in PDF-format on the CMASLab webpage resp on moodle.

Literature
The lecture material is covered by the script and further literature is referenced in there.

Aeroelasticity

Abstract
Introduction to the basics and methods of Aeroelasticity. An overview of the main static and dynamic phenomena arising from the interaction between structural and aerodynamic loads.

Objective
The course will provide a basic physical understanding of flow-structure interaction. You will get to know the most important phenomena in the static and dynamic aeroelasticity, as well as a presentation of the most relevant analytical and numerical prediction methods.

Content
Introduction to steady and unsteady thin airfoil theory, extension to three dimension wing aerodynamics, strip theory, overview of numerical methods available (panel methods, CFD).

Introduction to unsteady aerodynamics (theory): Theodorsen and Wagner functions. Unsteady aerodynamics observed from numerical experiments (CFD).

Presentation of steady aeroelasticity: equations of equilibrium for the typical section, aeroelastic deformation, effectiveness of the aeroelastic system, stability (definition), divergence condition, role played by a control surface, control effectiveness, sweep angle, aeroelastic tailoring of bending-torsion coupling. Ritz model to model beams, use of FEM, modal condensation, choice of generalized coordinates.

Numerical aeroelasticity (Test Cases extracted from the latest AIAA Aeroelastic Prediction Workshops).

Aeroelasticity of modern aircraft: assessment of the effects induced by the control surfaces and control systems (Aeroservoelasticity), active controlled aircraft, flutter-suppression systems, certification (EASA, FAA).

Planning and execution of Wind Tunnel experiments with aeroelastic models. Live-execution of an experiment in the WT of the ETH.

Lecture notes
A script in English language is available.

Literature
Bispilnghoff Ashley, Aeroelasticity
Abbott, Theory of Wing sections.
The lecture deals with constitutive models that are relevant for design and calculation of structures. These include anisotropic linear

1. Introduction: various sources of non-linearities and implications for FEA.

Slides of the lectures, relevant journal papers and user manuals will be provided.

Concepts and Theories

Anisotropic elasticity, linear viscoelasticity, plasticity, viscoplasticity. Homogenization theories and laminate theory are presented. Theoretical models are complemented by examples of engineering applications and experiments.

Domain A - Subject-specific Competencies

Concepts and Theories

2V+1U

Nonlinear Dynamics and Chaos I

W 4 credits 2V+2U G. Haller

Abstract

The course provides an introduction to non-linear finite element analysis. The treated sources of non-linearity are related to material properties (hyperelasticity, plasticity, kinematics (large deformations, instability problems) and boundary conditions (contact).

Objective

To be able to address all major sources of non-linearity in theory and numerics, and to apply this knowledge to the solution of relevant problems in solid mechanics.

Content

1. Introduction: various sources of non-linearities and implications for FEA.

Literature

Lecture notes will be provided. However, students are encouraged to take their own notes.

Prerequisites / notice

Mechanics 1, 2, Dynamics, Continuum Mechanics I and Introduction to FEA. Ideally also Continuum Mechanics II.
After an introduction into optics and image acquisition the lecture explains how to transform mechanical quantities such as shape, strain, or stress into an image content. The measurement techniques make use of a variety of basic principles such as interferometry, diffraction, and photoelasticity. We show how the methods can be applied to microsystems as well as large engineering structures. In addition, time-resolved measurements in the context of modal analysis and dynamic events are explained.

The lecture includes two afternoons at Empa, where the student will gain first-hand experience with optical methods in the laboratory. These hands-on classes may include e.g. Digital Image Correlation, speckle pattern interferometry, THz holography, Thermal Stress Analysis, fibre optic sensors, or fringe projection - depending on availability of the equipment and the interest of the students. Each lecture includes a set of exercises. Standard solutions for the exercises will be posted with a time lag.

We encourage the audience to share their specific questions and measurement tasks.

Literature

Prerequisites / notice

Basic knowledge of optics and interferometry as taught in basic physics courses are advantageous. We encourage the audience to share their specific questions and measurement tasks.
Adaptive materials offer appealing ways to extend the design space of structures by introducing time-variable properties into them. In this course, the physical working principles of selected adaptive materials are analyzed and simple models for describing their behavior are presented. Some applications are illustrated, also with laboratory experiments where possible.

The aim of this course is to convey knowledge about adaptive materials, their properties and the physical mechanisms that govern their function, so as to develop the skills to deal with this interdisciplinary subject.

This will provide the students with an insight into the properties and physical phenomena which lead to the features of adaptive materials. Starting from chemomechanical (skeletal muscles), the physical behavior of a wide range of adaptive materials, thermo- and photo-mechanical, electro-mechanical, magneto-mechanical and meta-materials will be thoroughly discussed and analyzed. Up-to-date results on their performance and their implementation in mechanical structures will be detailed and studied in laboratory sessions. Analytical tools and energy based considerations will provide the students with effective instruments for understanding adaptive materials and assess their performance when integrated in structures or when arranged in particular fashions.

Basic concepts: Power conjugated variables, dissipative effects, geometry- and materials-based energy conversion

Thermo-mechanical coupling: Shape memory alloys polymers

Electromechanical coupling (1): DEA, EBL, electrorheological fluids

Shape control / morphing: Use, requirements, challenges

Morphing applications of variable stiffness structures: Lab work

Electromechanical coupling (2): Piezoelectric, electrostrictive effect

Vibration Reduction: Measurement, passive, semi-active (active) damping methods

Vibration reduction applications of piezoelectric materials: Lab work

Metamaterials: Definition of metamaterials electromagnetic, acoustical and other metamaterials

Energy harvesting and sensing: Energy harvesting with EAP and piezoelectric materials, transducers as sensors: Piezo, resistive,...

Lecture notes (manuscript and handouts) will be provided

A list of references is included in the handouts.

Abstract

Adaptive materials offer appealing ways to extend the design space of structures by introducing time-variable properties into them. In this course, the physical working principles of selected adaptive materials are analyzed and simple models for describing their behavior are presented. Some applications are illustrated, also with laboratory experiments where possible.

Objective

The study of adaptive materials covers topics that range from chemistry to theoretical mechanics.

The aim of this course is to convey knowledge about adaptive materials, their properties and the physical mechanisms that govern their function, so as to develop the skills to deal with this interdisciplinary subject.

This course will provide the students with an insight into the properties and physical phenomena which lead to the features of adaptive materials. Starting from chemomechanical (skeletal muscles), the physical behavior of a wide range of adaptive materials, thermo- and photo-mechanical, electro-mechanical, magneto-mechanical and meta-materials will be thoroughly discussed and analyzed. Up-to-date results on their performance and their implementation in mechanical structures will be detailed and studied in laboratory sessions. Analytical tools and energy based considerations will provide the students with effective instruments for understanding adaptive materials and assess their performance when integrated in structures or when arranged in particular fashions.

Basic concepts: Power conjugated variables, dissipative effects, geometry- and materials-based energy conversion

Thermo-mechanical coupling: Shape memory alloys polymers

Electromechanical coupling (1): DEA, EBL, electrorheological fluids

Shape control / morphing: Use, requirements, challenges

Morphing applications of variable stiffness structures: Lab work

Electromechanical coupling (2): Piezoelectric, electrostrictive effect

Vibration Reduction: Measurement, passive, semi-active (active) damping methods

Vibration reduction applications of piezoelectric materials: Lab work

Metamaterials: Definition of metamaterials electromagnetic, acoustical and other metamaterials

Energy harvesting and sensing: Energy harvesting with EAP and piezoelectric materials, transducers as sensors: Piezo, resistive,...

Lecture notes (manuscript and handouts) will be provided

A list of references is included in the handouts.

Literature

A list of references is included in the handouts.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	not assessed
Domain B - Method-specific Competencies	Analytical Competencies	not assessed
Domain C - Social Competencies	Communication	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed

System Modeling

<table>
<thead>
<tr>
<th>System Modeling</th>
<th>W</th>
<th>4 credits</th>
<th>2V+1U</th>
<th>L. Guzzella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to system modeling for control. Generic modeling approaches based on first principles, Lagrangian formalism, energy approaches and experimental data. Model parametrization and parameter estimation. Basic analysis of linear and nonlinear systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Learn how to mathematically describe a physical system or a process in the form of a model usable for analysis and control purposes. This class introduces generic system-modeling approaches for control-oriented models based on first principles and experimental data. The class will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples.

The aims of this course is to convey knowledge about adaptive materials, their properties and the physical mechanisms that govern their function, so as to develop the skills to deal with this interdisciplinary subject.

Basic concepts: Power conjugated variables, dissipative effects, geometry- and materials-based energy conversion

Thermo-mechanical coupling: Shape memory alloys polymers

Electromechanical coupling (1): DEA, EBL, electrorheological fluids

Shape control / morphing: Use, requirements, challenges

Morphing applications of variable stiffness structures: Lab work

Electromechanical coupling (2): Piezoelectric, electrostrictive effect

Vibration Reduction: Measurement, passive, semi-active (active) damping methods

Vibration reduction applications of piezoelectric materials: Lab work

Metamaterials: Definition of metamaterials electromagnetic, acoustical and other metamaterials

Energy harvesting and sensing: Energy harvesting with EAP and piezoelectric materials, transducers as sensors: Piezo, resistive,...

Lecture notes (manuscript and handouts) will be provided

A list of references is included in the handouts.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Communication	assessed
Domain D - Personal Competencies	Adaptability and Flexibility	assessed
	Creative Thinking	assessed
	Critical Thinking	assessed
	Self-direction and Self-management	assessed

Skills for Creativity and Innovation

<table>
<thead>
<tr>
<th>Skills for Creativity and Innovation</th>
<th>W</th>
<th>4 credits</th>
<th>3G</th>
<th>I. Goller, C. Kobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>This lecture aims to enhance the knowledge and competency of students regarding their innovation capability. An overview on prerequisites of and different skills for creativity and innovation in individual & team settings is given. The focus of this lecture is clearly on building competencies - not just acquiring knowledge.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objective
- Basic knowledge about creativity and skills
- Knowledge about individual prerequisites for creativity
- Development of individual skills for creativity
- Knowledge about teams
- Development of team-oriented skills for creativity
- Knowledge and know-how about transfer to idea generation teams

Content
Basic knowledge about creativity and skills:
- Introduction into creativity & innovation: definitions and models

Knowledge about individual prerequisites for creativity:
- Personality, motivation, intelligence

Development of individual skills for creativity:
- Focus on creativity as problem analysis & solving
- Individual skills in theoretical models
- Individual competencies: exercises and reflection

Knowledge about teams:
- Definitions and models
- Roles in innovation processes

Development of team-oriented skills for creativity:
- Idea generation and development in teams
- Cooperation & communication in innovation teams

Knowledge and know-how about transfer to idea generation teams:
- Self-reflection & development planning
- Methods of knowledge transfer

Lecture notes
Slides, script and other documents will be distributed via moodle.ethz.ch (access only for students registered to this course)

Literature
As well as material handed out in the lecture

151-0703-00L Operational Simulation of Production Lines W 4 credits 2V+1U P. Acél

Abstract
The students learn the application of the event-driven and computer-based simulation for layout and operational improvement of production facilities by means of practical examples. The simulation provides an essential basis for digital twins in Industry 4.0.

Objective
The students learn the right use of (Who? When? How?) of the event-driven and computer-based simulation in the illustration of the operating procedures and the production facilities. The simulation is an important basis for creating a digital twin in the context of Industry 4.0.

Operating simulation in the productions, logistic and scheduling will be shown by means of practical examples.

The students should make their first experiences in the use of computer-based simulation.

Content
- Application and application areas of the event-driven simulation
- Simulation in the context of Industry 4.0 (digital twin)
- Exemplary application of a software tool (Technomatrix-Simulation-Software)
- Internal organisation and functionality of simulation tools
- Procedure for application: optimizing, experimental design planning, analysis, data preparation
- Controlling philosophies, emergency concepts, production in sequence, line production, rescheduling
- Application on the facilities projecting

The knowledge is enhanced by practice-oriented exercises and an excursion. A guest speaker will present a practical example.

Lecture notes
Will be sent by email before the lecture (pdf).

Literature
A bibliography will be given during the lectures.

Prerequisites / notice
Recommended for all Bachelor-Students in the 5th semester and Master-Students in the 7th semester (MAVT, MTEC).

151-0705-00L Manufacturing I W 4 credits 2V+2U K. Wegener, M. Boccadoro

Abstract

Objective
Deepened discussion on the machining processes and their optimisation. Outlook on additional areas such as NC-Technique, dynamics of processes and machines, chatter as well as process monitoring.

Content
Deepened insight in the machining processes and their optimisation, chip removal by undefined cutting edge such as grinding, honing and lapping, machining processes without cutting edges such as EDM, ECM, outlook on additional areas as NC-technique, machine- and process dynamics including chatter and process monitoring

Lecture notes
yes

Prerequisites / notice
Prerequisites: Recommendation: Lecture 151-0700-00L Manufacturing elective course in the 4th semester.
Language: Help for English speaking students on request as well as english translations of the slides shown.
151-0717-00L Mechanical Production: Assembly, Joining and Coating Technology W 4 credits 2V+1U K. Wegener, V. H. Derflinger, F. Durand, P. Jousset

Abstract
Understanding the complexity of the assembly process as well as its meaning as success and cost factor. The assembly with the different aspects of adding, moving, adjusting, controlling parts etc., adding techniques; solvable and unsolvable connections. Assembly plants. Coating techniques and their tasks, in particular corrosion protection.

Objective
To understand assembly in its full complexity and its paramount importance regarding cost and financial success. An introduction into a choice of selected joining and coating techniques.

Content
Assembly as combination of several classes of action, e.g., joining, handling, fine adjustments, etc. Techniques for joining objects temporarily or permanently. Assembly systems.
Coating processes and their specific applications, with particular emphasis on corrosion protection.

Lecture notes
Yes
Prerequisites / notice
Recommended to the focus production engineering.
Majority of lecturers from the industry.

151-0719-00L Quality of Machine Tools - Dynamics and Metrology at Micro and Submicro Level W 4 credits 2V+1U A. Günther, D. Spescha

Abstract
The course "Machine tool metrology" deals with the principal design of machine tools, their spindles and linear axes, with possible geometric, kinematic, thermal and dynamic errors of machine tools and testing these errors, with the influence of errors on the workpiece (error budgeting), with testing of drives and numerical control, as well as with checking the machine tool capability.

Objective
Knowledge of
- principal design of machine tools
- errors of linear and rotational axes and of machine tools
- influence of errors on the workpiece (error budgeting)
- dynamics of mechanical systems
- measurement data acquisition / digital signal analysis
- experimental modal analysis
- geometric, kinematic, thermal, dynamic testing of machine tools
- test uncertainty
- machine tool capability

Content
Metrology for production, machine tool metrology
- basics, like principal machine tool design and machine tool coordinate system
- principal design and errors of linear and rotational axes
- error budgeting, influence of machine errors on the workpiece
- geometric and kinematic testing of machine tools
- reversal measurement techniques, multi-dimensional machine tool metrology
- thermal influences on machine tools and testing these influences
- test uncertainty, simulation
- basic concepts of dynamics of mechanical systems and vibration theory
- sensors and excitation systems
- mode fitting, experimental modal analysis
- testing of drives and numerical control
- machine tool capability

Lecture notes
Documents are provided during the course. English handouts available on request.

Prerequisites / notice
Exercises in the laboratories and with the machine tools of the institute for machine tools and manufacturing (IWF) provide the practical background for this course.

151-0721-00L Production Machines II W 4 credits 2V+1U K. Wegener, S. Weikert

Abstract
Control, closed loop control, processing of geometrical data, main drives, noise, flexibility, rationalization and automation, modern machine concepts, thermal and dynamic behavior

Objective
Deeper competence for evaluation and development of production machines, sensitization for unconventional kinematics with their advantages and drawbacks.

Content
Control (PLC, NC), closed loop control, processing of geometrical data, main drives, noise emission, flexibility, rationalization and automation, modern machine concepts like high speed machines, alternative kinematics, ultraprecision machines, thermal and dynamic behavior of machine tools, flexibility, rationalization and automation, practical case studies

Lecture notes
Yes
Prerequisites / notice
Help for English speaking students on request.
Parts of the lecture are held in English.

151-0723-00L Manufacturing of Electronic Devices W 4 credits 3G A. Kunz, A. Guber, R.-D. Moryson, F. Reichert

Abstract
The lecture follows the value added process sequence of electric and electronic components. It contains: Development of electric and electronic circuits, design of electronic circuits on printed circuit boards as well as in hybrid technology, integrated test technology, planning of production lines, production of highly integrated electronic on a wafer as well as recycling.

Objective
Knowledge about the value added process sequence for electronics manufacturing, planning of electric and electronic product as well as their production, planning of production lines, value added process sequence for photovoltaics.

Content
Nothing works without electronics! Typical products in mechanical engineering such as machine tools, as well as any kind of vehicle contain a significant amount of electric or electronic components of more than 60%. Thus, it is important to master the value added process sequence for electric and electronic components.

The lecture starts with a brief introduction of electronic components and the planning of integrated circuits. Next, an overview will be provided about electronic functional units assembled from these electronic components, on printed circuit boards as well as in hybrid technology. Value added process steps are shown as well as their quality check and their combination for planning a complete manufacturing line. The lecture further describes the manufacturing of integrated circuits, starting from the wafer via the structuring and bonding to the packaging. As an example, the manufacturing of micro-electromechanic and electro-optical systems and actuators is described. Due to similar processes in the electronic production, the value added process sequence for photovoltaics will described too.

The lecture concludes with an excursion to a large manufacturing company. Here, students can the see the application and realization of the manufacturing of electronic and electronic devices.

Lecture notes
Lecture notes are handed out during the individual lessons (CHF 20.-).

Prerequisites / notice
The lecture is partly given by experts from industry.

It is supplemented by an excursion to one of the industry partners.
Domain A - Subject-specific Competencies | Concepts and Theories | assessed
Domain B - Method-specific Competencies | Analytical Competencies | assessed
Domain C - Social Competencies | Communication | assessed
Domain D - Personal Competencies | Creative Thinking | assessed

151-0725-00L
Exciting Leadership in a Thrilling Real Business World

W | 4 credits | 3G | A. Halbleib

Abstract
What is leadership in a real world? What are the preconditions of personal leadership? What is the price to be payed to be a Leader? What are the core competences of a Leader? How to become an inspiring Leader? How to experience exciting leadership in a thrilled real business world.

Objective
The objective of this course is to understand the impact of Leadership and to learn based on longterm international leadership experiences very practicale competences and skills needed to be a leader.

Content
Definitions and methods what leadership is about based on real industrial examples. Levels of Leadership. Conflicts, challenges and risks of Leaders. Competences of a leader such as: decision making processes, communication, emotional intelligence, change processes and understanding of people behaviours.

Lecture notes
Yes, always after lecture via mail.

Literature
Not mandatory, but to be recommended: "The Effective Executive" from Peter Drucker, Verlag Vahlen; ISBN 978 3 8006 46715 from 2014.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Leadership and Responsibility

Domain D - Personal Competencies
- Adaptable and Flexibility
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection

151-0727-00L
Colloquium on Manufacturing Technology

W | 4 credits | 3K | K. Wegener, A. Kunz

Abstract
Future training on selected current topics of the manufacturing technology. Per afternoon a selected topic is presented in several lectures, by the majority by experts from the industry. The students prepare a summary of the lectures given and prepare themselves on the basis of these lectures and own information search.

Objective
Continuous further training to current topics of the manufacturing technique. Exchange of experience and knowledge with the industry and other universities.

Content
Selected actual topics on manufacturing methods and tools, machine tools, NC-control and drives, components and measuring methods and devices. Topics are changing every year.

Lecture notes
- no Script
- Further training with specialized lectures and large participation from the industry.
 Language: Help for English speaking students on request.

Prerequisites / notice
- Students must have participated and passed the courses Manufacturing, Production Machines I and Forming Technology III - Forming Processes.

151-0729-00L
Welding Technology

W | 4 credits | 3G | K. Wegener

Abstract
The course provides a survey over the mostly used welding technologies and a basic metallurgical understanding for planning and realization of welded joints.

Objective
The students will gain the competence and understanding to select welding processes properly, to specify the seam preparation and to predict the achievable welding results.

Content
The course presents in some detail the welding processes gas welding, TIG, MIG/MAG. Fillerwire arc welding and laser welding. After the presentation of the basics of welding the special properties of the different process technologies are explained and the energy sources and the interaction between the process energy and the material discussed. The metallurgical basics to answer material problems are presented. From this process parameters can then be derived, to achieve the desired seam qualities.

Lecture notes
will be distributed accompanying the course progress together with the lecture slides.

Prerequisites / notice
The course is oriented towards the requirements of IHV / SVS and is part of the program to attain the international welding engineer diploma (IWE).

151-0733-00L
Forming Technology III - Forming Processes

W | 4 credits | 2V+2U | P. Hora

Abstract
The lecture teaches on the basic knowledge of major processes in sheet metal, tube and bulk metal forming technologies. In particular it focuses on fundamental computation methods, which allow a fast assessment of process behaviour and a rough layout. Process-specific states of stress and deformation are analysed and process limits are identified.

Objective
Acquaintance with forming processes. Determination of forming processes. Interpretation of forming manufacturing
The study of metal working processes: sheet metal forming, folding die cutting, cold bulk metal forming, ro extrusion, plunging, open die forging, drop forging, milling; active principle; elementary methods to estimate stress and strain; fundamentals of process design; manufacturing limits and machining accuracy; tools and operation; machinery and machine usage.

Lecture notes

151-0833-00L Applied Finite Element Analysis

Abstract

Most problems in engineering are of nonlinear nature. The nonlinearities are caused basically due to the nonlinear material behavior, contact conditions and instability of structures. The principles of the nonlinear Finite-Element-Method (FEM) will be introduced for treating such problems. The finite element program ABAQUS is introduced to investigate real engineering problems.

Objective

The goal of the lecture is to provide the students with the fundamentals of the non linear Finite Element Method (FEM). The lecture focuses on the principles of the nonlinear Finite-Element-Method based on explicit and implicit formulations. Typical applications of the nonlinear Finite-Element-Methods are simulations of:

- Crash
- Collapse of structures
- Material behavior (metals and rubber)
- General forming processes

Special attention will be paid to the modeling of the nonlinear material behavior, thermo-mechanical processes and processes with large plastic deformations. The ability to independently create a virtual model which describes the complex non linear systems will be acquired through accompanying exercises. These will include the Matlab programming of important model components such as constitutive equations. The FEM Program ABAQUS will be introduced to investigate real engineering problems.

Content

- introduction into FEM
- Fundamentals of continuum mechanics to characterize large plastic deformations
- Elasto-plastic material models
- Lagrange and Euler approaches
- FEM implementation of constitutive equations
- Element formulations
- Implicit and explicit FEM methods
- FEM formulations of coupled thermo-mechanical problems
- Modeling of tool contact and the influence of friction
- Solvers and convergence
- Instability problems

Lecture notes

Literature

151-0917-00L Mass Transfer

Abstract

This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Objective

This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Content

Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.

Literature

Prerequisites / notice

Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.

101-0121-00L Fatigue and Fracture in Materials and Structures

Abstract

The fundamentals in fatigue and fracture mechanics, which are used in different engineering disciplines (e.g., for mechanical, aerospace, civil and material engineers) will be discussed. The focus will be on fundamental theories (based on fracture mechanics) that model fatigue damage and crack propagation.

Objective

In this course, the students will learn:

• Mechanisms of fatigue crack initiations in materials.
• Linear elastic and elastic-plastic fracture mechanics.
• Modern computer-based techniques (using ABAQUS Finite Element Package) to simulate cracks in both bulk materials and bonded joints/interfaces.
• Laboratory fatigue and fracture tests on details with cracks.
The course starts with a discussion on the importance of fatigue and fracture in different engineering disciplines such as mechanical, aerospace, civil and material engineering domains. The preliminary topics that are covered in this course are:

I) Fatigue of materials:
- Mechanisms of fatigue crack initiation in (ductile and brittle) metals.
- Crack initiation under uni-axial high-cycle fatigue (HCF) loadings: Wöhler (S-N) curves, constant life diagram approach (mean-stress effects), rainflow analysis and Miner's damage rule.
- Crack initiation under multi-axial HCF loadings: multi-axial fatigue mechanisms, critical plane approach (critical distance theory), equivalent stress approach, proportional and non-proportional loading.

II) Fracture mechanics:
- Linear elastic fracture mechanics (LEFM): limits of LEFM, stress intensity factors, crack opening displacement, mixed-mode fracture, etc.
- Elastic-plastic fracture mechanics: Irwin and Dugdale models, plastic zone shapes, crack-tip opening displacement and J-integral.
- Fatigue crack growth (FCG): FCG models, Paris' law, cyclic plastic zones, crack closure effects. This also includes FE modeling of the FCG and laboratory tests (at Empa).

III) Introduction to cohesive zone models (CZMs):
- Advantages and disadvantages of CZMs compared to fracture mechanics.
- Different bond-slip models for the bonded joints/interfaces.

IV) Computer laboratory to simulate cracks and debonding problems:
- Finite Element (FE) modeling of complex details with cracks.
- FE simulations of debonding problems using CZMs.
- Computer laboratory: FE training and exercises using (the student edition of) the ABAQUS FE Package.

V) Introduction to fatigue and fracture design in civil structures. Different methods for fatigue strengthening will be discussed.

VI) Visits to the Empa (Swiss Federal Laboratories for Materials Science and Technology) in Dübendorf, and “Laboratory Competition”. The students will:
- Visit different small-scale and large-scale fatigue testing equipment.
- Get to know different ongoing fatigue- and fracture-related projects.
- Witness and help to conduct a fatigue test on a steel plate with a pre-crack and a fracture test on an adhesively-bonded joint.
- Compare the experimental results with their own calculations (from the fracture theories).
- “Laboratory Competition” at Empa: the students with the closest predictions will win the “Empa Laboratory Competition” and will be awarded a prize.

Lecture notes

Lectures are based on the lecture slides and the handouts, which will be given to the students during the semester.

Prerequisites / notice

Note 1: A basic knowledge on mechanics of structures and structural analysis (i.e., stress-strain analysis and calculations of internal deformations, strains and stresses within structures) is recommended and will be helpful in the course.

Note 2: Laboratory demonstrations and fatigue/fracture tests at the Structural Engineering Research Laboratory of Empa in Dübendorf. This includes laboratory tours and showcasing the Empa large-scale 7-MN fatigue testing machine for bridge cables, different fatigue and fracture testing equipment for structural components, etc.

227-0447-00L Image Analysis and Computer Vision W 6 credits 3V+1U L. Van Gool, E. Konukoglu, F. Yu

Abstract

Objective

Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Content

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Lecture notes

Course material Script, computer demonstrations, exercises and problem solutions

Prerequisites / notice

Prerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.

The course language is English.

227-0523-00L Railway Systems I W 6 credits 4G M. Meyer

Abstract

Basic characteristics of railway vehicles and their interfaces with the railway infrastructure:
- Transportations tasks and vehicle types
- Running dynamics
- Mechanical part of rail vehicles
- Brakes
- Traction chain and auxiliary supply
- Railway power supply
- Signalling systems
- Standards
- Availability and safety
- Traffic control and maintenance
Objective
- Overview of the technical characteristics of railway systems
- Know-how about the design and construction principles of rail vehicles
- Interrelationship between different fields of engineering sciences (mechanics, electro and information technology, transport systems)
- Understanding tasks and opportunities of engineers working in an environment which has strong economical and political boundaries
- Insight into the activities of the railway vehicle industry and railway operators in Switzerland
- Motivation of young engineers to start a career in the railway industry or with railway operators

Content
EST I (Herbstsemester) - Begriffen, Grundlagen, Merkmale

1 Einführung:
1.1 Geschichte und Struktur des Bahnsystems
1.2 Fahrdynamik

2 Vollbahnfahrzeuge:
2.1 Mechanik: Kasten, Drehgestelle, Lauftechnik, Adhäsion
2.2 Bremsen
2.3 Traktionsantriebssysteme
2.4 Hilfsbetriebe und Komfortanlagen
2.5 Steuerung und Regelung

3 Infrastruktur:
3.1 Fahrweg
3.2 Bahnstromversorgung
3.3 Sicherungsanlagen

4 Betrieb:
4.1 Interoperabilität, Normen und Zulassung
4.2 RAMS, LCC
4.3 Anwendungsbeispiele

Voraussichtlich ein oder zwei Gastreferate

Geplante Exkursionen:
- Betriebszentrale SBB, Zürich Flughafen
- Reparatur und Unterhalt, SBB Zürich Altstetten
- Fahrezeugfertigung, Stadler Bussnang

Lecture notes
Abgabe der Unterlagen (gegen eine Schutzgebühr) zu Beginn des Semesters. Rechtzeitig eingeschriebene Teilnehmer können die Unterlagen auf Wunsch und gegen eine Zusatzgebühr auch in Farbe beziehen.

Prerequisites / notice
Dozent:
Dr. Markus Meyer, Emkamatik GmbH

Voraussichtlich ein oder zwei Gastvorträge von anderen Referenten.

EST I (Herbstsemester) kann als in sich geschlossene einsemestrige Vorlesung besucht werden. EST II (Frühjahrssemester) dient der weiteren Vertiefung der Fahrzeugtechnik und der Integration in die Bahninfrastruktur.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
</tbody>
</table>

252-0535-00L Advanced Machine Learning W 10 credits 3V+2U+4A J. M. Buhmann, C. Cotrini Jimenez

Abstract
Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
- What is data?
- Bayesian Learning
- Computational learning theory

Supervised learning:
- Ensembles: Bagging and Boosting
- Max Margin methods
- Neural networks

Unsupervised learning:
- Dimensionality reduction techniques
- Clustering
- Mixture Models
- Non-parametric density estimation
- Learning Dynamical Systems

Lecture notes
No lecture notes, but slides will be made available on the course webpage.
Literature

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.
PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

252-0543-01L Computer Graphics W 8 credits 3V+2U+2A

Abstract
This course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.

Objective
At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.

Content
This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering.

Lecture notes
no

Literature
Books:
High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
Multiple view geometry in computer vision
Physically Based Rendering: From Theory to Implementation

Prerequisites / notice
Prerequisites:
Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
The programming assignments will be in C++. This will not be taught in the class.

252-0834-00L Information Systems for Engineers W 4 credits 2V+1U

Abstract
This course provides the basics of relational databases from the perspective of the user.
We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

Objective
This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.
After visiting this course, you will be capable to:
1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.
Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

Literature

- Lecture material (slides).

 (It is not required to buy the book, as the library has it)

Prerequisites / notice

For non-CS/DS students only, BSc and MSc

Elementary knowledge of set theory and logics

Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

<table>
<thead>
<tr>
<th>Course</th>
<th>Name</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0501-00L</td>
<td>Metals I</td>
<td>3</td>
<td>2V+1U</td>
<td>R. Spolenak</td>
</tr>
</tbody>
</table>

Abstract

Repetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.

Objective

Repetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.

Content

Dislocation theory:
- Properties of dislocations, motion and kinetics of dislocations, dislocation-dislocation and dislocation-boundary interactions, consequences of partial dislocations, sessile dislocations

Hardening theory:
- a. solid solution hardening: case studies in copper-nickel and iron-carbon alloys
- b. particle hardening: case studies on aluminium-copper alloys
- High temperature plasticity:
 - thermally activated glide
 - power-law creep
 - diffusional creep: Coble, Nabarro-Herring
 - deformation mechanism maps
- Case studies in turbine blades
- superplasticity
- alloying effects

Literature

Gottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Haasen, Physikalische Metallkunde, Springer Verlag
Rösler/Harders/Bäker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Hull/Bacon, Introduction to Dislocations, Butterworth & Heinemann
Courtney, Mechanical Behaviour of Materials, McGraw-Hill

<table>
<thead>
<tr>
<th>Course</th>
<th>Name</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>351-0555-00L</td>
<td>Open- and User Innovation</td>
<td>3</td>
<td>2G</td>
<td>S. Häfliger, S. Spaeth</td>
</tr>
</tbody>
</table>

Abstract

The course introduces the students to the long-standing tradition of actively involving users of technology and other knowledge-intensive products in the development and production process, and through own cases they develop an entrepreneurial understanding of product development under distributed, user-centered, or open innovation strategies.

Objective

The course includes both lectures and exercises alternately. The goal is to understand the opportunity of user innovation for management and develop strategies to harness the value of user-developed ideas and contributions for firms and other organizations.

The students actively participate in discussions during the lectures and contribute presentations of case studies during the exercises. The combination should allow to compare theory with practical cases from various industries.

Performance assessment will be: a written group essay based on the open/user innovation case that participants will research and present during the block seminar (including the slides). Each group will have to hand in a 15-20 page essay, details on the required format and the content will be distributed during the course. Active lass participation is required.

Content

This course on user innovation extends courses on knowledge management and innovation as well as marketing. The students are introduced to the long-standing tradition of actively involving users of technology and other knowledge-intensive products in the development and production process, and through own cases they develop an entrepreneurial understanding of product development under distributed, user-centered, or open innovation strategies. Theoretical underpinnings taught in the course include models of innovation, the structuration of technology, and an introduction to entrepreneurship.

Lecture notes

The slides of the lectures are made available and updated continuously through the SMI website:

Literature

Relevant literature for the exam includes the slides and the reading assignments. The corresponding papers are either available from the author online or distributed during class.

Reading assignments: please consult the SMI website:
Abstract
This core course provides insights into the basic theories, principles, concepts, and techniques used to design, analyze, and improve the operational capabilities of an organization.

Objective
This course provides students a broad theoretical basis for understanding, analyzing, designing, and improving operations. After completing this course:
1. Students can apply key concepts of POM to detail an operations strategy.
2. Students can conduct basic process mapping analysis and elaborate on the limitations of the chosen method.
3. Students can calculate the needed capacity to meet demand.
4. Students can select and use problem-solving tools and methods.
5. Students can select and use the basic tools of lean thinking to improve the productivity of production and service operations.
6. Students can explain how new technologies and servitization affect production and operations management.
7. Additional skills: Students acquire experience in teamwork, report writing, and presentation.

Content
The course covers the most fundamental strategic and tactical concepts in production and operations management (POM).

POM is concerned with the business processes that transform input into output and deliver products and services to customers. POM is much more than what takes place inside the production facilities of companies like ABB, Boeing, BMW, LEGO, Nestlé, Roche, TESLA, and Toyota, to mention a few (although factory management is important and a big part of POM). Also, finance firms, professional service firms, media organizations, non-profit organizations, and public service companies are dependent on their operational capabilities. With the ongoing globalization and digitalization of operations, POM has earned a deserved status for providing a competitive advantage.

The following three fundamental areas in POM are covered: (1) Introduction to POM and operations strategy. (2) Operations design and management, including demand and capacity management, production planning and control, the role of inventory, lean management, service operations, and performance measurement. (3) Operations improvement, including problem-solving and the use of new technologies in POM (“Industry 4.0” / digitalization). Students can expect to learn a range of useful concepts, principles, and methods that can be used to design, analyze, and improve value-creating processes.

POM is concerned with the productivity of technology, people, and processes. Hence, POM is a generic research field, relevant to all business sectors. Yet, many of the examples and concepts of POM stem from the manufacturing sector, which for many years have been subject to global competition and learned how to develop effective and efficient operations.

Literature
Suggested literature is provided in the syllabus.

363-0445-02L
Production and Operations Management –
Supplement Credit

Abstract
Extension to course 363-0445-00 Production and Operations Management.

Objective
This course strengthens the learning objectives of the POM core course (see separate syllabus). After completing this course,
• students can use lean thinking to improve the productivity of production processes,
• students can conduct fundamental process mapping analyses,
• students can select and implement many lean production techniques,
• students can select and use problem-solving tools and methods, and
• students understand the role of management in manufacturing.

Content
The course is an extension to the course 363-0445-00 Production and Operations Management. Participants get an extra deep dive into key concepts of POM.

Prerequisites / notice
The lectures in this course are highly interactive. To pass this course, students need to complete a course assignment in pairs. The course assignment consists of two parts: preparations for the lecture and a reflection essay after the lecture.

Due to its practical format, this course is limited to ca 30 students. Note that we offer this course primarily for students who need the extra credit (total of 4 ECTS) to complete their study plans. This will typically be students from D-MAVT and, in some cases, exchange students. Students from all other departments (inducing D-MTEC) are welcome to apply to the lecturer. If capacity, applicants may receive written acceptance by the teaching team to join.

363-0541-00L
Systems Dynamics and Complexity

Abstract
Finding solutions: what is complexity, problem solving cycle.

Objective
Implementing solutions: project management, critical path method, quality control feedback loop.

Controlling solutions: Vensim software, feedback cycles, control parameters, instabilities, chaos, oscillations and cycles, supply and demand, production functions, investment and consumption.

A successful participant of the course is able to:
- understand why most real problems are not simple, but require solution methods that go beyond algorithmic and mathematical approaches
- apply the problem solving cycle as a systematic approach to identify problems and their solutions
- calculate project schedules according to the critical path method
- setup and run systems dynamics models by means of the Vensim software
- identify feedback cycles and reasons for unintended systems behavior
- analyse the stability of nonlinear dynamical systems and apply this to macroeconomic dynamics
Content

Why are problems not simple? Why do some systems behave in an unintended way? How can we model and control their dynamics? The course provides answers to these questions by using a broad range of methods encompassing systems oriented management, classical systems dynamics, nonlinear dynamics and macroeconomic modeling. The course is structured along three main tasks:

1. Enginnering
2. Implementing solutions
3. Controlling solutions

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions.

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed.

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles. Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM. Another objective of the self-study tasks is to practice efficient communication of such concepts. These are provided as home work and two of these will be graded (see "Prerequisites").

Lecture notes

The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture.

376-1177-00L Human Factors I

<table>
<thead>
<tr>
<th>W</th>
<th>credits</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>M. Menozzi Jäckli, R. Huang, M. Siegrist</td>
</tr>
</tbody>
</table>

Abstract

Strategies of human-system-interaction, individual needs, physical & mental abilities, and system properties are key factors affecting the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people's health, well-being, and satisfaction as well as the overall system performance.

Objective

The goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.

Content

- Physiological, physical, and cognitive factors in sensation, perception, and action
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance, well-being, and comfort
- Usability engineering in system designs, product development, and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks

Literature

- Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS

376-1219-00L Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions

<table>
<thead>
<tr>
<th>W</th>
<th>credits</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>R. Rienner, O. Lambercy</td>
</tr>
</tbody>
</table>

Abstract

Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society. The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.

Objective

Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

Content

Introduction, problem definition, overview
- Rehabilitation of visual function
 - Anatomy and physiology of the visual sense
 - Technical aids (glasses, sensor substitution)
 - Retina and cortex implants
- Rehabilitation of hearing function
 - Anatomy and physiology of the auditory sense
 - Hearing aids
 - Cochlea Implants
- Rehabilitation and use of kinesthetic and tactile function
 - Anatomy and physiology of the kinesthetic and tactile sense
 - Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
- Rehabilitation of vestibular function
 - Anatomy and physiology of the vestibular sense
 - Rehabilitation strategies and devices (e.g. BrainPort)
 - Rehabilitation of vegetative Functions
 - Cardiac Pacemaker
 - Phrenic stimulation, artificial breathing aids
 - Bladder stimulation, artificial sphincter
 - Brain stimulation and recording
 - Deep brain stimulation for patients with Parkinson, epilepsy, depression
 - Brain-Computer Interfaces
Lectures and Exercises: 401-0647-00L

Introduction to Mathematical Optimization

Introduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.

- Modelling with mathematical optimization: applications of mathematical programming in engineering.
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.

Literature

Selected Journal Articles and Web Links:

- VideoTact, ForeThought Development, LLC. http://my.execpc.com/?dwysocki/videotac.html

Prerequisites / notice

Target Group:

- Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK, D-HEST

Students of other departments, faculties, courses are also welcome

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

Prerequisites / notice

- Using different commercial analysis tools (COMSOL, ANSYS, ABAQUS) for simulation of the MAM process.
- Appreciating the importance of thermal, fluid, mechanical and microstructural simulations for efficient use of MAM technology,
- Understanding the importance of material science and metallurgical considerations in MAM,
- Acknowledging the possibilities and challenges for MAM (with a particular focus on mechanical integrity aspects),
- Using different commercial analysis tools (COMSOL, ANSYS, ABAQUS) for simulation of the MAM process.
There is no required textbook, but an excellent reference is Steve Lavalle's book on "Planning Algorithms."

Planning safe and efficient motions for robots in complex environments, often shared with humans and other robots, is a difficult problem combining discrete and continuous mathematics, as well as probabilistic, game-theoretic, and learning aspects. This course will cover the algorithmic foundations of motion planning, with an eye to real-world implementation issues.

The aim of the course is to introduce the student to the fundamentals of parallel program development using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.

The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.

Prerequisites / notice

Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>Analytical Competencies</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>Decision-making</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td></td>
</tr>
</tbody>
</table>

Literature

- An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
- Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
- Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
- Lecture notes

Lecture notes

- Class notes, handouts
- Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
- Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
- Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
- Lecture notes

Prerequisites / notice

Students should have taken basic courses in optimization, control systems, probability theory, and should be familiar with basic programming (e.g., Python, and/or C/C++). Previous exposure to robotic systems is a definite advantage.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0371-00L</td>
<td>Advanced Model Predictive Control</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Zeilinger, A. Carron, L. Hewing, J. Köhler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Model predictive control (MPC) has established itself as a powerful control technique for complex systems under state and input constraints. This course discusses the theory and application of recent advanced MPC concepts, focusing on system uncertainties and safety, as well as data-driven formulations and learning-based control.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Design, implement and analyze advanced MPC formulations for robust and stochastic uncertainty descriptions, in particular with data-driven formulations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Topics include</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review of Bayesian statistics, stochastic systems and Stochastic Optimal Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal MPC for uncertain systems (nominal robustness)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Robust MPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stochastic MPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set-membership identification and robust data-driven MPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gaussian regression and stochastic data-driven MPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPC as safety filter for reinforcement learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes will be provided.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Basic courses in control, advanced course in optimal control, basic MPC course (e.g. 151-0660-00L Model Predictive Control) strongly recommended. Background in linear algebra and stochastic systems recommended.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

151-0532-00L	Nonlinear Dynamics and Chaos I	W	4	2V+2U
		G. Haller		
Abstract	Basic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.			
Objective	This course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.			
Content	(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.			
	(2) Near equilibrium dynamics: Linear and Lyapunov stability			
	(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations			
	(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.			
	(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance			
Lecture notes	The class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.			
Prerequisites / notice	- Prerequisites: Analysis, linear algebra and a basic course in differential equations.			
	- Exam: two-hour written exam in English.			
	- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.			

151-0563-01L	Dynamic Programming and Optimal Control	W	4	2V+1U
		R. D’Andrea		
Objective	Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.			
Literature	Requirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.			

151-0567-00L	Engine Systems	W	4	3G
		C. Onder		
Abstract	Introduction to current and future engine systems and their control systems			
Objective	Introduction to methods of control and optimization of dynamic systems. Application to real engines. Understand the structure and behavior of drive train systems and their quantitative descriptions.			
Content	Physical description and mathematical models of components and subsystems (mixture formation, load control, supercharging, emissions, drive train components, etc.).			
	Case studies of model-based optimal design and control of engine systems with the goal of minimizing fuel consumption and emissions.			
Lecture notes	Introduction to Modeling and Control of Internal Combustion Engine Systems			
	ISBN: 978-3-642-10774-0			
	Combined homework and testbench exercise (air-to-fuel-ratio control or idle-speed control) in groups			

151-0569-00L	Vehicle Propulsion Systems	W	4	3G
		C. Onder, P. Elbert		
Abstract	Introduction to current and future propulsion systems and the electronic control of their longitudinal behavior			
Objective	Introduction to methods of system optimization and controller design for vehicles. Understanding the structure and working principles of conventional and new propulsion systems. Quantitative descriptions of propulsion systems			
Content	Understanding of physical phenomena and mathematical models of components and subsystems (manual, automatic and continuously variable transmissions, energy storage systems, electric drive trains, batteries, hybrid systems, fuel cells, road/wheel interaction, automatic braking systems, etc.).			
	Presentation of mathematical methods, CAE tools and case studies for the model-based design and control of propulsion systems with the goal of minimizing fuel consumption and emissions.			
Lecture notes	Vehicle Propulsion Systems --			
	Introduction to Modeling and Optimization			
	ISBN: 978-3-642-35912-5			
Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.

Prerequisites / notice

This course is restricted to 33 students due to limited lab infrastructure. Interested students please contact Marianne Schmid Daners (E-Mail: marischm@ethz.ch) After your reservation has been confirmed please register online at www.mystudies.ethz.ch.

Detailed information can be found on the course website http://www.idsc.ethz.ch/education/lectures/embedded-control-systems.html

System Modeling

Abstract

Introduction to system modeling for control. Generic modeling approaches based on first principles, Lagrangian formalism, energy approaches and experimental data. Model parametrization and parameter estimation. Basic analysis of linear and nonlinear systems.

Objective

Learn how to mathematically describe a physical system or a process in the form of a model usable for analysis and control purposes.

Content

This class introduces generic system-modeling approaches for control-oriented models based on first principles and experimental data. The class will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples.

Lecture notes

The handouts in English will be available in digital form.

Literature

A list of references is included in the handouts.

Taught competencies

Domain A - Subject-specific Competencies: Concepts and Theories, Techniques and Technologies

Domain B - Method-specific Competencies: Analytical Competencies, Decision-making, Media and Digital Technologies, Project Management

Domain C - Social Competencies: Communication, Customer Orientation, Leadership and Responsibility, Self-presentation and Social Influence, Sensitivity to Diversity, Negotiation

Domain D - Personal Competencies: Adaptability and Flexibility, Critical Thinking, Integrity and Work Ethics, Self-awareness and Self-reflection, Self-direction and Self-management

Embedded Control Systems

Abstract

This course provides a comprehensive overview of embedded control systems. The concepts introduced are implemented and verified on a microprocessor-controlled haptic device.

Objective

Familiarize students with main architectural principles and concepts of embedded control systems.

Content

An embedded system is a microprocessor used as a component in another piece of technology, such as cell phones or automobiles. In this intensive two-week block course the students are presented the principles of embedded digital control systems using a haptic device as an example for a mechatronic system. A haptic interface allows for a human to interact with a computer through the sense of touch.

Subjects covered in lectures and practical lab exercises include:
- The application of C-programming on a microprocessor
- Digital I/O and serial communication
- Quadrature decoding for wheel position sensing
- Queued analog-to-digital conversion to interface with the analog world
- Pulse width modulation
- Timer interrupts to create sampling time intervals
- System dynamics and virtual worlds with haptic feedback
- Introduction to rapid prototyping

Lecture notes

Lecture notes, lab instructions, supplemental material

Prerequisites / notice

Prerequisite courses are Control Systems I and Informatics I.

This course is restricted to 33 students due to limited lab infrastructure. Interested students please contact Marianne Schmid Daners (E-Mail: marischm@ethz.ch) After your reservation has been confirmed please register online at www.mystudies.ethz.ch.

Detailed information can be found on the course website http://www.idsc.ethz.ch/education/lectures/embedded-control-systems.html

Theory of Robotics and Mechatronics

Abstract

This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Objective

Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Content

An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Lecture notes

Available.

MicroRobotics

Abstract

MicroRobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.

Objective

The objective of this course is to expose students to the fundamental aspects of the emerging field of microRobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
For a robot to be autonomous, it has to perceive and understand the world around it. This course introduces you to the key computer vision algorithms used in mobile robotics, such as feature extraction, structure from motion, dense reconstruction, tracking, image retrieval, event-based vision, localization and mapping (SLAM) (the algorithms behind Hololens, Facebook-Oculus Quest, and the NASA Mars rovers).

The course is divided into three parts:

1. **Foundations of computer vision and mobile robotics**
 - Introduction to computer vision
 - Overview of mobile robotics
 - Basic computer vision algorithms
 - Introduction to SLAM

2. **Advanced topics in computer vision and mobile robotics**
 - Feature extraction and matching
 - Structure from motion
 - Dense reconstruction
 - Tracking
 - Image retrieval
 - Event-based vision
 - Visual-inertial odometry

3. **Applications of computer vision and mobile robotics**
 - Autonomous navigation
 - Object recognition and tracking
 - Human-robot interaction
 - Robotics for healthcare and education

Each lecture will be followed by a lab session where you will learn to implement a building block of a visual odometry algorithm in Matlab.

Prerequisites
- Basic knowledge about creativity and skills
- Fundamentals of algebra, geometry, matrix calculus, and Matlab programming.

Literature

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline.html

Note: If you are interested in taking UZH courses, you must register as an incoming mobility student at UZH. For details, see as follows:

UZH course enrollment for ETH student at University of Zurich (UZH) > Mobility within Switzerland – Incoming > Module Mobility: The easiest way to take individual modules/courses to supplement your studies at your home university is with module mobility. This option is not available to students who have dropped out of their home university or have been definitely excluded or banned from the relevant program > Application and Deadlines: Applications are submitted via the UZH application portal (https://www.uzh.ch/cmsssl/en/studies/application/chmobilityin.html).

151-0655-00L
Skills for Creativity and Innovation

| W | 4 credits | 3G | I. Goller, C. Kobe |

Abstract
This lecture aims to enhance the knowledge and competency of students regarding their innovation capability. An overview on prerequisites of and different skills for creativity and innovation in individual & team settings is given. The focus of this lecture is clearly on building competencies - not just acquiring knowledge.

Objective
- Basic knowledge about creativity and skills
- Knowledge about individual prerequisites for creativity
- Development of individual skills for creativity
- Knowledge about teams
- Development of team-oriented skills for creativity
- Knowledge and know-how about transfer to idea generation teams

Content
Basic knowledge about creativity and skills:
- Introduction into creativity & innovation: definitions and models

Knowledge about individual prerequisites for creativity:
- Personality, motivation, intelligence

Development of individual skills for creativity:
- Focus on creativity as problem analysis & solving
- Individual skills in theoretical models
- Individual competencies: exercises and reflection

Knowledge about teams:
- Definitions and models
- Roles in innovation processes

Development of team-oriented skills for creativity:
- Idea generation and development in teams
- Cooperation & communication in innovation teams

Knowledge and know-how about transfer to idea generation teams:
- Self-reflection & development planning
- Methods of knowledge transfer

Lecture notes
Slides, script and other documents will be distributed via moodle.ethz.ch (access only for students registered to this course)

Literature

As well as material handed out in the lecture
Abstract
Future training on selected current topics of the manufacturing technology. Per afternoon a selected topic is presented in several lectures, by the majority by experts from the industry. The students prepare a summary of the lectures given and prepare themselves on the basis of these lectures and own information search.

Objective
Continuous further training to current topics of the manufacturing technique. Exchange of experience and knowledge with the industry and other universities.

Content
Selected actual topics on manufacturing methods and tools, machine tools, NC-control and drives, components and measuring methods and devices. Topics are changing every year.

Lecture notes
no Script

Prerequisites / notice
- Students must have participated and passed the courses Manufacturing, Production Machines I and Forming Technology III - Forming Processes.
- Further training with specialized lectures and large participation from the industry.

Language: Help for English speaking students on request.

151-0851-00L

Robot Dynamics

W 4 credits 2V+2U M. Hutter, R. Siegwart

Abstract
We will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.

Objective
The primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.

Content
The course consists of three parts: First, we will refresh and deepen the student’s knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will be used on the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.

Prerequisites / notice
The contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.

151-0905-00L

Medical Technology Innovation - From Concept to Clinics

W 4 credits 3P I. Herrmann

Abstract
Project-oriented learning on how to develop technological solutions to address unmet clinical needs.

Objective
After completing the course, you will be able to effectively collaborate with medical doctors in order to identify important unmet clinical needs. You will be able to ideate and develop appropriate engineering solutions and implementation strategies for real-world clinical problems. This lecture aims to prepare you for typical engineering challenges in the real-world where - in addition to the development of an elegant solution - interdisciplinary teamwork and effective communication play a key role.

Literature
will be available on the moodle.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making assessed
Problem-solving assessed
Project Management assessed

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork assessed
Customer Orientation assessed
Leadership and Responsibility assessed
Self-presentation and Social Influence assessed
Sensitivity to Diversity assessed
Negotiation assessed

Domain D - Personal Competencies
Adaptability and Flexibility assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics assessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed

151-0917-00L

Mass Transfer

W 4 credits 2V+2U S. E. Pratsinis, V. Mavrantzas, C.-J. Shih

Abstract
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Objective
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Content
Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.

Literature

Prerequisites / notice
Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.

151-1116-00L

Introduction to Aircraft and Car Aerodynamics

W 4 credits 3G M. Immer, F. Schröder

Note: The previous course title in German until HS20 “Einführung in Flug- und Fahrzeugaerodynamik”.

Abstract
Aircraft aerodynamics: Atmosphere; aerodynamic forces (lift, drag); thrust.
Objective
An introduction to the basic principles and interrelationships of aircraft and automotive aerodynamics.

To understand the basic relations of the origin of aerodynamic forces (e.g., lift, drag). To quantify the aerodynamic forces for basic configurations of aircraft and car components.

Illustration of the intrinsic problems and results using examples.

Using experimental and theoretical methods to illustrate possibilities and limits.

Content
Aircraft aerodynamics: atmosphere, aerodynamic forces (ascending force: profile, wings. Resistance, residual resistance, induced resistance); thrust (overview of the propulsion system, aerodynamics of the propellers), introduction to static longitudinal stability.

Lecture notes
Preparation materials & slides are provided prior to each class

Literature
Aircraft Aerodynamics:
- Schlichting,H. und Truckenbrodt, E: Aerodynamik des Flugzeuges (Bd I und II), Springer Verlag, 1960
- Hoerner, S.F.: Fluid Dynamic Lift, Hoerner Fluid Dynamics, 1975

Vehicle Aerodynamics

Prerequisites / notice
Sufficient mathematical maturity, in particular in linear algebra, analysis.

Control
The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.

Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication between components, embedded operating systems, real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis.

Using the formal models and methods in embedded system design in practical applications using the programming language C, the operating system FreeRTOS, a commercial embedded system platform and the associated design environment.

The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems FreeRTOS, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment.

More information is available at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html.

Prerequisites
Basic knowledge in computer architectures and programming.

Prerequisites / notice
Sufficient mathematical maturity, in particular in linear algebra, analysis.
Abstract

Objective

Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Content

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning. The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer. The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Lecture notes

Course material Script, computer demonstrations, exercises and problem solutions

Prerequisites / notice

Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux. The course language is English.

Abstract

This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed.

Objective

The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts.

Content

- Fundamentals in magnetic circuits and electromechanical energy conversion.
- Force and torque calculation.
- Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine).
- Complex space vector notation, rotating coordinate system (dq-transformation).
- Loss components in electric machines, scaling laws of electromechanical actuators.
- Mechanical and thermal modelling.

Lecture notes

Lecture notes and associated exercises including correct answers

Abstract

Theory and techniques for the identification of dynamic models from experimentally obtained system input-output data.

Objective

Closed-loop identification strategies. Trade-off between controller performance and information available for identification.

Content

Introduction to modeling: Black-box and grey-box models; Parametric and non-parametric models; ARX, ARMAX (etc.) models. Optimal experimental design, Cramer-Rao bounds, input signal design.

Literature

Prerequisites / notice

Additional papers will be available via the course Moodle. Control systems (227-0216-00L) or equivalent.

Abstract

Current topics in Systems and Control presented mostly by external speakers from academia and industry

Objective

We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

Lecture notes

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories

Techniques and Technologies

Domain B - Method-specific Competencies

Analytical Competencies

Problem-solving

Domain D - Personal Competencies

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Not assessed
Objective

This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Content

Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indexes and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

13. Outlook

Literature

- Lecture material (slides).

Prerequisites / notice

For non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logics
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

252-3110-00L Human Computer Interaction

<table>
<thead>
<tr>
<th>Number of participants limited to 150.</th>
</tr>
</thead>
</table>

Abstract

The course provides an introduction to the field of human-computer interaction, emphasising the central role of the user in system design. Through detailed case studies, students will be introduced to different methods used to analyse the user experience and shown how these can inform the design of new interfaces, systems and technologies.

Objective

The goal of the course is that students should understand the principles of user-centred design and be able to apply these in practice. As well as understand the basic notions of Computational Design in a HCI context.

Content

The course will introduce students to various methods of analysing the user experience, showing how these can be used at different stages of system development from requirements analysis through to usability testing. Students will get experience of designing and carrying out user studies as well as analysing results. The course will also cover the basic principles of interaction design. Practical exercises related to touch and gesture-based interaction will be used to reinforce the concepts introduced in the lecture. To get students to further think beyond traditional system design, we will discuss issues related to ambient information and awareness.

The course website can be found here: https://teaching.siplab.org/human_computer_interaction/2021/

263-5210-00L Probabilistic Artificial Intelligence

<table>
<thead>
<tr>
<th>6 credits</th>
<th>3V+2U+2A</th>
</tr>
</thead>
</table>

Abstract

This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.
Objective
How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.

Content
Topics covered:
- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

Prerequisites / notice
Solid basic knowledge in statistics, algorithms and programming.
The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite.

263-5902-00L Computer Vision W 8 credits 3V+1U+3A M. Pollefeys, S. Tang, F. Yu
Abstract
The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.

Objective
The objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

Content
Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition

376-1219-00L Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions W 3 credits 2V R. Rien, O. Lambercy
Abstract
Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society. The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.

Objective
Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

Content
Introduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
Brain stimulation and recording
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces
Literature

Introductory Books:

Selected Journal Articles and Web Links:

Prerequisites / notice

Target Group:

- Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK, D-HEST
- Biomedical Engineering, Robotics, Systems and Control
- Medical Faculty, University of Zurich
- Students of other departments, faculties, courses are also welcome

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

376-1504-00L Physical Human Robot Interaction (pHRI) W 4 credits 2V+2U O. Lambercy

Abstract

This course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems.

The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1) identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2) compare and select mechatronic components that optimally fulfill the defined design requirements;
3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system;
4) design control hardware and software and implement and test human-interactive control strategies on the physical setup;
5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.

Autumn Semester 2021
This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.

Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be integrated in a haptic system based on the haptic paddle (https://relab.etzh.ch/downloads/open-hardware/haptic-paddle.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.

Lecture notes
Will be distributed on Moodle before the lectures.

Literature

Prerequisites / notice
The registration is limited to 26 students
There are 4 credit points for this lecture.
The lecture will be held in English.
The students are expected to have basic control knowledge from previous classes.

Micro & Nanosystems
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0107-20L</td>
<td>High Performance Computing for Science and Engineering (HPCE) I</td>
<td>W</td>
<td>4 credits</td>
<td>4G</td>
<td>P. Koumoutsakos, S. M. Martin</td>
</tr>
</tbody>
</table>

Abstract
This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.

Objective
With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.
1. Hardware and Architecture: Moore's Law, instruction set architectures (MIPS, RISC, CISC), instruction pipelines, Caches, Flynn's taxonomy, Vector instructions (for Intel x86)

2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)

3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models

4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl's Law, Strong and weak scaling analysis

5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods

Lecture notes
https://www.cse-lab.ethz.ch/teaching/hpcse-i_hs21/
Class notes, handouts

Prerequisites / notice
Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.

151-0409-00L Multiphysics Modeling and Simulation W 4 credits 2V+2U C. I. Roman

Abstract
This class introduces theoretical and practical aspects related to the modeling and simulation of multiphysics systems. Students will learn how to set up a multiphysics model from scratch, in a systematic fashion, and thus avoid frustrating pitfalls that come with trial-and-error. Comsol Multiphysics will be utilized to apply the concepts learned during the lectures to solve exercises.

Objective
As information technology continues its fast-paced evolution, solid-state devices and systems increase in complexity. Engineers and scientists are thus increasingly facing the need to model and simulate their problems numerically where analytic textbook solution cease to exist. Moreover, boundaries between traditional disciplines are harder to maintain, as a proper description of the system might involve phenomena from several domains. Examples include—but not limited to—mechatronics which relies on mechanical, electrical and electronic engineering, and transducers (sensors and actuators) which are by definition devices that convert signals from one physical domain to another. Simulation platforms such as Comsol Multiphysics have truly opened the way to easy multi-domain numerical simulation, offering tools that cover all operations from geometry definition, to meshing, to physics and boundary conditions setting to simulation and result post-processing and analysis in a unified, domain-independent fashion. However, this high degree of freedom has its price, as unexperienced users will soon find themselves in front of frustrating error messages or incomprehensible results. It is the role of this course to show how to properly set up a problem by exposing common misconceptions and pitfalls in multiphysics modeling. Good practices will be taught that should significantly speed-up the modeling process and produce results that do not contradict intuition. Examples will mainly come from the fields of mechanics (continuum mechanics), electromagnetism (Maxwell equations), heat transport (Fourier equation) and combinations of these domains.

Content
- Recap of ordinary and partial differential equations (ODEs and PDEs) concepts
- Existence and uniqueness of solutions; well- and ill-posed problems
- Time integration and (non)linear solvers
- Boundary conditions and constraints
- Approximate and simplified formulations; domains of applicability
- Discretization and numerical solutions for differential equations
- Solution-appropriate meshing; multiscale, local/global adaptive meshing
- Geometry simplification
- Model order reduction, coarsening
- Coupling and segregation/decoupling of multiphysics

Lecture notes
Lecture handouts will be posted online.

151-0604-00L Microrobotics W 4 credits 3G B. Nelson, N. Shamsudhin

Abstract
Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination.

Objective
The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.

Content
Main topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots

Lecture notes
The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically.

Prerequisites / notice
The lecture will be taught in English.

151-0605-00L Nanosystems W 4 credits 4G A. Stemmer

Abstract
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures. Special emphasis on the emerging field of molecular electronic devices.

Objective
Familiarize students with basic science and engineering principles governing the nano domain.
Content

The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Familiarity with basic concepts of quantum mechanics is expected.

Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled.

Topics are treated in 2 blocks:

(I) From Quantum to Continuum
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.

(II) Interaction Forces on the Micro and Nano Scale
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.

Prerequisites / notice

Lectures and Mini-Review presentations: Thursday 10-13

Homework: Mini-Review

(compulsory continuous performance assessment)

Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. Each Mini-Review will be immediate results reported in the paper. Each Mini-Review will be presented both orally and as a written paper.

151-0620-00L Embedded MEMS Lab

Abstract

Practical course: Students are introduced to the process steps required for the fabrication of MEMS (Micro Electro Mechanical System) and carry out the fabrication and testing steps in the clean rooms by themselves. Additionally, they learn the requirements for working in clean rooms. Processing and characterization will be documented and analyzed in a final report. Limited access

Objective

Students learn the individual process steps that are required to make a MEMS (Micro Electro Mechanical System). Students carry out the process steps themselves in laboratories and clean rooms. Furthermore, participants become familiar with the special requirements (cleanliness, safety, operation of equipment and handling hazardous chemicals) of working in the clean rooms and laboratories. The entire production, processing, and characterization of the MEMS is documented and evaluated in a final report.

Content

With guidance from a tutor, the individual silicon microsystem process steps that are required for the fabrication of an accelerometer are carried out:

- Photolithography, dry etching, wet etching, sacrificial layer etching, various cleaning procedures
- Packaging and electrical connection of a MEMS device
- Testing and characterization of the MEMS device
- Written documentation and evaluation of the entire production, processing and characterization

A document containing theory, background and practical course content is distributed at the Introductory lecture day of the course.

The document provides sufficient information for the participants to successfully participate in the course.

Participating students are required to attend all scheduled lectures and meetings of the course.

For safety and efficiency reasons the number of participating students is limited. We regret to restrict access to this course by the following rules:

Priority 1: master students of the master's program in "Micro and Nanosystems"

Priority 2: master students of the master's program in "Mechanical Engineering" with a specialization in Microsystems and Nanoscale Engineering (MAVT-tutors Profs Daraio, Dual, Hierold, Kamimmuskos, Nelson, Norris, Poulikakos, Pratsinis, Stemmer), who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 3: master students, who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 4: all other students (PhD, bachelor, master) with a background in silicon or Microsystems process technology.

If there are more students in one of these priority groups than places available, we will decide by (in following order) best achieved grade from 151-0621-00L Microsystems Technology, registration to this practicum at previous semester, and by drawing lots.

Students will be notified at the first lecture of the course (introductory lecture) as to whether they are able to participate.

The course is offered in autumn and spring semester.

151-0621-00L Microsystems I: Process Technology and Integration

Abstract

Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of Microsystems and -devices by a sequence of defined processing steps (process flow).

Objective

Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of Microsystems devices by the combination of unit process steps (= process flow).

- Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition.
- Specific Microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties.
- Application of selected technologies will be demonstrated on case studies.

Literature

Literature
- S.M. Sze: Semiconductor Devices, Physics and Technology
- W. Menz, J. Mohr, O.Paul: Microsystem Technology
- Hong Xiao: Introduction to Semiconductor Manufacturing Technology
- T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications

Prerequisites / notice
Prerequisites: Physics I and II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0642-00L</td>
<td>Seminar on Micro and Nanosystems</td>
<td>Z</td>
<td>0</td>
<td>C. Hierold</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scientific presentations from the field of Micro- and Nanosystems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In particular, the seminar addresses students, who are interested in scientific work in the field of Micro- and Nanosystem technologies, or who have started already with it. Respectively, current examples in the research will be discussed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current themes in the field of Micro- and Nanosystem technologies using the examples of intern and extern research groups, as well as ongoing themes of study-, diplom- and doctoral thesis will be introduced and discussed. The scope of the seminar is broadened by occasional guest speakers.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites / notice
Master of MNS, MAVT, ITET, Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0911-00L</td>
<td>Introduction to Plasmonics</td>
<td>W</td>
<td>4</td>
<td>D. J. Norris</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Plasmonics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Basic electromagnetic theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Optical properties of metals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Surface plasmon polaritons on surfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Surface plasmon polariton propagation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Localized surface plasmons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications of Plasmonics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Waveguides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Extraordinary optical transmission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Enhanced spectroscopy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sensing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Metamaterials</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture notes
Class notes and handouts

Literature

Prerequisites / notice

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0913-00L</td>
<td>Introduction to Photonics</td>
<td>W</td>
<td>4</td>
<td>R. Quidant, J. Ortega Arroyo</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture notes
Class notes and handouts

Literature

Prerequisites / notice

Physics I, Physics II
Content

I- BASICS OF WAVE THEORY
1) General concepts
2) Differential wave equation
3) Wavefront
4) Plane waves and Fourier decomposition of optical fields
5) Spherical waves and Huygens-Fresnel principle

II- ELECTROMAGNETIC WAVES
1) Maxwell equations
2) Wave equation for EM waves
3) Dielectric permittivity
4) Refractive index
5) Nonlinear optics
6) Polarisation and polarisation control

III- PROPAGATION OF LIGHT
1) Waves at an interface
2) The Fresnel equations
3) Total internal reflection
4) Evanescent waves
5) Dispersion diagram

IV- INTERFERENCES
1) General considerations
2) Temporal and spatial coherence
3) The Young double slit experiment
4) Diffraction gratings
5) The Michelson interferometer
6) Multi-wave interference
7) Antireflecting coating and interference filters
8) Optical holography

V- LIGHT MANIPULATION
1) Optical waveguides
2) Photonic crystals
3) Metamaterials and metasurfaces
4) Optical cavities

VI- INTRODUCTION TO OPTICAL MICROSCOPY
1) Basic concepts
2) Direct and Fourier imaging
3) Image formation
4) Fluorescence microscopy
5) Scattering-based microscopy
6) Digital holography
7) Computational imaging

VII- OPTICAL FORCES AND OPTICAL TWEETERS
1) History of optical forces
2) Theory of optical trapping
3) Atom cooling
4) Optomechanics
5) Plasmonic trapping
6) Applications of optical tweezers

Lecture notes
Class notes and handouts

Literature
Optics (Hecht) - Pearson

Prerequisites / notice
Physics I, Physics II

151-0917-00L Mass Transfer W 4 credits 2V+2U S. E. Pratsinis, V. Mavrantzas, C.-J. Shih

Abstract
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Objective
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Content
Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.

Literature

Prerequisites / notice
Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.

151-0931-00L Seminar on Particle Technology Z 0 credits 3S S. E. Pratsinis

Abstract
The goal of the lecture is to convey a basic knowledge in the area of PV materials as well as their construction and production processes and to empower the students to apply the knowledge gained to address current problems in research and practice.

Objective
Students attend and give research presentations for the research they plan to do and at the end of the semester they defend their results and answer questions from research scientists. Familiarize the students with the latest in this field.

252-0834-00L Information Systems for Engineers W 4 credits 2V+1U G. Fourny
This course provides the basics of relational databases from the perspective of the user. We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

Objective

This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Content

Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

13. Outlook

Literature

- Lecture material (slides).
- Book: "Database Systems: The Complete Book", H. Garcia-Molina, J.D. Ullman, J. Widom (It is not required to buy the book, as the library has it)

Prerequisites / notice

For non-CS/DS students only, BSc and MSc Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

Bioengineering

The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.
Objective

With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.

Content

1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)

2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)

3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models

4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl's Law, Strong and weak scaling analysis

5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders. Solving partial differential equations (PDEs) using grid-based and particle methods

Lecture notes

https://www.cse-lab.ethz.ch/teaching/hpcse-i_hs21/

Class notes, handouts

Literature

• An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
• Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
• Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
• Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
• Lecture notes

Prerequisites / notice

Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++.

The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.

151-0317-00L Visualization, Simulation and Interaction - Virtual Reality II

W 4 credits 3G A. Kunz

Objective

This lecture provides deeper knowledge on the possible applications of virtual reality, its basic technology, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes.

Abstract

Virtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technology for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems.

The goal of the lecture is to provide a deeper knowledge of today's VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.

Content

Introduction into Virtual Reality; basics of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of simulation; compression procedures of image-, audio-, and video signals; new materials for force feedback devices; introduction into data security; crytopgraphy; definition of free-form surfaces; digital factory; new research fields of virtual reality

Lecture notes

The handout is available in German and English.

Prerequisites / notice

"Visualization, Simulation and Interaction - Virtual Reality I" is recommended, but not mandatory.

Didactical concept:
The course consists of lectures and exercises.

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies

Analytical Competencies

Domain C - Social Competencies

Communication

Domain D - Personal Competencies

Creative Thinking

Critical Thinking

151-8101-00L International Engineering: from Hubris to Hope

W 4 credits 3G E. Tilley, M. Kalina

Abstract

Since Europe surrendered their colonial assets, engineers from rich countries have returned to the African continent to address the real and perceived ills that they felt technology could solve. And yet, 70 years on, the promise of technology has largely failed to deliver widespread, substantive improvements in the quality of life. Why?

This course is meant for engineers who are interested in pursuing an ethical and relevant career internationally, and who are willing to examine the complex role that well-meaning foreigners have played and continue to play in the disappointing health outcomes that characterize much of the African continent.

After completing the course, participants will be able to

• critique the jargon and terms used by the international community, i.e. “development”, “aid”, “cooperation”, “assistance” “third world” “developing” “global south” “low and middle-income” and justify their own chosen terminology
• recognize the role of racism and white-supremacy in the development of the Aid industry
• understand the political, financial, and cultural reasons why technology and infrastructure have historically failed
• Debate the merits of international engineering in popular culture and media
• Propose improved SDG indicators that address current shortcomings
• Compare the engineering curricula of different countries to identify relative strengths and shortcomings
• Explain the inherent biases of academic publishing and its impact on engineering failure
• Analyse linkages between the rise of philanthropy and strategic priority areas
• Recommend equitable, just funding models to achieve more sustainable outcomes
• Formulate a vision for the international engineer of the future
Content
Role of international engineering during colonialism
Transition of international engineering following colonialism
White saviourism and racism in international engineering
International engineering in popular culture
The missing role of Engineering Education
Biases academic publishing
The emerging role in Global Philanthropy
The paradox of international funding

Literature

151-0917-00L Mass Transfer

Abstract
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Objective
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Content
Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.

Literature

Prerequisites / notice
Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.

227-0385-10L Biomedical Imaging
W 6 credits 5G S. Kozerke, K. P. Prüssmann

Abstract
Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.

Objective
To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.

Content
- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging

Literature
Lecture notes
Lecture notes
Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011

Prerequisites / notice
Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming

227-0386-00L Biomedical Engineering
W 4 credits 3G J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong

Abstract
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.

Objective
Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.

Content

Lecture notes
Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino

AND
https://lbb.ethz.ch/education/biomedical-engineering.html

227-0393-10L Bioelectronics and Biosensors
W 6 credits 2V+2U J. Vörös, M. F. Yanik

Abstract
The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.

Objective
During this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field
Content

L1. Bioelectronics history, its applications and overview of the field
 - Volta and Galvani dispute
 - BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
 - Fundamentals of biosensing
 - Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
 - Differential equation for quartz crystal resonance
 - Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
 - Differential equation for optical waveguides
 - Optical sensors and their applications
 - Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
 - Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
 - Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
 - Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
 - Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
 - Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
 - Principles of operation of amperometric sensors
 - Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
 - MEA and CMOS based recording
 - Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning

Literature

Plonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)

Prerequisites / notice

The course requires an open attitude to the interdisciplinary approach of bioelectronics. In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.).

227-0447-00L Image Analysis and Computer Vision W 6 credits 3V+1U L. Van Gool, E. Konukoglu, F. Yu

Abstract

Objective

Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Content

This course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer. The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

Lecture notes

Course material Script, computer demonstrations, exercises and problem solutions

Prerequisites / notice

Prerequisites:

Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux. The course language is English.

227-0939-00L Cell Biophysics W 6 credits 4G T. Zambelli

Abstract

Applying two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization), an analytical model is derived for a variety of biological phenomena at the molecular as well as cellular level, and critically compared with the corresponding experimental data in the literature.
Objective

Engineering uses the laws of physics to predict the behavior of a system. Biological systems are so diverse and complex prompting the question whether we can apply unifying concepts of theoretical physics coping with the multiplicity of life's mechanisms.

Objective of this course is to show that biological phenomena despite their variety can be analytically described using only two principles from statistical mechanics: maximization of the entropy and minimization of the Gibbs free energy. Starting point of the course is the probability theory, which enables to derive step-by-step the two pillars thermodynamics from the perspective of statistical mechanics: the maximization of entropy according to the Boltzmann's law as well as the minimization of the Gibbs free energy. Then, an assortment of biological phenomena at the molecular and cellular level (e.g. cytoskeletal polymerization, action potential, photosynthesis, gene regulation, morphogen patterning) will be examined at the light of these two principles with the aim to derive a quantitative expression describing their behavior. Each analytical model is finally validated by comparing it with the corresponding available experimental results.

By the end of the course, students will also learn to critically evaluate the concepts of making an assumption and making an approximation. Theory and corresponding exercises are merged together during the classes.

Content

- Basics of theory of probability
- Boltzmann's law
- Entropy maximization and Gibbs free energy minimization
- Ligand-receptor: two-state systems and the MWC model
- Random walks, diffusion, crowding
- Electrostatics for salty solutions
- Elasticity: fibers and membranes
- Molecular motors
- Action potential: Hodgkin-Huxley model
- Photosynthesis and vision
- Gene regulation
- Development: Turing patterns
- Sequences and evolution

No lecture notes because the two proposed textbooks are more than exhaustive!

Lecture notes

An extra hour (Mon 17.00 o'clock - 18.00) will be proposed via zoom to solve together the exercises of the previous week.

!!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!!

Prerequisites / notice

Participants need a good command of
- Newton's and Coulomb's laws (basics of Mechanics and Electrostatics).

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Cell and Molecular Biology for Engineers I

This course is part I of a two-semester course.

Abstract

The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.

Objective

After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested. These written documents will be graded and count as 40% for the final grade.

Content

Lectures will include the following topics (part I and II): DNA, chromosomes, genome engineering, RNA, proteins, genetics, synthetic biology, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer and stem cells.

In addition, 4 journal clubs will be held, where recent publications will be discussed (2 journal clubs in part I and 2 journal clubs in part II). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication.

Lecture notes

Scripts of all lectures will be available.

Literature

227-0965-00L Micro and Nano-Tomography of Biological Tissues

Abstract
The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics.

Objective
Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.

Lecture notes
Available online

Literature
Will be indicated during the lecture.

227-0981-00L Cross-Disciplinary Research and Development in Medicine and Engineering

Abstract
Cross-disciplinary collaboration between engineers and medical doctors is indispensable for innovation in health care. This course will bring together engineering students from ETH Zurich and medical students from the University of Zurich to experience the rewards and challenges of such interdisciplinary work in a project based learning environment.

Objective
The main goal of this course is to demonstrate the differences in communication between the fields of medicine and engineering. Since such differences become the most evident during actual collaborative work, the course is based on a current project in physiology research that combines medicine and engineering. For the engineering students, the specific aims of the course are to:

- Acquire a working understanding of the anatomy and physiology of the investigated system;
- Identify the engineering challenges in the project and communicate them to the medical students;
- Develop and implement, together with the medical students, solution strategies for the identified challenges;
- Present the found solutions to a cross-disciplinary audience.

Content
After a general introduction to interdisciplinary communication and detailed background on the collaborative project, the engineering students will team up with medical students to find solutions to a biomedical challenge. In the process, they will be supervised both by lecturers from ETH Zurich and the University of Zurich, receiving coaching customized to the project. The course will end with each team presenting their solution to a cross-disciplinary audience.

Lecture notes
Handouts and relevant literature will be provided.

Prerequisites / notice
IMPORTANT: Note that a special permission from the lecturers is required to register for this course. Contact the head lecturer to that end.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain C - Social Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain D - Personal Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

252-0834-00L Information Systems for Engineers

Abstract
This course provides the basics of relational databases from the perspective of the user.

We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).
Objective

This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Content

Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

13. Outlook

Literature

- Lecture material (slides).

Prerequisites / notice

For non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logics
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

Abstract

Imaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine.

1. Understanding and practical implementation of biosignal processes methods for imaging
2. Understanding of imaging techniques including radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging
3. Knowledge of computing, programming, modelling and simulation fundamentals
4. Computational and systems thinking as well as scripting and programming skills
5. Understanding and practical implementation of emerging computational methods and their application in medicine including artificial intelligence, deep learning, big data, and complexity
6. Understanding of the emerging concept of personalised and in silico medicine
7. Encouragement of critical thinking and creating an environment for independent and self-directed studying

Multiscale Bone Biomechanics

Number of participants limited to 30

W 6 credits 4S R. Müller, X.-H. Qin

Objective

Autumn Semester 2021

Page 1525 of 2152
Content
Imaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine. For the imaging portion of the course, bio signal processing, radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging are covered. For the computing portion of the course, computing, programming, and modeling and simulation fundamentals are covered as well as their application in artificial intelligence and deep learning; complexity and systems medicine; big data and personalized medicine; and computational physiology and in silico medicine.

The course is structured as a seminar in three parts of 45 minutes with video lectures and a flipped classroom setup: in the first part (TORQUEs: Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness), students study the basic concepts in short, interactive video lectures on the online learning platform Moodle. Students are able to post questions at the end of each video lecture or the Moodle forum that will be addressed in the second part of the lectures using a flipped classroom concept. For the flipped classroom, the lecturers may prepare additional teaching material to answer the posted questions (Q&A). Following the Q&A, the students will form small groups to acquire additional knowledge using online, python-based activities via JupyterHub or additionally distributed material and discuss their findings in teams. Learning outcomes will be reinforced with weekly Moodle assignments, to be completed during the flipped classroom portion.

<table>
<thead>
<tr>
<th>Lecture notes</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stored on Moodle.</td>
<td>Lectures will be given in English.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>376-1177-00L</th>
<th>Human Factors I</th>
<th>W</th>
<th>3 credits</th>
<th>2V</th>
<th>M. Menozzi Jäckli, R. Huang, M. Siegrist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Strategies of human-system-interaction, individual needs, physical & mental abilities, and system properties are key factors affecting the quality and performance in interaction processes. In the lecture, factors are investigated by basic scientific approaches. Discussed topics are important for optimizing people’s health, well-being, and satisfaction as well as the overall system performance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of the lecture is to empower students in better understanding the applied theories, principles, and methods in various applications. Students are expected to learn about how to enable an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, and safety as well. Thus, an ergonomic design and evaluation process of products, tasks, and environments may be promoted in different disciplines. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Content | - Physiological, physical, and cognitive factors in sensation, perception, and action
- Body spaces and functional anthropometry, Digital Human Models
- Experimental techniques in assessing human performance, well-being, and comfort
- Usability engineering in system designs, product development, and innovation
- Human information processing and biological cybernetics
- Interaction among consumers, environments, behavior, and tasks |
| Literature | - Gavriel Salvendy, Handbook of Human Factors and Ergonomics, 4th edition (2012), is available on NEBIS as electronic version and for free to ETH students
- Further textbooks are introduced in the lecture
- Brouchures, checklists, key articles etc. are uploaded in ILIAS |

<table>
<thead>
<tr>
<th>376-1219-00L</th>
<th>Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions</th>
<th>W</th>
<th>3 credits</th>
<th>2V</th>
<th>R. Rienner, O. Lambercy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society. The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Content | Introduction, problem definition, overview
Rehabilitation of visual function
- Anatomy and physiology of the visual sense
- Technical aids (glasses, sensor substitution)
- Retina and cortex implants
Rehabilitation of hearing function
- Anatomy and physiology of the auditory sense
- Hearing aids
- Cochlea Implants
Rehabilitation and use of kinesthetic and tactile function
- Anatomy and physiology of the kinesthetic and tactile sense
- Tactile/haptic displays for motion therapy (incl. electrical stimulation)
- Role of displays in motor learning
Rehabilitation of vestibular function
- Anatomy and physiology of the vestibular sense
- Rehabilitation strategies and devices (e.g. BrainPort)
Rehabilitation of vegetative Functions
- Cardiac Pacemaker
- Phrenic stimulation, artificial breathing aids
- Bladder stimulation, artificial sphincter
- Brain stimulation and recording
- Deep brain stimulation for patients with Parkinson, epilepsy, depression
- Brain-Computer Interfaces |

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1526 of 2152
Literature

Introductory Books:

Selected Journal Articles and Web Links:

Prerequisites / notice

- Students of higher semesters and PhD students of
 - D-MAVT, D-ITET, D-INFK, D-HEST
 - Biomedical Engineering, Robotics, Systems and Control
 - Medical Faculty, University of Zurich
- Students of other departments, faculties, courses are also welcome

This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order.

Abstract

Physical Human Robot Interaction (pHRI)

- W 4 credits
- 2V+2U
- O. Lambercy

This course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems.

The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and design safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1) identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2) compare and select mechatronic components that optimally fulfill the defined design requirements;
3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system;
4) design control hardware and software and implement and test human-interactive control strategies on the physical setup;
5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.
This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for human-robot interactions such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.

Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device control strategies will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (https://relab.etzh.ch/downloads/open-hardware/haptic-paddle.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.

Prerequisites / notice

The registration is limited to 26 students. The laboratory sessions and lab visits.

Lecture notes

Will be distributed on Moodle before the lectures.

Literature

Abstract

Measurement and modeling of the human movement during daily activities and in a clinical environment.

Objective

The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application.

Content

This course includes study design, measurement techniques, clinical testing, accessing movement data and analysis as well as modeling with regards to human movement.

Prerequisites / notice

The registration is limited to 26 students. The laboratory sessions and lab visits.

Literature

http://www.relab.ethz.ch/downloads/open-hardware/haptic-paddle.html

Notice

The students are expected to have basic control knowledge from previous classes.

http://www.relab.ethz.ch/education/courses/phri.html

376-1651-00L Clinical and Movement Biomechanics

Number of participants limited to 50.

Abstract

Measurement and modeling of the human movement during daily activities and in a clinical environment.

Objective

The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application.

Content

This course includes study design, measurement techniques, clinical testing, accessing movement data and analysis as well as modeling with regards to human movement.

376-1714-00L Biocompatible Materials

Abstract

Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.

Objective

The course covers the following topics:

1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.

Content

Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.
Trauma Biomechanics

Handouts are deposited online (moodle).

Literature:

(available online via ETH library)

Handouts and references therein.

376-1985-00L

Trauma Biomechanics

W 4 credits 2V+1U K.-U. Schmitt, M. H. Muser

Abstract

Introduction to the basic principles of trauma biomechanics.

This lecture serves as an introduction to the field of trauma biomechanics. Emphasis is placed on the interdisciplinary nature of impact biomechanics, which uses the combination of fundamental engineering principles and advanced medical technologies to develop injury prevention measures. Topics include: accident statistics and accident reconstruction, biomechanical response of the human to impact loading, injury mechanisms and injury criteria, test methods (including crash tests), computer simulations, aspects of vehicle safety. Real world examples mainly from automobile safety are used to augment lecture material.

Handouts will be made available.

Lecture notes

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

402-0341-00L

Medical Physics I

W 6 credits 2V+1U P. Manser

Abstract

Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations.

Objective

Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.

Content

The lecture is covering the basic principles of ionizing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the exercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelerator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiology, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications.

Lecture notes

A script will be provided.

Prerequisites / notice

For students of the MAS in Medical Physics (Specialization A) the performance assessment is offered at the earliest in the second year of the studies.

551-0319-00L

Cellular Biochemistry (Part I)

W 3 credits 2V U. Kutay, G. Neurohr, M. Peter, K. Weis, I. Zemp

Abstract

Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

Objective

The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Content

Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes.

Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression.

Lecture notes

Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch)

Literature

Recommended supplementary literature (review articles and selected primary literature) will be provided during the course.
Prerequisites / notice
To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.

Design, Computation, Product Development & Manufacturing
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-3209-00L</td>
<td>Engineering Design Optimization</td>
<td>W</td>
<td>4</td>
<td>4G</td>
<td>K. Shea, T. Stankovic</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course covers fundamentals of computational optimization methods in the context of engineering design. It develops skills to formally state and model engineering design tasks as optimization problems and select appropriate methods to solve them.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The lecture and exercises teach the fundamentals of optimization methods in the context of engineering design. After taking the course students will be able to express engineering design problems as formal optimization problems. Students will also be able to select and apply a suitable optimization method given the nature of the optimization model. They will understand the links between optimization and engineering design in order to design more efficient and performance optimized technical products. The exercises are MATLAB based.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>available on Moodle</td>
</tr>
</tbody>
</table>

151-3215-00L	Design for Additive Manufacturing	W	4	2G	M. Meboldt, J. Ferchow
	For a place in the course please write a short letter of motivation stating why you like to attend the course, your experiences in CAD-Design, Simulation and additive manufacturing. Please mention in the letter, if you already have a suggestion for a part to be designed in the semester project. Send the letter to Julian Ferchow (email: ferchowj@ethz.ch).				
	Abstract				
	This course is focusing on design, development and innovation with Additive Manufacturing (AM) production technologies. Part of the course is a project, where students design and produce their own functional AM part in metal, with selective laser melting (SLM). The different designs of the students will be analyzed and an the design will be optimized.				
	Objective				
	To provide a fundamental knowledge of Additive Manufacturing (AM) and generate experience and knowledge in the field of the design for AM (DIAM), product development and value creation with AM.				
	Content				
	Parallel to the lectures the students design SLM prototypes in a project. Further, the prototypes going to be manufactured and possible optimizations will be discussed in the group. The course is addressing the following topics: - AM-Processes including SLM, SLS and FDM - AM-Principles - Materialise Magics-Introduction - AM-Guidelines - Value added chain of AM - AM-Quality management - Microstructures and materials for AM - Industry cases of AM				
	Lecture notes				available on Moodle
	Literature				
	Christoph Klahn; Mirko Meboldt: Entwicklung und Konstruktion für die Additive Fertigung - Grundlagen und Methoden für den Einsatz in industriellen Endkundenprodukten, Vogel Business Media, Würzburg ISBN: 978-3-8343-3395-7				
	Prerequisites / notice				
	Master's students. Registering to the course requires fulfilling the semester performance (active participation in the semester project and oral exam). If the course is missing the course is not passed (Abbruch). Final grades are based on a mixture of design projects (60%) and oral exam (40%). The language of the projects and the presentation can be English or German, depending on the student's preference.				

| 252-0834-00L| Information Systems for Engineers | W | 4 | 2V+1U | G. Fourny |
| | This course provides the basics of relational databases from the perspective of the user. We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics). | | | | |
Objective

This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Content

Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Literature

- Lecture material (slides).
 (It is not required to buy the book, as the library has it)

Prerequisites / notice

For non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logics
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

363-1065-00L Design Thinking: Human-Centred Solutions to Real World Challenges

W 5 credits 5G S. Brusoni

Abstract

The goal of this course is to engage students in a multidisciplinary collaboration to tackle real world problems. Following a design thinking approach, students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.

Information and application: http://sparklabs.ch/

Objective

During the course, students will learn about different design thinking methods and tools. This will enable them to:

- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).
- Engage in collaborative ideation with a multidisciplinary team.
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.
The purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validate them through quick iterations of prototyping and testing using different tools and materials. The students will work in multidisciplinary teams on a set of challenges that are organized as a one-week, a three-week, and a final six-week project with an external project partner. In this course, the students will learn about the different Design Thinking methods and tools that are needed to generate deep insights, to engage in collaborative ideation, rapid prototyping and iterative testing.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

For more information and the application visit: http://sparklabs.ch/

Open mind, ability to manage uncertainty and to work with students from various background. Class attendance and active participation is crucial as much of the learning occurs through the work in teams during class. Therefore, attendance is obligatory for every session. Please also note that the group work outside class is an essential element of this course, so that students must expect an above-average workload.

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Linda Armbruster to learn about the requirements of the class.

Multidisciplinary Courses

The students are free to choose individually from the Course Catalogue of ETH Zurich, ETH Lausanne and the Universities of Zurich (https://www.uzh.ch/cmsssl/en/studies/application/chmobilityin.html) and St. Gallen.

Course Catalogue of ETH Zurich

Semester Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1002-00L</td>
<td>Semester Project Mechanical Engineering</td>
<td>O</td>
<td>8 credits</td>
<td>17A</td>
<td>Professors</td>
</tr>
</tbody>
</table>

The subject of the Semester Project and the choice of the supervisor (ETH-professor) are to be approved in advance by the tutor.

Abstract
The semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.

Objective
The semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program.

Industrial Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1090-00L</td>
<td>Industrial Internship</td>
<td>O</td>
<td>8 credits</td>
<td></td>
<td>external organisers</td>
</tr>
</tbody>
</table>

No registration required via myStudies.

Abstract
The main objective of the minimum twelve-week internship is to expose Master’s students to the industrial work environment. The aim of the Industrial Internship is to apply engineering knowledge to practical situations.

Objective
The aim of the Industrial Internship is to apply engineering knowledge to practical situations.

GESS Science in Perspective

see GESS Science in Perspective: Language Courses

ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-MAVT.

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1001-00L</td>
<td>Master's Thesis Mechanical Engineering</td>
<td>O</td>
<td>30 credits</td>
<td>64D</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Students who fulfill the following criteria are allowed to begin with their Master's Thesis:

a. successful completion of the bachelor program;
b. fulfilling of any additional requirements necessary to gain admission to the master programme;
c. successful completion of the semester project and industrial internship;
d. achievement of 28 ECTS in the category “Core Courses”.

The Master's Thesis must be approved in advance by the tutor and is supervised by a professor of ETH Zurich.

Abstract
Master's programs are concluded by the master's thesis. The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem. The subject of the master's thesis, as well as the project plan and roadmap, are proposed by the tutor and further elaborated with the student.

Objective
The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem.
Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>
| 406-0173-AAL | Linear Algebra I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 6 | 13R | N. Hungerbühler |
| 406-0353-AAL | Analysis III
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 4 | 9R | A. Iozzi |

Abstract

Linear algebra is an indispensable tool of engineering mathematics. The course is an introduction to basic methods and fundamental concepts of linear algebra and its applications to engineering sciences.

Objective

After completion of this course, students are able to recognize linear structures and to apply adequate tools from linear algebra in order to solve corresponding problems from theory and applications. In addition, students have a basic knowledge of the software package Matlab.

Content

Linear maps, kernel and image, coordinates and matrices, coordinate transformations, norm of a matrix, orthogonal matrices, eigenvalues and eigenvectors, algebraic and geometric multiplicity, eigenbasis, diagonalizable matrices, symmetric matrices, orthonormal basis, condition number, linear differential equations, Jordan decomposition, singular value decomposition, examples in MATLAB, applications.

Reading:

Gilbert Strang “Introduction to linear algebra”, Wellesley-Cambridge Press: Chapters 1-6, 7.1-7.3, 8.1, 8.2, 8.6

Literature

406-0353-AAL

Abstract

Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics.

Objective

Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations.

Content

Laplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates; Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform

Literature

For reference/complement of the Analysis I/III courses:

Christian Blatter: Ingenieur-Analysis (Download PDF)

Prerequisites / notice

Up-to-date information about this course can be found at:
http://www.math.ethz.ch/education/bachelor/lectures/hs2013/other/analysis3_itet
Mechanical Engineering Master - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Educational Science

General course offerings in the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>This lecture is only apt for students who intend to enrol in the programs "Teaching Diploma" or "Teaching Certificate". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course looks into scientific theories and also empirical studies on human learning and relates them to the school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way humans process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers are put in a position where they can further educate themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thematic Schwerpunkte:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lernen als Verhaltensänderung und als Informationsverarbeitung: Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information; Lernen als Wissenskonstruktion und Kompetenzerwerb unter besonderer Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und Erklärungen; Die Rolle von Emotion und Motivation beim Lernen; Interindividuelle Unterschiede in der Lernfähigkei und ihre Ursachen: Intelligenztheorien, Geschlechtsunterschiede beim Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folien werden zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This lecture is only apt for students who intend to enrol in the programs "Lehrdiplom" or "Didaktisches Zertifikat". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-11L</td>
<td>Gender Issues In Education and STEM</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>M. Berkowitz Biran, T. Braas, C. M. Thurn</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: students should be taking the course 851-0240-00L Human Learning (EW1) in parallel, or to have successfully completed it.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In this seminar, we introduce some of the major gender-related issues in the context of education and science learning, such as the under-representation of girls and women in science, technology, engineering and mathematics (STEM); Common perspectives, controversies and empirical evidence will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To develop a critical view on existing research and perspectives.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To integrate this knowledge with teacher's work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-06L</td>
<td>Cognitively Activating Instructions in MINT Subjects</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>R. Schumacher</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Get to know cognitively activating instructions in MINT subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Get information about recent literature on learning and instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851-0242-07L</td>
<td>Human Intelligence</td>
<td>W</td>
<td>1</td>
<td>1S</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.

- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding findings relevant for education

Research Methods in Educational Science 851-0242-08L

Abstract
Literature from the learning sciences is critically discussed with a focus on research methods. At the first meeting, working groups will be assembled and meetings with those will be set up. In the small groups students will write critical essays about the read literature. At the third meeting, we will discuss the essays and develop research questions in group work.

Objective
- Understand research methods used in the empirical educational sciences
- Understand critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

Coping with Psychosocial Demands of Teaching (EW4 W 227-0857-00L)

Abstract
The successful participation in EW1 ("Human Learning") and EW2 ("Designing Learning Environments for School") is recommended, but not a mandatory prerequisite.

Objective
Students possess theoretical knowledge and practical competences to be able to cope with the psychosocial demands of teaching.

(1) They know relevant rules of conversation and conflict management and are able to apply them in an appropriate way in the school context (e.g. in parental talks).
(2) They know core aspects of classroom management and know how to apply it concretely (e.g. promoting a positive learning atmosphere, avoiding disciplinary difficulties) and they are aware of possible contacts (e.g. illegal or psychological services).

Subject Didactics and Professional Training

Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

Teaching Internship Including Examination Lessons Mechanical and Process Engineering 151-1079-00L

Abstract
Students apply the insights, abilities and skills they have acquired within the context of an educational institution. They observe 10 lessons and teach 20 lessons independently. Two of them are as assessed as Examination Lessons.

Objective
- They use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching.
- They learn the skills of the teaching trade.
- They are able to assess the significance of tuition topics for their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
- They learn to assess pupils’ work.
- They together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.

Content

Literature
Wird von der Praktikumslehrperson bestimmt.

Prerequisites / notice
Alle anderen Lehrveranstaltungen des DZ (inkl. der Mentorierten Arbeit) sind erfolgreich abgeschlossen.

Didactics I for D-MAVT and D-ITET 227-0857-00L

Abstract
Didactics I focuses on teaching techniques as building blocks of typical lessons. This is done on the basis of the findings of teaching and learning research and their implementation in practice. The aim is the planning and implementation of effective teaching sequences as well as their evaluation and reflection.

Objective
- The students can plan, conduct and critically reflect single lessons.
- They orient themselves towards the academic goals and take into account existing knowledge, the professional environment and the ambitions of the students.
- They can apply the basic teaching principles meaningfully in their subject and suitably structure the learning phases.
- They can reduce and present complex technical content such that it is in a form suitable for the students to learn.
- They have considered examples of the common conceptual errors encountered by students.
- Planning a teaching unit
- Opening a lecture
- Direct Instruction
- Blackboard writing and slide design
- Develop exercises
- Practicing teaching
- Excursion Fachhochschule

Lecture materials are provided via Moodle.

Prerequisite: Educational science course already completed or at the same time.

Further Subject Didactics

For students enrolled from HS 2019: The courses offered here are credited under the category «Subject Didactics and Professional Training».

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1072-00L</td>
<td>Mentored Thesis in Didactics of Mechanical and Process Engineering</td>
<td>O</td>
<td>2 credits</td>
<td>4A</td>
<td>Q. Lohmeyer</td>
</tr>
</tbody>
</table>

Abstract
The purpose of the mentored thesis is to bring together the findings from didactics and to expand them by incorporating specific teaching techniques and teaching methods. The thesis can be thematically aligned with the subsequent teaching internship.

Objective
The students learn to link theoretical topics from the didactic education with practice-relevant aspects and to articulate the result in written form by means of a suitable task.

Content
The choice of the topic and the definition of the contents takes place in agreement between the students and the mentor. The topic must be chosen in such a way that the learning objective described above can be achieved.

Lecture notes
A short guideline is available.

Literature
The use of suitable literature is part of the assignment.

Prerequisites / notice
Prerequisite: Both didactics courses completed.

The work should be completed before the start of the internship.

Mechanical and Process Engineering TC - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Materials Science Bachelor

- Bachelor Studies (Programme Regulations 2020)

- Basis Courses Part 1

- First Year Examinations

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0261-G0L</td>
<td>Analysis I</td>
<td>O</td>
<td>8</td>
<td>5V+3U</td>
<td>A. Steiger</td>
</tr>
<tr>
<td>Abstract</td>
<td>Differential and integral calculus for functions of one and several variables; vector analysis; ordinary differential equations of first and of higher order, systems of ordinary differential equations; power series. The mathematical methods are applied in a large number of examples from mechanics, physics and other areas which are basic to engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to the mathematical foundations of engineering sciences, as far as concerning differential and integral calculus.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>U. Stammbach: Analysis I/II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Exercises and online quizzes are an important aspect of this course. Attempts at solving these problems will be honored with a bonus on the final grade. See "Performance assessment" for more information.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

401-0171-00L	Linear Algebra I	O	3	2V+1U	N. Hungerbühler
Abstract	Linear algebra is an indispensable tool of engineering mathematics. The course offers an introduction into the theory with many applications. The new notions are practised in the accompanying exercise classes. The course will be continued as Linear algebra II.				
Objective	Upon completion of this course, students will be able to recognize linear structures, and to solve corresponding problems in theory and in practice.				
Content	Systems of linear equations, Gaussian elimination, solution space, matrices, LR decomposition, Determinants, structure of linear spaces, normed vector spaces, inner products, method of least squares, QR decomposition, introduction to MATLAB, applications				
Literature	* K. Meyberg / P. Vachenauer, Höhere Mathematik 1, Springer 2003				
Prerequisites / notice	Active participation in the exercises is part of this course. It is expected, that students submit 3/4 of all exercises for control.				

327-0112-00L	Chemistry I	O	4	2V+1U	M. Niederberger, P. J. Walde, W. R. Caseri
Abstract	Introduction to the basics, terms and concepts of general chemistry, their application to questions in material science and their connection to laboratory experiments and projects.				
Objective	1) Students can describe the different atomic structures of metals, polymers and ceramics and derive basic material-typical properties.				
Content	2) Students are familiar with the concept of mole and molar mass and can perform stoichiometric calculations.				
Literature	We start the lecture with the question what chemistry has to do with material science. After that, we devote ourselves to the classification and separation of substances. In the next chapter we discuss the atomic structure and the periodic table. After the introduction to stoichiometry, the field of chemistry that deals with the amounts of substances added and formed in chemical reactions, we will cover the concept of chemical equilibrium, where we will learn about the law of mass action, equilibrium constants, solubility product, and also acid-base equilibria. In the final block of the lecture, materials science will once again be in the focus when we discuss redox reactions, electrochemistry and corrosion as well as the influence of chemical bonding on material properties.				
Literature	Lecture slides with references to further literature are available on Moodle.				

402-0050-00L	Physics I	O	4	2V+2U	D. Rupp
Abstract	The lecture covers the basics of classical mechanics.				
Objective	The aim of this lecture is to become familiar with the central concepts of classical mechanics, to test and consolidate basic concepts and physical intuition, and to be able to describe and solve problems with applications from everyday life and technology with the tools learned.				
Content	- Inertia, equations of motion, Newton's laws, forces and system boundaries				
Lecture notes	A script to the lecture is provided online.				

327-0113-00L	Foundations of Materials Science I	O	2	2G	L. Isa
Abstract	The basic physical concepts for the description of materials are taught, partly in self-study, and applied in exercises. Basic atomistic and macroscopic concepts (e.g. phase diagrams, phase transformations, response functions) are introduced through examples. Selected topics are deepened in classroom lectures.				
Objective	Students are able to				
Content	- name the basic concepts of materials science. (remember, 1)				
	- describe simple relations between atomic structure and macroscopic properties. (understand, 2)				
	- calculate basic material-specific quantities. (apply, 3)				
	- read and interpret phase diagrams, material characteristic (e.g. stress-strain) diagrams and Ashby plots (analyse, 4)				
	Atomic structure				
	Crystalline structure and defects				
	Thermodynamics, phase diagrams and phase transformations				
	Diffusion				
	Mechanical and thermal properties of materials				

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1538 of 2152
Additional First Year Basic Courses

Number	Title	Type	ECTS	Hours	Lecturers
327-0111-00L | Projects and Lab Courses I | O | 7 credits | 7P | M. B. Willeke, L. De Pietro, M. R. Dusseiller, S. Morgenthaler Kobas, T.-B. Schweizer

Abstract
Practical introduction to the basics of the scientific method, materials science, physics and chemistry in the form of laboratory experiments and projects, some of which are closely related to the lectures in the first year. Important chemical and physical methods are tested, project work is practiced and the basics of working safely in the laboratory are learned.

Objective
The students
- keep a laboratory journal independently, completely and appropriately.
- can evaluate and display measurement data in a targeted manner.
- are able to write laboratory reports appropriately.
- know the communicative and rhetorical factors that are decisive for the success of an oral presentation.
- create effective presentation documents.
- know the general safety rules and disposal concepts for working in laboratories and apply them practically.
- proceed correctly in case of accidents and evacuations.
- learn practically how to fight a fire (fire protection course of the ETH).
- apply the basic knowledge in analytics, chemistry, physics and materials science acquired in the base year in a practical way.
- practice carrying out small experiments or small projects independently under supervision.

Content
In the area of scientific work: Keeping lab journals, data analysis, writing reports, presentation techniques, Test preparation and introduction to safe working and behaviour in the lab.
Lab experiments: Experiments from the fields of synthetic and analytical chemistry and experiments from the fields of physics and materials science, e.g. Mechanical/thermal properties (e.g. modulus of elasticity, fracture mechanics), thermodynamics, colloid chemistry, "particle tracking" with DLS and microscopy, surface technology, "wood, stone and metal" processing, and electrochemistry. Some practical experiments are organized as short projects (two afternoons), e.g. "Building a microscope from a webcam", etc.
In the projects: Two "reverse engineering" projects with everyday objects: Analysis of construction and materials, functioning in the overall context, life cycle of materials, alternative materials, etc.

Lecture notes
Instructions and further information on the individual experiments and projects (objectives, theory, experimental procedure, notes on evaluation) are available on the following website (https://praktikum.mat.ethz.ch).

Prerequisites / notice
Special students and auditors need a special permission from the lecturers

Programming I

Abstract
This course provides an introduction to the general computer and programming concepts, which are necessary to perform numerical calculations, representations and simulations in materials science.

Objective
- Students independently develop programs to accomplish numerical calculations, representations and simulations.
- They analyse and understand the functionality of existing programs and can supplement or adapt them according to their requirements.
- They recognize basic computer science concepts and apply algorithmic thinking, i.e. they have the ability to solve problems systematically using developed algorithms.

Content
The course contains a first introduction to Python and Matlab. It contains:
- Basic programming concepts of structural programming like Variables, Lists, Loops, Branches, Control structures
- Input and output
- Modular structure of programs with functions
- Flowcharts
- Numerical accuracy
- Data evaluation and presentation
 - Regression
 - Interpolation
 - Curves fit
- Complexity Theory
- Sorting and searching
- Dynamic programming
- Recursion
- Graph Algorithms

Lecture notes
Moodle, Code Expert, ...

Literature
https://wiki.python.org/moin/BeginnersGuide

Second Year Basic Courses

Examination Blocks

Examination Block 1

Number	Title	Type	ECTS	Hours	Lecturers
401-0363-10L | Analysis III | O | 3 credits | 2V+1U | A. Iozzi
Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics.

Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations.

Laplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D’Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform

Lecture notes by Prof. Dr. Alessandra Iozzi:
https://polybox.ethz.ch/index.php/s/D3K0TayQXvlpCAA

Literature
For reference/complement of the Analysis I/II courses:
Christian Blatter: Ingenieur-Analysis
https://people.math.ethz.ch/~blatter/dlp.html

Analysis and motivation for the necessity of a theory beyond classical mechanics to describe materials properties. The principles, terminology and concepts of quantum mechanics will be introduced and mathematically represented on the basis of simple problems.

Objective
Give reasons for the necessity of quantum mechanical description of matter and explain experimental observations leading to this description.
Clarification of the term quantum object.
Formulate and solve the Schrödinger equation for simple problems.
Application of the operator formalism for the calculation of observables and the interpretation of physical processes. Interpretation of the wavefunction.
Explain the solution of the hydrogen atom. Derivation of the approach to the solution in the application of symmetries and angular momentum operators.
Give reasons for the electron spin and calculate magnetic moments.
The course teaches the basics and terminology of polymer synthesis. To synthesize various polymeric materials, different polymerization methods are used. The aim of the course is to enable the students to select and apply the optimal analytical/spectroscopic methods for the identification of different polymer types.

Prerequisites:
- Linear Algebra I and II.
- Analysis I and II.
- Physik I und II.

Content:
- Students will be able to recognize different polymer types and associate them with their chemical structure and properties.
- Students will understand the mechanism of selected polymerization methodologies.
- Students will be exposed to different characterization methods (e.g., size exclusion chromatography, mass-spectrometry, nuclear magnetic resonance).
- Students will become familiar with various synthetic methods to produce polymers of different architectures and topologies.
- Students will be able to recognize different polymer types and associate them with their chemical structure and properties (i.e., rubber elasticity, glass transition temperature, etc.).

Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0312-00L</td>
<td>Materials Synthesis I</td>
<td>O</td>
<td>4</td>
<td>4G</td>
<td>A. Anastasaki, D. Opris</td>
</tr>
</tbody>
</table>

The course teaches the basics and terminology of polymer synthesis. To synthesize various polymeric materials, different polymerization techniques are required. This course will introduce representative polymerization methodologies and will discuss how they operate in order to yield materials with enhanced polymeric characteristics.

Objective:
1) The students will be able to recognize different polymer types and associate them with their chemical structure and properties (i.e. rubber elasticity, glass transition temperature, etc.)
2) The students will become familiar with various synthetic methods to produce polymers of different architectures and topologies.
3) The students will be exposed to different characterization methods (e.g. size exclusion chromatography, mass-spectrometry, nuclear magnetic resonance) that are necessary to confirm the successful synthesis and structure of a polymer.
4) The students will understand the mechanism of selected polymerization methodologies.
5) The students will be introduced to state-of-the-art polymer synthesis and recent literature examples will be critically discussed.

Content:
- Conventional chain growth polymerization, living chain growth polymerization, step growth polymerization, polymeric architectures.
- Molecular weight determination methods, polymer properties, polymerization mechanisms, polymer characterization methods.

Lecture notes:
Lecture slides with references to further literature will be available on Moodle.
Abstract The properties of crystals, which represent a large part of solid materials, are closely related to their structural symmetry. The aim of the lecture crystallography is to convey concepts and mathematical basics of symmetry theory, structure-property relationships, as well as the basic features of structure determination. Simple crystal structure types are discussed.

Objective Introduction into the fundamental relationships between crystal structure, symmetry, and physical properties of solids. Emphasis: group-theoretical introduction into symmetry, discussion of the factors governing the formation of crystal structures, structural dependence of physical properties, fundamentals of experimental techniques probing the crystal structure.

Content Symmetry and order: symmetry operations and lattices in two and three dimensions, point groups, space groups.
Crystal structures: symmetry and geometrical factors governing the formation of crystal structures; close sphere packings; typical basic crystal structures.
Structure/property relationships: Neumann's principle; examples: piezoelectricity, ferroelectricity.
Materials characterization: diffraction techniques.

Lecture notes A script of the lecture until 2014 is available. Script notes for the present lecture will be provided before the start of the lecture.

Prerequisites / notice Organisation: One hour of lectures per week accompanied by one hour of exercises.

Projects and Applications

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0314-00L</td>
<td>Computational Thinking Lab I</td>
<td>O</td>
<td>2</td>
<td>1G</td>
<td>M. Kröger</td>
</tr>
</tbody>
</table>

Abstract You are going to address, in groups, problems that are arising or may arise in the context of remaining courses of your studies, that cannot be solved analytically or manually within reasonable amounts of time, but solved computationally with the help of a programming language and computers. Knowledge of a computing language is required.

Objective Students get used to one or more collaborative tools, work actively in groups. They invent, set up, structure, plan, and attempt solving a problem that requires developing algorithms. They make use of existing, or invent novel, computational methods. Aspects that should be taken into account when developing algorithms or codes are: speed of execution, ease of use, small amount of adjustable parameters.

Content Development of a project plan, including modules to be created, milestones to be reached, required input data and its acquisition, tests to be performed, work sharing. The project needs to be documented, and codes saved using a collaborative environment (overleaf). Ideally, several groups attack a similar problem so that their results can be directly compared (concerning speed of execution, clarity etc.)

Lecture notes Information available at https://polyphys.mat.ethz.ch/education/courses/CTL-I.html

Prerequisites / notice Knowledge of a programming language is mandatory. Participants need to create an overleaf account. Detailed information available at Information available at https://polyphys.mat.ethz.ch/education/courses/CTL-I.html

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Negotiation</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Projects and Lab Courses III</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0311-00L</td>
<td>Projects and Lab Courses III</td>
<td>O</td>
<td>8</td>
<td>8P</td>
<td>M. B. Willeke, L. De Pietto, T.-B. Schweizer</td>
</tr>
</tbody>
</table>

Abstract A project lasting one semester, with special requirements regarding choice of materials, properties, etc., concluding project presentation event.

Objectives Experiments to teach experimental competence using selected examples from polymer chemistry, analytics and physics (e.g. for the storage or conversion of energy), partly closely based on courses.

Objective Learn how to organize, manage, and execute a semester-long project.

Content To impart basic knowledge and experimental competence using selected examples from chemistry and physics.

Chemistry III: Synthesis of PMMA via Transesterification; PET recycling or manufacture of poly(methylmethacrylat) via radical polymerization of methylmethacrylat; 3D-printing.

Physics I: five experiments out of: reflection spectroscopy, experiments on the field of polyers, e.g. viscoelasticity of the polymer melt (or an equivalent exp.), 2 physics experiments (out of 4) at the EMPA: e.g. X-ray floourescence analysis, impedance measurements of batteries, “power to gas” or texture measurement, building a Lithium ionic battery; and further physic experiments.

Lecture notes Notes with information for each experiment (aim of the experiment, theory, experimental procedure, data analysis) can be downloaded from the web (https://praktikum.mat.ethz.ch or https://www.mat.ethz.ch/studies/bachelor/laborpraktische-ausbildung.html).

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1542 of 2152
Bachelor Studies (Programme Regulations 2017)

3. Semester

Basic Courses Part 2

Examination Block 1

The further courses of the examination block 1, regl. 2017 (327-0309-00L Organic Chemistry in Materials Science, 402-0041-00L Physics, 551-0015-00L Biology I) were offered for the last time in HS20.

Examination Block 2

The further course of the examination block 2, regl. 2017 (327-0308-00L Programming Techniques in Materials Science) was offered for the last time in HS20.

Bachelor Studies (Programme Regulations 2017)

3. Semester

Basic Courses Part 2

Examination Block 1

The further courses of the examination block 1, regl. 2017 (327-0309-00L Organic Chemistry in Materials Science, 402-0041-00L Physics, 551-0015-00L Biology I) were offered for the last time in HS20.

Examination Block 2

The further course of the examination block 2, regl. 2017 (327-0308-00L Programming Techniques in Materials Science) was offered for the last time in HS20.

Bachelor Studies (Programme Regulations 2017)

3. Semester

Basic Courses Part 2

Examination Block 1

The further courses of the examination block 1, regl. 2017 (327-0309-00L Organic Chemistry in Materials Science, 402-0041-00L Physics, 551-0015-00L Biology I) were offered for the last time in HS20.

Examination Block 2

The further course of the examination block 2, regl. 2017 (327-0308-00L Programming Techniques in Materials Science) was offered for the last time in HS20.
The lecture course is aimed at qualifying the student to choose the optimum characterization method according to the questions posed.

Materials Characterisation Methods

A. Hrabec
C. Ederer

The lecture course is aimed at qualifying the student to choose the optimum characterization method according to the questions posed.

OM. B. Willeke

Notes with information for each experiment (aim of the experiment, theory, experimental procedure, data analysis) can be downloaded from

Semester-long project, project assignment is determined at the beginning of each semester.

A project lasting one semester, with special requirements regarding choice of materials, properties, etc., concluding project presentation event.

Learn how to organize, manage, and execute a semester-long project.

Learn techniques which are used in the computer-based study of the physics of materials; Obtain an overview of which simulation techniques are useful for which type of problems; develop the capability to transform problems in materials science into a form suitable for computer studies, including writing the computer program and analyzing the results.

This course introduces classical and quantum mechanical concepts for the understanding of material properties from a microscopic point of view. The lectures focus on the static and dynamic properties of crystals, the formation of chemical bonds and electronic bands in metals, and semiconductors, and on the thermal and electrical properties that emerge from this analysis.

Additional Basic Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0311-00L</td>
<td>Projects and Lab Courses III</td>
<td>O</td>
<td>8</td>
<td>8P</td>
<td>M. B. Willeke, L. De Pietro, T.-B. Schweizer</td>
</tr>
</tbody>
</table>

Abstract
A project lasting one semester, with special requirements regarding choice of materials, properties, etc., concluding project presentation event.

Objective
Learn how to organize, manage, and execute a semester-long project.

Content
Semester-long project, project assignment is determined at the beginning of each semester.

Prerequisites / notice

Materials Characterisation Methods

Offered for the last time in HS 2021.

Script is provided.

Materials Physics I

Offered for the last time in HS 2021.

Materials Physics I

Offered for the last time in HS 2021.

Simulation Techniques in Materials Science

Offered for the last time in HS 2021.

Simulation Techniques in Materials Science

Offered for the last time in HS 2021.

Materials Physics I

Offered for the last time in HS 2021.

Materials Physics I

Offered for the last time in HS 2021.

Autumn Semester 2021
Objective

Providing physical concepts for the understanding of material properties:

Understanding the electronic properties of solids is at the heart of modern society and technology. The aim of this course is to provide fundamental concepts that allow the student to relate the microscopic structure of matter and the quantum mechanical behavior of electrons to the macroscopic properties of materials. Beyond fundamental curiosity, such level of understanding is required in order to develop and appropriately describe new classes of materials for future technology applications. By the end of the course the student should have developed a semi-quantitative understanding of basic concepts in solid state physics and be able to appreciate the pertinence of different models to the description of specific material properties.

Content

PART I: Structure of solid matter, real and reciprocal space

The crystal lattice, Bravais lattices, primitive cells and unit cells, Wigner-Seitz cell, primitive lattice vectors, lattice with a basis, examples of 3D and 2D lattices.

Fourier transforms and reciprocal space, reciprocal lattice vectors, Brillouin zones

PART II: Dynamics of atoms in crystals

Lattice vibrations and phonons in 1D, phonons in 1D chains with monoatomic basis, phonon in 1D chains with a diatomic basis, optical and acoustic modes, phase and group velocities, phonon dispersion and eigenvectors. Phonons in 2D and 3D.

Quantum mechanical description of lattice waves in solids, the harmonic oscillator, the concept of phonon, phonon statistics, Bose-Einstein distribution, phonon density of states, Debye and Einstein models, thermal energy, heat capacity of solids.

PART III: Electron states and energy bands in crystalline solids

Electronic properties of materials, classical concepts: electrical conductivity, Hall effect, thermoelectric effects. Drude model. Transition to quantum models and review of quantum mechanical concepts.

The formation of electronic bands: from molecules to periodic crystal structures.

The free electron gas: Fermi statistics, Fermi energy and Fermi surface, density of states in k-space and as a function of energy. Inadequacy of the free electron model.

PART IV: Electrical and heat conduction

Dynamics of electrons in energy bands, phase and group velocity, crystal momentum, the effective mass concept, scattering phenomena.

Electrical and thermal conductivities revisited. Electron transport due to electric fields (drift) and concentration gradients (diffusion). Einstein's relations. Transport of heat by electrons, Seebeck effect and thermopower, Peltier effect, thermoelectric cooling, thermoelectric energy conversion.

PART V: Semiconductors: concepts and devices

Lecture notes

in English, available for download at http://www.intermag.mat.ethz.ch/education.html

Literature

C. Kittel, Introduction to Solid State Physics (Wiley, 2005), also printed in German. General text that covers most arguments from the point of view of condensed matter physics.

D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2012). General treatment of semiconductor physics and devices, including both basic and more advanced topics.

H. Ibach, H. Lueth, Solid-State Physics (Springer, 2003), available free of charge as ebook from the ETH library, also in German. General text that covers most arguments from the point of view of condensed matter physics.

Prerequisites / notice

Physics I and II. Knowledge of basic quantum mechanical concepts. The lecture will be given in English. The script will be available in English.

Examination Block 6

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0501-00L</td>
<td>Metals I</td>
<td>O</td>
<td>3</td>
<td>2V+1U</td>
<td>R. Spolenak</td>
</tr>
</tbody>
</table>

Offered for the last time in HS 2021.

Abstract

Repetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.

Objective

Repetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1545 of 2152
Content

Dislocation theory:
- Properties of dislocations, motion and kinetics of dislocations, dislocation-dislocation and dislocation-boundary interactions, consequences of partial dislocations, sessile dislocations
- Hardening theory:
 a. solid solution hardening: case studies in copper-nickel and iron-carbon alloys
 b. particle hardening: case studies on aluminium-copper alloys
- High temperature plasticity:
 a. thermally activated glide
 b. power-law creep
 c. diffusional creep: Coble, Nabarro-Herring
 d. deformation mechanism maps
 e. Case studies in turbine blades
 f. superplasticity
 g. alloying effects

Hardening theory:
- Solid solution hardening: case studies in copper-nickel and iron-carbon alloys
- Particle hardening: case studies on aluminium-copper alloys

High temperature plasticity:
- Thermally activated glide
- Power-law creep
- Diffusional creep: Coble, Nabarro-Herring
- Deformation mechanism maps
- Case studies in turbine blades
- Superplasticity
- Alloying effects

Literature

Gottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Haasen, Physikalische Metallkunde, Springer Verlag
Rössler/Harders/Bäker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Hull/Bacon, Introduction to Dislocations, Butterworth & Heinemann
Courtney, Mechanical Behaviour of Materials, McGraw-Hill

327-0502-00L Polymers I O 3 credits 2V+1U M. Kröger
Offered for the last time in HS 2021.

Abstract
Physical foundations of single polymer molecules and interacting chains.

Objective
The course offers a modern approach to the understanding of universal static and dynamic properties of polymers.

Content
Polymer Physics:
1. Introduction to Polymer Physics, Random Walks
2. Excluded Volume
3. Structure Factor from Scattering Experiments
4. Persistence
5. Solvent and Temperature Effects
6. Flory theory
7. Self-consistent field theory
8. Interacting Chains, Phase Separation and Critical Phenomena
9. Rheology
10. Numerical methods in polymer physics, computer experiments

Lecture notes
A script is available at http://www.polyphys.mat.ethz.ch/education/courses/polymere-I

Literature

Prerequisites / notice
Computer experiments will use the simple MATLAB programming language and will be made available, if necessary or useful.

327-0503-00L Ceramics I O 3 credits 2V+1U M. Niederberger, A. Demirörs, T. Graule
Offered for the last time in HS 2021.

Abstract
Introduction to ceramic processing.

Objective
The aim is the understanding of the basic principles of ceramic processing.

Content
Basic chemical processes for powder production.
Liquid-phase synthesis methods.
Sol-Gel processes.
Classical crystallization theory.
Gas phase reactions.
Basis of colloidal chemistry for suspension preparation and control.
Characterization techniques for powders and colloids.
Shaping techniques for bulk components and thin films.
Sintering processes and microstructural control.

Literature
Books and references will be given on the lecture notes.

327-2131-00L Materials of Life O 3 credits 3G E. Dufresne
Offered for the last time in HS 2021.

Abstract
This course examines the materials underlying living systems. We will consider the basic building blocks of biological systems, the processes which organize them, the resulting structures, their properties and functions.

Objective
Students will apply basic materials science concepts in a new context while deepening their knowledge of biology. Emphasis on estimating key physical quantities through ‘back of the envelope’ estimates and simple numerical calculations.

Content
I. Biology Essentials
II. Water: the solvent of life
III. Metabolism and Macromolecular Machines
IV. Fundamentals of macromolecular assembly
V. Structure, properties, and function of living materials:
 a. 1-D materials
 i. Cytoskeletal filaments
 b. 2-D materials
 i. Lipid membranes
 c. 3-D materials
 i. Polymer networks
 ii. Phase separated domains

Lecture notes
Lecture notes will be available for download after each lecture.

Basic Courses Part 3

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0511-00L</td>
<td>Practical Course V</td>
<td>O</td>
<td>6</td>
<td>8P</td>
<td>M. B. Willeke, J. F. Löffler</td>
</tr>
</tbody>
</table>

Abstract
Acquisition of independent scientific-technical skills; project management; organization and undertaking of experiments; interpretation, scientifically and technically correct project presentation in oral and written form.
Objective
Acquisition of independent scientific/technical skills; project management; organization and conducting of experiments; interpretation and scientifically/technically correct presentation of projects in oral and written form.

Content
Supervision by D-MATL research Groups.
Groups of students (2 or 3 per group) each work on a research project throughout the semester.

Prerequisites / notice
Prerequisite: Successful participation in the "Praktika I - IV" (courses within the material science bachelor study at ETH) or comparable practical lab courses.

Compendatory Courses

Only possible after consultation with the Director of Studies.

Industriall Internship or Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0001-00L</td>
<td>Industrial Internship</td>
<td>W</td>
<td>10 credits</td>
<td></td>
<td>external organisers</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Type</td>
<td>ECTS</td>
<td>Hours</td>
<td>Lecturers</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>--------------------</td>
</tr>
<tr>
<td>327-0002-00L</td>
<td>Project</td>
<td>W</td>
<td>10 credits</td>
<td></td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Bachelor's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0620-00L</td>
<td>Bachelor's Thesis</td>
<td>O</td>
<td>10 credits</td>
<td>17D</td>
<td>Professors</td>
</tr>
</tbody>
</table>

GESS Science in Perspective

Science in Perspective

Recommended GESS Science in Perspective (Type B) for D-MATL.

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Language Courses

see GESS Science in Perspective: Language Courses ETH/UZH

Materials Science Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Materials Science Master

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0505-00L</td>
<td>Surfaces, Interfaces and their Applications I</td>
<td>W</td>
<td>3</td>
<td>2V+1U</td>
<td>N. Spencer, M. P. Heuberger, L. Isa</td>
</tr>
</tbody>
</table>

Abstract
After being introduced to the physical/chemical principles and importance of surfaces and interfaces, the student is introduced to the most important techniques that can be used to characterize surfaces. Later, liquid interfaces are treated, followed by an introduction to the fields of tribology (friction, lubrication, and wear) and corrosion.

Objective
To gain an understanding of the physical and chemical principles, as well as the tools and applications of surface science, and to be able to choose appropriate surface-analytical approaches for solving problems.

Content
Introduction to Surface Science
- Physical Structure of Surfaces
- Surface Forces (static and dynamic)
- Adsorbates on Surfaces
- Surface Thermodynamics and Kinetics
- The Solid-Liquid Interface
- Electron Spectroscopy
- Vibration Spectroscopy on Surfaces
- Scanning Probe Microscopy
- Introduction to Tribology
- Introduction to Corrosion Science

Lecture notes
Script Download: https://moodle-app2.let.ethz.ch/course/view.php?id=14993

Literature

Prerequisites / notice
Chemistry:
- General undergraduate chemistry
- including basic chemical kinetics and thermodynamics

Taught competencies
- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies
- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Decision-making
 - Problem-solving
- Domain D - Personal Competencies
 - Creative Thinking
 - Critical Thinking

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-1201-00L</td>
<td>Transport Phenomena I</td>
<td>W Dr</td>
<td>5</td>
<td>4G</td>
<td>J. Vermant</td>
</tr>
</tbody>
</table>

Abstract
Phenomenological approach to “Transport Phenomena” based on balance equations supplemented by thermodynamic considerations to formulate the undetermined fluxes in the local species mass, momentum, and energy balance equations; Solutions of a few selected problems relevant to materials science and engineering both analytical and using numerical methods.

Objective
The teaching goals of this course are on five different levels:
1. Deep understanding of fundamentals: local balance equations, constitutive equations for fluxes, entropy balance, interfaces, idea of dimensionless numbers and scaling, ...
2. Ability to use the fundamental concepts in applications
3. Insight into the role of boundary conditions (mainly part 2)
4. Knowledge of a number of applications.
5. Flavor of numerical techniques: finite elements and finite differences.

Content
Part 1 Approach to Transport Phenomena
- Equilibrium Thermodynamics
- Balance Equations
- Forces and Fluxes
- Applications
 1. Measuring Transport Coefficients
 2. Fluid mechanics
 3. combined heat and flow

Lecture notes

Literature

Prerequisites / notice
- Programming and simulation techniques (Matlab, Monte Carlo simulations).

Taught competencies
- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies
- Domain B - Method-specific Competencies
 - Decision-making
 - Problem-solving

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-1202-00L</td>
<td>Solid State Physics and Chemistry of Materials I</td>
<td>W Dr</td>
<td>5</td>
<td>4G</td>
<td>N. Spaldin</td>
</tr>
</tbody>
</table>

Abstract
In this course we study how the properties of solids are determined from the chemistry and arrangement of the constituent atoms, with a focus on materials that are not well described by conventional band theories because their behavior is governed by strong quantum-mechanical interactions.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1548 of 2152
In this course we study how the properties of solids are determined from the chemistry and arrangement of the constituent atoms, with a focus on materials that are not well described by conventional band theories because their behavior is governed by strong quantum-mechanical interactions. We begin with a review of the successes of band theory in describing many properties of metals, semiconductors and insulators, and we practise building up band structures from atoms and describing the resulting properties. Then we explore classes of systems in which the coupling between the electrons and the lattice is so strong that it drives structural distortions such as Peierls instabilities, Jahn-Teller distortions, and ferroelectric transitions. Next, we move on to strong couplings between electronic charge and spin- and/or orbital- angular momentum, yielding materials with novel magnetic properties. We end with examples of the complete breakdown of single-particle band theory in so-called strongly correlated materials, which comprise for example heavy-fermion materials, frustrated magnets, materials with unusual metal-insulator transitions and the high-temperature superconductors.

4 credits

Teaching goals:
- Electronic properties and band theory description of conventional solids
- Electron-lattice coupling and its consequences in functional materials
- Electron-spin/orbit coupling and its consequences in functional materials
- Structure/property relationships in strongly-correlated materials

Content

The aim is a) to learn how to design and create objects as building blocks with a particular composition, size and shape, b) to understand the chemistry that allows for the creation of such hard and soft objects, and c) to master the concepts to assemble these objects into materials over several length scales.

In part I, various methodologies for the synthesis of the building blocks will be discussed, including Turkevich and Brust-Schiffrin-method for gold nanoparticles, hot-injection for semiconducting quantum dots, aqueous and nonaqueous sol-gel chemistry for metal oxides, or gas- and liquid-phase routes to carbon nanostructures.

Part II is focused on self- and directed assembly methods that can be used to create higher order architectures from those building blocks connecting the microscopic with the macroscopic world. Examples include photonics crystals, nanocryystal solids, colloidal molecules, mesocrystals or particle-based foams and aerogels.

W Dr

4 credits

M. Niederberger, A. Lauria

327-1203-00L

Complex Materials I: Synthesis & Assembly

W Dr

5 credits

4G

M. Niederberger, A. Lauria

327-1204-00L

Materials at Work I

W Dr

4 credits

4S

R. Spolenak, E. Dufresne, R. Koopmans

Prerequisites / notice

or equivalent classes from another institution

Literature

Grundlagen für Materialphysik, 327-0406-00L
Materiophysik I, 327-0407-00L
Materiophysik II, 327-0506-00L

Prerequisites / notice

1) Einführung Materialwissenschaft (327-0103-00L), in particular atomic structure, chemical bonds and basics of magnetic, electronic and optical properties of materials
2) Ceramics I (327-0503-00L), in particular liquid-phase processes, sol-gel processes and interparticle interactions
3) Kristallographie (327-0104-00L), in particular structure of crystalline solids
4) Methoden der Materialcharakterisierung (327-0504-00L)
5) Basic concepts of polymer science, in particular polymer synthesis and polymer characterization

Prerequisites / notice

Hand-outs with additional reading will be made available during the course and posted on the moodle page accessible through MyStudies all three of:

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 1549 of 2152
The course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biomineralization.

The learning goals of the course are to introduce the students to soft matter and its technological applications, to see how the structure property relations depend on fundamental formulation properties and processing steps. Students should also be able to select measurement techniques to evaluate the properties.

slides with text notes accompanying each slide are presented.

Elective Courses

The students are free to choose individually from the entire course offer of ETH Zürich on the Master level. Please consult the study administration in case of questions.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0702-00L</td>
<td>EM-Practical Course in Materials Science</td>
<td>W</td>
<td>2</td>
<td>4P</td>
<td>K. Kunze, S. Gerstl, F. Gramm, F. Krumeich, J. Reuteler</td>
</tr>
<tr>
<td>327-1101-00L</td>
<td>Biomineralization</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>K.-H. Ernst</td>
</tr>
<tr>
<td>327-1221-00L</td>
<td>Biological and Bio-Inspired Materials</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>A. R. Studart, I. Burgert, R. Nicolosi Libanori, G. Panzarasa</td>
</tr>
</tbody>
</table>

Objective

- In this course the engineering with soft materials is discussed. First, scaling principles to design structural and functional properties are introduced. Second, the characterisation techniques to interrogate the structure property relations are introduced, which include rheology, advanced optical microscopies, static and dynamic scattering and techniques for liquid interfaces.

- The course aims to introduce the basic concepts of biomineralization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field.

- The course is designed to use these probes in the structural and chemical analysis of various materials.

- The course aims to impart knowledge on the underlying principles governing the design of biological materials and on strategies to fabricate synthetic model systems whose structural organization resembles those of natural materials.

- The course first offers a comprehensive introduction to evolutive aspects of materials design in nature and a general overview about the most common biopolymers and biominerals found in biological materials. Next, current approaches to fabricate bio-inspired materials are presented, followed by a detailed evaluation of their structure-property relationships with focus on mechanical, optical, surface and adaptive properties.
Content

This course is structured in 3 blocks:
- Block (I): Fundamentals of engineering in biological materials
 - Biological engineering principles
 - Basic building blocks found in biological materials
- Block (II): Replicating biological design principles in synthetic materials
 - Biological and bio-inspired materials: polymer-reinforced and ceramic-toughened composites
 - Lightweight biological and bio-inspired materials
 - Functional biological and bio-inspired materials: surfaces, self-healing and adaptive materials
- Block (III): Bio-inspired design and systems
 - Mechanical actuation - plant systems
 - Bio-inspiration in the built environment

Lecture notes

The course is mainly based on the books listed below. Additional references will be provided during the lectures.

Literature

327-2103-00L

Advanced Composite and Adaptive Material Systems

W 4 credits 2V+2U F. J. Clemens, B. Weisse

Abstract

Enables materials scientists to work in a wide range of advanced composite and adaptive material systems. Emphasis is placed on developing advanced knowledge and understanding of their design, manufacturing, structure and properties, characterisation and applications.

Objective

Enables materials scientists to work in a wide range of advanced composite and adaptive material systems. Emphasis is placed on developing advanced knowledge and understanding of their design, manufacturing, structure and properties, characterisation and applications.

Content

The course will comprise a balance of lectures, tutorials, student presentations and laboratory classes. In addition, case study site visits will be made for certain topics to illustrate the industrial application of particular technologies.

More and more, the interest in particle and fibre reinforced / structural composite materials is increasing. In beginning, the main focus will be on the production of functional fibres, e.g., for fibre-based sensor and actuator composites with polymers, metals and ceramics. Optical, piezoelectric, shape memory and other fibres for advanced composite applications will be treated in detail. There will be a discussion on fibre classification, fibre production (ceramic and others), adaptive and smart materials, types of sensors and actuators (e.g. made from electro-active polymers), and sensor networks with piezoelectric composites (e.g., Active or Macro Fibre Composites) for adaptive material systems or structural health monitoring (SHM) of advanced composite structures. Furthermore, students will get an overview of biomedical composites and composite application in the field of aerospace, automotive, civil engineering, and energy industry.

Emphasis will be put on the underlaying science of a particular process or effect rather than a detailed description of the technique or equipment.

Manufacturing of actuators driven by electro-active polymers (EAP) and sensors applications of Active Fibre Composites (AFC) will be studied in laboratory classes.

Case studies and examples drawn from structural and functional applications of advanced composite and adaptive material systems will be demonstrated.

Lecture notes

Copies of the slides will be made available for download before each lecture.

Literature

- Adaptronics and smart structures: basics, materials, design, and applications by H. Janocha. Publisher Springer 1999; Berlin, New York.

Prerequisites / notice

- Prerequisite: ETCH-course 327-0610 Composite Materials or similar course

327-2105-00L

Supramolecular Aspects of Polymers

W 2 credits 1G P. J. Walde

Abstract

Preparation, characterization and applications of supramolecular aggregates formed from amphiphilic block copolymers.

Objective

To become acquainted with some of the properties and applications of these aggregates.

Content

With selected recent examples on the self-assembly of amphiphilic block copolymers several basic aspects and possible applications will be discussed. The focus will mainly be on micelles and vesicles.

Lecture notes

No script

327-2125-00L

Microscopy Training SEM I - Introduction to SEM

Abstract

This introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using ScopeM SEMs, students have the opportunity to study their own samples (or samples provided) and solve practical problems by applying knowledge acquired during the lectures. At the end of the course, students will be able to apply SEM for their (future) research projects.
Objective
- Set-up, align and operate a SEM successfully and safely.
- Understand important operational parameters of SEM and optimize microscope performance.
- Display different signals in SEM and obtain secondary electron (SE) and backscatter electron (BSE) images.
- Operate the SEM in low-vacuum mode.
- Make use of EDX for semi-quantitative elemental analysis.
- Prepare samples with different techniques and equipment for imaging and analysis by SEM.

Content
During the course, students learn through lectures, demonstrations, and hands-on sessions how to set up and operate SEM instruments, including low-vacuum and low-voltage applications. This course gives basic skills for students new to SEM. At the end of the course, students are able to align an SEM, to obtain secondary electron (SE) and backscatter electron (BSE) images and to perform energy dispersive X-ray spectroscopy (EDX) semi-quantitative analysis. Emphasis is put on procedures to optimize SEM parameters in order to best solve practical problems and deal with a wide range of materials.

Lectures:
- Introduction on Electron Microscopy and instrumentation
- Electron sources, electron lenses and probe formation
- Beam/specimen interaction, image formation, image contrast and imaging modes.
- Sample preparation techniques for EM
- X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescan and spectral mapping

Practicals:
- Brief description and demonstration of the SEM microscope
- Practice on image formation, image contrast (and image processing)
- Student participation on sample preparation techniques
- Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities
- Practice on real-world samples and report results

Bibliography

Abstract
The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for beginners who are interested in using TEM for their Master or PhD thesis. TEM sample preparation techniques are also discussed. During hands-on sessions at different TEM instruments, students will have the opportunity to examine their own samples if time allows.

Objective
Understanding of
1. the set-up and individual components of a TEM
2. the basics of electron optics and image formation
3. the basics of electron beam – sample interactions
4. the contrast mechanism
5. various sample preparation techniques

Learning how to
1. align and operate a TEM
2. acquire data using different operation modes of a TEM instrument, i.e. Bright-field and Dark-field imaging
3. record electron diffraction patterns and index diffraction patterns
4. interpret TEM data

Content
Lectures:
- Basics of electron optics and the TEM instrument set-up
- TEM imaging modes and image contrast
- STEM operation mode
- Sample preparation techniques for hard and soft materials

Practicals:
- Demonstration of advanced Transmission Electron Microscope techniques
- Practical training for students: sample loading, instrument alignment and data acquisition.
- Sample preparation for different types of materials
- Practical work with TEMs

Bibliography

Prerequisites / notice
No mandatory prerequisites.

<table>
<thead>
<tr>
<th>327-2126-00L</th>
<th>Microscopy Training TEM I - Introduction to TEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>2 credits</td>
</tr>
<tr>
<td>3P</td>
<td></td>
</tr>
<tr>
<td>P. Zeng, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm, A. Sologubenko, M. Willinger</td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1552 of 2152
The course consists of six lectures introducing concepts, methods and principles for a sustainable materials management (including, amongst others, material flow analysis, life cycle assessment, raw materials criticality evaluation), with a particular focus on recycling issues and exemplifications for materials relevant for Information and Communication Technologies (ICT) and emerging energy technologies.

327-2128-00L **High Resolution Transmission Electron Microscopy**
W 2 credits 3G
A. Sologubenko, R. Erni, M. Schäublin, M. Willinger, P. Zeng

Abstract
This advanced course on High Resolution Transmission Electron Microscopy (HRTEM) provides lectures focused on HRTEM and HRSTEM imaging principles, related data analysis and simulation and phase restoration methods.

Objective
- Learning how HRTEM and HRSTEM images are obtained.
- Learning about the aberrations affecting the resolution in TEM and STEM and the different methods to correct them.
- Learning about TEM and STEM images simulation software.
- Performing TEM and STEM image analysis (processing of TEM images and phase restoration after focal series acquisitions).

Content
This course provides new skills to students with previous TEM experience. At the end of the course, students will know how to obtain HR(S)TEM images, how to analyse, process and simulate them.

Topics:
1. Introduction to HRTEM and HRSTEM
2. Considerations on (S)TEM instrumentation for high resolution imaging
3. Lectures on aberrations, aberration correction and aberration corrected images
4. HRTEM and HRSTEM simulation
5. Data analysis, phase restoration and lattice-strain analysis

Literature
- Detailed course manual

Prerequisites / notice
The students should fulfill one or more of these prerequisites:
- Prior attendance to the EDS-TEM basic course
- Prior attendance to ETH EM lectures (327-0703-00L Electron Microscopy in Material Science)
- Prior TEM experience

327-2129-00L **Analytical Electron Microscopy: EDS**
W 1 credit 2P

Abstract
The main goal of this hands-on course is to provide students with fundamental understanding of underlying physical processes, experimental set-up solutions and hands-on practical experience of analytical electron microscopy (AEM) technique for microstructure characterisation, specifically Energy Dispersive X-ray Spectroscopy (EDS) and spectrum imaging (SI) technique.

Objective
- understanding of physical processes that enable the EDS technique and data evaluation algorithms;
- hand-on experience of data acquisition and evaluation routines including
- practical understanding of different data acquisition set-ups,
- optimization of acquisition parameters for most reliable quantification of the results,
- the knowledge of the available and most reliable quantification algorithms and their handling
- the knowledge of data evaluation routines and possible handicaps for reliable elemental content distribution analyses and material composition quantification
- the effect of the specimen geometry on the data and experimental solutions for minimization of the artefacts

Content
This advanced course provides analytical EM techniques to the students with prior TEM experience (TEM or SEM). At the end of the course, students will understand the physical processes that enable the EDS technique and data evaluation algorithms and apply the technique for their own research.

- Introduction to analytical electron microscopy: theory and instrumentation.
- Lectures on EDS, WDS
- Practical on EDS-SEM: data acquisition and analysis.
- Practical on EDS-TEM: data acquisition and analysis.
- The hand-on trainings are to be carried-out on a real-life specimen, provided by lecturers and / by students.

Lecture notes
Provided in the course Moodle-page

Literature
- Carter & Williams: Transmission Electron Microscopy: Diffraction, Imaging and Spectrometry. Springer Verlag, 2016, DOI: 10.1007/978-3-319-26651-0

Prerequisites / notice
- Master student or PhD student who has experience with EM (SEM or TEM) techniques or prior attendance of one of the following courses: Microscopy Training SEM1 (327-2125-00L) or Microscopy Training TEM1(327-2126-00L)
- Attendance of the following courses is of advantage, but not required: Scattering Techniques for Material Characterization (327-2137-00L) or Elements of Microscopy (227-0390-00L) or Electron Microscopy in Material Science (327-0703-00L)

327-2132-00L **Multifunctional Ferroic Materials: Growth and Characterisation**
W 2 credits 2G
M. Trassin

Abstract
The course will explore the growth of (multi-) ferroic oxide thin films. The structural characterization and ferroic state investigation by force microscopy and by laser-optical techniques will be addressed. Oxide electronics device concepts will be discussed.

Objective
Oxide films with a thickness of just a few atoms can now be grown with a precision matching that of semiconductors. This opens up a whole world of functional device concepts and fascinating phenomena that would not occur in the expanded bulk crystal. Particularly interesting phenomena occur in films showing magnetic or electric order or, even better, both of these ("multiferroics").

In this course students will obtain an overarching view on oxide thin epitaxial films and heterostructures design, reaching from their growth by pulsed laser deposition to an understanding of their magnetoelectric functionality from advanced characterization techniques. Students will therefore understand how to fabricate and characterize highly oriented films with magnetic and electric properties not found in nature.

Content
Types of ferroic order, multiferroics, oxide materials, thin-film growth by pulsed laser deposition, molecular beam epitaxy, RF sputtering, structural characterization (reciprocal space - basics-, XRD for thin films, RHEED) epitaxial strain related effects, scanning probe microscopy techniques, laser-optical characterization, oxide thin film based devices and examples.

327-2135-00L **Advanced Analytical TEM**
Does not take place this semester.
The course focuses on the fundamental understanding and hands-on knowledge of analytical Transmission Electron Microscopy (ATEM) techniques: electron dispersive X-ray analysis (EDX), energy filtered TEM and electron energy loss spectroscopy (EELS). The lectures will be followed by demonstrations and acquisition sessions TEM instruments. The lectures on statistical treatment of raw data sets and on data evaluation and on EDX acquisition are included. The objective of the course is to give students comprehensive insight into the most important aspects of microstructure characterization using electron and X-ray scattering. The course is open to master students and doctoral students of material science and students of other departments. The devices used for this purpose range from simple ammeter and its scientific pendant impedance spectrometer for electricity, and the chemical analysis of fuels and their combustion products. With the advent of renewable energy and its chemical or electro-chemical storage, there is increasing demand for advanced analysis tools as well as operando spectroscopy. The objective of the course is to introduce the physical basis of most commonly used methods, i.e., separation techniques (GC, MS), spectroscopic methods (impedance spectroscopy, UV-Vis-, IR-, Raman- spectroscopy), and scattering techniques (X-ray/photoelectron spectroscopy, neutron scattering) within the framework of current scientific questions in renewable energy research. The course will build on the Bachelor’s degree courses Analytical Chemistry and Materials Characterization Methods. The course is recommended to students not involved in the experiment.

Abstract

The course focuses on the fundamental understanding and hands-on knowledge of analytical Transmission Electron Microscopy (ATEM) techniques: electron dispersive X-ray analysis (EDX), energy filtered TEM and electron energy loss spectroscopy (EELS). The lectures will be followed by demonstrations and acquisition sessions TEM instruments. The lectures on statistical treatment of raw data sets and on data evaluation and on EDX acquisition are included. The objective of the course is to give students comprehensive insight into the most important aspects of microstructure characterization using electron and X-ray scattering. The course is open to master students and doctoral students of material science and students of other departments. The devices used for this purpose range from simple ammeter and its scientific pendant impedance spectrometer for electricity, and the chemical analysis of fuels and their combustion products. With the advent of renewable energy and its chemical or electro-chemical storage, there is increasing demand for advanced analysis tools as well as operando spectroscopy. The objective of the course is to introduce the physical basis of most commonly used methods, i.e., separation techniques (GC, MS), spectroscopic methods (impedance spectroscopy, UV-Vis-, IR-, Raman- spectroscopy), and scattering techniques (X-ray/photoelectron spectroscopy, neutron scattering) within the framework of current scientific questions in renewable energy research. The course will build on the Bachelor’s degree courses Analytical Chemistry and Materials Characterization Methods. The course is recommended to students not involved in the experiment.

Objective

- Setting-up the optimal operation conditions for reliable EDX analysis and quantification.
- Setting-up the optimal operation conditions for the reliable EFTEM analyses.
- Setting-up the optimal operation conditions for the reliable EELS analyses.
- EDX data acquisition, on-line analysis and quantification.
- EFTEM data acquisition and analysis.
- EELS acquisition analyses.

Content

1. Fundamentals of analytical TEM.
4. EELS.
5. EFTEM.
7. EDX. Quantification and data evaluation.
8. Demonstrations on EDX, EELS, and EFTEM data acquisitions.
9. Practical sessions for students with provided specimens. Practical sessions for students with their own specimens.
10. Questions and such: open discussion.
11. Student presentations.

Literature

Prerequisites / notice

No mandatory prerequisites. Prior attendance to EM Basic lectures (327-0703-00L, 227-0390-00L) and to the Microscopy Training TEM I - Introduction to TEM course (327-2126-00L) is recommended.
Prerequisites / notice
Crystallography, X-ray diffraction and electron microscopy on the BSc level. All enrolled students are initially placed on the "waiting list" until the registration deadline. In the case of more than 12 applicants, the students will be selected by the lecturers before the start of the lecture according to the priority criteria: master students before doctoral students, Material Science students before students of other departments.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>A - Subject-specific Competencies</th>
<th>B - Method-specific Competencies</th>
<th>D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
</tbody>
</table>

327-2140-00L Focused Ion Beam and Applications

Number of participants limited to 6. PhD students will be asked for a fee. https://scopem.ethz.ch/education/MTP.html

Registration form: (link will follow)

Abstract
The course on Focused Ion Beam (FIB) provides theoretical and hands-on learning, applying what is learned in lectures to hands-on sessions.

Objective
Overview of FIB theory, instrumentation.
FIB hardware operation and applications.
Set-up, align and operate a FIB-SEM successfully and safely.
Perform cross-sections: preparation and analysis
Understanding of workflow for sample preparation (TEM lamella, APT needles, XCT pillars...) using FIB-SEM.
Applying FIB-SEM for materials characterization.

Content
This course provides FIB techniques to students with previous SEM experience. At the end of the course, students will be able to set-up a FIB-SEM session and characterize cross-sections. Students will also understand how to prepare TEM & APT samples and design a FIB experiment to solve research problems.

Introduction to FIB theory and instrumentation.
Discussion of FIB operation and applications.
Lecture and demonstration on FIB automation.
Practicals on FIB-SEM set-up and alignment.
Practicals on cross-section and site-specific sample characterization.
Practicals on sample preparation (TEM lamella/APT needles).

Lecture notes
Lecture notes will be distributed.

Literature

327-2143-00L Computational Multi-Scale Modeling of Solids

Abstract
This course considers the multi-scale computational modeling of hard-matter systems, with an emphasis on the physical phenomena of matter transport and emergent macroscopic mechanical properties, and how their microscopic origin is coarse grained to the engineering scale of a material component.

Objective
By the end of the course, the student must be able to:
- Apply an appropriate numerical method for multiphysics simulations to a complex physics problem
- Choose suitable methods and tools for (a) the development of, (b) the modelling and simulation of, (c) the analysis of and (d) the choice of solution for an engineering problem in the mechanical engineering domain (product design, manufacturing process and system production)
- Analyse the defined problem based on the geometric, kinematic / dynamic, material assumptions while choosing suitable numerical and analytical tools followed by the experimental validation.
- Apply, adapt and synthesize learned engineering skills to create novel solutions
- Derive a finite element formulation from the differential equations in strong form

Content
Multi-scale modelling of hard-matter systems:
- review of material transport, diffusion and viscous flow theory
- symmetry and linear mathematical physics of plasticity in metals ’ from atoms to dislocation line defects to the continuum.
- introduction to the physics and numerics of point particle simulation ’ molecular dynamics and discrete element methods.
- coarse grainning strategies and uncertainty quantification.
- continuum models of transport and plasticity using the finite element method

Computational and simulation frameworks:
- parallel computing computing
- scientific modelling frameworks
- data analysis and visualization

101-0121-00L Fatigue and Fracture in Materials and Structures

Abstract
The fundamentals in fatigue and fracture mechanics, which are used in different engineering disciplines (e.g., for mechanical, aerospace, civil and material engineers) will be discussed. The focus will be on fundamental theories (based on fracture mechanics) that model fatigue damage and crack propagation.

Objective
In this course, the students will learn:
- Linear elastic and elastic-plastic fracture mechanics.
- Modern computer-based techniques (using ABAQUS Finite Element Package) to simulate cracks in both bulk materials and bonded joints/interfaces.
- Laboratory fatigue and fracture tests on details with cracks.
The course starts with a discussion on the importance of fatigue and fracture in different engineering disciplines such as mechanical, aerospace, civil and material engineering domains. The preliminary topics that are covered in this course are:

I) Fatigue of materials:
- Mechanisms of fatigue crack initiation in (ductile and brittle) metals.
- Crack initiation under uni-axial high-cycle fatigue (HCF) loadings: Wöhler (S-N) curves, constant life diagram approach (mean-stress effects), rainflow analysis and Miner's damage rule.
- Crack initiation under multi-axial HCF loadings: multi-axial fatigue mechanisms, critical plane approach (critical distance theory), equivalent stress approach, proportional and non-proportional loading.

II) Fracture mechanics:
- Elastic fracture mechanics (LEFM): limits of LEFM, stress intensity factors, crack opening displacement, mixed-mode fracture, etc.
- Elastic-plastic fracture mechanics: Irwin and Dugdale models, plastic zone shapes, crack-tip opening displacement and J-integral.
- Fatigue crack growth (FCG): FCG models, Paris' law, cyclic plastic zones, crack closure effects. This also includes FE modeling of the FCG and laboratory tests (at Empa).

III) Introduction to cohesive zone models (CZMs):
- Advantages and disadvantages of CZMs compared to fracture mechanics.
- Different bond-slip models for the bonded joints/interfaces.

IV) Computer laboratory to simulate cracks and debonding problems:
- Finite Element (FE) modeling of complex details with cracks.
- FE simulations of debonding problems using CZMs.
- Computer laboratory: FE training and exercises using (the student edition of) the ABAQUS FE Package.

V) Introduction to fatigue and fracture design in civil structures. Different methods for fatigue strengthening will be discussed.

VI) Visits to the Empa (Swiss Federal Laboratories for Materials Science and Technology) in Dübendorf, and "Laboratory Competition". The students will:
- Visit different small-scale and large-scale fatigue testing equipment.
- Get to know different ongoing fatigue- and fracture-related projects.
- Witness and help to conduct a fatigue test on a steel plate with a pre-crack and a fracture test on an adhesively-bonded joint.
- Compare the experimental results with their own calculations (from the fracture theories).
- "Laboratory Competition" at Empa: the students with the closest predictions will win the "Empa Laboratory Competition" and will be awarded by a prize.

Lecture notes: Lectures are based on the lecture slides and the handouts, which will be given to the students during the semester.

Literature:

Prerequisites / notice:
Note 1: A basic knowledge on mechanics of structures and structural analysis (i.e., stress-strain analysis and calculations of internal deformations, strains and stresses within structures) is recommended and will be helpful in the course.

Note 2: Laboratory demonstrations and fatigue/fracture tests at the Structural Engineering Research Laboratory of Empa in Dübendorf. This includes laboratory tours and showcasing the Empa large-scale 7-MN fatigue testing machine for bridge cables, different fatigue and fracture testing equipment for structural components, etc.

101-0617-01L Advances in Building Materials W 4 credits 2G R. J. Flatt, I. Burgert

Abstract: The course on Advances in Building Materials provides an introductory overview of the needs and future of materials science in the building sector. Focus topics concern sustainability, durability, thermal insulation, coatings, sealants, adhesives, flame retardancy and the future perspective and developments of concrete and wood with regard to smart material development and ecological concerns.

Objective: In this course, the students will gain a broad overview of the use of materials in the building sector, with a particular focus on concrete and wood. Current limitations and in particular sustainability related challenges will be detailed with the objective of laying the grounds to discuss future developments anticipated in this field.

Content: This course for civil engineers lays the grounds in the specialization Materials and Mechanics and complements the second introductory course of the specialization on Numerical Mechanics of Materials. The course also addresses master students in Materials Science and other study programs interested in deepening their understanding of application-relevant properties of engineering materials and sustainability related challenges.

The following topics are covered:
1. Material selection
2. Materials and sustainability 1
3. Materials and sustainability 2
4. Recyclability
5. Material science of wood durability
6. Material science of concrete durability
7. Foams in construction and thermal insulation
8. Sealants and adhesives in construction
9. Coatings
10. Flame retardants
11. Future of wood – 1
12. Future of wood – 2
13. Future of concrete – 1
14. Future of concrete – 2

Lecture notes: Handouts will be provided for each lecture.

101-0677-00L Concrete Technology W 2 credits 2G F. Constandopoulos, M. Bäuml, G. Martinola, T. Wangler

Abstract: Opportunities and limitations of concrete technology, Commodities and leading edge specialties.

Objective: Advanced education in concrete technology for civil engineers who are designing, specifying and executing concrete structures.
Content

Based on the lecture 'Werkstoffe' students receive deep concrete technology training. Comprehensive knowledge of the most important properties of conventional concrete and the current areas of research in concrete technology will be presented. The course covers various topics, including:

- concrete components
- concrete properties
- concrete mix design
- production, transport, casting
- demoulding, curing and additional protective measures
- durability
- standards
- chemical admixtures
- alternative binders
- specialty concretes such as
 - self compacting concrete
 - fiber reinforced concrete
 - fast setting concrete
 - fair faced concrete
 - recycled concrete
- new research in digital fabrication with concrete

Lecture notes

Slides provided for download.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain A - Subject-specific Competencies	Techniques and Technologies	assessed
Domain B - Method-specific Competencies	Problem-solving	assessed
Domain C - Social Competencies	Communication	assessed
Domain C - Social Competencies	Cooperation and Teamwork	assessed
Domain D - Personal Competencies	Creative Thinking	assessed
Domain D - Personal Competencies	Critical Thinking	assessed

151-0353-00L Mechanics of Composite Materials

Abstract

Focus is on laminated fibre reinforced polymer composites. The courses treats aspects related to micromechanics, elastic behavior of unidirectional and multidirectional laminates, failure and damage analysis, design and analysis of composite structures.

Objective

To introduce the underlying concept of composite materials and give a thorough understanding of the mechanical response of materials and structures made from fibre reinforced polymer composites, including elastic behaviour, fracture and damage analysis as well as structural design aspects. The ultimate goal is to provide the necessary skills to address the design and analysis of modern lightweight composite structures.

Content

The course is addressing following topics:

- Introduction
- Elastic anisotropy
- Micromechanics aspects
- Classical Laminate Theory (CLT)
- Failure hypotheses and damage analysis
- Analysis and design of composite structures
- Variable stiffness structures

Lecture notes

Script, handouts, exercises and additional material are available in PDF-format on the CMASLab webpage resp on moodle.

https://moodle-app2.let.ethz.ch/course/view.php?id=2610

Literature

The lecture material is covered by the script and further literature is referenced in there.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain A - Subject-specific Competencies	Techniques and Technologies	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain B - Method-specific Competencies	Decision-making	assessed
Domain B - Method-specific Competencies	Media and Digital Technologies	not assessed
Domain B - Method-specific Competencies	Problem-solving	assessed
Domain B - Method-specific Competencies	Project Management	not assessed
Domain C - Social Competencies	Communication	not assessed
Domain C - Social Competencies	Cooperation and Teamwork	not assessed
Domain C - Social Competencies	Customer Orientation	not assessed
Domain C - Social Competencies	Leadership and Responsibility	not assessed
Domain C - Social Competencies	Self-presentation and Social Influence	not assessed
Domain C - Social Competencies	Sensitivity to Diversity	not assessed
Domain C - Social Competencies	Negotiation	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed
Domain D - Personal Competencies	Creative Thinking	assessed
Domain D - Personal Competencies	Critical Thinking	assessed
Domain D - Personal Competencies	Integrity and Work Ethics	assessed
Domain D - Personal Competencies	Self-awareness and Self-reflection	assessed
Domain D - Personal Competencies	Self-direction and Self-management	not assessed

151-0544-00L Metal Additive Manufacturing - Mechanical Integrity and Numerical Analysis

Abstract

An introduction to Metal Additive Manufacturing (MAM) (e.g. different techniques, the metallurgy of common alloy-systems, existing challenges) will be given. The focus of the lecture will be on the employment of different simulation approaches to address MAM challenges and to enable exploiting the full advantage of MAM for the manufacture of structures with desired property and functionality.

Objective

The main objectives of this lecture are:

- Acknowledging the possibilities and challenges for MAM (with a particular focus on mechanical integrity aspects),
- Understanding the importance of material science and metallurgical considerations in MAM,
- Appreciating the importance of thermal, fluid, mechanical and microstructural simulations for efficient use of MAM technology,
- Using different commercial analysis tools (COMSOL, ANSYS, ABAQUS) for simulation of the MAM process.
Content
- Introduction to MAM (concept, application examples, pros & cons),
- Powder-bed and powder-blown metal additive manufacturing,
- Thermo-fluid analysis of additive manufacturing,
- Continuum-based thermal modelling and experimental validation techniques,
- Residual stresses and distortion simulation and verification methods,
- Microstructural simulation (basics, analytical, kinetic Monte Carlo, cellular automata, phase-field),
- Mechanical property prediction for MAM,
- Microstructure and mechanical response of MAM material (steels, Ti6Al4V, Inconel, Al alloys),
- Design for additive manufacturing
- Artificial intelligence for AM

Exercise sessions use COMSOL, ANSYS, ABAQUS packages for analysis of MAM process. Detailed video instructions will be provided to enable students to set up their own simulations. COMSOL, ANSYS and ABAQUS agreed to support the course by providing licenses for the course attendees and therefore the students can install the packages on their own systems.

Lecture notes
Handouts of the presented slides.

Literature
No textbook is available for the course (unfortunately), since it is a dynamic and relatively new topic. In addition to the material presented in the course slides, suggestions/recommendations for additional literature/publications will be given (for each individual topic).

Prerequisites / notice
A basic knowledge of mechanical analysis, metallurgy, thermodynamics is recommended.

151-0550-00L Adaptive Materials for Structural Applications
4 credits
W 3G A. Bergamini

Abstract
Adaptive materials offer appealing ways to extend the design space of structures by introducing time-variable properties into them. In this course, the physical working principles of selected adaptive materials are analyzed and simple models for describing their behavior are presented. Some applications are illustrated, also with laboratory experiments where possible.

Objective
The study of adaptive materials covers topics that range from chemistry to theoretical mechanics.

The aim of this course is to convey knowledge about adaptive materials, their properties and the physical mechanisms that govern their function, so as to develop the skills to deal with this interdisciplinary subject.

Content
This course will provide the students with an insight into the properties and physical phenomena which lead to the features of adaptive materials. Starting from chemomechanical (skeletal muscles), the physical behavior of a wide range of adaptive materials, thermo- and photo-mechanical, electro-mechanical, magneto-mechanical and meta-materials will be thoroughly discussed and analyzed. Up-to-date results on their performance and their implementation in mechanical structures will be detailed and studied in laboratory sessions.

Analytical tools and energy based considerations will provide the students with effective instruments for understanding adaptive materials and assess their performance when integrated in structures or when arranged in particular fashions.

Basic concepts: Power conjugated variables, dissipative effects, geometry- and materials-based energy conversion

Thermo-mechanical coupling: Shape memory alloys / polymers

Electromechanical coupling(1): DEA, EBL, electrorheological fluids

Shape control / morphing: Use, requirements, challenges

Morphing applications of variable stiffness structures: Lab work

Electromechanical coupling (2): Piezoelectric, electrostrictive effect

Vibration Reduction: Measurement, passive, semi-active (active) damping methods

Vibration reduction applications of piezoelectric materials: Lab work

Metamaterials: Definition of metamaterials - electromagnetic, acoustical and other metamaterials

Energy harvesting and sensing: Energy harvesting with EAP and piezoelectric materials, transducers as sensors: Piezo, resistive,....

Lecture notes
Lecture notes (manuscript and handouts) will be provided

151-0605-00L Nanosystems
4 credits
W 4G A. Stemmer

Abstract
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.

Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.

Self-assembly and directed assembly of 2D and 3D structures.

Special emphasis on the emerging field of molecular electronic devices.

Objective
Familiarize students with basic science and engineering principles governing the nano domain.
Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will provide insights into the fundamental concepts of charge transport in solar cells, batteries, and electrolysers. Emphasizing the interplay between these fields will also improve students' ability to conduct effective nanoscale research, recognize the broader significance of their work, and start collaborations.

Topics are treated in 2 blocks:

(I) From Quantum to Continuum
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.

(Literature)

(II) Interaction Forces on the Micro and Nano Scale
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.

Self-assembly and directed assembly of 2D and 3D structures.

Prerequisites / notice
Lectures and Mini-Review presentations: Thursday 10-13
Homework: Mini-Review (compulsory continuous performance assessment)

Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. Each Mini-Review will be presented both orally and as a written paper.

Content
The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Familiarity with basic concepts of quantum mechanics is expected. Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled.

227-0617-00L Solar Cells

Objective
Physics, technology, characteristics and applications of photovoltaic solar cells.

Content
Introduction to solar radiation, physics, technology, characteristics and applications of photovoltaic solar cells and systems.

Lecture notes
Lecture reprints (in english).

Prerequisites / notice
Prerequisites: Basic knowledge of semiconductor properties.

227-0619-00L Charge Transport in Energy Conversion and Storage Devices

Objective
By the end of the course, the students will (1) understand the fundamentals of electronic and ionic charge transport, (2) understand the operational principles of solar cells, batteries, and electrolyzers, and (3) understand fundamental limits for each device type. In addition, the students will learn how to simulate these devices during guided exercise sessions and develop an intuitive understanding on how to interpret the most important device characteristics.

Literature
- Huggins, Advanced Batteries, DOI:10.1007/9780387764845

Prerequisites / notice
Be motivated to change the world to renewable energies! Elements of calculus will be reviewed at the beginning of the course, but we leave the hard work of solving coupled differential charge transport equations to the computer and focus on developing a strong intuition. Prior knowledge in semiconductor physics or electrochemistry is an advantage, but not a prerequisite. Students are required to bring a windows-compatible computer with a common data analysis software to the exercises. Apps for simulating devices under different operating conditions will be made available to the students. A visit to a solar cell or battery fab will be organized during the semester if the epidemiological situation permits.

376-1103-00L Frontiers in Nanotechnology

Abstract
Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.

Objective
Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within mammal and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently sizzling in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.
Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.

Objective

The course covers the following topics:
1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.

Content

Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated.

Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Lecture notes

Handouts are deposited online (moodle).

Literature

(available online via ETH library)

Handouts and references therein.
Learning material will be made available through a dedicated RStudioServer and through Moodle. At the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:

- Magnetism in solids (mechanisms producing inter-atomic exchange interaction in solids, crystal field).
- Spin resonance and relaxation (Larmor precession, resonance phenomena, quantum tunneling, Bloch equation, superparamagnetism).
- Magnetic order at finite temperatures (Ising and Heisenberg models, low-dimensional magnetism).
- Dipolar interaction in solids (shape anisotropy, dipolar frustration, origin of magnetic domains).

Concepts and Theories

At the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:

1. The integer quantum Hall effect.
2. Conductance quantization in quantum point contacts.
3. The Aharonov-Bohm effect.

Lecture notes and slides are available online and will be distributed if desired.

The course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of common nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots.

Creative Thinking

The course is taught in English.

Prerequisites / notice

The course is taught in English.

Literature

In addition to the lecture notes, the following supplementary books can be recommended:

Prerequisites / notice

The lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisite. Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
 - assessed
- Techniques and Technologies
 - assessed

Domain B - Method-specific Competencies
- Analytical Competencies
 - assessed
- Media and Digital Technologies
 - assessed
- Problem-solving
 - not assessed

Domain C - Social Competencies
- Communication
 - not assessed
- Self-presentation and Social Influence
 - assessed

Domain D - Personal Competencies
- Sensitivity to Diversity
 - not assessed
- Critical Thinking
 - assessed
- Integrity and Work Ethics
 - assessed
- Self-direction and Self-management
 - not assessed

402-0809-00L

Introduction to Computational Physics

This course offers an introduction to computer simulation methods for physics problems and their implementation on PCs and super computers. The covered topics include classical equations of motion, partial differential equations (wave equation, diffusion equation, Maxwell's equations), Monte Carlo simulations, percolation, phase transitions, and N-Body problems.

Objective

Students learn to apply the following methods: Random number generators, Determination of percolation critical exponents, numerical solution of problems from classical mechanics and electrodynamics, canonical Monte-Carlo simulations to numerically analyze magnetic systems. Students also learn how to implement their own numerical frameworks in Julia and how to use existing libraries to solve physical problems. In addition, students learn to distinguish between different numerical methods to apply them to solve a given physical problem.

Content

Introduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics as well as some interdisciplinary applications are used to introduce modern programming methods for numerical simulations using Julia. Furthermore, an overview of existing software libraries for numerical simulations is presented.

Lecture notes and slides are available online and will be distributed if desired.

Literature

Lecture notes and slides are available online and will be distributed if desired.

Prerequisites / notice

Lecture and exercise lessons in english, exams in German or in English

529-0659-00L

Electrochemistry: Fundamentals, Cells & Applications

This course introduces the fundamental concepts of electrochemistry, including the principles of electrochemical cells, electrode processes, and the factors affecting electrochemical reactions. Topics covered include: the Nernst equation, electrode potentials, Faraday's laws, and the applications of electrochemistry in various fields such as medicine, environmental science, and materials science.

Objective

At the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:

1. The integer quantum Hall effect.
2. Conductance quantization in quantum point contacts.
3. The Aharonov-Bohm effect.

Content

The course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of common nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots.

Prerequisites / notice

The course is taught in English.

Literature

In addition to the lecture notes, the following supplementary books can be recommended:

Prerequisites / notice

The lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisite. Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
 - assessed
- Techniques and Technologies
 - assessed

Domain B - Method-specific Competencies
- Analytical Competencies
 - assessed
- Media and Digital Technologies
 - assessed
- Problem-solving
 - not assessed

Domain C - Social Competencies
- Communication
 - not assessed
- Self-presentation and Social Influence
 - assessed

Domain D - Personal Competencies
- Sensitivity to Diversity
 - not assessed
- Critical Thinking
 - assessed
- Integrity and Work Ethics
 - assessed
- Self-direction and Self-management
 - not assessed
Abstract

Introduction to electrochemistry from a physical chemistry point of view, focusing on thermodynamics and kinetics of electrochemical reactions, and engineering of electrochemical cells. The topics are of generic nature yet also discussed in the context of specific applications in industrial electrochemistry, energy storage and conversion, electroanalytical techniques, sensors and corrosion.

Objective

The course establishes the fundamentals to understand and describe electrochemical reactions. The students are familiarized with key concepts and approaches in electrochemistry and selected aspects of materials science and engineering and how they are put to use in selected applications.

Content

- Introduction: important quantities & units, terminology;
- Chapter I - redox reactions, Faraday’s laws;
- Chapter II - Equilibrium electrochemistry: cells, galvanic and electrolytic cells, thermodynamic state functions, theoretical cell voltage, half-cell / electrode potential, hydrogen electrode, the electrochemical series, Nernst equation;
- Chapter III - Electrodes & interfaces: electrochemical potential, phase potentials, work function, Fermi level, the electrified interface, the electrochemical double layer, reference electrodes and laboratory cells;
- Chapter IV - Electrolytes: conductivity, aqueous electrolytes, transference effects, liquid junctions, polymer electrolytes, ion-exchange membranes, Donnan exclusion, solid state ion conductors;
- Chapter V - Dynamic electrochemistry: overpotentials, description of charge-transfer reaction, Butler-Volmer and Tafel equation, exchange current density, mass transport limitations;
- Chapter VI - Industrial electrochemistry: electrochemical engineering, process and reactor types, current density distribution, porous electrodes, chlor-alkali and HCl electrolysis, oxygen depolarized cathode;
- Chapter VII - Energy storage & conversion: important primary and secondary battery chemistries, fuel cells, polymer electrolyte fuel cells, low temperature H2 and O2 electrochemistry, electrocatalysis, triple-phase boundary, solid oxide fuel cell, conversion efficiency;
- Chapter VIII - Electroanalytical methods & sensors: potentiometry, cyclic and stripping voltammetry, rotating disc electrode studies, electrochemical sensors;
- Chapter IX - Corrosion: Pourbaix diagram, corrosion potential, passivation, corrosion protection; Historical notes

Lecture notes

Lecture notes, exercise & solutions (PDF files) via download website

Literature

Prerequisites / notice

Students should be familiar with the fundamentals of physical chemistry.

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories assessed

Techniques and Technologies assessed

Projects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-1210-00L</td>
<td>Project I</td>
<td>O</td>
<td>12 credits</td>
<td>23A</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Projects, with themes from the chosen scientific fields of interest, are intended to familiarise candidates with scientific procedures and operational methodologies through supervised participation in current research work.</td>
</tr>
<tr>
<td>327-1211-00L</td>
<td>Project II</td>
<td>O</td>
<td>12 credits</td>
<td>23A</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Projects, with themes from the chosen scientific fields of interest, are intended to familiarise candidates with scientific procedures and operational methodologies through supervised participation in current research work.</td>
</tr>
</tbody>
</table>

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-9000-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30 credits</td>
<td>64D</td>
<td>Professors</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Only students who fulfill the following criteria are allowed to begin with their master thesis: a. successful completion of the bachelor programme; b. fulfilling of any additional requirements necessary to gain admission to the master programme.</td>
</tr>
</tbody>
</table>

Independent scientific work of current topics in the field of materials science. Duration 6 months. The work is documented in a written form.
Objective

Master thesis is a six month fulltime project and will encourage the students to work independently and in a structured and scientific way. It is guided by a professor of the Department of Materials.

GESS Science in Perspective

see GESS Science in Perspective: Language Courses ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-MATL.

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0503-AAL</td>
<td>Ceramics I</td>
<td>E-</td>
<td>3 credits</td>
<td>6R</td>
<td>M. Niederberger, A. Demirörs, T. Graule</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to ceramic processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The aim is the understanding of the basic principles of ceramic processing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0502-AAL</td>
<td>Polymers I</td>
<td>E-</td>
<td>3 credits</td>
<td>6R</td>
<td>M. Kröger</td>
</tr>
<tr>
<td>Abstract</td>
<td>Physical foundations of single polymer molecules and interacting chains.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course offers a modern approach to the understanding of universal static and dynamic properties of polymers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Content | Polymeric Physics:
 1. Introduction to Polymer Physics, random walks, ideal chains
 2. Semiflexible chains
 3. Excluded volume
 4. Lattice models
 5. Scaling theory
 6. Interacting chains
 7. Structure factor and scattering experiments
 8. Solvent and temperature effects
 9. Phase separation and critical phenomena
 10. Flory theory, self-consistent field theory
 11. Dendrimers and polymer brushes
 12. Blob model
 13. Polymer mixtures
 14. Block copolymers
 15. Polymer gels, theory of rubber elasticity
 16. Reuse and reptation models
 17. Rheology, viscoelasticity
 18. Computer experiments
 19. Dynamic light scattering
 20. Fokker-Planck equations, stochastic differential equations |
| Literature | Books and references will be provided on the lecture notes. |
| Lecture notes | http://www.polyphys.mat.ethz.ch/education/courses/polymers-I |

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-0606-AAL</td>
<td>Polymers II</td>
<td>E-</td>
<td>3 credits</td>
<td>6R</td>
<td>T. A. Tervoort, T.-B. Schweizer</td>
</tr>
<tr>
<td>Abstract</td>
<td>Principles of polymer technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>To obtain an understanding of the engineering aspects of structure and properties of solid polymers. Influence of polymer processing on properties of solid polymers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021
Content
1. Crystallization of semi-crystalline polymers
2. Glass transition of amorphous polymers
3. Mechanical properties of solid polymers
4. Examples of polymer processing
5. Laboratory exercises

Lecture notes
In consultation with the teachers (Tervoort and Schweizer).

Literature
W. Kaiser, Kunststoffchemie für Ingenieure (Hanser, München, 2005)

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract
Repetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.

Objective
Repetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.

Content
Dislocation theory:
- Properties of dislocations, motion and kinetics of dislocations, dislocation-dislocation and dislocation-boundary interactions, consequences of partial dislocations, sessile dislocations
- Hardening theory:
 a. solid solution hardening: case studies in copper-nickel and iron-carbon alloys
 b. particle hardening: case studies on aluminium-copper alloys
- High temperature plasticity:
 - thermally activated glide
 - power-law creep
 - diffusional creep: Coble, Nabarro-Herring
 - deformation mechanism maps
 - Case studies in turbine blades
 - superplasticity
 - alloying effects

Lecture notes
https://www.met.mat.ethz.ch/education/lect_scripts

Literature
Gottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Haasen, Physikalische Metallkunde, Springer Verlag
Rüsser/Harders/Bäker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Hull/Bacon, Introduction to Dislocations, Butterworth & Heinemann
Courtney, Mechanical Behaviour of Materials, McGraw-Hill

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract
Introduction to materials selection. Basic knowledge of major metallic materials: aluminium, magnesium, titanium, copper, iron and steel. Selected topics in high temperature materials: nickel and iron-base superalloys, intermetallics and refractory metals.

Objective
Introduction to materials selection. Basic knowledge of major metallic materials: aluminium, magnesium, titanium, copper, iron and steel. Selected topics in high temperature materials: nickel and iron-base superalloys, intermetallics and refractory metals.

Content
This course is divided into five parts:

A. Materials selection
 Principles of materials properties maps
 Introduction to the 'Materials selector' software package
 Case studies

B. Light metals and alloys
 Aluminium, magnesium, titanium
 Properties and hardening mechanisms
 Case studies in technological applications

C. Copper and its alloys
 D. Iron and steel
 The seven pros for steel
 Fine grained steels, heat resistant steels
 Steel and corrosion phenomena
 Selection and application

E. High temperature alloys
 Superalloys: iron, nickel, cobalt
 Intermetallics: properties and application

Lecture notes
http://www.met.mat.ethz.ch/education/lect_scripts

Literature
Gottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Ashby/Jones, Engineering Materials 1 & 2, Pergamon Press
Ashby, Materials Selection in Mechanical Design, Pergamon Press
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Bürgel, Handbuch Hochtemperatur-Werkstofftechnik, Vieweg Verlag

Prerequisites / notice
Prerequisites: Metals I

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract
Repetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.

Objective
Repetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.

Content
Dislocation theory:
- Properties of dislocations, motion and kinetics of dislocations, dislocation-dislocation and dislocation-boundary interactions, consequences of partial dislocations, sessile dislocations
- Hardening theory:
 a. solid solution hardening: case studies in copper-nickel and iron-carbon alloys
 b. particle hardening: case studies on aluminium-copper alloys
- High temperature plasticity:
 - thermally activated glide
 - power-law creep
 - diffusional creep: Coble, Nabarro-Herring
 - deformation mechanism maps
 - Case studies in turbine blades
 - superplasticity
 - alloying effects

Lecture notes
https://www.met.mat.ethz.ch/education/lect_scripts

Literature
Gottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Ashby/Jones, Engineering Materials 1 & 2, Pergamon Press
Ashby, Materials Selection in Mechanical Design, Pergamon Press
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Bürgel, Handbuch Hochtemperatur-Werkstofftechnik, Vieweg Verlag

Prerequisites / notice
Prerequisites: Metals I

doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction of basic concepts for composites with polymer- metal- and ceramic matrix composites; production and properties of composites reinforced with particles, whiskers, short and long fibres; selection criteria, case histories of applications, recycling, future perspectives, and basic concepts for adaptive and functional composites

Objective
Gain an insight into the diversity of opportunities to change the properties of composites, learn about the most important applications and processing techniques

Content
1. Introduction
 1.1 What are advanced composites?
 1.2 What are materials by combination?
 1.3 Are composites an idea of today?
 1.4 Delphi foresight
 1.5 Why composites?
 1.6 References for chapter 1

2. Basic modules
 2.1 Particles
 2.2 Short fibres including whiskers
 2.3 Long fibres
 2.4 Matrix materials
 2.4.1 Polymers
 2.4.2 Metals
 2.4.3 Ceramics and glasses
 2.5 References for chapter 2

3. PMC: Polymer Matrix Composites
 3.1 Historical background
 3.2 Types of PMC-laminates
 3.3 Production, processing and machining operation
 3.4 Mechanics of reinforcement, microstructure, interfaces
 3.5 Failure criteria
 3.6 Fatigue behaviour of a multiply composite
 3.7 Adaptive materials systems
 3.8 References for chapter 3

4. MMC: Metal matrix composites
 4.1 Introduction: Definitions, selection criteria und *design*
 4.2 Types von MMCs - examples und typical properties
 4.3 Mechanical and physical properties of MMCs - basics of design, influencing variables and damage mechanisms
 4.4 Production processes
 4.5 Micro structure / interfaces
 4.6 machining operations for MMC
 4.7 Applications
 4.8 References for chapter 4

5. CMC: Ceramic Matrix Composites
 5.1 Introduction and historical background
 5.2 Modes of reinforcement
 5.3 Production processes
 5.4 Mechanisms of reinforcement
 5.5 Micro structure / interfaces
 5.6 Properties
 5.7 Applications
 5.8 Materials testing and quality assurance
 5.9 References for chapter 5

Lecture notes
The script will be delivered at the begin of the semester

Literature
The script is including a comprehensive list of references

Prerequisites / notice
Before each class, students will get a handout. Students will get the power point presentation of each class by e-mail.

The exercises take place in small groups. It is their goal to deepen knowledge gained in the classes

written end of semester examination

Materials Science Master - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Mathematics (General Courses)

Generally Accessible Seminars and Colloquia

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-5000-00L</td>
<td>Zurich Colloquium in Mathematics</td>
<td>E-</td>
<td>0</td>
<td></td>
<td>R. Abgrall, M. Iacobelli, A. Bandeira, A. Iozzi, S. Mishra, R. Pandharipande, University lecturers</td>
</tr>
<tr>
<td>401-5960-00L</td>
<td>Colloquium on Mathematics, Computer Science, and Education</td>
<td>E-</td>
<td>0</td>
<td></td>
<td>N. Hungerbühler, M. Akveld, D. Grawehr Morath, J. Hromkovic, P. Spindler</td>
</tr>
</tbody>
</table>

Abstract

Didactics colloquium

Actuary SAA Education at ETH Zurich

Further pieces of information are available at Prof. M. Wüthrich's secretariat, HG F 42.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3925-00L</td>
<td>Non-Life Insurance: Mathematics and Statistics</td>
<td>W</td>
<td>8</td>
<td>4V+1U</td>
<td>M. V. Wüthrich</td>
</tr>
</tbody>
</table>

Abstract

The lecture aims at providing a basis in non-life insurance mathematics which forms a core subject of actuarial science. It discusses collective risk modeling, individual claim size modeling, approximations for compound distributions, ruin theory, premium calculation principles, tariffication with generalized linear models and neural networks, credibility theory, claims reserving and solvency.

Objective

The following topics are treated:

- Collective Risk Modeling
- Individual Claim Size Modeling
- Approximations for Compound Distributions
- Ruin Theory in Discrete Time
- Premium Calculation Principles
- Tariffication
- Generalized Linear Models and Neural Networks
- Bayesian Models and Credibility Theory
- Claims Reserving
- Solvency Considerations

Content

- The profit and loss account and the balance sheet of a life insurance company is explained and illustrated.

Lecture notes

M.V. Wüthrich, Non-Life Insurance: Mathematics & Statistics
http://ssrn.com/abstract=2319328

Literature

M.V. Wüthrich, M. Merz. Statistical Foundations of Actuarial Learning and its Applications
http://ssrn.com/abstract=3822407

Prerequisites / notice

The exams ONLY take place during the official ETH examination period.

This course will be held in English and counts towards the diploma of "Aktuar SAV". For the latter, see details under www.actuaries.ch.

Prerequisites: knowledge of probability theory, statistics and applied stochastic processes.

Taught competencies

- **Domain A - Subject-specific Competencies**
 - Concepts and Theories: assessed
 - Techniques and Technologies: assessed

- **Domain B - Method-specific Competencies**
 - Analytical Competencies: assessed
 - Decision-making: assessed
 - Media and Digital Technologies: not assessed
 - Problem-solving: assessed
 - Project Management: not assessed

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3922-00L</td>
<td>Life Insurance Mathematics</td>
<td>W</td>
<td>4</td>
<td>2V</td>
<td>M. Koller</td>
</tr>
</tbody>
</table>

Abstract

The classical life insurance model is presented together with the important insurance types (insurance on one and two lives, term and endowment insurance and disability). Besides that the most important terms such as mathematical reserves are introduced and calculated. The profit and loss account and the balance sheet of a life insurance company is explained and illustrated.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3929-00L</td>
<td>Financial Risk Management in Social and Pension Insurance</td>
<td>W</td>
<td>4</td>
<td>2V</td>
<td>P. Blum</td>
</tr>
</tbody>
</table>

Abstract

Investment returns are an important source of funding for social and pension insurance, and financial risk is an important threat to stability. We study short-term and long-term financial risk and its interplay with other risk factors, and we develop methods for the measurement and management of financial risk and return in an asset/liability context with the goal of assuring sustainable funding.
Objective
Understand the basic asset-liability framework: essential principles and properties of social and pension insurance; cash flow matching, duration matching, valuation portfolio and loose coupling; the notion of financial risk; long-term vs. short-term risk; coherent measures of risk.
Understand the conditions for sustainable funding: derivation of required returns; interplay between return levels, contribution levels and other parameters; influence of guaranteed benefits.
Understand the notion of risk-taking capability: capital process as a random walk; measures of long-term risk and relation to capital; short-term solvency vs. long-term stability; effect of embedded options and guarantees; interplay between required return and risk-taking capability.
Be able to study empirical properties of financial assets; the Normal hypothesis and the deviations from it; statistical tools for investigating relevant risk and return properties of financial assets; time aggregation properties; be able to conduct analysis of real data for the most important asset classes.
Understand and be able to carry out portfolio construction: the concept of diversification; limitations to diversification; correlation breakdown; incorporation of constraints; sensitivities and shortcomings of optimized portfolios.
Understand the notion of risk-taking capability: capital process as a random walk; measures of long-term risk and relation to capital; short-term solvency vs. long-term stability; effect of embedded options and guarantees; interplay between required return and risk-taking capability.
Understand and interpret the asset-liability interplay: the optimized portfolio in the asset-liability framework; short-term risk vs. long-term risk; the influence of constraints; feasible and non-feasible solutions; practical considerations.
Understand and be able to address essential problems in asset / liability management, e.g. optimal risk / return positioning, optimal discount rate, target value for funding ratio or turnaround issues.

Content
Have an overall view: see the big picture of what asset returns can and cannot contribute to social security; be aware of the most relevant outcomes; know the role of the actuary in the financial risk management process.
Risk and return of financial assets cannot be separated from one another and, hence, asset management and risk management cannot be separated either. Managing financial risk in social and pension insurance is, therefore, the task of reconciling the contradictory dimensions of
1. Required return for a sustainable funding of the institution,
2. Risk-taking capability of the institution,
3. Returns available from financial assets in the market,
4. Risks incurred by investing in these assets.

This task must be accomplished under a number of constraints. Financial risk management in social insurance also means reconciling the long time horizon of the promised insurance benefits with the short time horizon of financial markets and financial risk.

It is not the goal of this lecture to provide the students with any cookbook recipes that can readily be applied without further reflection. The goal is rather to enable the students to develop their own understanding of the problems and possible solutions associated with the management of financial risks in social and pension insurance.

To this end, a rigorous intellectual framework will be developed and a powerful set of mathematical tools from the fields of actuarial mathematics and quantitative risk management will be applied. When analyzing the properties of financial assets, an empirical viewpoint will be taken using statistical tools and considering real-world data.

Solid base knowledge of probability and statistics is indispensable. Specialized concepts from financial and insurance mathematics as well as quantitative risk management will be introduced in the lecture as needed, but some prior knowledge in some of these areas would be an advantage.

This course counts towards the diploma of "Aktuar SAV".

The exams ONLY take place during the official ETH examination period.

Lecture notes
Extensive handouts will be provided. Moreover, practical examples and data sets in Excel and R will be made available.

Prerequisites / notice
This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and models for extreme events such as natural or man-made catastrophes. The lecture covers reinsurance contracts, Experience and Exposure pricing, natural catastrophe modelling, solvency regulation, and insurance linked securities.

This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes.
Topics covered include:
- Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business.
- Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models.
- Exposure Pricing: Loss modelling based on exposure or risk profile information, for both property and casualty risks.
- Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context.
- Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency 2.
- Insurance linked securities: Alternative risk transfer techniques such as catastrophe bonds.
Content
This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes. Topics covered include:
- Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business.
- Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models.
- Exposure Pricing: Loss modelling based on exposure or risk profile information, for both property and casualty risks.
- Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context.
- Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency 2.
- Insurance linked securities: Alternative risk transfer techniques such as catastrophe bonds.

Lecture notes
Slides and lecture notes will be made available.

Prerequisites / notice
An excerpt of last year's lecture notes is available here: https://sites.google.com/site/philipparbenz/reinsuranceanalytics

Basic knowledge in statistics, probability theory, and actuarial techniques

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Techniques and Technologies	assessed
Domain C - Social Competencies	Analytical Competencies	assessed
	Decision-making	assessed
	Media and Digital Technologies	assessed
	Problem-solving	assessed
	Project Management	not assessed
Domain D - Personal Competencies	Communication	assessed
	Cooperation and Teamwork	not assessed
	Customer Orientation	not assessed
	Leadership and Responsibility	not assessed
	Self-presentation and Social Influence	not assessed
	Sensitivity to Diversity	not assessed
	Negotiation	not assessed
	Adaptable and Flexibility	assessed
	Creative Thinking	not assessed
	Critical Thinking	not assessed
	Integrity and Work Ethics	not assessed
	Self-awareness and Self-reflection	not assessed
	Self-direction and Self-management	not assessed

401-3927-00L Mathematical Modelling in Life Insurance W 4 credits 2V T. J. Peter

Abstract
In life insurance, it is essential to have adequate mortality tables, be it for reserving or pricing purposes. The course provides the tools necessary to create mortality tables from scratch. Additionally, we study various guarantees embedded in life insurance products and learn to price them with the help of stochastic models.

Objective
The course's objective is to provide the students with the understanding and the tools to create mortality tables on their own. Additionally, students should learn to price embedded options in life insurance. Aside of the mere application of specific models, they should develop an intuition for the various drivers of the value of these options.

Content
Following main topics are covered:
1. Guarantees and options embedded in life insurance products.
 - Stochastic valuation of participating contracts
 - Stochastic valuation of Unit Linked contracts
2. Mortality Tables:
 - Determining raw mortality rates
 - Smoothing techniques: Whittaker-Henderson, smoothing splines, ...
 - Trends in mortality rates
 - Stochastic mortality model due to Lee and Carter
 - Neural Network extension of the Lee-Carter model
 - Integration of safety margins

Lecture notes
Lectures notes and slides will be provided

Prerequisites / notice
The exams ONLY take place during the official ETH examination period.

The course counts towards the diploma of "Aktuar SAV".

Good knowledge in probability theory and stochastic processes is assumed. Some knowledge in financial mathematics is useful.

401-3913-01L Mathematical Foundations for Finance W 4 credits 3V+2U B. Acciaio

Abstract
First introduction to main modelling ideas and mathematical tools from mathematical finance.

Objective
This course gives a first introduction to the main modelling ideas and mathematical tools from mathematical finance. It mainly aims at non-mathematicians who need an introduction to the main tools from stochastics used in mathematical finance. However, mathematicians who want to learn some basic modelling ideas and concepts for quantitative finance (before continuing with a more advanced course) may also find this of interest. The main emphasis will be on ideas, but important results will be given with (sometimes partial) proofs.

Content
Topics to be covered include
- financial market models in finite discrete time
- absence of arbitrage and martingale measures
- valuation and hedging in complete markets
- basics about Brownian motion
- stochastic integration
- stochastic calculus: Itô's formula, Girsanov transformation, Itô's representation theorem
- Black-Scholes formula

Lecture notes
Lecture notes will be sold at the beginning of the course.
Prerequisites / notice
Lecture notes will be sold at the beginning of the course. Additional (background) references are given there.
Prerequisites: Results and facts from probability theory as in the book “Probability Essentials” by J. Jacod and P. Protter will be used freely. Especially participants without a direct mathematics background are strongly advised to familiarise themselves with those tools before (or very quickly during) the course. (A possible alternative to the above English textbook are the (German) lecture notes for the standard course "Wahrscheinlichkeitstheorie").

For those who are not sure about their background, we suggest to look at the exercises in Chapters 8, 9, 22-25, 28 of the Jacod/Protter book. If these pose problems, you will have a hard time during the course. So be prepared.

Abstract
This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective
This lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems.

Content
This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.

Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.

Lecture notes
The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15062) contains announcements, course information and lecture slides.

Literature

This book can also be used for the course ‘363-0503-00L Principles of Microeconomics’ (Filippini).
Mathematics Bachelor

Bachelor Studies (Programme Regulations 2021)

First Year Compulsory Courses

First Year Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-1261-07L</td>
<td>Analysis I: One Variable</td>
<td>O</td>
<td>10</td>
<td>6V+3U</td>
<td>M. Einsiedler</td>
</tr>
</tbody>
</table>

Abstract
Introduction to the differential and integral calculus in one real variable: fundamentals of mathematical thinking, numbers, sequences, basic point set topology, continuity, differentiable functions, ordinary differential equations, Riemann integration.

Objective
The ability to work with the basics of calculus in a mathematically rigorous way.

Literature
H. Amann, J. Escher: Analysis I
https://link.springer.com/book/10.1007/978-3-7643-7756-4
J. Appell: Analysis in Beispielen und Gegenbeispielen
R. Courant: Vorlesungen über Differential- und Integralrechnung
O. Forster: Analysis I
H. Heuser: Lehrbuch der Analysis
K. Königsberger: Analysis I
https://link.springer.com/book/10.1007/978-3-642-18490-1
W. Walter: Analysis I
https://link.springer.com/book/10.1007/978-3-540-35078-0
V. Zorich: Mathematical Analysis I (englisch)
A. Beutelspacher: "Das ist o.B.d.A. trivial"
H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten

402-1701-00L | Physics I | O | 7 | 4V+2U | K. Ensslin |

Abstract
This course gives a first introduction to Physics with an emphasis on classical mechanics.

Objective
Acquire knowledge of the basic principles regarding the physics of classical mechanics. Skills in solving physics problems.

252-0847-00L | Computer Science | O | 5 | 2V+2U | R. Sasse, F. O. Friedrich Wicker |

Abstract
The course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required.

Objective
Primary educational objective is to learn programming with C++. After having successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed. Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking like a computer scientist.

Content
The course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.

Lecture notes
English lecture notes will be provided during the semester. The lecture notes and the lecture slides will be made available for download on the course web page. Exercises are solved and submitted online.

Literature
Bjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000

First Year Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-1151-00L</td>
<td>Linear Algebra I</td>
<td>O</td>
<td>7</td>
<td>4V+2U</td>
<td>R. Pink</td>
</tr>
</tbody>
</table>

Abstract

Objective
- Mastering basic concepts of Linear Algebra
- Introduction to mathematical methods

Content
- Basics
- Vectorspaces and linear maps
- Systems of linear equations and matrices
- Determinants
- Endomorphisms and eigenvalues
Bachelors Studies (Programme Regulations 2016)

First Year

Course units of the first year can be found in section Bachelor Studies (Programme Regulations 2021) - First Year Compulsory Courses.

Compulsory Courses

Examination Block I

In Examination Block I either the course unit 402-2883-00L Physics III or the course unit 402-2203-01L Classical Mechanics must be chosen and registered for an examination. (Students may also enrol for the other of the two course units; within the ETH Bachelor's programme in mathematics, this other course unit cannot be registered in myStudies for an examination nor can it be recognised for the Bachelor's degree.)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-2303-00L</td>
<td>Complex Analysis</td>
<td>O</td>
<td>6 credits</td>
<td>3V+2U</td>
<td>T. H. Willwacher</td>
</tr>
<tr>
<td>402-2883-00L</td>
<td>Physics III</td>
<td>W</td>
<td>7 credits</td>
<td>4V+2U</td>
<td>U. Keller</td>
</tr>
<tr>
<td>402-2203-01L</td>
<td>Classical Mechanics</td>
<td>W</td>
<td>7 credits</td>
<td>4V+2U</td>
<td>R. Renner</td>
</tr>
</tbody>
</table>

Abstract

Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem.

Working knowledge of functions of one complex variables; in particular applications of the residue theorem.

Introduction to quantum function theory.

Introductory course on quantum and atomic physics including optics and statistical physics. The course will focus on the relation of these topics to experimental methods and observations.

Im Rahmen der Veranstaltung werden die Folien in elektronischer Form zur Verfügung gestellt. Ergänzendes Buch wird als Pflichtlektüre

B. Palka: "An introduction to complex function theory."

Th. Gamelin: Complex Analysis. Springer 2001

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

K.Jaenich: Funktionentheorie. Springer Verlag

R.Reemert: Funktionentheorie I. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publications

Methods of Mathematical Physics I

Introductory course on quantum and atomic physics including optics and statistical physics.

Einführung in die Quantenphysik: Planck'sche Strahlung (Wärmestrahlung), Photonen, Photoelektrischer Effekt, Thomson und Rutherford Streuung, Compton Streuung, Bohrsche Atommodell, de-Broglie Materiewellen.

Quantenmechanik: Dualismus Teilchen-Welle, Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialstufe und Potentialkasten, harmonischer Ozillator

Im Rahmen der Veranstaltung werden die Folien in elektronischer Form zur Verfügung gestellt. Ergänzendes Buch wird als Pflichtlektüre empfohlen. Es wird kein Skript in der Vorlesung verteilt.

Literature

We publish a summary of the content of the lecture course on the homepage: http://metaphor.ethz.ch/x/2021/hs/401-1151-00L/

Besides this we recommend one textbook about Linear Algebra, for instance one of these:

In addition we recommend this general introduction into studying mathematics:

We publish a summary of the content of the lecture course on the homepage: http://metaphor.ethz.ch/x/2021/hs/401-1151-00L/

Besides this we recommend one textbook about Linear Algebra, for instance one of these:

In addition we recommend this general introduction into studying mathematics:

Objective

Fundamental understanding of the description of Mechanics in the Lagrangian and Hamiltonian formulation. Detailed understanding of important applications, in particular, the Kepler problem, the physics of rigid bodies (spinning top) and of oscillatory systems.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0851-00L</td>
<td>Algorithms and Complexity</td>
<td>O</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>J. Lengler, A. Steger</td>
</tr>
</tbody>
</table>

Abstract

Introduction: RAM machine, data structures; Algorithms: sorting, median, matrix multiplication, shortest paths, minimal spanning trees; Paradigms: divide & conquer, dynamic programming, greedy algorithms; Data Structures: search trees, dictionaries, priority queues; Complexity Theory: P and NP, NP-completeness, Cook's theorem, reductions, cryptography and zero-knowledge proofs.

Objective

After this course students know some basic algorithms as well as underlying paradigms. They will be familiar with basic notions of complexity theory and can use them to classify problems.

Content

Lecture notes

Ja.

Examination Block II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-2003-00L</td>
<td>Algebra I</td>
<td>O</td>
<td>7 credits</td>
<td>4V+2U</td>
<td>L. Halbeisen</td>
</tr>
</tbody>
</table>

Abstract

The two-semester course Algebra I / Algebra II is offered for the last time in its current version in the Autumn Semester 2021 / Spring Semester 2022.

Objective

Introduction and development of some basic algebraic structures - groups, rings, fields.

Content

Group Theory: basic notions and examples of groups, subgroups, factor groups, homomorphisms, group actions, Sylow theorems, applications

Ring Theory: basic notions and examples of rings, ring homomorphisms, ideals, factor rings, euclidean rings, principal ideal domains, factorial rings, applications

Field Theory: basic notions and examples of fields, field extensions, algebraic extensions, applications

Literature

Karpfinger-Meyberg: Algebra, Spektrum Verlag
S. Bosch: Algebra, Springer Verlag
B.L. van der Waerden: Algebra I und II, Springer Verlag
S. Lang, Algebra, Springer Verlag
A. Knapp: Basic Algebra, Springer Verlag
J. Rotman, "Advanced modern algebra, 3rd edition, part 1"
http://bookstore.ams.org/gsm-165/
J.F. Humphreys: A Course in Group Theory (Oxford University Press)
G. Smith and O. Tabachnikova: Topics in Group Theory (Springer-Verlag)
M. Artin: Algebra (Birkhaeuser Verlag)

Core Courses

Core Courses: Pure Mathematics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3531-00L</td>
<td>Differential Geometry I</td>
<td>W</td>
<td>10 credits</td>
<td>4V+1U</td>
<td>J. Serra</td>
</tr>
</tbody>
</table>

Abstract

Objective

Provide insightful knowledge about the classical theory of curves and surfaces (which is the precursor of modern differential geometry). Invite students to use and sharpen their geometric intuition. Introduce the language, basic tools, and some fundamental results in modern differential geometry.

Lecture notes

Partial lecture notes are available from Prof. Lang's website https://people.math.ethz.ch/~lang/

Literature

- Manfredo P. do Carmo: Differential Geometry of Curves and Surfaces
- John M. Lee: Introduction to Smooth Manifolds
- S. Montiel, A. Ros: Curves and Surfaces
- S. Montiel, A. Ros: Differential Geometry of Curves and Surfaces
- Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Mannigfaltigkeiten
- Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds

Core Courses: Pure Mathematics (Mathematics Master)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3461-00L</td>
<td>Functional Analysis I</td>
<td>W</td>
<td>10 credits</td>
<td>4V+1U</td>
<td>J. Teichmann</td>
</tr>
</tbody>
</table>

Abstract

Objective

Provide an introduction to the theory of functional analysis and measure theory. Invite students to use and sharpen their analytical intuition. Introduce the language, basic tools, and some fundamental results in modern functional analysis and measure theory.

Lecture notes

Partial lecture notes are available from Prof. Lang's website https://people.math.ethz.ch/~lang/
received the credits.

Abstract
Baire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces.

Objective
Acquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.

Literature
Recommended references include the following:

Solid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with topology and measure theory, in part. Lebesgue integration and L^p spaces).

Prerequisites / notice
Solid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with topology and measure theory, in part. Lebesgue integration and L^p spaces).

401-3001-61L Algebraic Topology I W 8 credits 4G W. Merry

Abstract
This is an introductory course in algebraic topology, which is the study of algebraic invariants of topological spaces. Topics covered include:
singular homology, cell complexes and cellular homology, the Eilenberg-Steenrod axioms.

Literature

Book can be downloaded for free at:
http://www.math.cornell.edu/~hatcher/AT/ATpage.html

See also:
http://www.math.cornell.edu/~hatcher/#anchor1772800

3) E. Spanier, “Algebraic topology”, Springer-Verlag

Prerequisites / notice
You should know the basics of point-set topology.

Some knowledge of differential geometry and differential topology is useful but not strictly necessary.

Some (elementary) group theory and algebra will also be needed.

401-3132-00L Commutative Algebra W 10 credits 4V+1U E. Kowalski

Abstract
This course provides an introduction to commutative algebra. It serves in particular as a foundation for modern algebraic geometry.

The topics presented in the course will include:
* Basics facts about rings, ideals and modules
* Constructions of rings: quotients, polynomial rings, localization
* Noetherian rings and modules
* The tensor product of modules over commutative rings and its applications
* Krull dimension
* Integral extensions and the Cohen-Seidenberg theorems
* Finitely generated algebras over fields, including the Noether Normalization Theorem and the Nullstellensatz
* Primary decomposition
* Discrete valuation rings and some applications

Primary Reference:

Secondary References:
4. "Commutative Algebra" by N. Bourbaki

Prerequisites / notice
Prerequisites: Algebra II/III (or a similar introduction to the basic concepts of ring theory, including field theory).

Core Courses: Applied Mathematics and Further Appl.-Oriented Fields

Number Title Type ECTS Hours Lecturers
401-3651-00L Numerical Methods for Elliptic and Parabolic Partial Differential Equations (University of Zurich) W 9 credits 4V S. Sauter

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: MAT802
Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline
s.html

Course audience at ETH:
3rd year ETH BSc Mathematics and MSc Mathematics and MSc Applied Mathematics students.
Other ETH-students are advised to attend the course "Numerical Methods for Partial Differential Equations" (401-0674-00L) in the CSE curriculum during the spring semester.

Abstract
This course gives a comprehensive introduction into the numerical treatment of linear and nonlinear elliptic boundary value problems, related eigenvalue problems and linear, parabolic evolution problems. Emphasis is on theory and the foundations of numerical methods. Practical exercises include MATLAB implementations of finite element methods.

Objective
Participants of the course should become familiar with
- concepts underlying the discretization of elliptic and parabolic boundary value problems
- analytical techniques for investigating the convergence of numerical methods for the approximate solution of boundary value problems
- methods for the efficient solution of discrete boundary value problems
- implementational aspects of the finite element method

Content
The course will address the mathematical analysis of numerical solution methods for linear and nonlinear elliptic and parabolic partial differential equations.
Functional analytic and algebraic (De Rham complex) tools will be provided.
Primal, mixed and nonstandard (discontinuous Galerkin, Virtual, Trefftz) discretizations will be analyzed.

Particular attention will be placed on developing mathematical foundations (Regularity, Approximation theory) for a-priori convergence rate analysis.
A-posteriori error analysis and mathematical proofs of adaptivity and optimality will be covered.
Implementations for model problems in MATLAB and python will illustrate the theory.

A selection of the following topics will be covered:
- Elliptic boundary value problems
- Galerkin discretization of linear variational problems
- The primal finite element method
- Mixed finite element methods
- Discontinuous Galerkin Methods
- Boundary element methods
- Spectral methods
- Adaptive finite element schemes
- Singularly perturbed problems
- Sparse grids
- Galerkin discretization of elliptic eigenproblems
- Non-linear elliptic boundary value problems
- Discretization of parabolic initial boundary value problems

Content
- Elliptic boundary value problems
- Galerkin discretization of linear variational problems
- The primal finite element method
- Mixed finite element methods
- Discontinuous Galerkin Methods
- Boundary element methods
- Spectral methods
- Adaptive finite element schemes
- Singularly perturbed problems
- Sparse grids
- Galerkin discretization of elliptic eigenproblems
- Non-linear elliptic boundary value problems
- Discretization of parabolic initial boundary value problems

Prerequisites / notice
Former title of the course unit: Numerical Methods for Elliptic and Parabolic Partial Differential Equations

401-3601-00L Probability Theory
W 10 credits 4V+1U W. Werner

At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Abstract
Basics of probability theory and the theory of stochastic processes in discrete time
Objective
This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
- Basics in measure theory, series of independent random variables, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).

Content
This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
- Basics in measure theory, series of independent random variables, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).

Lecture notes
will be available in electronic form.

Literature
- D. Williams, Probability with martingales, Cambridge University Press 1991
- J. Jacod and P. Protter, Probability essentials, Springer 2004
- H. Bauer, Probability Theory, de Gruyter 1996
- S. van de Geer, L. Wasserman, R. Vershynin, High Dimensional Probability: An Introduction with Applications in Data Science, Cambridge University Press 2011

401-3621-00L Fundamentals of Mathematical Statistics

Abstract
The course covers the basics of inferential statistics.

401-3901-00L Linear & Combinatorial Optimization

Abstract
The course covers the basics of linear and combinatorial optimization techniques for linear and combinatorial optimization problems.

Objective
The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.

Content
Key topics include:
- Linear programming and polyhedra
- Flows and cuts
- Combinatorial optimization problems and polyhedral techniques
- Equivalence between optimization and separation

Literature

Prerequisites / notice
Solid background in linear algebra.

401-3622-00L Statistical Modelling

Abstract
In regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression with one or more covariates, high-dimensional linear models, nonlinear models and generalized linear models, robust methods, model choice and nonparametric models. Several numerical examples will illustrate the theory.

Objective
Introduction into theory and practice of a broad and popular area of statistics, from a modern viewpoint.

Content

Prerequisites / notice
This is the course unit with former course title "Regression".

Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).

252-0057-00L Theoretical Computer Science

Abstract
Concepts to cope with: a) what can be accomplished in a fully automated fashion (algorithmically solvable) b) How to measure the inherent difficulty of tasks (problems) c) What is randomness and how can it be useful? d) What is nondeterminism and what role does it play in CS? e) How to represent infinite objects by finite automata and grammars?

Objective
Learning the basic concepts of computer science along their historical development.
This lecture gives an introduction to theoretical computer science, presenting the basic concepts and methods of computer science in its historical context. We present computer science as an interdisciplinary science which, on the one hand, investigates the border between the possible and the impossible and the quantitative laws of information processing, and, on the other hand, designs, analyzes, verifies, and implements computer systems.

The main topics of the lecture are:
- alphabets, words, languages, measuring the information content of words, representation of algorithmic tasks
- finite automata, regular and context-free grammars
- Turing machines and computability
- complexity theory and NP-completeness
- design of algorithms for hard problems

The lecture is covered in detail by the textbook "Theoretical Computer Science".

Basic literature:

Further reading:

More exercises and examples in:
6. A. Asteroth, Ch. Baier: Theoretische Informatik

Prerequisites / notice
During the semester, two non-obligatory test exams will be offered.
Taught competencies

Domain A - Subject-specific Competencies

<table>
<thead>
<tr>
<th>Concepts and Theories</th>
<th>Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techniques and Technologies</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Domain B - Method-specific Competencies

<table>
<thead>
<tr>
<th>Analytical Competencies</th>
<th>Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision-making</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>Assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Domain C - Social Competencies

<table>
<thead>
<tr>
<th>Communication</th>
<th>Not Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperation and Teamwork</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Domain D - Personal Competencies

<table>
<thead>
<tr>
<th>Adaptability and Flexibility</th>
<th>Not Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative Thinking</td>
<td>Assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Electives

Selection: Algebra, Number Thy, Topology, Discrete Mathematics, Logic

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3059-00L</td>
<td>Combinatorics II</td>
<td>W</td>
<td>4 credits</td>
<td>2G</td>
<td>N. Hungerbühler</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course Combinatorics I and II is an introduction into the field of enumerative combinatorics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Upon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Contents of the lectures Combinatorics I and II: congruence transformation of the plane, symmetry groups of geometric figures, Euler's function, Cayley graphs, formal power series, permutation groups, cycles, Bunsid's lemma, cycle index, Polya's theorems, applications to graph theory and isomers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

401-3033-00L	Gödel's Theorems	W	8 credits	3V+1U	L. Halbeisen
Objective	Das Ziel dieser Vorlesung ist ein fundiertes Verständnis der Grundlagen der Mathematik zu vermitteln.				
Content	Syntax und Semantik der Prädikatenlogik, Gödel'scher Vollständigkeitssatz, Gödel'sche Unvollständigkeitssätze.				

Selection: Geometry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3057-00L</td>
<td>Finite Geometries II</td>
<td>W</td>
<td>4 credits</td>
<td>2G</td>
<td>N. Hungerbühler</td>
</tr>
<tr>
<td>Abstract</td>
<td>Finite geometries I, II: Finite geometries combine aspects of geometry, discrete mathematics and the algebra of finite fields. In particular, we will construct models of axioms of incidence and investigate closing theorems. Applications include test design in statistics, block design, and the construction of orthogonal Latin squares.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Finite geometries I, II: Students will be able to construct and analyse models of finite geometries. They are familiar with closing theorems of the axioms of incidence and are able to design statistical tests by using the theory of finite geometries. They are able to construct orthogonal Latin squares and know the basic elements of the theory of block design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Finite geometries I, II: finite fields, rings of polynomials, finite affine planes, axioms of incidence, Euler's thirty-six officers problem, design of statistical tests, orthogonal Latin squares, transformation of finite planes, closing theorems of Desargues and Pappus-Pascal, hierarchy of closing theorems, finite coordinate planes, division rings, finite projective planes, duality principle, finite Möbius planes, error correcting codes, block design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Literature	Max Jeger, Endliche Geometrien, ETH Skript 1988
	Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II, Bibliographisches Institut 1983
	Margaret Lynn Batten: Combinatorics of Finite Geometries, Cambridge University Press
	Dembowski: Finite Geometries.

401-4207-71L	Coxeter Groups from a Geometric Viewpoint	W	4 credits	2V	M. Cordes
Abstract	Introduction to Coxeter groups and the spaces on which they act. Understand the basic properties of Coxeter groups.				
Objective	Davis, Michael “The geometry and topology of Coxeter groups”				
Literature	Brown, Kenneth S. “Buildings”				

| **Prerequisites / notice** | Students must have taken a first course in algebraic topology or be familiar with fundamental groups and covering spaces. They should also be familiar with groups and group actions. |

Selection: Analysis

No offering in this semester yet

Selection: Numerical Analysis

No offering in this semester yet
Selection: Probability Theory, Statistics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-362-00L</td>
<td>High-Dimensional Statistics</td>
<td>W</td>
<td>4</td>
<td>2V</td>
<td>P. L. Bühlmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>“High-Dimensional Statistics” deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Knowledge of methods and basic theory for high-dimensional statistical inference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Knowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-462-00L</td>
<td>Time Series Analysis</td>
<td>W</td>
<td>6</td>
<td>3G</td>
<td>F. Balabdaoui</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary Models, ARIMA processes, Spectral Analysis, Forecasting, Nonstationary Models, ARIMA Models and an introduction to GARCH models.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of the course is to have a a good overview of the different types of time series and the approaches used in their statistical analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework, the main feature exhibited by time series is the dependence between successive observations. The key topics which will be covered as: Stationarity, Autocorrelation, Trend estimation, Elimination of seasonality, Spectral analysis, spectral densities, Forecasting, ARIMA, ARIMA, Introduction into GARCH models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The main reference for this course is the book “Introduction to Time Series and Forecasting”, by P. J. Brockwell and R. A. Davis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Basic knowledge in probability and statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-062-01L</td>
<td>Applied Analysis of Variance and Experimental Design</td>
<td>W</td>
<td>5</td>
<td>2V+U</td>
<td>L. Meier</td>
</tr>
<tr>
<td>Abstract</td>
<td>Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorial and fractional designs, power.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorial and fractional designs, power.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-064-00L</td>
<td>Applied Statistical Regression</td>
<td>W</td>
<td>5</td>
<td>2V+U</td>
<td>M. Dettling</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning “good practice” that can be applied in every student’s own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies. The last third of the course is dedicated to an introduction to generalized linear models; this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>A script will be available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Faraway (2005): Linear Models with R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faraway (2006): Extending the Linear Model with R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draper & Smith (1998): Applied Regression Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox (2008): Applied Regression Analysis and GLMs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montgomery et al. (2006): Introduction to Linear Regression Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Self-Influence: not assessed
- Sensitivity to Diversity: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Leadership and Responsibility: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

401-3628-14L Bayesian Statistics

Abstract
Introduction to the Bayesian approach to statistics: decision theory, prior distributions, hierarchical Bayes models, empirical Bayes, Bayesian tests and model selection, empirical Bayes, Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods.

Objective
Students understand the conceptual ideas behind Bayesian statistics and are familiar with common techniques used in Bayesian data analysis.

Content
Topics that we will discuss are:
- Difference between the frequentist and Bayesian approach (decision theory, principles), priors (conjugate priors, noninformative priors, Jeffreys prior), tests and model selection (Bayes factors, hyper-g priors for regression, hierarchical models and empirical Bayes methods, computational methods (Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods)
- Lecture notes
A script will be available in English.

Literature

Additional references will be given in the course.

Prerequisites / notice
- Familiarity with basic concepts of frequentist statistics and with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.

Selection: Financial and Insurance Mathematics

In the Bachelor's programme in Mathematics 401-3913-01L Mathematical Foundations for Finance is eligible as an elective course, but only if 401-3888-00L Introduction to Mathematical Finance isn't recognised for credits (neither in the Bachelor's nor in the Master's programme). For the category assignment take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Number Title Type ECTS Hours Lecturers
401-3922-00L Life Insurance Mathematics W 4 credits 2V M. Koller

Abstract
The classical life insurance model is presented together with the important insurance types (insurance on one and two lives, term and endowment insurance and disability). Besides that the most important terms such as mathematical reserves are introduced and calculated. The profit and loss account and the balance sheet of a life insurance company is explained and illustrated.

401-3925-00L Non-Life Insurance: Mathematics and Statistics W 8 credits 4V+1U M. V. Wüthrich

Abstract
The lecture aims at providing a basis in non-life insurance mathematics which forms a core subject of actuarial science. It discusses collective risk modeling, individual claim size modeling, approximations for compound distributions, ruin theory, premium calculation principles, tariffication with generalized linear models and neural networks, credibility theory, claims reserving and solvency.

Objective
The student is familiar with the basics in non-life insurance mathematics and statistics. This includes the basic mathematical models for insurance liability modeling, pricing concepts, stochastic claims reserving models and ruin and solvency considerations.

Content
The following topics are treated:
- Collective Risk Modeling
- Individual Claim Size Modeling
- Approximations for Compound Distributions
- Ruin Theory in Discrete Time
- Premium Calculation Principles
- Tariffication
- Generalized Linear Models and Neural Networks
- Bayesian Models and Credibility Theory
- Claims Reserving
- Solvency Considerations

Lecture notes
M.V. Wüthrich, Non-Life Insurance: Mathematics & Statistics
http://ssrn.com/abstract=2319328

Literature
M.V. Wüthrich, M. Merz. Statistical Foundations of Actuarial Learning and its Applications
http://ssrn.com/abstract=3822407

Prerequisites / notice
The exams ONLY take place during the official ETH examination period.

This course will be held in English and counts towards the diploma of "Aktuar SAV". For the latter, see details under www.actuaries.ch.

Prerequisites: knowledge of probability theory, statistics and applied stochastic processes.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1579 of 2152
Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies

Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management

401-3927-00L Mathematical Modelling in Life Insurance

W 4 credits 2V
T. J. Peter

Abstract
In life insurance, it is essential to have adequate mortality tables, be it for reserving or pricing purposes. The course provides the tools necessary to create mortality tables from scratch. Additionally, we study various guarantees embedded in life insurance products and learn to price them with the help of stochastic models.

Objective
The course's objective is to provide the students with the understanding and the tools to create mortality tables on their own. Additionally, students should learn to price embedded options in life insurance. Aside of the mere application of specific models, they should develop an intuition for the various drivers of the value of these options.

Content
Following main topics are covered:

1. Guarantees and options embedded in life insurance products.
 - Stochastic valuation of participating contracts
 - Stochastic valuation of Unit Linked contracts
2. Mortality Tables:
 - Determining raw mortality rates
 - Smoothing techniques: Whittaker-Henderson, smoothing splines,...
 - Trends in mortality rates
 - Stochastic mortality model due to Lee and Carter
 - Neural Network extension of the Lee-Carter model
 - Integration of safety margins

401-3928-00L Reinsurance Analytics

W 4 credits 2V
P. Antal, P. Arbenz

Abstract
This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and models for extreme events such as natural or man-made catastrophes. The lecture covers reinsurance contracts, Experience and Exposure pricing, natural catastrophe modelling, solvency regulation, and insurance linked securities.

Objective
This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes.

Content
Topics covered include:
- Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business.
- Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models
- Exposure Pricing: Modelling based on exposure or risk profile information, for both property and casualty risks
- Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context
- Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency 2
- Insurance linked securities: Alternative risk transfer techniques such as catastrophe bonds

Lecture notes
An excerpt of last year's lecture notes is available here: https://sites.google.com/site/philipparbenz/reinsurancelanalytics

Prerequisites / notice
Basic knowledge in statistics, probability theory, and actuarial techniques
Analytical Competencies

Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations of the theory as well as the underlying physical principles and concepts. It covers selected applications, such as the Schwarzschild solution and gravitational waves.

Basic understanding of general relativity, its mathematical foundations (in particular the relevant aspects of differential geometry), and some of the phenomena it predicts (with a focus on black holes).

Content

- Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves.

Literature

- R. Wald - General Relativity
- S. Carroll - Spacetime and Geometry: An Introduction to General Relativity
- C. Misner, K, Thorne and J. Wheeler: Gravitation
- S. Weinberg - Gravitation and Cosmology

Selection: Mathematical Physics, Theoretical Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0830-00L</td>
<td>General Relativity: UZH must book the course PHY511 or directly at UZH.</td>
<td>W</td>
<td>10 credits</td>
<td>4V+2U</td>
<td>C. Anastasiou</td>
</tr>
</tbody>
</table>

Abstract

Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations of the theory as well as the underlying physical principles and concepts. It covers selected applications, such as the Schwarzschild solution and gravitational waves.

Objective

Basic understanding of general relativity, its mathematical foundations (in particular the relevant aspects of differential geometry), and some of the phenomena it predicts (with a focus on black holes).

Content

- Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves.

Selection: Mathematical Optimization, Discrete Mathematics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3055-64L</td>
<td>Algebraic Methods in Combinatorics</td>
<td>W</td>
<td>6 credits</td>
<td>2V+1U</td>
<td>B. Sudakov</td>
</tr>
</tbody>
</table>

Abstract

Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.

Objective

The students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.

Content

Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

- The course website can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Lecture notes

Lectures will be on the blackboard only, but there will be a set of typed lecture notes which follow the class closely.

Prerequisites / notice

Students are expected to have a mathematical background and should be able to write rigorous proofs.

Selection: Theoretical Computer Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0417-00L</td>
<td>Randomized Algorithms and Probabilistic Methods</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U+4A</td>
<td>A. Steger</td>
</tr>
</tbody>
</table>
Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Objective
After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.

Content
Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Lecture notes
Yes.

Literature

252-1425-00L
Geometry: Combinatorics and Algorithms

<table>
<thead>
<tr>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>8</td>
<td>3V+2U+2A</td>
<td>B. Gärtner, E. Welzl, M. Hoffmann, M. Wettstein</td>
</tr>
</tbody>
</table>

Abstract
Geometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lectures address theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?)

Objective
The goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains.

In particular, we want to prepare students for conducting independent research, for instance, within the scope of a thesis project.

Content
Planar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in Rd, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations.

Prerequisites / notice
Prerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH.

Outlook: In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area.

263-4500-00L
Advanced Algorithms

<table>
<thead>
<tr>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>9</td>
<td>3V+2U+3A</td>
<td>M. Ghaffari, G. Zuzic</td>
</tr>
</tbody>
</table>

Abstract
This is a graduate-level course on algorithm design (and analysis). It covers a range of topics and techniques in approximation algorithms, sketching and streaming algorithms, and online algorithms.

Objective
This course familiarizes the students with some of the main tools and techniques in modern subareas of algorithm design.

Content
The lectures will cover a range of topics, tentatively including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and derandomization.

Lecture notes
https://people.inf.ethz.ch/gmohsen/AA21/

Selection: Further Realms

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3502-71L</td>
<td>Reading Course</td>
<td>W</td>
<td>2</td>
<td>4A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3503-71L</td>
<td>Reading Course</td>
<td>W</td>
<td>3</td>
<td>6A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3504-71L</td>
<td>Reading Course</td>
<td>W</td>
<td>4</td>
<td>9A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.
Core Courses and Electives (Mathematics Master)

Core Courses (Mathematics Master)

Electives (Mathematics Master)

Seminars

NOTICE: The number of seminar places is limited, and the special selection procedure should help to allocate the places not primarily according to the registration time. Everybody is waitlisted first when he/she tries to register for a seminar in myStudies.

Moreover: Only one mathematics seminar can be chosen per semester.

Number	Title	Type	ECTS	Hours	Lecturers
401-3050-71L | Student Seminar in Combinatorics | W | 4 credits | 2S | B. Sudakov

401-3110-71L | Student Seminar in Elementary Number Theory | W | 4 credits | 2S | Ö. Imamoglu

Abstract

This is a student seminar covering a range of topics in elementary number theory.

Objective

The purpose of this seminar is to introduce a diversified range of topics in elementary number theory, each of which has spurred, and still motivates, a great deal of research in the area. This will hopefully encourage a deeper understanding of the subject and serve as a basis for more advanced courses.

Content

- Language conventions and common errors.
- How to write a thesis (more generally, a mathematics paper).
- How to use LaTeX.
- How to write a personal statement for Masters and PhD applications.

Lecture notes

Full lecture notes will be made available on my website:

https://www.merry.io/teaching/

Prerequisites / notice

There are no formal mathematical prerequisites.

401-3100-71L | Student Seminar in Number Theory: L-Functions | W | 4 credits | 2S | M. Schwagenscheidt

Number of participants limited to 24.

Abstract

Seminar on the basic theory of Dirichlet L-functions and some applications in number theory.

Objective

In the seminar we will study Dirichlet L-functions, which generalize the classical Riemann zeta function. We discuss their basic properties, such as the analytic continuation and the functional equation, and the rationality of some of their special values. Moreover, we investigate the connection of Dirichlet L-functions with the Dedekind zeta functions of quadratic fields. As main applications, we prove Dirichlet's class number formula for quadratic fields and Dirichlet's Theorem on arithmetic progressions.

We follow the book of Don Zagier "Zetafunktionen und quadratische Körper" for more advanced courses.

Content

Please see the website of the seminar for a list of topics:

https://people.math.ethz.ch/~mschwagen/lfunctions

Literature

- Apostol - Introduction to analytic number theory
- Apostol - Introduction to analytic number theory by T.M. Apostol (Springer 1976)
- Introduction to Analytic Number Theory by K. Chandrasekharan (Springer 1968)

Prerequisites / notice

There are no formal mathematical prerequisites.

401-3550-71L | Student Seminar in Topological Data Analysis | W | 4 credits | 2S | S. Kalisnik Hintz

Number of participants limited to 12.

Abstract

In this seminar we will learn about the standard tools in topological data analysis. They are drawn from classical topology and focus on the shape of data in one of two ways: they either 'measure' it, that is count the occurrences of patterns within the data set; or build combinatorial representations of the data set. An example of the former is persistent homology, whereas of the latter, mapper.

Content

In this seminar we will learn about the standard tools in topological data analysis. They are drawn from classical topology and focus on the shape of data in one of two ways: they either 'measure' it, that is count the occurrences of patterns within the data set; or build combinatorial representations of the data set. An example of the former is persistent homology, whereas of the latter, mapper. We will also take a look at some applications of both.

Literature

- Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition, G. Singh, F. Memoli, G. Carlsson, Point Based Graphics 2007
- Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, M. Nicolau, A.J. Levine, G. Carlsson, Proceedings of the National Academy of Sciences 108 (17), 7265-7270
- Zigzag persistence, G. Carlsson, V. De Silva, Foundations of computational mathematics 10 (4), 367-405

401-3140-71L | Student Seminar in Algebraic Geometry: Complex Algebaric Surfaces | W | 4 credits | 2S | T.-H. Bülles, R. Pandharipande

Number of participants limited to 12.

Abstract

Does not take place this semester.

This course teaches fundamental communication skills in mathematics: how to write clearly and how to structure mathematical content for different audiences, from theses, to preprints, to personal statements in applications. In addition, the course will help you establish a working knowledge of LaTeX.

Objective

Knowing how to present written mathematics in a structured and clear manner.

Content

Topics covered include:

- Language conventions and common errors.
- How to write a thesis (more generally, a mathematics paper).
- How to use LaTeX.
- How to write a personal statement for Masters and PhD applications.

Lecture notes

Full lecture notes will be made available on my website:

https://www.merry.io/teaching/

Prerequisites / notice

There are no formal mathematical prerequisites.
Student Seminar in Statistics: Inference in Some Non-Standard Regression Problems

Number of participants limited to 24.

Mainly for students from the Mathematics Bachelor and Master Programmes who, in addition to the introductory course unit 401-2804-00L Probability and Statistics, have heard at least one core or elective course in statistics.

Also offered in the Master Programmes Statistics resp. Data Science.

Objective

The main goal is the students get to discover some less known regression models which either generalize the well-known linear model (for example monotone regression) or violate some of the most fundamental assumptions (as in shuffled or unlinked regression models). Linear regression is one of the most used models for prediction and hence one of the most understood in statistical literature. However, linearity might be too simplistic to capture the actual relationship between some response and given covariates. Also, there are many real data problems where linearity is plausible but the actual pairing between the observed covariates and responses is completely lost or at partially. In this seminar, we review some of the non-classical regression models and the statistical properties of the estimation methods considered by well-known statisticians and machine learners. This will encompass:

1. Monotone regression
2. Single index model
3. Unlinked regression

Literature

In the following is the tentative material that will be read and studied by each pair of students (all the items listed below are available through the ETH electronic library or arXiv). Some of the items might change.

8. "Linear regression with shuffled data: statistical and computation limits of permutation recovery" by A. Pananjady, M. Wainwright and T. A. Courtade , 2018, IEEE transactions in Information Theory, Volume 64, 3286-3300
9. "Linear regression without correspondence" by D. Hsu, K. Shi and X. Sun, 2017, NIPS
11. "Uncoupled isotonic regression via minimum Wasserstein deconvolution" by P. Rigollet and J. Weed, 2019, Information and Inference, Volume 00, 1-27

Prerequisites / notice

The students need to be comfortable with regression models, classical estimation methods (Least squares, Maximum Likelihood estimation...), rates of convergence, asymptotic normality, etc.

Seminar (Mathematics Master)

Minor Courses (Programme Regulations 2016)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-1511-00L</td>
<td>Geometry</td>
<td>W</td>
<td>3</td>
<td>2V+1U</td>
<td>T. limanen</td>
</tr>
</tbody>
</table>
Objective
Studierende kennen die Gauss'schen Zahlen und die ganzen Quaternionen, können ihre Primelemente charakterisieren und daraus Schlüsse ziehen, welche ganzen Zahlen sich als Summen von zwei und vier Quadraten schreiben lassen.
Studierende können alle binären quadratischen Formen einer gegebenen Diskriminante bis auf Äquivalenz und dessen Gruppenstruktur bestimmen.
Studierende sind mit dem Legendre Symbol vertraut und können es mittels quadratischer Reziprozität effizient berechnen. Ferner sind sie fähig eine reduzierte binäre quadratische Form mit gegebener Diskriminante zu bestimmen, welche eine gegebene Primzahl repräsentiert, oder zu zeigen, dass keine solche existiert.

Content
Ganz anders sieht es aus bei den binären quadratischen Formen, wo man beliebige Formen der gleichen Diskriminante multiplizieren kann. Ferner wird ein wenig in die Repräsentationstheorie jener Formen eingegangen und damit zusammenhängend auch das Legendre Symbol und quadratische Reziprozität besprochen.

Literature
D. A. Cox: Primes of the form x^2+ny^2
A. R. Rajwade: Squares
J. Voight: Quaternion algebras
F. Lemmermeyer: Binary Quadratic Forms
S. Bosch: Algebra

Prerequisites / notice
Linear Algebra, Analysis, Algebra I (im Parallelen)

402-0351-00L Astronomy

Objective
An overview of important topics in modern astronomy: planets, sun, stars, milky way, galaxies, and cosmology

Content
This lecture gives a general introduction to main topics in modern astronomy. The lecture provides a basis for the more advanced lectures in astrophysics.

Literature
Der Neue Kosmos. A. Unsöld, B. Baschek, Springer
Oder sonstige Grundlehrbücher zur Astronomie.

Bachelor's Thesis

Number Title Type ECTS Hours Lecturers
401-2000-00L Scientific Works in Mathematics W 0 credits M. Burger

Number Title Type ECTS Hours Lecturers
401-2000-01L Lunch Sessions – Thesis Basics for Mathematics Students Z 0 credits Speakers

Number Title Type ECTS Hours Lecturers
401-3990-10L Bachelor's Thesis E 8 credits 11D Supervisors

GESS Science in Perspective

Language Courses

Additional Courses

Number Title Type ECTS Hours Lecturers
401-5000-00L Zurich Colloquium in Mathematics E- 0 credits R. Abgrall, M. Iacobelli, A. Bandiera, A. Iozzi, S. Mishra, R. Pandharipande, University lecturers
401-5990-00L Zurich Graduate Colloquium E- 0 credits 1K A. Iozzi, further speakers

Abstract
The Graduate Colloquium is an informal seminar aimed at graduate students and postdocs whose purpose is to provide a forum for communicating one's interests and thoughts in mathematics.

401-5960-00L Colloquium on Mathematics, Computer Science, and Education E- 0 credits N. Hungerbühler, M. Akveld, D. Grauwehr Morath, J. Hromkovic, P. Spindler

Subject didactics for mathematics and computer science teachers.

Abstract
Didactics colloquium

402-0101-00L The Zurich Physics Colloquium E- 0 credits 1K S. Huber, A. Refregier, University lecturers

Abstract
Research colloquium

402-0800-00L The Zurich Theoretical Physics Colloquium E- 0 credits 1K J. Renes, University lecturers

Objective
The Zurich Theoretical Physics Colloquium is jointly organized by the University of Zurich and ETH Zurich. Its mission is to bring both students and faculty with diverse interests in theoretical physics together. Leading experts explain the basic questions in their field of research and communicate the fascination for their work.

Abstract
Research colloquium

402-0100-00L Computer Science Colloquium E- 0 credits 2K Lecturers

Abstract
Invited talks, covering the entire scope of computer science. External Listeners are welcome at no charge. A detailed schedule is published at the beginning of each semester.

Objective
Top international computer scientists take the floor at the distinguished computer science colloquium. Our guest speakers present impacting topics across various areas of the discipline. The colloquium series is held every semester and also includes inaugural and farewell lectures of the department's professors. The colloquium is a noteworthy event for all graduate students. Outside attendance is equally welcome.

Content
Eingeladene Vorträge aus dem gesamten Bereich der Informatik, zu denen auch Auswärtige kostenlos eingeladen sind. Zu Semesterbeginn erscheint jeweils ein ausführliches Programm.

Mathematics Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
<th>E-</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>Recommended, not eligible for credits</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
<th>P</th>
<th>A</th>
<th>D</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td>practical/laboratory course</td>
<td>independent project</td>
<td>diploma thesis</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Mathematics TC

Detailed information on the programme at: www.ethz.ch/didaktische-ausbildung

Educational Science

General course offerings in the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

Subject Didactics and Professional Training

Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

Enrolment in either Mathematics Didactics I or Mathematics Didactics II (spring semester) is compulsory.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3971-11L</td>
<td>Mathematics Didactics I</td>
<td>W</td>
<td>4</td>
<td>2G</td>
<td>A. Barth</td>
</tr>
</tbody>
</table>

Abstract

Students learn about and learn to use findings from empirical research into mathematical didactics and best practice, as well as theoretical approaches to teaching various topics in mathematics. Methodological suggestions are compared and draft tuition concepts discussed.

Objective

- They learn to assess pupils’ work.
- To be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- They learn the skills of the teaching trade.
- They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution.
- They learn to assess pupils’ work.
- Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.

Content

- The objective is for the students:
 - to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.
 - They learn the skills of the teaching trade.
 - They observe 10 lessons and teach 20 lessons independently. Two of them are as assessed as Examination Lessons.
 - Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching.
 - They are able to assess the significance of tuition topics for their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
 - They learn the teaching concept and teaching trade.
 - The objective is to familiarise them with a tuition topic by consulting different sources, acquire materials and reflect on the relevance of the topic and the access they have selected to this topic from a subject-based and pedagogical angle.
 - The objective is for the students:

Prerequisites / notice

Does not take place this semester.

Specialized Courses in Respective Subject with Educational Focus

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3971-11L</td>
<td>Mathematics Didactics I</td>
<td>W</td>
<td>4</td>
<td>2G</td>
<td>A. Barth</td>
</tr>
</tbody>
</table>

Abstract

Students learn about and learn to use findings from empirical research into mathematical didactics and best practice, as well as theoretical approaches to teaching various topics in mathematics. Methodological suggestions are compared and draft tuition concepts discussed.

Objective

- They learn to assess pupils’ work.
- To be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- They learn the skills of the teaching trade.
- They observe 10 lessons and teach 20 lessons independently. Two of them are as assessed as Examination Lessons.
- Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching.
- They are able to assess the significance of tuition topics for their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
- They learn the teaching concept and teaching trade.
- The objective is to familiarise them with a tuition topic by consulting different sources, acquire materials and reflect on the relevance of the topic and the access they have selected to this topic from a subject-based and pedagogical angle.
- The objective is for the students:

Prerequisites / notice

Does not take place this semester.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1587 of 2152
Finite geometries I, II: Finite geometries combine aspects of geometry, discrete mathematics and the algebra of finite fields. In particular, we will construct models of axioms of incidence and investigate closing theorems. Applications include test design in statistics, block design, and the construction of orthogonal Latin squares.

Objective
Finite geometries I, II: Students will be able to construct and analyse models of finite geometries. They are familiar with closing theorems of the axioms of incidence and are able to design statistical tests by using the theory of finite geometries. They are able to construct orthogonal Latin squares and know the basic elements of the theory of block design.

Content
Finite geometries I, II: finite fields, rings of polynomials, finite affine planes, axioms of incidence, Euler's thirty-six officers problem, design of statistical tests, orthogonal Latin squares, transformation of finite planes, closing theorems of Desargues and Pappus-Pascal, hierarchy of closing theorems, finite coordinate planes, division rings, finite projective planes, duality principle, finite Möbius planes, error correcting codes, block design.

Literature
- Max Jeger, Endliche Geometrien, ETH Skript 1988
- Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983
- Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press
- Dembowski: Finite Geometries.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3059-00L</td>
<td>Combinatorics II</td>
<td>W 4</td>
<td>2G</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>G. Hungerbühler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>Siehe Lernmaterial > Literatur</td>
<td></td>
</tr>
</tbody>
</table>
| | Content | - Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983
| | | - Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press
| | | - Dembowski: Finite Geometries. |

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0293-00L</td>
<td>Mathematics III</td>
<td>W 5</td>
<td>3V+2U</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>E. W. Farkas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td>Siehe Lernmaterial > Literatur</td>
<td></td>
</tr>
</tbody>
</table>
| | | - Euklidische Vektorräume, Skalarprodukt, Orthogonalität
| | | - Entwicklung einer periodischen Funktion in eine Fourier-Reihe
| | | - Komplexe Darstellung
| | | - Anwendungen zur Lösung gewöhnlicher Differentialgleichungen, Reihenansätze.

Systeme lineare Differentialgleichungen 1. Ordnung

- Definition, allgemeine Lösungsmenge, Fundamental-system
- Bestimmung von Lösungen mittels Eigenvektoren, Fundamental-system im diagonalisierbaren Fall
- Exponential einer Matrix
- homogene lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten.

Mathematische Modelle

- Begriffsäußerung: (mathematisches) Modell, einführende Beispiele
- Lineare Kompartment-Modelle (Box-Modell)

Laplace-Transformation

- Grundbegriffe: Definition der Laplace-Transformation und Rück-transformation, Konvergenz des Laplace-Integrals
- Eigenschaften der Laplace-Transformation
- Anwendungen der Laplace-Transformation zur Lösung linearer Differentialgleichungen mit konstanten Koeffizienten.

Partielle Differentialgleichungen

- Definition, Randbedingungen, Anfangsbedingungen
- Diffusionsgleichung: Herleitung, Lösung an einfachen Beispielen
- Techniken: Separationsansätze, Basilsolutions, Superpositionsprinzip

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-9985-00L</td>
<td>Mentored Work Specialised Courses in the Respective O</td>
<td>2</td>
<td>4A</td>
</tr>
<tr>
<td>Subject with an Educational Focus Mathematics A</td>
<td>2 credits</td>
<td>4A</td>
<td></td>
</tr>
<tr>
<td>Subject with an Educational Focus in Mathematics for TC and Teaching Diploma.</td>
<td>M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.
Objective
The aim is for the students
- to familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way.
- to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership.
- To try out different options for specialist further training in their profession.

Content
Thematic Schwerpunkte:

Lernformen:

Lecture notes
Eine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt.

Literature
Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.

Prerequisites / notice
Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.

Colloquia

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-5960-00L</td>
<td>Colloquium on Mathematics, Computer Science, and Education Subject didactics for mathematics and computer science teachers.</td>
<td>E-</td>
<td>0 credits</td>
<td></td>
<td>N. Hungerbühler, M. Akveld, D. Grawehr Morath, J. Hromkovic, P. Spindler</td>
</tr>
</tbody>
</table>

Abstract
Didactics colloquium

Mathematics TC - Key for Type

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>Compulsory</th>
<th>Eligible for credits and recommended</th>
<th>Eligible for credits</th>
<th>Recommended, not eligible for credits</th>
<th>Suitable for doctorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td></td>
<td>W+</td>
<td>W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td></td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System
Special students and auditors need special permission from the lecturers.
Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird M. Akveld Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt. The objective is for the students: Hours 4A 6P Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt. 2G Introductory Internship Mathematics Thematische Schwerpunkte In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle. Objective The objective is for the students: - to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too. - to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use. Content Themenische Schwerpunkte Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht. Cashierformen Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. Lecture notes Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt. Literature Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt. Prerequisites / notice Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. 401-9984-00L Mentored Work Subject Didactics Mathematics B O 2 credits 4A M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede Abstract In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle. Objective The objective is for the students: - to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too. - to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use. Content Themenische Schwerpunkte Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht. Cashierformen Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. Lecture notes Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt. Literature Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt. Prerequisites / notice Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
During the introductory teaching practice, the students sit in on five lessons given by the teacher responsible for their teaching practice, and teach five lessons themselves. The students are given observation and reflection assignments by the teacher responsible for their teaching practice.

Right at the start of their training, students acquire initial experience with the observation of teaching, the establishment of concepts for teaching and the implementation of teaching. This early confrontation with the complexity of everything that teaching involves helps students decide whether they wish to and, indeed, ought to, continue with the training. It forms a basis for the subsequent pedagogical and subject-didactics training.

The study programme offers a range of practice placements. The Practicum lecture person determines the number of placements. The practical placement lasts for 15-20 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.

- Students use their specialist-subject, educational science and subject-didactics training to reflect on teaching and learning processes and the teaching and learning environment.
- They are able to assess the significance of tuition topics in their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
- They acquire the skills of the teaching trade.
- They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution.
- They learn to assess pupils’ work.
- Together with the teacher in charge of their teaching teacher, the students constantly evaluate their own performance.

This course is to be chosen jointly with 401-3972-00L.

This is a supplement to the Teaching Internship required to obtain a Master of Advanced Studies in Secondary and Higher Education in the corresponding subject. It is aimed at enlarging the already acquired teaching experience. Students observe 10 lessons and teach 15 lessons independently.

The study programme offers a range of practice placements. The Practicum lecture person determines the number of placements. The practical placement lasts for 15-20 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.

- They learn to assess pupils’ work.
- Together with the teacher in charge of their teaching teacher, the students constantly evaluate their own performance.

This course is to be chosen jointly with 401-3972-00L.

This is a supplement to the Teaching Internship required to obtain a Master of Advanced Studies in Secondary and Higher Education in the corresponding subject. It is aimed at enlarging the already acquired teaching experience. Students observe 10 lessons and teach 15 lessons independently.

The study programme offers a range of practice placements. The Practicum lecture person determines the number of placements. The practical placement lasts for 15-20 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.

- They learn to assess pupils’ work.
- Together with the teacher in charge of their teaching teacher, the students constantly evaluate their own performance.

The study programme offers a range of practice placements. The Practicum lecture person determines the number of placements. The practical placement lasts for 15-20 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.

- They learn to assess pupils’ work.
- Together with the teacher in charge of their teaching teacher, the students constantly evaluate their own performance.

The study programme offers a range of practice placements. The Practicum lecture person determines the number of placements. The practical placement lasts for 15-20 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.

- They learn to assess pupils’ work.
- Together with the teacher in charge of their teaching teacher, the students constantly evaluate their own performance.

The study programme offers a range of practice placements. The Practicum lecture person determines the number of placements. The practical placement lasts for 15-20 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.

- They learn to assess pupils’ work.
- Together with the teacher in charge of their teaching teacher, the students constantly evaluate their own performance.

401-9991-02L Examination Lesson II Mathematics
Simultaneous enrolment in "Examination Lesson I Mathematics" (401-9991-01L) is compulsory.

Abstract
In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.

Objective
- to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle
- to analyze the tuition they have given with regard to its strengths and weaknesses, and outline improvements.

Content

Die gehaltene Lektion wird kriteriumsbasiert beurteilt. Die Beurteilung umfasst auch die schriftliche Vorbereitung und eine mündliche Reflexion des Kandidaten/ der Kandidatin über die gehaltene Lektion im Rahmen eines kurzen Kolloquiums.

Lecture notes
Dokument: Schriftliche Vorbereitung für Prüfungslektionen.

Prerequisites / notice
Nach Abschluss der übrigen Ausbildung.
Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.

The aim is for the students

Abstract

In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.

Objective

The aim is for the students

- to familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way.
- to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership.
- to try out different options for specialist further training in their profession.

Content

Thematische Schwerpunkte:

- To try out different options for specialist further training in their profession.
- to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership.

Lecture notes

Literature

- Papula, L., Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Vieweg und Teubner (2015), Kapitel 2 über Fourierreihen und Kapitel 4 über Partielle Differentialgleichungen
- A'Campo-Neuen, A., Skript über Gekoppelte Differentialgleichungen
- A. F. Müller, C. Rüede

Prerequisites / notice

Vorlesungen Mathematik I/II

Compulsory Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-9985-00L</td>
<td>Mentored Work Specialised Courses in the Respective Subject with an Educational Focus Mathematics A</td>
<td>2 credits</td>
<td>4A</td>
<td>M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede</td>
<td></td>
</tr>
<tr>
<td>401-9986-00L</td>
<td>Mentored Work Specialised Courses in the Respective Subject with an Educational Focus Mathematics B</td>
<td>2 credits</td>
<td>4A</td>
<td>M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede</td>
<td></td>
</tr>
</tbody>
</table>

Further course offerings from the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1593 of 2152
Upon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them.

Finite geometries I, II: Students will be able to construct and analyze models of finite geometries. They are familiar with closing theorems of incidence and are able to design statistical tests by using the theory of finite geometries. They are able to construct orthogonal Latin squares and know the basic elements of the theory of block design.

Finite geometries II: finite fields, rings of polynomials, finite affine planes, axioms of incidence, Euler's thirty-six officers problem, design of statistical tests, orthogonal Latin squares, transformation of finite planes, closing theorems of Desargues and Pappus-Pascal, hierarchy of closing theorems, finite coordinate planes, division rings, finite projective planes, duality principle, finite Möbius planes, error correcting codes, block design.

The general goal of the course consists in presenting ways to teach fundamentals of computer science, which are closely related to the contents and methods of mathematics. After attending the course unit, a mathematics teacher is able to teach selected fundamentals of computer science in mathematics classes.

The students understand the fundamental concepts of computer science in the context of a broad and deep knowledge. Through this understanding, they manage to prepare teaching materials for a successful knowledge transfer and to pass their passion for the subject on to their pupils.

The students know various teaching methods as well as their advantages and disadvantages. They can handle inhomogeneous prior knowledge of the learners inside a class. Besides holding classes, the students do care about the individual pupil support.

They encourage the autonomy of the learners, manage to work with diverse target groups and to establish a positive learning environment.

The students are able to express themselves using a comprehensible and refined professional language, both in a spoken and a written way, and they master the basic terminology of computer science. Besides the English terms, they are familiar with the corresponding German expressions. The students are able to produce detailed, matured, linguistically correct and design-wise appealing teaching materials.

The main topics of the course unit "Computer Science in Secondary School Mathematics" represent a scientific and didactic added value for mathematics classes.

The course covers the didactics of logic, of cryptology, of finite state automata, of computability and of the introduction to programming. The students develop the understanding of fundamental scientific concepts such as algorithm, program, complexity, determinism, computation, automata, verification, testing, security of a cryptosystem and secure communication. They reflect on ways to embed them into a scientifically sound and didactically sustainable mathematics course.

In a semester exercise, the students develop and document an adaptive teaching unit for computer science. They learn to employ the didactics methods and techniques that are introduced at the beginning of the semester into a scientifically sound and didactically sustainable mathematics course.

Mathematics Teaching Diploma - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Mathematics Master

Core Courses

For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields.

Core Courses: Pure Mathematics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3225-00L</td>
<td>Introduction to Lie Groups</td>
<td>W</td>
<td>8</td>
<td>4G</td>
<td>A. Iozzi</td>
</tr>
<tr>
<td>Abstract</td>
<td>Topological groups and Haar measure. Definition of Lie groups, examples of local fields and examples of discrete subgroups: basic properties; Lie subgroups. Lie algebras and relation with Lie groups: exponential map, adjoint representation. Semisimplicity, nilpotency, solvability, compactness: Killing form, Lie's and Engel's theorems. Definition of algebraic groups and relation with Lie groups.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal is to have a broad though foundational knowledge of the theory of Lie groups and their associated Lie algebras with an emphasis on the algebraic and topological aspects of it.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>A. Knapp: "Lie groups beyond an Introduction" (Birkhäuser)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Sagle & R. Walde: "Introduction to Lie groups and Lie algebras" (Academic Press, '73)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F. Warner: "Foundations of differentiable manifolds and Lie groups" (Springer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Samelson: "Notes on Lie algebras" (Springer, '90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Helgason: "Differential geometry, Lie groups and symmetric spaces" (Academic Press, '78)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3001-61L</td>
<td>Algebraic Topology I</td>
<td>W</td>
<td>8</td>
<td>4G</td>
<td>W. Merry</td>
</tr>
<tr>
<td>Abstract</td>
<td>This is an introductory course in algebraic topology, which is the study of algebraic invariants of topological spaces. Topics covered include: singular homology, cell complexes and cellular homology, the Eilenberg-Steenrod axioms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Book can be downloaded for free at: http://www.math.cornell.edu/~hatcher/AT/ATpage.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See also: http://www.math.cornell.edu/~hatcher/#anchor1772800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3132-00L</td>
<td>Commutative Algebra</td>
<td>W</td>
<td>10</td>
<td>4V+1U</td>
<td>E. Kowalski</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course provides an introduction to commutative algebra. It serves in particular as a foundation for modern algebraic geometry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Objective | The topics presented in the course will include:
* Basics facts about rings, ideals and modules
* Constructions of rings: quotients, polynomial rings, localization
* Noetherian rings and modules
* The tensor product of modules over commutative rings and its applications
* Krull dimension
* Integral extensions and the Cohen-Seidenberg theorems
* Finitely generated algebras over fields, including the Noether Normalization Theorem and the Nullstellensatz
* Primary decomposition
* Discrete valuation rings and some applications |
| Literature | Primary Reference:
| | Secondary References:
2. "Commutative algebra, With a view towards algebraic geometry" by D. Eisenbud (GTM 150, Springer Verlag, 1995)
4. "Commutative Algebra" by N. Bourbaki |

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3651-00L</td>
<td>Numerical Methods for Elliptic and Parabolic Partial Differential Equations (University of Zurich)</td>
<td>W</td>
<td>9</td>
<td>4V</td>
<td>S. Sauter</td>
</tr>
<tr>
<td>Prerequisites/notice</td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core Courses: Applied Mathematics and Further Appl.-Oriented Fields
Abstract
This course gives a comprehensive introduction into the numerical treatment of linear and nonlinear elliptic boundary value problems, related eigenvalue problems and linear, parabolic evolution problems. Emphasis is on theory and the foundations of numerical methods. Practical exercises include MATLAB implementations of finite element methods.

Objective
Participants of the course should become familiar with
* concepts underlying the discretization of elliptic and parabolic boundary value problems
* analytical techniques for investigating the convergence of numerical methods for the approximate solution of boundary value problems
* methods for the efficient solution of discrete boundary value problems
* implementational aspects of the finite element method

Content
The course will address the mathematical analysis of numerical solution methods for linear and nonlinear elliptic and parabolic partial differential equations. Functional analytic and algebraic (De Rham complex) tools will be provided. Primal, mixed and nonstandard (discontinuous Galerkin, Virtual, Trefftz) discretizations will be analyzed. Particular attention will be placed on developing mathematical foundations (Regularity, Approximation theory) for a-priori convergence rate analysis. A-posteriori error analysis and mathematical proofs of adaptivity and optimality will be covered. Implementations for model problems in MATLAB and python will illustrate the theory.

A selection of the following topics will be covered:
* Elliptic boundary value problems
* Galerkin discretization of linear variational problems
* The primal finite element method
* Mixed finite element methods
* Discontinuous Galerkin Methods
* Boundary element methods
* Spectral methods
* Adaptive finite element schemes
* Singularly perturbed problems
* Sparse grids
* Galerkin discretization of elliptic eigenproblems
* Non-linear elliptic boundary value problems
* Discretization of parabolic initial boundary value problems

Literature

Additional Literature:
D. Braess: Finite Elements, THIRD Ed., Cambridge Univ. Press, (2007). (Also available in German.)

Prerequisites / notice
Practical exercises based on MATLAB

Former title of the course unit: Numerical Methods for Elliptic and Parabolic Partial Differential Equations

<table>
<thead>
<tr>
<th>401-3621-00L</th>
<th>Fundamentals of Mathematical Statistics</th>
<th>W</th>
<th>10 credits</th>
<th>4V+1U</th>
<th>S. van de Geer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The course covers the basics of inferential statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>401-3622-00L</th>
<th>Statistical Modelling</th>
<th>W</th>
<th>8 credits</th>
<th>4G</th>
<th>C. Heinze-Deml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>In regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression with one or more covariates, high-dimensional linear models, nonlinear models and generalized linear models, robust methods, model choice and nonparametric models. Several numerical examples will illustrate the theory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1597 of 2152
This is the course unit with former course title "Regression". Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).

401-4889-00L Mathematical Finance W 11 credits 4V+2U D. Possamaï

Abstract
Advanced course on mathematical finance:
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- additional topics

Objective
Advanced course on mathematical finance, presupposing good knowledge in probability theory and stochastic calculus (for continuous processes).

Content
This is an advanced course on mathematical finance for students with a good background in probability. We want to give an overview of main concepts, questions and approaches, and we do this mostly in continuous-time models.

Topics include
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- and probably others

Lecture notes
The course is based on different parts from different books as well as on original research literature.

Literature
Lecture notes will not be available.

(will be updated later)

This course is the second of a sequence of two courses on mathematical finance. The first course "Introduction to Mathematical Finance" (MF I), 401-3888-00, focuses on models in finite discrete time. It is advisable that the course MF I is taken prior to the present course, MF II.

For an overview of courses offered in the area of mathematical finance, see https://www.math.ethz.ch/imsf/education/education-in-stochastic-finance/overview-of-courses.html.

401-3901-00L Linear & Combinatorial Optimization W 11 credits 4V+2U R. Zenklusen

Abstract
Mathematical treatment of optimization techniques for linear and combinatorial optimization problems.

Objective
The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.

Content
Key topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and polyhedral techniques;
- Equivalence between optimization and separation.

Literature

Prerequisites / notice
Solid background in linear algebra.

401-3901-00L Linear & Combinatorial Optimization W 11 credits 4V+2U R. Zenklusen

Abstract
Mathematical treatment of optimization techniques for linear and combinatorial optimization problems.

Objective
The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.

Content
Key topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and polyhedral techniques;
- Equivalence between optimization and separation.

Literature

Prerequisites / notice
Solid background in linear algebra.
Further restrictions apply, but in particular:
401-3531-00L Differential Geometry I can only be recognised for the Master Programme if 401-3532-00L Differential Geometry II has not been recognised for the Bachelor Programme.

Analogously for:
401-3461-00L Functional Analysis I - 401-3462-00L Functional Analysis II
401-3001-61L Algebraic Topology I - 401-3002-12L Algebraic Topology II
401-3132-00L Commutative Algebra - 401-3146-12L Algebraic Geometry

For the category assignment take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Bachelor Core Courses: Pure Mathematics

Further restrictions apply, but in particular:
401-3531-00L Differential Geometry I can only be recognised for the Master Programme if 401-3532-00L Differential Geometry II has not been recognised for the Bachelor Programme.

Analogously for:
401-3461-00L Functional Analysis I - 401-3462-00L Functional Analysis II
401-3001-61L Algebraic Topology I - 401-3002-12L Algebraic Topology II
401-3132-00L Commutative Algebra - 401-3146-12L Algebraic Geometry

For the category assignment take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Bachelor Core Courses: Applied Mathematics ...

Further restrictions apply, but in particular:
401-3601-00L Probability Theory can only be recognised for the Master Programme if neither 401-3642-00L Brownian Motion and Stochastic Calculus nor 401-3602-00L Applied Stochastic Processes has been recognised for the Bachelor Programme.
402-0205-00L Quantum Mechanics I is eligible as an applied core course, but only if 402-0224-00L Theoretical Physics (offered for the last time in FS 2016) isn't recognised for credits (neither in the Bachelor's nor in the Master's programme).

For the category assignment take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.
Adaptability and Flexibility

Lecturers

Concepts and Theories
Upon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them.

N. Hungerbühler
Combinatorics II
not assessed

Quantum Mechanics I
The course Combinatorics I and II is an introduction into the field of enumerative combinatorics.
not assessed

Hours
will be available in electronic form.
not assessed

Contents of the lectures Combinatorics I and II: congruence transformation of the plane, symmetry groups of geometric figures, Euler's function, Cayley graphs, formal power series, permutation groups, cycles, Bunsdie's lemma, cycle index, Polya's theorems, applications to graph theory and isomers.

M. Gaberdiel
ECTS
This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:

Basics in measure theory, series of independent random variables, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).

Lecture notes
will be available in electronic form.

Literature
H. Bauer, Probability Theory, de Gruyter 1996
J. Jacod and P. Protter, Probability essentials, Springer 2004
A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006
D. Williams, Probability with martingales, Cambridge University Press 1991

402-0205-00L Quantum Mechanics I
W 10 credits 3V+2U M. Gaberdiel

Abstract

Objective
Applications: simple potentials in wave mechanics, scattering and resonance, harmonic oscillator, hydrogen atom, and perturbation theory.

Content
The beginnings of quantum theory with Planck, Einstein and Bohr; Wave mechanics; Simple examples; The formalism of quantum mechanics (states and observables, Hilbert spaces and operators, the measurement process); Heisenberg uncertainty relation; Harmonic oscillator; Symmetries (in particular rotations); Hydrogen atom; Angular momentum addition; Quantum mechanics and classical physics (EPR paradoxon and Bell's inequality); Perturbation theory.

Lecture notes
Auf Moodle, in deutscher Sprache

Literature
G. Baym, Lectures on Quantum Mechanics
E. Merzbacher, Quantum Mechanics
L.I. Schiff, Quantum Mechanics
R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals
J.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies not assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed

Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking not assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

Electives
For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields.

Electives: Pure Mathematics

Selection: Algebra, Number Thy, Topology, Discrete Mathematics, Logic

Number Title Type ECTS Hours Lecturers
401-3059-00L Combinatorics II W 4 credits 2G N. Hungerbühler

Abstract
The course Combinatorics I and II is an introduction into the field of enumerative combinatorics.

Objective
Upon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them.

Content
Contents of the lectures Combinatorics I and II: congruence transformation of the plane, symmetry groups of geometric figures, Euler's function, Cayley graphs, formal power series, permutation groups, cycles, Bunsdie's lemma, cycle index, Polya's theorems, applications to graph theory and isomers.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1600 of 2152
Gödel's Theorems | W | 8 credits | 3V+1U | L. Halbeisen

Abstract
Die Vorlesung besteht aus drei Teilen:
Teil I gibt eine Einführung in die Syntax und Semantik der Prädikatenlogik erster Stufe.
Teil II behandelt den Gödel'schen Vollständigkeitsatz
Teil III behandelt den Gödel'schen Unvollständigkeitsatz

Objective
Das Ziel dieser Vorlesung ist ein fundiertes Verständnis der Grundlagen der Mathematik zu vermitteln.

Content
Syntax und Semantik der Prädikatenlogik
Gödel'scher Vollständigkeitsatz
Gödel'sche Unvollständigkeitsätze

Literature

Selection: Geometry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3533-70L</td>
<td>Topics in Riemannian Geometry</td>
<td>W</td>
<td>6 credits</td>
<td>3V</td>
<td>U. Lang</td>
</tr>
<tr>
<td>401-4207-71L</td>
<td>Coxeter Groups from a Geometric Viewpoint</td>
<td>W</td>
<td>4 credits</td>
<td>2V</td>
<td>M. Cordes</td>
</tr>
<tr>
<td>401-3057-00L</td>
<td>Finite Geometries II</td>
<td>W</td>
<td>4 credits</td>
<td>2G</td>
<td>N. Hungerbühler</td>
</tr>
</tbody>
</table>

Abstract
Selected topics from Riemannian geometry in the large: triangle and volume comparison theorems, Milnor's results on growth of the fundamental group, Gromov-Hausdorff convergence, Cheeger's diffeomorphism finiteness theorem, the Besson-Courtois-Gallot barycenter method and the proofs of the minimal entropy theorem and the Mostow rigidity theorem for rank one locally symmetric spaces.

Objective
Understand the basic properties of Coxeter groups.

Prerequisites
Brown, Kenneth S. "Buildings"

Literature
- Davis, Michael "The geometry and topology of Coxeter groups"
- Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983
- Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press
- Dembowski: Finite Geometries.

Selection: Analysis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-4421-71L</td>
<td>Harmonic Analysis</td>
<td>W</td>
<td>4 credits</td>
<td>2V</td>
<td>A. Figalli</td>
</tr>
<tr>
<td>401-4475-71L</td>
<td>Microlocal Analysis</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>P. Hintz</td>
</tr>
</tbody>
</table>

Abstract
Microlocal analysis is the analysis of partial differential equations in phase space. The first half of the course introduces basic notions such as pseudodifferential operators, wave front sets of distributions, and elliptic parametrices. The second half develops modern tools for the study of nonelliptic equations, with applications to wave equations arising in general relativity.

Objective
Students will be able to analyze linear partial differential operators (with smooth coefficients) and their solutions in phase space, i.e. in the cotangent bundle. For various classes of operators including, but not limited to, elliptic and hyperbolic operators, they will be able to prove existence and uniqueness (possibly up to finite-dimensional obstructions) of solutions, and study the precise regularity properties of solutions.

- The first goal is to construct and apply parametrices (approximate inverses) or approximate solutions of PDEs using suitable calculus of pseudodifferential operators (ps.d.o.s). This requires defining ps.d.o. and the associated symbol calculus on Euclidean space, proving the coordinate invariance of ps.d.o.s, and defining a ps.d.o. calculus on manifolds (including mapping properties on Sobolev spaces).
- The second goal is to analyze distributions and operations on them (such as: products, restrictions to submanifolds) using information about their wave front sets or other microlocal regularity information. Students will in particular be able to compute the wave front set of distributions.
- The third goal is to infer microlocal properties (in the sense of wave front sets) of solutions of general linear PDEs, with a focus on elliptic, hyperbolic and certain degenerate hyperbolic PDE. For hyperbolic operators, this includes proving the Duistermaat-Hörmander theorem on the propagation of singularities. For certain degenerate hyperbolic operators, students will apply positive commutator methods to prove results on the propagation of microlocal regularity at critical or invariant sets for the Hamiltonian vector field of the principal symbol of the partial differential operator under study.
Content
Tempered distributions, Sobolev spaces, Schwartz kernel theorem.
Symbols, asymptotic summation.
Pseudodifferential operators on Euclidean space: composition, principal symbols and the symbol calculus, elliptic parametrix construction, boundedness on Sobolev spaces.
Pseudodifferential operators on manifolds, elliptic operators on compact manifolds and Fredholm theory, basic symplectic geometry.
Microlocalization: wave front set, characteristic set; pairings, products, restrictions of distributions.
Hyperbolic evolution equations: existence and uniqueness of solutions, Egorov’s theorem.
Propagation of singularities: the Duistermaat-Hörmander theorem, microlocal estimates at radial sets.
Applications to general relativity: asymptotic behavior of waves on de Sitter space.

Lecture notes
Lecture notes will be made available on the course website.

Literature
Lars Hörmander, "The Analysis of Linear Partial Differential Operators", Volumes I and III.
Alain Grigis and Johannes Sjöstrand, "Microlocal Analysis for differential operators: an introduction".

Prerequisites / notice
Students are expected to have a good understanding of functional analysis. Familiarity with distribution theory, the Fourier transform, and analysis on manifolds is useful but not strictly necessary; the relevant notions will be recalled in the course.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
</tr>
</tbody>
</table>

Selection: Further Realms

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3502-71L</td>
<td>Reading Course</td>
<td>W</td>
<td>2 credits</td>
<td>4A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3503-71L</td>
<td>Reading Course</td>
<td>W</td>
<td>3 credits</td>
<td>6A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3504-71L</td>
<td>Reading Course</td>
<td>W</td>
<td>4 credits</td>
<td>9A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3504-02L</td>
<td>Reading Course (No. 2)</td>
<td>W</td>
<td>4 credits</td>
<td>9A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1602 of 2152
Abstract

For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

401-0000-00L Communication in Mathematics

| W | 2 credits | 1V | W. Merry |

Communication in Mathematics

Does not take place this semester.

Abstract

Don't hide your Next Great Theorem behind bad writing.

This course teaches fundamental communication skills in mathematics: how to write clearly and how to structure mathematical content for different audiences, from theses, to preprints, to personal statements in applications. In addition, the course will help you establish a working knowledge of LaTeX.

Objective

Knowing how to present written mathematics in a structured and clear manner.

Content

Topics covered include:

- Language conventions and common errors.
- How to write a thesis (more generally, a mathematics paper).
- How to use LaTeX.
- How to write a personal statement for Masters and PhD applications.

Lecture notes

Full lecture notes will be made available on my website:

https://www.merry.io/teaching/

Prerequisites

There are no formal mathematical prerequisites.

Electives: Applied Mathematics and Further Application-Oriented Fields

Selection: Numerical Analysis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-4657-00L</td>
<td>Numerical Analysis of Stochastic Ordinary Differential Equations</td>
<td>W</td>
<td>6 credits</td>
<td>3V+1U</td>
<td>A. Stein</td>
</tr>
</tbody>
</table>

Abstract

Course on numerical approximations of stochastic ordinary differential equations driven by Wiener processes. These equations have several applications, for example in financial option valuation. This course also contains an introduction to random number generation and Monte Carlo methods for random variables.

Objective

The aim of this course is to enable the students to carry out simulations and their mathematical convergence analysis for stochastic models originating from applications such as mathematical finance. For this the course teaches a decent knowledge of the different numerical methods, their underlying ideas, convergence properties and implementation issues.

Content

- Generation of random numbers
- Monte Carlo methods for the numerical integration of random variables
- Stochastic processes and Brownian motion
- Stochastic ordinary differential equations (SODEs)
- Numerical approximations of SODEs
- Applications to computational finance: Option valuation

Lecture notes

There will be English, typed lecture notes for registered participants in the course.

Literature

Prerequisites

Mandatory: Probability and measure theory, basic numerical analysis and basics of MATLAB/Python programming.

a) mandatory courses:

Elementary Probability,
Probability Theory I.

b) recommended courses:

Stochastic Processes.

401-4785-00L Mathematical and Computational Methods in Photonics

| W | 8 credits | 4G | H. Ammari |

Abstract

The aim of this course is to review new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods used to address challenging problems in nanophotonics. The emphasis will be on analyzing plasmon resonant nanoparticles, super-focusing & super-resolution of electromagnetic waves, photonic crystals, electromagnetic cloaking, metamaterials, and metasurfaces.
The field of photonics encompasses the fundamental science of light propagation and interactions in complex structures, and its technological applications.

The recent advances in nanoscience present great challenges for the applied and computational mathematics community. In nanophotonics, the aim is to control, manipulate, reshape, guide, and focus electromagnetic waves at nanometer length scales, beyond the resolution limit. In particular, one wants to break the resolution limit by reducing the focal spot and confine light to length scales that are significantly smaller than half the wavelength.

Interactions between the field of photonics and mathematics has led to the emergence of a multitude of new and unique solutions in which today's conventional technologies are approaching their limits in terms of speed, capacity and accuracy. Light can be used for detection and measurement in a fast, sensitive and accurate manner, and thus photonics possesses a unique potential to revolutionize healthcare. Light-based technologies can be used effectively for the very early detection of diseases, with non-invasive imaging techniques or point-of-care applications. They are also instrumental in the analysis of processes at the molecular level, giving a greater understanding of the origin of diseases, and hence allowing prevention along with new treatments. Photonic technologies also play a major role in addressing the needs of our ageing society: from pace-makers to synthetic bones, and from endoscopes to the micro-cameras used in in-vivo processes. Furthermore, photonics are also used in advanced lighting technology, and in improving energy efficiency and quality. By using photonic media to control waves across a wide band of wavelengths, we have an unprecedented ability to fabricate new materials with specific microstructures.

The main objective in this course is to report on the use of sophisticated mathematics in diffractive optics, plasmonics, super-resolution, photonic crystals, and metamaterials for electromagnetic invisibility and cloaking. The book merges highly nontrivial multi-mathematics in order to make a breakthrough in the field of mathematical modelling, imaging, and optimal design of optical nanodevices and nanostructures capable of light enhancement, and of the focusing and guiding of light at a subwavelength scale. We demonstrate the power of layer potential techniques in solving challenging problems in photonics, when they are combined with asymptotic analysis and the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions.

In this course we shall consider both analytical and computational matters in photonics. The issues we consider lead to the investigation of fundamental problems in various branches of mathematics. These include asymptotic analysis, spectral analysis, mathematical imaging, optimal design, stochastic modelling, and analysis of wave propagation phenomena. On the other hand, deriving mathematical foundations, and new and efficient computational frameworks and tools in photonics, requires a deep understanding of the different scales in the wave propagation problem, an accurate mathematical modelling of the nanodevices, and fine analysis of complex wave propagation phenomena. An emphasis is put on mathematically analyzing plasmon resonant nanoparticles, diffractive optics, photonic crystals, super-resolution, and metamaterials.

401-5003-71L At the Interface Between Semiclassical Analysis and Numerical Analysis of Wave-Scattering Problems

Abstract
Postgraduate degree lecture

Content
Semiclassical analysis (SCA) is a branch of microlocal analysis concerned with rigorously analysing PDEs with large (or small) parameters.

On the other hand, numerical analysis (NA) seeks to design numerical methods that are accurate, efficient, and robust, with theorems guaranteeing these properties.

In the context of high-frequency wave scattering, both SCA and NA share the same goal — that of understanding the behaviour of the scattered wave — but these two fields have operated largely in isolation, mainly because the tools and techniques of the two fields are somewhat disjoint.

This by-and-large self-contained course focuses on the Helmholtz equation, which is arguably the simplest possible model of wave propagation problem, an accurate mathematical modelling of the nanodevices, and fine analysis of complex wave propagation phenomena.

The course will aim at being accessible both to students coming from a numerical-analysis/applied-maths background and to students coming from an analysis background.

Selection: Probability Theory, Statistics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-4607-67L</td>
<td>Schramm-Loewner Evolutions</td>
<td>W</td>
<td>4 credits</td>
<td>2V</td>
<td>W. Werner</td>
</tr>
<tr>
<td>401-3822-17L</td>
<td>Ising Model</td>
<td>W</td>
<td>4 credits</td>
<td>2V</td>
<td>V. Tassion</td>
</tr>
</tbody>
</table>

401-3628-14L Bayesian Statistics

Abstract
Introduction to the Bayesian approach to statistics: decision theory, prior distributions, hierarchical Bayes models, empirical Bayes, Bayesian tests and model selection, empirical Bayes, Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods.

Objective
Students understand the conceptual ideas behind Bayesian statistics and are familiar with common techniques used in Bayesian data analysis.

Content
Topics that we will discuss are:

- Difference between the frequentist and Bayesian approach (decision theory, principles), priors (conjugate priors, noninformative priors, Jeffreys prior), tests and model selection (Bayes factors, hyper-g priors for regression), hierarchical models and empirical Bayes methods, computational methods (Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods).

Lecture notes
A script will be available in English.

Literature

Prerequisites / notice
Familiarity with basic concepts of frequentist statistics and with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.

401-0625-01L Applied Analysis of Variance and Experimental Design

Abstract
Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-squares factorials and fractional designs, power.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1604 of 2152
Objective
Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.

Content
Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.

Literature

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.

401-0649-00L Applied Statistical Regression W 5 credits 2V+1U M. Dettling

Abstract
This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.

Objective
The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.

Content
The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

Lecture notes
A script will be available.

Literature
Faraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis

401-3627-00L High-Dimensional Statistics W 4 credits 2V P. L. Bühlmann

Abstract
“High-Dimensional Statistics” deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.

Objective
Knowledge of methods and basic theory for high-dimensional statistical inference

Content
Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling

Literature

401-4623-00L Time Series Analysis W 6 credits 3G F. Balabdaoui

Abstract
The course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary Models, ARIMA processes, Spectral Analysis, Forecasting, Nonstationary Models, ARIMA Models and an introduction to GARCH models.

Objective
The goal of the course is to have a a good overview of the different types of time series and the approaches used in their statistical analysis.
Content
This course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework, the main feature exhibited by time series is the dependence between successive observations.

The key topics which will be covered as:

Stationarity
Autocorrelation
Trend estimation
Elimination of seasonality
Spectral analysis, spectral densities
Forecasting
ARMA, ARIMA, Introduction into GARCH models

Literature
The main reference for this course is the book "Introduction to Time Series and Forecasting", by P. J. Brockwell and R. A. Davis

Prerequisites / notice
Basic knowledge in probability and statistics

401-3612-00L Stochastic Simulation

Type: assessed

Abstract
This course provides an introduction to statistical Monte Carlo methods. This includes applications of simulations in various fields (Bayesian statistics, statistical mechanics, operations research, financial mathematics), algorithms for the generation of random variables (accept-reject, importance sampling), estimating the precision, variance reduction, introduction to Markov chain Monte Carlo.

Objective
Stochastic simulation (also called Monte Carlo method) is the experimental analysis of a stochastic model by implementing it on a computer. Probabilities and expected values can be approximated by averaging simulated values, and the central limit theorem gives an estimate of the error of this approximation. The course shows examples of the many applications of stochastic simulation and explains different algorithms used for simulation. These algorithms are illustrated with the statistical software R.

Content

Lecture notes
A script will be available in English.

Literature
P. Glasserman, Monte Carlo Methods in Financial Engineering.

Prerequisites / notice
Familiarity with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.

Selection: Financial and Insurance Mathematics

In the Master's programmes in Mathematics resp. Applied Mathematics 401-3913-01L Mathematical Foundations for Finance is eligible as an elective course, but only if 401-3888-00L Introduction to Mathematical Finance isn't recognised for credits (neither in the Bachelor's nor in the Master's programme). For the category assignment take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

401-3925-00L Life Insurance Mathematics

Type: W

Abstract
Does not take place this semester.

Objective
The lecture aims at providing a basis in non-life insurance mathematics which forms a core subject of actuarial science. It discusses the main features exhibited by non-life insurance liability modeling, pricing concepts, stochastic claims reserving models and ruin and solvency considerations.

Content
The following topics are treated:

Collective Risk Modeling
Individual Claim Size Modeling
Approximations for Compound Distributions
Ruin Theory in Discrete Time
Premium Calculation Principles
Tarification
Generalized Linear Models and Neural Networks
Bayesian Models and Credibility Theory
Claims Reserving
Solvency Considerations

Lecture notes
M.V. Wüthrich, Non-Life Insurance: Mathematics & Statistics
http://ssrn.com/abstract=2319328

Literature
M.V. Wüthrich, M. Merz. Statistical Foundations of Actuarial Learning and its Applications
http://ssrn.com/abstract=3822407

Prerequisites / notice
The exams ONLY take place during the official ETH examination period.

This course will be held in English and counts towards the diploma of "Aktuar SAV". For the latter, see details under www.actuaries.ch.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management
assessed
assessed
assessed
assessed
not assessed
assessed
not assessed

Domain B - Method-specific Competencies

401-3922-00L Life Insurance Mathematics

Type: W

Abstract

Objective

Content

Literature

Prerequisites / notice

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1606 of 2152
Abstract

The classical life insurance model is presented together with the important insurance types (insurance on one and two lives, term and endowment insurance and disability). Besides that the most important terms such as mathematical reserves are introduced and calculated. The profit and loss account and the balance sheet of a life insurance company is explained and illustrated.

401-3928-00L

Reinsurance Analytics

W 4 credits 2V P. Antal, P. Arbenz

Abstract

This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and models for extreme events such as natural or man-made catastrophes. The lecture covers reinsurance contracts, Experience and Exposure pricing, natural catastrophe modelling, solvency regulation, and insurance linked securities transfer through reinsurance and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes.

Objective

This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes.

Topics covered include:
- Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business.
- Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models.
- Exposure Pricing: Loss modelling based on exposure or risk profile information, for both property and casualty risks.
- Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context.
- Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency 2.
- Insurance linked securities: Alternative risk transfer techniques such as catastrophe bonds.

Content

This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes.

Topics covered include:
- Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business.
- Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models.
- Exposure Pricing: Loss modelling based on exposure or risk profile information, for both property and casualty risks.
- Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context.
- Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency 2.
- Insurance linked securities: Alternative risk transfer techniques such as catastrophe bonds.

Lecture notes

Slides and lecture notes will be made available.

Prerequisites / notice

Basic knowledge in statistics, probability theory, and actuarial techniques.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: not assessed
- Critical Thinking: not assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

401-3927-00L

Mathematical Modelling in Life Insurance

W 4 credits 2V T. J. Peter

Abstract

In life insurance, it is essential to have adequate mortality tables, be it for reserving or pricing purposes. The course provides the tools necessary to create mortality tables from scratch. Additionally, we study various guarantees embedded in life insurance products and learn to price them with the help of stochastic models.

Objective

The course's objective is to provide the students with the understanding and the tools to create mortality tables on their own. Additionally, students should learn to price embedded options in life insurance. Aside of the mere application of specific models, they should develop an intuition for the various drivers of the value of these options.

Content

Following main topics are covered:

1. Guarantees and options embedded in life insurance products.
 - Stochastic valuation of participating contracts
 - Stochastic valuation of Unit Linked contracts
2. Mortality Tables:
 - Determining raw mortality rates
 - Smoothing techniques: Whittaker-Henderson, smoothing splines, ...
 - Trends in mortality rates
 - Stochastic mortality model due to Lee and Carter
 - Neural Network extension of the Lee-Carter model
 - Integration of safety margins

Lecture notes

Lectures notes and slides will be provided.
The goal of this course is to provide a solid introduction to the formalism, the techniques, and important physical applications of quantum field theory. Furthermore it prepares students for the advanced course in quantum field theory (Quantum Field Theory II), and for work on research projects in theoretical physics, particle physics, and condensed-matter physics.

Domain A - Subject-specific Competencies

Taught competencies

- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Domain D - Personal Competencies

- Self-direction and Self-management
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Negotiation
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Customer Orientation
- Leadership and Responsibility
- Sensitivity to Diversity
- Communication
- Cooperation and Teamwork
- Media and Digital Technologies
- Self-presentation and Social Influence
- Problem-solving
- Decision-making
- Analytical Competencies
- Techniques and Technologies
- Concepts and Theories

Quantum Field Theory I

Number 402-0843-00L

Title Quantum Field Theory I

ECTS 10 credits

Hours 4V+2U

Lecturers G. Graf

Abstract

This course discusses the quantisation of fields in order to introduce a coherent formalism for the combination of quantum mechanics and special relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves.

Statistical Physics

Number 402-0861-00L

Title Statistical Physics

ECTS 10 credits

Hours 4V+2U

Lecturers M. Sigrist

Abstract

This lecture covers the concepts of classical and quantum statistical physics. Several techniques such as second quantization formalism for fermions, bosons, photons and phonons as well as mean field theory and self-consistent field approximation. These are used to discuss phase transitions, critical phenomena and superfluidity.

Objective

This lecture gives an introduction in the basic concepts and applications of statistical physics for the general use in physics and, in particular, as a preparation for the theoretical solid state physics education.

Content

- Kinetic approach to statistical physics: H-theorem, detailed balance and equilibrium conditions.
- Classical statistical physics: microcanonical ensembles, canonical ensembles and grandcanonical ensembles, applications to simple systems.
- Quantum statistical physics: density matrix, ensembles, Fermi gas, Bose gas (Bose-Einstein condensation), photons and phonons.
- Identical quantum particles: many body wave functions, second quantization formalism, equation of motion, correlation functions, selected applications, e.g., Bose-Einstein condensate and coherent state, phonons in elastic media and melting.
- One-dimensional interacting systems.
- Phase transitions: mean field approach to Ising model, Gaussian transformation, Ginzburg-Landau theory (Ginzburg criterion), self-consistent field approach, critical phenomena, Peierls' arguments on long-range order.

Lecture notes

Lecture notes available in English.

Literature

No specific book is used for the course. Relevant literature will be given in the course.
Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

- Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk’s conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15757

Lectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely. Students are expected to have a mathematical background and should be able to write rigorous proofs.

Advanced Algorithms

This is a graduate-level course on algorithm design (and analysis). It covers a range of topics and techniques in approximation algorithms, sketching and streaming algorithms, and online algorithms. This course familiarizes the students with some of the main tools and techniques in modern subareas of algorithm design.

The lectures will cover a range of topics, tentatively including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and derandomization.

This course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science. It should also be accessible to last-year bachelor students.

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you're ready for this class or not, please consult the instructor.
Planar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in Rd, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations.

Lecture notes

Yes

Literature

Prerequisites / notice

Prerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH. In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area.

252-0417-00L Randomized Algorithms and Probabilistic Methods

W 10 credits 3V+2U+4A A. Steger

Abstract
Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks

Objective
After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.

Content
Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Lecture notes

Yes

Literature

Selection: Further Realms

Mathematics of Data Science

W 8 credits 4G A. Bandeira

Abstract
Mostly self-contained, but fast-paced, introductory masters level course on various theoretical aspects of algorithms that aim to extract information from data.

Objective
Introduction to various mathematical aspects of Data Science.

Content
These topics lie in overlaps of (Applied) Mathematics with: Computer Science, Electrical Engineering, Statistics, and/or Operations Research. Each lecture will feature a couple of Mathematical Open Problem(s) related to Data Science. The main mathematical tools used will be Probability and Linear Algebra, and a basic familiarity with these subjects is required. There will also be some (although knowledge of these tools is not assumed) Graph Theory, Representation Theory, Applied Harmonic Analysis, among others. The topics treated will include Dimension reduction, Manifold learning, Sparse recovery, Random Matrices, Approximation Algorithms, Community detection in graphs, and several others.

Lecture notes

Prerequisites / notice

The main mathematical tools used will be Probability, Linear Algebra (and real analysis), and a working knowledge of these subjects is required. In addition to these prerequisites, this class requires a certain degree of mathematical maturity—including abstract thinking and the ability to understand and write proofs.

We encourage students who are interested in mathematical data science to take both this course and 227-0434-10L Mathematics of Information" taught by Prof. H. Bölcskei. The two courses are designed to be complementary.

Neural Network Theory

W 4 credits 2V+1U+2H A. Bölcskei

Abstract
The class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, fundamental limits of deep neural network learning, VC dimension.

Objective
After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.

Content
1. Universal approximation with single- and multi-layer networks
2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory
3. Fundamental limits of deep neural network learning
4. Geometry of decision surfaces
5. Separating capacity of nonlinear decision surfaces
6. Vapnik-Chervonenkis (VC) dimension
7. VC dimension of neural networks
8. Generalization error in neural network learning

Lecture notes

Detailed lecture notes are available on the course web page

Prerequisites / notice

This course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.

Reading Course

W 2 credits 4A Supervisors

To start an individual reading course, contact an authorised supervisor
https://www.ethz.ch/content/dam/ethz/special-a...
Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

401-3503-71L Reading Course
To start an individual reading course, contact an authorised supervisor
https://www.ethz.ch/content/dam/ethz/special-interest/math/department/Intranet/Students/Study_Administration/Theses_Reading_Courses/berechtigungsliste.pdf
and register your reading course in myStudies.

Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

401-3504-71L Reading Course
To start an individual reading course, contact an authorised supervisor
https://www.ethz.ch/content/dam/ethz/special-interest/math/department/Intranet/Students/Study_Administration/Theses_Reading_Courses/berechtigungsliste.pdf
and register your reading course in myStudies.

Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

401-3504-02L Reading Course (No. 2)
To start an individual reading course, contact an authorised supervisor
https://www.ethz.ch/content/dam/ethz/special-interest/math/department/Intranet/Students/Study_Administration/Theses_Reading_Courses/berechtigungsliste.pdf
and register your reading course in myStudies.

Abstract
For this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.

401-0000-00L Communication in Mathematics
Does not take place this semester.

Abstract
Don't hide your Next Great Theorem behind bad writing.

This course teaches fundamental communication skills in mathematics: how to write clearly and how to structure mathematical content for different audiences, from theses, to preprints, to personal statements in applications. In addition, the course will help you establish a working knowledge of LaTeX.

Objective
Knowing how to present written mathematics in a structured and clear manner.

Content
Topics covered include:
- Language conventions and common errors.
- How to write a thesis (more generally, a mathematics paper).
- How to use LaTeX.
- How to write a personal statement for Masters and PhD applications.

Lecture notes
Full lecture notes will be made available on my website:
https://www.merry.io/teaching/

Prerequisites / notice
There are no formal mathematical prerequisites.

- Electives (direction Applied Mathematics MSc only)

Electives from applied mathematics and further application-oriented fields that are only eligible for credits for the Master's degree in Applied Mathematics.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0532-00L</td>
<td>Nonlinear Dynamics and Chaos I</td>
<td>W</td>
<td>4 credits</td>
<td>2V+2U</td>
<td>G. Haller</td>
</tr>
</tbody>
</table>

Abstract
Basic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.

Objective
This course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.

Content
(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.

(2) Near equilibrium dynamics: Linear and Lyapunov stability

(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations

(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.

(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance

Lecture notes
The class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.

Prerequisites / notice
- Prerequisites: Analysis, linear algebra and a basic course in differential equations.

- Exam: two-hour written exam in English.

- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.
Atmospheric Physics

701-1221-00L Dynamics of Large-Scale Atmospheric Flow

Abstract: This lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostrophic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course.

Objective:
Understanding the dynamics of large-scale atmospheric flow

Content:
Dynamic Meteorology is concerned with the dynamical processes of the earth’s atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.

Lecture notes:
Dynamics of large-scale atmospheric flow

Literature:
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997

Prerequisites / notice:

636-0017-00L Computational Biology

Abstract:
The aim of the course is to provide an introductory overview of corresponding computational tools to understand this information in detail are introduced.

Objective:
Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:
- stochastic models in molecular evolution
- phylogenetic & phylodynamic inference
- maximum likelihood and Bayesian statistics

Attendees will apply these concepts to a number of applications yielding biological insight into:
- epidemiology
- pathogen evolution
- macroevolution of species

Content:
The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS.

Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phyloodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.

Lecture notes:
Lecture slides will be available on moodle.

Literature:
- Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.

Prerequisites / notice:
Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course “Introduction to Programming”, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date http://www.ccb.ethz.ch/news-events.html

For the Zurich-based students without R experience, we recommend the R course http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneninheitID=123546&lang=de or working through the script provided as part of this R course.

Biology

636-0007-00L Computational Systems Biology

Abstract:
Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

Objective:
The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.

Content:
Biological systems have never been more comprehensively studied than today. The combined use of experimental techniques and computational tools has allowed the investigation of biological networks in increasing detail. This includes (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.
Evolutionary Dynamics

Objective
Evolution is the one theory that encompasses all of biology. It provides a single, unifying concept to understand the living systems that we observe today. We will introduce several types of mathematical models of evolution to describe gene frequency changes over time in the context of different biological systems, focusing on asexual populations. Viruses and cancer cells provide the most prominent examples of such systems and they are at the same time great biomedical interest. The course will cover some classical mathematical population genetics and population dynamics, and also introduce several new approaches. This is reflected in a diverse set of mathematical concepts which make their appearance throughout the course, all of which are introduced from scratch. Topics covered include the quasispecies equation, evolution of HIV, evolutionary game theory, evolutionary stability, evolutionary graph theory, tumor evolution, stochastic tunneling, genetic progression of cancer, diffusion theory, fitness landscapes, branching processes, and evolutionary escape.

Content
No.

Literature
Prerequisites: Basic mathematics (linear algebra, calculus, probability)

Domain A - Subject-specific Competencies
- Concepts and Theories
- Analytical Competencies
- Problem-solving
- Communication
- Cooperation and Teamwork
- Critical Thinking
- Self-direction and Self-management

Taught competencies
- assessed
- assessed
- assessed
- not assessed
- not assessed

Number
151-0563-01L
401-3929-00L

Type
W
W

ECTS
4 credits
2V

Hours
2V+1U+2A
2V

Lecturers
R. D’Andrea
P. Blum

Domain B - Method-specific Competencies

Domain C - Social Competencies

Domain D - Personal Competencies

Objective
Understand the basic asset-liability framework: essential principles and properties of social and pension insurance: cash flow matching, duration matching, valuation portfolio and loose coupling; the notion of financial risk; long-term vs. short-term risk; coherent measures of risk.

Objective
Understand the conditions for sustainable funding: derivation of required returns; interplay between return levels, contribution levels and other parameters; influence of guaranteed benefits.

Objective
Understand the notion of risk-taking capability: capital process as a random walk; measures of long-term risk and relation to capital; short-term solvency vs. long-term stability; effect of embedded options and guarantees; interplay between required return and risk-taking capability.

Objective
Understand the notion of risk-taking capability: capital process as a random walk; measures of long-term risk and relation to capital; short-term solvency vs. long-term stability; effect of embedded options and guarantees; interplay between required return and risk-taking capability.

Objective
Understand and be able to carry out portfolio construction: the concept of diversification; limitations to diversification; correlation breakdown; incorporation of constraints; sensitivities and shortcomings of optimized portfolios.

Objective
Understand the asset-liability interplay: the optimized portfolio in the asset-liability framework; short-term risk vs. long-term risk; the influence of constraints; feasible and non-feasible solutions; practical considerations.

Objective
Understand and be able to address essential problems in asset/liability management, e.g. optimal risk / return positioning, optimal discount rate, target value for funding ratio or turnaround issues.

Objective
Have an overall view: see the big picture of what asset returns can and cannot contribute to social security; be aware of the most relevant outcomes; know the role of the actuary in the financial risk management process.
Extensive handouts will be provided. Moreover, practical examples and data sets in Excel and R will be made available.

For pension insurance and other forms of social insurance, investment returns are an important source of funding. In order to earn these returns, substantial financial risks must be taken, and these risks represent an important threat to financial stability, in the long term and in the short term.

Risk and return of financial assets cannot be separated from one another and, hence, asset management and risk management cannot be separated either. Managing financial risk in social and pension insurance is, therefore, the task of reconciling the contradictory dimensions of

1. Required return for a sustainable funding of the institution,
2. Risk-taking capability of the institution,
3. Returns available from financial assets in the market,
4. Risks incurred by investing in these assets.

This task must be accomplished under a number of constraints. Financial risk management in social insurance also means reconciling the long time horizon of the promised insurance benefits with the short time horizon of financial markets and financial risk.

It is not the goal of this lecture to provide the students with any cookbook recipes that can readily be applied without further reflection. The goal is rather to enable the students to develop their own understanding of the problems and possible solutions associated with the management of financial risks in social and pension insurance.

To this end, a rigorous intellectual framework will be developed and a powerful set of mathematical tools from the fields of actuarial mathematics and quantitative risk management will be applied. When analyzing the properties of financial assets, an empirical viewpoint will be taken using statistical tools and considering real-world data.

This course counts towards the diploma of "Aktuar SAV".

The exams ONLY take place during the official ETH examination period.
Content

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:
- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade

Lecture notes

Lecture notes, exercises and reference material can be downloaded from Moodle.

Literature

The book can also be used for the course 'Principles of Microeconomics' (Sturm)

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:
Complementary:

Prerequisites / notice

GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Abstract

This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

Objective

This lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to everyday economic problems.

Content

This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.

Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.

Lecture notes

The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15062) contains announcements, course information and lecture slides.

Literature

This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filippini).

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.
363-1021-00L Monetary Policy

Abstract
The main aim of this course is to analyse the goals of monetary policy and to review the instruments available to central banks in order to pursue these goals. It will focus on the transmission mechanisms of monetary policy and the differences between monetary policy rules and discretionary policy. It will also make connections between theoretical economic concepts and current real world issues.

Objective
This lecture will introduce the fundamentals of monetary economics and explain the working and impact of monetary policy. The main aim of this course is to describe and analyze the goals of monetary policy and to review the instruments available to central banks in order to pursue these goals. It will focus on the transmission mechanisms of monetary policy, the effectiveness of monetary policy actions, the differences between monetary policy rules and discretionary policy, as well as in institutional issues concerning central banks, transparency of monetary authorities and monetary policy in a monetary union framework. Moreover, we discuss the implementation of monetary policy in practice and the design of optimal policy.

Content
For the functioning of today’s economy, central banks and their policies play an important role. Monetary policy is the policy adopted by the monetary authority of a country, the central bank. The central bank controls either the interest rate payable on very short-term borrowing or the money supply, often targeting inflation or the interest rate to ensure price stability and general trust in the currency. This monetary policy course looks into today’s major questions related to policies of central banks. It provides insights into the monetary policy process using core economic principles and real-world examples.

Lecture notes
The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15063) contains announcements, course information and lecture slides.

Literature

Prerequisites / notice
Basic knowledge in international economics and a good background in macroeconomics.

Finance

Number Title Type ECTS Hours Lecturers
401-8905-00L Financial Engineering (University of Zurich) W 6 credits 4G University lecturers

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: MFOEC200

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html

Abstract
This lecture is intended for students who would like to learn more on equity derivatives modelling and pricing.
Course material Script, computer demonstrations, exercises and problem solutions

After introducing fundamental concepts of mathematical finance including no-arbitrage, portfolio replication and risk-neutral measure, we will present the main models that can be used for pricing and hedging European options e.g. Black-Scholes model, stochastic and jump-diffusion models, and highlight their assumptions and limitations. We will cover several types of derivatives such as European and American options, Barrier options and Variance-Swaps. Basic knowledge in probability theory and stochastic calculus is required. Besides attending class, we strongly encourage students to stay informed on financial matters, especially by reading daily financial newspapers such as the Financial Times or the Wall Street Journal.

This course develops and refines tools for evaluating investments (capital budgeting), capital structure, and corporate securities. The course seeks to deepen students' understanding of the link between corporate finance theory and practice.

This course replaces "Advanced Corporate Finance I" (MOEC0288), which will be discontinued from HS16.

Image Processing and Computer Vision

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0447-00L</td>
<td>Image Analysis and Computer Vision</td>
<td>W</td>
<td>6</td>
<td>3V+1U</td>
<td>L. Van Gool, E. Konukoglu, F. Yu</td>
</tr>
</tbody>
</table>

The course replaces "Advanced Corporate Finance I" (MOEC0288), which will be discontinued from HS16.
The entropy rate of a source, Typical sequences, the asymptotic equi-partition property, the source coding theorem, Huffman coding,

1. Discrete-time linear systems and filters:

Lecture notes will be handed out as the course progresses.

The fundamentals of Information Theory including Shannon's source coding and channel coding theorems

Deep Learning

Probabilistic Artificial Intelligence

Probabilistic inference (variational inference, MCMC)

Bayesian learning (Gaussian processes, Bayesian deep learning)

Probabilistic planning (MDPs, POMDPs)

Multi-armed bandits and Bayesian optimization

Reinforcement learning

solid basics in linear algebra and probability theory

Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
Prerequisites / notice

This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

 Advanced Machine Learning
 https://ml2.inf.ethz.ch/courses/ml/

 Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/

 Introduction to Machine Learning
 https://las.inf.ethz.ch/teaching/introml-S19

 Statistical Learning Theory
 http://ml2.inf.ethz.ch/courses/slt/

 Computational Statistics
 https://stat.ethz.ch/lectures/ss19/comp-stats.php

 Probabilistic Artificial Intelligence
 https://las.inf.ethz.ch/teaching/pai-f18

252-3005-00L Natural Language Processing W 5 credits 2V+2U+1A R. Cotterell

Number of participants limited to 400.

Abstract

This course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

Objective

The objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.

Content

This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

Literature

Lectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.

263-5255-00L Foundations of Reinforcement Learning W 5 credits 2V+2A N. He

Number of participants limited to 190.

Last cancellation/deregistration date for this graded course: 28 October 2021!

Please note that after that date no deregistration will be accepted and the course will be considered as "fail".

Abstract

Reinforcement learning (RL) has been in the limelight of many recent breakthroughs in artificial intelligence. This course focuses on theoretical and algorithmic foundations of reinforcement learning, through the lens of optimization, modern approximation, and learning theory. The course targets M.S. students with strong research interests in reinforcement learning, optimization, and control.

Objective

By the end of the course, students will be able to
- Identify the strengths and limitations of various reinforcement learning algorithms;
- Formulate and solve sequential decision-making problems by applying relevant reinforcement learning tools;
- Generalize or discover "new" applications, algorithms, or theories of reinforcement learning towards conducting independent research on the topic.

Content

Basic topics include fundamentals of Markov decision processes, approximate dynamic programming, linear programming and primal-dual perspectives of RL, model-based and model-free RL, policy gradient and actor-critic algorithms, Markov games and multi-agent RL. If time allows, we will also discuss advanced topics such as batch RL, inverse RL, causal RL, etc. The course keeps strong emphasis on in-depth understanding of the mathematical modeling and theoretical properties of RL algorithms.

Lecture notes

Lecture notes will be posted on Moodle.

Literature

Dynamic Programming and Optimal Control, Vol I & II, Dimitris Bertsekas
Algorithms for Reinforcement Learning, Csaba Czejpesvári.

Prerequisites / notice

Students are expected to have strong mathematical background in linear algebra, probability theory, optimization, and machine learning.

Material Modelling and Simulation

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>327-1201-00L</td>
<td>Transport Phenomena I</td>
<td>W</td>
<td>5</td>
<td>4G</td>
<td>J. Vermant</td>
</tr>
</tbody>
</table>

Abstract

Phenomenological approach to "Transport Phenomena" based on balance equations supplemented by thermodynamic considerations to formulate the undetermined fluxes in the local species mass, momentum, and energy balance equations; Solutions of a few selected problems relevant to materials science and engineering both analytically and using numerical methods.

Objective

The teaching goals of this course are on five different levels:
1. Deep understanding of fundamentals: local balance equations, constitutive equations for fluxes, entropy balance, interfaces, idea of dimensionless numbers and scaling, ...
2. Ability to use the fundamental concepts in applications
3. Insight into the role of boundary conditions (mainly part 2)
4. Knowledge of a number of applications.
5. Flavor of numerical techniques: finite elements and finite differences.
Advanced Quantum Chemistry

529-0003-01L

Advanced Quantum Chemistry

Abstract
Advanced, but fundamental topics central to the understanding of theory in chemistry and for solving actual chemical problems with a computer.

Examples are:

* Operators derived from principles of relativistic quantum mechanics
* Relativistic effects + methods of relativistic quantum chemistry
* Open-shell molecules + spin-density functional theory
* New electron-correlation theories

Objective
The aim of the course is to provide an in-depth knowledge of theory and method development in theoretical chemistry. It will be shown that this is necessary in order to be able to solve actual chemical problems on a computer with quantum chemical methods.

The relativistic re-derivation of all concepts known from (nonrelativistic) quantum mechanics and quantum-chemistry lectures will finally explain the form of all operators in the molecular Hamiltonian - usually postulated rather than deduced. From this, we derive operators needed for molecular spectroscopy (like those required by magnetic resonance spectroscopy). Implications of other assumptions in standard non-relativistic quantum chemistry shall be analyzed and understood, too. Examples are the Born-Oppenheimer approximation and the expansion of the wave function in a set of pre-defined basis functions (Slater determinants). Overcoming these concepts, which are so natural to the theory of chemistry, will provide deeper insights into many-particle quantum mechanics. Also revisiting the workhorse of quantum chemistry, namely density functional theory, with an emphasis on open-shell electronic structures (radicals, transition-metal complexes) will contribute to this endeavor. It will be shown how these insights allow us to make more accurate predictions in chemistry in practice - at the frontier of research in theoretical chemistry.

Content
1) Introductory lecture: basics of quantum mechanics and quantum chemistry
2) Einstein’s special theory of relativity and the (classical) electromagnetic interaction of two charged particles
3) Klein-Gordon and Dirac equation; the Dirac hydrogen atom
4) Numerical methods based on the Dirac-Fock-Coulomb Hamiltonian, two-component and scalar relativistic Hamiltonians
5) Response theory and molecular properties, derivation of property operators, Breit-Pauli-Hamiltonian
6) Relativistic effects in chemistry and the emergence of spin
7) Spin in density functional theory
8) New electron-correlation theories: Tensor network and matrix product states, the density matrix renormalization group
9) Quantum chemistry without the Born-Oppenheimer approximation

Lecture notes
A set of detailed lecture notes will be provided, which will cover the whole course.

Literature
2) F. Schwabl: Quantenmechanik für Fortgeschrittene (QM II), Springer-Verlag, 1997 [english version available: F. Schwabl, Advanced Quantum Mechanics]
3) R. McWeeny: Methods of Molecular Quantum Mechanics, Academic Press, 1992

Note also the standard textbooks:
A) A. Szabo, N.S. Ostlund, Verlag, Dover Publications
B) J. N. Levine, Quantum Chemistry, Pearson

Prerequisites / notice
Strongly recommended (preparatory) courses are: quantum mechanics and quantum chemistry
Abstract
Finding solutions: what is complexity, problem solving cycle.

Implementing solutions: project management, critical path method, quality control feedback loop.

Controlling solutions: Vensim software, feedback cycles, control parameters, instabilities, chaos, oscillations and cycles, supply and demand, production functions, investment and consumption

Objective
A successful participant of the course is able to:
- understand why most real problems are not simple, but require solution methods that go beyond algorithmic and mathematical approaches
- apply the problem solving cycle as a systematic approach to identify problems and their solutions
- calculate project schedules according to the critical path method
- setup and run systems dynamics models by means of the Vensim software
- identify feedback cycles and reasons for unintended systems behavior
- analyse the stability of nonlinear dynamical systems and apply this to macroeconomic dynamics

Content
Why are problems not simple? Why do some systems behave in an unintended way? How can we model and control their dynamics? The course provides answers to these questions by using a broad range of methods encompassing systems oriented management, classical systems dynamics, nonlinear dynamics and macroeconomic modeling.

The course is structured along three main tasks:
1. Finding solutions
2. Implementing solutions
3. Controlling solutions

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions.

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed.

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles.

Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM. Another objective of the self-study tasks is to practice efficient communication of such concepts. These are provided as home work and two of these will be graded (see "Prerequisites").

Lecture notes
The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture.

>>> Theoretical Physics

In the Master's programme in Applied Mathematics 402-0205-00L Quantum Mechanics I is eligible as a course unit in the application area Theoretical Physics, but only if 402-0224-00L Theoretical Physics wasn't or isn't recognised for credits (neither in the Bachelor's nor in the Master's programme).

For the category assignment take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Number Title Type ECTS Hours Lecturers
402-0809-00L Introduction to Computational Physics W 8 credits 2V+2U A. Adelmann

Abstract
This course offers an introduction to computer simulation methods for physics problems and their implementation on PCs and super computers. The covered topics include classical equations of motion, partial differential equations (wave equation, diffusion equation, Maxwell's equations), Monte Carlo simulations, percolation, phase transitions, and N-Body problems.

Objective
Students learn to apply the following methods: Random number generators, Determination of critical exponents, numerical solution of problems from classical mechanics and electrodynamics, canonical Monte-Carlo simulations to numerically analyze magnetic systems. Students also learn how to implement their own numerical frameworks in Julia and how to use existing libraries to solve physical problems. In addition, students learn to distinguish between different numerical methods to apply them to solve a given physical problem.

Content
Introduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics are used, as well as some interdisciplinary applications are used to introduce modern programming methods for numerical simulations using Julia. Furthermore, an overview of existing software libraries for numerical simulations is presented.

Lecture notes
Lecture notes and slides are available online and will be distributed if desired.

Literature
Literature recommendations and references are included in the lecture notes.

Prerequisites / notice
Lecture and exercise lessons in english, exams in German or in English

402-2203-01L Classical Mechanics W 7 credits 4V+2U R. Renner

Abstract
A conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, spinning top, relativistic space-time structure, particles in an electromagnetic field, Hamiltonian mechanics, canonical transformations, integrable systems, Hamilton-Jacobi equation.

Objective
Fundamental understanding of the description of Mechanics in the Lagrangian and Hamiltonian formulation. Detailed understanding of important applications, in particular, the Kepler problem, the physics of rigid bodies (spinning top) and of oscillatory systems.

402-0861-00L Statistical Physics W 10 credits 4V+2U M. Sigrist

Abstract
This lecture covers the concepts of classical and quantum statistical physics. Several techniques such as second quantization formalism for fermions, bosons, photons and phonons as well as mean field theory and self-consistent field approximation. These are used to discuss phase transitions, critical phenomena and superfluidity.

Objective
This lecture gives an introduction in the basic concepts and applications of statistical physics for the general use in physics and, in particular, as a preparation for the theoretical solid state physics education.
Content
Kinetic approach to statistical physics: H-theorem, detailed balance and equilibrium conditions.
Classical statistical physics: microcanonical ensembles, canonical ensembles and grandcanonical ensembles, applications to simple systems.
Quantum statistical physics: density matrix, ensembles, Fermi gas, Bose gas (Bose-Einstein condensation), photons and phonons.
Identical quantum particles: many body wave functions, second quantization formalism, equation of motion, correlation functions, selected applications, e.g. Bose-Einstein condensate and coherent state, phonons in elastic media and melting.
One-dimensional interacting systems.
Phase transitions: mean field approach to Ising model, Gaussian transition, Ginzburg-Landau theory (Ginzburg criterion), self-consistent field approach, critical phenomena, Peierls’ arguments on long-range order.

Lecture notes
Lecture notes available in English.

Literature
No specific book is used for the course. Relevant literature will be given in the course.

402-0843-00L Quantum Field Theory I
Special Students UZH must book the module PHYS51 directly at UZH.

Abstract
This course discusses the quantisation of fields in order to introduce a coherent formalism for the combination of quantum mechanics and special relativity.
Topics include:
- Relativistic quantum mechanics
- Quantisation of bosonic and fermionic fields
- Interactions in perturbation theory
- Scattering processes and decays
- Elementary processes in QED
- Radiative corrections

Objective
The goal of this course is to provide a solid introduction to the formalism, the techniques, and important physical applications of quantum field theory. Furthermore it prepares students for the advanced course in quantum field theory (Quantum Field Theory II), and for work on research projects in theoretical physics, particle physics, and condensed-matter physics.

Lecture notes
Will be provided as the course progresses

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Domain B - Method-specific Competencies
Techniques and Technologies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

402-0830-00L General Relativity
Special Students UZH must book the module PHYS11 directly at UZH.

Abstract
Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations of the theory as well as the underlying physical principles and concepts. It covers selected applications, such as the Schwarzschild solution and gravitational waves.

Objective
Basic understanding of general relativity, its mathematical foundations (in particular the relevant aspects of differential geometry), and some of the phenomena it predicts (with a focus on black holes).

Content
Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves.

Literature
Suggested textbooks:
- C. Misner, K. Thorne and J. Wheeler: Gravitation
- S. Carroll - Spacetime and Geometry: An Introduction to General Relativity
- R. Wald - General Relativity
- S. Weinberg - Gravitation and Cosmology

Electives Theoretical Physics

Transportation Science

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1622 of 2152
The course provides the necessary knowledge to develop models supporting the solution of given planning problems and also introduces cost-benefit analysis as a decision-making tool. Examples of such planning problems are the estimation of traffic volumes, prediction of estimated utilization of new public transport lines, and evaluation of effects (e.g. change in emissions of a city) triggered by building new infrastructure and changes to operational regulations.

To cope with that, the problem is divided into sub-problems, which are solved using various statistical models (e.g. regression, discrete choice analysis) and algorithms (e.g. iterative proportional fitting, shortest path algorithms, method of successive averages).

The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/ policy by means of cost-benefit analysis. Interim lab session take place regularly to guide and support students with the applied part of the course.

Moodle platform (enrollment needed)

In the seminar we will study Dirichlet L-functions, which generalize the classical Riemann zeta function. We discuss their basic properties, Dirichlet's class number formula for quadratic fields and Dirichlet's Theorem on arithmetic progressions.

We follow the book of Don Zagier “Zetafunktionen und quadratische Körper”

Prior knowledge of differential geometry and algebraic topology is required.

The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/ policy by means of cost-benefit analysis. Interim lab session take place regularly to guide and support students with the applied part of the course.

Number of participants limited to 12.

Some familiarity with the basic notions of algebra (groups, rings, fields), complex analysis (holomorphic/moromorphic functions, the residue theorem) and elementary number theory (congruences, Legendre symbol, quadratic reciprocity) will be helpful.

Some familiarity with the basic concepts of Algebraic Geometry, roughly in the amount of chapters II and III of Hartshorne’s book.

Prerequisites: knowledge of Differential Geometry I and Algebraic Topology I.

Quasimorphisms and Symplectic Geometry

Number of participants limited to 12.

In this seminar we will define quasimorphisms and use them as an algebraic tool to study various automorphism groups of manifolds. After a short introduction to symplectic geometry, we will mainly focus on the group of Hamiltonian diffeomorphisms and the Calabi quasimorphism.

By giving two half-hour talks, typing short summaries for those talks and participating in talks by others, each participant will get familiar with the concept of quasimorphisms, learn about some concrete examples in and outside the world of symplectic geometry, as well as develop presentation and collaboration skills.

The Seminar webpage (under learning materials) contains a list of references and further information.

Prior knowledge of differential geometry and algebraic topology is required. Details of the seminar organization will be discussed in the first meeting.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1623 of 2152
The aim of this seminar is to give an introduction to some of the mathematical ideas behind reinforcement learning. This includes stochastic optimisation problems.

Abstract
Review of some non-standard regression models and the statistical properties of estimation methods in such models.

Objective
The main goal is the students get to discover some less known regression models which either generalize the well-known linear model (for example monotone regression) or violate some of the most fundamental assumptions (as in shuffling or unlinked regression models).

Content
Linear regression is one of the most used models for prediction and hence one of the most understood in statistical literature. However, linearity might be too simplistic to capture the actual relationship between some response and given covariates. Also, there are many real data problems where linearity is plausible but the actual pairing between the observed covariates and responses is completely lost or at partially. In this seminar, we review some of the non-classical regression models and the statistical properties of the estimation methods considered by well-known statisticians and machine learners. This will encompass:
1. Monotone regression
2. Single index model
3. Unlinked regression

Literature
In the following is the tentative material that will be read and studied by each pair of students (all the items listed below are available through the ETH electronic library or arXiv). Some of the items might change.

8. "Linear regression with shuffled data: statistical and computation limits of permutation recovery" by A. Pananjady, M. Wainwright and T. A. Courtade, 2019, IEEE transactions in Information Theory, Volume 64, 3286-3300
9. "Linear regression without correspondence" by D. Hsu, K. Shi and X. Sun, 2017, NIPS
11. "Uncoupled isotonic regression via minimum Wasserstein deconvolution" by P. Rigollet and J. Weed, 2019, Information and Inference, Volume 00, 1-27

Prerequisites / notice
The students need to be comfortable with regression models, classical estimation methods (Least squares, Maximum Likelihood estimation...), rates of convergence, asymptotic normality, etc.

Semester Papers
There are several course units "Semester Paper" that are all equivalent. If, during your studies, you write several semester papers, choose among the different numbers in order to be able to obtain credits again.

Number Title Type ECTS Hours Lecturers
401-3900-70L Student Seminar on Reinforcement Learning W 4 credits 2S M. Schweizer

Abstract
The aim of this seminar is to give an introduction to some of the mathematical ideas behind reinforcement learning. This includes stochastic optimisation and convergence analysis. The emphasis is on mathematical theory, not on developing and testing algorithms.

Objective
The aim of this seminar is to give an introduction to some of the mathematical ideas behind reinforcement learning. This includes stochastic optimisation and convergence analysis. The emphasis is on mathematical theory, not on developing and testing algorithms.

Content
The aim of this seminar is to give an introduction to some of the mathematical ideas behind reinforcement learning. This includes stochastic optimisation and convergence analysis. The emphasis is on mathematical theory, not on developing and testing algorithms.

Literature
See the seminar homepage at https://metaphor.ethz.ch/x/2021/hs/401-3910-71L

Prerequisites / notice
The underlying textbook mostly works with stochastic control problems for discrete-time Markov chains with a finite state space. But for a proper understanding, students should be familiar with measure-theoretic probability theory as well as stochastic processes in discrete time, and in particular with the construction of Markov chains on the canonical path space via the Ionescu-Tulcea theorem.
Semester Paper (No. 2)
Successful participation in the course unit 401-2000-00L Scientific Works in Mathematics is required.
For more information, see www.math.ethz.ch/intranet/students/study-administration/theses.html

Abstract
Semester Papers help to deepen the students' knowledge of a specific subject area. Students are offered a selection of topics. These papers serve to develop the students' ability for independent mathematical work as well as to enhance skills in presenting mathematical results in writing.

Prerequisites / notice
There are several course units "Semester Paper" that are all equivalent. If, during your studies, you write several semester papers, choose among the different numbers in order to be able to obtain credits again.

Semester Paper (No. 3)
Successful participation in the course unit 401-2000-00L Scientific Works in Mathematics is required.
For more information, see www.math.ethz.ch/intranet/students/study-administration/theses.html

Abstract
Semester Papers help to deepen the students' knowledge of a specific subject area. Students are offered a selection of topics. These papers serve to develop the students' ability for independent mathematical work as well as to enhance skills in presenting mathematical results in writing.

Prerequisites / notice
There are several course units "Semester Paper" that are all equivalent. If, during your studies, you write several semester papers, choose among the different numbers in order to be able to obtain credits again.

GESS Science in Perspective
Two credits are needed from the "Science in Perspective" programme with language courses excluded if three credits from language courses have already been recognised for the Bachelor's degree.
see https://ethz.ch/content/dam/ethz/common/docs/weisungssammlung/files-en/science-in-perspective.pdf (Eight credits must be acquired in this category: normally six during the Bachelor's degree programme, and two during the Master's degree programme. A maximum of three credits from language courses from the range of the Language Center of the University of Zurich and ETH Zurich may be recognised. In addition, only advanced courses (level B2 upwards) in the European languages English, French, Italian and Spanish are recognised. German language courses are recognised from level C2 upwards.)
see Science in Perspective: Language Courses ETH/UZH
see Science in Perspective: Type A: Enhancement of Reflection Capability
Recommended Science in Perspective (Type B) for D-MATH.

Master's Thesis
Number
401-2000-00L
Scientific Works in Mathematics
Target audience:
Third year Bachelor students;
Master students who cannot document to have received an adequate training in working scientifically.
Abstract
Introduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.)
Objective
Learn the basic standards of scientific works in mathematics.
Content
- Types of mathematical works
- Publication standards in pure and applied mathematics
- Data handling
- Ethical issues
- Citation guidelines
Prerequisites / notice

Lunch Sessions – Thesis Basics for Mathematics Students
Details and registration for the optional MathBib training course: https://www.math.ethz.ch/mathbib-schulungen
Abstract
Optional MathBib training course

Master's Thesis
Only students who fulfill the following criteria are allowed to begin with their Master's thesis:
a. successful completion of the Bachelor's programme;
b. fulfilling of any additional requirements necessary to gain admission to the Master's programme.
Successful participation in the course unit 401-2000-00L Scientific Works in Mathematics is required.
For more information, see www.math.ethz.ch/intranet/students/study-administration/theses.html
Abstract
The master's thesis concludes the study programme. Writing up the master's thesis allows students to independently produce a major piece of work on a mathematical topic. It generally involves consulting the literature, solving any ensuing problems, and putting together the results in writing.

Additional Courses
Number
401-5000-00L
Zurich Colloquium in Mathematics
Abstract
Details on the colloquium can be found on the website: https://www.math.ethz.ch/zurich-colloquium

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1625 of 2152
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>ECTS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-5990-00L</td>
<td>Zurich Graduate Colloquium</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>A. Iozzi, further speakers</td>
</tr>
<tr>
<td>Abstract</td>
<td>The Graduate Colloquium is an informal seminar aimed at graduate students and postdocs whose purpose is to provide a forum for communicating one's interests and thoughts in mathematics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-4530-00L</td>
<td>Geometry Graduate Colloquium</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>Speakers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5110-00L</td>
<td>Number Theory Seminar</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>Ö. Imamoglu, E. Kowalski, R. Pink, G. Wüstholz</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5350-00L</td>
<td>Analysis Seminar</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>A. Carlotto, F. Da Lio, A. Figalli, N. Hungerbühler, M. Iacobelli, T. Ilmarinen, L. Keller, T. Rivère, J. Serra, University lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5370-00L</td>
<td>Ergodic Theory and Dynamical Systems</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>M. Akka Ginosar, M. Einsiedler, University lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5530-00L</td>
<td>Geometry Seminar</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>M. Burger, M. Einsiedler, P. Feller, A. Iozzi, U. Lang, University lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5580-00L</td>
<td>Symplectic Geometry Seminar</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>P. Biran, A. Cannas da Silva</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5330-00L</td>
<td>Talks in Mathematical Physics</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>P. E. Y. Bousseau, A. Cattaneo, G. Felder, M. Gaberdiel, G. M. Graf, T. H. Willwacher</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5650-00L</td>
<td>Zurich Colloquium in Applied and Computational Mathematics</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>R. Abgrall, R. Alafairi, H. Ammari, R. Hiptmair, S. Mishra, S. Sauter</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5600-00L</td>
<td>Seminar on Stochastic Processes</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>J. Bertoin, A. Nikeghbali, B. D. Schlein, V. Tassion, W. Werner</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>About 5 talks on applied statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>See how statistical methods are applied in practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>This is no lecture. There is no exam and no credit points will be awarded. The current program can be found on the web: http://stat.ethz.ch/events/zukost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5680-00L</td>
<td>Foundations of Data Science Seminar</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>P. L. Bühlmann, A. Bandeira, H. Bölcskei, F. Yang</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5660-00L</td>
<td>Math and Data (MAD+)</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>A. Bandeira, external organisers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5910-00L</td>
<td>Talks in Financial and Insurance Mathematics</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>P. Cheridito, M. Schweizer, J. Teichmann, M. V. Wüthrich</td>
</tr>
<tr>
<td>Abstract</td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Regular research talks on various topics in mathematical finance and actuarial mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5900-00L</td>
<td>Optimization Seminar</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>A. Bandeira, R. Weismantel, R. Zenklusen</td>
</tr>
<tr>
<td>Abstract</td>
<td>Lectures on current topics in optimization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Expose graduate students to ongoing research activities (including applications) in the domain of optimization.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This seminar is a forum for researchers interested in optimization theory and its applications. Speakers are expected to stimulate discussions on theoretical and applied aspects of optimization and related subjects. The focus is on efficient algorithms for continuous and discrete optimization problems, complexity analysis of algorithms and associated decision problems, approximation algorithms, mathematical modeling and solution procedures for real-world optimization problems in science, engineering, industries, public sectors etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-5960-00L</td>
<td>Colloquium on Mathematics, Computer Science, and Education</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>N. Hungerbühler, M. Akved, D. Gawareh Morath, J. Hromkovic, P. Spindler</td>
</tr>
<tr>
<td>Subject didactics for mathematics and computer science teachers.</td>
<td>Subject didactics for mathematics and computer science teachers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Didactics colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0101-00L</td>
<td>The Zurich Physics Colloquium</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>S. Huber, A. Refregier, University</td>
</tr>
</tbody>
</table>
The Zurich Theoretical Physics Colloquium is jointly organized by the University of Zurich and ETH Zurich. Its mission is to bring both students and faculty with diverse interests in theoretical physics together. Leading experts explain the basic questions in their field of research and communicate the fascination for their work.

Invited talks, covering the entire scope of computer science. External Listeners are welcome at no charge. A detailed schedule is published at the beginning of each semester.

Top international computer scientists take the floor at the distinguished computer science colloquium. Our guest speakers present impacting topics across various areas of the discipline. The colloquium series is held every semester and also includes inaugural and farewell lectures of the department's professors. The colloquium is a noteworthy event for all graduate students. Outside attendance is equally welcome.

Eingeladene Vorträge aus dem gesamten Bereich der Informatik, zu denen auch Auswärtige kostenlos eingeladen sind. Zu Semesterbeginn erscheint jeweils ein ausführliches Programm.

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>406-2004-AAL</td>
<td>Algebra II</td>
<td>E-</td>
<td>5</td>
<td>11R</td>
<td>M. Burger</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract Galois theory and related topics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective The precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content Introduction to fundamentals of field extensions, Galois theory, and related topics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice Galois Theory is the topic treated in Chapter A5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406-2005-AAL</td>
<td>Algebra I and II</td>
<td>E-</td>
<td>12</td>
<td>26R</td>
<td>M. Burger, M. Einsiedler</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract Introduction and development of some basic algebraic structures - groups, rings, fields including Galois theory, representations of finite groups, algebras.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective The precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content Basic notions and examples of groups; Subgroups, Quotient groups and Homomorphisms, Group actions and applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic notions and examples of rings; Ring Homomorphisms, ideals, and quotient rings, rings of fractions Euclidean domains, Principal ideal domains, Unique factorization domains</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406-2303-AAL</td>
<td>Complex Analysis</td>
<td>E-</td>
<td>6</td>
<td>13R</td>
<td>T. H. Willwacher</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, conformal mappings, Riemann mapping theorem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Literature

B. Palka: "An introduction to complex function theory."

R. Remmert: Theory of Complex Functions. Springer Verlag

E. Hille: Analytic Function Theory. AMS Chelsea Publication

406-2284-AAL Measure and Integration

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction to the abstract measure theory and integration, including the following topics: Lebesgue measure and Lebesgue integral, Lp-spaces, convergence theorems, differentiation of measures, product measures (Fubini’s theorem), abstract measures, Radon-Nikodym theorem, probabilistic language.

Objective
Basic acquaintance with the theory of measure and integration, in particular, Lebesgue’s measure and integral.

Literature
1. Lecture notes by Professor Michael Struwe (http://www.math.ethz.ch/~struwe/Skripten/AnalysisIII-SS2007-18-4-08.pdf)
2. L. Evans and R.F. Gariepy “Measure theory and fine properties of functions”
3. Walter Rudin “Real and complex analysis”
4. R. Bartle “Elements of Integration and Lebesgue Measure”

406-2554-AAL Topology

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Topological spaces, continuous maps, connectedness, compactness, metric spaces, quotient spaces, homotopy, fundamental group and covering spaces, van Kampen Theorem.

Literature
James Munkres: Topology

Prerequisites / notice
The precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.

406-2604-AAL Probability and Statistics

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction to probability and statistics with many examples, based on chapters from the books “Probability and Random Processes” by G. Grimmett and D. Stirzaker and “Mathematical Statistics and Data Analysis” by J. Rice.

Objective
The goal of this course is to provide an introduction to the basic ideas and concepts from probability theory and mathematical statistics. In addition to a mathematically rigorous treatment, also an intuitive understanding and familiarity with the ideas behind the definitions are emphasized. Measure theory is not used systematically, but it should become clear why and where measure theory is needed.

Content
Probability:
- Chapters 1-5 (“Probabilities and events, Discrete and continuous random variables, Generating functions”) and Sections 7.1-7.5 (“Convergence of random variables”) from the book “Probability and Random Processes”. Most of this material is also covered in Chap. 1-5 of “Mathematical Statistics and Data Analysis”, on a slightly easier level.

Statistics:
- Sections 8.1 - 8.5 (Estimation of parameters), 9.1 - 9.4 (Testing Hypotheses), 11.1 - 11.3 (Comparing two samples) from “Mathematical Statistics and Data Analysis”.

Literature

Mathematics Master - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1628 of 2152
Micro- and Nanosystems Master

Core Courses

Devices and Systems

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0166-00L</td>
<td>Analog Integrated Circuits</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td>T. Jang</td>
</tr>
</tbody>
</table>

Abstract
This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies.

Objective
Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems.

Content
- The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.
- Review of bipolar and MOS devices and their small-signal equivalent circuit models
- Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc
- Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps
- Stability
- Comparators
- Second-order effects in analog circuits such as mismatch, noise and offset
- Data converters
- Frequency synthesizers
- Switched capacitors

The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurements.

Lecture notes
Handouts of presented slides. No script but an accompanying textbook is recommended.

Literature

Energy Conversion and Quantum Phenomena

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0913-00L</td>
<td>Introduction to Photonics</td>
<td>W</td>
<td>4</td>
<td>2V+2U</td>
<td>R. Quidant, J. Ortega Arroyo</td>
</tr>
</tbody>
</table>

Abstract
This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light.

Objective
Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...).

Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds.
I- BASICS OF WAVE THEORY
1) General concepts
2) Differential wave equation
3) Wavefront
4) Plane waves and Fourier decomposition of optical fields
5) Spherical waves and Huygens-Fresnel principle

II- ELECTROMAGNETIC WAVES
1) Maxwell equations
2) Wave equation for EM waves
3) Dielectric permittivity
4) Refractive index
5) Nonlinear optics
6) Polarisation and polarisation control

III- PROPAGATION OF LIGHT
1) Waves at an interface
2) The Fresnel equations
3) Total internal reflection
4) Evanescent waves
5) Dispersion diagram

IV- INTERFERENCES
1) General considerations
2) Temporal and spatial coherence
3) The Young double slit experiment
4) Diffraction gratings
5) The Michelson interferometer
6) Multi-wave interference
7) Antireflecting coating and interference filters
8) Optical holography

V- LIGHT MANIPULATION
1) Optical waveguides
2) Photonic crystals
3) Metamaterials and metasurfaces
4) Optical cavities

VI- INTRODUCTION TO OPTICAL MICROSCOPY
1) Basic concepts
2) Direct and Fourier imaging
3) Image formation
4) Fluorescence microscopy
5) Scattering-based microscopy
6) Digital holography
7) Computational imaging

VII- OPTICAL FORCES AND OPTICAL TWEEZERS
1) History of optical forces
2) Theory of optical trapping
3) Atom cooling
4) Optomechanics
5) Plasmonic trapping
6) Applications of optical tweezers

Lecture notes
Class notes and handouts

Literature
Optics (Hecht) - Pearson

Prerequisites / notice
Physics I, Physics II

402-0595-00L Semiconductor Nanostructures W+ 6 credits 2V+1U T. Ihn

Abstract
The course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of common nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots.

Objective
At the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:
1. The integer quantum Hall effect
2. Conductance quantization in quantum point contacts
3. the Aharonov-Bohm effect
4. Coulomb blockade in quantum dots

Content
1. Introduction and overview
2. Semiconductor crystals: Fabrication and molecular beam epitaxy
3. Band structures of semiconductors
4. k-p-theory, effective mass, envelope functions
5. Heterostructures and band engineering, doping
6. Surfaces and metal-semiconductor contacts, fabrication of semiconductor nanostructures
7. Heterostructures and two-dimensional electron gases
8. Drude Transport and scattering mechanisms
9. Single- and bilayer graphene
10. Electron transport in quantum point contacts; Landauer-Büttiker description, ballistic transport experiments
11. Interference effects in Aharonov-Bohm rings
12. Electron in a magnetic field, Shubnikov-de Haas effect
13. Integer quantum Hall effect
14. Coulomb blockade and quantum dots

Lecture notes
In addition to the lecture notes, the following supplementary books can be recommended:

Prerequisites / notice
The lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisite. Very ambitious students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Media and Digital Technologies: assessed
- Problem-solving: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: not assessed

Domain D - Personal Competencies
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-direction and Self-management: not assessed

Material, Surfaces and Properties

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0509-00L</td>
<td>Microscale Acoustofluidics</td>
<td>W</td>
<td>4 credits</td>
<td>3G</td>
<td>J. Dual</td>
</tr>
</tbody>
</table>

Abstract
In this lecture the basics as well as practical aspects (from modelling to design and fabrication) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.

Objective
Understanding acoustophoresis, the design of devices and potential applications, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices.

Content
Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, homogenization theories and laminate theory are presented. Theoretical models are complemented by examples of engineering applications and experiments.

Lecture notes

Prerequisites / notice
Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions (both compulsory) and hand in homework.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-direction and Self-management: assessed

Continuum Mechanics I

Abstract
The lecture deals with constitutive models that are relevant for design and calculation of structures. These include anisotropic linear elasticity, linear viscoelasticity, plasticity, viscoplasticity. Homogenization theories and laminate theory are presented. Theoretical models are complemented by examples of engineering applications and experiments.

Objective
Basic theories for solving continuum mechanics problems in engineering applications, with particular attention to material models. Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments.

Content
Anisotropic elasticity, Linear elastic and linear viscous material behavior, Viscoelasticity, Micro-macro modelling, Laminate theory, Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments.

Lecture notes
Yes

Additional ones could be enrolled by permission of the lecturer.

Micro- and Nanoparticle Technology

Abstract
Particles are everywhere and nano is the new scale in science & engineering as micro was ~200 years ago. For highly motivated students, this exceptionally demanding class gives a flavor of nanotechnology with hands-on student projects on gas-phase particle synthesis & applications capitalizing on particle dynamics (diffusion, coagulation etc.), shape, size distribution and characterization.

Objective
This course aims to familiarize motivated M/BSc students with some of the basic phenomena of particles at the nanoscale, thereby illustrating the links between physics, chemistry, materials science through hands-on experience. Furthermore it aims to give an overview of the field with motivating lectures from industry and academia, including the development of technologies and processes based on particle technology with introduction to design methods of mechanical processes, scale-up laws and optimal use of materials and energy. Most importantly, this course aims to develop the creativity and sharpen the communication skills of motivated students through their individual projects, a PERFECT preparation for the M/BSc thesis (e.g. efficient & critical literature search, effective oral/written project presentations), the future profession itself and even life, in general, are always there!
Content
The course objectives are best met primarily through the individual student projects which may involve experiments, simulations or critical & quantitative reviews of the literature. Projects are conducted individually under the close supervision of MSc, PhD or post-doctoral students. Therein, a 2-page proposal is submitted within the first two semester weeks addressing explicitly, at least, 10 well-selected research articles and thoughtful meetings with the project supervisor. The proposal address 3 basic questions: a) how important is the project; b) what has been done already in that field and c) what will be done by the student. Detailed feedback on each proposal is given by the supervisor, assistant and professor two weeks later. Towards the end of the semester, a 10-minute oral presentation is given by the student followed by 10 minutes Q&A. A 10-page final report is submitted by noon of the last day of the semester. The project supervisor will provide guidance throughout the course. Lectures include some of the following:
- Overview & Project Presentation
- Particle Size Distribution
- Particle Diffusion
- Coagulation
- Agglomeration & Coalescence
- Particle Growth by Condensation
- Control of particle size & structure during gas-phase synthesis
- Multi-scale design of aerosol synthesis of particles
- Particle Characterization
- Aerosol manufacture of nanoparticles
- Forces acting on Single Particles in a Flow Field
- Fixed and Fluidized Beds
- Separations of Solid-Liquid & Solid-Gas systems
- Emulsions/droplet formation/microfluidics
- Gas Sensors
- Coaching for proposal & report writing as well as oral presentations

Literature
FluidMechanik I, Thermodynamik I & II, "clean" 5th semester BSc student standing in D-MAVT (no block 1 or 2 obligations). Students attending this course are expected to allocate sufficient additional time within their weekly schedule to successfully conduct their project. As exceptional effort will be required! Having seen "Chasing Mavericks" (2012) by Apted & Henson, "Unbroken" (2014) by Angelina Jolie and, in particular, "The Salt of the Earth" (2014) by Wim Wenders might be helpful and even motivating. These movies show how methodic effort can bring superior and truly unexpected results (e.g. stay under water for 5 minutes to overcome the fear of riding huge waves or merciless Olympic athlete training that help survive 45 days on a raft in Pacific Ocean followed by 2 years in a Japanese POW camp during WWII).

Prerequisites / notice
FluidMechanik I, Thermodynamik I & II & "clean" 5th semester BSc student standing in D-MAVT (no block 1 or 2 obligations). Students attending this course are expected to allocate sufficient additional time within their weekly schedule to successfully conduct their project. As exceptional effort will be required! Having seen "Chasing Mavericks" (2012) by Apted & Henson, "Unbroken" (2014) by Angelina Jolie and, in particular, "The Salt of the Earth" (2014) by Wim Wenders might be helpful and even motivating. These movies show how methodic effort can bring superior and truly unexpected results (e.g. stay under water for 5 minutes to overcome the fear of riding huge waves or merciless Olympic athlete training that help survive 45 days on a raft in Pacific Ocean followed by 2 years in a Japanese POW camp during WWII).

327-0505-00L Surfaces, Interfaces and their Applications I
Abstract
After being introduced to the physical/chemical principles and importance of surfaces and interfaces, the student is introduced to the most

Objective
To gain an understanding of the physical and chemical principles, as well as the tools and applications of surface science, and to be able to choose appropriate surface-analytical approaches for solving problems.

Content
Introduction to Surface Science
Physical Structure of Surfaces
Surface Forces (static and dynamic)
Adsorbates on Surfaces
Surface Thermodynamics and Kinetics
The Solid-Liquid Interface
Electron Spectroscopy
Vibrational Spectroscopy on Surfaces
Scanning Probe Microscopy
Introduction to Tribology
Introduction to Corrosion Science

Lecture notes
Script Download:
https://moodle-app2.let.ethz.ch/course/view.php?id=14993

Literature
Script Download:
https://moodle-app2.let.ethz.ch/course/view.php?id=14993

Prerequisites / notice
Chemistry:
General undergraduate chemistry
including basic chemical kinetics and thermodynamics

Physics:
General undergraduate physics
including basic theory of diffraction and basic knowledge of crystal structures

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
assessed
assessed

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Problem-solving
assessed
assessed
assessed

Domain D - Personal Competencies
Creative Thinking
Critical Thinking
assessed
assessed

Modelling and Simulation

Number Title Type ECTS Hours Lecturers
151-0107-20L High Performance Computing for Science and Engineering (HPCSE) I W 4 credits 4G P. Koumoutsakos, S. M. Martin

Abstract
This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.
With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.

Content

1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)

2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)

3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models

4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis

5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods

Objective

With guidance from a tutor, the individual silicon microsystem process steps that are required for the fabrication of an accelerometer are carried out. Students are introduced to the process steps required for the fabrication of MEMS (Micro Electro Mechanical System) and are familiarized with the special requirements (cleanliness, safety, operation of equipment and handling hazardous chemicals) of working in the clean rooms and laboratories. The entire production, processing, and characterization will be documented and analyzed in a final report. Limited access to carry out the fabrication and testing steps in the clean rooms by themselves. Additionally, they learn the requirements for working in clean rooms. Processing and characterization will be documented and analyzed in a final report. Limited access

Abstract

This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics, and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.

Content

The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS.

In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.

Laboratory Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0620-00L</td>
<td>Embedded MEMS Lab</td>
<td>W+</td>
<td>5</td>
<td>3P</td>
<td>C. Hierold, S. Blunier, M. Haluska</td>
</tr>
</tbody>
</table>

Abstract

Practical course: Students are introduced to the process steps required for the fabrication of MEMS (Micro Electro Mechanical System) and carry out the fabrication and testing steps in the clean rooms by themselves. Additionally, they learn the requirements for working in clean rooms. Processing and characterization will be documented and analyzed in a final report. Limited access

Objective

Students learn the individual process steps that are required to make a MEMS (Micro Electro Mechanical System). Students carry out the process steps themselves in laboratories and clean rooms. Furthermore, participants become familiar with the special requirements (cleanliness, safety, operation of equipment and handling hazardous chemicals) of working in the clean rooms and laboratories. The entire production, processing, and characterization of the MEMS is documented and evaluated in a final report.

Content

With guidance from a tutor, the individual silicon microsystem process steps that are required for the fabrication of an accelerometer are carried out:
- Photolithography, dry etching, wet etching, sacrificial layer etching, various cleaning procedures
- Packaging and electrical connection of a MEMS device
- Testing and characterization of the MEMS device
- Written documentation and evaluation of the entire production, processing and characterization

Lecture notes

A document containing theory, background and practical course content is distributed at the Introductory lecture day of the course.

Literature

Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.

Prerequisites / notice

Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++.
Prerequisites / notice

Participating students are required to attend all scheduled lectures and meetings of the course.

Participating students are required to provide proof that they have personal accident insurance prior to the start of the laboratory portion of the course.

For safety and efficiency reasons the number of participating students is limited. We regret to restrict access to this course by the following rules:

Priority 1: master students of the master's program in "Micro and Nanosystems"

Priority 2: master students of the master's program in "Mechanical Engineering" with a specialization in Microsystems and Nanoscale Engineering (MAVT-tutors Profs Darai, Dual, Hierold, Karmoutsosakos, Nistor, Noss, Poulikakos, Pratsinis, Stemmer), who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 3: master students, who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 4: all other students (PhD, bachelor, master) with a background in silicon or Microsystems process technology.

If there are more students in one of these priority groups than places available, we will decide by (in following order) best achieved grade from 151-0621-00L Microsystems Technology, registration to this practicum at previous semester, and by drawing lots.

Students will be notified at the first lecture of the course (introductory lecture) as to whether they are able to participate.

The course is offered in autumn and spring semester.

Elective Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0409-00L</td>
<td>Multiphysics Modeling and Simulation</td>
<td>W</td>
<td>4</td>
<td>2V+2U</td>
<td>C. I. Roman</td>
</tr>
<tr>
<td>Abstract</td>
<td>This class introduces theoretical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and practical aspects related to the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>modeling and simulation of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiphysics systems. Students will</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>learn how to set up a multiphysics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>model from scratch, in a systematic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fashion, and thus avoid frustrating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pitfalls that come with trial-and-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>error Comsol Multiphysics will be</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>utilized to apply the concepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>learned during the lectures to solve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>As information technology continues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>its fast-paced evolution, solid-state</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>devices and systems increase in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>complexity. Engineers and scientists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>are thus increasingly facing the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>need to model and simulate their</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>problems numerically where analytic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>textbook solution cease to exist.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moreover, boundaries between</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>traditional disciplines are harder to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>maintain, as a proper description of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the system might involve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phenomena from several domains.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples include—but not limited to—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mechatronics which relies on</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mechanical, electrical and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>electronic engineering, and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>transducers (sensors and actuators)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>which are by definition devices that</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>convert signals from one physical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>domain to another. Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>platforms such as Comsol Multiphysics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>have truly opened the way to easy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multi-domain numerical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>simulation, offering tools that cover</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>all operations from geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>definition, to meshing, to physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and boundary conditions setting to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>simulation and result post-processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and analysis in a unified,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>domain-independent fashion. However,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>this high degree of freedom has it</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>price, as unexperienced users will</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>soon find themselves in front of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>frustrating error messages or</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>incomprehensible results. It is the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>role of this course to show how to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>properly set up a problem by exposing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>common misconceptions and pitfalls in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiphysics modeling. Good</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>practices will be taught that should</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>significantly speed-up the modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>process and produce results that do</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not contradict intuition.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples will mainly come from the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fields of mechanics (continuum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mechanics), electromagnetism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Maxwell equations), heat transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Fourier equation) and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>combinations of these domains.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- Recap of ordinary and partial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>differential equations (ODEs and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDEs) concepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Existence and uniqueness of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>solutions; well- and ill-posed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Time integration and (non)linear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>solvers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Boundary conditions and constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Approximate and simplified</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>formulations; domains of applicability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Discretization and numerical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>solutions for differential equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Solution-appropriate meshing;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiscale, local/global adaptive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>meshing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Geometry simplification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Model order reduction, coarsening</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Coupling and segregation/decoupling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of multiphysics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture handouts will be posted online.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-0525-00L</td>
<td>Dynamic Behavior of Materials</td>
<td>W</td>
<td>4</td>
<td>2V+2U</td>
<td>D. Mohr, C. Roth,</td>
</tr>
<tr>
<td>Note: previous course title until HS19 "Wave Propagation in Solids".</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Lectures and computer labs concerned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with the modeling of the deformation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>response and failure of engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>materials (metals, polymers and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>composites) subject to extreme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>loadings during manufacturing,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>crash, impact and blast events.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will learn to apply,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>understand and develop computational</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>models of a large spectrum of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>engineering materials to predict their</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dynamic deformation response and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>failure in finite element simulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students will become familiar with</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>important dynamic testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>techniques to identify material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>model parameters from experiments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The ultimate goal is to provide the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>students with the knowledge and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>skills required to engineer modern</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multi-material solutions for</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high performance structures in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>automotive, aerospace and naval</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Topics include temperature and strain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rate dependent elasto-plasticity,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dynamic brittle and ductile fracture;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>impulse transfer, impact and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wave propagation in solids;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>computational aspects of material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>model implementation; simulation of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dynamic failure of structures;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Slides of the lectures, relevant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>notes</td>
<td>journal papers and user manuals will</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be provided.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Various books will be recommended pertaining to the topics covered.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course in continuum mechanics (mandatory), finite element method (recommended)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0532-00L</td>
<td>Nonlinear Dynamics and Chaos I</td>
<td>W</td>
<td>4</td>
<td>2V+2U</td>
<td>G. Haller</td>
</tr>
</tbody>
</table>
Basic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.

This course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.

1. Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.

2. Near equilibrium dynamics: Linear and Lyapunov stability

3. Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations

4. Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.

5. Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance

The class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.

Prerequisites: Analysis, linear algebra and a basic course in differential equations.

Exam: two-hour written exam in English.

Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.

Embedded Control Systems

151-0593-00L

Abstract
This course provides a comprehensive overview of embedded control systems. The concepts introduced are implemented and verified on a microprocessor-controlled haptic device.

Objective
Familiarize students with main architectural principles and concepts of embedded control systems.

Content
An embedded system is a microprocessor used as a component in another piece of technology, such as cell phones or automobiles. In this intensive two-week block course the students are presented the principles of embedded digital control systems using a haptic device as an example for a mechatronic system. A haptic interface allows for a human to interact with a computer through the sense of touch.

Lecture notes
Lecture notes, lab instructions, supplemental material

Prerequisites / notice
Prerequisite courses are Control Systems I and Informatics I.

Nanosystems

151-0605-00L

Abstract
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.

Objective
Self-assembly and directed assembly of 2D and 3D structures. Special emphasis on the emerging field of molecular electronic devices.

Content
Familiarize students with basic science and engineering principles governing the nano domain.

Lecture notes
Lecture notes, lab instructions, supplemental material

Prerequisites / notice
This course is restricted to 33 students due to limited lab infrastructure. Interested students please contact Marianne Schmid Daners (E-Mail: marischm@ethz.ch)

After your reservation has been confirmed please register online at www.mystudies.ethz.ch.

Detailed information can be found on the course website
http://www.idsc.ethz.ch/education/lectures/embedded-control-systems.html

http://www.idsc.ethz.ch/education/lectures/embedded-control-systems.html

Autumn Semester 2021

W 4 credits 6G J. S. Freudenberg
M. Schmid Daners
Course Format

Lectures and Mini-Review presentations: Thursday 10-13

Homework: Mini-Review
(compulsory continuous performance assessment)

Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. Each Mini-Review will be presented orally and as a written paper.

Prerequisites / notice

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0621-00L</td>
<td>Microsystems I: Process Technology and Integration</td>
<td>W 6</td>
<td>3V+3U</td>
<td>M. Haluska, C. Hierold</td>
</tr>
<tr>
<td>151-0642-00L</td>
<td>Seminar on Micro and Nanosystems</td>
<td>Z 0</td>
<td>1S</td>
<td>C. Hierold</td>
</tr>
<tr>
<td>151-0911-00L</td>
<td>Introduction to Plasmonics</td>
<td>W 4</td>
<td>2V+1U</td>
<td>D. J. Norris</td>
</tr>
<tr>
<td>227-0145-00L</td>
<td>Solid State Electronics and Optics</td>
<td>W 6</td>
<td>4G</td>
<td>N. Yazdani, V. Wood</td>
</tr>
<tr>
<td>227-0157-00L</td>
<td>Semiconductor Devices: Physical Bases and Simulation</td>
<td>W 4</td>
<td>3G</td>
<td>A. Schenk, C. I. Roman</td>
</tr>
</tbody>
</table>

Abstract

Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and devices by a sequence of defined processing steps (process flow).

Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps (= process flow).

- Introduction to microsystems technology (MIST) and micro electro mechanical systems (MEMS)
- Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition.
- Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties.

Objective

In particular, the seminar addresses students, who are interested in scientific work in the field of Micro- and Nanosystem technologies, or who have started already with it. Respectively, current examples in the research will be discussed.

Current themes in the field of Micro- and Nanosystem technologies using the examples of intern and extern research groups, as well as ongoing themes of study-, diploma- and doctoral thesis will be introduced and discussed. The scope of the seminar is broadened by occasional guest speakers.

- S.M. Sze: Semiconductor Devices, Physics and Technology
- W. Menz, J. Mohr, O.Paul: Microsystem Technology
- Hong Xiao: Introduction to Semiconductor Manufacturing Technology
- T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications

Prerequisites: Physics I and II

Literature

- Handouts (available online)

Prerequisites / notice

Master of MNS, MAVT, ITET, Physics

Question

1. **Question:** What is the primary focus of the course "Introduction to Plasmonics"?

 Answer: This course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics. Electromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.

2. **Question:** What are the applications of plasmonics covered in the course?

 Answer: The applications of plasmonics covered include waveguides, extraordinary optical transmission, enhanced spectroscopy, sensing, and metamaterials.

3. **Question:** What are the prerequisites for the course "Seminar on Micro and Nanosystems"?

 Answer: The prerequisites for the course are Physics I and II.

4. **Question:** What are the main topics covered in the course "Solid State Electronics and Optics"?

 Answer: The main topics covered include "Solid State Electronics" as an introductory condensed matter physics course covering crystal structure, electron models, classification of metals, semiconductors, and insulators, band structure engineering, thermal and electronic transport in solids, magnetoresistance, and optical properties of solids.

5. **Question:** What is the primary objective of the course "Semiconductor Devices: Physical Bases and Simulation"?

 Answer: The primary objective of this course is to understand the fundamental physics behind the mechanical, thermal, electric, magnetic, and optical properties of materials. The course addresses the physical principles of modern semiconductor devices and the foundations of their modeling and numerical simulation. The course also provides basic knowledge on quantum-mechanics, semiconductor physics and device physics. Computer simulations of the most important devices and of interesting physical effects supplement the lectures.
The main topics are: transport models for semiconductor devices (quantum transport, Boltzmann equation, drift-diffusion model, hydrodynamic model), physical characterization of silicon (intrinsic properties, scattering processes), mobility of cold and hot carriers, recombination (Shockley-Read-Hall statistics, Auger recombination), impact ionization, metal- semiconductor contact, metal-insulator-semiconductor structure, and heterojunctions.

The exercises are focussed on the theory and the basic understanding of the operation of special devices, as single-electron transistor, resonant tunneling diode, pn-diode, bipolar transistor, MOSFET, and laser. Numerical simulations of such devices are performed with an advanced simulation package (Sentaurus-Synopsys). This enables to understand the physical effects by means of computer experiments.

The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.

Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.

- Proof techniques and practices.
- Linear spaces, normed linear spaces and Hilbert spaces.
- Ordinary differential equations, existence and uniqueness of solutions.
- Continuous and discrete, time varying linear systems. Time domain solutions. Time invariant systems treated as a special case.
- Controllability and observability, duality. Time invariant systems treated as a special case.
- Stability and stabilization, observers, state and output feedback, separation principle.

The course has been intentionally conceived to be self-consistent with respect to QM for those master students not having encountered it following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems. In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems. Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!
This lecture provides a wide overview over analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers. The learning goal is that the students can apply signal-flow graphs and can understand the signal flow in such circuits and systems (including non-ideal effects) well enough to gain an understanding of further circuits and systems by themselves.

Content

At the beginning, signal-flow graphs in general and driving-point signal-flow graphs in particular are introduced. We will use them during the whole term to analyze circuits on a system level (analog continuous-time, analog discrete-time, mixed-signal and digital) and understand how signals propagate through them. The theory and CMOS implementation of active Filters is then discussed in detail using the example of Gm-C filters and active-RC filters. The ideal and nonideal behaviour of opamps, current conveyors, and inductor simulators follows. The link to the practical design of circuits and systems is done with an overview over different quality measures and figures of merit used in scientific literature and datasheets. Finally, an introduction to discrete-time and mixed-domain filters and circuits is given, including sensor read-out amplifiers, correlated double sampling, and chopping, and an introduction to sigma-delta A/D and D/A conversion on a system level.

This lecture does not go down to the details of transistor implementations. The lecture "227-0166-00L Analog Integrated Circuits" complements this lecture very well in that respect.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>assessed</td>
<td></td>
</tr>
</tbody>
</table>

Taught competencies

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>227-0653-00L</td>
<td>Electromagnetic Precision Measurements and Opto-Mechanics</td>
</tr>
<tr>
<td>227-0663-00L</td>
<td>Nano-Optics</td>
</tr>
<tr>
<td>402-0447-00L</td>
<td>Quantum Science with Superconducting Circuits</td>
</tr>
<tr>
<td>402-0811-00L</td>
<td>Programming Techniques for Scientific Simulations I</td>
</tr>
<tr>
<td>529-0611-01L</td>
<td>Molecular Aspects of Catalysts and Surfaces</td>
</tr>
<tr>
<td>529-0643-01L</td>
<td>Process Design and Development</td>
</tr>
</tbody>
</table>

227-0653-00L Electromagnetic Precision Measurements and Opto-Mechanics

Abstract
The measurement process is at the heart of both science and engineering. Electromagnetic fields have proven to be particularly powerful probes. This course provides the basic knowledge necessary to understand current state-of-the-art optomechanical measurement systems operating at the precision limits set by the laws of quantum mechanics.

Objective
The goal of this course is to understand the fundamental limitations of measurement systems relying on electromagnetic fields.

Content
The lecture starts with summarizing the relevant fundamentals of the treatment of noisy signals. We familiarize ourselves with the concept of measurement imprecision in light-based measurement systems. To this end, we consider the process of photodetection and discuss the statistical fluctuations arising from the quantization of the electromagnetic field into photons. We exemplify our insights at hand of concrete examples, such as homodyne and heterodyne photodetection. Furthermore, we focus on the process of measurement backaction, the inevitable result of the interaction of the probe with the system under investigation. The course emphasizes the connection between the taught concepts and current state-of-the-art research carried out in the field of optomechanics.

Prerequisites / notice
1. Electrodynamics
2. Physics 1,2
3. Introduction to quantum mechanics

402-0447-00L Quantum Science with Superconducting Circuits

Abstract
Superconducting Circuits provide a versatile experimental platform to explore the most intriguing quantum-physical phenomena and constitute one of the prime contenders to build quantum computers. Students will get a thorough introduction to the underlying physical concepts, the experimental setting, and the state-of-the-art of quantum computing in this emerging research field.

Objective
Understanding concepts of light localization and light-matter interactions on the super-wavelength scale.

Content
We start with the angular spectrum representation of fields to understand the classical resolution limit. We continue with the theory of strongly focused light, the point spread function, and resolution criteria of conventional microscopy, before turning to super-resolution techniques, based on near- and far-fields. We introduce the local density of states and approaches to control spontaneous emission rates in inhomogeneous environments, including optical antennas. Finally, we touch upon optical forces and their applications in optical tweezers.

Prerequisites / notice
- Electromagnetic fields and waves (or equivalent)
- Physics I-II

402-0811-00L Programming Techniques for Scientific Simulations I

Abstract
This lecture provides an overview of programming techniques for scientific simulations. The focus is on basic and advanced C++ programming techniques and scientific software libraries. Based on an overview over the hardware components of PCs and supercomputer, optimization methods for scientific simulation codes are explained.

Objective
The goal of the course is that students learn basic and advanced programming techniques and scientific software libraries as used and applied for scientific simulations.

529-0611-01L Molecular Aspects of Catalysts and Surfaces

Abstract
Basic elements of surface science important for materials and catalysis research. Physical and chemical methods important for research in surface science, material science and catalysis are considered and their application is demonstrated on practical examples.

Objective
Basic aspects of surface science. Understanding of principles of most important experimental methods used in research concerned with surface science, material science and catalysis.

Content
Methods which are covered embrace: Gas adsorption and surface area analysis, IR-Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption, solid state NMR, Electron Microscopy and others.

529-0643-01L Process Design and Development

Abstract
The course is focused on the design of Chemical Processes, with emphasis on the preliminary stages of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined.

Objective
The course is focused on the design of Chemical Processes, with emphasis on the preliminary stage of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined.

Content

Lecture notes
no script

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1639 of 2152
Lectures will be given on general introduction (4h), fluid dynamics (2h), complex flow behavior (4h), influence of temperature (2h).

Also, physical and chemical principles:

Rheology is the science of flow and deformation of matter such as polymers, dispersions (emulsions, foams, suspensions), and colloids.

Analytical Competencies

Domain A - Subject-specific Competencies

Concepts and Theories
- Taught
- Assessed

Techniques and Technologies
- Taught
- Assessed

Domain B - Method-specific Competencies

Analytical Competencies
- Taught
- Assessed

Decision-making
- Taught
- Not Assessed

Domain C - Social Competencies

Communication
- Taught
- Not Assessed

Cooperation and Teamwork
- Taught
- Not Assessed

Customer Orientation
- Taught
- Not Assessed

Leadership and Responsibility
- Taught
- Not Assessed

Self-presentation and Social Influence
- Taught
- Not Assessed

Sensitivity to Diversity
- Taught
- Not Assessed

Negotiation
- Taught
- Not Assessed

Domain D - Personal Competencies

Adaptability and Flexibility
- Taught
- Not Assessed

Creative Thinking
- Taught
- Assessed

Critical Thinking
- Taught
- Not Assessed

Integrity and Work Ethics
- Taught
- Not Assessed

Self-awareness and Self-reflection
- Taught
- Not Assessed

Self-direction and Self-management
- Taught
- Not Assessed

701-1239-00L Aerosols I: Physical and Chemical Principles

Objective

Physical and chemical principles:
- Taught
- Assessed

Environmental impacts:
- Taught
- Assessed

Experimental methods:
- Taught
- Assessed

Abstract

Aerosols deals with basic physical and chemical properties of aerosol particles. The importance of aerosols in the atmosphere and in other fields is discussed.

Prerequisites

Main books

Food Rheology I

The course provides an introduction on the link between flow and structural properties of flowing material. Rheometrical techniques and appropriate measuring protocols for the characterization of complex fluids will be discussed. The concept of rheological constitutive equations and the application to different material classes are established.

Content

- Taught
- Assessed

Lecture notes

Notes will be handed out during the lectures.

Material is distributed during the lecture.
Course Catalogue of ETH Zurich

GESS Science in Perspective

- see GESS Science in Perspective: Language Courses
- ETH/UBZ
- see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-MAVT.

Semester Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1007-00L</td>
<td>Semester Project Micro- and Nanosystems</td>
<td>O</td>
<td>8</td>
<td>17A</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Abstract

The semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.

Objective

The semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's programme.

Industrial Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1090-00L</td>
<td>Industrial Internship</td>
<td>O</td>
<td>8</td>
<td>external organisers</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Access to the company list and request for recognition under www.mavt.ethz.ch/praxis.

No registration required via myStudies.

Objective

The main objective of the minimum twelve-week internship is to expose Master’s students to the industrial work environment. The aim of the Industrial Internship is to apply engineering knowledge to practical situations.

Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1006-00L</td>
<td>Master’s Thesis Micro- and Nanosystems</td>
<td>O</td>
<td>30 credits</td>
<td>64D</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Abstract

Master's programs are concluded by the master's thesis. The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem. The subject of the master's thesis, as well as the project plan and roadmap, are proposed by the tutor and further elaborated with the student.

Objective

The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem.

Micro- and Nanosystems Master - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Exchange Students

➤ Courses for Exchange Students

Prepare a study plan
In case the course catalogue of the upcoming semester is not available yet, please expect it to be like the year before.
You can study at ETH Zurich as an exchange student for 1 or 2 semesters, starting in the autumn or in the spring semester.
Exchange students may choose courses from different curricula and years, provided that at least two thirds of all courses are taken in the ETH Zurich department they are registered in. Please be sure to coordinate your schedule with your home university.

Exam sessions and End-of-semester examinations
Like all ETH Zurich students, exchange students are obliged to sit their exams during the official examination periods. Students are requested to be present at ETH Zurich during these periods. You are therefore expected to plan your studies, internships, jobs, and financial means accordingly.

➤ Research Project

The courses below are only available for exchange students.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>900-0005-00L</td>
<td>5 Credit Project</td>
<td>W</td>
<td>5 credits</td>
<td>11A</td>
<td>Lecturers</td>
</tr>
<tr>
<td></td>
<td>ONLY for mobility students. Any other students (e.g. BSc, MSc, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900-0010-00L</td>
<td>10 Credit Project</td>
<td>W</td>
<td>10 credits</td>
<td>21A</td>
<td>Lecturers</td>
</tr>
<tr>
<td></td>
<td>ONLY for mobility students. Any other students (e.g. BSc, MSc, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900-0015-00L</td>
<td>15 Credit Project</td>
<td>W</td>
<td>15 credits</td>
<td>32A</td>
<td>Lecturers</td>
</tr>
<tr>
<td></td>
<td>ONLY for mobility students. Any other students (e.g. BSc, MSc, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900-0020-00L</td>
<td>20 Credit Project</td>
<td>W</td>
<td>20 credits</td>
<td>43A</td>
<td>Lecturers</td>
</tr>
<tr>
<td></td>
<td>ONLY for mobility students. Any other students (e.g. BSc, MSc, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900-0025-00L</td>
<td>25 Credit Project</td>
<td>W</td>
<td>25 credits</td>
<td>54A</td>
<td>Lecturers</td>
</tr>
<tr>
<td></td>
<td>ONLY for mobility students. Any other students (e.g. BSc, MSc, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900-0030-00L</td>
<td>30 Credit Project</td>
<td>W</td>
<td>30 credits</td>
<td>64A</td>
<td>Lecturers</td>
</tr>
<tr>
<td></td>
<td>ONLY for mobility students. Any other students (e.g. BSc, MSc, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900-0060-00L</td>
<td>60 Credit Project</td>
<td>W</td>
<td>60 credits</td>
<td>129A</td>
<td>Lecturers</td>
</tr>
<tr>
<td></td>
<td>ONLY for mobility students. Any other students (e.g. BSc, MSc, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

➤ Additional Courses

by individual arrangement

Exchange Students - Key for Type

O	Compulsory	E-	Recommended, not eligible for credits
W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Neural Systems and Computation Master

► Core Courses

►► Compulsory Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1039-00L</td>
<td>Basics of Instrumentation, Measurement, and Analysis (University of Zurich)</td>
<td>O</td>
<td>4</td>
<td>9S</td>
<td>S.-C. Liu, T. Delbrück, R. Hahnloser, G. Indiveri, V. Mante, P. Pyk, D. Scaramuzza, W. von der Behrens</td>
</tr>
</tbody>
</table>

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadline_s.html

Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots. Preference is given to students that require this class as part of their major.

Abstract
Experimental data are always as good as the instrumentation and measurement, but never any better. This course provides the very basics of instrumentation relevant to neurophysiology and neuromorphic engineering, it consists of two parts: a common introductory part involving analog signals and data acquisition (Part I), and a more specialized second part (Part II).

Objective
The goal of Part I is to provide a general introduction to the signal acquisition process. Students are familiarized with basic lab equipment such as oscilloscopes, function generators, and data acquisition devices. Different electrical signals are generated, visualized, filtered, digitized, and analyzed using Matlab (Mathworks Inc.) or Labview (National Instruments).

In Part II, the students are divided into small groups to work on individual measurement projects according to availability and interest. Students single-handedly solve a measurement task, making use of their basic knowledge acquired in the first part. Various signal sources will be provided.

Prerequisites / notice
For each part, students must hand in a written report and present a live demonstration of their measurement setup to the respective supervisor. The supervisor of Part I is the teaching assistant, and the supervisor of Part II is task specific. Admission to Part II is conditional on completion of Part I (report + live demonstration).

Reports must contain detailed descriptions of the measurement goal, the measurement procedure, and the measurement outcome. Either confidence or significance of measurements must be provided. Acquisition and analysis software must be documented.

<table>
<thead>
<tr>
<th>227-1031-00L</th>
<th>Journal Club (University of Zurich)</th>
<th>O</th>
<th>2</th>
<th>1S</th>
<th>G. Indiveri</th>
</tr>
</thead>
</table>

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadline_s.html

Abstract
The Neuroinformatics Journal club is a weekly meeting during which students present current research papers. The presentation last from 30 to 60 Minutes and is followed by a general discussion.

Objective
The Neuroinformatics Journal club aims to train students to present cutting-edge research clearly and efficiently. It leads students to learn about current topics in neurosciences and neuroinformatics, to search the relevant literature and to critically and scholarly appraise published papers. The students learn to present complex concepts and answer critical questions.

Content
Relevant current papers in neurosciences and neuroinformatics are covered.

<table>
<thead>
<tr>
<th>227-1043-00L</th>
<th>Neuroinformatics - Colloquia (University of Zurich)</th>
<th>Z</th>
<th>0</th>
<th>1K</th>
<th>S.-C. Liu, R. Hahnloser, V. Mante</th>
</tr>
</thead>
</table>

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadline_s.html

Abstract
The colloquium in Neuroinformatics is a series of lectures given by invited experts. The lecture topics reflect the current themes in neurobiology and neuromorphic engineering that are relevant for our Institute.

Objective
The goal of these talks is to provide insight into recent research results. The talks are not meant for the general public, but really aimed at specialists in the field.

Content
The topics depend heavily on the invited speakers, and thus change from week to week. All topics concern neural computation and their implementation in biological or artificial systems.

<table>
<thead>
<tr>
<th>227-1045-00L</th>
<th>Readings in Neuroinformatics (University of Zurich)</th>
<th>O</th>
<th>3</th>
<th>1S</th>
<th>W. von der Behrens, R. Hahnloser, S.-C. Liu, V. Mante</th>
</tr>
</thead>
</table>

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadline_s.html

Abstract
Thirteen major areas of research have been selected, which cover the key concepts that have led to our current ideas of how the nervous system is built and functions. We will read both original papers and explore the conceptual the links between them and discuss the 'sociology' of science, the pursuit of basic science questions over a century of research.
V. Mante

The main goal of this lecture is to provide a comprehensive overview into the learning principles neuronal networks as well as to introduce the lecture slides will be provided as a PDF after each lecture.

Deep-Learning (DL) a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods. The origins of deep hierarchical learning can be traced back to early neuroscience research by Hubel and Wiesel in the 1960s, who first described the neuronal processing of visual inputs in the mammalian neocortex. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world. However, while on specific tasks such as playing (video) games deep ANNs outperform humans (Minh et al, 2015, Silver et al., 2018), perform much better than even the best human chess players thanks to the so-called ‘deep networks’.

It is commonplace that scientists rarely cite literature that is older than 10 years and when they do, they usually cite one paper that serves as the representative for a larger body of work that has long since been incorporated anonymously in textbooks. Even worse, many authors have not even read the papers they cite in their own publications. This course, ‘Foundations of Neurosciences’ is one antidote. Thirteen major areas of research have been selected. They cover the key concepts that have led to our current ideas of how the nervous system is built and functions. Unusually, we will explore these areas of research by reading the original papers, instead of reading a digested summary from a textbook or review. By doing this, we will learn how the discoveries were made, what instrumentation was used, how the scientists interpreted their own findings, and how their work, often over many decades and linked together with related findings from many different scientists, generate the current views of mechanism and structure of the nervous system. To give one concrete example, in 1890 Roy and Sherrington showed that there was a neural activity-dependent regulation of blood flow in the brain. One hundred years later, Ogawa discovered that they could use Nuclear Magnetic Resonance (NMR) to measure a blood oxygen-level dependent (BOLD) signal, which they showed was neural activity-dependent. This discovery led to the development of human functional Magnetic Resonance Imaging (fMRI), which has revolutionized neuropsychology and neuropsychiatry. We will read both these original papers and explore the conceptual links between them and discuss the ‘sociology’ of science, which in this case, the pursuit of basic science questions over a century of research, led to an explosion in applications. We will also explore the penchant of scientists and the context in which they made their seminal discoveries. Each week, course members will be given original papers to read for homework and they will write a short abstract for each paper. We will then meet weekly with the course leader and an assistant for an hour-or-so long interactive seminar. An intimate knowledge of the papers will be assumed so that the discussion does not center simply on an exegesis of the contents of the papers. Assessment will be in the form of a written exam where students will be given a paper and asked to write a short abstract of its contents.

ELECTIVE CORE COURSES

SYSTEMS NEUROSCIENCE

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0421-00L</td>
<td>Deep Learning in Artificial and Biological Neuronal Networks</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>B. Grewe</td>
</tr>
</tbody>
</table>

Objective

The main goal of this lecture is to provide a comprehensive overview into the learning principles neuronal networks as well as to introduce a diverse skill set (e.g. simulating a spiking neuronal network) that is required to understand learning in large, hierarchical neuronal networks. To achieve this the lectures and exercises will merge ideas, concepts and methods from machine learning and neuroscience. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas presented in today's neuroscience papers. After this course students will be able to:

- understand and interpret the main ideas and methods that are presented in today's neuroscience papers
- explain the basic ideas and concepts of plasticity in the mammalian brain
- implement alternative ANNs learning algorithms to 'error backpropagation' in order to train deep neuronal networks.
- use a diverse set of ANN regularization methods to improve learning
- simulate spiking neuronal networks that learn simple (e.g. digit classification) tasks in a supervised manner.

Content

Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as playing (video) games deep ANNs outperform humans (Minh et al, 2015, Silver et al., 2018). ANNs are still not performing on par when it comes to recognizing actions in movie data and their ability to act as generalizable problem solvers is still far behind of what the human brain seems to achieve effortlessly. Moreover, biological neuronal networks can learn far more effectively with fewer training examples, they achieve a much higher performance in recognizing complex patterns in time series data (e.g. recognizing actions in movies), they dynamically adapt to new tasks without losing performance and they achieve unmatched performance to detect and integrate out-of-domain data examples (data they have not been trained with). In other words, many of the big challenges and unknowns that have emerged in the field of deep learning over the last years are already mastered exceptionally well by biological neuronal networks in our brain. On the other hand, many facets of typical ANN design and training algorithms seem biologically implausible, such as the non-local weight updates, discrete processing of time, and scalar communication between neurons. Recent evidence suggests that learning in biological systems is the result of the complex interplay of diverse error feedback signaling processes acting at multiple scales, ranging from single synapses to entire networks.

Lecture notes

The lecture slides will be provided as a PDF after each lecture.

Prerequisites / notice

This advanced level lecture requires some basic background in machine/deep learning. Thus, students are expected to have a basic mathematical foundation, including linear algebra, multivariate calculus, and probability. The course is not to be meant as an extended tutorial of how to train deep networks in PyTorch or Tensorflow, although these tools used.

The participation in the course is subject to the following conditions:

1) The number of participants is limited to 120 students (MSc and PhDs).
2) Students must have taken the exam in Deep Learning (263-3210-00L) or have acquired equivalent knowledge.

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 1644 of 2152

6 credits

227-1037-00L

Introduction to Neuroinformatics

W 6 credits

V. Mante, M. Cook, B. Grewe, G. Indiveri, D. Kiper, W. von der Behrens
The course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.

Understanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocroutines of physics, maths, computer science, engineering, biology, psychology and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.

This course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: IN4145

Mind the enrolment deadlines at UZH: https://www.uzh.ch/themes/en/studies/application/deadline.html

This course focuses on basic aspects of central nervous system physiology, including perception, motor control and cognitive functions.

Main emphasis sensory systems, with complements on motor and cognitive functions.

Systems Neuroscience (University of Zurich) W 6 credits 2V+1U D. Kiper

Introduction to Neuroinformatics W 6 credits 2V+1U+1A V. Mante, M. Cook, B. Grewe, G. Indiveri, D. Kiper, W. von der Behrens

Introduction to Artificial and Biological Neuronal Networks W 4 credits 3G B. Grewe

Deep-Learning (DL) a brain-inspired weak for of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. However, DL is far from being understood and investigating learning in biological networks might serve again as a compelling inspiration to think differently about state-of-the-art ANN training methods.

The main goal of this lecture is to provide a comprehensive overview into the learning principles neuronal networks as well as to introduce a diverse skill set (e.g., simulating a spiking neuronal network) that is required to understand learning in large, hierarchical neuronal networks. To achieve this the lectures and exercises will merge ideas, concepts and methods from machine learning and neuroscience. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas and concepts that are presented in today's neuroscience papers.

After this course students will be able to:
- read and understand the main ideas and methods that are presented in today's neuroscience papers
- explain the basic ideas and concepts of plasticity in the mammalian brain
- implement alternative ANN learning algorithms to “error backpropagation” in order to train deep neuronal networks.
- use a diverse skill set (e.g., simulating spiking neuronal networks) to train simple (e.g. digit classification) tasks in a supervised manner.
Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. The origins of deep hierarchical learning can be traced back to early neuroscience research by Hubel and Wiesel in the 1960s, who first described the neuronal processing of visual inputs in the mammalian neocortex. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world. However, while on specific tasks such as playing (video) games deep ANNs outperform humans (Minh et al., 2015; Silver et al., 2018). ANNs are still not performing on par when it comes to recognizing actions in movie data and their ability to act as generalizable problem solvers is still far behind what the human brain seems to achieve effortlessly. Moreover, biological neuronal networks can learn far more effectively with fewer training examples, they achieve a much higher performance in recognizing complex patterns in time series data (e.g. recognizing actions in movies), they dynamically adapt to new tasks without losing performance and they achieve unmatched performance to detect and integrate out-of-domain data examples (data they have not been trained with). In other words, many of the big challenges and unknowns that have emerged in the field of deep learning over the last years are already mastered exceptionally well by biological neuronal networks in our brain. On the other hand, many facets of typical ANN design and training algorithms seem biologically implausible, such as the non-local weight updates, discrete processing of time, and scalar communication between neurons. Recent evidence suggests that learning in biological systems is the result of the complex interplay of diverse error feedback signaling processes acting at multiple scales, ranging from single synapses to entire networks.
Abstract
The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion.

Objective
During this course the students will:
- learn the basic concepts in biosensing and bioelectronics
- be able to solve typical problems in biosensing and bioelectronics
- learn about the remaining challenges in this field

Content
L1. Bioelectronics history, its applications and overview of the field
- Volta and Galvani dispute
- BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices
- Fundamentals of biosensing
- Glucometer and ELISA

L2. Fundamentals of quantum and classical noise in measuring biological signals

L3. Biomeasurement techniques with photons

L4. Acoustics sensors
- Differential equation for quartz crystal resonance
- Acoustic sensors and their applications

L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes

L6. Optical biosensors
- Differential equation for optical waveguides
- Optical sensors and their applications
- Plasmonic sensing

L7. Basic notions of molecular adsorption and electron transfer
- Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands
- Electron transfer: Marcus theory, Gerischer theory

L8. Potentiometric sensors
- Fundamentals of the electrochemical cell at equilibrium (Nernst equation)
- Principles of operation of ion-selective electrodes

L9. Amperometric sensors and bioelectric potentials
- Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current
- Principles of operation of amperometric sensors
- Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation)

L10. Channels, amplification, signal gating, and patch clamp Y4

L11. Action potentials and impulse propagation

L12. Functional electric stimulation and recording
- MEA and CMOS based recording
- Applying potential in liquid - simulation of fields and relevance to electric stimulation

L13. Neural networks memory and learning

Literature
Plonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)

Prerequisites / notice
The course requires an open attitude to the interdisciplinary approach of bioelectronics.
In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.).

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0151-00L</td>
<td>Linear Algebra</td>
<td>W</td>
<td>5</td>
<td>3V+2U</td>
<td>V. C. Gradinaru</td>
</tr>
<tr>
<td>Abstract</td>
<td>Contents: Linear systems - the Gaussian algorithm, matrices - LU decomposition, determinants, vector spaces, least squares - QR decomposition, linear maps, eigenvalue problem, normal forms - singular value decomposition; numerical aspects; introduction to MATLAB.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Einführung in die Lineare Algebra für Ingenieure unter Berücksichtigung numerischer Aspekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

401-0603-00L	Stochastics (Probability and Statistics)	W	4	2V+1U	P. Cheridito
Abstract	The following concepts are covered: probabilities, random variables, probability distributions, joint and conditional probabilities and distributions, law of large numbers, central limit theorem, descriptive statistics, statistical inference, parameter estimation, confidence intervals, statistical tests, two-sample tests, linear regression.				
Objective	Knowledge of the basic principles of probability theory and statistics.				
Content	Introduction to probability theory and statistics.				
A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods

Objective
The goal of the course is that students learn basic and advanced programming techniques and scientific software libraries as used and applied for scientific simulations.

402-0809-00L
Introduction to Computational Physics

Abstract
This course offers an introduction to computer simulation methods for physics problems and their implementation on PCs and supercomputers. The covered topics include classical equations of motion, partial differential equations (wave equation, diffusion equation, Maxwell's equations), Monte Carlo simulations, percolation, phase transitions, and N-Body problems.

Objective
Students learn to apply the following methods: Random number generators, Determination of percolation critical exponents, numerical solution of problems from classical mechanics and electrodynamics, canonical Monte-Carlo simulations to numerically analyze magnetic systems. Students also learn how to implement their own numerical frameworks in Julia and how to use existing libraries to solve physical problems. In addition, students learn to distinguish between different numerical methods to apply them to solve a given physical problem.

Content
Introduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics as well as some interdisciplinary applications are used to introduce modern programming methods for numerical simulations using Julia. Furthermore, an overview of existing software libraries for numerical simulations is presented.

Lecture notes
Lecture notes and slides are available online and will be distributed if desired.

Literature
Lecture notes and references are included in the lecture notes.

Prerequisites / notice
Lecture and exercise lessons in English, exams in German or in English

327-0703-00L
Electron Microscopy in Material Science

Abstract
A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials.

Objective
A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials.

Content
This course provides a general introduction into electron microscopy of organic and inorganic materials. In the first part, the basics of transmission- and scanning electron microscopy are presented. The second part includes the most important aspects of specimen preparation, imaging and image processing. In the third part, recent applications in materials science, solid state physics, structural biology, structural geology and structural chemistry will be reported.

Lecture notes
will be distributed in English

Literature
Erni: Aberration-corrected imaging in transmission electron microscopy, Imperial College Press (2010, and 2nd ed. 2015)

402-0341-00L
Medical Physics I

Abstract
Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations.

Objective
Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.

Content
The lecture is covering the basic principles of ionizing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the exercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelerator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiology, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications.

Lecture notes
A script will be provided.

Prerequisites / notice
For students of the MAS in Medical Physics (Specialization A) the performance assessment is offered at the earliest in the second year of the studies.

227-1047-00L
Consciousness: From Philosophy to Neuroscience

(University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: INV410

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cms/en/studies/application/deadline s.html

Abstract
This seminar reviews the philosophical and phenomenological as well as the neurobiological aspects of consciousness. The subjective features of consciousness are explored, and modern research into its neural substrate, particularly in the visual domain, is explained. Emphasis is placed on students developing their own thinking through a discussion-centered course structure.

Objective
The course's goal is to give an overview of the contemporary state of consciousness research, with emphasis on the contributions brought by modern cognitive neuroscience. We aim to clarify concepts, explain their philosophical and scientific backgrounds, and to present experimental protocols that shed light on a variety of consciousness related issues.

Content
The course includes discussions of scientific as well as philosophical articles. We review current schools of thought, models of consciousness, and proposals for the neural correlate of consciousness (NCC).

Lecture notes
None

Literature
We display articles pertaining to the issues we cover in the class on the course's webpage.
Physics in Medical Research: From Atoms to Cells

Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epilatral growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.

Objective

The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

X-rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue's anisotropies of biopsies.

Signal Analysis, Models, and Machine Learning

Lecture notes.

Prerequisites / notice

Since we are all experts on consciousness, we expect active participation and discussions!

227-0427-00L

Advanced Machine Learning

<table>
<thead>
<tr>
<th>Objective</th>
<th>Content</th>
</tr>
</thead>
</table>
| Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solving modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | Part I - Linear Signal Representation and Approximation: Hilbert spaces, LMMSE estimation, regularization and sparsity.

Lecture notes

Lecture notes.

Prerequisites / notice

- local bachelor courses "Discrete-Time and Statistical Signal Processing" (5. Sem.)
- others: solid basics in linear algebra and probability theory
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
- What is data?
- Bayesian Learning
- Computational learning theory

Supervised learning:
- Ensembles: Bagging and Boosting
- Max Margin methods
- Neural networks

Unsupervised learning:
- Dimensionality reduction techniques
- Clustering
- Mixture Models
- Non-parametric density estimation
- Learning Dynamical Systems

Lecture notes
No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice
The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

GESS Science in Perspective

see GESS Science in Perspective: Language Courses
ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-ITET

Master’s Thesis and Semester Papers/Seminars

Option 1: Long Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1041-01L</td>
<td>NSC Master’s Thesis (long) and Exam (University of Zurich)</td>
<td>W</td>
<td>45 credits</td>
<td>96D</td>
<td>R. Hahnloser</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: INI503

Only students who fulfill the following criteria are allowed to begin with their master thesis:

a. successful completion of the bachelor programme;

b. fulfilling of any additional requirements necessary to gain admission to the master programme.

Abstract
The Master thesis concludes the study programme. Thesis work should prove the students' ability to independent, structured and scientific working.

Objective
see above

Option 2: Short Master’s Thesis and Semester Papers/Seminars

Short Master Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1041-02L</td>
<td>NSC Master’s Thesis (short) and Exam (University of Zurich)</td>
<td>W</td>
<td>29 credits</td>
<td>62D</td>
<td>R. Hahnloser</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: INI504

Only students who fulfil the following criteria are allowed to begin with their master thesis:
- a. successful completion of the bachelor programme;
- b. fulfilling of any additional requirements necessary to gain admission to the master programme.

Abstract
The Master thesis concludes the study programme. Thesis work should prove the students' ability to independent, structured and scientific working.

Objective
see above

Semester Papers/Seminars

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1036-01L</td>
<td>NSC Master Short Project I (University of Zurich)</td>
<td>W</td>
<td>8 credits</td>
<td>17A</td>
<td>R. Hahnloser</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UZH Module Code: INI505</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Usually a student selects the topic of a Master Short Project in consultation with his or her mentor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>see above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227-1036-02L</td>
<td>NSC Master Short Project II (University of Zurich)</td>
<td>W</td>
<td>8 credits</td>
<td>17A</td>
<td>R. Hahnloser</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UZH Module Code: INI506</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Usually a student selects the topic of a Master Short Project in consultation with his or her mentor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>see above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neural Systems and Computation Master - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>W+</th>
<th>W</th>
<th>E-</th>
<th>Z</th>
<th>Dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td>Eligible for credits and recommended</td>
<td>Eligible for credits</td>
<td>Recommended, not eligible for credits</td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>G</th>
<th>U</th>
<th>S</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td>lecture with exercise</td>
<td>exercise</td>
<td>seminar</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>A</td>
<td>D</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>practical/laboratory course</td>
<td>independent project</td>
<td>diploma thesis</td>
<td>revision course / private study</td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System
Special students and auditors need special permission from the lecturers.
Core Courses

1. Semester (EPFL)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-2011-00L</td>
<td>Physics of Nuclear Reactors (EPFL)</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>external organisers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at EPFL.

Abstract
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor and, as such, the conditions for establishing and controlling a nuclear chain reaction.

Objective
By the end of the course, the student must be able to:
- Elaborate on neutron diffusion equation
- Systematize nuclear reaction cross sections
- Formulate approximations to solving the diffusion equation for simple systems

Content
- Brief review of nuclear physics
- Historical: Constitution of the nucleus and discovery of the neutron - Nuclear reactions and radioactivity - Cross sections - Differences between fusion and fission.
- Nuclear fission
- Characteristics - Nuclear fuel - Introductory elements of neutronics.
- Fissile and fertile materials - Breeding.
- Neutron diffusion and slowing down
- Monoenergetic neutrons - Angular and scalar flux
- Diffusion theory as simplified case of transport theory - Neutron slowing down through elastic scattering.
- Multiplying media (reactors)
- Multiplication factors - Criticality condition in simple cases.
- Reactor kinetics
- Point reactor model: prompt and delayed transients - Practical applications.
- Reactivity variations and control
- Short, medium and long term reactivity changes ? Different means of control.

Literature
Distributed documents, recommended book chapters

Prerequisites / notice
Prerequisite for: Reactor Experiments

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-2013-00L</td>
<td>Radiation and Reactor Experiments (EPFL)</td>
<td>O</td>
<td>4</td>
<td>5G</td>
<td>external organisers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at EPFL.

Abstract
To gain hands-on experience in the conduction of nuclear radiation measurements, as also in the execution and analysis of reactor physics experiments using the CROCUS reactor.

Objective
To gain hands-on experience in the conduction of nuclear radiation measurements, as also in the execution and analysis of reactor physics experiments using the CROCUS reactor.

Content
- Radiation detector systems, alpha and beta particles
- Radiation detector systems, gamma spectroscopy
- Introduction to neutron detectors (He-3, BF3)
- Slowing-down area (Fermi age) of Pu-Be neutrons in H2O
- Approach-to-critical experiments
- Buckling measurements
- Reactor power calibration
- Control rod calibration

Literature
Distributed documents, recommended book chapters

Prerequisites / notice
Prerequisite for: Special Topics in Reactor Physics (2nd sem.)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-2015-00L</td>
<td>Reactor Technology (EPFL)</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>A. Manera, external organisers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at EPFL.

Abstract
Basic heat removal phenomena in a reactor core, limits for heat generation and technological consequences arising from fuel, cladding and coolant properties, main principles of reactor thermal design, as well as the general design of the nuclear power plant with its main and auxiliary systems are explained. The system technology of the most important thermal and fast reactor types is introduced.

Objective
By the end of the course, the student must be able to: (1) Understand design principles of nuclear reactors, (2) Understand purpose and function of main reactor and power plant components and subsystems, (3) assess and evaluate the performance of reactor types, (4) systematize reactor system components, (5) formulate safety requirements for reactor systems.
By the end of the course, the student must be able to:

- Explain the basic physics principles that underpin radiotherapy, e.g. types of radiation, atomic structure, etc.
- Explain the interaction mechanisms of ionizing radiation at keV and MeV energies with matter.
- Explain the principles of radiation dosimetry.
- Explain the principles of therapeutic radiation physics including X-rays, electron beam physics, radioactive sources, use of unsealed sources and Brachytherapy.
- Describe how to use radiotherapy equipment both for tumour localisation, planning and treatment.
- Define quality assurance and quality control, in the context of radiotherapy and the legal requirements.
- Explain the principles and practice of radiation protection, dose limits, screening and protection mechanisms.
- Explain the use of radiation in industrial and research applications.

Content

- Fuel rod, LWR fuel elements
- Temperature field in fuel rod
- Reactor core, design
- Flux and heat source distribution, cooling channel
- Single-phase convective heat transfer, axial temperature profiles
- Boiling crisis and DNB ratio
- Pressurized water reactors, design
- Primary circuit design
- Steam generator heat transfer, steam generator types
- Boiling water reactors
- Reactor design
- LWR power plant technology, main and auxiliary systems
- Breeding and transmutation, purpose of generation IV systems
- Properties of different coolants and technological consequences
- Introduction into gas-cooled reactors, heavy water moderated reactors, sodium and led cooled fast reactors, molten salt reactors, accelerator driven systems

Literature

Distributed documents, recommended book chapters

151-2043-00L
Radiation Biology, Protection and Applications (EPFL)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at EPFL.

Abstract
An introductory course in the basic concepts of radiation detection and interactions and energy deposition by ionizing radiation in matter, radioisotope production and its applications in medicine, industry and research. The course includes presentations, lecture notes, problem sets and seminars.

Objective
By the end of the course, the student must be able to:

- Explain the basic physics principles that underpin radiotherapy, e.g. types of radiation, atomic structure, etc.
- Explain the interaction mechanisms of ionizing radiation at keV and MeV energies with matter.
- Explain the principles of radiation dosimetry.
- Explain the principles of therapeutic radiation physics including X-rays, electron beam physics, radioactive sources, use of unsealed sources and Brachytherapy.
- Describe how to use radiotherapy equipment both for tumour localisation, planning and treatment.
- Define quality assurance and quality control, in the context of radiotherapy and the legal requirements.
- Explain the principles and practice of radiation protection, dose limits, screening and protection mechanisms.
- Explain the use of radiation in industrial and research applications.

Content

- Basics: radiation sources and interaction with matter, radioisotope production using reactors and accelerators, radiation protection and shielding.
- Medical applications: diagnostic tools, radiopharmaceuticals, cancer treatment methodologies such as brachytherapy, neutron capture therapy and proton therapy.
- Industrial applications: radiation gauges, radiochemistry, tracer techniques, radioisotope batteries, sterilization, etc.
- Applications in research: dating by nuclear methods, applications in environmental and life sciences, etc.

151-2043-00L
Hydraulic Turbomachines (EPFL)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at EPFL.

Abstract
Mastering the scientific design of a hydraulic machine, pump and turbine, by using the most advanced engineering design tools. For each chapters the theoretical basis are first established and then practical solutions are discussed with the help of recent design examples.

Objective
Mastering the scientific design of a hydraulic machine, pump and turbine, by using the most advanced engineering design tools. For each chapters the theoretical basis are first established and then practical solutions are discussed with the help of recent design examples.

Content

- Turbomachine equations, mechanical power balance in a hydraulic machines, moment of momentum balance applied to the runner/impeller, generalized Euler equation.
- Hydraulic characteristic of a reaction turbine, a Pelton turbine and a pump, losses and efficiencies of a turbomachine, real hydraulic characteristics.
- Similarity laws, non dimensional coefficients, reduced scale model testing, scale effects.
- Cavitation, hydraulic machine setting, operating range, adaptation to the piping system, operating stability, start stop transient operation, runaway.
- Reaction turbine design: general procedure, general project layout, design of a Francis runner, design of the spiral casing and the distributor, draft tube role, CFD validation of the design, design fix, reduced scale model experimental validation.
- Pelton turbine design: general procedure, project layout, injector design, bucket design, mechanical problems.
- Centrifugal pump design: general architecture, energetic loss model in the diffuser and/or the volute, volute design, operating stability.

Literature

Prerequisites / notice

Required prior knowledge: Neutronics
Prerequisite for: Nuclear Safety (2nd sem.)
151-2023-00L Nuclear Fusion and Plasma Physics (EPFL) W 4 credits 4G external organisers

No enrolment to this course at ETH Zurich. Book the corresponding module directly at EPFL.

Abstract The goal of the course is to provide the physics and technology basis for controlled fusion research, from the main elements of plasma physics to the reactor concepts.

Objective By the end of the course, the student must be able to:
- Design the main elements of a fusion reactor
- Identify the main physics challenges on the way to fusion
- Identify the main technological challenges of fusion

Content
1) Basics of thermonuclear fusion
2) The plasma state and its collective effects
3) Charged particle motion and collisional effects
4) Fluid description of a plasma
5) Plasma equilibrium and stability
6) Magnetic confinement: Tokamak and Stellarator
7) Waves in plasma
8) Wave-particle interactions
9) Heating and non inductive current drive by radio frequency waves
10) Heating and non inductive current drive by neutral particle beams
11) Material science and technology: Low and high Temperature superconductor - Properties of material under irradiation
12) Some nuclear aspects of a fusion reactor: Tritium production
13) Licensing a fusion reactor: safety, nuclear waste
14) Inertial confinement

Literature

Prerequisites / notice
Required prior knowledge:
Basic knowledge of electricity and magnetism, and of simple concepts of fluids

151-2025-00L Introduction to Particle Accelerators (EPFL) W 4 credits 4G external organisers

No enrolment to this course at ETH Zurich. Book the corresponding module directly at EPFL.

Abstract The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key features and limitations of these machines as used in accelerator driven sciences like high energy physics, materials and life sciences.

Objective By the end of the course, the student must be able to:
- Design basic linear and non-linear charged particles optics
- Elaborate basic ideas of physics of accelerators
- Use a computer code for optics design
- Optimize accelerator design for a given application
- Estimate main beam parameters of a given accelerator

Content
Overview, history and fundamentals
- Transverse particle dynamics (linear and nonlinear)
- Longitudinal particle dynamics
- Linear accelerators
- Circular accelerators
- Acceleration and RF-technology
- Beam diagnostics
- Accelerator magnets
- Injection and extraction systems
- Synchrotron radiation

Literature
- Prérequis: Notion de relativité restreinte et d'électrodynamique

Prerequisites / notice
- Notion de relativité restreinte et d'électrodynamique

151-2041-00L Introduction to Medical Radiation Physics (EPFL) W 4 credits 3G external organisers

No enrolment to this course at ETH Zurich. Book the corresponding module directly at EPFL.

Abstract This course covers the physical principles underlying medical imaging using ionizing radiation (radiography, fluoroscopy, CT, SPECT, PET).

Objective The focus is not only on risk and dose to the patient and staff, but also on an objective description of the image quality.

Content
- Physics of radiography: X-ray production, Radiation-patient interaction, Image detection and display
- Image quality: Wagner's taxonomy, MTF, NPS, contrast, SNR, DQE, NEQ, CNR
- Dose to the patient: External irradiation, Internal contamination, compartmental models
- Physics of computer tomography (CT)
- Risk and radiation: Rational risk and state of our knowledge, Psychological aspects, Ethics and communication
- Physics of single-photon emission computed tomography (SPECT)
- Physics of mammography
- Receiver operating characteristics (ROC) and hypothesis testing: Link between medical diagnostic and statistical hypothesis testing, Sensitivity, specificity, prevalence, predictive values
- Physics of radioscopy
- Model observers in medical imaging: Human visual characteristics and their quantification, Bayesian cost and Ideal model observer, Anthropomorphic model observers, Detection experiments (rating, M-AFC, yes-no)
- Physics of positron emission tomography (PET)
- Physics of resonance magnetic imaging

151-2047-00L Physics of Atoms, Nuclei and Elementary Particles (EPFL) W 4 credits 4G external organisers

No enrolment to this course at ETH Zurich. Book the corresponding module directly at EPFL.

Abstract

Objective

Content

Literature

Prerequisites / notice

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1654 of 2152
In this lecture, symmetry and conservation laws are applied to derive wave functions for elementary particles. Relativistic wave functions are analysed and applied for massive and massless particles. Different ideas on antiparticles are explored.

Objective

By the end of the course, the student must be able to:

- Describe the production of a detection signal and its processing
- Explain the operation of all types of commonly used detectors
- Assess / Evaluate the detection system and method required for a specific measurement
- Interaction of radiation with matter at low energies: X-rays/gammas, charged particles and neutrons up to MeV range, ionisation, nuclear cross sections.

Content

- Explanation of interaction processes of ionising radiation and matter
- Description of forces.
- Symmetry principles.
- Scaler, spinor and vector field
- Relativic wave function
- Detailed analysis and applied for massive and massless particles.
- Different ideas on antiparticles are explored.

Prerequisites / notice

Required courses: Quantum mechanics, electrodynamics and special relativity

Recommended courses: Nuclear and particle physics

Important concepts to start the course: Symmetry and conservation, Lorentz invariance and spin and statistics

151-2049-00L

Energy Conversion and Renewable Energy (EPFL)

Number: W 3 credits 3G

Abstract

The goal of the lecture is to present the principles of the energy conversion for conventional and renewable energy resources and to explain the most important parameters that define the energy conversion efficiency, resources implications and economics of the energy conversion technologies.

Objective

By the end of the course, the student must be able to:

- Explain the efficiency and the main emission sources of energy conversion processes
- Quantify the efficiency and the main emission sources of energy conversion processes
- Model energy conversion systems and industrial processes
- Draw the energy balances of an energy conversion system
- Elaborate energy conversion scenarios
- Describe the principles and limitations of the main energy conversion technologies
- Compare energy conversion systems
- Overview of energy stakes
- Thermodynamic principles relevant for energy conversion systems, review of thermodynamic power cycles, heat pumps and refrigeration cycles, co-generation
- Carbon capture and sequestration
- Renewable energy vectors, their physical principles and essential equations: Solar (photovoltaics and thermal - collectors/concentrators), geothermal, biomass (a.o. gasification, biogases, liquid biofuels), hydro, wind
- Fuel cells and hydrogen as energy vector
- Storage of energy: Batteries, compressed air, pumped hydro, thermal storage
- Integrated urban systems

Lecture notes

Slides, videos and other documents are available on moodle (http://moodle.epfl.ch)

Prerequisites / notice

Required courses: Physics I and Physics II

Important concepts to start the course: Conservation principles (energy, mass, momentum)

151-2050-00L

Radiation Detection (EPFL)

Number: W 3 credits 3G

Abstract

The course presents the detection of ionizing radiation in the keV and MeV energy ranges. It introduces the physical processes of radiation/matter interaction. It covers the several steps of detection, and the detectors, instrumentations and measurements methods commonly used in the nuclear field.

Objective

By the end of the course, the student must be able to:

- Explain interaction processes of ionising radiation and matter
- Describe the production of a detection signal and its processing
- Explain the operation of all types of commonly used detectors
- Assess / Evaluate the detection system and method required for a specific measurement
- Interaction of radiation with matter at low energies: X-rays/gammas, charged particles and neutrons up to MeV range, ionisation, nuclear cross sections.
- Characteristics and types of detectors: gas detectors, semiconductor detectors, scintillators and optical fibers, fission chambers, meshed and pixel detectors
- Signal processing and analysis: types of electronics, signal collection and amplification, particle discrimination, spatial and time resolution
- Nuclear instrumentation and measurements: principle of measurements, spectrometry, common detection instrumentations, applications in nuclear engineering and R&D.

Literature

Radiation detection and measurement, Glenn F. Knoll. Wiley 2010

151-2005-00L

Elective Project Nuclear Engineering

Number: W 8 credits 17A

Abstract

The elective project has the purpose to train the students in the solution of specific engineering problems related to nuclear technology. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.

Objective

The elective project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's programme.

Number

151-0150-00L

Title

Advanced Topics in Nuclear Reactor Materials

Type

O

ECTS

4

Hours

3G

Lecturers

M. A. Pouchon, P. J.-P. Spätig, M. Streit

Notice

Students registered at ETH Zurich have to enroll to this course at ETH. EPFL students can enroll to this course.
The behaviour of materials in nuclear reactors determines the reliability and safety of nuclear power plants (NPPs). Life extension and the understanding of fuel behavior under high burn-up conditions is of central importance for current-day NPPs. Advanced future systems (fission and fusion) need materials meeting additional challenges such as high temperatures and/or high doses.

The course will highlight the above needs from different points of view. Experimental methods for the control and analysis of nuclear components and materials in operating NPPs will be presented. Advanced analytical and modeling tools will be introduced for characterization and understanding of irradiation damage, creep, environmental effects, etc. Insights acquired from recent experimental programs into high burnup fuel behavior under hypothetical accident conditions (RIA, LOCA) will be presented. Materials for advanced future nuclear plants will be discussed.

Abstract

The course deals with the important challenges for materials (structural and fuel) for current and advanced nuclear power plants. Experimental techniques and tools used for working with active materials are discussed in detail. Students will be well acquainted with analytical and modeling methodologies for damage assessment and residual life determination and with the behavior of high burnup fuel.

Objective

The behaviour of materials in nuclear reactors determines the reliability and safety of nuclear power plants (NPPs). Life extension and the understanding of fuel behavior under high burn-up conditions is of central importance for current-day NPPs. Advanced future systems (fission and fusion) need materials meeting additional challenges such as high temperatures and/or high doses.

The course will highlight the above needs from different points of view. Experimental methods for the control and analysis of nuclear components and materials in operating NPPs will be presented. Advanced analytical and modeling tools will be introduced for characterization and understanding of irradiation damage, creep, environmental effects, etc. Insights acquired from recent experimental programs into high burnup fuel behavior under hypothetical accident conditions (RIA, LOCA) will be presented. Materials for advanced future nuclear plants will be discussed.

151-2037-00L

Nuclear Computations Lab

Students registered at ETH Zurich have to enroll to this course at ETH. EPFL students can enroll to this course directly at EPFL.

Abstract

To acquire hands-on experience with the running of large computer codes in relation to the static analysis of nuclear reactor cores and the multi-physics simulation of nuclear power plant (NPP) dynamic behaviour.

Objective

To acquire hands-on experience with the running of large computer codes in relation to the static analysis of nuclear reactor cores and the multi-physics simulation of nuclear power plant (NPP) dynamic behaviour.

Content

- Lattice (assembly) calculations
- Thermal-hydraulic analysis
- Reactor core analysis
- Multi-physics core dynamics calculations
- Best-estimate NPP transient analysis

Literature

Distributed documents, recommended book chapters

Prerequisites / notice

Required prior knowledge: Special Topics in Reactor Physics, Nuclear Safety

151-2039-00L

Beyond-Design-Basis Safety

Students registered at ETH Zurich have to enroll to this course at ETH. EPFL students can enroll to this course directly at EPFL.

Abstract

Comprehensive knowledge is provided on the phenomena during a Beyond Design Bases Accident (BDBA) in a Nuclear Power Plants (NPP), on their modeling as well as on countermeasures taken against radioactive releases into the environment, both by Severe Accident Management Guidelines (SAMG), together with technical backfitting measures in existing plants and an extended design of new NPP.

Objective

Deep understanding of the processes associated with core degradation and fuel melting in case of sustained lack of Core Cooling Systems, potential threats to the containment integrity, release and transport of active and inactive materials, the function of the containment, countermeasures mitigating release of radioactive material into the environment (accident management measures, backfitting and extended design), assessment of timing and amounts of released radioactive material (source term).

Content

Physical basic understanding of severe accident phenomenology: loss of core cooling, core dryout, fuel heat-up, fuel rod cladding oxidation and hydrogen production, loss of core coolability and, fuel melting, melt relocation and melt accumulation in the lower plenum of the reactor pressure vessel (RPV), accident evolution at high and low reactor coolant system pressure, heat flux from the molten debris in the lower plenum and its distribution to the lower head, RPV failure and melt ejection, direct containment heating, molten corium and concrete interaction, in- and ex-vessel molten fuel coolant interaction (steam explosions), hydrogen distribution in the containment, hydrogen risk (deflagration, transition to detonation), pressure buildup and containment vulnerability, countermeasures mitigating/avoiding hydrogen deflagration, formation, transport and deposition of radioactive aerosols, iodine behavior, plant ventilation-filtration systems, filtered venting to avoid containment failure and mitigate activity release into the environment, containment bypass scenarios, source term assessment, in-vessel and ex-vessel corium retention, behavior of fuel elements in the spent fuel pool during long-lasting station blackout, cladding oxidation in air, discussion of occurred severe accidents (Harrisburg, Chernobyl, Fukushima), internal and external emergency response. Probabilistic assessment and interfacing with severe accident phenomenology.

Lecture notes

Hand-outs will be distributed

Prerequisites / notice

Recommended courses: 151-0156-00L Safety of Nuclear Power Plants plus either 151-0163-00L Nuclear Energy Conversion or 151-2015-00L Reactor Technology

151-2045-00L

Decommissioning of Nuclear Power Plants

Students registered at ETH Zurich have to enroll to this course at ETH. EPFL students can enroll to this course directly at EPFL.

Abstract

Introduction to aspects of Nuclear Power Plant decommissioning including project planning and management, costs and financing, radiological characterization, dismantling/decontamination technologies, safety aspects and radioactive waste management considerations.

Objective

The aim of this course is to provide the students with an overview of the multidisciplinary issues that have to be addressed for the successful decommissioning of NPPs. Students will get exposed to principles of project management, operations management, cost estimations, radiological characterization, technologies relevant to the safe dismantling of NPPs and best-practice in the context of radioactive waste management.

Content

Legal framework, project management and operations methods and tools, cost estimation approaches and methods, nuclear calculations and on-site radiological characterization and inventorying, state-of-the-art technologies for decontamination and dismantling, safety considerations, state-of-the-art practice for radioactive waste treatment, packaging and transport, interface with radioactive waste management and disposal. The course will additionally include student visits to relevant nuclear sites in Switzerland and Germany.

Lecture notes

Slides will be handed out

Literature

151-2005-00L

Elective Project Nuclear Engineering

Only for Nuclear MSc.

The subject of the Elective Project and the choice of the supervisor (ETH or EPFL professor) are to be approved in advance by the tutor.

Abstract

The elective project has the purpose to train the students in the solution of specific engineering problems related to nuclear technology. This makes use of the technical and social skills acquired during the master’s program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.

Objective

The elective project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master’s programme.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0385-10L</td>
<td>Biomedical Imaging</td>
<td>W</td>
<td>6</td>
<td>5G</td>
<td>S. Kozerke, K. P. Prüsammn</td>
</tr>
<tr>
<td>Objective</td>
<td>To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- X-ray imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Computed tomography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Single photon emission tomography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Positron emission tomography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Magnetic resonance imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ultrasound/Doppler imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0965-00L</td>
<td>Micro and Nano-Tomography of Biological Tissues</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>M. Stampanoni, F. Marone Welford</td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Available online</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Will be indicated during the lecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electives

- Course from the catalogue of Master courses ETH Zurich and EPFL. At least 4 credit points must be collected from the offer of Science in Perspective (SiP) compulsory electives at ETH Zurich or Management of Technology and Entrepreneurship at EPFL.

Industrial Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1090-00L</td>
<td>Industrial Internship</td>
<td>O</td>
<td>8</td>
<td></td>
<td>external organisers</td>
</tr>
<tr>
<td>Objective</td>
<td>The main objective of the minimum twelve-week internship is to expose Master's students to the industrial work environment. The aim of the Industrial Internship is to apply engineering knowledge to practical situations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>No registration required via myStudies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1020-00L</td>
<td>Semester Project Nuclear Engineering</td>
<td>O</td>
<td>8</td>
<td>17A</td>
<td>Professors</td>
</tr>
<tr>
<td>Objective</td>
<td>The aim of the Industrial Internship is to apply engineering knowledge to practical situations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1009-00L</td>
<td>Master's Thesis Nuclear Engineering</td>
<td>O</td>
<td>30</td>
<td>64D</td>
<td>Supervisors</td>
</tr>
<tr>
<td>Objective</td>
<td>Students who fulfill the following criteria are allowed to begin with their Master's Thesis: a. successful completion of the bachelor programme; b. fulfilling of any additional requirements necessary to gain admission to the master programme. c. successful completion of the semester project. d. completion of minimum 72 ECTS in the categories "Core Courses" and "Electives" in the Master studies and completion of 8 ECTS in the "Semester Project"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notice</td>
<td>For the supervision of the Master's Thesis, the following professors can be chosen: H.-M. Prasser (ETHZ), A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract
Master's programs are concluded by the master's thesis. The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem. The subject of the master's thesis, as well as the project plan and roadmap, are proposed by the tutor and further elaborated with the student.

Objective
The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem.

Nuclear Engineering Master - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
- European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
Pharmaceutical Sciences Master

Core Courses I

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0030-00L</td>
<td>Therapeutic Proteins</td>
<td>O</td>
<td>3</td>
<td>3G</td>
<td>C. Hain Winter, D. Neri</td>
</tr>
<tr>
<td>Abstract</td>
<td>In this course, various topics related to the development, GMP production and application of therapeutic proteins will be discussed. Furthermore, students will expand their training in pharmaceutical immunology and will be introduced to the basic concepts of pharmaceutical product quality management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students know and understand:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- basic mechanisms and regulation of the immune response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- the pathogenic mechanisms of the most important immune-mediated disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- the most frequently used expression systems for the production of therapeutic proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- the use of protein engineering tools for modifying different features of therapeutic proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- the mechanism of action of selected therapeutic proteins and their application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- basic concepts in the GMP production of therapeutic proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course consists of two parts:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In a first part, students will complete their training of pharmaceutical immunology (Chapter 13 - 16 Immunobiology VIII textbook). This part particularly focuses on the pathogenic mechanisms of immune-mediated diseases. Deepened knowledge of immunology will be relevant for understanding the mechanism of action of many therapeutic proteins, as well as for understanding one major concern related to the use of protein-based drugs, namely, immunogenicity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In the second part, the course focuses on topics related to the development and application of therapeutic proteins, such as protein expression, protein engineering, reducing immunogenicity, and GMP production of therapeutic proteins. Furthermore, selected examples of approved therapeutic proteins will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Handouts to the lectures will be available for downloading under http://www.pharma.ethz.ch/scripts/index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>- Janeway's Immunobiology, by Kenneth Murphy (9th Edition), Chapters 12-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Lecture Handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Paper References provided in the Scripts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- EMEA Dossier for Humira</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535-0041-00L</td>
<td>Pharmacology and Toxicology III</td>
<td>O</td>
<td>2</td>
<td>2G</td>
<td>M. Detmar, U. Quitterer</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course is divided into two parts. The first part provides a detailed understanding of drugs and pharmacotherapy of infectious diseases and cancer. The second part gives an overview of the field of pharmacogenomics with a special focus on the role of genetic polymorphisms in disease susceptibility, drug response and adverse effects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course advances basic knowledge in pharmacology and toxicology. Special emphasis is placed on the interrelationship between pharmacological, pathophysiological and clinical aspects of drug therapy in the fields of infectious diseases and cancer. The course also provides an overview of the field of pharmacogenomics, with a special focus on the role of genetic polymorphisms in disease susceptibility, drug response and adverse effects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Topics include the pharmacology and pharmacotherapy of infectious diseases and cancer. In the field of pharmacogenomics, the course is focused on genetics, genome-wide association studies, genetic disease predisposition, examples of genetic variability of drug metabolism and drug responses, identification of new drug targets, relevance of pharmacogenomics for clinical drug development, and toxicogenomics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>A script is provided for each lecture course. The scripts define important and exam-relevant contents of lectures. Scripts do not replace the lecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Recommended reading:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The classic textbook in Pharmacology:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goodman and Gilman’s The Pharmacological Basis of Therapeutics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lawrence Brunton, Bjorn Knollman, Randa Hilal-Dandan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klaus Aktories, Ulrich Förstermann, Franz Hofmann, Klaus Starke.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allgemeine und spezielle Pharmakologie und Toxikologie.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535-0050-00L</td>
<td>Pharmacoepidemiology and Drug Safety</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>A. Burden, S. Russmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to the principles, methods and applications of pharmacoepidemiology and drug safety. Drug safety in the pharmaceutical industry and regulatory authorities, but also for hospital and office pharmacists. Another focus is the evaluation and interpretation of pharmacoepidemiological drug safety studies in the medical literature and the evaluation of benefits vs. risks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Objectives:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To familiarize participants with the principle methods and applications of pharmacoepidemiology and drug safety that is relevant for industry, regulatory affairs, but also for clinical pharmacists in hospitals and office pharmacies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Perform independently a causality assessment of suspected adverse drug reactions in patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Study designs and biostatistics used for the quantitative evaluation of drug safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Setup of programs that can effectively reduce medication errors and improve drug safety in clinical practice, particularly in hospitals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- Historical landmarks of drug safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pharmacovigilance and causality assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Drug safety in premarketing clinical trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Descriptive, cohort and case-control drug safety study designs; Data analysis and control of confounding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pharmacoepidemiology and regulatory decision making in drug safety; Risk management plans (RMPs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Medication errors, clinical pharmacology / clinical pharmacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Clinical Decision Support Systems, Interventional Pharmacoepidemiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pharmacoepidemiological databases, ‘Big Data’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Interactive discussion of many real-life examples for each topic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>This course will be a combination of formal lectures, group discussions and self-directed studies. Course material will be taught through seminars, case studies in small groups. Reading material and scripts will be provided for each week.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Recommended literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rothman: Introduction to Epidemiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Strom, Kimmel, Hennessy: Textbook of Pharmacoepidemiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Gigerenzer: Risk Savvy - How to Make Good Decisions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analytical Competencies

Concepts and Theories

Communication

Patents

A script is provided in electronic form during the lecture.

The class enables the participants to prepare their own scientific texts and oral presentations, and critically assess the quality of scientific papers.

This introductory class provides an overview of the basic scientific writing techniques and a guideline to presenting scientific data, together with the practical skills needed to write up results, for example for journals and for theses.

Students

Will be published on “mystudies”.

Further readings will be listed in the lecture notes.

Prerequisites / notice

None

511-0007-00L

Drug Discovery and Development

Only for MSc Pharmaceutical Sciences.

Abstract

This course provides an overview of the concepts and processes employed in today's drug discovery and development. It has an introductory character but will also provide more detailed insights employing real life examples. The course combines lectures and interactive elements with active participation of the students.

Objective

Students

- Understand the drug discovery process and can explain major approaches and relevant technical terms (for details see lecture notes).
- Understand and appreciate the content and timing of drug development process steps, development phases and decision criteria.
- Understand the concepts underlying drug product development through all the phases from preclinical and clinical development to regulatory submission, approval and market launch.
- Can differentiate between small molecule drug development and biological drug development.
- Understand the most important differences between legal and regulatory requirements for drug development and approval for the major markets EU and USA.

Content

Course unit comprises weekly lectures covering the early phases of target and drug discovery (535-0901-01 S “From A to Z in Drug Discovery and Development”) with group work in the area of Drug Development (511-0000-00 G). Group work is 2 full days (Days 1 and 2) and comprises: introduction to the entire suite of drug product development processes in the pharmaceutical industry, covering: preclinical research and development, clinical development, regulatory processes and market launch.

R&D support processes such as project management, quality management, pharmacovigilance and pharmacoeconomics will be covered as well as organizational and governance aspects of the pharmaceutical industry. In addition, important success factors for a later career in the pharmaceutical industry will be discussed and highlighted at the end of the course.

Lecture notes

Will be published on “mystudies”.

Literature

Further readings will be listed in the lecture notes.

Prerequisites / notice

This course provides the essential basic knowledge required for the industry-specific modules of the spring semester.

Safety concept: https://chab.ethz.ch/studium/bachelor1.html
Students gain knowledge in pharmaceutical analytics to fulfill regulatory requirements in pharmaceutical industry based on the
river. This course provides the basic concepts of biopharmacy (ADMET, absorption, distribution, metabolism, excretion, toxicity of drugs) and
analytics in the context of pharmacopeial regulation. After an introduction to the
course program or in Pharmaceutical Sciences</br>

Abstract

The main objectives of this course are:
- students develop their scientific reflection (Critical Thinking) and working skills by working independently on a relevant pharmaceutical topic
- students gain in-depth knowledge of the topic investigated
- students train their scientific writing and presentation skills
- students train their ability to plan a project and work in a team

Content

The Course Drug Seminar takes place during the first 7 weeks of the 1. Master semester. It is a compulsory course of the MSc Pharmacy curriculum and an elective course in the MSc PharmSciences.

During the course, students work in small teams on a topic of their choice and elaborate a written mini-review and an oral presentation. Each team is tutored by a lecturer of the Institute of Pharmaceutical Sciences. The work is mainly based on literature search / review, but may also involve conducting interviews or site visits, if appropriate. The final presentations of all groups will take place in the framework of a dedicated Symposium held in the middle of the semester.

Prerequisites / notice

Only for students of MSc Pharmacy and MSc Pharmaceutical Sciences.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Prerequisites / notice

Only for students registered in the Master's programme in Pharmacy or in Pharmaceutical Sciences

Abstract

The course provides a platform for the investigation, presentation and discussion of a topic with relevance to the field of pharmaceutical sciences. Students work in small groups on a chosen topic, they write a mini-review and present their work on a one day symposium.

Objective

The course offers an introduction to basic formal aspects of scientific writing and the design of graphical elements. Lectures and topical seminars alternate with practical task for the participants, which will be evaluated in a peer-to-peer setting. Performance feedback is provided by both the teachers and the peers.

Prerequisites / notice

Only for Pharmaceutical Sciences MSc.

Abstract

This course provides the basic concepts of biopharmacy (ADMET, absorption, distribution, metabolism, excretion, toxicity of drugs) and pharmacokinetics. After an introduction to the fundamental parameters and concepts, the participants will study independently and apply and consolidate their knowledge in tutorials.

Objective

- Knowledge of the ADMET processes and the respective pharmacokinetic parameters.
- Interpretation of pharmacokinetic parameters.
- Analysis of drug plasma concentration-time curves.
- Prediction of pharmacokinetic parameters based on in vitro assays and physicochemical drug properties.
- Knowledge of the effects of physiological factors on the pharmacokinetic parameters and on drug plasma and tissue concentrations.
- Design of dosage regimens, based on pharmacokinetic parameters.
- Prediction of drug-drug interaction potentials based on in vitro assays and pharmacokinetic parameters.

Content

- Introduction to biopharmacy (ADMET) and pharmacokinetics.
- Definition of the most important pharmacokinetic parameters and their calculation from plasma concentration-time curves.
- Introduction to compartment models, statistical models, physiological models.
- Pharmacokinetic profiling of drugs for therapy optimization and for the analysis of the interaction potential.
- Design of dosage regimens. In vitro assays to predict pharmacokinetic parameters.

Prerequisites / notice

- students train their scientific reflection (Critical Thinking) and working skills by working independently on a relevant pharmaceutical topic
- students gain in-depth knowledge of the topic investigated
- students train their scientific writing and presentation skills
- students train their ability to plan a project and work in a team

Abstract

The course provides a platform for the investigation, presentation and discussion of a topic with relevance to the field of pharmaceutical sciences. Each team is tutored by a lecturer of the Institute of Pharmaceutical Sciences. The work is mainly based on literature search / review, but may also involve conducting interviews or site visits, if appropriate. The final presentations of all groups will take place in the framework of a dedicated Symposium held in the middle of the semester.

Objective

- Knowledge of the ADMET processes and the respective pharmacokinetic parameters.
- Interpretation of pharmacokinetic parameters.
- Analysis of drug plasma concentration-time curves.
- Prediction of pharmacokinetic parameters based on in vitro assays and physicochemical drug properties.
- Knowledge of the effects of physiological factors on the pharmacokinetic parameters and on drug plasma and tissue concentrations.
- Design of dosage regimens, based on pharmacokinetic parameters.
- Prediction of drug-drug interaction potentials based on in vitro assays and pharmacokinetic parameters.

Content

- Introduction to biopharmacy (ADMET) and pharmacokinetics.
- Definition of the most important pharmacokinetic parameters and their calculation from plasma concentration-time curves.
- Introduction to compartment models, statistical models, physiological models.
- Pharmacokinetic profiling of drugs for therapy optimization and for the analysis of the interaction potential.
- Design of dosage regimens. In vitro assays to predict pharmacokinetic parameters.

Prerequisites / notice

- students train their scientific reflection (Critical Thinking) and working skills by working independently on a relevant pharmaceutical topic
- students gain in-depth knowledge of the topic investigated
- students train their scientific writing and presentation skills
- students train their ability to plan a project and work in a team

Abstract

This course provides an introduction to basic formal aspects of scientific writing and the design of graphical elements. Lectures and topical seminars alternate with practical tasks for the participants, which will be evaluated in a peer-to-peer setting. Performance feedback is provided by both the teachers and the peers.

Objective

- Knowledge of the ADMET processes and the respective pharmacokinetic parameters.
- Interpretation of pharmacokinetic parameters.
- Analysis of drug plasma concentration-time curves.
- Prediction of pharmacokinetic parameters based on in vitro assays and physicochemical drug properties.
- Knowledge of the effects of physiological factors on the pharmacokinetic parameters and on drug plasma and tissue concentrations.
- Design of dosage regimens, based on pharmacokinetic parameters.
- Prediction of drug-drug interaction potentials based on in vitro assays and pharmacokinetic parameters.

Content

- Introduction to biopharmacy (ADMET) and pharmacokinetics.
- Definition of the most important pharmacokinetic parameters and their calculation from plasma concentration-time curves.
- Introduction to compartment models, statistical models, physiological models.
- Pharmacokinetic profiling of drugs for therapy optimization and for the analysis of the interaction potential.
- Design of dosage regimens. In vitro assays to predict pharmacokinetic parameters.

Prerequisites / notice

Only for students of MSc Pharmacy and MSc Pharmaceutical Sciences.

Abstract

This course provides an introduction to basic formal aspects of scientific writing and the design of graphical elements. Lectures and topical seminars alternate with practical tasks for the participants, which will be evaluated in a peer-to-peer setting. Performance feedback is provided by both the teachers and the peers.

Objective

- Knowledge of the ADMET processes and the respective pharmacokinetic parameters.
- Interpretation of pharmacokinetic parameters.
- Analysis of drug plasma concentration-time curves.
- Prediction of pharmacokinetic parameters based on in vitro assays and physicochemical drug properties.
- Knowledge of the effects of physiological factors on the pharmacokinetic parameters and on drug plasma and tissue concentrations.
- Design of dosage regimens, based on pharmacokinetic parameters.
- Prediction of drug-drug interaction potentials based on in vitro assays and pharmacokinetic parameters.

Content

- Introduction to biopharmacy (ADMET) and pharmacokinetics.
- Definition of the most important pharmacokinetic parameters and their calculation from plasma concentration-time curves.
- Introduction to compartment models, statistical models, physiological models.
- Pharmacokinetic profiling of drugs for therapy optimization and for the analysis of the interaction potential.
- Design of dosage regimens. In vitro assays to predict pharmacokinetic parameters.

Prerequisites / notice

Only for students of MSc Pharmacy and MSc Pharmaceutical Sciences.

Abstract

This course provides an introduction to basic formal aspects of scientific writing and the design of graphical elements. Lectures and topical seminars alternate with practical tasks for the participants, which will be evaluated in a peer-to-peer setting. Performance feedback is provided by both the teachers and the peers.

Objective

- Knowledge of the ADMET processes and the respective pharmacokinetic parameters.
- Interpretation of pharmacokinetic parameters.
- Analysis of drug plasma concentration-time curves.
- Prediction of pharmacokinetic parameters based on in vitro assays and physicochemical drug properties.
- Knowledge of the effects of physiological factors on the pharmacokinetic parameters and on drug plasma and tissue concentrations.
- Design of dosage regimens, based on pharmacokinetic parameters.
- Prediction of drug-drug interaction potentials based on in vitro assays and pharmacokinetic parameters.

Content

- Introduction to biopharmacy (ADMET) and pharmacokinetics.
- Definition of the most important pharmacokinetic parameters and their calculation from plasma concentration-time curves.
- Introduction to compartment models, statistical models, physiological models.
- Pharmacokinetic profiling of drugs for therapy optimization and for the analysis of the interaction potential.
- Design of dosage regimens. In vitro assays to predict pharmacokinetic parameters.

Prerequisites / notice

Only for students of MSc Pharmacy and MSc Pharmaceutical Sciences.

Abstract

This course provides an introduction to basic formal aspects of scientific writing and the design of graphical elements. Lectures and topical seminars alternate with practical tasks for the participants, which will be evaluated in a peer-to-peer setting. Performance feedback is provided by both the teachers and the peers.

Objective

- Knowledge of the ADMET processes and the respective pharmacokinetic parameters.
- Interpretation of pharmacokinetic parameters.
- Analysis of drug plasma concentration-time curves.
- Prediction of pharmacokinetic parameters based on in vitro assays and physicochemical drug properties.
- Knowledge of the effects of physiological factors on the pharmacokinetic parameters and on drug plasma and tissue concentrations.
- Design of dosage regimens, based on pharmacokinetic parameters.
- Prediction of drug-drug interaction potentials based on in vitro assays and pharmacokinetic parameters.

Content

- Introduction to biopharmacy (ADMET) and pharmacokinetics.
- Definition of the most important pharmacokinetic parameters and their calculation from plasma concentration-time curves.
- Introduction to compartment models, statistical models, physiological models.
- Pharmacokinetic profiling of drugs for therapy optimization and for the analysis of the interaction potential.
- Design of dosage regimens. In vitro assays to predict pharmacokinetic parameters.

Prerequisites / notice

Only for students of MSc Pharmacy and MSc Pharmaceutical Sciences.

Abstract

This course provides an introduction to basic formal aspects of scientific writing and the design of graphical elements. Lectures and topical seminars alternate with practical tasks for the participants, which will be evaluated in a peer-to-peer setting. Performance feedback is provided by both the teachers and the peers.

Objective

- Knowledge of the ADMET processes and the respective pharmacokinetic parameters.
- Interpretation of pharmacokinetic parameters.
- Analysis of drug plasma concentration-time curves.
- Prediction of pharmacokinetic parameters based on in vitro assays and physicochemical drug properties.
- Knowledge of the effects of physiological factors on the pharmacokinetic parameters and on drug plasma and tissue concentrations.
- Design of dosage regimens, based on pharmacokinetic parameters.
- Prediction of drug-drug interaction potentials based on in vitro assays and pharmacokinetic parameters.

Content

- Introduction to biopharmacy (ADMET) and pharmacokinetics.
- Definition of the most important pharmacokinetic parameters and their calculation from plasma concentration-time curves.
- Introduction to compartment models, statistical models, physiological models.
- Pharmacokinetic profiling of drugs for therapy optimization and for the analysis of the interaction potential.
- Design of dosage regimens. In vitro assays to predict pharmacokinetic parameters.
The course enables the student to understand and apply the general concepts of gene technology, including recombinant DNA technology and its application in genomics, transcriptomics and proteomics. Protein cloning, expression and modifications and bimolecular interactions will be discussed. The concept of display technology and its applications in the field of drug discovery will be presented.

Objective

The students remember and understand:

1. The tools of recombinant DNA technology
2. Next generation sequencing approaches and their relevance for -omics projects
3. Protein cloning, expression, modification/labelling and oligomerization
4. Thermodynamic and kinetic affinity constants in bimolecular reactions
5. Basic structure of the antibody molecule
6. Concepts of antibody phage technology and antibody engineering
7. Construction of antibody-, peptide- or small molecule libraries and affinity-based selection methodologies

Content

I) Genomics:
- recombinant DNA technology
- methods to sequence genomes
- application to human biology
- Transcriptomics / Proteomics

II) Proteins:
- protein cloning and expression
- homo- and heterodimerization
- chemical modifications and radioactive labelling
- detection of bimolecular interactions
- affinity constant and experimental measurement
- kinetic association and dissociation constants

III) Display technology:
- the antibody molecule, CDRs, basics of antibody engineering
- antibody phage display and selection methodologies
- construction of antibody libraries
- other display technologies (peptide display, DNA-encoded chemical libraries)

Lecture notes

Slides and script used for the course and literature for reading and discussions will be made available online.

Literature

Prerequisites / notice

Admission to MSc in Pharmaceutical Sciences.

535-0423-00L Drug Delivery and Drug Targeting

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>Techniques and Technologies</td>
<td>Analytical Competencies</td>
<td>Decision-making</td>
<td>Communication</td>
</tr>
<tr>
<td>Assessed</td>
<td>Assessed</td>
<td>Assessed</td>
<td>Assessed</td>
<td>Assessed</td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Domain B - Method-specific Competencies</td>
<td>Domain C - Social Competencies</td>
<td>Domain D - Personal Competencies</td>
<td></td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>Customer Orientation</td>
<td>Leadership and Responsibility</td>
<td>Sensitivity to Diversity</td>
<td></td>
</tr>
<tr>
<td>Assessed</td>
<td>Assessed</td>
<td>Assessed</td>
<td>Assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Domain B - Method-specific Competencies</td>
<td>Domain C - Social Competencies</td>
<td>Domain D - Personal Competencies</td>
<td></td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>Sensitivity to Diversity</td>
<td>Negotiation</td>
<td>Adaptability and Flexibility</td>
<td></td>
</tr>
<tr>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Domain B - Method-specific Competencies</td>
<td>Domain C - Social Competencies</td>
<td>Domain D - Personal Competencies</td>
<td></td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>Integrity and Work Ethics</td>
<td>Self-awareness and Self-reflection</td>
<td>Self-direction and Self-management</td>
<td></td>
</tr>
<tr>
<td>Assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td></td>
</tr>
</tbody>
</table>

535-0250-00L Biotransformation of Drugs and Xenobiotics

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>Techniques and Technologies</td>
<td>Analytical Competencies</td>
<td>Decision-making</td>
<td>Communication</td>
</tr>
<tr>
<td>Assessed</td>
<td>Assessed</td>
<td>Assessed</td>
<td>Assessed</td>
<td>Assessed</td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Domain B - Method-specific Competencies</td>
<td>Domain C - Social Competencies</td>
<td>Domain D - Personal Competencies</td>
<td></td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>Customer Orientation</td>
<td>Leadership and Responsibility</td>
<td>Sensitivity to Diversity</td>
<td></td>
</tr>
<tr>
<td>Assessed</td>
<td>Assessed</td>
<td>Assessed</td>
<td>Assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Domain B - Method-specific Competencies</td>
<td>Domain C - Social Competencies</td>
<td>Domain D - Personal Competencies</td>
<td></td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>Sensitivity to Diversity</td>
<td>Negotiation</td>
<td>Adaptability and Flexibility</td>
<td></td>
</tr>
<tr>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Domain B - Method-specific Competencies</td>
<td>Domain C - Social Competencies</td>
<td>Domain D - Personal Competencies</td>
<td></td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>Integrity and Work Ethics</td>
<td>Self-awareness and Self-reflection</td>
<td>Self-direction and Self-management</td>
<td></td>
</tr>
<tr>
<td>Assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td></td>
</tr>
</tbody>
</table>

Autumn Semester 2021
Major reactions of biotransformation. Major enzymes and reaction partners involved in the biotransformation of drugs and xenobiotics. Toxic reactions of metabolites. Factors which affect the biotransformation.

Biotransformation of drugs and xenobiotics

535-0015-00L History of Pharmacy

Objective
In the lecture, basic knowledge of the history of pharmacy is imparted, taking into account the various historical epochs.

Content
The lecture conveys knowledge about the development of the pharmacist profession from ancient times to the present. Some pharmacists who made significant contributions to pharmacy are presented in more detail and their significance for today's pharmacy is discussed. The social position of pharmacists in society and the legal conditions in different epochs are also discussed. It explains what influence the pharmacists had on the development of the pharmaceuticals, but again the pharmaceuticals on the development of the pharmacists. For this purpose, it is shown how much the meaning, the nature, the type and the composition of pharmaceuticals and the knowledge about them changed over time.

Lecture notes
Handouts will be provided.

Literature
Wird in der ersten Veranstaltung mitgeteilt.

Prerequisites / notice
An interest in the history of pharmacy, the pharmacy profession, and medicines is an asset.

535-0344-00L From Ethnopharmacy to Molecular Pharmacognosy

Abstract
Basic understanding and awareness of ethnopharmaceutical and ethnopharmacological issues and research. Knowledge of methods used in drug discovery from natural sources. Discussion of the issues around law and international treaties. Importance of ethnopharmaceutical knowledge for world health.

Objective
Basic understanding and awareness of ethnopharmaceutical and ethnopharmacological issues and research. Knowledge of methods used in drug discovery from natural sources. Discussion of the issues around law and international treaties. Importance of ethnopharmaceutical knowledge for world health.

Content

Literature

Prerequisites / notice
Prerequisites: Basic lectures in biology or biochemistry and pharmaceutical biology have been attended; not suitable for first semester students.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: not assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

535-0310-00L Glycobiology in Drug Development

Abstract
Protein-based drugs constitute around 25% of new approvals and most of them are glycoproteins. Using selected examples of prominent glycoprotein drugs, the course aims at providing insight into glycosylation-activity relationships and into biotechnological production and analytics.

Objective
Students gain basic knowledge in "pharmaceutical glycobiology". This implies knowing and understanding:
- major mechanisms underlying the roles of glycosylation for the biological/therapeutic actions of glycoproteins (glycosylation-function relationships) using prominent examples of glycoprotein drugs.
- the major types of protein-linked glycans and the biosynthetic pathways for their formation
- how glycoprotein drugs are produced (including the most important expression systems used), glycoengineered and analysed (quality control).

Students are able to apply this knowledge in solving simple problems in glycoprotein drug development (on paper).

Students gain the ability to reflect on roles of glycosylation in various biological contexts.
Book recommendation: reference books:

C. Müller
K. Berger Büter

On average one drug per year is withdrawn from the market. Using selected examples of such drug failures, the course aims at analyzing
To develop a critical understanding of the relevance and limitations of the current approaches to explaining and anticipating drug effects.
assessed
Vitamins are essential organic compounds that cannot be synthesized by an organism and hence, they have to be acquired from the diet.
In December 2006, Pfizer stopped a large phase III study on the use of Torcetrapib for the prevention of atherosclerosis and cardiovascular
disease. 800 million $ in development costs and 21 billion $ in stocks were annihilated overnight. The failure of Torcetrapib has pinpointed
the limitations of an extremely reductionist view of atherosclerosis and it's prevention by drug therapy. It has also highlighted what high
expectations we have in a safe and wide applicability of drugs and of their economical success.
Torcetrapib is not a single case. In the last 10 years, on average one drug per year was withdrawn from the market due to lack of efficacy,
unexpected side effects or toxicity. This clearly shows that the common investigations and the modern understanding of drug actions are
often not sufficient to predict the effects a drug will have in large patient populations.
These are the topics of the present course. Using three particularly informative examples of drug failures, the problems encountered and
the concepts and informative value of preclinical and clinical studies will be analyzed and discussed. Furthermore, the ethical, societal,
economical and political expectations in the development of new drugs shall be reflected.

535-0300-00L Molecular Mechanisms of Drug Actions and Targets
Number of participants limited to 24.

Abstract
On average one drug per year is withdrawn from the market. Using selected examples of such drug failures, the course aims at analyzing and discussing the present explanations of drug actions as well as the design and predictive power of animal models and clinical trials. In addition, the ethical, societal, and economical expectations in new drugs shall be reflected and discussed.

Objective
To develop a critical understanding of the relevance and limitations of the current approaches to explaining and anticipating drug effects.
To critically appraise the ethical, societal, economical and political expectations in the development of new drugs.

Content
In December 2006, Pfizer stopped a large phase III study on the use of Torcetrapib for the prevention of atherosclerosis and cardiovascular disease. 800 million $ in development costs and 21 billion $ in stocks were annihilated overnight. The failure of Torcetrapib has pinpointed the limitations of an extremely reductionist view of atherosclerosis and it's prevention by drug therapy. It has also highlighted what high expectations we have in a safe and wide applicability of drugs and of their economical success.
Torcetrapib is not a single case. In the last 10 years, on average one drug per year was withdrawn from the market due to lack of efficacy, unexpected side effects or toxicity. This clearly shows that the common investigations and the modern understanding of drug actions are often not sufficient to predict the effects a drug will have in large patient populations.
These are the topics of the present course. Using three particularly informative examples of drug failures, the problems encountered and the concepts and informative value of preclinical and clinical studies will be analyzed and discussed. Furthermore, the ethical, societal, economical and political expectations in new drugs shall be reflected.

Lecture notes
Lecture slides and literature for reading and discussions will be available online.

Prerequisites / notice
Requirements: Basic knowledge in immunology, molecular biology, protein and carbohydrate chemistry, analytical techniques. Basic knowledge in pharmacology.

535-0021-00L Vitamins in Health and Disease

Abstract
Vitamins are essential organic compounds that cannot be synthesized by an organism and hence, they have to be acquired from the diet. This lecture will give an overview about the application of vitamins in health and disease.

Objective
The aim of this lecture is a critical examination of the students with the topic of "Vitamins in Health and Disease`. The students will get an overview of vitamins, of their medical applications and the role of the pharmacist with "over-the-counter` products.

Content
Deficiencies of particular vitamins result in specific diseases such as for example scurvy (vitamin C deficiency). Such disease patterns are usually easily recognized and facile to be treated. The clinical utility of supplementation concerns people with severe deficiencies and a risk of complications. Latent vitamin deficiencies might result in variable disorders and risks. As an example neurological disorders in elderly as a consequence of chronic lack of vitamin B12 should be mentioned. Subclinical deficiencies are often difficult to assess. However, these are exactly the cases where advice of a pharmacist is requested.
A large intake of vitamins by over-supplementation or food fortification might be dangerous (hypervitaminosis). This is in particular the case for fat-soluble vitamins or in the case of constant intake of high amounts of water-soluble vitamins over a long time period.
The lecture "Vitamins in Health and Disease` will give an overview over the history and applications of vitamins and their functions to preserve good health. The utility of vitamin supplementation during conditions of deficiencies, potential consequences of a latent deficiency as well as risks of over-supplementation will be discussed.

Lecture notes
Hand-outs will be distributed during the lecture (partly in English, partly in German).

Literature
Book recommendation: reference books:
- Handbuch Nährstoffe, Burgerstein, Trias Verlag ISBN 978-3-8304-6071-8

Prerequisites / notice
Requirements: Basic knowledge in Medicinal Chemistry and Pharmacology. Ability to read and understand scientific publications written in English.

535-0360-00L Evidence Based Phytotherapy

Abstract
Based on epidemiology, economic importance and evidence-based medicine, basic principles of rational phytotherapy will be discussed: a) Identification of drug candidates, b) registration requirements, c) criteria to assess efficacy, d) biomarkers and pharmacokinetics, e) safety and f) principles of extract generation. Important prototypes will be discussed
Students should learn the importance of rational (= evidence based) pharmacotherapy with herbal extracts:

They should get to know the development process of herbal drugs:
- How are interesting development candidates being identified? What are the strategies?
- What are the regulatory requirements (traditional use, well-established use, new herbal entities)?
- What are the selection criteria?
- Assessment of efficacy (animal-/human studies, biomarker)
- Pharmacokinetics
- Safety (Toxicity, unwanted adverse effects, drug-drug interactions)
- Pharmaceutical quality
- Securing of herbal identity (collections, agriculture)
- Quality management
- selection of appropriate extraction procedures?

Important prototype

Content

Effekte Zeiten 15.45 - 16.30; 16.45 - 17.30)

1) 22.09.2021
Einleitung

2) 29.9.2021:
Phasen der klinischen Entwicklung, Grundbegriffe der evidenzbasierten Medizin;
Hypericum perforatum

3) 06.10.2020:
Harpagophyllum spp.; Echinacea ssp

4) 13.10.2020:
Lavandula oelum; Iberogast

6) 27.10.2020:
Silybum marianum; Cannabis sativa

Die Skripten werden vor den jeweiligen Vorlesungen per Email an die TeilnehmerInnen versandt

Lecture notes

Prüfung (MC)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>ECTS</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0137-00L</td>
<td>Clinical Chemistry II</td>
<td>1</td>
<td>1</td>
<td>M. Hersberger</td>
</tr>
<tr>
<td>535-0222-00L</td>
<td>Computer-Assisted Drug Design</td>
<td>1</td>
<td>1</td>
<td>S. Riniker, G. Landrum</td>
</tr>
<tr>
<td>535-0244-00L</td>
<td>Methods in Drug Design</td>
<td>1</td>
<td>1</td>
<td>G. Schneider</td>
</tr>
</tbody>
</table>

Objective

The lecture series provides an introduction to computer applications in medicinal chemistry. The topics cover molecular representations and similarity, ligand-based virtual screening, and structure-based virtual screening. All theoretical concepts and algorithms presented are illustrated by practical applications and case studies.

Objective

The students will learn how molecules can be represented in computers and how molecular similarity is calculated. They will learn the concepts of ligand-based and structure-based virtual screening to identify potential drug candidates, and understand possibilities and limitations of computer-assisted drug design in pharmaceutical chemistry. As a result, they are prepared for professional assessment of computer-assisted drug design studies in medicinal chemistry projects.

Content

The topics include molecular representations and similarity, ligand-based virtual screening (docking, physics-based models).

Lecture notes

Script will be available.

Literature

Recommended textbooks:

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1665 of 2152
Objective
Participants will learn about computational algorithms and advanced experimental approaches to drug discovery and design, including selected actual topics and practical applications. The contents of the lecture will allow for a deeper understanding of modern computer-assisted drug design methods and how they are linked to experimental applications. The main focus is on computational medicinal chemistry, so that participants will be able to use relevant computer-based methods in own research projects.

Literature

Prerequisites / notice
The lecture is mandatory for all participants of the course "Computer-Assisted Drug Design" (535-0023-00 P).

535-0023-00L Computer-Assisted Drug Design (Practical Course) W 4 credits 6P G. Schneider

Does not take place this semester.

Limited number of participants.

Abstract
The practical course is open for master and graduate students to get an introduction into hands-on computer-assisted drug design. The class includes an introduction to computer-based screening of a virtual compound library, subsequent synthesis of candidate ligands, and biochemically testing for activity on pharmacologically important drug targets.

Objective
Participants become familiar with state-of-the-art methodologies in a real-life computer-aided medicinal chemistry project. Participants work as small teams, perform literature research and discuss recent research findings. A seminar talk is to be given presenting the molecular design strategy chosen and the results obtained during the course.

Content
The course offers the possibility for people with and without computational and or laboratory background to get an introduction into computer-assisted drug design, as well as practical training in a modern chemical laboratory. Using various software suites, the participants will computationally create and screen a virtual compound library for potential active small molecules. The process will involve an introduction to screening a virtual compound library, synthesizing candidate inhibitors, and biological testing against a pharmacologically important drug target.

Lecture notes
Detailed information will be handed out during the course.

Literature

Prerequisites / notice
The class is organized as a two-week block course.
The number of participants is limited.

Kick-off meeting and confirmation of registration (Vorbesprechung und Platzvergabe): During the last lecture of the class "Computer-Assisted Drug Design" (535-0023-00).

Ideally, students interested in the course participated and successfully passed the lecture "Computer-Assisted Drug Design" (535-0022-00).

Research Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>511-0003-00L</td>
<td>Practical Methods in Pharmaceutical Sciences</td>
<td>O</td>
<td>8</td>
<td>17A</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Abstract
Students get acquainted with scientific working methods and deepen their knowledge in a particular research area.

Electives II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>511-0004-00L</td>
<td>Research Project</td>
<td>W</td>
<td>15</td>
<td>39A</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Abstract
Students get acquainted with scientific working methods and deepen their knowledge in a particular research area.

Prerequisites / notice
Prerequisite: Practical Methods in Pharmaceutical Sciences passed

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>511-0005-00L</td>
<td>Internship</td>
<td>W</td>
<td>10</td>
<td>31A</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Abstract
The internship takes place outside universities, the main locations being: pharmaceutical industry, consultancy, health and regulatory authorities and hospitals. Students experience the professional handling of questions in the field of pharmaceutical sciences through their own practical activities.

Objective
In an internship the students experience the professional handling of questions in the field of pharmaceutical sciences through their own practical activities and be able to implement the knowledge gained, by

• analysing problems in their complexity and developing solutions in a conceptual way,
• experiencing the aspects of an everyday working environment,
• acquiring key skills,
• establishing contacts for prospective careers.

Content
Work experience outside of university, duration of at least 12 weeks.

An Internship agreement is set up between the student, the company and a member of the teaching staff of the Institute of Pharmaceutical Sciences.

At the end of the internship, the student draws up a formal report.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>511-0006-00L</td>
<td>Consolidation Work</td>
<td>W</td>
<td>7</td>
<td>14A</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Abstract
The Consolidation Work consists of a literature work and provides an opportunity for students to deeply investigate and consolidate their knowledge in a scientific or technical field of relevance to pharmaceutical sciences / the pharmaceutical industry.

Objective
• students develop their scientific reflection ("Critical Thinking") and independent working skills on a topic relevant to pharmaceutical sciences / the pharmaceutical industry
• students gain in-depth knowledge of the topic investigated
• students train their scientific writing skills

Content
The Consolidation Work consists of a literature work and provides an opportunity for students to deeply investigate and consolidate their knowledge in a scientific or technical field of relevance to pharmaceutical sciences / the pharmaceutical industry. Students work alone on a topic of their choice over a time period of maximally 12 weeks and elaborate a written review article. Over this time, the student is loosely supervised by a lecturer of the Master Study Program.

Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1666 of 2152
Master's Thesis

Only students who fulfill the following criteria are allowed to begin with their master thesis:

1. successful completion of the bachelor programme;
2. fulfilling of any additional requirements necessary to gain admission to the master programme.

Abstract

In the Master thesis students prove their ability to independent, structured and scientific working. The Master thesis is usually carried out in a subject area of Pharmaceutical Sciences as chosen by the student.

▲ GESS Science in Perspective

see Science in Perspective: Language Courses ETH/UZH

see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-CHAB

▲ Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0421-AAL</td>
<td>Galenical Pharmacy I+II</td>
<td>E-</td>
<td>4</td>
<td>7R</td>
<td>J.-C. Leroux</td>
</tr>
</tbody>
</table>

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Principles and technologies for the manufacturing of dosage forms and drug delivery systems. Knowledge of pharmaceutical excipients, materials, containers, liquid, solid and semi-solid dosage forms, their production, function, quality, stability and application.

Objective

Knowledge of the most important pharmaceutical excipients, materials, containers, liquid, solid and semi-solid dosage forms, of their production, function, quality, stability and application. Comprehension of the molecular interactions in solid state, solution and colloidal systems.

Content

Literature

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies

- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed

Domain D - Personal Competencies

- Adaptability and Flexibility: assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0521-AAL</td>
<td>Pharmacology and Toxicology I+II</td>
<td>E-</td>
<td>4</td>
<td>7R</td>
<td>U. Quitterer</td>
</tr>
</tbody>
</table>

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

This course is a condition for admission to the Pharmaceutical Sciences Master. By self-directed learning, students acquire knowledge about basic principles in pharmacology and toxicology, mechanisms of drug action and clinical uses of important classes of drugs.

Objective

After the successful completion of this course, students have gained knowledge about basic principles in pharmacology and toxicology, mechanisms of drug action and clinical uses of important classes of drugs.
Contents

Contents of this course are defined by the textbook "Basic and Clinical Pharmacology" by Bertram Katzung. The following sections are exam-relevant.

Section-I Basic Principles, No. 2,3,4.
Section-II, Autonomic Drugs, No. 6,7,8,9,10.
Section-III Cardiovascular-Renal Drugs, No. 11,12,13,15.
Section-IV Drugs with Important Actions on Smooth Muscle, No. 16, 20.
Section-V Drugs that Act in the Central Nervous System, No. 21,22,24,25,26,27,28,29,30,31.
Section-VI Drugs Used to Treat Diseases of the Blood, Inflammation and Gout, No. 34,35,36.
Section-VII Endocrine Drugs, No. 38,39,40,41.

Lecture notes
Course contents are defined by the textbook "Basic and Clinical Pharmacology" by Bertram Katzung and Anthony Trevor. Exam-relevant sections of this book are listed above in the contents section.

Literature
Basic and Clinical Pharmacology
Bertram Katzung
14th edition (2017)
McGraw-Hill Education/Medical
ISBN-10: 1259641155

376-0172-AAL Anatomy I+II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction into the histology and anatomy of the human body, including the musculoskeletal, cardio-respiratory, digestive, endocrine, urinary, reproductive systems, as well as the nervous system and sensory organs.

Objective
Students acquire basic knowledge of the micro- and macro structure of the organ systems in the human body. They understand basic concepts of the relationship between structure and function, and - based on examples - of the relationship between structural changes and disease.

376-0173-AAL Physiology I+II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Principles of human physiology and clinical pathophysiology.

Objective
Understand the basic principles of human physiology and mechanisms of related clinical pathophysiology.

406-0603-AAL Stochastics (Probability and Statistics)
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.

Objective
The objective of this course is to build a solid fundamend in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".

Content
From "Statistics for research" (online)
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's t Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
Ch 1: Basics
Ch 2: The R Environment
Ch 3: Probability and distributions
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation

Literature
- "Statistics for research" by S. Dowdy et. al. (3rd edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI: 10.1002/0471477435
From within the ETH, this book is freely available online under: http://onlinelibrary.wiley.com/book/10.1002/0471477435

From within the ETH, this book is freely available online under: http://www.springerlink.com/content/m17578/

551-0110-AAL Fundamentals of Biology II: Microbiology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Structure, function, genetics of prokaryotic microorganisms and fungi.
Objective

Content

Lecture notes
none

Literature

Prerequisites / notice
none

551-1323-AAL
Fundamentals of Biology II: Biochemistry and Molecular Biology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract
The course provides an introduction to Biochemistry / Molecular Biology with some emphasis on chemical and biophysical aspects.

Objective
Topics include the structure-function relationship of proteins / nucleic acids, protein folding, enzymatic catalysis, cellular pathways involved in bioenergetics and the biosynthesis and breakdown of amino acids, glycans, nucleotides, fatty acids and phospholipids, and steroids. There will also be a discussion of DNA replication and repair, transcription, and translation.

Lecture notes
none

Literature

Prerequisites / notice
none

551-0103-AAL
Fundamentals of Biology II: Cell Biology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract
The goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.

Objective
The goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.

Content
The focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.

Literature

Pharmaceutical Sciences Master - Key for Type

W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate
E-	Recommended, not eligible for credits	O	Compulsory

Key for Hours

V	lecture
G	lecture with exercise
U	exercise
S	seminar
K	colloquium
P	practical/laboratory course
A	independent project
D	diploma thesis
R	revision course / private study

ECTS: European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Pharmaceutical Sciences Bachelor

► Bachelor Studies (Programme Regulations 2020)

►► First Year Compulsory Subjects

►►► First Year Examinations

►►►► First Year Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-1001-01L</td>
<td>General Chemistry (for Biol./Pharm.Sc.)</td>
<td>O</td>
<td>4 credits</td>
<td>4V+2U</td>
<td>J. Cvengros</td>
</tr>
</tbody>
</table>

Abstract
The lecture deals with a number of basic chemistry concepts. These include (amongst others) chemical reactions, energy transfer during chemical reactions, properties of ionic and covalent bonds, Lewis structures, properties of solutions, kinetics, thermodynamics, acid-base equilibria, electrochemistry and properties of metal complexes.

Objective
The course is designed to provide an understanding of the basic principles and concepts of general and inorganic chemistry.

Literature

Weiterführende Literatur:

Taught competencies

|--------|-------------------------------|------------------------|-----------------|-------------------------------|-----------------|------------------|---------------|------------------------|------------------------|-----------------------------|-------------------------------|---------------------|-----------------|------------------------|------------------|----------------------|----------------------|--------------------------|--------------------------|-----------|

Organic Chemistry I (for Biol./Pharm.Sc./HST)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-1011-00L</td>
<td>Organic Chemistry I (for Biol./Pharm.Sc./HST)</td>
<td>O</td>
<td>4 credits</td>
<td>4G</td>
<td>C. Thilgen</td>
</tr>
</tbody>
</table>

Abstract
Fundamentals of Organic Chemistry: molecular structure, bonding and functional groups; nomenclature, resonance and aromaticity; stereoisomerism; conformation; bond strength; organic acids and bases; basic reaction thermodynamics and kinetics; reactive intermediates: carbanions, carbenium ions and radicals.

Objective
Understanding the basic concepts and definitions of organic chemistry. Knowledge of the functional groups and classes of compounds that are important in biological systems. Foundations for the understanding of the relationship between structure and reactivity.

Content

Lecture notes
Printed lecture notes are available. Exercises, answer keys and other handouts can be downloaded from the Moodle course "Organic Chemistry I" of the current semester (https://moodle-app2.let.ethz.ch).

Literature

Prerequisites / notice
The course consists of lectures (36 hours) and problem-solving lessons (20 hours, groups of ca. 25 people). In addition, online exercises are available in the e-learning environment Moodle (Course OC I).
Fundamentals of Biology I: From Molecules to the Biochemistry of Cells

Abstract
The lecture provides an introduction to the basics of biochemistry and molecular biology as well as evolutionary principles. The focus is on bacteria and archaea under consideration of universal concepts.

Objective
Introduction to biochemistry, molecular biology and evolutionary principles

Content
The lecture introduces biology as an interdisciplinary science. Links to physics and chemistry will manifest as biological processes that operate within the laws of thermodynamics and are rooted in elements, molecules and chemical reactions. The transition from geochemistry to biochemistry is discussed and considered in relation to the origin of life. Evolutionary principles are introduced and resulting processes are used as a guiding principle. Unifying concepts in biology are introduced, including the structure and function of cellular macromolecules and the ways in which hereditary information is encoded, decoded and replicated. Central principles of universal energy conversion are looked at, starting from redox processes and focusing on bacteria and archaea. Finally, biological processes are put into an ecosystems perspective.

The lecture is divided into different sections:
1. Geochemical perspectives on Earth and introduction to evolution
2. Building blocks of life
3. Macromolecules: Proteins
4. Membranes and transport across the plasma membrane
5. Universal mechanisms of inheritance, transcription and translation
6. Reaction Kinetics, binding equilibria and enzymatic catalysis
7. Essentials of Catabolism
8. Essentials of Anabolism
9. Metabolism and biogeochemical cycling of elements

Lecture notes
The newly conceived lecture is supported by scripts.

Literature
The lecture contains elements of "Brock Biology of Microorganisms", Madigan et al. 15th edition, Pearson und "Biochemistry" (Stryer), Berg et al. 9th edition, Macmillian international.

First Year Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
First identification with Pharmaceutical Sciences; motivation for profiling in the Natural Sciences, which are focused on within the first two years as a preparation for the specialized studies; sensitization for the duties and the responsibilities of a person with a federal diploma in Pharmacy; information about job opportunities.

Objective
First identification with Pharmaceutical Sciences; motivation for profiling in the Natural Sciences as a preparation for the specialized studies; sensitization for the duties and the responsibilities of a person with a federal diploma in Pharmacy; information about job opportunities.

Content
Introduction to Pharmaceutical Sciences by selected milestones of research and development. Overview on research activities at the Institute of Pharmaceutical Sciences that is focussed on drug delivery and development (from concepts to prototypes). Sensitization for communication skills and information management. Demonstration of job opportunities in community pharmacies, in the hospital, in industry, and in the public sector by experts in the different fields.

Lecture notes
Handouts for individual lectures.

Prerequisites / notice
Interactive teaching

Mathematics I

Abstract
Mathematics I/II is an introduction to one- and multidimensional calculus and linear algebra emphasizing on applications.

Objective
Students understand mathematics as a language for modeling and as a tool for solving practical problems in natural sciences. Students can analyze models, describe solutions qualitatively or calculate them explicitly if need be. They can solve examples as well as their practical applications manually and using computer algebra systems.
Eindimensionale diskrete Entwicklungen
- linear, exponentiell, begrenzt, logistisch
- Fixpunkte, diskrete Veränderungsrate
- Folgen und Grenzwerte

Funktionen in einer Variablen
- Reproduktion, Fixpunkte
- Periodizität
- Stetigkeit

Differentialrechnung (I)
- Veränderungsrate -geschwindigkeit
- Differentialquotient und Ableitungsfunktion
- Anwendungen der Ableitungsfunktion

Integralrechnung (I)
- Stammfunktionen
- Integrationstechniken

Gewöhnliche Differentialgleichungen (I)
- Qualitative Beschreibung an Beispielen:
 - Beschränkt, Logistisch, Gompertz
 - Stationäre Lösungen
 - Lineare DGL 1. Ordnung
 - Trennung der Variablen

Lineare Algebra
- Erste Arithmetische Aspekte
- Matrizenrechnung
- Eigenwerte / -vektoren
- Quadratische LGS und Determinante

Lecture notes
In Ergänzung zu den Vorlesungskapiteln der Lehrveranstaltungen fassen wir wichtige Sachverhalte, Formeln und weitere Ausführungen jeweils in einem Vademecum zusammen.

Dabei gilt:
* Die Skripte ersetzen nicht die Vorlesung und/oder die Übungen!
* Ohne den Besuch der Lehrveranstaltungen verlieren die Ausführungen ihren Mehrwert.
* Details entwickeln wir in den Vorlesungen und den Übungen, um die hier bestehenden Lücken zu schliessen.
* Prüfungsrelevant ist, was wir in der Vorlesung und in den Übungen behandeln.

Literature
Siehe auch Lernmaterial > Literatur

Th. Wihler
Mathematik für Naturwissenschaften, 2 Bände:
Einführung in die Analysis, Einführung in die Lineare Algebra;
Haupt-Verlag Bern, UTB.

H. H. Storrer
Einführung in die mathematische Behandlung der Naturwissenschaften I; Birkhäuser.

Via ETHZ-Bibliothek:
https://link.springer.com/book/10.1007/978-3-0348-8598-0

Ch. Blatter
Lineare Algebra; VDF
auch als [pdf](<https://people.math.ethz.ch/~blatter/linalg.pdf>)

Prerequisites / notice

Übungen und Prüfungen
+ Die Übungsaufgaben (inkl. Multiple-Choice) sind ein wichtiger Bestandteil der Lehrveranstaltung.
+ Es wird erwartet, dass Sie mindestens 75 % der wöchentlichen Serien bearbeiten und zur Korrektur einreichen.
+ Der Prüfungstoff ist eine Auswahl von Themen aus Vorlesung und Übungen. Für eine erfolgreiche Prüfung ist die konzentrierte Bearbeitung der Aufgaben unerlässlich.

402-0073-00L Physics I O 3 credits 2V+2U T. M. Ihn

Abstract
Introduction to the concepts and tools in physics with the help of demonstration experiments: mechanics and elements of quantum mechanics

Objective
Students know and understand the basic ideas of the scientific description of nature. They understand the fundamental concepts and laws of mechanics and they are able to apply them in practical problems. They know the concepts of quantization and quantum numbers.

Content
1. Description of Motion
2. The laws of Newton
3. Work and energy
4. Collision problems
5. Wave properties of particles
6. The atomic structure of matter

Lecture notes
T. Ihn: Physics for Students in Biology and Pharmaceutical Sciences (unpublished lecture notes)

Literature
The lecture contains elements of:

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Analytical Competencies assessed
- Problem-solving assessed

Domain B - Method-specific Competencies
- Cooperation and Teamwork not assessed
- Sensitivity to Diversity not assessed

Domain C - Social Competencies
- Critical Thinking assessed
- Self-awareness and Self-reflection not assessed
- Self-direction and Self-management not assessed

Domain D - Personal Competencies
- Problem-solving assessed

Additional First Year Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0667-00L</td>
<td>Communication and Social Competences</td>
<td>O</td>
<td>1</td>
<td>1V</td>
<td>J. Stadelwieser</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction in basic skills for increasing the effectiveness and efficiency of students daily work. Students . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>1) know tools to "study in a paperless way"; have tried out these tools and made their own conscious choice of useful tools. 2) know tools to work efficiently and goal-oriented in teams. 3) can approach problems methodically correct; know important problem-solving techniques. 4) are able to handle scientific texts and sources correctly; know how to write scientific papers. 5) know how to avoid social problems in workingteams and how to solve them when they exist.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>corresponding learning goals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Handouts and working papers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

535-1001-00L Laboratory Course General Chemistry (for Biology and Pharmacy) O 6 credits 8P S. Gruber, K.-H. Altmann, J. Hall

- Information about the practical course will be given on the first day.
- Register in myStudies as early as possible, because the fire protection courses take place separately before the internship starts.
- Introduction to the practical work in a chemistry laboratory. The most important manipulations and techniques are treated, as well as the most fundamental chemical reaction types.
- Knowledge of the basic chemical laboratory methods
- Basic knowledge of the scientific approach in experimenting
- Observation and interpretation of chemical processes
- Keeping of a reliable laboratory journal
- Simple chemical working techniques/methods
- Separation techniques
- Physical measurements: mass, volume, pH
- Ionic solids (salts)
- Acid/base chemistry, buffers
- Redox reactions
- Metal complexes
- Titration methods and quantitative spectrometry
- Introduction to qualitative analysis

- Course manual in German (is handed out to the students at the begin of the lessons)
- Language: German, English upon request

- is a suitable textbook.
- This practical course causes costs for materials and chemicals. The costs are charged to the students at the end of semester.

Second Year Courses

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0852-00L</td>
<td>Foundations of Computer Science</td>
<td>O</td>
<td>4</td>
<td>2V+2U</td>
<td>L. E. Fässler, M. Dahinden</td>
</tr>
<tr>
<td>Abstract</td>
<td>Students learn to apply selected concepts and tools from computer science for working on interdisciplinary projects. The following topics are covered: modeling and simulations, introduction to programming, introduction matrices, managing data with lists and tables and with relational databases, universal methods for algorithm design. The students learn to understand the role of computer science in science, to control computer and automate processes of problem solving by programming, choose and apply appropriate tools from computer science, process and analyze real-world data from their subject of study, handle the complexity of real-world data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1673 of 2152
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Code</th>
<th>Credits</th>
<th>Type</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0643-13L</td>
<td>Statistics II</td>
<td>O</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>M. Kalisch</td>
</tr>
<tr>
<td>535-0225-00L</td>
<td>Pharmaceutical Analytics I</td>
<td>O</td>
<td>3 credits</td>
<td>3G</td>
<td>C. Steuer</td>
</tr>
</tbody>
</table>

Abstract

- **Statistics II**: Vertiefung von Statistikmethoden. Nach dem detaillierten Fundament aus Statistik I liegt nun der Fokus auf konzeptueller Breite und konkreter Problemlösungsfähigkeit mit der Statistiksoftware R.

- **Fundamentals of Biology III: Multicellularity**: The lecture conveys the fundamental concepts underlying multicellularity with an emphasis on the molecular basis of multicellular biological systems and their functional integration into coherent wholes. The structural and functional specialization in multicellular organisms will be discussed by highlighting common and specific functions in fungi, plants, and animals (including humans).

- **Anatomy and Physiology I**: Basic knowledge of human anatomy and physiology and basics of clinical pathophysiology.

- **Pharmaceutical Analytics I**: This course provides the basic concepts of pharmaceutical analytics in the context of pharmacopeial regulation by Ph. Eur and Ph. Helv.

Prerequisites / notice

- **Statistics II**: This course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available.

- **Fundamentals of Biology III: Multicellularity**: 1. Students can describe advantages and challenges associated with being multicellular and outline independent solutions that organisms have developed to cope with the challenges of complex multicellularity. 2. Students can explain how the internal and external structures of fungi, plants, and animals function to support survival, growth, behavior, and reproduction. 3. Students can explain the basic pathways and mechanisms of cellular communication regulating cellular behavior (cell adhesion, metabolism, proliferation, reproduction, development). 4. Students can describe how a single cell develops from one cell into many, each with different specialized functions.

Literature

- For Statistics II: Lecture notes
- For Anatomy and Physiology I: Lecture notes
- For Pharmaceutical Analytics I: Lecture notes

Notice

- Some lecture are held in English.
Learn the basic techniques for the preparation and purification of organic compounds.

Knowledge in pharmaceutical analytics to fulfill regulatory requirements in pharmaceutical industry based on the pharmacopeia in force.

This course provides the basic concepts of pharmaceutical analytics in the context of pharmacopeial regulation by Ph. Eur and Ph. helv.

Prerequisites / notice

Requirements for the practical course Pharmaceutical Analytics:

SR 2013: 6 credits Analytics/Pharmaceutical Analytics or 36 credits of compulsory lectures 2nd year
SR 2020: 7 credits Pharmazeutische Analytik I und II or 36 credits of compulsory lectures 2nd year

Laboratory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0229-00L</td>
<td>Practical Course Organic Chemistry (for Students of Biology</td>
<td>O</td>
<td>8</td>
<td>12P</td>
<td>C. Thilgen, Y. Yamakoshi</td>
</tr>
<tr>
<td></td>
<td>and Pharmaceutical Sciences)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latest online enrolment is 10 days before the beginning of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students who did not pass the first-year examinations need the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lecturers' written permission to take this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objective

Analytical part: basic operations for the separation of mixtures of organic compounds (recrystallization, distillation, extraction, chromatography)

Synthetic part (main part): at least 8 synthetic steps (one- or two-step syntheses).

Content

Analytical part: basic operations for the separation of mixtures of organic compounds (recrystallization, distillation, extraction, chromatography).

Synthetic part (main part): at least 8 synthetic steps (one- or two-step syntheses) from the following classes of reactions: 1. nucleophilic substitution at C(sp3), 2. elimination or electrophilic addition to C=C, 3. electrophilic aromatic substitution, 4. oxidation, 5. reduction, 6. Grignard reaction, 7. synthesis of a carboxylic acid derivative, 8. Aibol-, Claisen-, Mannich-, Michael reaction or Robinson annulation.

Literature

Introduction to database searches (Reaxys, SciFinder).

Prerequisites / notice

As a prerequisite, all participants need to pass the "Safety Test HCI Chemie_V2 English" (see https://moodle-app2.let.ethz.ch). A printout of the certificate generated by the system needs to be presented to the teaching assistants prior to starting lab work.

Bachelor Studies (Programme Regulations 2013)

Second Year

Second Year Core Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0223-00L</td>
<td>Pharmaceutical Analytics I</td>
<td>O</td>
<td>1</td>
<td>1.5G</td>
<td>C. Steuer</td>
</tr>
<tr>
<td></td>
<td>Only for Pharmaceutical Sciences BSc, Programme Regulations 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This course provides the basic concepts of pharmaceutical analytics in the context of pharmacopeial regulation by Ph. Eur and Ph. helv.

Objective

Summarize the structure of the Ph. Eur.

Summarize the most important pharmacopeias and their commonalities and differences (USP, JP, Ph.Eur., Ph. Helv.)

Discuss the structure of a monograph

Explain qualification of instruments and validation of methods

Discuss and compare most important analytical techniques for pharmacies and pharmaceutical industry
Content
Knowledge in pharmaceutical analytics to fulfill regulatory requirements in pharmaceutical industry based on the pharmacopeia in force. Focus is set on method validation, equipment qualification, identification, purity testing and content determination of active pharmaceutical ingredients and excipients.

Lecture notes
The slides of the lectures will be provided.

Literature
Instrumentelle Analytik, G. Rücker, M. Neugebauer, G.G. Willems; Deutscher Apotheker Verlag, Stuttgart
Pharmaceutical Chemical Analysis; H. J. Roth, K. Eger, R. Troisch; Deutscher Apotheker Verlag, Stuttgart
Introduction to Pharmaceutical Chemical Analysis; S.H. Hansen, S. Pedersen-Bjergaard, K. Rasmussen; Wiley & Sons

Prerequisites /
Requirements for the practical course Pharmaceutical Analytics:
SR 2004: 2 credits Analytical Chemistry (529-1041-00), lecture Pharmaceutical Analytics
SR 2013: 6 credits Analytical/Pharmaceutical Analytics or 36 credits of compulsory lectures 2nd year

529-1023-00L Physical Chemistry I (for Biology and Pharmacy) O 3 credits 2V+1U R. Riek
Only for:
- Biologie BSc (Programme Regulations 2013) and
- Pharmaceutical Sciences BSc (Programme Regulations 2013)

Abstract
This course is offered for the last time in autumn 2021.

Objective

Content
Understanding the fundamental thermodynamic properties of chemical and biological systems.

Lecture notes
in process, will be distributed at the beginning of the first lecture

Literature

Prerequisites /
Prerequisite: mathematics I-II, functions of multiple variables, partial derivatives.
In particular: There are learning tasks used as performance assessments.

Abstract
Basic knowledge of the anatomy and physiology of tissues, of the embryonal and postnatal development, the sensory organs, the neuro-muscular system, the cardiovascular system and the respiratory system.

Objective
Basic knowledge of human anatomy and physiology and basics of clinical pathophysiology.

Content
The lecture series provides a short overview of human anatomy and physiology

Lecture notes
in process, will be distributed at the beginning of the first lecture

Literature

Prerequisites /
Prerequisites: 535-1001-01 V "Allgemeine Chemie I (für Biol./Pharm.Wiss.)"; 535-1001-00 P "Allgemeine Chemie I (für Biol./Pharm.Wiss.)"; 529-1011-00 G "Organische Chemie I (für Biol./Pharm.Wiss.)"

529-1042-00L Analytics O 2 credits 1.5G M. Badertscher
Only for:
- Pharmathenische Wissenschaften BSc (Programme Regulations 2013).
- Pharmathenische Wissenschaften BSc (Programme Regulations 2013)
- Health Sciences and Technology BSc (Programme Regulations 2017)

Abstract
Principles of the most important separation techniques and the interpretation of molecular spectra.

Objective
Knowledge of the necessary basics and the possibilities of application of the relevant spectroscopical and separation methods in analytical chemistry.

Content

Literature
A comprehensive script is available in the HCI-Shop. A summary of the part "Spektroskopie" defines the relevant material for the exam.

Prerequisites /
Prerequisites:
535-1001-01 V "Allgemeine Chemie I (für Biol./Pharm.Wiss.)"; 535-1001-00 P "Allgemeine Chemie I (für Biol./Pharm.Wiss.)"; 529-1011-00 G "Organische Chemie I (für Biol./Pharm.Wiss.)"

551-0103-00L Fundamentals of Biology II: Cell Biology O 5 credits 5V S. Werner, Y. Barral, U. Kutay, G. Schertler, U. Suter, I. Zemp

Abstract
The goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
The goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.

The focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development, and cancer research.

The lectures are presented in the Powerpoint format. These are available on the WEB for ETH students over the nethz (Moodle). Some lectures are available on the ETH WEB site in a live format (Livestream) at the above WEB site.

Some of the lectures are given in the English language. Certain sections of the text-book must be studied by self-instruction.

Laboratory Courses 2nd Year

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0229-00L</td>
<td>Practical Course Organic Chemistry (for Students of Biology and Pharmaceutical Sciences)</td>
<td>O</td>
<td>8 credits</td>
<td>12P</td>
<td>C. Thilgen, Y. Yamakoshi</td>
</tr>
</tbody>
</table>

Latest online enrolment is 10 days before the beginning of the semester.

Students who did not pass the first-year examinations need the lecturers' written permission to take this course.

Abstract

Analytical part: basic operations for the separation of mixtures of organic compounds (recrystallization, distillation, extraction, chromatography)

Synthetic part (main part): at least 8 synthetic steps (one- or two-step syntheses).

Objective

Learn to take accurate notes of the experiments and to write reports.

Deepen the understanding of reaction mechanisms.

Content

Analytical part: basic operations for the separation of mixtures of organic compounds (recrystallization, distillation, extraction, chromatography).

Synthetic part (main part): at least 8 synthetic steps (one- or two-step syntheses) from the following classes of reactions: 1. nucleophilic substitution at C(sp3), 2. elimination or electrophilic addition to C=C, 3. electrophilic aromatic substitution, 4. oxidation, 5. reduction, 6. Grignard reaction, 7. synthesis of a carboxylic acid derivative, 8. Aldol-, Claisen-, Mannich-, Michael reaction or Robinson annulation.

Introduction to database searches (Reaxys, SciFinder).

Lecture notes

Documentation will be handed out at the beginning of the course.

Literature

1) P. Wörfel, M. Bitzer, U. Claus, H. Felber, M. Hübel, B. Vollenweider; Laborpraxis (Bd. 1: Einführung, allgemeine Methoden; Bd. 2: Messmethoden; Bd. 3: Trennungsmethoden; Bd. 4: Analytische Methoden); Birkhäuser Verlag; Basel; 1990.

Prerequisites / notice

The basic reactions of Organic Chemistry and their mechanisms should be known (cf. course 529-1012-00L Organic Chemistry II for Students of Biology, Pharmaceutical Sciences, and Health Sci. and Tech.).

As a prerequisite, all participants need to pass the "Safety Test HCI Chemie_V2 English" (see https://moodle-apgp2.let.ethz.ch). A printout of the certificate generated by the system needs to be presented to the teaching assistants prior to starting lab work.

Safety concept: https://chab.ethz.ch/studium/bachelor1.html

Third Year

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1677 of 2152
Third Year Core Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0230-00L</td>
<td>Medicinal Chemistry I</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>J. Hall</td>
</tr>
<tr>
<td>Abstract</td>
<td>The lectures give an overview of selected drugs and the molecular mechanisms underlying their therapeutic effects in disease. The historical and modern-day methods by which these drugs were discovered and developed are described. Structure-function relationships and the biophysical rules underlying ligand-target interactions will be discussed and illustrated with examples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Basic understanding of therapeutic agents with respect to molecular, pharmacological and pharmaceutical properties.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Molecular mechanisms of action of drugs. Structure function and biophysical basis of ligand-target interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Will be provided in parts before each individual lecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Attendance of Medicinal Chemistry II in the spring semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535-0421-00L</td>
<td>Galenical Pharmacy I</td>
<td>O</td>
<td>2</td>
<td>2G</td>
<td>J.-C. Leroux, E. Giger</td>
</tr>
<tr>
<td>Abstract</td>
<td>Principles and technologies for the manufacturing of dosage forms and and drug delivery systems. Knowledge of pharm. excipients, materials, containers, liquid and semi-solid dosage forms, their production, function, quality and application. Comprehension of molecular interactions in solution and colloidial systems. Comprehension of interfacial phenomena and stabilization measures in dosage forms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Knowledge of the most important pharmaceutical excipients, materials, containers, liquid and semi-solid dosage forms, of their production, function, quality, stability and application. Comprehension of the molecular interactions in solution and colloidial systems. Comprehension of interfacial phenomena and stabilization measures in disperse dosage forms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Introduction and overview of important fundamentals, principles and technologies for the development and manufacturing of dosage forms and drug delivery systems. Overview of the most important pharmaceutical excipients and polymers, their structure, properties and processing; importance of materials properties for containers. Pharmaceutical solvents, fundamentals of solubility and solubilization of drugs. Water treatment processes, sterilization techniques and quality requirements of pharmaceutical water. Parenteral dosage forms and liquid ophthalmics. Surfactants, micelle formation and colloidal systems. Liquid suspensions and emulsions. Stabilization measures in dosage forms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>German and English</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Requirements: Knowledge of physical and organic chemistry, biochemistry and biology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535-0521-00L</td>
<td>Pharmacology and Toxicology I</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>U. Quitterer, J. Abd Alla</td>
</tr>
<tr>
<td>Abstract</td>
<td>The two-semester lecture course will provide a detailed understanding of the fundamentals of drug action and the mechanisms of action and therapeautic use of the important classes of drugs. The lectures are intended for students of pharmaceutical sciences.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The lectures will provide a comprehensive survey of pharmacology and toxicology. Special emphasis is placed on the interrelationship between pharmacological, pathophysiological and clinical aspects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Topics include disease-relevant macroscopic, microscopic, pathobiochemical and functional disturbances of specific organs and organ systems. The lectures integrate disease pathology with mechanisms of drug action, usage, metabolism, pharmacokinetics, side effects, toxicology, contraindications and dosage of relevant drug classes. Basic principles of clinical pharmacology and pharmacotherapy will be covered.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>A script is provided for each lecture. Scripts define important course contents but do not replace the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The course places the basic pharmaceutical knowledge acquired so far in an applied therapeutic context and fosters interdisciplinary thinking in pharmaceutical sciences. Common pharmaceutical case studies, as they can occur in the professional everyday life of a pharmacist, are worked out in group works, presented and discussed.

Objective

Students

- Are able to analyse, present and discuss common case studies from the pharmacist’s practice, based on their basic knowledge in pharmacology.
- Deepen their knowledge of therapeutic substance classes and therapy guidelines.
- Are able to analyse the pharmaceutical profiles of selected drugs in a therapeutic context (e.g. with regard to undesirable other effects and interactions).
- Are able to compare different drugs and derive their therapy-relevant characteristics.

Content

Pharmaceutical case studies from different therapeutic fields comprehend following subject areas:

- Indication
- Adverse effects
- Interactions
- Contraindications

Lecture notes

Is made available via Moodle.

Literature

As stated in the cases.

Prerequisites / notice

The lecture Pharmacology and Toxicology I (535-0521-00L) must be attended in parallel to or prior to this course.

The course takes place weekly from 5.11.19-17.12.19. The case studies are worked on in groups of 2-3 students, submitted by e-mail, presented by one group and discussed in the plenum.

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Communication
- Cooperation and Teamwork

Domain C - Social Competencies

- Self-presentation and Social Influence

Domain D - Personal Competencies

- Critical Thinking
- Self-direction and Self-management

Abstract

The course gives a description and summary of the field of gene technology and its pharmaceutical applications. The course focuses on important methods and technologies and their application for genomic, transcriptomic and proteomic analyses in human biology.

Literature

Klaus Aktories, Ulrich Förstermann, Franz Hofmann, Klaus Starke.
Allgemeine und spezielle Pharmakologie und Toxikologie.
Urban & Fischer (Elsevier, München)

The classic textbook in Pharmacology:

Goodman and Gilman’s The Pharmacological Basis of Therapeutics
Laurence Brunton, Bjorn Knollman, Randa Hilal-Dandan.
ISBN-10: 1259584739

Prerequisites / notice

Voraussetzungen: Abschluss Grundstudium

535-0525-00L Pharmaceutical Cases O 1 credit

Abstract

The course places the basic pharmaceutical knowledge acquired so far in an applied therapeutic context and fosters interdisciplinary thinking in pharmaceutical sciences. Common pharmaceutical case studies, as they can occur in the professional everyday life of a pharmacist, are worked out in group works, presented and discussed.

Objective

Students

- Are able to analyse, present and discuss common case studies from the pharmacist's practice, based on their basic knowledge in pharmacology.
- Deepen their knowledge of therapeutic substance classes and therapy guidelines.
- Are able to analyse the pharmaceutical profiles of selected drugs in a therapeutic context (e.g. with regard to undesirable other effects and interactions).
- Are able to compare different drugs and derive their therapy-relevant characteristics.

Content

Pharmaceutical case studies from different therapeutic fields comprehend following subject areas:

- Indication
- Adverse effects
- Interactions
- Contraindications

Lecture notes

Is made available via Moodle.

Literature

As stated in the cases.

Prerequisites / notice

The lecture Pharmacology and Toxicology I (535-0521-00L) must be attended in parallel to or prior to this course.

The course takes place weekly from 5.11.19-17.12.19. The case studies are worked on in groups of 2-3 students, submitted by e-mail, presented by one group and discussed in the plenum.

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Communication
- Cooperation and Teamwork

Domain C - Social Competencies

- Self-presentation and Social Influence

Domain D - Personal Competencies

- Critical Thinking
- Self-direction and Self-management

Abstract

The structure and biosynthesis of plant constituents and the pharmacological effects and therapeutic applications of biogenic drugs of plant origin (extract-based herbal medicines; isolated natural products) are discussed. Areas of focus are (a) major biosynthetic pathways for plant-derived natural products, (b) pharmacological effects of herbal extracts, and (c) molecular mechanisms of action.

Objective

The understanding of the biosynthesis of plant-derived natural products. Acquisition of fundamental knowledge on the medical applications of important herbal medicines and of isolated natural products (general disease areas, molecular constituents of medicinal plants and herbal medicines in general, molecular constituents responsible for pharmacological activity, possible mechanisms of action, available clinical data to support medical use).

Content

The lecture is centered around the discussion of medicinal plants and herbal medicines and their common medical applications. The main areas addressed in the lecture are (a) the structure and biosynthesis of plant constituents (i.e. plant-derived natural products) and (b) the pharmacological effects and therapeutic applications of biogenic drugs of plant origin based on plant extracts as well as isolated natural products). The basic pathways for the biosynthesis of the most important classes of plant-derived natural products are discussed in detail. Likewise, the molecular basis of the pharmacological effects of medicinal plant extracts (and derived herbal medicines) and their individual constituent components (isolated natural products) is broadly addressed. As part of this discussion the availability of clinical data (or lack thereof) to support specific clinical applications of herbal medicines will be repeatedly highlighted. Potential risks associated with the use of herbal medicines are discussed for selected cases.

The lecture is structured according to the major classes of natural products prevalent in medicinal plants and herbal medicines:

- Carbohydrates, lipids, terpenes, phenolic compounds, alkaloids, essential oils.
- There is no English translation of the above textbook (or any reasonably equivalent text). Students intending to take the exam for the course and are not sufficiently proficient in German should contact the lecturer before the start of the course.

Prerequisites / notice

Requirements: Lecture courses in basic organic chemistry, biochemistry, and biology

535-0533-00L Pharmaceutical Biology O 3 credits

Abstract

The structure and biosynthesis of plant constituents and the pharmacological effects and therapeutic applications of biogenic drugs of plant origin (extract-based herbal medicines; isolated natural products) are discussed. Areas of focus are (a) major biosynthetic pathways for plant-derived natural products, (b) pharmacological effects of herbal extracts, and (c) molecular mechanisms of action.

Objective

The understanding of the biosynthesis of plant-derived natural products. Acquisition of fundamental knowledge on the medical applications of important herbal medicines and of isolated natural products (general disease areas, molecular constituents of medicinal plants and herbal medicines in general, molecular constituents responsible for pharmacological activity, possible mechanisms of action, available clinical data to support medical use).

Content

The lecture is centered around the discussion of medicinal plants and herbal medicines and their common medical applications. The main areas addressed in the lecture are (a) the structure and biosynthesis of plant constituents (i.e. plant-derived natural products) and (b) the pharmacological effects and therapeutic applications of biogenic drugs of plant origin based on plant extracts as well as isolated natural products). The basic pathways for the biosynthesis of the most important classes of plant-derived natural products are discussed in detail. Likewise, the molecular basis of the pharmacological effects of medicinal plant extracts (and derived herbal medicines) and their individual constituent components (isolated natural products) is broadly addressed. As part of this discussion the availability of clinical data (or lack thereof) to support specific clinical applications of herbal medicines will be repeatedly highlighted. Potential risks associated with the use of herbal medicines are discussed for selected cases.

The lecture is structured according to the major classes of natural products prevalent in medicinal plants and herbal medicines:

- Carbohydrates, lipids, terpenes, phenolic compounds, alkaloids, essential oils.
- There is no English translation of the above textbook (or any reasonably equivalent text). Students intending to take the exam for the course and are not sufficiently proficient in German should contact the lecturer before the start of the course.

Prerequisites / notice

Requirements: Lecture courses in basic organic chemistry, biochemistry, and biology

535-0810-00L Gene Technology O 2 credits

Abstract

The course gives a description and summary of the field of gene technology and its pharmaceutical applications. The course focuses on important methods and technologies and their application for genomic, transcriptomic and proteomic analyses in human biology.
Objective
The course gives an overview of current state-of-the art and advancement in the fields of gene technology. Herein, the course focuses on genomic, transcriptomic and proteomic analysis and their uses in drug discovery and biomedical applications. The course is structured into lectures and practical examples drawn from the research field. Upon completion, the students are familiar and know current state-of-the art of methods and applications, but are also able to classify, contrast and apply different strategies and methods within the field of gene technology. The course is suited for advanced undergraduate and early graduate students in pharmaceutical sciences or related fields.

Content
I) Genomics and transcriptomics
Methods and Techniques:
• Recombinant DNA technology
• Next generation sequencing methods, sequencing of genomes
• CRISPR technology
Application to human biology:
• Functional genomics/transcriptomics
• Principles of cancer, genetic diseases
• Therapies: cell-based therapies/gene therapies/DNA and RNA vaccination

II) Proteomics
Methods and Techniques:
• Protein cloning and expression
• The antibody molecule
• Measurement and determination of biomolecular interactions
• Protein characterization and engineering
• Modifications and radioactive labelling
Application to human biology:
• Protein therapeutics
• Proteomic approaches for identification of novel disease-related targets and biomarkers

III) Drug discovery: Protein-based libraries
• Immune repertoire mining
• Display and selection technologies
 1. antibody phage display
 2. other polypeptide display technologies
 3. small-molecules display: DNA-encoded chemical libraries

Lecture notes
The lecture series follows the above-described content, and the students are provided with the lecture slides and additional notes. The additional notes are needed for the in-depth study of the individual topics, and to set the frame and content of the in-class group work of the chosen examples.

Taught competencies
Domain A - Subject-specific Competencies

Concepts and Theories: assessed
Techniques and Technologies: assessed

Domain B - Method-specific Competencies

Decision-making: assessed
Problem-solving: assessed

Domain D - Personal Competencies

Creative Thinking: assessed
Critical Thinking: assessed

Abstract
Get Students familiar with basic Immunological concepts of pharmaceutical relevance.

Objective
Get Students familiar with basic Immunological concepts of pharmaceutical relevance.

Content
Chapters 1 - 11 of the Janeway's ImmunoBiology, by Kenneth Murphy (9th Edition; Garland).

Literature
Janeway's ImmunoBiology, by Kenneth Murphy (9th Edition).

Paperback
[www.garlandscience.com]

535-0830-00L
Pharmaceutical Immunology
O
2 credits
2G
C. Halin Winter, V. Collado Diaz

535-0210-00L
Radiopharmaceutical Chemistry
O
2 credits
2V
R. Schibli, L. Mu

Abstract
- Molecular imaging in drug development
- Radiopharmaceutical syntheses
- Knowledge of the physical principles of radioactivity
- Structure and function of radiopharmaceuticals
- Examples of application in diagnosis and therapy in humans
- Targeted radionuclide therapy

Objective
- The students know and are able to describe the different imaging procedures in medicine, especially PET and SPET.
- At the end of the lecture, the students are able to explain and describe the physical basics in connection with radioactivity and the different types of radioactive radiation that are relevant in radiopharmacy and nuclear medicine.
- The students know how radionuclides can be produced and extracted.
- The students can describe the structure and function of radiopharmaceuticals and are able to develop strategies for the design of new radiopharmaceuticals.
- The students know selected examples of clinically relevant radiopharmaceuticals and can explain the structure and mechanism of action.
- The students can discuss and apply the principles of internal dosimetry of systemically applied radiopharmaceuticals using selected examples.

Content
- Introduction to molecular imaging.
- Radioactive decay, radiation and radionuclides relevant in nuclear medicine.
- Radionuclide generators
- Radiopharmaceutical synthesis strategies
- Heart, brain and tumour diagnostics with radiopharmaceuticals
- Kinetic modelling with radiopharmaceuticals
- Tumour therapy with radiopharmaceuticals
- Dosimetry of radiopharmaceuticals
- Practical aspect of nuclear medicine and radiopharmacy
Prerequisites / notice
Prerequisites: basic knowledge in physics and chemistry

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Media and Digital Technologies assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies
- Communication not assessed
- Cooperation and Teamwork not assessed
- Customer Orientation not assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence not assessed
- Sensitivity to Diversity not assessed

Domain D - Personal Competencies
- Negotiation not assessed
- Adaptability and Flexibility not assessed
- Creative Thinking assessed
- Critical Thinking assessed
- Integrity and Work Ethics not assessed
- Self-awareness and Self-reflection not assessed
- Self-direction and Self-management not assessed

535-0165-00L Clinical Microbiology O 1 credit 1V K. Lucke

Abstract
Thorough knowledge of major pathogens involved in infectious diseases; principles of laboratory diagnosis of pathogenic bacteria and fungi.

Objective
Thorough knowledge of all major pathogens involved in infectious diseases; principles of laboratory diagnosis of pathogenic bacteria and fungi.

Content
Basics and principles of clinical microbiology:
- host-pathogen interaction
- symptoms and diagnosis of major bacterial pathogens
- therapeutic regimens commonly used against bacterial disease
- major aspects of medical mycology, virology and parasitology
- epidemiology

Literature
- Madigan M.T. et al., Brock Mikrobiologie, Pearson, 13. aktualisierte Auflage 2013

Prerequisites / notice
Basic knowledge of biochemistry, general microbiology, immunology

Lab.

Laboratory Courses 3rd Year
Respective lectures must be attended before/together with the Laboratory Courses. Special schedule for the Laboratory Courses.

Number Title Type ECTS Hours Lecturers
535-0219-00L Laboratory Course in Pharmaceutical Analytics O 3 credits 7P C. Steuer

Abstract
Solving analytical problems; Development and interpretation of analytical methods.

Objective
Solving analytical problems; Development and interpretation of analytical methods.

Content
Solving analytical problems. Development and interpretation of analytical methods.

Literature
Skript Pharmazeutische Analytik Praktikum

Prerequisites / notice
Requirements:
SR 2004: 2 credits Analytical Chemistry (529-1041-00), lecture Pharmaceutical Analytics
SR 2013: 6 credits Analytics/Pharmaceutical Analytics or 36 credits of compulsory lectures 2nd year.

Safety concept: https://chab.ethz.ch/studium/bachelor1.html

535-0166-00L Medical Microbiology Practical Course O 1 credit 1G A. Lehner

Abstract
Basic Training in Practical Medical Microbiology.

Objective
Supplement to the parallel lecture in Medical Microbiology.

Content
Analysis of simulated clinical specimens using classical methods of Medical Microbiology (microscopy, culture etc.). Main aims are the detection and identification of bacterial, mycobacterial and mycological pathogens as well as microbial susceptibility testing. Safe lab-technical handling is imperative, because pathogens of risk groups 1 and 2 are cultured. Therefore aseptic techniques need to be learned together with the basics in sterilization, disinfection and preservation.

Basis of Bio-Safety.

Simulated patient specimens representing ca. 50 realistically constructed cases are analysed. The students work in groups and gain insight into the procedures in a routine clinical microbiological laboratory. Using a scriptum, they learn how to identify pathogens and test them for antimicrobial susceptibility. As single groups can work only on a fraction of the cases, results and observations are shared by short presentations through all groups.

Lecture notes
The scriptum (in German) will be distributed at the beginning of the course. It contains all protocols necessary for the practical work.
In the lecture, basic knowledge of the history of pharmacy is imparted, taking into account the various historical epochs. From Ethnopharmacy to Molecular Pharmacognosy

Objective
Knowledge of experimental methods in drug discovery and development

Content
Characterisation of the biophysical and biological properties of drugs.

Lecture notes
Scripts

Literature
Original literature, A. Lardos

Prerequisites / notice
Laboratory course in Pharmaceutical Analytics; Lecture Medicinal Chemistry I in the same semester or earlier.

Safety concept: https://chab.ethz.ch/studium/bachelor1.html

Compensatory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0344-00L</td>
<td>From Ethnopharmacy to Molecular Pharmacognosy</td>
<td>W</td>
<td>1 credit</td>
<td>1V</td>
<td>B. Frei Haller, A. Lardos</td>
</tr>
</tbody>
</table>

Abstract
Basic understanding and awareness of ethnopharmaceutical and ethnopharmacological issues and research. Knowledge of methods used in drug discovery from natural sources. Discussion of the issues around law and international treaties. Importance of ethnopharmaceutical knowledge for world health.

Objective
Basic understanding and awareness of ethnopharmaceutical and ethnopharmacological issues and research. Knowledge of methods used in drug discovery from natural sources. Discussion of the issues around law and international treaties. Importance of ethnopharmaceutical knowledge for world health.

Content

Lecture notes
Handouts will be provided.

Literature

Prerequisites / notice
Prerequisites: Basic lectures in biology or biochemistry and pharmaceutical biology have been attended; not suitable for first semester students.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: not assessed

Domain B - Method-specific Competencies
- Analytical Competencies: not assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed
Students should learn the importance of rational (= evidence based) pharmacotherapy with herbal extracts. Based on epidemiology, economic importance and evidence-based medicine, basic principles of rational phytotherapy will be discussed:

1) Knowledge of the major reactions of biotransformation in drug therapy, prediction of possible metabolites of drugs and xenobiotics,
2) Pharmacokinetics
3) Safety (Toxicity, unwanted adverse effects, drug-drug interactions)
4) Pharmaceutical quality
5) Securing of herbal identity (collections, agriculture)
6) Quality management
7) selection of appropriate extraction procedures?

Important prototypes will be presented and critically discussed: see program below.

Objective

They should get to know the development process of herbal drugs:

- How are interesting development candidates being identified? What are the strategies?
- What are the regulatory requirements (traditional use, well-established use, new herbal entities)?
- What are the selection criteria?
- Assessment of efficacy (animal/human studies, biomarker)
- Pharmacokinetics
- Safety (Toxicity, unwanted adverse effects, drug-drug interactions)
- Pharmaceutical quality
- Securing of herbal identity (collections, agriculture)
- Quality management
- selection of appropriate extraction procedures?

Content

Effective Zeiten 15.45 - 16.30; 16.45-17.30

1) 22.09.2021
Einführung
Qualität Arzneipflanzen-Fertigprodukte, Monographien (Kommission E, ESCOP, HMPC), Unterschiede hinsichtlich des Registrierungsstatus und -anforderungen: traditionale und neue Arzneimittel; Extrakte, Qualität Arzneidrogen

2) 29.9.2021:
Phasen der klinischen Entwicklung, Grundbegriffe der evidenzbasierten Medizin; Hypericum perforatum

3) 06.10.2020:
Harpagophytum spp.; Echinacea ssp

4) 13.10.2020:
Lavandula oelum; Iberogast

5) 20.10.2020:
Cimicifuga racemosa; Serenoa repens

6) 27.10.2020:
Silybum marianum; Cannabis sativa

7) 03.11.2020
Prüfung (MC)

Lecture notes

Die Skripten werden vor den jeweiligen Vorlesungen per Email an die TeilnehmerInnen versandt

535-0021-00L

Vitamins in Health and Disease

Abstract

Vitamins are essential organic compounds that cannot be synthesized by an organism and hence, they have to be acquired from the diet. This lecture will give an overview about the application of vitamins in health and disease.

Objective

The aim of this lecture is a critical examination of the students with the topic of "Vitamins in Health and Disease". The students will get an overview of vitamins, of their medical applications and the role of the pharmacist with "over-the-counter" products.

Content

Deficiencies of particular vitamins result in specific diseases such as for example scurvy (vitamin C deficiency). Such disease patterns are usually easily recognized and facile to be treated. The clinical utility of supplementation concerns people with severe deficiencies and a risk of complications. Latent vitamin deficiencies might result in variable disorders and risks. As an example neurologische disorders in elderly as a consequence of chronic lack of vitamin B12 should be mentioned. Subclinical deficiencies are often difficult to assess. However, these are exactly the cases where advice of a pharmacist is requested. A large intake of vitamins by over-supplementation or food fortification might be dangerous (hypervitaminosis). This is in particular the case for fat-soluble vitamins or in the case of constant intake of high amounts of water-soluble vitamins over a long time period.

The lecture 'Vitamins in Health and Disease' will give an overview over the history and applications of vitamins and their functions to preserve good health. The utility of vitamin supplementation during conditions of deficiencies, potential consequences of a latent deficiency as well as risks of over-supplementation will be discussed.

Lecture notes

Hand-outs will be distributed during the lecture (partly in English, partly in German).

Literature

Handbuch Nährstoffe, Burgerstein, Trias Verlag ISBN 978-3-8304-6071-8

Prerequisites / notice

Requirements: Basic knowledge in biochemistry and pharmacology. Ability to read and understand scientific publications in English.

535-0250-00L

Biotransformation of Drugs and Xenobiotics

Abstract

Knowledge of the major reactions of biotransformation in drug therapy, prediction of possible metabolites of drugs and xenobiotics, recognition of structure elements and reactions which can lead to toxic metabolites. Knowledge of inter- and intraindividual factors influencing metabolism.

Objective

Goals: knowledge of the major reactions of biotransformation in drug therapy, prediction of possible metabolites of drugs and xenobiotics, recognition of structure elements and reactions which can lead to toxic metabolites. Knowledge of inter- and intraindividual factors influencing metabolism.

Content

Major reactions of biotransformation. Major enzymes and reaction partners involved in the biotransformation of drugs and xenobiotics. Toxic reactions of metabolites. Factors which affect the biotransformation.

Lecture notes

Biotransformation of drugs and xenobiotics
In December 2006, Pfizer stopped a large phase III study on the use of Torcetrapib for the prevention of atherosclerosis and cardiovascular disease. On average one drug per year is withdrawn from the market. Using selected examples of such drug failures, the course aims at analyzing the limitations of an extremely reductionist view of atherosclerosis and its prevention by drug therapy. It has also highlighted what high expected side effects or toxicity. This clearly shows that the common investigations and the modern understanding of drug actions are often not sufficient to predict the effects a drug will have in large patient populations.

Number of participants limited to 24.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Problem-solving

Domain C - Social Competencies
- Communication

Domain D - Personal Competencies
- Creative Thinking
- Critical Thinking

Literature

Further references will be provided in the course.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

Computer-Assisted Drug Design

Course Code: 535-0022-00L

Moodle code: BIO344

Module Code: 376-0021-00L

Author: John Enderle, Joseph Bronzino

ISBN: 9780123749796

Publisher: Academic Press

Abstract:
The lecture series provides an introduction to computer applications in medicinal chemistry. The topics cover molecular representations and similarity, ligand-based virtual screening, and structure-based virtual screening. All theoretical concepts and algorithms presented are illustrated by practical applications and case studies.

Objective:
The students will learn how molecules can be represented in computers and how molecular similarity is calculated. They will learn the concepts of ligand-based and structure-based virtual screening to identify potential drug candidates, and understand possibilities and limitations of computer-assisted drug design in pharmaceutical chemistry. As a result, they are prepared for professional assessment of computer-assisted drug design studies in medicinal chemistry projects.

Content:
The topics include molecular representations and similarity, ligand-based virtual screening (similarity search, QSAR, etc.), and structure-based virtual screening (docking, physics-based models).

Lecture notes: Script will be available.

Literature:
Recommended textbooks:

Materials and Mechanics in Medicine

Course Code: 376-0021-00L

Moodle code: BIO344

Module Code: 376-1305-00L

Author: John Endert, Joseph Bronzino

ISBN: 9780123749796

Publisher: Academic Press

Abstract:
Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.

Objective:
Understanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.

Content:
Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants.

Lecture notes
Introduction to Biomedical Engineering, 3rd Edition 2011.

Literature
Autor: John Endert, Joseph Bronzino, ISBN 9780123749796
Academic Press

Development of the Nervous System (University of Zurich)

Course Code: 376-1305-00L

Moodle code: BIO344

Module Code: 376-1305-00L

Author: University lecturers

Abstract:
The lecture will cover molecular and cellular processes underlying the development of the nervous system (neurogenesis, cell death, cell migration and differentiation, axon guidance and synapse formation). The importance of these processes in the context of developmental diseases is discussed.

Objective:
On successful completion of the module the student should be able to
- relate structure and function of the nervous system to its development - apply principles of molecular, cellular, and developmental biology to the development of the nervous system.
- identify key steps in development underlying neurological syndromes and diseases

Key skills:
On successful completion of the module the student should be able to
- interpret and critically evaluate original research reports
- apply knowledge and relate experimental approaches from molecular, cellular and developmental biology to the developing nervous system.

Content:
The lecture will cover molecular and cellular processes underlying the development of the nervous system. After an introduction to structure and function of the nervous system, we will discuss neurogenesis, cell death, cell migration and differentiation, axon guidance and synapse formation. The importance of these processes in the context of developmental diseases will be discussed.

Lecture notes
Must be downloaded from OLAT: https://www.olat.uzh.ch/olat/dmz/ as BIO344

Literature
The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on OLAT.

Prerequisites / notice
Auxiliary tools:
None. Bring something to write and your student ID

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 1685 of 2152
Neural Systems for Sensory, Motor and Higher Brain Functions

Abstract
The course covers the structure, plasticity and regeneration of the adult nervous system (NS) with focus on: sensory systems, cognitive functions, learning and memory, molecular and cellular mechanisms, animal models, and diseases of the NS.

Objective
The aim is to give a deepened insight into the structure, plasticity and regeneration of the nervous system based on molecular, cellular and biochemical approaches.

Content
The main focus is on the structure, plasticity and regeneration of the NS: biology of the adult nervous system; structural plasticity of the adult nervous system, regeneration and repair: networks and nerve fibers, regeneration, pathological loss of cells.

Literature
The lecture requires reading of book chapters, handouts and original scientific papers. Further information will be given in the individual lectures and are mentioned on Moodle / OLAT.

Biocompatible Materials

Abstract
Introduction into molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.

Objective
The course covers the following topics:
1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.

Content
Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Handouts are deposited online (moodle).

Microbiology (Part I)

Abstract
Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Objective
This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.

Content
Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. Updated handouts will be provided during the class.

Cellular Biochemistry (Part I)

Abstract
Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.

Objective
The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.

Content
Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes. Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression.

Food Chemistry II

Abstract
To familiarize with the structure, properties and reactivity of food constituents. To understand the relationship between the multiple chemical reactions and the quality of food.
Food Microbiology I

Objective
Recognize chemical structures of the main ingredients and be able to draw them themselves
Understand foods as complex systems and be able to make connections between chemical structures, chemical reactions and their influence on quality.
Recognize chemical reactions of lipid oxidation, Maillard reaction and enzymatic reactions and be able to formulate them themselves.

Content
Descriptive chemistry of food constituents (proteins, lipids, carbohydrates, plant phenolics, flavour compounds).
Reactions which affect the colour, flavour, texture, and the nutritional value of food raw materials and food products during processing, storage and preparation in a positive or in a negative way (e.g. lipid oxidation, Maillard reaction, enzymatic browning).
Links to food analysis, food processing, and nutrition.

Topics:
- Lipid oxidation, Maillard reaction, structural proteins/enzymes
- Food as complex systems
- Chemical reactions and reaction mechanisms
- Selected (possibly changing) food chemistry topics (e.g. sweeteners, polysaccharides, from olive to margarine, etc.)

Recommendations will be given in the first lecture.

Literature

Electronic copies of the presentation slides (PDF) and additional material will be made available for download.

Biomechanics of Sports Injuries and Rehabilitation

Objective
1. History of Food Microbiology
1.1. Short synopsis of foodborne microorganisms
1.2. Spoilage of Foods
1.3. Foodborne Disease
1.4. Food Preservation
1.5. VIP's of Food Microbiology
2. Overview of Microorganisms in Foods
2.1. Origin of foodborne Microorganisms
2.2. Bacteria
2.3. Yeasts
2.4. Molds
3. Microbial Spoilage of Foods
3.1. Intrinsic and Extrinsic Parameters
3.2. Meats, Seafoods, Eggs
3.3. Milk and Milk Products
3.4. Vegetable and Fruit Products
3.5. Miscellaneous (baked goods, nuts, spices, ready-to-eat products)
3.6. Drinks and Canned Foods
4. Foodborne Disease
4.1. Significance and transmission of Foodborne pathogens
4.2. Staphylococcus aureus
4.3. Gram-positive Sporeformers (Bacillus & Clostridium)
4.4. Listeria monocytogenes
4.5. Salmonella, Shigella, Escherichia coli
4.6. Vibrio, Yersinia, Campylobacter
4.7. Brucella, Mycobacterium
4.8. Parasites
4.9. Viruses and Bacteriophages
4.10. Mycotoxins
4.11. Bioactive Amines
4.12. Miscellaneous (Antibiotic-resistant Bacteria, Biofilms)

Literature
Recommendations will be given in the first lecture

Biochemistry of Food Processing

Objective
1. History of Food Microbiology
1.1. Short synopsis of foodborne microorganisms
1.2. Spoilage of Foods
1.3. Foodborne Disease
1.4. Food Preservation
1.5. VIP's of Food Microbiology
2. Overview of Microorganisms in Foods
2.1. Origin of foodborne Microorganisms
2.2. Bacteria
2.3. Yeasts
2.4. Molds
3. Microbial Spoilage of Foods
3.1. Intrinsic and Extrinsic Parameters
3.2. Meats, Seafoods, Eggs
3.3. Milk and Milk Products
3.4. Vegetable and Fruit Products
3.5. Miscellaneous (baked goods, nuts, spices, ready-to-eat products)
3.6. Drinks and Canned Foods
4. Foodborne Disease
4.1. Significance and transmission of Foodborne pathogens
4.2. Staphylococcus aureus
4.3. Gram-positive Sporeformers (Bacillus & Clostridium)
4.4. Listeria monocytogenes
4.5. Salmonella, Shigella, Escherichia coli
4.6. Vibrio, Yersinia, Campylobacter
4.7. Brucella, Mycobacterium
4.8. Parasites
4.9. Viruses and Bacteriophages
4.10. Mycotoxins
4.11. Bioactive Amines
4.12. Miscellaneous (Antibiotic-resistant Bacteria, Biofilms)

Literature
Recommendations will be given in the first lecture

Molecular Biology of Foodborne Pathogens

Objective
The course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.
Detailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.
Functional Microorganisms in Foods

This integration course will discuss new applications of functional microbes in food processing and products and in the human gut. Selected topics will be used to illustrate the rapid development but also limits of basic knowledge for applications of functional microorganisms to produce food with high quality and safety, and for health benefits for consumers.

Objective

To understand the principles, roles and mechanisms of microorganisms with metabolic activities of high potential for application in traditional and functional foods, and for benefiting human health. This course will integrate basic knowledge in food microbiology, physiology, biochemistry, and technology.

Content

This course will address selected and current topics targeting functional characterization and new applications of microorganisms in food and for promoting human health. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to different topics:

- Probiotics and Prebiotics: human gut microbiota, functional foods and microbial-based products for gastrointestinal health and functionality, diet-microbiota interactions, molecular mechanisms; challenges for the production and addition of probiotics to foods.
- Protective Cultures and Antimicrobial Metabolites for enhancing food quality and safety: antifungal cultures; bacteriocin-producing cultures (bacteriocins); long path from research to industry in the development of new protective cultures.
- Legal and protection issues related to functional foods
- Industrial biotechnology of flavor and taste development
- Safety of food cultures and probiotics

Lecture notes

Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students. Recommendations will be given in the first lecture.

Literature

Lectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), without break!

Prerequisites / notice

Copy of the power point slides from lectures will be provided.

A list of topics for group projects will be supplied, with key references for each topic.

This lecture requires strong basics in microbiology.

752-6101-00L Dietary Etiologies of Chronic Disease

To have the student gain understanding of the links between the diet and the etiology and progression of chronic diseases, including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Objective

To examine and understand the protective effect of foods and food ingredients in the maintenance of health and the prevention of chronic disease, as well as the progression of complications of the chronic diseases.

Content

The course evaluates food and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Lecture notes

There is no script. Powerpoint presentations will be made available on-line to students.

To be provided by the individual lecturers, at their discretion.

Prerequisites / notice

No compulsory prerequisites, but prior completion of the courses "Introduction to Nutritional Science" and "Advanced Topics in Nutritional Science" is strongly advised.

752-6105-00L Epidemiology and Prevention

The module Epidemiology and prevention describes the process of scientific discovery from the detection of a disease and its causes, to the development and evaluation of preventive and treatment interventions and to improved population health.

Objective

The overall goal of the course is to introduce students to epidemiological thinking and methods, which are critical pillars for medical and public health research. Students will also become aware on how epidemiological facts are used in prevention, practice and politics.

Content

The module Epidemiology and prevention follows an overall framework that describes the course of scientific discovery from the detection of a disease to the development of prevention and treatment interventions and their evaluation in clinical trials and real world settings. We will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples from nutrition, chronic and infectious diseases will be used in order to show the underlying concepts and methods.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>Analytical Competencies</td>
</tr>
<tr>
<td>Decision-making</td>
<td>Problem-solving</td>
</tr>
<tr>
<td>Project Management</td>
<td>Communication</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td></td>
</tr>
</tbody>
</table>

752-5001-00L Food Biotechnology

Basic information for understanding biotechnology applied to food processing will be presented. This will include a presentation of the physiology of important productive microorganisms used in food fermentations; microbial and fermentation kinetics, and design and operation of fermentation processes and bioreactors; and application of modern molecular tools for food biotechnology.

Objective

The main goal for this course is to provide students with basic information for understanding biotechnology applied to food processing. For the students, the aim will be:

- To understand the important role of microbial physiology and molecular tools for food biotechnology;
- To understand basic principles of fermentation biotechnology, with particular emphasis on metabolism and kinetics for food applications.
Content
Biotechnology has been defined as any technique that uses living organisms, or substances from those organisms, to make or modify a product, to improve plants or animals, or to develop microorganisms for specific uses. In this course, basic knowledge for understanding biotechnology as applied to food processing will be presented. This course builds on the application of principles learned from other basic courses in the Bachelor program, especially microbiology and microbial metabolism, molecular biology, biochemistry, physics and engineering. Students will learn about the physiology of important productive microorganisms (lactic acid bacteria, bifidobacteria, propionibacteria and fungi) used in food fermentations, closely related to applications in biotechnology. Microbial and fermentation kinetics, and design and operation of fermentations and bioreactors used for both research and industrial scale production of traditional foods and modern food ingredients will be presented. This part will be illustrated by examples of food fermentation processes, representative of specific challenges. Finally, the application of modern molecular tools to food biotechnology will be discussed.

Lecture notes
A copy of the power point slides from each lecture will be provided.

Literature
A list of references will be given at the beginning of the course for the different topics presented during the course.

GESS Science in Perspective
see GESS Science in Perspective: Language Courses
ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-CHAB.

Pharmaceutical Sciences Bachelor - Key for Type

W+	Eligible for credits and recommended	Z	Courses outside the curriculum
W	Eligible for credits	Dr	Suitable for doctorate
E-	Recommended, not eligible for credits	O	Compulsory

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS European Credit Transfer and Accumulation System
Special students and auditors need special permission from the lecturers.
Pharmacy Master

Core Courses I

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0041-00L</td>
<td>Pharmacoepidemiology and Drug Safety</td>
<td>O</td>
<td>3 credits</td>
<td>2G</td>
<td>A. Burden, S. Russmann</td>
</tr>
</tbody>
</table>

Abstract

The course is divided into two parts. The first part provides a detailed understanding of drugs and pharmacotherapy of infectious diseases and cancer. The second part gives an overview of the field of pharmacoepidemiology with a special focus on the role of genetic polymorphisms in disease susceptibility, drug response and adverse effects.

Objective

The course advances basic knowledge in pharmacology and toxicology. Special emphasis is placed on the interrelationship between pharmacological, pathophysiological and clinical aspects of drug therapy in the fields of infectious diseases and cancer. The course also provides an overview of the field of pharmacoepidemiology, with a special focus on the role of genetic polymorphisms in disease susceptibility, drug response and adverse effects.

Content

Topics include the pharmacology and pharmacotherapy of infectious diseases and cancer. In the field of pharmacoepidemiology, the course is focused on genetics, genome-wide association studies, genetic disease predisposition, examples of genetic variability of drug metabolism and drug responses, identification of new drug targets, relevance of pharmacoepidemiology for clinical drug development, and toxicogenomics. Students are introduced to the principles, methods, and applications of pharmacoepidemiology and drug safety.

Prerequisites / notice

Only for students of MSc Pharmacy and MSc Pharmaceutical Sciences.

Literature

Recommended reading:
- Goodman and Gilman’s The Pharmacological Basis of Therapeutics
- Laurence Brunton, Bjorn Knollman, Randa Hilal-Dandan.
 ISBN: 978-1259584739

or

Klaus Aktories, Ulrich Förstermann, Franz Hofmann, Klaus Starke.
Allgemeine und spezielle Pharmakologie und Toxikologie.
Urban & Fischer (Elsevier, München)
Therapeutic Proteins

Objectives:

- Students know and understand:
 - basic mechanisms and regulation of the immune response
 - the pathogenic mechanisms of the most important immune-mediated disorders
 - the most frequently used expression systems for the production of therapeutic proteins
 - the use of protein engineering tools for modifying different features of therapeutic proteins
 - the mechanism of action of selected therapeutic proteins and their application
 - basic concepts in the GMP production of therapeutic proteins

Content:

The course consists of two parts:

In a first part, students will complete their training in pharmaceutical immunology (Chapter 13 - 16 Immunobiology VIII textbook). This part particularly focuses on the pathogenic mechanisms of immune-mediated diseases. Deepened knowledge of immunology will be relevant for understanding the mechanism of action of many therapeutic proteins, as well as for understanding one major concern related to the use of protein-based drugs, namely, immunogenicity.

The second part focuses on topics related to the development and application of therapeutic proteins, such as protein expression, protein engineering, reducing immunogenicity, and GMP production of therapeutic proteins. Furthermore, selected examples of approved therapeutic proteins will be discussed.

Literature

- Jürgen Hallbach, Janeway's Immunobiology, by Kenneth Murphy (9th Edition), Chapters 12-16
- Lecture Handouts
- Paper References provided in the Scripts
- EMEA Dossier for Humira

Course Notes:

Handouts to the lectures will be available for downloading under http://www.pharma.ethz.ch/scripts/index

Clinical Chemistry II

Objective:

Detailed knowledge on the implementation and interpretation of clinical laboratory diagnostic tests. Competence to interpret selected tests.

Content:

Internal and external quality control, point-of-care analytics, analytics of kidney stones, use of tumor marker determinations, diagnosis of HIV and hepatitis, pharmacogenetics, thyroid function, bone metabolism and laboratory diagnosis of hypertension.

Literature

- Literature
- Lecture notes
- Literature
- Literature
- Literature

Prerequisites / notice

Requirement: basic knowledge in clinical chemistry and laboratory diagnostics

Core Courses (Clinical Subjects)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-5512-00L</td>
<td>Triage, Diagnostics, Therapy Support</td>
<td>O</td>
<td>9</td>
<td>12G</td>
<td>E. Kut Bacs, S. Erni, P. Obrist, D. Petralli-Nietlispach, K. Prader-Schneider, I. S. Vogel Kähmann, P. Wiedemeier</td>
</tr>
</tbody>
</table>

Abstract:

This course provides basic clinical and pharmaceutical knowledge and skills for triage, diagnostics and therapy support of the most common diseases.

Objective:

- know and understand the pathomechanisms and clinical lead and warning symptoms (red flags) of the most common diseases in the fields listed below.
- can use this knowledge to triage patients: i.e. analyse simple symptoms and diseases, make a tentative diagnosis and recommend suitable medication or further examinations or measures.
- know the therapeutic guidelines, classes of active ingredients and selected, practice-relevant drugs (including indications and the most frequent and important dosages, adverse drug reactions, interactions and contraindications).

Content:

"Pharmaceutical Care" und "Health Care";

- Allergologie
- Angiologie und Hämatologie
- Dermatologie
- Endokrinologie und Diabetologie
- Gastroenterologie
- Infektiologie
- Kardiologie
- Neurologie
- Ophthalmologie
- Otorhinolaryngologie
- Pneumologie
- Psychiatrie
- Rheumatologie
- Urologie

Grundlagen der Chiropraktischen Medizin und Physiotherapie.

Literature

As stated in the lecture notes.

Literature

- Recommended literature
- Rothman: Introduction to Epidemiology
- Strom, Kimmel, Hennessy: Textbook of Pharmacoepidemiology
- Gigerenzer: Risk Savvy - How to Make Good Decisions
Prerequisites / notice

Please note that the assessment of this course must be passed (not compensable).

The performance assessment of the course takes place in two written online partial examinations. The overall grade results from the average of the grades of both partial examinations. If the overall grade is unsatisfactory, both partial examinations must be repeated.

The courses Pharmacology and Toxicology I and II and Pathobiology provide indispensable basics which students must master at the beginning of the semester in order to successfully complete the course.

Pharmacology and Toxicology III must be visited at the same time.

<table>
<thead>
<tr>
<th>Electives</th>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0423-00L</td>
<td></td>
<td>Drug Delivery and Drug Targeting</td>
<td>W</td>
<td>2</td>
<td>1.5V</td>
<td>J.-C. Leroux, A. Steinauer</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>The students gain an overview on current principles, methodologies and systems for controlled delivery and targeting of drugs. This enables the students to understand and evaluate the field in terms of scientific criteria.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td>The students dispose of an overview on current principles and systems for the controlled delivery and targeting of drugs. The focus of the course lies on developing a capacity to understand the involved technologies and methods, as well as an appreciation of the chances and constraints of their therapeutic usage, with prime attention on anticancer drugs, therapeutic peptides, proteins, nucleic acids and vaccines.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td>The course covers the following topics: drug targeting and delivery principles, macromolecular drug carriers, liposomes, micelles, micro/nanoparticles, gels and implants, administration of vaccines, targeting at the gastrointestinal level, synthetic carriers for nucleic acid drugs, ophthalmic devices, novel trends in transdermal and nasal drug delivery and 3D printing of drug delivery systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td></td>
<td>Selected lecture notes, documents and supporting material will be directly provided or may be downloaded from the course website.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Further references will be provided in the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Concepts and Theories</td>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td>Techniques and Technologies</td>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Analytical Competencies</td>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td>Decision-making</td>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Media and Digital Technologies</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Problem-solving</td>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Project Management</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Communication</td>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Cooperation and Teamwork</td>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Customer Orientation</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Leadership and Responsibility</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Sensitivity to Diversity</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Negotiation</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Adaptability and Flexibility</td>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Creative Thinking</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Critical Thinking</td>
<td></td>
<td></td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Integrity and Work Ethics</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td>Self-direction and Self-management</td>
<td></td>
<td></td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>535-0250-00L</td>
<td></td>
<td>Biotransformation of Drugs and Xenobiotics</td>
<td>W</td>
<td>1</td>
<td>1V</td>
<td>S.-D. Krämer</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>Knowledge of the major reactions of biotransformation in drug therapy, prediction of possible metabolites of drugs and xenobiotics, recognition of structure elements and reactions which can lead to toxic metabolites. Knowledge of inter- and intra-individual factors influencing metabolism.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td>Goals: knowledge of the major reactions of biotransformation in drug therapy, prediction of possible metabolites of drugs and xenobiotics, recognition of structure elements and reactions which can lead to toxic metabolites. Knowledge of inter- and intra-individual factors influencing metabolism.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td>Major reactions of biotransformation. Major enzymes and reaction partners involved in the biotransformation of drugs and xenobiotics. Toxic reactions of metabolites. Factors which affect the biotransformation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td></td>
<td>Biotransformation of drugs and xenobiotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535-0546-00L</td>
<td></td>
<td>Patents</td>
<td>W</td>
<td>1</td>
<td>1V</td>
<td>A. Koept, P. Pliska</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>Knowledge in the field of intellectual property, especially of patents and trademarks, with particular emphasis on pharmaceutics, introduction into industrial property; prosecution of patent applications; patent information; exploitation and enforcement of patents; peculiarities in pharmaceutics and medicine; social, political and ethical aspects; Trademarks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td>Basic knowledge in the field of intellectual property, especially of patents and trademarks, with particular emphasis on the chemical, pharmaceutical and biotech field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autumn Semester 2021
1. Introduction into industrial property (patents, trademarks, industrial designs);
2. Prosecution of patent applications (patentability);
3. Patent information (patent publications, databases, searches);
4. Exploitation and enforcement of patents (possibilities of exploitation, licenses, parallel imports, scope of protection, patent infringement);
5. Peculiarities in pharmaceutics and medicine (supplementary protection certificates, experimental use exemption, therapy and diagnosis, medical indication);
6. Social, political and ethical aspects (patents and prices for medicinal products, traditional knowledge and ethnomedicine, bioprospecting and biopiracy, human DNA inventions);
7. Trademarks, types of trademarks, grounds for refusal, peculiarities of pharma-trademarks.

Prerequisites / notice

None.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Communication	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed

Literature

Lecture notes

A script is provided in electronic form during the lecture.

535-0015-00L History of Pharmacy

Abstract	In the lecture, basic knowledge of the history of pharmacy is imparted, taking into account the various historical epochs.
Objective	After attending the lecture, the students are able to name significant events in the development of the pharmacy profession, pharmacy and medicines and to place them in a temporal context. They can list sources for working on questions from the history of pharmacy and evaluate their advantages and disadvantages. This enables them to confidently describe the importance of pharmacy as an independent, supporting pillar of the health system, the history of which has many interfaces with medicine, science, social and cultural history.
Content	The lecture conveys knowledge about the development of the pharmacist profession from ancient times to the present. Some pharmacists who made significant contributions to pharmacy are presented in more detail and their significance for today's pharmacy is discussed. The social position of pharmacists in society and the legal conditions in different epochs are also discussed. It explains what influence the pharmacists had on the development of the pharmaceuticals, but again the pharmaceuticals on the development of the pharmacists. For this purpose, it is shown how much the meaning, the nature, the type and the composition of pharmaceuticals and the knowledge about them changed over time.
Literature	Wird in der ersten Veranstaltung mitgeteilt.
Prerequisites / notice	An interest in the history of pharmacy, the pharmacy profession, and medicines is an asset.

535-0344-00L From Ethnopharmacy to Molecular Pharmacognosy

Abstract	Basic understanding and awareness of ethnopharmaceutical and ethnopharmacological issues and research. Knowledge of methods used in drug discovery from natural sources. Discussion of the issues around law and international treaties. Importance of ethnopharmaceutical knowledge for world health.
Objective	Basic understanding and awareness of ethnopharmaceutical and ethnopharmacological issues and research. Knowledge of methods used in drug discovery from natural sources. Discussion of the issues around law and international treaties. Importance of ethnopharmaceutical knowledge for world health.
Content	Introduction into ethnopharmacy and related disciplines; definitions of terms, working methods, research projects, bioprospecting. Traditional medicinal plants of different cultures and their role in modern Western medicine (rational application of traditional uses). Historical data as sources for drug research. Today's "fashion plants:" Empirical, traditional knowledge versus Evidence Based Medicine. The role of biodiversity (CBD, Rio 1992; Nagoya, 2010) and problems associated with drug discovery from natural products. Screening strategies for drug discovery (random screening versus screening based on cultural, ecological, ethnopharmacological, chemotaxonomic criteria). Traditional knowledge in relation to the fight against malaria and its implementation in research, product development and development cooperation. Introduction to and selected examples of herbal drugs and poisons, mode of action, and their ethnopharmacological importance. Critical analysis of bioprospecting as a drug discovery strategy.
Lecture notes	Handouts will be provided.
Prerequisites / notice	Prerequisites: Basic lectures in biology or biochemistry and pharmaceutical biology have been attended; not suitable for first semester students.
The aim of this lecture is a critical examination of the students with the topic of "Vitamins in Health and Disease". The students will get an overview of vitamins, of their medical applications and the role of the pharmacist with "over-the-counter" products.

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: not assessed

Domain B - Method-specific Competencies

- Analytical Competencies: not assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies

- Communication: not assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: assessed
- Self-presentation and Social Influence: assessed
- Sensitivity to Diversity: assessed
- Negotiation: assessed

Domain D - Personal Competencies

- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

535-0300-00L Molecular Mechanisms of Drug Actions and Targets

W 2 credits 1V J. Scheuermann

Number of participants limited to 24.

Abstract

On average one drug per year is withdrawn from the market. Using selected examples of such drug failures, the course aims at analyzing and discussing the present explanations of drug actions as well as the design and predictive power of animal models and clinical trials. In addition, the ethical, societal, and economical expectations in new drugs shall be reflected and discussed.

Objective

To critically appraise the ethical, societal, economical and political expectations in the development of new drugs.

Content

In December 2006, Pfizer stopped a large phase III study on the use of Torcetrapib for the prevention of atherosclerosis and cardiovascular disease. 800 million $ in development costs and 21 billion $ in stocks were annihilated overnight. The failure of Torcetrapib has pinpointed the limitations of an extremely reductionist view of atherosclerosis and it's prevention by drug therapy. It has also highlighted what high expectations we have in a safe and wide applicability of drugs and of their economical success.

Torcetrapib is not a single case. In the last 10 years, on average one drug per year was withdrawn from the market due to lack of efficacy, unexpected side effects or toxicity. This clearly shows that the common investigations and the modern understanding of drug actions are often not sufficient to predict the effects a drug will have in large patient populations.

These are the topics of the present course. Using three particularly informative examples of drug failures, the problems encountered and the concepts and informative value of preclinical and clinical studies will be analyzed and discussed. Furthermore, the ethical, societal, economical and political expectations in new drugs shall be reflected.

Lecture notes

The slides used for the lectures will be provided online.

Prerequisites / notice

Requirements: basic knowledge in Medicinal Chemistry and Pharmacology, Ability to read and understand scientific publications written in English.

535-0310-00L Glycobiology in Drug Development

W 1 credit 1V V. I. Otto

Abstract

Protein-based drugs constitute around 25% of new approvals and most of them are glycoproteins. Using selected examples of prominent glycoprotein drugs, the course aims at providing insight into glycosylation-activity relationships and into biotechnological production and analytics.

Objective

Students gain basic knowledge in “pharmaceutical glycobiology”. This implies knowing and understanding:

- major mechanisms underlying the roles of glycosylation for the biological/therapeutic actions of glycoproteins (glycosylation-function relationships) using prominent examples of glycoprotein drugs.
- the major types of protein-linked glycans and the biosynthetic pathways for their formation
- how glycoprotein drugs are produced (including the most important expression systems used), glycoengineered and analysed (quality control)

Students are able to apply this knowledge in solving simple problems in glycoprotein drug development (on paper).

Students gain the ability to reflect on roles of glycosylation in various biological contexts.

Content

lecture plan:

1. Glycans - information carriers in biology and pharmacotherapy
2. Glucocerebrosidase and the biosynthesis of N-glycans
3. Improving the therapeutic profile of monoclonal antibodies by glycoengineering
4. Mucin-type O-glycans and sialylation as gCQA of glycoprotein hormone drugs
5. production and gCQA analysis of Glucocerebrosidase, monoclonal antibodies, glycoprotein hormone drugs - Glycoanalytics
6. EPO "the same but different"

Lecture notes

The slides used for the lectures will be provided online.

Literature

- recent publications as cited/proposed on the lecture slides

Prerequisites / notice

Requirements: Basic knowledge in immunology, molecular biology, protein and carbohydrate chemistry, analytical techniques. Basic knowledge in pharmacology.

535-0021-00L Vitamins in Health and Disease

W 1 credit 1V C. Müller

Abstract

Vitamins are essential organic compounds that cannot be synthesized by an organism and hence, thy have to be acquired from the diet. This lecture will give an overview about the application of vitamins in health and disease.

Objective

The aim of this lecture is a critical examination of the students with the topic of "Vitamins in Health and Disease". The students will get an overview of vitamins, of their medical applications and the role of the pharmacist with "over-the-counter" products.
Deficiencies of particular vitamins result in specific diseases such as, for example, scurvy (vitamin C deficiency). Such disease patterns are usually easily recognized and facile to be treated. The clinical utility of supplementation concerns people with severe deficiencies and a risk of complications. Latent vitamin deficiencies might result in variable disorders and risks. As an example neurological disorders in elderly as a consequence of chronic lack of vitamin B12 should be mentioned. Subclinical deficiencies are often difficult to assess. However, these are exactly the cases where advice of a pharmacist is requested.

A large intake of vitamins by over-supplementation or food fortification might be dangerous (hypervitaminosis). This is in particular the case for fat-soluble vitamins or in the case of constant intake of high amounts of water-soluble vitamins over a long time period. The lecture ‘Vitamins in Health and Disease’ will give an overview over the history and applications of vitamins and their functions to preserve good health. The utility of vitamin supplementation during conditions of deficiencies, potential consequences of a latent deficiency as well as risks of over-supplementation will be discussed.

Hand-outs will be distributed during the lecture (partly in English, partly in German).

The students will learn how molecules can be represented in computers and how molecular similarity is calculated. They will learn the limitations of computer-assisted drug design in pharmaceutical chemistry. As a result, they are prepared for professional assessment of computer-assisted drug design studies in medicinal chemistry projects. Based on epidemiology, economic importance and evidence-based medicine, basic principles of rational phytotherapy will be discussed: a) Identification of drug candidates, b) registration requirements, c) criteria to assess efficacy, d) biomarkers and pharmacokinetics, e) safety and f) principles of extract generation. Important prototypes will be discussed.

Important prototypes will be presented and critically discussed: see program below.

They should get to know the development process of herbal drugs:
- How are interesting development candidates being identified? What are the strategies?
- What are the regulatory requirements (traditional use, well-established use, new herbal entities)?
- What are the selection criteria?
- Assessment of efficacy (animal/human studies, biomarker)
- Pharmacokinetics
- Safety (Toxicity, unwanted adverse effects, drug-drug interactions)
- Pharmaceutical quality
- Securing of herbal identity (collections, agriculture)
- Quality management
- selection of appropriate extraction procedures?

Important prototypes will be presented and critically discussed: see program below.

Effective Zeiten 15.45 - 16.30; 16.45-17.30)

1) 22.09.2021:
Einführung
Qualität Arzneipflanzen-Fertigprodukte, Monographien (Kommission E, ESCOP, HMPC), Unterschiede hinsichtlich des Registrierungsstatus und -anforderungen: traditionale, well established use und neue Apotheken; Extraktes, Qualität Arzneidrogen

2) 29.9.2021:
Phasen der klinischen Entwicklung, Grundbegriffe der evidenzbasierten Medizin; Hypericum perforatum

3) 06.10.2020:
Harpagophytum spp.; Echinacea ssp

4) 13.10.2020:
Lavandula oelum; Iberogast

5) 20.10.2020:
Cimicifuga racemosa; Serenoa repens

6) 27.10.2020:
Silybum marianum; Cannabis sativa

7) 03.11.2020:
Prüfung (MC)

Lecture notes

The lecture series provides an introduction to computer applications in medicinal chemistry. The topics cover molecular representations and similarity, ligand-based virtual screening, and structure-based virtual screening. All theoretical concepts and algorithms presented are illustrated by practical applications and case studies.

The students will learn how molecules can be represented in computers and how molecular similarity is calculated. They will learn the concepts of ligand-based and structure-based virtual screening to identify potential drug candidates, and understand possibilities and limitations of computer-assisted drug design in pharmaceutical chemistry. As a result, they are prepared for professional assessment of computer-assisted drug design studies in medicinal chemistry projects.

The topics include molecular representations and similarity, ligand-based virtual screening (similarity search, QSAR, etc.), and structure-based virtual screening (docking, physics-based models).

Lecture notes

Script will be available.

Recommended textbooks:
This course provides basic knowledge relevant to pharmacy and its application in nephrology, phytotherapy, complementary medicine, wound care and pharmaceutical care.

Objective
Students know and understand the therapeutic concepts of the mentioned topics and their application in practice.

Content
(for detailed learning objectives see the guidelines)
- complementary medicine
- phytotherapy
- wound care
- pharmaceutical care 2
- nephrology

Lecture notes
Provided via myStudies.

Literature
As specified in the lecture notes

This course provides basic clinical and pharmaceutical knowledge and its application for triage, diagnostics and therapy support for the most common diseases in geriatrics, gynaecology, oncology, paediatrics and neurology (epilepsy). In addition, the role of nutrition in special life situations and in selected health disorders is taught.

Objective
Students
- know and understand the pathomechanisms and the clinical lead and warning symptoms (red flags) of the most common diseases in the fields listed.
- can triage patients by applying this knowledge: i.e. analyse simple symptoms and disease patterns, make a tentative diagnosis and recommend suitable medication or further examinations or measures.
- know the therapeutic guidelines, drug classes and selected, practice-relevant drugs (including indications and the most frequent and important dosages, adverse drug reactions, interactions and contraindications).

(for detailed learning objectives, see the guideline)
Practical Pharmacy II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-5502-00L</td>
<td>Pharmaceutical Manufacturing in Small Quantities</td>
<td>O</td>
<td>3 credits</td>
<td>5G</td>
<td>P. G. Tiefenböck, A. Romagna</td>
</tr>
</tbody>
</table>

Abstract
Pharmaceutical Manufacturing relevant for the community pharmacy considering the "GMP-Regeln in kleinen Mengen" of the Pharmacopoeia: The preparation of extemporaneous products covering the most common forms under consideration of their Risks and Quality Assurance.

Objective
The students are able to produce pharmaceutical relevant drug Systems without further assistance, lege artis, applying the right techniques and material. The production and packaging has to follow GMP rules and tailored for the patients need. The quality control and correct documentation have to be followed. The students know the most relevant specifications, concentration and dosing ranges of common APIs and excipients. The students are familiar with the relevant literature (Pharmaceutical and legal basis) regarding the Pharmaceutical manufacturing relevant for the community pharmacies

Content
Vermittlung der wichtigsten Kenntnisse, Arbeitsschritte und -techniken im Bereich der Arzneimittelherstellung in kleinen Mengen (Formula) mit Fokus auf die Herstellung, Qualitätssicherung und Risikobeurteilung einschliesslich der patientenspezifischen Abgabepraxis.

In den Praktika: Anhand praxis-relevanter Beispiele wird die Aufgabenplanung, die Fertigung einschliesslich die korrekte Verwendung der Gerätschaften, die Inprozesskontrolle, die Verpackung und die Qualitätssicherung diverser Rezepte und Arzneiformen geübt. Unter Einbezug risikoadaptierter Massnahmen erfolgt die Qualitätssicherung, -kontrolle und Einhaltung von Hygieneregeln genüssen den geltenden Arzneibüchern. Die Studierenden vertiefen damit Ihre GMP-relevanten Kenntnisse und Fertigkeiten

Prerequisites / notice
Safety conceptt: https://chab.ethz.ch/studium/bachelor1.html

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-5503-00L</td>
<td>Institutional Pharmacy</td>
<td>O</td>
<td>2 credits</td>
<td>3G</td>
<td>P. Wiedemeier, J. Beney, M. Lutters, I. S. Vogel Kahmann</td>
</tr>
</tbody>
</table>

Abstract
Organisation of institutional environments (emergency hospitals), with special focus on the medication process and institutional pharmaceutical care (continuum of care).

Objective
Students understand the concept of continuum of care and its practical implementation. They know the medication process within an institutional environment. They are able to find the necessary information and deal with problems in connection with pharmaceuticals, to evaluate them and to communicate and document their findings adequately. They know how a hospital is organised (procedures, possible problems), responsibilities of the different members of the staff and, most importantly, what the function of a hospital pharmacy is.

Content
Principals of the organisation of institutional environments (emergency hospitals), with special focus on medication processes and institutional pharmaceutical care (circulation of medication, continuum of care). Hygiene regulations, medical products, applications, drug formularies, patient files, SOAP notes, kardex study. Participation at interdisciplinary visits, internal trainings and doctors’ reports as well as visitation of the emergency room. Drug interaction, generic substitution, quality management and pharmacovigilance.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-5524-00L</td>
<td>Clinical Trainings</td>
<td>O</td>
<td>2 credits</td>
<td>3G</td>
<td>A. Gutzeit, D. Stämpfli, P. Wiedemeier</td>
</tr>
</tbody>
</table>

Abstract
Basic training on and around patients with practical confrontation. The path of acute patients from patient presentation, through triage and diagnostics to therapy.

Objective

Content

Compensatory Courses
The elective courses can be used as compensatory courses.

GESS Science in Perspective
see Science in Perspective: Language Courses ETH/UZH
see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-CHAB

Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0680-00L</td>
<td>Master’s Thesis</td>
<td>O</td>
<td>30 credits</td>
<td>40D</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>
Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>535-0135-AAL</td>
<td>Clinical Chemistry I</td>
<td>E-</td>
<td>1 credit</td>
<td>2R</td>
<td>M. Hersberger</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>Introduction into fundamentals of laboratory diagnostics and overview of the laboratory parameters concerning inflammation, lipid metabolism, myocardial infarction, diabetes, kidney function, urinary diagnostics, liver function, blood coagulation, blood count, therapeutic drug monitoring and drugs of abuse screening.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>Overview of the possibilities and limitations in clinical laboratory diagnostics. Indications and methods of everyday parameters are known.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td>Introduction into medical laboratory diagnostics: immunochemical methods, diagnostics of inflammation, acute myocardial infarction, lipid metabolism, diabetes, kidney function and urinary diagnostics, blood coagulation, blood count, therapeutic drug monitoring, drugs of abuse screening, common diagnosticks of liver diseases, point-of-care diagnostics.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535-0440-AAL</td>
<td>Quality Management in Pharmaceutical Business</td>
<td>E-</td>
<td>1 credit</td>
<td>2R</td>
<td>A. Sterchi</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>The students know the relevance and the role of quality assurance measures to assure quality, efficacy and safety of drugs. The students know the most important Swiss regulations, including the associated European regulations, which are relevant from a quality assurance point of view and they are able to interpret the content of this regulations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406-0603-AAL</td>
<td>Stochastics (Probability and Statistics)</td>
<td>E-</td>
<td>4 credits</td>
<td>9R</td>
<td>M. Kalisch</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>The objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td>From "Statistics for research" (online)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 1: Basics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 2: The R Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 3: Probability and distributions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 4: Descriptive statistics and tables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 5: One- and two-sample tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 6: Regression and correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>From "Introductory Statistics with R (online)"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 1: Basics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 2: The R Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 3: Probability and distributions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 4: Descriptive statistics and tables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 5: One- and two-sample tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 6: Regression and correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- "Introductory Statistics with R" by Peter Dalgaard; ISBN 978-0-387-79053-4; DOI: 10.1007/978-0-387-79054-1 From within the ETH, this book is freely available online under: http://www.springerlink.com/content/m17578/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>551-0110-AAL</td>
<td>Fundamentals of Biology II: Microbiology</td>
<td>E-</td>
<td>2 credits</td>
<td>2R</td>
<td>J. Vorholt-Zambelli</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>Structure, function, genetics of prokaryotic microorganisms and fungi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>551-0103-AAL</td>
<td>Fundamentals of Biology II: Cell Biology</td>
<td>E-</td>
<td>5 credits</td>
<td>11R</td>
<td>U. Kutay, Y. Barral, G. Schertler, U. Suter, S. Werner</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
The goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.

Objective
The goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.

Content
The focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.

Literature

Topic/Lecturer/Chapter/Pages:
- Analyzing cells & molecules / Gebhard Schertler/8/ 439-463;
- Membrane structure / Gebhard Schertler/ 10/ 565-595;
- Compartment and Sorting/ Ulrike Kutay/12/14-5/644/755-758/782-783/315-320/325 -333/Table 6-2/Figure6-20, 6-21, 6-32, 6-34;
- Intracellular Membrane Traffic/ Ulrike Kutay/13/694-755;
- The Cytoskeleton/ Ulrike Kutay/ 16/889 - 948 (only the essentials);
- Membrane Transport of Small Molecules and the Electrical Properties of Membranes /Sabine Werner/11/597 - 633;
- Mechanisms of Cell Communication / Sabine Werner/15/811-876;
- Cancer/ Sabine Werner/20/1091-1141;
- Cell Junctions and Extracellular Matrix/Ueli Suter / 1035-1081;
- Stem Cells and Tissue Renewal/Ueli Suter /1217-1262;
- Development of Multicellular organisms/ Ernst Hafen/21/ 1145-1179/1184-1198/1198-1213;
- Cell Migration/Joao Matos/951-960;
- Cell Death/Joao Matos/1021-1032;

Prerequisites / notice
none

Pharmacy Master - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Physics (General Courses)

Generally Accessible Seminars and Colloquia

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0101-00L</td>
<td>The Zurich Physics Colloquium</td>
<td>E-</td>
<td>0 credits</td>
<td>1K</td>
<td>S. Huber, A. Refregier, University lecturers</td>
</tr>
</tbody>
</table>

Abstract: Research colloquium

Physics (General Courses) - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
<td></td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Minor Courses

GESS Science in Perspective

First Year Compulsory Courses

Bachelor Studies (Programme Regulations 2021)

First Year Compulsory Courses

First Year Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-1261-07L</td>
<td>Analysis I: One Variable</td>
<td>O</td>
<td>10 credits</td>
<td>6V+3U</td>
<td>M. Einsiedler</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the differential and integral calculus in one real variable: fundamentals of mathematical thinking, numbers, sequences, basic point set topology, continuity, differentiable functions, ordinary differential equations, Riemann integration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The ability to work with the basics of calculus in a mathematically rigorous way.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

402-1701-00L
Physics I
O
7 credits
4V+2U
K. Ensslin

Abstract
This course gives a first introduction to Physics with an emphasis on classical mechanics.

Objective
Acquire knowledge of the basic principles regarding the physics of classical mechanics. Skills in solving physics problems.

Content
The course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.

Lecture notes
English lecture notes will be provided during the semester. The lecture notes and the lecture slides will be made available for download on the course web page. Exercises are solved and submitted online.

Literature
Bjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000

First Year Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-1151-00L</td>
<td>Linear Algebra I</td>
<td>O</td>
<td>7 credits</td>
<td>4V+2U</td>
<td>R. Pink</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mastering basic concepts of Linear Algebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Introduction to mathematical methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Basics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vectorspaces and linear maps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Systems of linear equations and matrices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Determinants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Endomorphisms and eigenvalues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1701 of 2152
Bachelor Studies (Programme 2016)

Second and Third Year Compulsory Courses

Examination Block I

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-2303-00L</td>
<td>Complex Analysis</td>
<td>O</td>
<td>6</td>
<td>3V+2U</td>
<td>T. H. Willwacher</td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-2333-00L</td>
<td>Methods of Mathematical Physics I</td>
<td>O</td>
<td>6</td>
<td>3V+2U</td>
<td>G. Felder</td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-2883-00L</td>
<td>Physics III</td>
<td>O</td>
<td>7</td>
<td>4V+2U</td>
<td>U. Keller</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introductory course on quantum and atomic physics including optics and statistical physics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>A basic introduction to quantum and atomic physics, including basics of optics and equilibrium statistical physics. The course will focus on the relation of these topics to experimental methods and observations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examination Block II

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-2203-01L</td>
<td>Classical Mechanics</td>
<td>O</td>
<td>7</td>
<td>4V+2U</td>
<td>R. Renner</td>
</tr>
<tr>
<td>Abstract</td>
<td>A conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, spinning top, relativistic space-time structure, particles in an electromagnetic field, Hamiltonian mechanics, canonical transformations, integrable systems, Hamilton-Jacobi equation. Fundamental understanding of the description of Mechanics in the Lagrangian and Hamiltonian formulation. Detailed understanding of important applications, in particular, the Kepler problem, the physics of rigid bodies (spinning top) and of oscillatory systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1702 of 2152
Examination Block III

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0205-00L</td>
<td>Quantum Mechanics I</td>
<td>O</td>
<td>10</td>
<td>3V+2U</td>
<td>M. Gaberdiel</td>
</tr>
</tbody>
</table>

Abstract

Objective
Introduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems.

Content
The beginnings of quantum theory with Planck, Einstein and Bohr; Wave mechanics; Simple examples; The formalism of quantum mechanics (states and observables, Hilbert spaces and operators, the measurement process); Heisenberg uncertainty relation; Harmonic oscillator; Symmetries (in particular rotations); Hydrogen atom; Angular momentum addition; Quantum mechanics and classical physics (EPR paradoxon and Bell’s inequality); Perturbation theory.

Lecture notes
Auf Moodle, in deutscher Sprache

Literature
G. Baym, Lectures on Quantum Mechanics
E. Merzbacher, Quantum Mechanics
L.I. Schiff, Quantum Mechanics and Path Integrals
R. Feynman and A.R. Hibbs, Quantum Mechanics
J.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories: assessed
Techniques and Technologies: not assessed

Domain B - Method-specific Competencies
Analytical Competencies: assessed
Decision-making: not assessed
Media and Digital Technologies: not assessed
Problem-solving: assessed
Project Management: not assessed

Domain C - Social Competencies
Communication: not assessed
Cooperation and Teamwork: not assessed
Customer Orientation: not assessed
Leadership and Responsibility: not assessed
Self-presentation and Social Influence: not assessed
Sensitivity to Diversity: not assessed
Negotiation: not assessed

Domain D - Personal Competencies
Adaptability and Flexibility: not assessed
Creative Thinking: assessed
Critical Thinking: not assessed
Innovation and Entrepreneurship: assessed
Integrity and Work Ethics: not assessed
Self-awareness and Self-reflection: not assessed
Self-direction and Self-management: not assessed

Core Courses
Core Courses in Experimental Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0263-00L</td>
<td>Astrophysics I</td>
<td>W</td>
<td>10</td>
<td>3V+2U</td>
<td>S. Lilly</td>
</tr>
</tbody>
</table>

Abstract
This introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.

Objective
The course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0255-00L</td>
<td>Introduction to Solid State Physics</td>
<td>W</td>
<td>10</td>
<td>3V+2U</td>
<td>C. Degen</td>
</tr>
</tbody>
</table>

Abstract
The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of insulators, metals, semiconductors, transport properties, magnetism, superconductivity.

Objective
Introduction to Solid State Physics.

Content
The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, thermal properties of insulators; metals (classical and quantum mechanical description of electronic states, thermal and transport properties of metals); semiconductors (bandstructure and n/p-type doping); magnetism, superconductivity.

Lecture notes
The script will be available on moodle.

Literature
Ibach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
Ashcroft & Mermin, Festkörperphysik
W. Känzig, Kondensierte Materie

Prerequisites / notice
Voraussetzungen: Physik I, II, III wünschenswert

Practical Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0000-01L</td>
<td>Physics Lab 1</td>
<td>O</td>
<td>5</td>
<td>1V+4P</td>
<td>A. Eichler, M. Kroner</td>
</tr>
</tbody>
</table>

Enrollment is only possible under https://www.lehrbetrieb.ethz.ch/laborpraktika. No registration required via myStudies. For further information visit: https://ap.phys.ethz.ch

Only students from 3rd Semester BSc Physics on are
Admitted to Physics Lab 2.

Abstract

Introductory lab course in experimental physics with accompanying lecture

Objective

The overarching topic of the student lab and of the corresponding lecture is an understanding of the fundamental challenges in experimental physics. The following aspects are particularly important:

- Why does one conduct experiments, and how should an experiment be planned?
- How does one set up an experiment? What are the important characteristics of measurement instruments and methods?
- Introduction to basic statistical data analysis
- Critical interpretation of measurement results
- Scientific communication, reporting, graphic representation of results
- Ethical aspects of experimental research and reporting

Content

Experiments with examples from mechanics, optics, thermodynamics, electricity and radiation. Accompanying lecture to offer a better understanding of basic statistics and of reporting techniques.

Lecture notes

Anleitung zum Physikalischen Praktikum; Vorlesungszusammenfassung

Prerequisites / notice

9 Experiments have to be conducted (typically in teams of 2).

In the first week, only an introductory event is taking place in the lecture hall. This event provides relevant information regarding safety and organisational matters (e.g. testat conditions).

Students must pass an online safety test to be allowed to conduct experiments in the lab. Every student must provide an individually adjusted safety goggle.

402-0000-09L

Physics Lab 3

This laboratory course provides basic training of experimental skills. These are experimental design, implementation, measurement, data analysis and interpretation, as well as error analysis. The experimental work has to be complemented by a concise written report, which trains the scientific writing skills.

Manuals for the individual experiments are available in English.

Abstract

Students learn to independently perform advanced experiments and document them scientifically correct.

Objective

Students are required to attend a safety lecture on the first day of the course and pass the corresponding online moodle-test before being allowed to access the laboratory rooms and perform the experiments.

The following aspects are emphasized:

- understanding complicated physical phenomena
- structured approach to experiments with complex instruments
- various practical aspects of experimenting and determining uncertainties
- learning the relevant statistical methods for data analysis
- interpretation of measurements and uncertainties
- describing the experiments and the results in a scientifically proper manner, in direct analogy to publishing
- ethical aspects of experimental research and scientific communication

Content

We offer experiments covering the following topics:

- Basic topics from mechanics, optics, thermodynamics, electromagnetism and electronics; as well as central topics from nuclear and particle physics, quantum electronics, quantum mechanics, solid state physics and astrophysics.

Lecture notes

Instructions for experiments are available in English.

Prerequisites / notice

From a variety of over 50 experiments, students have to perform 4 experiments covering different topics. The experimental work is complemented by writing a scientific report.

Taught competencies

Domain A - Subject-specific Competencies: Concepts and Theories, assessed
Techniques and Technologies, assessed

Domain B - Method-specific Competencies: Analytical Competencies, assessed
Problem-solving, assessed

Domain C - Social Competencies: Communication, assessed
Cooperation and Teamwork, assessed

Domain D - Personal Competencies: Adaptability and Flexibility, assessed
Creative Thinking, assessed
Critical Thinking, assessed
Integration and Work Ethics, assessed
Self-direction and Self-management, assessed

Proseminars, Experimental and Theoretical Semester Papers

To organise a semester project take contact with one of the instructors.

Number

Title

Type

ECTS

Hours

Lecturers

402-0210-BSL

Proseminar Theoretical Physics

W

8 credits

4S

Supervisors

The number of participants is limited.

Abstract

A guided self-study of original papers and of advanced textbooks in theoretical physics. Within the general topic, determined each semester, participants give a presentation on a particular subject and deliver a written report.

402-0217-BSL

Semester Project in Theoretical Physics

W

8 credits

15A

Supervisors

This course unit is an alternative if no suitable "Proseminar Theoretical Physics" is available if the proseminar is already overbooked. Die Leistungskontrolle erfolgt aufgrund eines oder mehrerer schriftlicher Berichte bzw. einer schriftlichen Arbeit. Vorträge können ein zusätzlicher Bestandteil der Leistungskontrolle sein.

Abstract

The number of participants is limited.

Prerequisites / notice

Die Leistungskontrolle erfolgt aufgrund eines oder mehrerer schriftlicher Berichte bzw. einer schriftlichen Arbeit.

402-0215-BSL

Experimental Semester Project in Physics

W

8 credits

15A

Supervisors

The aim of the project is to give the student experience in working in a research environment, carrying out physics experiments, analysing and interpreting the resulting data.

Abstract

The number of participants is limited.

Prerequisites / notice

Die Leistungskontrolle erfolgt aufgrund eines oder mehrerer schriftlicher Berichte bzw. einer schriftlichen Arbeit.

402-0719-BSL

Particle Physics at PSI (Paul Scherrer Institute)

W

8 credits

15P

A. Soter, A. S. Antognini

During semester breaks 6-12 students stay for 3 weeks at PSI and participate in a hands-on course on experimental particle physics. A small real experiment is performed in common, including apparatus design, construction, running and data analysis. The course includes some lectures, but the focus lies on the practical aspects of experimenting.
Objective
Students learn all the different steps it takes to perform a complete particle physics experiment in a small team. They acquire skills to do this themselves in the team, including design, construction, data taking and data analysis.

402-0717-BSL
Particle Physics at CERN
W 8 credits 15P W. Lustermann

Abstract
During the semester break participating students stay for 4 weeks at CERN and perform experimental work relevant to our particle physics projects. Dates to be agreed upon.

Objective
Students learn, by doing, the needed skills to perform a small particle physics experiment: setup, problem solving, data taking, analysis, interpretation and presentation in a written report of publication quality.

Content
Detailed information in: https://ethteilchenpraktikumn.web.cern.ch/
Language of instruction: English or German

402-0340-BSL
Medical Physics
W 8 credits 15P A. J. Lomax, K. P. Prüssmann

Abstract
In agreement with the lecturers a semester paper in the context of the topics discussed in the lectures can be written.

402-0000-10L
Physics Lab 4
W 8 credits 15P M. Donegà, S. Gvasaliya

Prerequisite: “Physics Lab 3” completed. Before enrolling in “Physics Lab 4”, please enrol in “Physics Lab 3”. Enrol at most once in the course of the Bachelor programme!

Abstract
This laboratory course provides basic training of experimental skills. These are experimental design, implementation, measurement, data analysis and interpretation, as well as error analysis. The experimental work has to be complemented by a concise written report, which trains the scientific writing skills.

Objective
Students learn to independently perform advanced experiments and document them scientifically correct.

The following aspects are emphasized:
- understanding complicated physical phenomena
- structured approach to experiments with complex instruments
- various practical aspects of experimenting and determining uncertainties
- learning the relevant statistical methods for data analysis
- interpretation of measurements and uncertainties
- describing the experiments and the results in a scientifically proper manner, in direct analogy to publishing
- ethical aspects of experimental research and scientific communication

Content
We offer experiments covering the following topics:
Basic topics from mechanics, optics, thermodynamics, electromagnetism and electronics; as well as central topics from nuclear and particle physics, quantum electronics, quantum mechanics, solid state physics and astrophysics.

Lecture notes
Instructions for experiments are available in English.

Prerequisites / notice
From a variety of over 50 experiments, students have to perform 4 experiments covering different topics. The experimental work is complemented by writing a scientific report.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Problem-solving assessed

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork assessed

Domain D - Personal Competencies
Adaptability and Flexibility assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics assessed
Self-direction and Self-management assessed

GESS Science in Perspective

Science in Perspective
see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-PHYS.

Language Courses
see Science in Perspective: Language Courses ETH/UZH

Additional Courses, Seminars and Colloquia

First or Second Year Additional Courses

Number Title Type ECTS Hours Lecturers
402-0351-00L Astronomy Z 2 credits 2V S. P. Quanz

Abstract
An overview of important topics in modern astronomy: planets, sun, stars, milky way, galaxies, and cosmology

Objective
This lecture gives a general introduction to main topics in modern astronomy. The lecture provides a basis for the more advanced lectures in astrophysics.

Content
Planeten, Sonne, Sterne, Milchstrasse, Galaxien und Kosmologie.

Lecture notes
Kopien der Präsentationen werde zur Verfügung gestellt.

Literature
Der Neue Kosmos. A. Unsöld, B. Baschek, Springer

Oder sonstige Grundlehrbücher zur Astronomie.

401-1511-00L Geometry Z 3 credits 2V+1U T. Ilmanen
Abstract
Symmetry, metrics, and groups

Objective
Understand geometric symmetry

Content
Platonic solids, polytopes, crystals, Euclidean space, hyperbolic space, the sphere, metric spaces, their metric properties and symmetry groups as far as possible.

Lecture notes
See course website

Literature
See course website

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
assessed

Domain B - Method-specific Competencies
Analytical Competencies
assessed
Problem-solving
assessed

Domain D - Personal Competencies
Creative Thinking
assessed
Critical Thinking
assessed

Additional Courses (from Second Year Mathematics Bachelor)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-2003-00L</td>
<td>Algebra I</td>
<td>Z</td>
<td>7 credits</td>
<td>4V+2U</td>
<td>L. Halbeisen</td>
</tr>
</tbody>
</table>

Abstract
The two-semester course Algebra I / Algebra II is offered for the last time in its current version in the Autumn Semester 2021 / Spring Semester 2022.

Objective
Introduction and development of some basic algebraic structures - groups, rings, fields.

Content
Group Theory: basic notions and results of group, ring and field theory.

Ring Theory: basic notions and examples of rings, ideals, factor rings, euclidean rings, principal ideal domains, factor rings, applications

Field Theory: basic notions and examples of fields, field extensions, algebraic extensions, applications

Literature
Karpfinger-Meyberg: Algebra, Spektrum Verlag
S. Bosch: Algebra, Springer Verlag
B.L. van der Waerden: Algebra I und II, Springer Verlag
S. Lang, Algebra, Springer Verlag
A. Knapp: Basic Algebra, Springer Verlag
J.F. Humphreys: A Course in Group Theory (Oxford University Press)
G. Smith and O. Tabachnikova: Topics in Group Theory (Springer-Verlag)
M. Artin: Algebra (Birkhaeuser Verlag)

Seminars and Colloquia

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0101-00L</td>
<td>The Zurich Physics Colloquium</td>
<td>E-</td>
<td>0 credits</td>
<td>1K</td>
<td>S. Huber, A. Refregier, University lecturers</td>
</tr>
</tbody>
</table>

Abstract
Research colloquium

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0800-00L</td>
<td>The Zurich Theoretical Physics Colloquium</td>
<td>E-</td>
<td>0 credits</td>
<td>1K</td>
<td>J. Renes, University lecturers</td>
</tr>
</tbody>
</table>

Abstract
The Zurich Theoretical Physics Colloquium is jointly organized by the University of Zurich and ETH Zurich. Its mission is to bring both students and faculty with diverse interests in theoretical physics together. Leading experts explain the basic questions in their field of research and communicate the fascination for their work.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0501-00L</td>
<td>Solid State Physics</td>
<td>E-</td>
<td>0 credits</td>
<td>1S</td>
<td>A. Zgeludev, C. Degen, K. Ensllin, D. Pescia, M. Sigrist, A. Wallraff</td>
</tr>
</tbody>
</table>

Abstract
Research colloquium

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0551-00L</td>
<td>Laser Seminar</td>
<td>E-</td>
<td>0 credits</td>
<td>1S</td>
<td>T. Esslinger, J. Faist, J. Home, U. Keller, F. Merkt, H. J. Wörner</td>
</tr>
</tbody>
</table>

Abstract
Research colloquium

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0600-00L</td>
<td>Nuclear and Particle Physics with Applications</td>
<td>E-</td>
<td>0 credits</td>
<td>2S</td>
<td>A. Rubbia, G. Dissertori, K. S. Kirch, R. Wallny</td>
</tr>
</tbody>
</table>

Abstract
Research colloquium

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0893-00L</td>
<td>Particle Physics Seminar</td>
<td>E-</td>
<td>0 credits</td>
<td>1S</td>
<td>T. K. Gehrmann</td>
</tr>
</tbody>
</table>

Abstract
Research colloquium
Occasionally, talks may be delivered in German.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0700-00L</td>
<td>Seminar in Elementary Particle Physics</td>
<td>E-</td>
<td>0 credits</td>
<td>1S</td>
<td>M. Spira, University lecturers</td>
</tr>
</tbody>
</table>

Abstract
Research colloquium
"Special Students UZH must book the modul PHY463 directly at UZH."

Objective
Stay informed about current research results in elementary particle physics.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0746-00L</td>
<td>Seminar: Particle and Astrophysics (Aktuelles aus der Teilchen- und Astrophysik)</td>
<td>E-</td>
<td>0 credits</td>
<td>1S</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

Abstract
Research colloquium
In Seminarvorträgen werden aktuelle Fragestellungen aus der Teilchenphysik vom theoretischen und experimentellen Standpunkt aus diskutiert. Besonders wichtig erscheint uns der Bezug zu den eigenen Forschungsmöglichkeiten am PSI, CERN und DESY.

402-0300-00L IPA Colloquium E- 0 credits 1S A. Biland, A. Refregier, H. M. Schmid, further lecturers
Abstract Research colloquium

402-0530-00L Mesoscopic Systems E- 0 credits 1S T. M. Ihn
Abstract Research colloquium

227-0980-00L Seminar on Biomedical Magnetic Resonance E- 0 credits 1S K. P. Prüssmann, S. Kozerke, M. Weiger Senften
Abstract Current developments and problems of magnetic resonance imaging (MRI)
Objective Getting insight into advanced topics in magnetic resonance imaging

227-1043-00L Neuroinformatics - Colloquia (University of Zurich) E- 0 credits 1K S.-C. Liu, R. Hahnloser, V. Mante
Abstract No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
UZH Module Code: INF701
Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadline.s.html
Abstract The colloquium in Neuroinformatics is a series of lectures given by invited experts. The lecture topics reflect the current themes in neurobiology and neuromorphic engineering that are relevant for our Institute.
Objective The goal of these talks is to provide insight into recent research results. The talks are not meant for the general public, but really aimed at specialists in the field.
Content The topics depend heavily on the invited speakers, and thus change from week to week. All topics concern neural computation and their implementation in biological or artificial systems.

402-0396-00L Recent Research Highlights in Astrophysics (University of Zurich) E- 0 credits 1S University lecturers
Abstract No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
UZH Module Code: AST006
Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadline.s.html
Abstract Research colloquium

Selection of Higher Semester Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives (Physics Master)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0811-00L</td>
<td>Programming Techniques for Scientific Simulations I</td>
<td>W</td>
<td>5</td>
<td>4G</td>
<td>R. Käppeli</td>
</tr>
</tbody>
</table>
Abstract This lecture provides an overview of programming techniques for scientific simulations. The focus is on basic and advanced C++ programming techniques and scientific software libraries. Based on an overview over the hardware components of PCs and supercomputer, optimization methods for scientific simulation codes are explained.
Objective The goal of the course is that students learn basic and advanced programming techniques and scientific software libraries as used and applied for scientific simulations.

402-0713-00L Astro-Particle Physics I W 6 credits 2V+1U A. Biland
Abstract This lecture gives an overview of the present research in the field of Astro-Particle Physics, including the different experimental techniques. In the first semester, main topics are the charged cosmic rays including the antimatter problem. The second semester focuses on the neutral components of the cosmic rays as well as on some aspects of Dark Matter.
Objective Successful students know:
- experimental methods to measure cosmic ray particles over full energy range
- current knowledge about the composition of cosmic ray
- possible cosmic acceleration mechanisms
- correlation between astronomical object classes and cosmic accelerators
- information about our galaxy and cosmology gained from observations of cosmic ray
Content First semester (Astro-Particle Physics I):
- definition of 'Astro-Particle Physics'
- important historical experiments
- chemical composition of the cosmic rays
- direct observations of cosmic rays
- indirect observations of cosmic rays
- 'extended air showers' and 'cosmic muons'
- 'knee' and 'ankle' in the energy spectrum
- the 'anti-matter problem' and the Big Bang
- 'cosmic accelerators'
Lecture notes See lecture home page: http://ihp-lx2.ethz.ch/AstroTeilchen/
Literature See lecture home page: http://ihp-lx2.ethz.ch/AstroTeilchen/

402-0737-00L Energy and Sustainability in the 21st Century (Part I) W 6 credits 2V+1U P. Morf

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1707 of 2152
Objective
Why is energy important for life and our society?
How did energy use change over time? Which effects did these changes have on the environment?
What are the physical basics of energy technologies?
When, why and how did technology and science of energy come together?
What are the limits and benefits of all the various energy technologies?
How can different energy technologies be compared?
Can we understand the changes in the current energy systems?
How will the energy systems of the future look like?
How fast can we and should we alter the current energy transition?
Which could be the overall guide lines for a working energy system of the future?

Content
Physical basics of energy, thermodynamics and life. Introduction to self-organisation, and systems.
Energy and making use of it - a short history and overview on energy technologies
Coal, oil and natural gas – fossil fuels
Hydro, Wind & Solarpower (Geothermal- and Tidal power) – the quest for renewable energy
Nuclear power, radioactivity and ultimate storage – the quest for a safe technology
Breeding and Nuclear Fusion – can it work at all?
Energy storage – available technologies and a technology outlook
Climate change, decarbonisation – how much time do we have?
Energy efficiency, recycling and other resource conservation measures
Energy systems – how everything can play together
Buildings and Mobility – new technologies, new Ways of life?
Life cycle assessment of Energy Technologies – problems and possibilities
Economics of energy, learning curves, technology assessments and Innovation.
The energy transition and decarbonisation – How is your 2040, 2050?

Abstract
The goal of this course is to introduce the concepts and methods of quantum information theory. It starts with an introduction to the mathematical theory of quantum systems and then discusses the basic information-theoretic aspects of quantum mechanics. Further topics include applications such as quantum cryptography and quantum coding theory.

Objective
By the end of the course students are able to explain the basic mathematical formalism (e.g. states, channels) and the tools (e.g. entropy, distinguishability) of quantum information theory. They are able to adapt and apply these concepts and methods to analytically solve quantum information-processing problems primarily related to communication and cryptography.

Content
Mathematical formulation of quantum theory: entanglement, density operators, quantum channels and their representations. Basic tools of quantum information theory: distinguishability of states and channels, formulation as semidefinite programs, entropy and its properties.
Applications of the concepts and tools: communication of classical or quantum information over noisy channels, quantitative uncertainty relations, randomness generation, entanglement distillation, security of quantum cryptography.

Abstract

Objective
Introduction to the most important concepts of superconductivity both on phenomenological and microscopic level, including experimental and theoretical aspects.

Content
This lecture course provides an introduction to superconductivity, covering both experimental as well as theoretical aspects. The following topics are covered:
Basic phenomena of superconductivity: thermodynamics, electrodynamics, London and Pippard theory; Ginzburg-Landau theory: spontaneous symmetry breaking, flux quantization, properties of type I and II superconductors; mixed phase, microscopic BCS theory: electron-phonon mechanism, Cooper pairing, coherent state, quasiparticle spectrum, thermodynamics and response to magnetic fields; Josephson effects, superconducting quantum interference devices (SQUID) and other applications.

Abstract
Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.
The course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

X rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue's anisotropies of biopsies.

227-1037-00L Introduction to Neuroinformatics

<table>
<thead>
<tr>
<th>Objective</th>
<th>W 6 credits</th>
<th>2V+1U+1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>9 credits</td>
<td>4V+1U</td>
</tr>
<tr>
<td>Content</td>
<td>9 credits</td>
<td>4V+1U</td>
</tr>
</tbody>
</table>

401-3531-00L Differential Geometry I

<table>
<thead>
<tr>
<th>Objective</th>
<th>W 10 credits</th>
<th>4V+1U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

401-3461-00L Functional Analysis I

<table>
<thead>
<tr>
<th>Objective</th>
<th>W 10 credits</th>
<th>4V+1U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The course covers the basics of inferential statistics.

Objective

Acquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.

Literature

Recommended references include the following:

Prerequisites / notice

Solid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with topology and measure theory, in part. Lebesgue integration and L^p spaces).

401-3601-00L Probability Theory

At most one of the three course units (Bachelor Core Courses)

401-3461-00L Functional Analysis I

401-3531-00L Differential Geometry I

401-3601-00L Probability Theory

can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Abstract

Basics of probability theory and the theory of stochastic processes in discrete time

Objective

This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:

Basics in measure theory, series of independent random variables, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).

Content

This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:

Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).

Lecture notes

will be available in electronic form.

Literature

H. Bauer, Probability Theory, de Gruyter 1996

J. Jacod and P. Protter, Probability essentials, Springer 2004

A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006

D. Williams, Probability with martingales, Cambridge University Press 1991

401-3621-00L Fundamentals of Mathematical Statistics

The course covers the basics of inferential statistics.

402-0247-00L Electronics for Physicists I (Analogue)

Number of participants limited to 40.

Abstract

Passive components, linear networks, transmission lines, simulation of analog circuits, semiconductor components: diodes, bipolar and field-effect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise, operational amplifiers, feedback and stability, oscillators, ADCs and DACs, introduction to CMOS technology

Objective

The lecture provides the basic knowledge necessary to understand, design and simulate analog electronic circuits. In the exercises, the concepts can be experienced in a hands-on manner. Every student has the opportunity to go through all steps of an electronic design cycle. Those include designing schematics, generating a printed circuit board layout, and the realization of a soldered prototype.

Content

Passive elements, linear complex networks, transmission lines, simulation of analog circuits (SPICE), semiconductor elements: diodes, bipolar and field-effect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise in analog circuits, operational amplifiers, feedback and stability in amplifiers, oscillators, ADCs and DACs, introduction in CMOS technology.

Prerequisites / notice

no prior knowledge in electronics is required

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories

not assessed

Domain B - Method-specific Competencies

Techniques and Technologies

not assessed

Domain C - Social Competencies

Problem-solving

not assessed

Domain D - Personal Competencies

Cooperation and Teamwork

not assessed

Creative Thinking

not assessed

Critical Thinking

not assessed
Introduction:
- IT at D-PHYS (Herzog): 29.9. 1300
- IT at D-PHYS 2, Termin (Herzog): 7.10. 1300

Modules:
- Linux Basics I (Müller): 13.10. 1300
- Linux Basics II (Müller): 20.10. 1300
- Python Ecosystem I (Becker): 27.10. 1300
- Python Ecosystem II (Becker): 3.11. 1300
- System Aspects (Herzog): 10.11. 1300

Abstract
Introduce IT services at D-PHYS and offer modules covering IT-related topics for scientists.

Objective
The "IT at D-PHYS" introduction provides a good understanding of how IT works at D-PHYS and presents an overview of the IT services and their providers. It is recommended for everyone joining the department.

The remainder is structured into individual modules which can be attended separately. They give practical insights into everyday research-related IT challenges.

The "Linux Basics" modules offer an introduction to the Linux landscape and show how to work on the shell by using command line tools. The first part provides a basic understanding of Linux systems and their components. It introduces commands essential to working with local and remote machines. The second part focuses on more advanced tools and workflows and provides guidelines to scripting, automation and customization.

The "Python Ecosystem" modules present various aspects on the ecosystem around Python, without covering the programming language itself. The first part focuses on getting ready to run code. It discusses the management of Python interpreters, packages and virtual environments. The second part presents tools for writing code. From development environments (IDE, Jupyter), over code formatters and linters, to skimming selected concepts (string formatting, regular expressions).

The "System Aspects" module deals with the hardware-related side of scientific computing. To get the best performance out of your scientific code, you have to be aware of the underlying hardware and adapt to it.

Use the dedicated web page https://www.lehrbetrieb.ethz.ch/laborpraktika to register. Enrolled students are eligible for an attestation of attendance after visiting at least 3 out of the 5 modules. Refer to https://compenv.phys.ethz.ch for the detailed contents.

Content
Introduction:
IT at D-PHYS (IT service providers and IT services at D-PHYS)

Modules:
- Linux Basics I (system components, basic shell usage)
- Linux Basics II (advanced tools, scripting)
- Python Ecosystem I (interpreters, packages, virtual environments)
- Python Ecosystem II (development environments, formatter and linter, string formatting, regexp)
- System Aspects (how the hardware affects your scientific code and vice versa)

Physics Bachelor - Key for Type

<table>
<thead>
<tr>
<th>W+</th>
<th>Eligible for credits and recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Educational Science

General course offerings in the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>This course looks into scientific theories and also empirical studies on human learning and relates them to the school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way human process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers are put in a position where they can further educate themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thematische Schwerpunkte:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lernen als Verhaltensänderung und als Informationsverarbeitung: Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information; Lernen als Wissenskonstruktion und Kompetenzerwerb unter besonderer Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und Erklärungen; Die Rolle von Emotion und Motivation beim Lernen; Interindividuelle Unterschiede in der Lernfähigkeit und ihre Ursachen; Intelligenztheorien, Geschlechtsunterschiede beim Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folien werden zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course is only apt for students who intend to enrol in the programs "Lehrdiplom" or "Didaktisches Zertifikat". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

851-0240-22L	Coping with Psychosocial Demands of Teaching (EW4 W DZ) ■	W	2	3S	U. Markwalder, S. Maurer, S. Peteranderl-Rüschoff
	Number of participants limited to 20.				
	The successful participation in EW1 ("Human Learning") and EW2 ("Designing Learning Environments for School") is recommended, but not a mandatory prerequisite.				
	Abstract				
	In this class, students will learn concepts and skills for coping with psychosocial demands of teaching				
	Objective				
	Students possess theoretical knowledge and practical competences to be able to cope with the psychosocial demands of teaching.				
	(1) They know relevant rules of conversation and conflict management and are able to apply them in an appropriate way in the school context (e.g. in parental talks).				
	(2) They know core aspects of classroom management and know how to apply it concretely (e.g. promoting a positive learning atmosphere, avoiding disciplinary difficulties) and they are aware of possible contacts (e.g. illegal or psychological services).				

851-0242-06L	Cognitively Activating Instructions in MINT Subjects ■ W	2	2S	R. Schumacher	
	Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).				
	Abstract				
	This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.				
	Objective				
	- Get to know cognitive activating instructions in MINT subjects				
	- Get information about recent literature on learning and instruction				
	Prerequisites / notice				
	Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht				

851-0242-07L	Human Intelligence	W	1	1S	E. Stern
	Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).				
	Abstract				
	The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.				
	Objective				
	- Understanding of research methods used in the empirical human sciences				
	- Getting to know intelligence tests				
	- Understanding findings relevant for education				

851-0242-08L	Research Methods in Educational Science	W	1	2S	P. Edelsbrunner, T. Braas, C. M. Thurn
	Number of participants limited to 30.				
	This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW1)".				
Abstract

Literature from the learning sciences is critically discussed with a focus on research methods. At the first meeting, working groups will be assembled and meetings with those will be set up. In the small groups students will write critical essays about the read literature. At the third meeting, we will discuss the essays and develop research questions in group work.

Objective

- Understand research methods used in the empirical educational sciences
- Understand and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

851-0242-11L Gender Issues In Education and STEM

Number of participants limited to 30.

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Prerequisite: students should be taking the course 851-0240-00L Human Learning (EW1) in parallel, or to have successfully completed it.

Abstract

In this seminar, we introduce some of the major gender-related issues in the context of education and science learning, such as the under-representation of girls and women in science, technology, engineering and mathematics (STEM). Common perspectives, controversies and empirical evidence will be discussed.

Objective

- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives
- To integrate this knowledge with teacher's work

Content

Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisites / notice

Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

Subject Didactics and Professional Training

Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0910-00L</td>
<td>Physics Didactics I: Special Didactics of Physics Teaching</td>
<td>O</td>
<td>4 credits</td>
<td>3G</td>
<td>M. Mohr</td>
</tr>
<tr>
<td>402-0920-00L</td>
<td>Diploma or Teaching Certificate (excluding Teaching Diploma Sport)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0915-00L</td>
<td>Teaching Internship Including Examination Lessons</td>
<td>O</td>
<td>4 credits</td>
<td>9P</td>
<td>M. Mohr</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1713 of 2152
Abstract
Students apply the insights, abilities and skills they have acquired within the context of an educational institution. They observe 10 lessons and teach 20 lessons independently. Two of them are assessed as Examination Lessons.

Objective
- Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching.
- They are able to assess the significance of tuition topics for their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
- They learn the skills of the teaching trade.
- They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution.
- They learn to assess pupils' work.
- Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.

Content
Die Themen für die beiden Prüfungslektionen am Schluss des Praktikums erfahren die Studierenden in der Regel eine Woche vor dem Prüfungstermin. Sie erstellen eine Vorbereitung gemäss Anleitung und reichen sie bis am Vortrag um 12 Uhr den beiden Prüfungsexperten (Fachdidaktiker/-in, Departementsvertreter/-in) ein. Die gehaltenen Lektionen werden kriteriumsbasiert beurteilt. Die Beurteilung umfasst auch die schriftliche Vorbereitung und eine mündliche Reflexion des Kandidaten/der Kandidatin über die gehaltenen Lektionen im Rahmen eines kurzen Kolloquiums.

Lecture notes
Dokument: schriftliche Vorbereitung für Prüfungslektionen.
Lecture notes
Wird von der Praktikumslehrperson bestimmt.

402-0917-00L

Mentored Work Subject Didactics Physics A

Objective
In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.

Content
The objective is for the students:
- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.

Methods
With the help of the mentor the students individually work on a topic and write a thesis about it.

Prerequisites / notice
The mentored work should usually be finished before the teaching internship. FD2 (402-0909-00L) is required or should be achieved in the same semester.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1714 of 2152
Content

Lecture notes

Web page:
http://ihp-lx2.ethz.ch/energy21/index.html

Literature

The Physics of Energy, R.L. Jaffe, W. Taylor, 2018
Clean Disruption of Energy and Transportation, T. Seba 2014
Energy and Civilization: A History, V. Smil, 2018

Prerequisites / notice

Basics of Physics applied to Energy and Energy Technology. Investigation on current problems (and possible solutions) related to the energy system and the environmental interactions. Training of scientific and multi-disciplinary methods, approaches and their limits in the exercises and discussions.

402-0922-00L Mentored Work Specialised Courses in Physics with an Educational Focus A ■

Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Physics for TC and Teaching Diploma.

Abstract

In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.

Objective

Practice in the explanation of complex topics in physics as the core competence of the teaching profession. Improvement of the physics education by providing attractive recent topics with regard to future curricular decisions and the public view of physics.

Content

Choice of topic by individual arrangement

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories

Techniques and Technologies

Domain B - Method-specific Competencies

Analytical Competencies

Decision-making

Problem-solving

Project Management

Domain C - Social Competencies

Communication

Cooperation and Teamwork

Customer Orientation

Leadership and Responsibility

Self-presentation and Social Influence

Sensitivity to Diversity

Negotiation

Domain D - Personal Competencies

Adaptability and Flexibility

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Self-awareness and Self-reflection

Self-direction and Self-management

402-0505-00L Physics in the Smartphone

Does not take place this semester.

Abstract

Physics in today's high-tech smartphone. Examples: network topology and scratch proof glass, spin-orbit coupling - brighter displays, GPS and general theory of relativity, electromagnetic response of matter (transparent metals for displays, GPS signal propagation), light-field cameras, CCD and CMOS light sensors, physics stops Moore’s law, meta-materials for antennas, MEMS sensor physics, etc.

Objective

Students recognize and appreciate the enormous impact "physics" has on today's high tech world. Abstract concepts, old and recent, encountered in the lectures are implemented and present all around us. Students are actively involved in the preparation and presentation of the topics, and thus acquire valuable professional skills.

Content

We explore how traditional and new physics concepts and achievements make their way into today’s ubiquitous high-tech gadget: the smartphone. Examples of topics include: network topology and scratch proof Gorilla glass, spin-orbit coupling makes for four times brighter displays, electromagnetic response of matter (transparent metals for displays, GPS signal propagation in the atmosphere), light-field cameras replacing CCD and CMOS light sensors, physical limitations to IC scaling: the end of "Moore's law", meta-materials for antennas, physics of the various MEMS sensors, etc., etc.,

Lecture notes

The presentation material and original literature will be distributed weekly.
Basic physics lectures and introduction to solid state physics are expected.

This is a "3 hour" course, with two hours set for <tba>, and the third one to be set at the beginning of the semester.

An introductory event is planned in the first week of the term on Wednesday, September 19th - 17:45 in the room HIT K51. In this meeting we will fix the time of the usual lecture and we will distribute the topics for the presentations during the term. The tutors will briefly present each topics.

402-0247-00L Electronics for Physicists I (Analogue) W 4 credits 2V+2P G. Bison, W. Erdmann

Abstract
Passive components, linear networks, transmission lines, simulation of analog circuits, semiconductor components: diodes, bipolar and field-effect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise, operational amplifiers, feedback and stability, oscillators, ADCs and DACs, introduction to CMOS technology

Objective
The lecture provides the basic knowledge necessary to understand, design and simulate analog electronic circuits. In the exercises, the concepts can be experienced in a hands-on manner. Every student has the opportunity to go through all steps of an electronic design cycle. Those include designing schematics, generating a printed circuit board layout, and the realization of a soldered prototype.

Content
Passive elements, linear complex networks, transmission lines, simulation of analog circuits (SPICE), semiconductor elements: diodes, bipolar and field-effect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise in analog circuits, operational amplifiers, feedback and stability in amplifiers, oscillators, ADC's and DAC's, introduction in CMOS technology.

Practical exercises in small groups to the above themes complement the lectures.

no prior knowledge in electronics is required

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
not assessed

Domain B - Method-specific Competencies
Problem-solving
not assessed

Domain C - Social Competencies
Cooperation and Teamwork
not assessed

Domain D - Personal Competencies
Creative Thinking
Critical Thinking
not assessed

Physics TC - Key for Type
W+ Eligible for credits and recommended
Z Courses outside the curriculum

W Eligible for credits
Dr Suitable for doctorate

E- Recommended, not eligible for credits
O Compulsory

Key for Hours
V lecture
P practical/laboratory course

G lecture with exercise
A independent project

U exercise
D diploma thesis

S seminar
R revision course / private study

K colloquium

ECTS European Credit Transfer and Accumulation System
Special students and auditors need special permission from the lecturers.
Cognitively Activating Instructions in MINT Subjects

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".

Abstract

This seminar focuses on teaching units in chemistry, physics and mathematics that have been developed at the MINT Learning Center of the ETH Zurich. In the first meeting, the mission of the MINT Learning Center will be communicated. Furthermore, in groups of two, the students will intensively work on, refine and optimize a teaching unit following a goal set in advance.

Objective

- Get to know cognitively activating instructions in MINT subjects
- Get information about recent literature on learning and instruction

Prerequisites / notice

Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.

Human Intelligence

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Number of participants limited to 30.

This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".

Abstract

The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.

Objective

- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding findings relevant for education

Gender Issues in Education and STEM

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Prerequisite: students should be taking the course 851-0240-00L Human Learning (EW1) in parallel, or to have successfully completed it.

Abstract

In this seminar, we introduce some of the major gender-related issues in the context of education and science learning, such as the under-representation of girls and women in science, technology, engineering and mathematics (STEM). Common perspectives, controversies and empirical evidence will be discussed.

Objective

- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives.
- To integrate this knowledge with teacher’s work.

Content

Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? These and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisites / notice

Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).

Physics Didactics I: Special Didactics of Physics Teaching

Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).

Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).
Objective

Die Studierenden verfügen über fachdidaktisches Grundwissen für den Physikunterricht an einer Mittelschule. Sie können eigene Lektionen unter Berücksichtigung der vielfältigen Rahmenbedingungen planen, durchführen und evaluieren. Sie reflektieren ihren Unterricht und sind bestrebt, ihn didaktisch und pädagogisch weiter zu entwickeln.

Die Studierenden kennen die Einsatzmöglichkeiten, Chancen und Schwierigkeiten verschiedener Unterrichtsformen und Hilfsmittel. Sie können die Eignung von Unterrichtsformen im Hinblick auf eine Lernsituation beurteilen. Sie bemühen sich in ihrem Unterricht, geeignete Methoden und Medien angepasst an die Klasse und das Thema einzusetzen.

Content

Thematische Schwerpunkte

Fachspezifisches: Sachstrukturen der gängigen Unterrichtsthemen, Alltagsbezüge, Fehlvorstellungen, Demonstrations- und Schülerexperimente, Arbeitsmittel zu physikalischen Themen des Grundlagen- und Schwerpunktunterrichts

Einsatz verschiedener Unterrichtsmaterialien: Experimente, Computer, Taschenrechner, Video, Simulation

Unterrichtsformen: Lernaufgabe, Werkstatt, Puzzle, Projekt, Gruppenarbeit, Praktikum

Lernformen

Interaktive Lehr-Lernveranstaltung mit Vorträgen und Demonstrationen des Dozenten, studentischer Einzel- und Kleingruppenarbeit, kurzen Präsentationen der Studierenden, Verleihung der Inhalte durch Bearbeitung von Aufträgen ausserhalb der Kontaktstunden

Lecture notes

Folienvorlagen und weitere Unterlagen werden zur Verfügung gestellt

Literature

wird während der Veranstaltung mitgeteilt

Prerequisites / notice

Die Veranstaltung ist zusammen mit dem Einführungspraktikum zu belegen

<table>
<thead>
<tr>
<th>402-0917-00L</th>
<th>Mentored Work Subject Didactics Physics A</th>
<th>O</th>
<th>2 credits</th>
<th>4A</th>
<th>G. Schiltz, A. Vaterlaus</th>
</tr>
</thead>
</table>

Abstract

In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.

Objective

The objective is for the students:

- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.

- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.

Content

Thematic Focus

The topics of the mentored work are mostly chosen from the high school curriculum.

Methods

With the help of the mentor the students individually work on a topic and write a thesis about it.

http://www.fachdidaktik.physik.ethz.ch/unterlagen.html

The mentored work should usually be finished before the teaching internship. FD2 (402-0909-00L) is required or should be achieved in the same semester.

<table>
<thead>
<tr>
<th>402-0918-00L</th>
<th>Mentored Work Subject Didactics Physics B</th>
<th>O</th>
<th>2 credits</th>
<th>4A</th>
<th>G. Schiltz, A. Vaterlaus</th>
</tr>
</thead>
</table>
Teaching Diploma.

Abstract
In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.

Objective
The objective is for the students:
- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.

Content
Focus of content
The topics of the mentored work are mostly chosen from the high school curriculum.

Methods
With the help of the mentor the students individually work on a topic and write a thesis about it.

Lecture notes
http://www.fachdidaktik.physik.ethz.ch/unterlagen.html

Prerequisites / notice
The mentored work should usually be finished before the teaching internship. FD2 (402-0909-00L) is required or should be achieved in the same semester.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Communication and Teamwork	Decision-making	assessed
Customer Orientation	Problem-solving	assessed
Leadership and Responsibility	Self-presentation and Social Influence	assessed
Sensitivity to Diversity	Negotiation	assessed
Adaptability and Flexibility	assessed	
Creative Thinking	assessed	
Critical Thinking	assessed	
Integrity and Work Ethics	assessed	
Self-awareness and Self-reflection	assessed	
Self-direction and Self-management	assessed	

▶ Professional Training in Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0920-00L</td>
<td>Introductory Internship Physics</td>
<td>O</td>
<td>3 credits</td>
<td>6P</td>
<td>M. Mohr</td>
</tr>
</tbody>
</table>

Abstract
During the introductory teaching practice, the students sit in on five lessons given by the teacher responsible for their teaching practice, and teach five lessons themselves. The students are given observation and reflection assignments by the teacher responsible for their teaching practice.

Objective
Right at the start of their training, students acquire initial experience with the observation of teaching, the establishment of concepts for teaching and the implementation of teaching. This early confrontation with the complexity of everything that teaching involves helps students decide whether they wish to and, indeed, ought to, continue with the training. It forms a basis for the subsequent pedagogical and subject-didactics training.

Content

Literature
Wird von der Praktikumslehrperson bestimmt.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0911-00L</td>
<td>Teaching Internship Physics</td>
<td>O</td>
<td>8 credits</td>
<td>17P</td>
<td>M. Mohr</td>
</tr>
</tbody>
</table>

Abstract
The teaching practice takes in 50 lessons: 30 are taught by the students, and the students sit in on 20 lessons. The teaching practice lasts 4-6 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.

Objective
- Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching.
- They are able to assess the significance of tuition topics in their subject from different angles (including interdisciplinary angles) and impart these to their pupils.
- They acquire the skills of the teaching trade.
- They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution.
- They learn to assess pupils’ work.
- Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance.

Content

Literature
Wird von der Praktikumslehrperson bestimmt.
Prerequisites / notice

Findet in der Regel am Schluss der Ausbildung, vor Ablegung der Prüfungslektionen statt.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0913-00L</td>
<td>Teaching Internship Physics II</td>
<td>W</td>
<td>4 credits</td>
<td>9P</td>
<td>M. Mohr</td>
</tr>
<tr>
<td></td>
<td>Teaching Internship for students upgrading TC to Teaching Diploma.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>This is a supplement to the Teaching Internship required to obtain a Master of Advanced Studies in Secondary and Higher Education in the corresponding subject. It is aimed at enlarging the already acquired teaching experience. Students observe 10 lessons and teach 15 lessons independently.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Die Studierenden können die Bedeutung von Unterrichtsthemen in ihrem Fach unter verschiedenen Blickwinkeln einschätzen. Sie kennen und beherrschen das unterrichtliche Handwerk. Sie können ein gegebenes Unterrichtsthema für eine Gruppe von Lernenden fachlich und didaktisch korrekt strukturieren und in eine adäquate Lernumgebung umsetzen. Es gelingt ihnen, die Balance zwischen Anleitung und Offenheit zu finden, sodass die Lernenden sowohl über den nötigen Freiraum wie über ausreichend Orientierung verfügen, um aktiv und effektiv flexibel nutzbare (Fach-)Wissen zu erwerben.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>402-0921-01L</th>
<th>Examination Lesson I Physics</th>
<th>O</th>
<th>1 credit</th>
<th>2P</th>
<th>M. Mohr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>On the basis of a specified topic, the candidate shows that they are in a position - to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle - to analyze the tuition they have given with regard to its strengths and weaknesses, and outline improvements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Dokument: Schriftliche Vorbereitung für Prüfungslektionen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Nach Abschluss der übrigen Ausbildung.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>402-0921-02L</th>
<th>Examination Lesson II Physics</th>
<th>O</th>
<th>1 credit</th>
<th>2P</th>
<th>M. Mohr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>On the basis of a specified topic, the candidate shows that they are in a position - to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle - to analyze the tuition they have given with regard to its strengths and weaknesses, and outline improvements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Dokument: Schriftliche Vorbereitung für Prüfungslektionen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Nach Abschluss der übrigen Ausbildung.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courses that counted towards the Bachelor or Master programme in physics or comprised additional admission requirements in subject didactics are not eligible for the teaching diploma.

Number

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0351-00L</td>
<td>Astronomy</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>S. P. Quanz</td>
</tr>
<tr>
<td>Abstract</td>
<td>An overview of important topics in modern astronomy: planets, sun, stars, milky way, galaxies, and cosmology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This lecture gives a general introduction to main topics in modern astronomy. The lecture provides a basis for the more advanced lectures in astrophysics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Planeten, Sonne, Sterne, Milchstrasse, Galaxien und Kosmologie.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Kopien der Präsentationen werde zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Der Neue Kosmos. A. Unsold, B. Baschek, Springer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oder sonstige Grundlehrbücher zur Astronomie.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>402-0737-00L</th>
<th>Energy and Sustainability in the 21st Century (Part I)</th>
<th>W</th>
<th>6 credits</th>
<th>2V+1U</th>
<th>P. Morf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Why is energy important for life and our society? How did energy use change over time? Which effects did these changes have on the environment? What are the physical basics of energy technologies? When, why and how did technology and science of energy come together? What are the limits and benefits of all the various energy technologies? How can different energy technologies be compared? Can we understand the changes in the current energy systems? How will the energy systems of the future look like? How fast can we and should we alter the current energy transition? Which could be the overall guide lines for a working energy system of the future?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

Physical basics of energy, thermodynamics and life. Introduction to self-organisation, and systems.

Energy and making use of it - a short history and overview on energy technologies

Coal, oil and natural gas – fossil fuels

Hydro, Wind- & Solarpower (Geothermal- and Tidal power) – the quest for renewable energy

Nuclear power, radioactivity and ultimate storage – the quest for a safe technology

Breeding and Nuclear Fusion – can it work at all?

Energy storage – available technologies and a technology outlook

Climate change, decarbonisation – how much time do we have?

Energy efficiency, recycling and other resource conservation measures

Energy systems – how everything can play together

Buildings and Mobility – new technologies, new Ways of life?

Life cycle assessment of Energy Technologies – problems and possibilities

Economics of energy, learning curves, technology assessments and Innovation.

The energy transition and decarbonisation – How is your 2040, 2050?

Lecture notes

Web page:
http://ihp-ix2.ethz.ch/energy21/index.html

Literature

The Physics of Energy, R.L. Jaffe, W. Taylor, 2018

Clean Disruption of Energy and Transportation, T. Seba 2014

Energy and Civilization: A History, V. Smil, 2018

Prerequisites / notice

Basics of Physics applied to Energy and Energy Technology.

Investigation on current problems (and possible solutions) related to the energy system and the environmental interactions.

Training of scientific and multi-disciplinary methods, approaches and their limits in the exercises and discussions.

<table>
<thead>
<tr>
<th>402-0922-00L</th>
<th>Mentored Work Specialised Courses in Physics with an Educational Focus A</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>2 credits</td>
</tr>
<tr>
<td>4A</td>
<td>G. Schiltz, A. Vaterlaus</td>
</tr>
</tbody>
</table>

Abstract

In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.

Objective

Practice in the explanation of complex topics in physics as the core competence of the teaching profession

Content

Choice of topic by individual arrangement

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

<table>
<thead>
<tr>
<th>402-0923-00L</th>
<th>Mentored Work Specialised Courses in Physics with an Educational Focus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>2 credits</td>
</tr>
<tr>
<td>4A</td>
<td>G. Schiltz, A. Vaterlaus</td>
</tr>
</tbody>
</table>

Abstract

In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.

Objective

Practice in the explanation of complex topics in physics as the core competence of the teaching profession

Content

Choice of topic by individual arrangement
The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more advanced courses.

Courses and Lectures

- **Physics in the Smartphone**
 - Taught by S. Lilly
 - **Abstract**: This introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.
 - **Objective**: The course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.

- **Introduction to Solid State Physics**
 - Taught by C. Degen
 - **Abstract**: The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of semiconductors, transport properties; magnetism, superconductivity.

- **Physics in today's high-tech smartphone**
 - Taught by M. Sigrist
 - **Abstract**: Physics in today's high-tech smartphone. Examples: network topology and scratch proof glass, spin-orbit coupling - brighter displays, GPS and general theory of relativity, electromagnetic response of matter (transparent metals for displays, GPS signal propagation), light-field cameras, CCD and CMOS light sensors, physics stops Moore's law, meta-materials for antennas, MEMS sensor physics, etc.

Internship Physics Didactics

- **Internship Physics Didactics for Teaching Diploma with Physics as First Subject**
 - Taught by M. Mohr, A. Vaterlaus
 - **Abstract**: During the Internship Physics Didactics students teach 6 lessons in the classes of an internship teaching person. Students develop, test and analyze teaching arrangements under the guidance of a mentor (one of the lecturers).
 - **Objective**: Basic knowledge for the design of teaching arrangements is the topic of the Physics Didactics I and II courses. In the subsequent activities, Physics Didactics students combine the theoretical knowledge acquired in the didactics courses with practical aspects of teaching. During the internship students learn to transform their teaching goals into a real live class room setting considering subject specific, didactical and pedagogical aspects.
 - **Content**: The course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.

Prerequisites and Notice

- **Prerequisites**: W. Känzig, Kondensierte Materie
 - **Literature**: W. Känzig, Kondensierte Materie

Internship Physics Didactics for Teaching Diploma with Physics as Second Subject

- **Objective**: Students recognize and appreciate the enormous impact "physics" has on today's high tech world. Abstract concepts, old and recent, encountered in the lectures are implemented and present all around us.

Internship Physics Didactics for Teaching Diploma with Physics as Third Subject

- **Objective**: Students are actively involved in the preparation and presentation of the topics, and thus acquire valuable professional skills.

Lecture notes

- The presentation material and original literature will be distributed weekly.

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity

Domain D - Personal Competencies

- Adaptability and Flexibility
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Taught competencies

- Self-direction and Self-management
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Literature

- C. Kittel, Festkörperphysik
- Ashcroft & Mermin, Festkörperphysik
- W. Känzig, Kondensierte Materie
- etc., etc.
Prerequisites
Basic physics lectures and introduction to solid state physics are expected.

This is a “3 hour” course, with two hours set for <tba>, and the third one to be set at the beginning of the semester.

An introductory event is planned in the first week of the term on Wednesday, September 19th - 17:45 in the room HIT KS1. In this meeting we will fix the time of the usual lecture and we will distribute the topics for the presentations during the term. The tutors will briefly present each topics.

402-0247-00L Electronics for Physicists I (Analogue) W 4 credits 2V+2P G. Bison, W. Erdmann
Number of participants limited to 40.

Abstract
Passive components, linear networks, transmission lines, simulation of analog circuits, semiconductor components: diodes, bipolar and field-effect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise, operational amplifiers, feedback and stability, oscillators, ADCs and DACs, introduction to CMOS technology

Objective
The lecture provides the basic knowledge necessary to understand, design and simulate analog electronic circuits. In the exercises, the concepts can be experienced in a hands-on manner. Every student has the opportunity to go through all steps of an electronic design cycle. Those include designing schematics, generating a printed circuit board layout, and the realization of a soldered prototype.

Content
Passive elements, linear complex networks, transmission lines, simulation of analog circuits (SPICE), semiconductor elements: diodes, bipolar and field-effect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise in analog circuits, operational amplifiers, feedback and stability in amplifiers, oscillators, ADC’s and DAC’s, introduction in CMOS technology.

Practical exercises in small groups to the above themes complement the lectures.

Prerequisites
no prior knowledge in electronics is required

Taught

Domain A - Subject-specific Competencies	Concepts and Theories	Techniques and Technologies	not assessed
Domain B - Method-specific Competencies	Problem-solving	not assessed	
Domain C - Social Competencies	Cooperation and Teamwork	not assessed	
Domain D - Personal Competencies	Creative Thinking	Critical Thinking	not assessed

Taught Competencies
- no prior knowledge in electronics is required

ECTS
2V+1U

P. Morf

Compulsory Elective Courses
Further course offerings from the category Educational Science are listed under “Programme: Educational Science for Teaching Diploma and TC”.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0737-00L</td>
<td>Energy and Sustainability in the 21st Century (Part I)</td>
<td>W</td>
<td>6 credits</td>
<td>2V+1U</td>
<td>P. Morf</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Why is energy important for life and our society?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How did energy use change over time? Which effects did these changes have on the environment?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What are the physical basics of energy technologies?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>When, why and how did science and technology of energy come together?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What are the limits and benefits of all the various energy technologies?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How can different energy technologies be compared?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can we understand the changes in the current energy systems?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How will the energy systems of the future look like?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How fast can we and should we alter the current energy transition?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Which could be the overall guide lines for a working energy system of the future?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical basics of energy, thermodynamics and life. Introduction to self-organisation, and systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy and making use of it - a short history and overview on energy technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coal, oil and natural gas – fossil fuels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydro, Wind- & Solarpower (Geothermal- and Tidal power) – the quest for renewable energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nuclear power, radioactivity and ultimate storage – the quest for a safe technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breeding and Nuclear Fusion – can it work at all?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy storage – available technologies and a technology outlook</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Climate change, decarbonisation – how much time do we have?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy efficiency, recycling and other resource conservation measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy systems – how everything can play together</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buildings and Mobility – new technologies, new Ways of life?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life cycle assessment of Energy Technologies – problems and possibilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economics of energy, learning curves, technology assessments and Innovation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The energy transition and decarbonisation – How is your 2040, 2050?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web page:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://hfp-tc2.ethz.ch/energy21/index.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Physics of Energy, R.L. Jaffe, W. Taylor, 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean Disruption of Energy and Transportation, T. Seba 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy and Civilization: A History, V. Smil, 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renewable Energy – Without the Hot Air, D.J.C. Mackay 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basics of Physics applied to Energy and Energy Technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Investigation on current problems (and possible solutions) related to the energy system and the environmental interactions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training of scientific and multi-disciplinary methods, approaches and their limits in the exercises and discussions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

252-0855-00L Computer Science in Secondary School Mathematics W 4 credits 3G J. Hromkovic, G. Serafini

Abstract
The unit "Computer Science in Secondary School Mathematics" addresses key contributions of computer science to general education, the tight relations between the algorithmic and the mathematical way of thinking, and the thoughtful choice of computer science topics for high school mathematics classes.
The general goal of the course consists in presenting ways to teach fundamentals of computer science, which are closely related to contents and methods of mathematics. After attending the course unit, a mathematics teacher is able to teach selected fundamentals of computer science in mathematics classes.

The students understand the fundamental concepts of computer science in the context of a broad and deep knowledge. Through this understanding, they manage to prepare teaching materials for a successful knowledge transfer and to pass their passion for the subject on to their pupils.

The students know various teaching methods as well as their advantages and disadvantages. They can handle inhomogeneous prior knowledge of the learners inside a class. Besides holding classes, the students do care about the individual pupil support.

They encourage the autonomy of the learners, manage to work with diverse target groups and to establish a positive learning environment.

The students are able to express themselves using a comprehensible and refined professional language, both in a spoken and a written way, and they master the basic terminology of computer science. Besides the English terms, they are familiar with the corresponding German expressions. The students are able to produce detailed, matured, linguistically correct and design-wise appealing teaching materials.

The lecture provides the basic knowledge necessary to understand, design and simulate analog electronic circuits. In the exercises, the students develop and document an adaptive teaching unit for computer science. They learn to employ the didactics methods and techniques that are introduced at the beginning of the semester.

The course covers the didactics of logic, of cryptography, of finite state automata, of computability and of the introduction to programming. The students develop the understanding of fundamental scientific concepts such as algorithm, program, complexity, determinism, computation, automata, verification, testing, security of a cryptosystem and secure communication. They reflect on ways to embed them into a scientifically sound and didactically sustainable mathematics course.

In a semester exercise, the students develop and document an adaptive teaching unit for computer science. They learn to employ the didactics methods and techniques that are introduced at the beginning of the semester.

The course is recommended for students who want to learn a modern and scientifically sound way of teaching computer science.

The students develop an understanding of fundamental concepts such as algorithm, program, complexity, determinism, computation, automata, verification, testing, security of a cryptosystem and secure communication. They reflect on ways to embed them into a scientifically sound and didactically sustainable mathematics course.

In a semester exercise, the students develop and document an adaptive teaching unit for computer science. They learn to employ the didactics methods and techniques that are introduced at the beginning of the semester.

The students are able to express themselves using a comprehensible and refined professional language, both in a spoken and a written way, and they master the basic terminology of computer science. Besides the English terms, they are familiar with the corresponding German expressions. The students are able to produce detailed, matured, linguistically correct and design-wise appealing teaching materials.

The lecture provides the basic knowledge necessary to understand, design and simulate analog electronic circuits. In the exercises, the students develop and document an adaptive teaching unit for computer science. They learn to employ the didactics methods and techniques that are introduced at the beginning of the semester.

The course covers the didactics of logic, of cryptography, of finite state automata, of computability and of the introduction to programming. The students develop the understanding of fundamental scientific concepts such as algorithm, program, complexity, determinism, computation, automata, verification, testing, security of a cryptosystem and secure communication. They reflect on ways to embed them into a scientifically sound and didactically sustainable mathematics course.

In a semester exercise, the students develop and document an adaptive teaching unit for computer science. They learn to employ the didactics methods and techniques that are introduced at the beginning of the semester.
Physics Master

Core Courses

One Core Course in Experimental or Theoretical Physics from Physics Bachelor is eligible; however, this Core Course from Physics Bachelor cannot be used to compensate for the mandatory Core Course in Experimental or Theoretical Physics.

For the category assignment keep the choice “no category” and take contact with the Study Administration (www.phys.ethz.ch/studies/study-administration.html) after having received the credits.

Core Courses in Theoretical Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0861-00L</td>
<td>Statistical Physics</td>
<td>W</td>
<td>10 credits</td>
<td>4V+2U</td>
<td>M. Sigrist</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This lecture covers the concepts of classical and quantum statistical physics. Several techniques such as second quantization formalism for fermions, bosons, photons and phonons as well as mean field theory and self-consistent field approximation. These are used to discuss phase transitions, critical phenomena and superfluidity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This lecture gives an introduction in the basic concepts and applications of statistical physics for the general use in physics and, in particular, as a preparation for the theoretical solid state physics education.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No specific book is used for the course. Relevant literature will be given in the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Will be provided as the course progresses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0843-00L</td>
<td>Quantum Field Theory I</td>
<td>W</td>
<td>10 credits</td>
<td>4V+2U</td>
<td>G. M. Graf</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course discusses the quantisation of fields in order to introduce a coherent formalism for the combination of quantum mechanics and special relativity. Topics include: - Relativistic quantum mechanics - Quantisation of bosonic and fermionic fields - Interactions in perturbation theory - Scattering processes and decays - Elementary processes in QED - Radiative corrections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The goal of this course is to provide a solid introduction to the formalism, the techniques, and important physical applications of quantum field theory. Furthermore it prepares students for the advanced course in quantum field theory (Quantum Field Theory II), and for work on research projects in theoretical physics, particle physics, and condensed-matter physics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Will be provided as the course progresses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0830-00L</td>
<td>General Relativity</td>
<td>W</td>
<td>10 credits</td>
<td>4V+2U</td>
<td>C. Anastasiou</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations of the theory as well as the underlying physical principles and concepts. It covers selected applications, such as the Schwarzschild solution and gravitational waves.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic understanding of general relativity, its mathematical foundations (in particular the relevant aspects of differential geometry), and some of the phenomena it predicts (with a focus on black holes).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Core Courses: Experimental Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0257-00L</td>
<td>Advanced Solid State Physics</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U</td>
<td>K. Povarov</td>
</tr>
</tbody>
</table>

Abstract

This course is an extension of the introductory course on solid state physics.

The purpose of this course is to learn to navigate the complex collective quantum phases, excitations and phase transitions that are the dominant theme in modern solid state physics. The emphasis is on the main concepts and on specific experimental examples, both classic ones and those from recent research.

Objective

The goal is to study how novel phenomena emerge in the solid state.

Content

- Today's challenges and opportunities in Solid State Physics
 - Phase transitions and critical phenomena
 - Main concepts: coherence length, symmetry, order parameter, correlation functions, generalized susceptibility
 - Bragg-Williams mean field theory
 - Landau theory of phase transitions
 - Fluctuations in Landau theory
 - Critical exponents: significance, measurement, inequalities, equalities
 - Scaling and hyperscaling
 - Universality
 - Critical dynamics
 - Quantum phase transitions and quantum criticality
 - Fermi surface instabilities
 - The concept of the Landau Fermi liquid in metals
 - Kohn anomalies
 - Charge density waves
 - Metallic ferromagnets and half-metals
 - Spin density waves
 - Magnetism of insulators
 - Magnetic interactions in solids and the spin Hamiltonian
 - Magnetic structures and phase transitions
 - Spin waves
 - Quantum magnetism
 - Electron correlations in solids
 - Mott insulating state
 - Phases of the Hubbard model
 - Layered cuprates (non-superconducting properties)

Lecture notes

The printed material for this course involves: (1) a self-contained script, distributed electronically at semester start. (2) experimental examples (Power Point slide-style) selected from original publications, distributed at the start of every lecture.

Literature

A list of books will be distributed. Numerous references to useful published scientific papers will be provided.

Prerequisites / notice

This course is for students who like to be engaged in active learning. The "exercise classes" are organized in a non-traditional way: following the idea of "less is more", we will work on only about half a dozen topics, and this gives students a chance to take a look at original literature (provided), and to get the grasp of a topic from a broader perspective.

Students report back that this mode of "exercise class" is more satisfying than traditional modes, even if it does not mean less effort.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0442-00L</td>
<td>Quantum Optics</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U</td>
<td>T. Esslinger</td>
</tr>
</tbody>
</table>

Abstract

This course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics covered include the quantum nature of light, semi-classical and quantum mechanical description of light-matter interaction, laser manipulation of atoms and ions, optomechanics and quantum computation.

Objective

The course aims to provide the knowledge necessary for pursuing research in the field of Quantum Optics. Fundamental concepts and techniques of Quantum Optics will be linked to modern experimental research. During the course the students should acquire the capability to understand currently published research in the field.

Content

- Coherence properties of light
- Quantum nature of light: statistics and non-classical states of light
- Light matter interaction: density matrix formalism and Bloch equations
- Quantum description of light matter interaction: the Jaynes-Cummings model, photon blockade
- Laser manipulation of atoms and ions: laser cooling and trapping, atom interferometry,
- Further topics: Rydberg atoms, optomechanics, quantum computing, complex quantum systems.

Lecture notes

Selected book chapters will be distributed.

Literature

Text-books:

- G. Gryenberg, A. Aspect and C. Fabre, Introduction to Quantum Optics
- R. Loudon, The Quantum Theory of Light
- Atomic Physics, Christopher J. Foot
- Advances in Atomic Physics, Claude Cohen-Tannoudji and David Guéry-Odelin
- C. Cohen-Tannoudji et al., Atom-Photon-Interactions
- M. Scully and M.S. Zubairy, Quantum Optics
- Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0402-00L</td>
<td>Ultrafast Laser Physics</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U</td>
<td>L. P. Gallmann, S. Johnson, U. Keller</td>
</tr>
</tbody>
</table>

Abstract

Introduction to ultrafast laser physics with an outlook into cutting edge research topics such as attosecond science and coherent ultrafast sources from THz to X-rays.
Objective
Understanding of basic physics and technology for pursuing research in ultrafast laser science. How are ultrashort laser pulses generated, how do they interact with matter, how can we measure these shortest man-made events and how can we use them to time-resolve ultrafast processes in nature? Fundamental concepts and techniques will be linked to a selection of hot topics in current research and applications.

Content
The lecture covers the following topics:

a) Linear pulse propagation: mathematical description of pulses and their propagation in linear optical systems, effect of dispersion on ultrashort pulses, concepts of pulse carrier and envelope, time-bandwidth product

b) Dispersion compensation: technologies for controlling dispersion, pulse shaping, measurement of dispersion

c) Nonlinear pulse propagation: intensity-dependent refractive index (Kerr effect), self-phase modulation, nonlinear pulse compression, self-focusing, filamentation, nonlinear Schrödinger equation, solitons, non-instantaneous nonlinear effects (Raman/Brillouin), self-steepening, saturable gain and absorption

d) Second-order nonlinearities with ultrashort pulses: phase-matching with short pulses and real beams, quasi-phase matching, second-harmonic and sum-frequency generation, parametric amplification and generation

e) Relaxation oscillations: dynamical behavior of rate equations after perturbation

f) Q-switching: active Q-switching and its theory based on rate equations, active Q-switching technologies, passive Q-switching and theory

g) Active modelocking: introduction to modelocking, frequency comb versus axial modes, theory for various regimes of laser operation, Haus master equation formalism

h) Passive modelocking: slow, fast and ideally fast saturable absorbers, semiconductor saturable absorber mirror (SESAM), designs of and materials for SESAMs, modelocking with slow absorber and dynamic gain saturation, modelocking with ideally fast saturable absorber, Kerr-lens modelocking, soliton modelocking, Q-switching instabilities in modelocked lasers, inverse saturable absorption

i) Pulse duration measurements: rf cables and electronics, fast photodiodes, linear system theory for microwave test systems, intensity and interferometric autocorrelations and their limitations, frequency-resolved optical gating, spectral phase interferometry for direct electric-field reconstruction and more

j) Noise: microwave spectrum analyzer as laser diagnostics, amplitude noise and timing jitter of ultrafast lasers, lock-in detection

k) Ultrafast measurements: pump-probe scheme, transient absorption/differential transmission spectroscopy, four-wave mixing, optical gating and more

l) Frequency combs and carrier-envelope offset phase: measurement and stabilization of carrier-envelope offset phase (CEP), time and frequency domain applications of CEP-stabilized sources

m) High-harmonic generation and attosecond science: non-perturbative nonlinear optics / strong-field phenomena, high-harmonic generation (HHG), phase-matching in HHG, attosecond pulse generation, attosecond technology: detectors and diagnostics, attosecond metrology (streaking, RABBITT, transient absorption, attoclock), example experiments

n) Ultrafast THz science: generation and detection, physics in THz domain, weak-field and strong-field applications

Prerequisites / notice
Prerequisites: Basic knowledge of quantum electronics (e. g., 402-0275-00L Quantenelektronik).

Lecture notes
Class notes will be made available.

402-0891-00L

Phenomenology of Particle Physics I

W 10 credits 3V+2U

P. Crivelli, A. de Cosa

Phenomenology of Particle Physics I:

Relativistic kinematics
Decay rates and cross sections
The Dirac equation
From the S-matrix to the Feynman rules of QED
Scattering processes in QED
Experimental tests of QED
Hadron spectroscopy
Unitary symmetries and QCD
QCD and alpha_s running
QCD in e^+e^- annihilation
Experimental tests of QCD in e^+e^- annihilation

Objective
Introduction to modern particle physics

Content
Topics to be covered in Phenomenology of Particle Physics I:

Relativistic kinematics
Decay rates and cross sections
The Dirac equation
From the S-matrix to the Feynman rules of QED
Scattering processes in QED
Experimental tests of QED
Hadron spectroscopy
Unitary symmetries and QCD
QCD and alpha_s running
QCD in e^+e^- annihilation
Experimental tests of QCD in e^+e^- annihilation

Literature
As described in the entity: Lernmaterialien
The course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, and the electron gas as well as the spin system of a solid are discussed. The focus is on time resolved experiments which provide insight into pico- and femtosecond dynamics.

Objective
After attending this course you understand the dynamics of essential excitation processes which occur in solids and you have an overview over state of the art experimental techniques used to study fast processes.

Content
1. Experimental techniques, an overview
2. Dynamics of the electron gas
3. Dynamics of the lattice
4. Dynamics of the spin system
5. Correlated materials

Ultrafast Processes in Solids

Lecturers
Y. M. Acremann

At the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:

W

- Apply concepts of quantum-mechanics to estimate the strength of atomic magnetic moments and their interactions
- Identify the mechanisms from which exchange interaction originates in solids (itinerant and local-moment magnetism)
- Evaluate the consequences of the interplay between competing interactions and thermal energy
- Apply general concepts of statistical physics to determine the origin of bistability in realistic magnets
- Discriminate the dynamic responses of a magnet to different external stimuli

W

Learning material will be made available through a dedicated RStudioServer and through Moodle.

Prerequisites / notice
The lecture can also be followed by interested non-physics students as basic concepts will be introduced.

Autumn Semester 2021

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0526-00L</td>
<td>Ultrafast Processes in Solids</td>
<td>W</td>
<td>6</td>
<td>2V+1U</td>
<td>Y. M. Acremann</td>
</tr>
<tr>
<td>Abstract</td>
<td>Ultrafast processes in solids are of fundamental interest as well as relevant for modern technological applications. The dynamics of the lattice, the electron gas as well as the spin system of a solid are discussed. The focus is on time resolved experiments which provide insight into pico- and femtosecond dynamics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>After attending this course you understand the dynamics of essential excitation processes which occur in solids and you have an overview over state of the art experimental techniques used to study fast processes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>relevant publications will be cited</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The lecture can also be followed by interested non-physics students as basic concepts will be introduced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction to Magnetism

Lecturers
A. Vindigni

At the end of this course students should have acquired the basic knowledge needed to develop a research project in the field of magnetism or to attend effectively more advanced courses on this topic. Preliminary contents for the HS21:

- Magnetism in atoms (quantum-mechanical origin of atomic magnetic moments, intra-atomic exchange interaction)
- Magnetism in solids (mechanisms producing inter-atomic exchange interaction in solids, crystal field).
- Spin resonance and relaxation (Larmor precession, resonance phenomena, quantum tunneling, Bloch equation, superparamagnetism)
- Magnetic order at finite temperatures (Ising and Heisenberg models, low-dimensional magnetism)
- Dipolar interaction in solids (shape anisotropy, dipolar frustration, origin of magnetic domains)

Lecture notes
Learning material will be made available through a dedicated RStudioServer and through Moodle.

Prerequisites / notice
Students are assumed to possess a basic background knowledge in quantum mechanics, solid-state and statistical physics as well as classical electromagnetism.

At the end of this course students should have acquired the basic knowledge needed to develop a research project in the field of magnetism or to attend effectively more advanced courses on this topic. Preliminary contents for the HS21:

- Magnetism in atoms (quantum-mechanical origin of atomic magnetic moments, intra-atomic exchange interaction)
- Magnetism in solids (mechanisms producing inter-atomic exchange interaction in solids, crystal field).
- Spin resonance and relaxation (Larmor precession, resonance phenomena, quantum tunneling, Bloch equation, superparamagnetism)
- Magnetic order at finite temperatures (Ising and Heisenberg models, low-dimensional magnetism)
- Dipolar interaction in solids (shape anisotropy, dipolar frustration, origin of magnetic domains)

Semiconductor Nanostructures

Lecturers
In addition to the lecture notes, the following supplementary books can be recommended:

Prerequisites / notice
The course is taught in English.

402-0317-00L Semiconductor Materials: Fundamentals and Fabrication

Abstract
This course gives an introduction into the fundamentals of semiconductor materials. The main focus is on state-of-the-art fabrication and characterization methods. The course will be continued in the spring term with a focus on applications.

Objective
Basic knowledge of semiconductor physics and technology. Application of this knowledge for state-of-the-art semiconductor device processing.

Content
1. Fundamentals of Solid State Physics
 1.1 Semiconductor materials
 1.2 Band structures
 1.3 Carrier statistics in intrinsic and doped semiconductors
 1.4 p-n junctions
 1.5 Low-dimensional structures
2. Bulk Material growth of Semiconductors
 2.1 CZochalski method
 2.2 Floating zone method
 2.3 High pressure synthesis
3. Semiconductor Epitaxy
 3.1 Fundamentals of Epitaxy
 3.2 Molecular Beam Epitaxy (MBE)
 3.3 Metal-Organic Chemical Vapor Deposition (MOCVD)
4. Liquid Phase Epitaxy (LPE)
4.1 Pressure and temperature
4.2 Reflectometry
4.3 Ellipsometry and RAS
4.4 LEED, AES, XPS
4.5 STM, AFM
5. In situ characterization

Lecture notes
https://moodle-app2.let.ethz.ch/course/view.php?id=15519

Prerequisites / notice
The "compulsory performance element" of this lecture is a short presentation of a research paper complementing the lecture topics. Several topics and corresponding papers will be offered on the moodle page of this lecture.

402-0447-00L Quantum Science with Superconducting Circuits

Abstract
Superconducting Circuits provide a versatile experimental platform to explore the most intriguing quantum-physical phenomena and constitute one of the prime contenders to build quantum computers. Students will get a thorough introduction to the underlying physical concepts, the experimental setting, and the state-of-the-art of quantum computing in this emerging research field.

Objective
Based on today’s most advanced solid state platform for quantum control, the students will learn how to engineer quantum coherent devices and how to use them to process quantum information. The students will acquire both analytical and numerical methods to model the properties and phenomena observed in these systems. The course is positioned at the intersection between quantum physics and engineering.

Content

Prerequisites / notice
All students and researchers with a general interest in quantum information science, quantum optics, and quantum engineering are welcome to this course. Basic knowledge of quantum physics is a plus, but not a strict requirement for the successful participation in this course.

402-0505-00L Physics in the Smartphone

Abstract
Physics in today's high-tech smartphone. Examples: network topology and scratch proof glass, spin-orbit coupling - brighter displays, GPS and general theory of relativity, electromagnetic response of matter (transparent metals for displays, GPS signal propagation), light-field cameras, CCD and CMOS light sensors, physics stops Moore's law, meta-materials for antennas, MEMS sensor physics, etc.

Objective
Students recognize and appreciate the enormous impact "physics" has on today's high tech world. Abstract concepts, old and recent, encountered in the lectures are implemented and present all around us.

Students are actively involved in the preparation and presentation of the topics, and thus acquire valuable professional skills.
We explore how traditional and new physics concepts and achievements make their way into today's ubiquitous high-tech gadget: the smartphone. Examples of topics include:

- network topology and scratch-proof Gorilla glass,
- spin-orbit coupling makes for four times brighter displays,
- no GPS without general theory of relativity,
- electromagnetic response of matter (transparent metals for displays, GPS signal propagation in the atmosphere),
- lightfield cameras replacing CCD and CMOS light sensors,
- physical limitations to IC scaling: the end of "Moore's law",
- meta-materials for antennas,
- physics of the various MEMS sensors, etc., etc.,

Lecture notes

The presentation material and original literature will be distributed weekly.

Prerequisites / notice

Basic physics lectures and introduction to solid state physics are expected.

This is a "3 hour" course, with two hours set for <tba>, and the third one to be set at the beginning of the semester.

An introductory event is planned in the first week of the term on Wednesday, September 19th - 17:45 in the room HIT K51. In this meeting we will fix the time of the usual lecture and we will distribute the topics for the presentations during the term. The tutors will briefly present each topics.

▌▌▌▌▌▌ Selection: Quantum Electronics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0464-00L</td>
<td>Optical Properties of Semiconductors</td>
<td>W</td>
<td>8</td>
<td>2V+2U</td>
<td>J. Faist, P. Anantha Murthy</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course presents a comprehensive discussion of optical processes in semiconductors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The rich physics of the optical properties of semiconductors, as well as the advanced processing available on these material, enabled numerous applications (lasers, LEDs and solar cells) as well as the realization of new physical concepts. Systems that will be covered include quantum dots, exciton-polaritons, quantum Hall fluids and graphene-like materials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Electronic states in III-V materials and quantum structures, optical transitions, excitons and polaritons, novel two dimensional semiconductors, spin-orbit interaction and magneto-optics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: Quantum Mechanics I, Introduction to Solid State Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

402-0484-00L	Experimental and Theoretical Aspects of Quantum Gases	W	6	2V+1U	T. Esslinger
Abstract	Quantum Gases are the most precisely controlled many-body systems in physics. This provides a unique interface between theory and experiment, which allows addressing fundamental concepts and long-standing questions. This course lays the foundation for the understanding of current research in this vibrant field.				
Objective	The lecture conveys a basic understanding for the current research on quantum gases. Emphasis will be put on the connection between theory and experimental observation. It will enable students to read and understand publications in this field.				
Content	Cooling and trapping of neutral atoms				
Bose and Fermi gases
Ultracold collisions
The Bose-condensed state
Elementary excitations
Vortices
Superfluidity
Interference and Correlations
Optical lattices |

402-0444-00L	Advanced Quantum Optics	W	6	2V+1U	A. Imamoglu
Abstract	This course builds up on the material covered in the Quantum Optics course. The emphasis will be on quantum optics in condensed-matter systems.				
Objective	The course aims to provide the knowledge necessary for pursuing advanced research in the field of Quantum Optics in condensed matter systems. Fundamental concepts and techniques of Quantum Optics will be linked to experimental research in systems such as quantum dots, exciton-polaritons, quantum Hall fluids and graphene-like materials.				
Lecture notes	Lecture notes will be provided				
Literature	C. Cohen-Tannoudji et al., Atom-Photon-Interactions (recommended) Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (recommended) A collection of review articles (will be pointed out during the lecture)				
Prerequisites / notice	Masters level quantum optics knowledge				

| 402-0465-58L | Intersubband Optoelectronics | W | 6 | 2V+1U | G. Scalari |
| Abstract | Does not take place this semester. |

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1730 of 2152
The reference book for the lecture is "Quantum Cascade Lasers" by Jerome Faist, published by Oxford University Press.

- Intersubband transitions in quantum wells are transitions between states created by quantum confinement in ultra-thin layers of semiconductors. Because of its inherent taylorability, this system can be seen as the "ultimate quantum designer's material".

- The goal of this lecture is to explore both the rich physics as well as the application of these systems for sources and detectors. In fact, devices based on intersubband transitions are now unlocking large areas of the electromagnetic spectrum.

- The lecture will treat the following chapters:
 - Introduction: Intersubband optoelectronics as an example of quantum engineering
 - Technological aspects
 - Electronic states in semiconductor quantum wells
 - Intersubband absorption and scattering processes
 - Mid-IR and THz ISB Detectors
 - THz QCLs (direct and non-linear generation)
 - Further electronic confinement: interlevel Qdot transitions and magnetic field effects
 - Strong light-matter coupling in Mid-IR and THz range

- The lecture notes are "Quantum Cascade Lasers" by Jerome Faist, published by Oxford University Press.

- Mostly the original articles, other useful reading can be found in:
 - E. Rosencher and B. Vinter, Optoelectronics, Cambridge Univ. Press
 - G. Bastard, Wave mechanics applied to semiconductor heterostructures, Halsted press

- Requirements: A basic knowledge of solid-state physics and of quantum electronics.

Selection: Particle Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0715-00L</td>
<td>Low Energy Particle Physics</td>
<td>W</td>
<td>6</td>
<td>2V+1U</td>
<td>A. Soter, P. A. Schmidt-Wellenburg</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Low energy particle physics provides complementary information to high energy physics with colliders. In this lecture, we will concentrate on flagships experiments which have significantly improved our understanding of particle physics today, concentrating mainly on precision experiments with neutrons, muons and exotic atoms.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>You will be able to present and discuss:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- the principle of the experiments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- the underlying technique and methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- the context and the impact of these experiments on particle physics</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Low energy particle physics provides complementary information to high energy physics with colliders. At the Large Hadron Collider one directly searches for new particles at energies up to the TeV range. In a complementary way, low energy particle physics indirectly probes the existence of such particles and provides constraints for "new physics", making use of high precision and high intensities.</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>Besides the sensitivity to effects related with new physics (e.g. lepton flavor violation, symmetry violations, CPT tests, search for electric dipole moments, new low mass exchange bosons etc.), low energy physics provides the best test of QED (electron g-2), the best tests of bound-state QED (atomic physics and exotic atoms), precise determinations of fundamental constants, information about the CKM matrix, precise information on the weak and strong force even in the non-perturbative regime etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Starting from a general introduction on high intensity/high precision particle physics and the main characteristics of muons and neutrons and their production, we will then focus on the discussion of fundamental problems and ground-breaking experiments:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- search for rare decays and charged lepton flavor violation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- electric dipole moments and CP violation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- spectroscopy of exotic atoms and symmetries of the standard model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- what atomic physics can do for particle physics and vice versa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- neutron decay and primordial nucleosynthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- atomic clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Penning traps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Ramsey spectroscopy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spin manipulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- neutron-matter interaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- ultra-cold neutron production</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- various techniques: detectors, cryogenics, particle beams, laser cooling...</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>Golub, Richardson & Lamoreaux: "Ultra-Cold Neutrons"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rauch & Werner: "Neutron Interferometry"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carlile & Willis: "Experimental Neutron Scattering"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byrne: "Neutrons, Nuclei and Matter"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Klapdor-Kleingrothaus: "Non Accelerator Particle Physics"</td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td>Einführung in die Kern- und Teilchenphysik / Introduction to Nuclear- and Particle-Physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0767-00L</td>
<td>Neutrino Physics</td>
<td>W</td>
<td>6</td>
<td>3V+1U</td>
<td>A. Rubbia, D. Sgalaberna</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Theoretical basis and selected experiments to determine the properties of neutrinos and their interactions (mass, spin, helicity, chirality, oscillations, interactions with leptons and quarks).</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Introduction to the physics of neutrinos with special consideration of phenomena connected with neutrino masses.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>Script</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D.O. Caldwell, Current Aspects of Neutrino Physics, Springer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0725-00L</td>
<td>Experimental Methods and Instruments of Particle Physics</td>
<td>W</td>
<td>6</td>
<td>3V+1U</td>
<td>U. Langenegger, T. Schietinger, University lecturers</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Special Students UZH must book the module PHY461 directly at UZH.</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1731 of 2152
Abstract
Physics and design of particle accelerators.
Basics and concepts of particle detectors.
Track- and vertex-detectors, calorimetry, particle identification.
Special applications like Cherenkov detectors, air showers, direct detection of dark matter.
Simulation methods, readout electronics, trigger and data acquisition.
Examples of key experiments.

Objective
Acquire an in-depth understanding and overview of the essential elements of experimental methods in particle physics, including accelerators and experiments.

Content
1. Examples of modern experiments
2. Basics: Bethe-Bloch, radiation length, nucl. interaction length, fixed-target vs. collider, principles of measurements: energy- and momentum-conservation, etc
3. Physics and layout of accelerators
4. Charged particle tracking and vertexing
5. Calorimetry
6. Particle identification
7. Analysis methods: invariant and missing mass, jet algorithms, b-tagging
8. Special detectors: extended airshow detectors and cryogenic detectors
9. MC simulations (GEANT), trigger, readout, electronics

Lecture notes Slides are handed out regularly, see http://www.physik.uzh.ch/en/teaching/PHY461/
Taught competencies Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

402-0777-00L Particle Accelerator Physics and Modeling I

Abstract
This is the first of two courses, introducing particle accelerators from a theoretical point of view and covers state-of-the-art modelling techniques.

Objective
You understand the building blocks of particle accelerators. Modern analysis tools allows you to model state-of-the-art particle accelerators.

Content
Here is the rough plan of the topics, however the actual pace may vary relative to this plan.
- Recap of Relativistic Classical Mechanics and Electrodynamics
- Building Blocks of Particle Accelerators
- Lie Algebraic Structure of Classical Mechanics and Application to Particle Accelerators
- Symplectic Maps & Analysis of Maps
- Symplectic Particle Tracking
- Collective Effects
- Linear & Circular Accelerators

402-0851-00L QCD: Theory and Experiment

Abstract
An introduction to the theoretical aspects and experimental tests of QCD, with emphasis on perturbative QCD and related experiments at hadron colliders.

Objective
Knowledge acquired on basics of perturbative QCD, both of theoretical and experimental nature. Ability to perform simple calculations of perturbative QCD, as well as to understand modern publications on theoretical and experimental aspects of perturbative QCD.

Content
QCD Lagrangian and Feynman Rules
QCD running coupling
Parton model
DGLAP
Basic processes
Experimental tests at lepton and hadron colliders
Measurements of the strong coupling constant

Literature
2) R. K. Ellis, W. J. Stirling, B. R. Webber : “QCD and Collider Physics” (Cambridge Monographs on Particle Physics, Nuclear Physics & Cosmology)

Prerequisites / notice
Will be given as block course, language: English.
For students of both ETH and University of Zurich.

Select: Theoretical Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0461-00L</td>
<td>Quantum Information Theory</td>
<td>W</td>
<td>8</td>
<td>3V+1U</td>
<td>P. Kammerlander</td>
</tr>
<tr>
<td></td>
<td>The goal of this course is to introduce the concepts and methods of quantum information theory. It starts with an introduction to the mathematical theory of quantum systems and then discusses the basic information-theoretic aspects of quantum mechanics. Further topics include applications such as quantum cryptography and quantum coding theory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>By the end of the course students are able to explain the basic mathematical formalism (e.g. states, channels) and the tools (e.g. entropy, distinguishability) of quantum information theory. They are able to adapt and apply these concepts and methods to analytically solve quantum information-processing problems primarily related to communication and cryptography.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematical formulation of quantum theory: entanglement, density operators, quantum channels and their representations. Basic tools of quantum information theory: distinguishability of states and channels, formulation as semidefinite programs, entropy and its properties. Applications of the concepts and tools: communication of classical or quantum information over noisy channels, quantitative uncertainty relations, randomness generation, entanglement distillation, security of quantum cryptography.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed via moodle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nielsen and Chuang, Quantum Information and Computation Preskill, Lecture Notes on Quantum Computation Wilde, Quantum Information Theory Watrous, The Theory of Quantum Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

402-0811-00L Programming Techniques for Scientific Simulations I

Abstract
Does not take place this semester.

Objective
Not given.

Content
Not given.

Literature
Not given.
This lecture provides an overview of programming techniques for scientific simulations. The focus is on basic and advanced C++ programming techniques and scientific software libraries. Based on an overview over the hardware components of PCs and supercomputer, optimization methods for scientific simulation codes are explained.

The goal of the course is that students learn basic and advanced programming techniques and scientific software libraries as used and applied for scientific simulations.

402-0809-00L Introduction to Computational Physics

Abstract

This course offers an introduction to computer simulation methods for physics problems and their implementation on PCs and supercomputers. The covered topics include classical equations of motion, partial differential equations (wave equation, diffusion equation, Maxwell's equations), Monte Carlo simulations, percolation, phase transitions, and N-Body problems.

Objective

Students learn to apply the following methods: Random number generators, Determination of percolation critical exponents, numerical solution of problems from classical mechanics and electrodynamics, canonical Monte-Carlo simulations to numerically analyze magnetic systems. Students also learn how to implement their own numerical frameworks in Julia and how to use existing libraries to solve physical problems. In addition, students learn to distinguish between different numerical methods to apply them to solve a given physical problem.

Content

Introduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics as well as some interdisciplinary applications are used to introduce modern programming methods for numerical simulations using Julia. Furthermore, an overview of existing software libraries for numerical simulations is presented.

Prerequisites / notice

Lecture notes and slides are available online and will be distributed if desired.

Literature

Recommended: Quantum Field Theory 2, Advanced Field Theory, General Relativity

402-0580-00L Superconductivity

Abstract

Superconductivity; thermodynamics, London and Pippard theory; Ginzburg-Landau theory: spontaneous symmetry breaking, flux quantization, type I and II superconductors; microscopic BCS theory: electron-phonon mechanism, Cooper pairing, quasiparticle spectrum, thermodynamics and response to magnetic fields. Josephson effect: superconducting quantum interference devices (SQUID) and other applications.

Objective

Introduction to the most important concepts of superconductivity both on phenomenological and microscopic level, including experimental and theoretical aspects.

Content

This lecture course provides an introduction to superconductivity, covering both experimental as well as theoretical aspects. The following topics are covered:

- Basic phenomena of superconductivity: thermodynamics, electrodynamics, London and Pippard theory; Ginzburg-Landau theory: spontaneous symmetry breaking, flux quantization, properties of type I and II superconductors; mixed phase; microscopic BCS theory: electron-phonon mechanism, Cooper pairing, coherent state, quasiparticle spectrum, thermodynamics and response to magnetic fields; Josephson effects, superconducting quantum interference devices (SQUID) and other applications.

Prerequisites / notice

The preceding attendance of the scheduled lecture courses "Introduction to Solid State Physics" and "Quantum Mechanics I" are mandatory. The lectures "Quantum Mechanics II" and "Solid State Theory" provide the most optimal conditions to follow this course.

402-0484-00L Experimental and Theoretical Aspects of Quantum Gases

Abstract

Quantum Gases are the most precisely controlled many-body systems in physics. This provides a unique interface between theory and experiment, which allows addressing fundamental concepts and long-standing questions. This course lays the foundation for the understanding of current research in this vibrant field.

Objective

The lecture conveys a basic understanding for the current research on quantum gases. Emphasis will be put on the connection between theory and experimental observation. It will enable students to read and understand publications in this field.

Content

Cooling and trapping of neutral atoms
- Bose and Fermi gases
- Ultracold collisions
- The Bose-condensed state
- Elementary excitations
- Vortices
- Superfluidity
- Interference and Correlations
- Optical lattices

Prerequisites / notice

Notes and material accompanying the lecture will be provided.

Literature

402-0833-00L Particle Physics in the Early Universe

Abstract

An introduction to key concepts on the interface of Particle Physics and Early Universe cosmology. Topics include inflation and inflationary models, the Electroweak phase transition and vacuum stability, matter-antimatter asymmetry, recombination and the Cosmic Microwave Background, relic abundances and primordial nucleosynthesis, baryogenesis, dark matter and more.

Objective

The objectives of this course is to understand the evolution of the Universe at its early stages, as described by the Standard Model of cosmology, and delve into the insights and constraints imposed by cosmological observations on possible new particles beyond those discovered at the LHC.

Prerequisites / notice

Recommended: Quantum Field Theory 1 or Quantum Field Theory 2, Advanced Field Theory, General Relativity.
Parametric Phenomena

Abstract
String theory is an attempt to quantise gravity and unite it with the other fundamental forces of nature. It is related to numerous interesting topics and questions in quantum field theory. In this course, an introduction to the basics of string theory is provided. Advanced topics will be touched upon towards the end of the course briefly in order to foster further research.

Objective
Within this course, a basic understanding and overview of the concepts and notions employed in string theory shall be given. More advanced topics will be provided at the Moodle site for the course.

Content
- mechanics of point particles and extended objects
- string modes and their quantisation; higher dimensions, supersymmetry
- D-branes, T-duality
- supergravity as a low-energy effective theory, strings on curved backgrounds
- two-dimensional field theories (classical/quantum, conformal/non-conformal)

Literature
M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory I, CUP (1987).

Prerequisites
Recommended: Quantum Field Theory I (in parallel)

Effective Field Theories for Particle Physics

Abstract

Quantum Chromodynamics

Abstract

Introduction to String Theory

Abstract

Scattering Amplitudes in Quantum Field Theories

Abstract

Parametric Phenomena

Abstract

Quantum Chromodynamics

Abstract

Effective Field Theories for Particle Physics

Abstract

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 1734 of 2152
Abstract: The focus of the course is on Effective Field Theories (EFTs) and their interplay with dispersion theory. These topics will be discussed both in general terms and with specific phenomenological applications in the context of physics beyond the Standard Model, effective description of the weak interaction, as well as the description of non-perturbative strong interaction at low energies.

Objective: This course covers the basic concepts of effective field theories (EFTs) and dispersion theory. We will start by introducing the core concept of constructing EFTs and apply them to the low-energy description of the weak interaction and the effective description of heavy physics beyond the Standard Model.

In the next part of the course, we will discuss Chiral Perturbation Theory (ChPT), the low-energy effective theory of Quantum Chromodynamics (QCD). We will briefly discuss the application of this concept to describe a class of theories beyond the SM in which the SM Higgs arises as a composite state of a new confining sector.

The second focus of the course is on dispersion theory and its interplay with EFTs. We will discuss how to make use of the constraints from unitarity of the S-matrix and analyticity of scattering amplitudes, in order to extend the range of validity of the theoretical description compared to pure EFT methods. We will also discuss how to obtain constraints on EFT parameters from unitarity and analyticity. We will discuss the application of these methods both in the context of low-energy strong interaction and physics beyond the Standard Model.

Content: - Introduction to Effective Field Theories
- Decoupling and matching
- Renormalization group resummation
- The Standard Model Effective Field Theory (SMEFT)
- Chiral Lagrangians
- Unitarity of the S-matrix
- Analyticity and dispersion relations

Prerequisites / notice: QFT-I (mandatory) and QFT-II (highly recommended)

402-0490-00L Advanced Methods in Quantum Many-Body Theory

Abstract: Advanced theoretical methods for analyzing quantum many-body systems will be reviewed. We will discuss equilibrium Green's functions, Keldysh formalism for nonequilibrium phenomena, variational approaches. Specific models that will be considered include systems with dissipation, polarons, interacting electrons, electron-phonon systems, transport in mesoscopic systems, superconductivity, cavity QED

Objective: Introduce advanced theoretical methods for analyzing quantum many-body systems including Green’s functions and variational approaches.

Prerequisites / notice: This class assumes familiarity with quantum mechanics, including second quantization, and condensed matter physics.

Selection: Astrophysics

Number Title W Type ECTS Hours Lecturers
402-0713-00L Astro-Particle Physics I W 6 credits 2V+1U A. Biland

Abstract: This lecture gives an overview of the present research in the field of Astro-Particle Physics, including the different experimental techniques. In the first semester, main topics are the charged cosmic rays including the antimatter problem. The second semester focuses on the neutral components of the cosmic rays as well as on some aspects of Dark Matter.

Objective: Successful students know:
- experimental methods to measure cosmic ray particles over full energy range
- current knowledge about the composition of cosmic ray
- possible cosmic acceleration mechanisms
- correlation between astronomical object classes and cosmic accelerators
- information about our galaxy and cosmology gained from observations of cosmic ray

Content: First semester (Astro-Particle Physics I);
- definition of 'Astro-Particle Physics'
- important historical experiments
- chemical composition of the cosmic rays
- direct observations of cosmic rays
- indirect observations of cosmic rays
- 'extended air showers' and 'cosmic muons'
- 'knee' and 'ankle' in the energy spectrum
- the 'anti-matter problem' and the Big Bang
- 'cosmic accelerators'

Lecture notes: See lecture home page: http://ihp-lx2.ethz.ch/AstroTeilchen/

402-0393-00L Theoretical Cosmology and Different Aspects of Gravity

Abstract: These lecture series will be dedicated to advanced topics within the framework of theoretical cosmology and gravity. A detailed introduction into the successful construction of General Relativity and beyond will be given, together with their cosmological implications.

Objective: These lecture series will discuss different advanced topics within the framework of theoretical cosmology and gravity. First of all, I will give a detailed introduction into the successful construction of General Relativity from a geometrical perspective. After constructing our geometrical setup I will discuss the most general space-time geometries and their different manifestations. This will also allow me to introduce the geometrical trinity of gravity, in which the same theory of General Relativity can be constructed a la Einstein based on curvature, a la TEGR based on torsion and a la CGR based on non-metricity, which represents a simpler formulation of General Relativity. Starting from the defining key properties of General Relativity I will explain in which consistent ways these properties can be altered. Still following the geometrical interpretation of gravity this will allow me to introduce modifications of gravity based on affine structure.

In the second part I will abandon the geometrical framework and adapt to the field theory perspective. In this context I will construct General Relativity as the unique fundamental theory for a massless spin-2 field. This means that any modification of gravity will ultimately introduce additional degrees of freedom in the gravity sector. After discussing the building blocks of field theories, I will introduce massive gravity, Horndeski scalar-tensor theories, generalized Proca theories and scalar-vector-tensor theories.

Based on the assumption that General Relativity is the underlying theory of gravity I will introduce the standard model of cosmology and discuss the tenacious challenges we are facing within this framework. We will study the FLRW models relevant for inflation and late-time universe at the background level and consider small cosmological perturbations together with their evolution. We will see how we can use different observational channels and theoretical consistency checks in order to critically assess different gravity theories. In this context we will pay special attention to the implications of gravitational waves measurements for generalizations of gravity theory beyond General Relativity. Using specialized Mathematica packages some of the relevant relations and computations will be illustrated as well.

Abstract
Astronomical techniques and observing strategies are presented with a particular emphasis on currently available professional telescopes of the European Southern Observatory.

Objective
The course shall provide a basic understanding of the potential and limitation of different types of modern astronomical observations for early career researchers. The course will present technical aspects which are important to prepare, to carry out and to calibrate different types of astronomical measurements: photometry, spectroscopy, astrometry, polarimetry and others. Many practical examples will be discussed including methods for the detection of physical samples of cosmic dust. Also scientific aspects of instrumental projects and observational programs are addressed. An opportunity to contribute to solar spacecraft operations will be available during the course.

Content
1. Introduction: research projects in astronomical observations
2. Observables: electromagnetic radiation, particles
3. Optical telescopes: Optics, types, mechanical concepts, examples
4. Detectors: CCDs, IR detectors, basic data reduction steps
5. Photometry: signal extraction, calibration, faint sources, etc.
6. Spectroscopy: spectographs, calibration, spectral features
7. Introduction to solar space instrumentation
8. Space observations of cosmic dust: introduction, remote sensing, in situ instruments, sample return, calibration, data analysis and practical examples
9. Speckles and adaptive optics: atmosphere, AO-systems
10. Polarimetry: measuring principles
11. Interferometry

Lecture notes
Notes will be distributed.

Literature

402-0368-11L
Earth - A (Unique?) Habitable Planet

Abstract
While thousands of extrasolar planets are known to orbit stars other than the Sun, Earth is - until now - the only planet known to be habitable. This lecture takes an interdisciplinary view on Earth as a habitable planet, how it formed, evolved, allowed life to flourish, and how its future might look like. Would we be able to identify another Earth-like planet amongst the population of exoplanets?

Objective
Attending students will
• understand Earth place in the cosmos
• learn tools to discern the history of Earth and other planets
• explore the origin and co-evolution of Earth and life
• put Earth in context with extrasolar planets

Content
This lecture focuses on our home planet - Earth - from an interdisciplinary perspective. As the search for habitable - and potentially even inhabited - extrasolar planets is one of the most dynamic research fields in modern astrophysics, understanding what makes a planet habitable is a topic of increasing importance; and a highly interdisciplinary topic. In broad brushes, this lecture will discuss the building blocks of planetary systems and their formation, how we can learn about the history of Earth and other planets, what major epochs we can identify over the course of Earth’s 4.5 billion year history, when life arose on Earth and what impact it had on Earth’s evolution, how the future Earth might look like, and - last but certainly not least - how we can search for an Earth-like planet in our cosmic neighbourhood and what our chances are to be successful.

402-0368-07L
Lecture Series: Space Research and Exploration

Abstract
Lecture Series about topics of space research and exploration consisting of individual talks giving by different leading experts from industry and academia.

Objective
Attending students will
• experience the interdisciplinarity of space research and exploration spanning physics, engineering, geosciences, biology and more
• be familiarized with the Swiss space research and industry sector
• improve their communication skills by broadening their research horizon
• have the opportunity for direct learning by posing questions to experts

Content
The field of space research and exploration is intrinsically interdisciplinary. Cutting edge space activities are dominated by an interplay between the scientifically desirable and the technologically possible. The ‘Lecture Series: Space Research and Exploration’ aims to shed light on key questions engaged by leading scientists and engineers today. It consists of weekly lecture, given by different speakers with vast experience in their respective field (e.g., Human Spaceflight, System Engineering of Spacecraft, Space Life Sciences, Space-based astrophysics). Subsequent to the talk, the student will have the opportunity to deepen their understanding by asking questions to the presenter in a moderated Q&A.

Confirmed speakers include:
21.09.: Prof. Sascha P. Quanz (ETH Zürich); Professor for Exoplanets
28.09.: Dr. Anna Kubik (ETH Zürich); Senior Scientist for Orbital Dynamics
12.10.: Dr. Andrea Fortier (University of Bern); CH/EOPS Instrument Scientist
19.10.: Prof. Volker Gass (EPFL Lausanne); Director of Space Innovation
26.10.: Dr. Hendrik Kolvenbach (ETH Zürich); Postdoctoral Researcher for Space Robotics
02.11.: Deborah Müller (RUAG Space); Director of Innovation & Business Development
16.11. & 21.12.: Prof. Claude Nicollier (EPFL Lausanne); Professor Emeritus, EPFL and former Astronaut
23.11.: Dr. Adrian Glauser (ETH Zürich); Senior Scientist for Astronomical Instrumentation
30.11.: Prof. Louise Harra (ETH Zürich); Professor of Solar Astrophysics
17.12.: Prof. Didier Queloz (ETH Zürich / Cambridge); Professor for Exoplanets

402-0355-00L
Planet Formation

Abstract
This course reviews the formation processes of terrestrial- and gaseous planets, and their moons. It provides a basic understanding on how our Solar System came to be, and how other planetary systems form, as well as how/when planets & moons can be habitable places for life.

Objective
Overview the state of the art planet- and moon formation models and identify open questions in the field. Understanding the formation process of planetary systems, and the formation of habitable worlds.
Content
1) Planet types
2) The Solar System planets
3) Extrasolar Planets
4) The protoplanetary disk where planets are forming. The initial conditions for planet formation.
5) The formation of the building blocks of planets (so-called "planetesimals")
6) Terrestrial Planet formation
7) Formation models of giant planets
8) Formation of moons
9) Evolution of planetary systems, orbital evolution of planets, resonances, planet-disk interactions
10) Origin of life, habitability, astrobiology

Literature
Astrophysics of Planet Formation
Armitage, Philip J.; Second edition – 2020
https://eth.swisscovery.slsp.ch/permalink/41SLSP_ETH/lsh164/alma931212978705503

Prerequisites / notice
No prerequisites. Max. 20 participants.

402-0371-62L Cosmological Probes W 6 credits 2V+1U A. Refregier

Abstract
Our understanding of the universe has made great progress recently thanks to the combination of several cosmological probes such as the cosmic microwave background, galaxy clustering, gravitational lensing, and supernovae. After a review of cosmology, this course will cover the physics of these different probes along with their application, combination and use to measure cosmological parameters.

Objective
The goal of this course is to provide an understanding of the physics, application and combination of cosmological probes, and highlight current research topics.

Prerequisites / notice
Credits or current enrollment in Astrophysics I and II is recommended but not required.

402-0363-00L Effective Field Theory in Cosmology W 6 credits 2V+1U L. Senatore

Abstract
We will cover several advanced topics in Cosmology where field theoretical techniques are proving useful. We will study Inflation, the theory of its quantum fluctuation, and the Effective Field Theory of Inflation. Then, we will move to the late-time universe, where we will study the formation of structure in the universe with the Effective Field Theory of Large-Scale Structure.

Objective
The objective is to learn about field theoretical techniques applied to cosmology.

Selection: Further Electives

Number Title Type ECTS Hours Lecturers
402-0737-00L Energy and Sustainability in the 21st Century (Part I) W 6 credits 2V+1U P. Morf

Objective
Why is energy important for life and our society? How did energy use change over time? Which effects did these changes have on the environment? What are the physical basics of energy technologies? When, why and how did technology and science of energy come together? What are the limits and benefits of all the various energy technologies? How can different energy technologies be compared? Can we understand the changes in the current energy systems? How will the energy systems of the future look like? How fast can we and should we alter the current energy transition? Which could be the overall guide lines for a working energy system of the future?

Content
Physical basics of energy, thermodynamics and life. Introduction to self-organisation, and systems. Energy and making use of it - a short history and overview on energy technologies Coal, oil and natural gas – fossil fuels Hydro, Wind - & Solarpower (Geothermal- and Tidal power) – the quest for renewable energy Nuclear power, radioactivity and ultimate storage – the quest for a safe technology Breeding and Nuclear Fusion – can it work at all? Energy storage – available technologies and a technology outlook Climate change, decarbonisation – how much time do we have? Energy efficiency, recycling and other resource conservation measures Energy systems – how everything can play together Buildings and Mobility – new technologies, new Ways of life? Life cycle assessment of Energy Technologies – problems and possibilities Economics of energy, learning curves, technology assessments and Innovation. The energy transition and decarbonisation – How is your 2040, 2050?

Lecture notes
Web page:
http://hp-ix2.ethz.ch/energy21/index.html

Literature
The Physics of Energy, R.L. Jaffe, W. Taylor, 2018
Clean Disruption of Energy and Transportation, T. Seba 2014
Energy and Civilization: A History, V. Smil, 2018

Prerequisites / notice
Basics of Physics applied to Energy and Energy Technology. Investigation on current problems (and possible solutions) related to the energy system and the environmental interactions. Training of scientific and multi-disciplinary methods, approaches and their limits in the exercises and discussions.

402-0247-00L Electronics for Physicists I (Analogue) W 4 credits 2V+2P G. Bison, W. Erdmann

Abstract
Passive components, linear networks, transmission lines, simulation of analog circuits, semiconductor components: diodes, bipolar and field-effect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise, operational amplifiers, feedback and stability in amplifiers, oscillators, ADCs and DACs, introduction in CMOS technology. Practical exercises in small groups to the above themes complement the lectures.

Subject
Passive elements, linear complex networks, transmission lines, simulation of analog circuits (SPICE), semiconductor elements: diodes, bipolar and field effect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise in analog circuits, operational amplifiers, feedback and stability in amplifiers, oscillators, ADCs and DACs, introduction in CMOS technology.

Prerequisites / notice
No prior knowledge in electronics is required.
As information technology continues its fast-paced evolution, solid-state devices and systems increase in complexity. Engineers and scientists are thus increasingly facing the need to model and simulate their problems numerically where analytic textbook solution cease to exist. Moreover, boundaries between traditional disciplines are harder to maintain, as a proper description of the system might involve phenomena from several domains. Examples include—but not limited to—mechatronics which relies on mechanical, electrical and electronic engineering, and transducers (sensors and actuators) which are by definition devices that convert signals from one physical domain to another. Simulation platforms such as Comsol Multiphysics have truly opened the way to easy multi-domain numerical simulation, offering tools that cover all operations from geometry definition, to meshing, to physics and boundary conditions setting to simulation and result post-processing and analysis in a unified, domain-independent fashion. However, this high degree of freedom has its price, as unexperienced users will soon find themselves in front of frustrating error messages or incomprehensible results. It is the role of this course to show how to properly set up a problem by exposing common misconceptions and pitfalls in multiphysics modeling. Good practices will be taught that should significantly speed-up the modeling process and produce results that do not contradict intuition. Examples will mainly come from the fields of mechanics (continuum mechanics), electromagnetism (Maxwell equations), heat transport (Fourier equation) and combinations of these domains.

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies
- Problem-solving
- Cooperation and Teamwork
- Creative Thinking
- Critical Thinking

Domain B - Method-specific Competencies

- 2V+1U+1A Hours

Domain C - Social Competencies

- not assessed

Domain D - Personal Competencies

- not assessed

151-0409-00L Multiphysics Modeling and Simulation

Abstract

This class introduces theoretical and practical aspects related to the modeling and simulation of multiphysics systems. Students will learn how to set up a multiphysics model from scratch, in a systematic fashion, and thus avoid frustrating pitfalls that come with trial-and-error. Comsol Multiphysics will be utilized to apply the concepts learned during the lectures to solve exercises.

Objective

As information technology continues its fast-paced evolution, solid-state devices and systems increase in complexity. Engineers and scientists are thus increasingly facing the need to model and simulate their problems numerically where analytic textbook solution cease to exist. Moreover, boundaries between traditional disciplines are harder to maintain, as a proper description of the system might involve phenomena from several domains. Examples include—but not limited to—mechatronics which relies on mechanical, electrical and electronic engineering, and transducers (sensors and actuators) which are by definition devices that convert signals from one physical domain to another. Simulation platforms such as Comsol Multiphysics have truly opened the way to easy multi-domain numerical simulation, offering tools that cover all operations from geometry definition, to meshing, to physics and boundary conditions setting to simulation and result post-processing and analysis in a unified, domain-independent fashion. However, this high degree of freedom has its price, as unexperienced users will soon find themselves in front of frustrating error messages or incomprehensible results. It is the role of this course to show how to properly set up a problem by exposing common misconceptions and pitfalls in multiphysics modeling. Good practices will be taught that should significantly speed-up the modeling process and produce results that do not contradict intuition. Examples will mainly come from the fields of mechanics (continuum mechanics), electromagnetism (Maxwell equations), heat transport (Fourier equation) and combinations of these domains.

Content

- Recap of ordinary and partial differential equations (ODEs and PDEs) concepts
- Existence and uniqueness of solutions; well- and ill-posed problems
- Time integration and (non)linear solvers
- Boundary conditions and constraints
- Approximate and simplified formulations; domains of applicability
- Discretization and numerical solutions for differential equations
- Solution-appropriate meshing; multiscale, local/global adaptive meshing
- Geometry simplification
- Model order reduction, coarsening
- Coupling and segregation/decoupling of multiphysics

Lecture notes

Lecture handouts will be posted online.

Selection: Neuroinformatics

Number

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1033-00L</td>
<td>Neuromorphic Engineering I</td>
<td>W</td>
<td>6</td>
<td>2V+3U</td>
</tr>
</tbody>
</table>

Abstract

Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots. Preference is given to students that require this class as part of their major.

Information for UZH students:

Enrolment to this course unit only possible at ETH. No enrolment to module INI404 at UZH. Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students/special-students-university-of-zurich.html

Objective

Understanding the characteristics of neuromorphic circuit elements.

Content

Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions.

Literature

- S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.

Prerequisites / notice

Particular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.

227-1037-00L Introduction to Neuroinformatics

Abstract

The course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.

Objective

Understanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1738 of 2152
This course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.

Selection: Biophysics, Physical Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>551-1601-00L</td>
<td>Biophysics of Biological Macromolecules</td>
<td>W</td>
<td>6 credits</td>
<td>2V+1U</td>
<td>F. Allain, S. Jonas</td>
</tr>
</tbody>
</table>

Abstract:
This lecture course targets physics students and students of interdisciplinary sciences (major physics) for their education in biophysics. In this course the basics of molecular biology are presented bearing in mind the special interests of the physics students.

Objective:
Basics of molecular biology and biophysics in and view of the special interest of students in physics.

Content:
The course will only take place with a minimum of 6 participants.

- The course will be part of an introductory lecture series on biophysics aiming at understanding the function and structure of biological macromolecules.
- The course will cover the following topics:
 - Introduction to the genetic system of E. coli bacteria: DNA, RNA and protein biosynthesis (transcription and translation) and biotechnological applications.
 - Introduction to methods to study biological macromolecules: purification techniques, optical spectroscopy, X-ray crystallography, electron microscopy (EM) and nuclear magnetic resonance (NMR) spectroscopy.
 - Introduction to the structure and function of biological neural networks at different levels.
 - Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the course aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.

Lecture notes
Additional documentation in support of text book

Prerequisites / notice
Small classes with active participation of students

Selection: Medical Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0341-00L</td>
<td>Medical Physics I</td>
<td>W</td>
<td>6 credits</td>
<td>2V+1U</td>
<td>P. Manser</td>
</tr>
</tbody>
</table>

Abstract:
Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations.

Objective:
Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.

Content:
- The lecture is covering the basic principles of ionizing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelerators, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiology, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications.

Lecture notes
A script will be provided.

Prerequisites / notice
For students of the MAS in Medical Physics (Specialization A) the performance assessment is offered at the earliest in the second year of the studies.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0674-00L</td>
<td>Physics in Medical Research: From Atoms to Cells</td>
<td>W</td>
<td>6 credits</td>
<td>2V+1U</td>
<td>B. K. R. Müller</td>
</tr>
</tbody>
</table>

Abstract:
Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.
The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic electron scattering. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

X rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue's anisotropies of biopsies.

Selection: Environmental Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1239-00L</td>
<td>Aerosols I: Physical and Chemical Principles</td>
<td>W</td>
<td>4</td>
<td>2+1U</td>
<td>M. Gysel Beer, D. Bell, E. Weingartner</td>
</tr>
</tbody>
</table>

Abstract

Aerosols I deals with basic physical and chemical properties of aerosol particles. The importance of aerosols in the atmosphere and in other fields is discussed.

Objective

Physical and chemical principles:

- The students...
 - know the processes and physical laws of aerosol dynamics.
 - understand the thermodynamics of phase equilibria and chemical equilibria.
 - know the photo-chemical formation of particulate matter from inorganic and organic precursor gases.

Experimental methods:

- The students...
 - know the most important chemical and physical measurement instruments.
 - understand the underlying chemistry and physics.

Environmental impacts:

- The students...
 - know the most important sources of atmospheric aerosols, their chemical composition and key physical properties.
 - know the most important climate impacts of atmospheric aerosols.
 - are aware of the health impacts of atmospheric aerosols.

Lecture notes

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories: assessed
 - Techniques and Technologies: assessed
- Domain B - Method-specific Competencies
 - Analytical Competencies: assessed
 - Decision-making: not assessed
 - Media and Digital Technologies: not assessed
 - Problem-solving: assessed
 - Project Management: not assessed
- Domain C - Social Competencies
 - Communication: not assessed
 - Cooperation and Teamwork: not assessed
 - Customer Orientation: not assessed
 - Leadership and Responsibility: not assessed
 - Self-presentation and Social Influence: not assessed
 - Sensitivity to Diversity: not assessed
 - Negotiation: not assessed
- Domain D - Personal Competencies
 - Adaptability and Flexibility: not assessed
 - Creative Thinking: assessed
 - Critical Thinking: not assessed
 - Integrity and Work Ethics: not assessed
 - Self-awareness and Self-reflection: not assessed
 - Self-direction and Self-management: not assessed
Overall goals of this course are given below. Focus is on the theoretical background and idealized concepts. Powerpoint slides and chapters from the textbook will be made available on moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=15387

Dynamical Meteorology is concerned with the dynamical processes of the earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.

The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. The course starts by providing the theoretical background and reviewing idealized concepts. These are contrasted to real world applications and discussed in the context of current research issues.

Dynamical Meteorology is concerned with the dynamical processes of the earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.

With these basics, the different forms of precipitation formation (convective vs. stratiform) is discussed as well as the formation and different stages of severe convective storms. The concepts are applied to understand and judge the validity of different proposed artificical weather modification ideas.

The concepts are applied to understand and judge the validity of different proposed artificical weather modification ideas.

Domain A - Subject-specific Competencies

Concepts and Theories assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed

Domain C - Social Competencies

Communication assessed

Domain D - Personal Competencies

Critical Thinking assessed

Self-direction and Self-management assessed

Objective

Students are able to explain the mechanisms of thunderstorm formation using knowledge of thermodynamics and cloud microphysics.

Content

Students also learn to classify radiosondes with the help the thermodynamic charts (tephigrams) and to identify cloud base, cloud top, available convective energy in them. Atmospheric mixing processes are introduced for fog formation. The concept of the air parcel is used to understand convection.

Aerosol particles are introduced in terms of their physical properties and their role in cloud formation based on Köhler theory. Thereafter cloud microphysical processes including ice nucleation are discussed.

With these basics, the different forms of precipitation formation (convective vs. stratiform) is discussed as well as the formation and different stages of severe convective storms.

The concepts are applied to understand and judge the validity of different proposed artificical weather modification ideas.

Domain A - Subject-specific Competencies

Concepts and Theories assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed

Domain C - Social Competencies

Communication assessed

Domain D - Personal Competencies

Critical Thinking assessed

Self-direction and Self-management assessed

Abstract

This course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation especially prediction of thunderstorm development, aerosol development as well as artificial weather modification.

Objective

Students are able to explain the mechanisms of thunderstorm formation using knowledge of thermodynamics and cloud microphysics.

Content

Students also learn to classify radiosondes with the help the thermodynamic charts (tephigrams) and to identify cloud base, cloud top, available convective energy in them. Atmospheric mixing processes are introduced for fog formation. The concept of the air parcel is used to understand convection.

Aerosol particles are introduced in terms of their physical properties and their role in cloud formation based on Köhler theory. Thereafter cloud microphysical processes including ice nucleation are discussed.

With these basics, the different forms of precipitation formation (convective vs. stratiform) is discussed as well as the formation and different stages of severe convective storms.
At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Abstract

Objective
Provide insightful knowledge about the classical theory of curves and surfaces (which is the precursor of modern differential geometry). Invite students to use and sharpen their geometric intuition.

Lecture notes
Partial lecture notes are available from Prof. Lang's website https://people.math.ethz.ch/~lang/

Literature
- Manfredo P. do Carmo: Differential Geometry of Curves and Surfaces
- John M. Lee: Introduction to Smooth Manifolds
- S. Montiel, A. Ros: Curves and Surfaces
- S. Kobayashi: Differential Geometry of Curves and Surfaces
- Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Eigenschaften
- Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds

401-3461-00L Functional Analysis I
At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Abstract
Baire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces.

Objective
Acquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.

Literature
Recommended references include the following:

Prerequisites / notice
Solid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with topology and measure theory, in part: Lebesgue integration and L^p spaces).

401-3601-00L Probability Theory
At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.

Abstract
Basics of probability theory and the theory of stochastic processes in discrete time

Objective
This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, series of independent random variables, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).

Content
This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).

Lecture notes
will be available in electronic form.
401-3621-00L Fundamentals of Mathematical Statistics W 10 credits 4V+1U S. van de Geer
Abstract
The course covers the basics of inferential statistics.

库里
University of Zurich lecturers explicitly recommend the following courses also to physics students at ETH Zurich. Recognition of the corresponding external ECTS credits has to be granted by the Director of Studies. Submit your request to the Study Administration (www.phys.ethz.ch/studies/study-administration.html).

Number Title Type ECTS Hours Lecturers
401-7851-00L Theoretical Astrophysics (University of Zurich) W 10 credits 4V+2U University lecturers
Abstract
This course covers the foundations of astrophysical fluid dynamics, the Boltzmann equation, equilibrium systems and their stability, the structure and stability of dark matter halos and stellar galactic disks.

文献
Course Materials:
1. The Physics of Astrophysics, Volume 1: Radiation by Frank H. Shu
2. The Physics of Astrophysics, Volume 2: Gas Dynamics by Frank H. Shu
3. Foundations of radiation hydrodynamics, Dimitri Mihalas and Barbara Weibel-Mihalas
4. Radiative Processes in Astrophysics, George B. Rybicki and Alan P. Lightman
5. Galactic Dynamics, James Binney and Scott Tremaine

预修 / 注意
Prerequisites:
- Introduction to Astrophysics
- Mathematical Methods for the Physicist
- Quantum Mechanics
- Fluid Dynamics

401-7855-00L Computational Astrophysics (University of Zurich) W 6 credits 2V L. M. Mayer
Objective
Acquire knowledge of main methodologies for computer-based models of astrophysical systems, the physical equations behind them, and train such knowledge with simple examples of computer programmes

内容
1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility
2. Large-N gravity calculation, collisionless N-body systems and their simulation
3. Fast Fourier Transform and spectral methods in general
4. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiters
5. Lagrangian Hydrodynamics: The SPH method
6. Resolution and instabilities in Hydrodynamics
7. Initial Conditions: Cosmological Simulations and Astrophysical Disks
8. Physical Approximations and Methods for Radiative Transfer in Astrophysics

文献
Galactic Dynamics (Binney & Tremaine, Princeton University Press),
Computer Simulation using Particles (Hockney & Eastwood CRC press),
Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)

预修 / 注意
Some knowledge of UNIX, scripting languages (see www.physik.uzh.ch/lectures/informatik/python/ as an example), some prior experience programming, knowledge of C, C++ beneficial

402-6394-00L Advanced Topics of Theoretical Cosmology (University of Zurich) W 4 credits 1V J. Yoo
Objective
Acquire knowledge of main methodologies for computer-based models of astrophysical systems, the physical equations behind them, and train such knowledge with simple examples of computer programmes
This course is an extension of the core course "Theoretical Astrophysics and Cosmology".

The topics in the course are as follows:
- spherical collapse model, Press-Schechter formalism, applications (2 days)
- weak gravitational lensing (1 day)
- galaxy bias (2 days)
- nonlinear relativistic dynamics: ADM formalism (2 days)
- inflationary models, effective field theory (2 days)
- modification of gravity (1 day)

Prerequisites / notice
Prerequisite: 402-0394-00L Theoretical Astrophysics and Cosmology

General Electives

Students may choose General Electives from the entire course programme of ETH Zurich - with the following restrictions: courses that belong to the first or second year of a Bachelor curriculum at ETH Zurich as well as courses from GESS "Science in Perspective" are not eligible here.

The following courses are explicitly recommended to physics students by their lecturers. (Courses in this list may be assigned to the category "General Electives" directly in myStudies. For the category assignment of other eligible courses keep the choice "no category" and take contact with the Study Administration (www.phys.ethz.ch/studies/study-administration.html) after having received the credits.)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0433-01L</td>
<td>Advanced Physical Chemistry: Statistical Thermodynamics</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>R. Riek, J. Richardson</td>
</tr>
</tbody>
</table>

Abstract
Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.

Objective
Introduce students to the fundamental principles of thermodynamics and statistical physics.

Content
- Basics of statistical mechanics and thermodynamics of classical and quantum systems.
- Concepts of ensembles.
- Molecular and canonical ensembles.
- Equations of state.
- Molecular and canonical partition functions.
- Chemical potential and Gibbs free energy.
- Thermodynamic identities.
- Phase transitions.

Literature
See homepage of the lecture.

Prerequisites / notice
Chemical Thermodynamics, Reaction Kinetics, Molecular Quantum Mechanics and Spectroscopy; Mathematical Foundations (Analysis, Combinatorial Relations, Integral and Differential Calculus).

Taught competencies
- Domain A - Subject-specific Competencies: Concepts and Theories
- Domain B - Method-specific Competencies: Analytical Competencies

Lecture notes
Hand-outs will be distributed. Additional literature and information on the website of the lab:

Literature

R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0103-00L</td>
<td>Nuclear Energy Conversion</td>
<td>W</td>
<td>4 credits</td>
<td>2V+1U</td>
<td>A. Manera</td>
</tr>
</tbody>
</table>

Abstract
Physical fundamentals of the fission reaction and the sustainable chain reaction, thermal design, construction, function and operation of nuclear reactors and power plants.

Objective
Students get an overview on energy conversion in nuclear power plants, on construction and function of the most important types of nuclear reactors and power plants, light water reactors and other reactor types, conversion and breeding.

Content
- Nuclear physics of fission and chain reaction.
- Thermochemistry of nuclear reactors. Design of the reactor core.
- Introduction into the dynamic behaviour of nuclear reactors.
- Overview on types of nuclear reactors, difference between thermal reactors and fast breeders.
- Construction and operation of nuclear power plants with pressurized and boiling water reactors.
- Role and function of the most important safety systems.
- Special features of the energy conversion. Development tendencies of reactor technology.

Literature

R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0103-00L</td>
<td>Fluid Dynamics II</td>
<td>W</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>P. Jenny</td>
</tr>
</tbody>
</table>

Abstract
Two-dimensional irrotational (potential) flows: stream function and potential, singularity method, unsteady flow, aerodynamic concepts.

Objective
Expand basic knowledge of fluid dynamics.

Content
- Two-dimensional irrotational (potential) flows: stream function and potential, complex notation, singularity method, unsteady flow, aerodynamic concepts.
- Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin.
- Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.

Literature
Relevant chapters (corresponding to lecture notes) from the textbook

Prerequisites / notice
Analysis III, Knowledge of Fluid Dynamics I, thermodynamics of ideal gas

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0532-00L</td>
<td>Nonlinear Dynamics and Chaos I</td>
<td>W</td>
<td>4 credits</td>
<td>2V+2U</td>
<td>G. Haller</td>
</tr>
</tbody>
</table>

Abstract
Basic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.
Methods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.

The course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:
1. Background: Elements of statistical mechanics and kinetic theory: Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation; Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.
3. Hands on: Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).
4. Practical issues of LBM for fluid dynamics simulations: Lattice Boltzmann simulations of turbulent flows; numerical stability and accuracy.
5. Microflow: Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.
6. Advanced lattice Boltzmann methods: Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.
7. Introduction to LB models beyond hydrodynamics: Relativistic fluid dynamics; flows with phase transitions. Lecture notes on the theoretical parts of the course will be made available.

Selected original and review papers are provided for some of the lectures on advanced topics. Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.

The course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.
Objective
Introduction to modern imaging techniques and post processing algorithms with special emphasis on flow analysis and visualization.
Understanding of hardware and software requirements and solutions.
Development of basic programming skills for (generic) imaging applications.

Content
Fundamentals of optics, flow visualization and electronic image acquisition.
Frequently used image processing techniques (filtering, correlation processing, FFTs, color space transforms).
Image Velocimetry (tracking, pattern matching, Doppler imaging).
Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography).
Laser induced fluorescence.
(Digital) Schlieren techniques, phase contrast imaging, interferometry, phase unwrapping.
Wall shear and heat transfer measurements.
Pattern recognition and feature extraction, proper orthogonal decomposition.

Lecture notes
Handouts will be made available.

Prerequisites / notice
Prerequisites: Fluidodynamics I, Numerical Mathematics, programming skills.
Language: German on request.

151-0911-00L
Introduction to Plasmonics

W 4 credits 2V+1U D. J. Norris

Abstract
This course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.

Objective
Electromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.

Content
Fundamentals of Plasmonics
- Basic electromagnetic theory
- Optical properties of metals
- Surface plasmon polaritons on surfaces
- Surface plasmon polariton propagation
- Localized surface plasmons

Applications of Plasmonics
- Waveguides
- Extraordinary optical transmission
- Enhanced spectroscopy
- Sensing
- Metamaterials

Lecture notes
Class notes and handouts

Literature

Prerequisites / notice
Physics I, Physics II

151-0107-20L
High Performance Computing for Science and Engineering (HPCSE) I

W 4 credits 4G P. Koumoutsakos, S. M. Martin

Abstract
This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.

Objective
With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.

Content
1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)
2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)
3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models
4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis
5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods

Lecture notes
https://www.cse-lab.ethz.ch/teaching/hpcse-i_hs21/
Class notes, handouts

Literature
- An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
- Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
- Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
- Lecture notes

Prerequisites / notice
Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++.

227-1047-00L
Consciousness: From Philosophy to Neuroscience (University of Zurich)

W 3 credits 2V D. Kiper

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: INI410

Mind the enrolment deadlines at UZH:
Abstract

This seminar reviews the philosophical and phenomenological aspects as well as the neurobiological foundations of consciousness. The subjective features of consciousness are explored, and modern research into its neural substrate, particularly in the visual domain, is explained.

Emphasis is placed on students developing their own thinking through a discussion-centered course structure.

Objective

The course's goal is to give an overview of the contemporary state of consciousness research, with emphasis on the contributions brought by modern cognitive neuroscience. We aim to clarify concepts, explain their philosophical and scientific backgrounds, and to present experimental protocols that shed light on a variety of consciousness related issues.

Content

The course includes discussions of scientific as well as philosophical articles. We review current schools of thought, models of consciousness, and proposals for the neural correlate of consciousness (NCC).

Lecture notes

None

Literature

None

Prerequisites / notice

Since we are all experts on consciousness, we expect active participation and discussions!

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Topics</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0385-00L</td>
<td>Biomedical Imaging</td>
<td>6</td>
<td>X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.</td>
<td>S. Kozerke, K. P. Prüsmann</td>
</tr>
<tr>
<td>227-0386-00L</td>
<td>Biomedical Engineering</td>
<td>4</td>
<td>Neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system.</td>
<td>J. Várös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong</td>
</tr>
<tr>
<td>227-0965-00L</td>
<td>Micro and Nano-Tomography of Biological Tissues</td>
<td>4</td>
<td>X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented.</td>
<td>M. Stampanoni, F. Marone Welford</td>
</tr>
</tbody>
</table>
Synchronous-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples.

The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments.

The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications.
This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
 - Register Transfer Level (RTL), synthesis, and its limitations.
 - Building blocks of digital VLSI circuits.
 - Functional verification techniques and their limitations.
 - Modular and largely reusable testbenches.
 - Assertion-based verification.
 - Synchronous versus asynchronous circuits.
 - The case for synchronous circuits.
 - Periodic events and the Anceau diagram.
 - Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

Lecture notes
Textbook and all further documents in English.

Literature

Prerequisites / notice
Basics of digital circuits.

Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English or German.

Further details:
https://iis-students.ee.ethz.ch/lectures/vlsi-i/

227-0148-00L
VLSI III: Test and Fabrication of VLSI Circuits
W 6 credits 4G L. Benini

Does not take place this semester.

Abstract
In this course, we will cover how modern microchips are fabricated, and we will focus on methods and tools to uncover fabrication defects, if any, in these microchips. As part of the exercises, students will get to work on an industrial 1 million dollar automated test equipment.

Objective
Learn about modern IC manufacturing methodologies, understand the problem of IC testing. Cover the basic methods, algorithms and techniques to test circuits in an efficient way. Learn about practical aspects of IC testing and apply what you learn in class using a state-of-the-art tester.

If you want to earn money by selling ICs, you have to deliver a product that will function properly with a very large probability. The main emphasis of the lecture will be discussing how this can be achieved. We will discuss fault models and practical techniques to improve testability of VLSI circuits. At the IIS we have a state-of-the-art automated test equipment (Advantest SoC V93000) that we will make available for in class exercises and projects. At the end of the lecture you will be able to design state-of-the-art tester.

During the first weeks of the course there will be weekly practical exercises where you will work in groups of two. For the last 5 weeks of the class students will be able to choose a class project that can be:
- The test of their own chip developed during a previous semester thesis
- Developing new setups and measurement methods in C++ on the tester
- Helping to debug problems encountered in previous microchips by IIS.

Half of the oral exam will consist of a short presentation on this project.

Lecture notes

Prerequisites / notice
Although this is the third part in a series of lectures on VLSI design, you can follow this course even if you have not visited VLSI I and VLSI II lectures. An interest in integrated circuit design, and basic digital circuit knowledge is required though.

Course website:
https://iis-students.ee.ethz.ch/lectures/vlsi-i/

151-0620-00L
Embedded MEMS Lab
W 5 credits 3P C. Hierold, S. Blunier, M. Haluska

Abstract
Practical course: Students are introduced to the process steps required for the fabrication of MEMS (Micro Electro Mechanical System) and carry out the fabrication and testing steps in the clean rooms by themselves. Additionally, they learn the requirements for working in clean rooms. Processing and characterization will be documented and analyzed in a final report. Limited access

Objective
Students learn the individual process steps that are required to make a MEMS (Micro Electro Mechanical System). Students carry out the process steps themselves in laboratories and clean rooms. Furthermore, participants become familiar with the special requirements (cleanliness, safety, operation of equipment and handling hazardous chemicals) of working in the clean rooms and laboratories. The entire production, processing, and characterization of the MEMS is documented and evaluated in a final report.

Content
With guidance from a tutor, the individual silicon microsystem process steps that are required for the fabrication of an accelerometer are carried out:
- Photolithography, dry etching, wet etching, sacrificial layer etching, various cleaning procedures
- Packaging and electrical connection of a MEMS device
- Testing and characterization of the MEMS device
- Written documentation and evaluation of the entire production, processing and characterization

Lecture notes
A document containing theory, background and practical course content is distributed at the introductory lecture day of the course.

Literature
The document provides sufficient information for the participants to successfully participate in the course.
This course provides a general introduction into electron microscopy of organic and inorganic materials. In the first part, the basics of electron microscopy and analysis of materials will be presented, including the fundamentals of electron diffraction, imaging, and spectroscopy. The second part focuses on advanced topics such as aberration correction, high-resolution imaging, and the application of electron microscopy to various fields of research. The course will also cover the principles of electron spectroscopy, including X-ray emission, electron energy loss spectroscopy (EELS), and electron energy loss small angle scattering (EELSS). Students will gain hands-on experience with different types of electron microscopes and learn how to design and perform experiments that are based on the interaction of electrons with matter. The course will be taught by experienced scientists who will provide a comprehensive understanding of the technical aspects and practical applications of electron microscopy. The course aims to enable students to understand and design experiments that are based on hyperfine coupling between electron and nuclear spins, as well as to use these probes in the structural and chemical analysis of various materials.

The course is offered in autumn and spring semester.

Abstract

Prerequisites / notice

Participating students are required to attend all scheduled lectures and meetings of the course. Participating students are required to provide proof that they have personal accident insurance prior to the start of the laboratory portion of the course. For safety and efficiency reasons the number of participating students is limited. We regret to restrict access to this course by the following rules:

Priority 1: master students of the master's program in "Micro and Nanosystems"

Priority 2: master students of the master's program in "Mechanical Engineering" with a specialization in Microsystems and Nanoscale Engineering (MAYT-tutors Profs Darai, Daul, Hierold, Krmoutskakovs, Nelson, Nomis, Poulikakos, Pratsinis, Stemmer), who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 3: master students, who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 4: all other students (PhD, bachelor, master) with a background in silicon or microsystems process technology. If there are more students in one of these priority groups than places available, we will decide by (in following order) best achieved grade from 151-0621-00L Microsystems Technology, registration to this practicum at previous semester, and by drawing lots.

Students will be notified at the first lecture of the course (introductory lecture) as to whether they are able to participate.

The course is offered in autumn and spring semester.

529-0443-01L Advanced Magnetic Resonance

Objective
The course aims at enabling students to understand and design experiments that are based on hyperfine coupling between electron and nuclear spins. This includes analytical and numerical treatment of spin dynamics as well as instrumental aspects. Additionally, students will learn how to use hyperfine couplings to increase sensitivity in solid state NMR via dynamic nuclear polarization (DNP), with an emphasis on the instrumentation required to perform DNP with magic angle spinning (MAS) NMR.

Content

The course starts with an recapitulation of density operator and product operator formalism with special emphasis on electron-nuclear spin systems in the solid state. We then treat basic phenomena, such as passage effects, avoided level crossings, and hyperfine decoupling. Based on these foundations, we discuss polarization transfer from the electron to the nuclear spin and back, as well as spin diffusion as a mechanism for polarizing nuclear spins beyond the immediate vicinity of the electron spin. The second half of this course will cover dynamic nuclear polarization (DNP), with a focus on instrumentation required to perform pulsed DNP with magic angle spinning (MAS) at ultra-high magnetic fields. A review of salient interactions in the NMR solid state NMR Hamiltonian, DNP mechanisms, and electron decoupling with MAS will motivate discussions of technology development. Specific technologies to be covered include, but are not limited to, frequency agile gyrotroon oscillators, corrugated waveguides, microwave lenses, strategies for creating pulsed and frequency chirped microwaves, spherical MAS rotors and supporting stators, high temperature superconductor (HTS) based compact magnets, and radio-frequency circuits for multinuclear spin control and detection.

Lecture notes

A script which covers the topics will be distributed in the lecture and will be accessible through the course Moodle.

Prerequisites: A basic knowledge of Magnetic Resonance, e.g. as covered in the Lecture Physical Chemistry IV, or the book "Spin Dynamics" by Malcolm Levitt.

327-2132-00L Multiferroic Ferroic Materials: Growth and Characterisation

Objective

Oxide films with a thickness of just a few atoms can now be grown with a precision matching that of semiconductors. This opens up a whole world of functional device concepts and fascinating phenomena that would not occur in the expanded bulk crystal. Particularly interesting phenomena occur in films showing magnetic or electric order or, even better, both of these ("multiferroics").

Content

In this course students will obtain an overarching view on oxide thin epitaxial films and heterostructures design, reaching from their growth by pulsed laser deposition to an understanding of their magnetoelectric functionality from an atomic scale. A review of salient interactions in the NMR solid state NMR Hamiltonian, DNP mechanisms, and electron decoupling with MAS will motivate discussions of technology development. Specific technologies to be covered include, but are not limited to, frequency agile gyrotroon oscillators, corrugated waveguides, microwave lenses, strategies for creating pulsed and frequency chirped microwaves, spherical MAS rotors and supporting stators, high temperature superconductor (HTS) based compact magnets, and radio-frequency circuits for multinuclear spin control and detection.

Lecture notes

A script which covers the topics will be distributed in the lecture and will be accessible through the course Moodle.

Prerequisites: A basic knowledge of Magnetic Resonance, e.g. as covered in the Lecture Physical Chemistry IV, or the book "Spin Dynamics" by Malcolm Levitt.

327-0703-00L Electron Microscopy in Material Science

Abstract

A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials.

Objective

A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials.

Content

This course provides a general introduction into electron microscopy of organic and inorganic materials. In the first part, the basics of transmission- and scanning electron microscopy are presented. The second part includes the most important aspects of specimen preparation, imaging and image processing. In the third part, recent applications in materials science, solid state physics, structural biology, structural geology and structural chemistry will be reported.

Lecture notes

will be distributed in English

Literature

Erni: Aberration-corrected imaging in transmission electron microscopy, Imperial College Press (2010, and 2nd ed. 2015)

327-0702-00L EM-Practical Course in Materials Science

Abstract

Practical work on TEM, SEM, FIB and APT treatment of typical problems data analysis, writing of a report
Microscopy Training SEM I - Introduction to SEM

<table>
<thead>
<tr>
<th>Objective</th>
<th>Application of basic electron microscopic techniques to materials science problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature</td>
<td>see lecture Electron Microscopy (327-0703-00L)</td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Attendance of lecture Electron Microscopy (327-0703-00L) is recommended. Maximum number of participants 15, work in groups of 3 people.</td>
</tr>
</tbody>
</table>

Content

- Set-up, align and operate a SEM successfully and safely.
- Understand important operational parameters of SEM and optimize microscope performance.
- Explain different signals in SEM and obtain secondary electron (SE) and backscatter electron (BSE) images.
- Operate the SEM in low-vacuum mode.
- Make use of EDX for semi-quantitative elemental analysis.
- Prepare samples with different techniques and equipment for imaging and analysis by SEM.

Literature

Microscopy Training TEM I - Introduction to TEM

<table>
<thead>
<tr>
<th>Objective</th>
<th>Understanding of</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>the set-up and individual components of a TEM</td>
</tr>
<tr>
<td>2.</td>
<td>the basics of electron optics and image formation</td>
</tr>
<tr>
<td>3.</td>
<td>the basics of electron beam – sample interactions</td>
</tr>
<tr>
<td>4.</td>
<td>the contrast mechanism</td>
</tr>
<tr>
<td>5.</td>
<td>various sample preparation techniques</td>
</tr>
</tbody>
</table>

Content

- Introduction to Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for beginners who are interested in using TEM for their Master or PhD thesis. TEM sample preparation techniques are also discussed. During hands-on sessions at different TEM instruments, students will have the opportunity to examine their own samples if time allows.

Literature

- Practice on real-world samples and report results
- Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities
- Student participation on sample preparation techniques
- Practice on image formation, image contrast (and image processing)

Objective

- Brief description and demonstration of the SEM microscope
- Practice on image formation, image contrast (and image processing)
- Student participation on sample preparation techniques
- Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities
- Practice on real-world samples and report results

Lecture notes

Lecture notes will be distributed.

Literature

Prerequisites / notice

No mandatory prerequisites.
Lecture notes will be distributed.

Why are problems not simple? Why do some systems behave in an unintended way? How can we model and control their dynamics?

The course provides answers to these questions by using a broad range of methods encompassing systems oriented management, classical systems dynamics, nonlinear dynamics and macroeconomic modeling.

The course is structured along three main tasks:

1. Finding solutions
2. Implementing solutions
3. Controlling solutions

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions.

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed.

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles.

Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM. Another objective of the self-study tasks is to practice efficient communication of such concepts. These are provided as home work and two of these will be graded (see "Prerequisites").

Another suggested prerequisite.

No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551-1618-00V; 227-0390-00L; 327-0703-00L) as

Lecture notes are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture.
Neural Network Theory

The purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validate them through quick iterations of prototyping and testing using different tools and materials. The students will work in multidisciplinary teams on a set of challenges that are organized as a one-week, a three-week, and a final six-week project with an external project partner. In this course, the students will learn about the different Design Thinking methods and tools that are needed to generate deep insights, to engage in collaborative ideation, rapid prototyping and iterative testing.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

For more information and the application visit: http://sparklabs.ch/

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Linda Armbruster to learn about the requirements of the class.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0655-00L</td>
<td>Nonlinear Optics</td>
<td>W 6</td>
<td>J. Leuthold</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Nonlinear Optics deals with the interaction of light with material, the response of material to light and the mathematical framework to describe the phenomena. As an example we will cover fundamental phenomena such as the refractive index, the electro-optic effect, second harmonic generation, four-wave mixing or soliton propagation and others.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The important nonlinear optical phenomena are understood and can be classified. The effects can be described mathematical by means of the susceptibility.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Chapter 1: The Wave Equations in Nonlinear Optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 2: Nonlinear Effects - An Overview</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 3: The Nonlinear Optical Susceptibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 4: Second Harmonic Generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 5: The Electro-Optic Effect and the Electro-Optic Modulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 6: Acousto-Optic Effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 7: Nonlinear Effects of Third Order</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 8: Nonlinear Effects in Media with Gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Lecture notes are distributed. For students enrolled in the course, additional information, lecture notes and exercises can be found on moodle (https://moodle-app2.let.ethz.ch/).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / Notice</td>
<td>Fundamentals of Electromagnetic Fields (Maxwell Equations) & Bachelor Lectures on Physics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0423-00L</td>
<td>Neural Network Theory</td>
<td>W 4</td>
<td>H. Bölcskei</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, fundamental limits of deep neural network learning, VC dimension.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>1. Universal approximation with single- and multi-layer networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Fundamental limits of deep neural network learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Geometry of decision surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Separating capacity of nonlinear decision surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Vapnik-Chervonenkis (VC) dimension</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. VC dimension of neural networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Generalization error in neural network learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Detailed lecture notes are available on the course web page</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://www.mins.ee.ethz.ch/teaching/nt/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / Notice</td>
<td>This course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0653-00L</td>
<td>Electromagnetic Precision Measurements and Opto- Mechanics</td>
<td>W 4</td>
<td>M. Frimmer</td>
</tr>
<tr>
<td></td>
<td>The measurement process is at the heart of both science and engineering. Electromagnetic fields have proven to be particularly powerful probes. This course provides the basic knowledge necessary to understand current state-of-the-art optomechanical measurement systems operating at the precision limits set by the laws of quantum mechanics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of this course is to understand the fundamental limitations of measurement systems relying on electromagnetic fields.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The lecture starts with summarizing the relevant fundamentals of the treatment of noisy signals. We familiarize ourselves with the concept of measurement imprecision in light-based measurement systems. To this end, we consider the process of photodetection and discuss the statistical fluctuations arising from the quantization of the electromagnetic field into photons. We exemplify our insights at hand of concrete examples, such as homodyne and heterodyne photodetection. Furthermore, we focus on the process of measurement backaction, the inevitable result of the interaction of the probe with the system under investigation. The course emphasizes the connection between the taught concepts and current state-of-the-art research carried out in the field of optomechanics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / Notice</td>
<td>1. Electrodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Physics 1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Introduction to quantum mechanics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites / Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0834-00L</td>
<td>Information Systems for Engineers</td>
<td>W 4</td>
<td>G. Fourny</td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does not take place this semester.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract

This course provides the basics of relational databases from the perspective of the user.

We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

Objective

This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Content

Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

13. Outlook

Literature

- Lecture material (slides).
- Book: "Database Systems: The Complete Book", H. Garcia-Molina, J.D. Ullman, J. Widom (it is not required to buy the book, as the library has it)

Prerequisites / notice

For non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logic
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python

227-0939-00L Cell Biophysics W 6 credits 4G T. Zambelli

Abstract

Applying two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization), an analytical model is derived for a variety of biological phenomena at the molecular as well as cellular level, and critically compared with the corresponding experimental data in the literature.
Objective

Engineering uses the laws of physics to predict the behavior of a system. Biological systems are so diverse and complex prompting the question whether we can apply unifying concepts of theoretical physics coping with the multiplicity of life’s mechanisms.

Objective of this course is to show that biological phenomena despite their variety can be analytically described using only two principles from statistical mechanics: maximization of the entropy and minimization of the Gibbs free energy.

Starting point of the course is the probability theory, which enables to derive step-by-step the two pillars thermodynamics from the perspective of statistical mechanics: the maximization of entropy according to the Boltzmann’s law as well as the minimization of the Gibbs free energy. Then, an assortment of biological phenomena at the molecular and cellular level (e.g. cytoskeletal polymerization, action potential, photosynthesis, gene regulation, morphogen patterning) will be examined at the light of these two principles with the aim to derive a quantitative expression describing their behavior. Each analytical model is finally validated by comparing it with the corresponding available experimental results.

By the end of the course, students will also learn to critically evaluate the concepts of making an assumption and making an approximation.

Content

• Basics of theory of probability
• Boltzmann’s law
• Entropy maximization and Gibbs free energy minimization
• Ligand-receptor: two-state systems and the MWC model
• Random walks, diffusion, crowding
• Electrostatics for salty solutions
• Elasticity: fibers and membranes
• Molecular motors
• Action potential: Hodgkin-Huxley model
• Photosynthesis and vision
• Gene regulation
• Development: Turing patterns
• Sequences and evolution

Theory and corresponding exercises are merged together during the classes.

No lecture notes because the two proposed textbooks are more than exhaustive!

Lecture notes

An extra hour (Mon 17.00 o’clock - 18.00) will be proposed via zoom to solve together the exercises of the previous week.

!!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!!

Literature

Prerequisites / notice

Participants need a good command of:
• differentiation and integration of a function with one or more variables (basics of Analysis),
• Newton’s and Coulomb’s laws (basics of Mechanics and Electrostatics).

Taught competencies

Notions of vectors in 2D and 3D are beneficial.

701-1253-00L Analysis of Climate and Weather Data

Does not take place this semester.

W 3 credits 2G C. Frei

Abstract

An introduction into methods of statistical data analysis in meteorology and climatology. Applications of hypothesis testing, extreme value analysis, evaluation of deterministic and probabilistic predictions, principal component analysis.

Participants understand the theoretical concepts and purpose of methods, can apply them independently and know how to interpret results professionally.

Objective

Students understand the theoretical foundations and probabilistic concepts of advanced analysis tools in meteorology and climatology. They can conduct such analyses independently, and they develop an attitude of scrutiny and an awareness of uncertainty when interpreting results. Participants improve skills in understanding technical literature that uses modern statistical data analyses.
The course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the theoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interpret results critically.

Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis.

The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results.

R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course.

Documentation and supporting material:
- slides used during the lecture
- exercise sets and solutions
- R-packages with software and example datasets for workshop sessions

All material is made available via the lecture web-page.

For complementary reading:

Prerequisites:
- Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umweltwissenswissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology.

151-0209-00L

Abstract
Renewable Energy Technologies

Objective
Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization.

Lecture notes
Lecture Notes containing copies of the presented slides.

Prerequisites / notice
Prerequisites: Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umweltwissenswissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology.

701-1257-00L

Abstract
European Climate Change

Objective
At the end of this course, participants should:
- understand the key physical processes shaping climate change in Europe;
- know about the methodologies used in climate change studies, encompassing observational, numerical, as well as statistical approaches;
- be familiar with relevant observational and modeling data sets;
- be able to tackle simple climate change questions using available data sets.

Content
Contents:
- global context
- observational data sets, analysis of climate trends and climate variability in Europe
- global and regional climate modeling
- statistical downscaling
- key aspects of European climate change: intensification of the water cycle, Polar and Mediterranean amplification, changes in extreme events, changes in hydrology and snow cover, topographic effects
- projections of European and Alpine climate change

Lecture notes
Slides and lecture notes will be made available at http://www.iac.ethz.ch/edu/courses/master/electives/european-climate-change.html

Prerequisites / notice
Participants should have a background in natural sciences, and have attended introductory lectures in atmospheric sciences or meteorology.

363-0537-00L

Abstract
Resource and Environmental Economics

Objective
A successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and environmental economics and the ability to solve typical problems using appropriate tools consisting of concise verbal explanations, diagrams or mathematical expressions. Concrete goals are first of all the acquisition of knowledge about the main questions of resource and environmental economics and about the foundation of the theory with different normative concepts in terms of efficiency and fairness. Secondly, students should be able to deal with environmental externalities and internalisation through appropriate policies or private negotiations, including knowledge of the available policy instruments and their relative strengths and weaknesses. Thirdly, the course will allow for in-depth economic analysis of renewable and non-renewable resources, including the role of stock constraints, regeneration functions, market power, property rights and the impact of technology. A fourth objective is to successfully use the well-known tool of cost-benefit analysis for environmental policy problems, which requires knowledge of the benefits of an improved natural environment. The last two objectives of the course are the acquisition of sufficient knowledge about the economics of sustainability and the application of environmental economic theory and policy at international level, e.g. to the problem of climate change.
The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course continues with the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

Literature

227-0147-10L

VLSI 3: Full-Custom Digital Circuit Design

W 6 credits 2V+3U

C. Studer, O. Castañeda Fernández

Abstract

This third course in our VLSI series is concerned with full-custom digital integrated circuits. The goals are to learn how to design digital circuits on the schematic, layout, gate, and register-transfer levels. The use of state-of-the-art CAD software (Cadence Virtuoso) in order to simulate, optimize, and characterize digital circuits is another important topic of this course.

Objective

At the end of this course you will

- understand how the main building blocks of state-of-the-art digital integrated circuits are designed
- be able to design and optimize digital integrated circuits on the schematic, layout, and gate levels
- be able to use standard industry software (Cadence Virtuoso) for drawing, simulating, and characterizing digital circuits
- understand the performance trade-offs between speed, area, and power consumption

Content

The third VLSI course begins with the basics of metal-oxide-semiconductor (MOS) field-effect transistors (FETs) and moves up the stack towards logic gates and increasingly complex digital circuit structures. The topics of this course include:

- Nanometer MOSFETs
- Static and dynamic behavior of complementary MOS (CMOS) inverters
- CMOS gate design, sizing, and timing
- Full-custom standard-cell design
- Wire models and parasitics
- Latch and flip-flop circuits
- Gate-level timing analysis and optimization
- Static and dynamic power consumption; low-power techniques
- Alternative logic styles (dynamic logic, pass-transistor logic, etc.)
- Arithmetic and logic circuits
- Fixed-point and floating-point arithmetic
- Memory circuits (ROM, SRAM, and DRAM)
- In- and near-memory processing architectures
- Full-custom accelerator circuits for machine learning

The exercises are concerned with schematic entry, layout, and simulation of digital integrated circuits using a disciplined standard-cell-based approach with Cadence Virtuoso.

Literature

N. H. E. Weste and D. M Harris, CMOS VLSI Design: A Circuits and Systems Perspective (4th Ed.), Addison-Wesley

Prerequisites / notice

VLSI3 can be taken in parallel with "VLSI1: HDL based design for FPGAs" and is designed to complement the topics of this course. Basic analog circuit knowledge is required.

Proseminars and Semester Papers

To organise a seminar project take contact with one of the instructors.

Not all lecturers are directly eligible in myStudies if "Professors" is the required type of lecturers. In such cases please take contact with the Study Administration (www.phys.ethz.ch/studies/study-administration.html).

Number Title Type ECTS Hours Lecturers

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0210-MSL</td>
<td>Proseminar Theoretical Physics ■</td>
<td>W</td>
<td>8</td>
<td>4S</td>
<td>Supervisors</td>
</tr>
<tr>
<td>Abstract</td>
<td>An guided self-study of original papers and of advanced textbooks in theoretical physics. Within the general topic, determined each semester, participants give a presentation on a particular subject and deliver a written report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

402-0217-MSL	Semester Project in Theoretical Physics ■	W	8	15A	Supervisors
Abstract	This course unit is an alternative if no suitable "Proseminar Theoretical Physics" is available of if the proseminar is already overbooked.				
Prerequisites / notice	Die Leistungskontrolle erfolgt aufgrund eines oder mehrerer schriftlicher Berichte bzw. einer schriftlichen Arbeit. Vorträge können ein zusätzlicher Bestandteil der Leistungskontrolle sein.				

402-0215-MSL	Experimental Semester Project in Physics ■	W	8	15A	Supervisors
Abstract	The aim of the project is to give the student experience in working in a research environment, carrying out physics experiments, analysing and interpreting the resulting data.				
Prerequisites / notice	Die Leistungskontrolle erfolgt aufgrund eines oder mehrerer schriftlicher Berichte bzw. einer schriftlichen Arbeit. Ein Vortrag über die gewonnenen Ergebnisse ist ein obligatorischer Bestandteil der Leistungskontrolle.				

402-0740-00L	Experimental Foundations of Particle Physics	W	8	3S	M. Backhaus, M. Donegá
Abstract	The Standard Model of particle physics is a monumental achievement of human ingenuity. While typically approached from the theoretical side, in this proseminar we will collect the experimental evidence upon which the Standard Model has been built.				
Objective	This course integrates knowledge of all detector components (tracking, calorimetry, trigger) in discussing the experiments as a whole. It is meant to be complementary to the "Experimental Methods" course 402-0725-00L which introduces different detector technologies. It also augments the particle physics master curriculum and is meant to be followed in parallel to PPP I (402-0891-00L) or PPP II (402-0702-00L).				
Content

The course will not follow the historical trajectory of experimental particle physics. It will instead try to give a modern view of the results of the experiments and show where they fit in the theoretical construction.

The students will read the original papers collected in the seminal text by Cahn and Goldhaber. The theory will be distilled to the very basics using the textbook by Bettini.

Introductory material:
- Review of basic relativistic kinematics (Lorentz transformations, invariant mass, etc.)
- Passage of particles through matter: Bethe Bloch dE/dx, bremsstrahlung, photon interactions, electromagnetic showers, hadronic showers, Cherenkov radiation, Transition Radiation

Experimental papers discussed in the course:
- Deep Inelastic scattering
- J/psi and tau discovery
- strong interaction: gluons and jets (anti-k_t jet clustering)
- parity violation, neutrino observation, neutrino helicity
- neutral current, W/Z discovery
- number of neutrino families, muon pair production asymmetry, W+W- production
- top/bottom discoveries
- Higgs discovery and properties
- CP violation in the kaon system
- Neutrino oscillations

The course is completed with in class detector demonstrations:
- cloud chamber
- cosmics rays with plastic scintillators
- cerenkov light in water
- silicon detectors

Literature

Bettini, “Introduction to Elementary Particle Physics” Cambridge University Press

Prerequisites / notice

Recommended: Phenomenology of Particle Physics I (or II) (in parallel)

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Communication assessed
Critical Thinking assessed
Integrity and Work Ethics assessed
Self-direction and Self-management assessed

402-0717-MSL Particle Physics at CERN

W 8 credits 15P W. Lustermann

Abstract
During the semester break participating students stay for 4 weeks at CERN and perform experimental work relevant to our particle physics projects. Dates to be agreed upon.

Objective
Students learn, by doing, the needed skills to perform a small particle physics experiment: setup, problem solving, data taking, analysis, interpretation and presentation in a written report of publication quality.

Content
Detailed information in: https://ethteilchenpraktikumn.web.cern.ch/

Language of instruction: English or German

402-0719-MSL Particle Physics at PSI (Paul Scherrer Institute)

W 8 credits 15P A. Soter, A. S. Antognini

Abstract
During semester breaks 6-12 students stay for 3 weeks at PSI and participate in a hands-on course on experimental particle physics. A small real experiment is performed in common, including apparatus design, construction, running and data analysis. The course includes some lectures, but the focus lies on the practical aspects of experimenting.

Objective
Students learn all the different steps it takes to perform a complete particle physics experiment in a small team. They acquire skills to do this themselves in the team, including design, construction, data taking and data analysis.

402-0340-MSL Medical Physics

W 8 credits 15P A. J. Lomax, K. P. Prüssmann

Abstract
In agreement with the lecturers a semester paper in the context of the topics discussed in the lectures can be written.

GESS Science in Perspective

see GESS Science in Perspective: Language Courses
ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-PHYS.

Master’s Thesis

Number Title Type ECTS Hours Lecturers

402-2000-00L Scientific Works in Physics O 0 credits 57D C. Eichler

Target audience:
Master students who cannot document to have received an adequate training in working scientifically.

Directive

Abstract
Literature Review; ETH-Library, Journals in Physics, Google Scholar; Thesis Structure: The IMRAD Model; Document Processing: LaTeX and BibTeX, Mathematical Writing, AVETH Survival Guide; ETH Guidelines for Integrity; Authorship Guidelines; ETH Citation Etiquettes; Declaration of Originality.

Objective
Basic standards for scientific works in physics: How to write a Master Thesis. What to know about research integrity.

402-0900-30L Master’s Thesis O 30 credits 57D Supervisors
Only students who fulfil the following criteria are allowed to begin with their master's thesis:

a. successful completion of the bachelor programme;
b. fulfilling of any additional requirements necessary to gain admission to the master programme;
c. have acquired at least 8 credits in the category Proseminars and Semester Papers.

Further information: http://www.phys.ethz.ch/phys/education/master/msc-theses

Abstract
The master’s thesis concludes the study programme. Thesis work should prove the students’ ability to independent, structured and scientific working.

Seminars, Colloquia, and Additional Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0101-00L</td>
<td>The Zurich Physics Colloquium</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>S. Huber, A. Refregier, University lecturers</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0800-00L</td>
<td>The Zurich Theoretical Physics Colloquium</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>J. Renes, University lecturers</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The Zurich Theoretical Physics Colloquium is jointly organized by the University of Zurich and ETH Zurich. Its mission is to bring both students and faculty with diverse interests in theoretical physics together. Leading experts explain the basic questions in their field of research and communicate the fascination for their work.</td>
</tr>
<tr>
<td>401-5330-00L</td>
<td>Talks in Mathematical Physics</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>P. E. Y. Bousseau, A. Cattaneo, G. Felder, M. Gaberdiel, G. M. Graf, T. H. Willwacher</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0501-00L</td>
<td>Solid State Physics</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>A. Zheludev, C. Degen, K. Ensslin, D. Pescia, M. Sigrist, A. Wallraff</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0600-00L</td>
<td>Nuclear and Particle Physics with Applications</td>
<td>E-</td>
<td>0</td>
<td>2S</td>
<td>A. Rubbia, G. Dissertori, K. S. Kirch, R. Wallny</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0893-00L</td>
<td>Particle Physics Seminar</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>T. K. Gehrmann</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0700-00L</td>
<td>Seminar in Elementary Particle Physics</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>M. Spira, University lecturers</td>
</tr>
<tr>
<td></td>
<td>Special Students UZH must book the modul PHY463 directly at UZH.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0746-00L</td>
<td>Seminar: Particle and Astrophysics (Aktuelles aus der Teilchen- und Astrophysik)</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0300-00L</td>
<td>IPA Colloquium</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>A. Biland, A. Refregier, H. M. Schmid, further lecturers</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0396-00L</td>
<td>Recent Research Highlights in Astrophysics (University of Zurich)</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>University lecturers</td>
</tr>
<tr>
<td></td>
<td>No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: AST006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0530-00L</td>
<td>Mesoscopic Systems</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>T. M. Ihn</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-0620-00L</td>
<td>Current Topics in Accelerator Mass Spectrometry and Its Applications</td>
<td>E-</td>
<td>0</td>
<td>1S</td>
<td>M. Christl, S. Willett</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objective
The seminar provides the participants an overview about newest trends and developments of accelerator mass spectrometry (AMS) and related applications. In their talks and subsequent discussions the participants learn intensively about the newest trends in the field of AMS thus attaining a broad knowledge on both, the physical principles and the applications of AMS, which goes far beyond the horizon of their own studies.

Abstract
Current developments and problems of magnetic resonance imaging (MRI)

Objective
Getting insight into advanced topics in magnetic resonance imaging

Neuroinformatics - Colloquia (University of Zurich)
No enrollment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

- ZN736-3101-00L Neuroinformatics - Colloquia (University of Zurich)

Abstract
The colloquium in Neuroinformatics is a series of lectures given by invited experts. The lecture topics reflect the current themes in neurobiology and neuromorphic engineering that are relevant for our Institute.

Objective
The goal of these talks is to provide insight into recent research results. The talks are not meant for the general public, but really aimed at specialists in the field.

Content
The topics depend heavily on the invited speakers, and thus change from week to week.

All topics concern neural computation and their implementation in biological or artificial systems.

IT at D-PHYS
The introduction provides a good understanding of how IT works at D-PHYS and presents an overview of the IT services - System Aspects (how the hardware affects your scientific code and vice versa)

Python Ecosystem I (interpreters, packages, virtual environments)

- 651-4101-00L Physics of Glaciers
- 651-3561-00L Kryosphäre
- 101-0289-00L Applied Glaciology
- 651-4101-00L Physics of Glaciers

Linux Basics
The first part provides a basic understanding of Linux systems and their components. It introduces commands essential to working with local and remote machines. The second part focuses on more advanced tools and workflows and provides guidelines to scripting, automation and customization.

Python Ecosystem II (development environments, formatter and linter, string formatting, regexp)

- 402-0010-00L Basics of Computing Environments for Scientists

Abstract
Introduction to classic and modern literature of research in Glaciology. Active participation is expected and participants are mentored by PhD students of Glaciology.

Objective
In-depth knowledge of selected topics of research in Glaciology. Introduction to different types of scientific presentation. Improve ability of the discussion of scientific topics.

Content
Selected topics of scientific research in Glaciology

Lecture notes
Copies/pdf of scientific papers will be distributed during the course

Prerequisites / notice
Active participation is expected with presence at the sessions. Only s limited number of participants can be accepted. One of the following courses should be taken as preparation:
- 651-3561-00L Kryosphäre
- 101-0289-00L Applied Glaciology
- 651-4101-00L Physics of Glaciers

Basics of Computing Environments for Scientists
Introduction:
- IT at D-PHYS (Herzog): 29.9. 1300
- IT at D-PHYS 2. Termin (Herzog): 7.10. 1300

Modules:
- Linux Basics I (Müller): 13.10. 1300
- Linux Basics II (Müller): 20.10. 1300
- Python Ecosystem I (Becker): 27.10. 1300
- Python Ecosystem II (Becker): 3.11. 1300
- System Aspects (Herzog): 10.11. 1300

Abstract
Introduction to IT services at D-PHYS and offer modules covering IT-related topics for scientists.

Objective
The "IT at D-PHYS" introduction provides a good understanding of how IT works at D-PHYS and presents an overview of the IT services and their providers. It is recommended for everyone joining the department.

The remainder is structured into individual modules which can be attended separately. They give practical insights into everyday research-related IT challenges.

The "Linux Basics" modules offer an introduction to the Linux landscape and show how to work on the shell by using command line tools. The first part provides a basic understanding of Linux systems and their components. It introduces commands essential to working with local and remote machines. The second part focuses on more advanced tools and workflows and provides guidelines to scripting, automation and customization.

The "Python Ecosystem" modules present various aspects on the ecosystem around Python, without covering the programming language itself. The first part focuses on getting ready to run code. It discusses the management of Python interpreters, packages and virtual environments. The second part presents tools for writing code. From development environments (IDE, Jupyter), over code formaters and linters, to skimming selected concepts (string formatting, regular expressions).

The "System Aspects" module deals with the hardware-related side of scientific computing. To get the best performance out of your scientific code, you have to be aware of the underlying hardware and adapt to it.

Content
Introduction:
- IT at D-PHYS (IT service providers and IT services at D-PHYS)

Modules:
- Linux Basics I (system components, basic shell usage)
- Linux Basics II (advanced tools, scripting)
- Python Ecosystem I (interpreters, packages, virtual environments)
- Python Ecosystem II (development environments, formatter and linter, string formatting, regexp)
- System Aspects (how the hardware affects your scientific code and vice versa)
Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>406-0204-AAL</td>
<td>Electrodynamics</td>
<td>E-</td>
<td>7</td>
<td>15R</td>
<td>C. Anastasiou</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Develop a physical understanding for static and dynamic phenomena related to (moving) charged objects and understand the structure of the classical field theory of electrodynamics (transverse versus longitudinal physics, invariances [Lorentz-, gauge-]). Appreciate the interrelation between electric, magnetic, and optical phenomena and the influence of media. Understand a set of classic electrodynamical phenomena and develop the ability to solve simple problems independently. Apply previously learned mathematical concepts (vector analysis, complete systems of functions, Green's functions, co- and contravariant coordinates, etc.). Prepare for quantum mechanics (eigenvalue problems, wave guides and cavities).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Classical field theory of electrodynamics: Derivation and discussion of Maxwell equations, starting from the static limit (electrostatics, magnetostatics, boundary value problems) in the vacuum and in media and subsequent generalization to the full dynamical case (Faraday's law, Ampere/Maxwell law; potentials and gauge invariance). Wave equation and solutions in full space, half-space (Snell's law), waveguides, cavities, generation of electromagnetic radiation, scattering and diffraction of light (optics). Application to various specific examples. Discussion of the structure of Maxwell's equations, Lorentz invariance, relativity theory and covariance, Lagrangian formulation. Dynamics of relativistic particles in the presence of fields and their radiation properties (synchrotron).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>J.D. Jackson, Classical Electrodynamics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W.K.H Panovsky and M. Phillips, Classical electricity and magnetism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L.D. Landau, E.M. Lifshitz, and L.P. Pitaevski, Electrodynamics of continuus media</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Sommerfeld, Elektrodynamik, Optik (Vorlesungen über theoretische Physik)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. Born and E. Wolf, Principles of optics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures of Physics, Vol II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406-2673-AAL</td>
<td>Numerical Methods for CSE</td>
<td>E-</td>
<td>9</td>
<td>19R</td>
<td>R. Hiptmair</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>* Knowledge of the fundamental algorithms in numerical mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Knowledge of the essential terms in numerical mathematics and the techniques used for the analysis of numerical algorithms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Ability to choose the appropriate numerical method for concrete problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Ability to interpret numerical results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Ability to implement numerical algorithms efficiently</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>* Direct Methods for linear systems of equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Least Squares Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Data Interpolation and Fitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Filtering Algorithms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Approximation of Functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Numerical Quadrature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Iterative Methods for non-linear systems of equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture materials (PDF documents and codes) will be made available to participants.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Solid knowledge about fundamental concepts and techniques from linear algebra & calculus as taught in the first year of science and engineering curricula.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical simulations and programs are designed as self-contained exercises in C++, using the template EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
<td>W</td>
<td>Eligible for credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Students in the Joint Degree Master's Programme "Quantitative Finance" must book University of Zurich modules directly at the University of Zurich. Those modules are not listed here.

► Core Courses

►► Economic Theory for Finance

For possible (additional) course offerings see www.msfinance.ch

►► Mathematical Methods for Finance

For possible additional course offerings see www.msfinance.ch

Number	Title	Type	ECTS	Hours	Lecturers
401-3913-01L | Mathematical Foundations for Finance | W | 4 credits | 3V+2U | B. Acciaio

Abstract
First introduction to main modelling ideas and mathematical tools from mathematical finance

Objective
This course gives a first introduction to the main modelling ideas and mathematical tools from mathematical finance. It mainly aims at non-mathematicians who need an introduction to the main tools from stochastics used in mathematical finance. However, mathematicians who want to learn some basic modelling ideas and concepts for quantitative finance (before continuing with a more advanced course) may also find this of interest. The main emphasis will be on ideas, but important results will be given with (sometimes partial) proofs.

Content
Topics to be covered include
- financial market models in finite discrete time
- absence of arbitrage and martingale measures
- valuation and hedging in complete markets
- basics about Brownian motion
- stochastic integration
- stochastic calculus: Itô’s formula, Girsanov transformation, Itô’s representation theorem
- Black-Scholes formula

Lecture notes
Lecture notes will be sold at the beginning of the course.

Literature
Lecture notes will be sold at the beginning of the course. Additional (background) references are given there.

Prerequisites / notice
Prerequisites: Results and facts from probability theory as in the book "Probability Essentials" by J. Jacod and P. Protter will be used freely. Especially participants without a direct mathematics background are strongly advised to familiarise themselves with those tools before (or very quickly during) the course. (A possible alternative to the above English textbook are the (German) lecture notes for the standard course "Wahrscheinlichkeitstheorie".)

For those who are not sure about their background, we suggest to look at the exercises in Chapters 8, 9, 22-25, 28 of the Jacod/Protter book. If these pose problems, you will have a hard time during the course. So be prepared.

► Elective Courses

►► Economic Theory for Finance

For possible additional course offerings see www.msfinance.ch

Number	Title	Type	ECTS	Hours	Lecturers
401-4633-00L | Data Analytics in Organisations and Business | W | 5 credits | 2V+1U | I. Flückiger

Abstract
On the end-to-end data analytics process in organizations & businesses and how to transform data into insights for fact-based decisions. Presentation of the process from the beginning with framing the business problem to presenting the results and making decisions using data analytics. For each topic, case studies from the financial service, healthcare, and retail sectors will be given.

Objective
This course aims to give the students an understanding of the data analytics process in the business world, with a particular focus on the skills and techniques used besides the technical skills. The student will become familiar with the "business language," current problems, and thinking in organizations and business and tools used.

Content
Framing the Business Problem
Framing the Analytics Problem
Data
Methodology
Model Building
Deployment
Model Lifecycle

Lecture notes
The lecture's presentation slides will be provided.

Prerequisites / notice
Prerequisites: Basic statistics and probability theory and regression

363-1081-00L | Asset Liability Management and Treasury Risks | W | 3 credits | 2V | P. Mangold, M. Eichhorn

Abstract
Asset Liability Management (ALM) is key to the financial success of any corporation. The goal is to develop a comprehensive understanding of the nature of corporate balance sheet and off-balance sheet positions and related profits and losses, including identification and mitigation of undue risks taken. This course is geared towards preparing students to apply these concepts in practical settings.

Objective
The main learning objectives of this course are:
- develop a comprehensive understanding of the nature of corporate balance sheet and off-balance sheet positions and their respective contribution to profits and losses
- measure and assess exposures to risk factors such as interest and FX rates, equity and commodity prices, as well as liquidity events
- trading and hedging to mitigate undue risks incurred
Mathematical Finance

The course is organized around a series of case studies. We will first discuss and develop an understanding of the fundamentals on different aspects of the management and risk management of the balance sheet. Using real life case studies each concept will then be directly applied and tested. In-class discussions, presentations and one written assignment are used to facilitate active and interactive learning in a stimulating environment. During the case studies students will frequently work in small groups. Therefore, the number of participants is limited to 40.

The course focuses on the application of finance concepts to the financial management of corporations and is geared towards preparing students to apply these concepts in practical settings. Executives of all sectors are expected to have a sound understanding of the content covered. As such, the course is not exclusively targeted at students who are considering a career in the financial services sector. It is also recommended for students who want to work in the finance, treasury or risk area of corporates. It is also suitable for students who want to work for a consultancy firm.

Literature

No single textbook covers the course, below we list some useful references. Further materials will be made available to students prior to the lectures.

Prerequisites

Participants should have a basic understanding of financial management, gained, for example, from prior undergraduate economics, business, or accounting studies.

Mathematical Methods for Finance

For possible additional course offerings see www.msfinance.ch

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3925-00L</td>
<td>Non-Life Insurance: Mathematics and Statistics</td>
<td>W</td>
<td>8 credits</td>
<td>4V+1U</td>
<td>M. V. Wüthrich</td>
</tr>
</tbody>
</table>

Abstract

The lecture aims at providing a basis in non-life insurance mathematics which forms a core subject of actuarial science. It discusses collective risk modeling, individual claim size modeling, approximations for compound distributions, ruin theory, premium calculation principles, tariffication with generalized linear models and neural networks, credibility theory, claims reserving and solvency.

Objective

The student is familiar with the basics in non-life insurance mathematics and statistics. This includes the basic mathematical models for insurance liability modeling, pricing concepts, stochastic claims reserving models and ruin and solvency considerations.

Content

The following topics are treated:
- Collective Risk Modeling
- Individual Claim Size Modeling
- Approximations for Compound Distributions
- Ruin Theory in Discrete Time
- Premium Calculation Principles
- Tariffication
- Generalized Linear Models and Neural Networks
- Bayesian Models and Credibility Theory
- Claims Reserving
- Solvency Considerations

Lecture notes

M.V. Wüthrich, Non-Life Insurance: Mathematics & Statistics
http://ssrn.com/abstract=2319328

Literature

M.V. Wüthrich, M. Merz. Statistical Foundations of Actuarial Learning and its Applications
http://ssrn.com/abstract=3822407

Prerequisites / notice

This course will be held in English and counts towards the diploma of "Aktuar SAV". For the latter, see details under www.actuaries.ch.

Prerequisites: knowledge of probability theory, statistics and applied stochastic processes.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
 - Techniques and Technologies
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Project Management

Domain B - Method-specific Competencies

401-4889-00L | Mathematical Finance | W | 11 credits | 4V+2U | D. Possamaï |

Abstract

Advanced course on mathematical finance:
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- additional topics

Objective

This is an advanced course on mathematical finance for students with a good background in probability and stochastic calculus (for continuous processes).

Content

Topics include:
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- and probably others

Lecture notes

The course is based on different parts from different books as well as on original research literature.

Literature

Lecture notes will not be available.

(will be updated later)
Prerequisites / notice

Prerequisites are the standard courses
- Probability Theory (for which lecture notes are available)
- Brownian Motion and Stochastic Calculus (for which lecture notes are available)

Those students who already attended "Introduction to Mathematical Finance" will have an advantage in terms of ideas and concepts.

This course is the second of a sequence of two courses on mathematical finance. The first course "Introduction to Mathematical Finance" (MF I), 401-3888-00, focuses on models in finite discrete time. It is advisable that the course MF I is taken prior to the present course, MF II.

For an overview of courses offered in the area of mathematical finance, see https://www.math.ethz.ch/imsf/education/education-in-stochastic-finance/overview-of-courses.html.

401-4657-00L Numerical Analysis of Stochastic Ordinary Differential Equations

W 6 credits 3V+1U A. Stein

Abstract
Course on numerical approximations of stochastic ordinary differential equations driven by Wiener processes. These equations have several applications, for example in financial option valuation. This course also contains an introduction to random number generation and Monte Carlo methods for random variables.

Objective
The aim of this course is to enable the students to carry out simulations and their mathematical convergence analysis for stochastic models originating from applications such as mathematical finance. For this the course teaches a decent knowledge of the different numerical methods, their underlying ideas, convergence properties and implementation issues.

Content
- Generation of random numbers
- Monte Carlo methods for the numerical integration of random variables
- Stochastic processes and Brownian motion
- Stochastic ordinary differential equations (SODEs)
- Numerical approximations of SODEs

Applications to computational finance: Option valuation

Lecture notes
There will be English, typed lecture notes for registered participants in the course.

Literature

Prerequisites / notice

Prerequisites:
- Mandatory: Probability and measure theory,
- basic numerical analysis and
- basics of MATLAB/Python programming.

a) mandatory courses:
- Elementary Probability,
- Probability Theory I.

b) recommended courses:
- Stochastic Processes.

401-3929-00L Financial Risk Management in Social and Pension Insurance

W 4 credits 2V P. Blum

Abstract
Investment returns are an important source of funding for social and pension insurance, and financial risk is an important threat to stability. We study short-term and long-term financial risk and its interplay with other risk factors, and we develop methods for the measurement and management of financial risk and return in an asset/liability context with the goal of assuring sustainable funding.

Objective
- Understand the basic asset-liability framework: essential principles and properties of social and pension insurance; cash flow matching, duration matching, valuation portfolio and loose coupling; the notion of financial risk; long-term vs. short-term risk; coherent measures of risk.
- Understand the conditions for sustainable funding: derivation of required returns; interplay between return levels, contribution levels and other parameters; influence of guaranteed benefits.
- Understand the notion of risk-taking capability: capital process as a random walk; measures of long-term risk and relation to capital; short-term solvency vs. long-term stability; effect of embedded options and guarantees; interplay between required return and risk-taking capability.
- Be able to study empirical properties of financial assets: the Normal hypothesis and the deviations from it; statistical tools for investigating relevant risk and return properties of financial assets; time aggregation properties; be able to conduct analysis of real data for the most important asset classes.
- Understand and be able to carry out portfolio construction: the concept of diversification; limitations to diversification; correlation breakdown; incorporation of constraints; sensitivities and shortcomings of optimized portfolios.
- Understand and interpret the asset-liability interplay: the optimized portfolio in the asset-liability framework; short-term risk vs. long-term risk; the influence of constraints; feasible and non-feasible solutions; practical considerations.
- Understand and be able to address essential problems in asset / liability management, e.g. optimal risk / return positioning, optimal discount rate, target value for funding ratio or turnaround issues.
- Have an overall view: see the big picture of what asset returns can and cannot contribute to social security; be aware of the most relevant outcomes; know the role of the actuary in the financial risk management process.
Content

For pension insurance and other forms of social insurance, investment returns are an important source of funding. In order to earn these returns, substantial financial risks must be taken, and these risks represent an important threat to financial stability, in the long term and in the short term.

Risk and return of financial assets cannot be separated from one another and, hence, asset management and risk management cannot be separated either. Managing financial risk in social and pension insurance is, therefore, the task of reconciling the contradictory dimensions of

1. Required return for a sustainable funding of the institution,
2. Risk-taking capability of the institution,
3. Returns available from financial assets in the market,
4. Risks incurred by investing in these assets.

This task must be accomplished under a number of constraints. Financial risk management in social insurance also means reconciling the long time horizon of the promised insurance benefits with the short time horizon of financial markets and financial risk.

It is not the goal of this lecture to provide the students with any cookbook recipes that can readily be applied without further reflection. The goal is rather to enable the students to develop their own understanding of the problems and possible solutions associated with the management of financial risks in social and pension insurance.

To this end, a rigorous intellectual framework will be developed and a powerful set of mathematical tools from the fields of actuarial mathematics and quantitative risk management will be applied. When analyzing the properties of financial assets, an empirical viewpoint will be taken using statistical tools and considering real-world data.

The exams ONLY take place during the official ETH examination period.

Lecture notes

Extensive handouts will be provided. Moreover, practical examples and data sets in Excel and R will be made available.

Prerequisites / notice

Solid base knowledge of probability and statistics is indispensable. Specialized concepts from financial and insurance mathematics as well as quantitative risk management will be introduced in the lecture as needed, but some prior knowledge in some of these areas would be an advantage.

This course counts towards the diploma of "Aktuar SAV".

401-3922-00L

Life Insurance Mathematics

The classical life insurance model is presented together with the important insurance types (insurance on one and two lives, term and endowment insurance and disability). Besides that the most important terms such as mathematical reserves are introduced and calculated. The profit and loss account and the balance sheet of a life insurance company is explained and illustrated.

401-3928-00L

Reinsurance Analytics

This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and models for extreme events such as natural or man-made catastrophes. The lecture covers reinsurance contracts, Experience and Exposure pricing, natural catastrophe modelling, solvency regulation, and insurance linked securities.

Topics covered include:
- Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business.
- Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models
- Exposure Pricing: Loss modelling based on exposure or risk profile information, for both property and casualty risks
- Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context
- Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency 2
- Insurance linked securities: Alternative risk transfer techniques such as catastrophe bonds

This course provides an introduction to reinsurance from an actuarial perspective. The objective is to understand the fundamentals of risk transfer through reinsurance and the mathematical approaches associated with low frequency high severity events such as natural or man-made catastrophes.

Topics covered include:
- Reinsurance Contracts and Markets: Different forms of reinsurance, their mathematical representation, history of reinsurance, and lines of business.
- Experience Pricing: Modelling of low frequency high severity losses based on historical data, and analytical tools to describe and understand these models
- Exposure Pricing: Loss modelling based on exposure or risk profile information, for both property and casualty risks
- Natural Catastrophe Modelling: History, relevance, structure, and analytical tools used to model natural catastrophes in an insurance context
- Solvency Regulation: Regulatory capital requirements in relation to risks, effects of reinsurance thereon, and differences between the Swiss Solvency Test and Solvency 2
- Insurance linked securities: Alternative risk transfer techniques such as catastrophe bonds

An excerpt of last year's lecture notes is available here: https://sites.google.com/site/philipparbenz/reinsuranceanalytics
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptable and Flexibility: assessed
- Creative Thinking: not assessed
- Critical Thinking: not assessed
- Integrity and Work Ethics: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed

Master’s Thesis
- [see www.oec.uzh.ch/studies/general/theses/oec_en.html](http://www.oec.uzh.ch/studies/general/theses/oec_en.html)

Quantitative Finance Master - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
- European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
Quantum Engineering Master

Core Courses

A minimum of 24 credits must be obtained from core courses during the MSc QE. course selection is subject to the tutor's agreement.

Quantum Technology Lab

This core course is a prerequisite for participation in the QuanTech Labs of the second and third semester.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1831-10L</td>
<td>Case Studies: Applications of Quantum Technology</td>
<td>W+</td>
<td>3</td>
<td>6G</td>
<td>G. Raino</td>
</tr>
</tbody>
</table>

Abstract
In this course students will be exposed to different topics of quantum engineering and develop ideas for possible projects. Based on presentations by ETH labs participating in the MSc QE program and with the assistance of a mentor students will work in groups to develop concrete plans for a quantum experiment.

Objective
Acquire a broad overview of quantum engineering activities at ETH and develop own ideas about future quantum engineering projects.

Engineering Core Courses

These core courses target students with a physics background and all those who need additional engineering foundations.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0103-00L</td>
<td>Control Systems</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td>F. Dörfler</td>
</tr>
</tbody>
</table>

Abstract
Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.

Objective
Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.

Content

Literature

Prerequisites / notice
Prerequisites: Signal and Systems Theory II.
MATLAB is used for system analysis and simulation.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0116-00L</td>
<td>VLSI 1: HDL based design for FPGAs</td>
<td>W</td>
<td>6</td>
<td>5G</td>
<td>F. K. Gürkaynak, L. Benini</td>
</tr>
</tbody>
</table>

Abstract
This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.

Objective
Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.

Content
This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and implementation depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog.
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Aneuse diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

Lecture notes
Textbook and all further documents in English.

Literature

Prerequisites / notice
Prerequisites:
Basics of digital circuits.

Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English or German.

Further details:
https://iis-students.ee.ethz.ch/lectures/vlsi-i/
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0166-00L</td>
<td>Analog Integrated Circuits</td>
<td>W</td>
<td>6</td>
<td>2V+2U</td>
<td>T. Jang</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems. The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc.; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors. The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurements.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>Handsouts of presented slides. No script but an accompanying textbook is recommended.</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>Behzad Razavi, Design of Analog CMOS Integrated Circuits (Irwin Electronics & Computer Engineering) 1st or 2nd edition, McGraw-Hill Education</td>
</tr>
<tr>
<td>227-0301-00L</td>
<td>Optical Communication Fundamentals</td>
<td>W</td>
<td>6</td>
<td>2V+1U+1P</td>
<td>J. Leuthold</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>The path of an analog signal in the transmitter to the digital world in a communication link and back to the analog world at the receiver is discussed. The lecture covers the fundamentals of all important optical and optoelectronic components in a fiber communication system. This includes the transmitter, the fiber channel and the receiver with the electronic digital signal processing elements.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>An in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societial, economical and environmental aspects related to the on-going exponential growth in the field of communications.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>* Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection techniques, Error correction coding.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Chapter 7: Optical Amplifiers: Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>Lecture notes are handed out.</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>Govind P. Agrawal; "Fiber-Optic Communication Systems"; Wiley, 2010</td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td>Fundamentals of Electromagnetic Fields & Bachelor Lectures on Physics.</td>
</tr>
<tr>
<td>227-0417-00L</td>
<td>Information Theory I</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>A. Lapidoth</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>The fundamentals of Information Theory including Shannon's source coding and channel coding theorems</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>The entropy rate of a source, Typical sequences, the asymptotic equi-partition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>T.M. Cover and J. Thomas, Elements of Information Theory (second edition)</td>
</tr>
</tbody>
</table>

Physics Core Courses

These core courses target students with an engineering background and all those who need additional physics foundations.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0205-00L</td>
<td>Quantum Mechanics I</td>
<td>W</td>
<td>10</td>
<td>3V+2U</td>
<td>M. Gaberdiel</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Introduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>The beginnings of quantum theory with Planck, Einstein and Bohr; Wave mechanics; Simple examples; The formalism of quantum mechanics (states and observables, Hilbert spaces and operators, the measurement process); Heisenberg uncertainty relation; Harmonic oscillator; Symmetries (in particular rotations); Hydrogen atom; Angular momentum addition; Quantum mechanics and classical physics (EPR paradoxon and Bell's inequality); Perturbation theory.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>Auf Moodle, in deutscher Sprache</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>G. Baym, Lectures on Quantum Mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E. Merzbacher, Quantum Mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L.I. Schiff, Quantum Mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>J.J. Sakurai: Modern Quantum Mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A. Messiah: Quantum Mechanics I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S. Weinberg: Lectures on Quantum Mechanics</td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Domain B - Method-specific Competencies</td>
<td>Domain C - Social Competencies</td>
<td>Domain D - Personal Competencies</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
<td>Decision-making</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptable and Flexibility</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

402-0209-00L Quantum Physics for Non-Physicists

Abstract	This is an introduction to the physics of quantum mechanics, aimed primarily at students with little to no background in physics. We start from the basic postulates and follow an information-theoretical approach to study the behaviour of quantum systems, from a single spin to entangled particles in space and the hydrogen atom.
Objective	This course teaches the basics of quantum physics, and complements courses in quantum computation and information theory. Students are equipped with tools to tackle complex quantum mechanical problems and foundational questions. The course covers approximately the same content as QM1, but from an information-driven perspective.
Content	1. Quantum formalism, from qubits to particles in space
	2. Time and dynamics for quantum systems
	3. Problems in 1D
	4. Uncertainty and open systems
	5. Spin
	6. Problems in 3D
	7. Non-locality and foundational aspects of quantum theory
Lecture notes	Lecture notes will be distributed through the semester.
Literature	Quantum Processes Systems, and Information, by Benjamin Schumacher and Michael Westmoreland, available at https://www.cambridge.org/core/books/quantum-processes-systems-and-information/4E459E64E1EE7121CA2321435FAECC8A
Prerequisites / notice	This course is aimed at non-physicists, and in particular at students with a background in computer science, mathematics or engineering. Basic linear algebra and calculus knowledge is required (equivalent to first-year courses). Physics knowledge is not required. Physicists and students from a different background than outlined above are welcome at their own risk. Note that while we follow an information-theoretical approach, this is not a course on quantum information theory or quantum computing. It therefore complements those courses offered at ETH in both semesters.

402-0255-00L Introduction to Solid State Physics

| Abstract |
| Objective |
| Content |
| Lecture notes |
| Literature |
| Prerequisites / notice |
Taught competencies	Domain A - Subject-specific Competencies	Domain B - Method-specific Competencies	Domain C - Social Competencies	Domain D - Personal Competencies
Concepts and Theories	assessed	Techniques and Technologies	assessed	
Analytical Competencies	assessed	Decision-making	not assessed	
Media and Digital Technologies	not assessed	Problem-solving	assessed	
Project Management	not assessed			
Communication	assessed			
Cooperation and Teamwork	not assessed			
Customer Orientation	not assessed			
Leadership and Responsibility	not assessed			
Self-presentation and Social Influence	not assessed			
Sensitivity to Diversity	not assessed			
Negotiation	not assessed			
Adaptability and Flexibility	not assessed			
Creative Thinking	assessed			
Critical Thinking	assessed			
Integrity and Work Ethics	assessed			
Self-awareness and Self-reflection	not assessed			
Self-direction and Self-management	not assessed			
Abstract

The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of insulators, metals, semiconductors, transport properties, magnetism, superconductivity.

Objective

Introduction to Solid State Physics.

Content

The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, thermal properties of insulators, metals (classical and quantum mechanical description of electronic states, thermal and transport properties of metals); semiconductors (bandstructure and n/p-type doping); magnetism, superconductivity.

Lecture notes

The script will be available on moodle.

Literature

Ibach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
Ashcroft & Mermin, Festkörperphysik
W. Känzig, Kondensierte Materie

Prerequisites / notice

Voraussetzungen: Physik I, II, III wünschenswert

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0442-00L</td>
<td>Quantum Optics</td>
<td>W</td>
<td>10 credits</td>
<td>3V+2U</td>
<td>T. Esslinger</td>
</tr>
<tr>
<td>402-0861-00L</td>
<td>Statistical Physics</td>
<td>W</td>
<td>10 credits</td>
<td>4V+2U</td>
<td>M. Sigrist</td>
</tr>
<tr>
<td>402-0461-00L</td>
<td>Quantum Information Theory</td>
<td>W</td>
<td>8 credits</td>
<td>3V+1U</td>
<td>P. Kammerlander</td>
</tr>
</tbody>
</table>

Number	Title	Type	ECTS	Hours	Lecturers

Autumn Semester 2021

8 credits

10 credits

10 credits

This is a selection of courses particularly suitable for the MSc QE. In agreement with the tutor, students may choose other courses from the ETH course catalogue.
227-0101-00L
Discrete-Time and Statistical Signal Processing

Abstract
The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.

Objective
The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.

Content
1. Discrete-time linear systems and filters: state-space realizations, z-transform and spectrum, decimation and interpolation, digital filter design, stable realizations and robust inversion.
2. The discrete Fourier transform and its use for digital filtering.
3. The statistical perspective: probability, random variables, discrete-time stochastic processes; detection and estimation: MAP, ML, Bayesian MMSE, LMMSE; Wiener filter, LMS adaptive filter, Viterbi algorithm.

Lecture notes
Lecture Notes

227-0145-00L
Solid State Electronics and Optics

Abstract
"Solid State Electronics" is an introductory condensed matter physics course covering crystal structure, electron models, classification of metals, semiconductors, and insulators, band structure engineering, thermal and electronic transport in solids, magnetoresistance, and optical properties of solids.

Objective
Understand the fundamental physics behind the mechanical, thermal, electric, magnetic, and optical properties of materials.

Prerequisites / notice
Recommended background:
Undergraduate physics, mathematics, semiconductor devices

Content
- Introduction: information representation and communication; abstraction, categorization and symbolic representation; basic conversion algorithms; data converter architecture; tradeoffs among key parameters; ADC taxonomy.
- Dual-slope & successive approximation register (SAR) converters: dual-slope principle & converter; SAR ADC operating principle; SAR implementation with a capacitive array; range extension with segmented array.
- Algorithmic & pipelined A/D converters: algorithmic conversion principle; sample & hold stage; pipe-lined converter; multiplying DAC; flash sub-ADC and n-bit MDAC; redundancy for correction of non-idealties, error correction.
- Performance metrics and non-linearity: ideal ADC; offset, gain error, differential and integral non-linearities; capacitor mismatch; impact of capacitor mismatch on SAR ADC's performance.
- Flash, folding an interpolating analog-to-digital converters: flash ADC principle, thermometer to binary coding, sparkle correction; limitations of flash converters; the folding principle, residue extraction; folding amplifiers; cascaded folding; interpolation for folding converters; cascaded folding and interpolation.
- Noise in analog-to-digital converters: types of noise; noise calculation in electronic circuit, kT/C-noise, sampled noise; noise analysis in switched-capacitor circuits; aperture time uncertainty and sampling jitter.
- Delta-sigma A/D-converters: linearity and resolution; from delta-modulation to delta-sigma modulation; first-order delta-sigma modulation, circuit level implementation; clock-jitter & SNR in delta-sigma modulators; second-order delta-sigma modulation, higher-order modulation, design procedure for a single-loop modulator.

Lecture notes
Slides are available online under https://lis-students.ee.ethz.ch/lectures/analog-to-digital-converters/

Literature
- M. Gustavsson et. al., CMOS Data Converters for Communications, Springer, 2010

Prerequisites / notice
It is highly recommended to attend the course "Analog Integrated Circuits" of Prof. T. Jang as a preparation for this course.

227-0157-00L
Semiconductor Devices: Physical Bases and Simulation

Abstract
The course addresses the physical principles of modern semiconductor devices and the foundations of their modeling and numerical simulation. Necessary basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided. Computer simulations of the most important devices and of interesting physical effects supplement the lectures.

Objective
The course aims at the understanding of the principle physics of modern semiconductor devices, of the foundations in the physical modeling of transport and its numerical simulation. During the course also basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided.

Content
The main topics are: transport models for semiconductor devices (quantum transport, Boltzmann equation, drift-diffusion model, hydrodynamic model), physical characterization of silicon (intrinsic properties, scattering processes), mobility of cold and hot carriers, recombination (Shockley-Read-Hall statistics, Auger recombination), impact ionization, metal-semiconductor contact, metal-insulator-semiconductor structure, and heterojunctions. The exercises are focussed on the theory and the basic understanding of the operation of special devices, as single-electrode transistor, resonant tunneling diode, pn-diode, bipolar transistor, MOSFET, and laser. Numerical simulations of such devices are performed with an advanced simulation package (Sentaurus-Synopsys). This enables to understand the physical effects by means of computer experiments.

Lecture notes
The script (in book style) can be downloaded from: https://lis-students.ee.ethz.ch/lectures/

Literature
The script (in book style) is sufficient. Further reading will be recommended in the lecture.

Prerequisites / notice

227-0166-00L
Analog Integrated Circuits

Abstract
The course provides a thorough treatment of integrated data conversion systems from system level specifications and trade-offs, over architecture choice down to circuit implementation.

Objective
Data conversion systems are substantial sub-parts of many electronic systems, e.g. the audio conversion system of a home-cinema systems or the base-band front-end of a wireless modem. Data conversion systems usually determine the performance of the overall system in terms of dynamic range and linearity. The student will learn to understand the basic principles behind data conversion and be introduced to the different methods and circuit architectures to implement such a conversion. The conversion methods such as successive approximation or algorithmic conversion are explained with their principle of operation accompanied with the appropriate mathematical calculations, including the effects of non-idealties in some cases. After successful completion of the course the student should understand the concept of an ideal ADC, know all major converter architectures, their principle of operation and what governs their performance.

Content
- Introduction: information representation and communication; abstraction, categorization and symbolic representation; basic conversion algorithms; data converter architecture; tradeoffs among key parameters; ADC taxonomy.
- Dual-slope & successive approximation register (SAR) converters: dual-slope principle & converter; SAR ADC operating principle; SAR implementation with a capacitive array; range extension with segmented array.
- Algorithmic & pipelined A/D converters: algorithmic conversion principle; sample & hold stage; pipe-lined converter; multiplying DAC; flash sub-ADC and n-bit MDAC; redundancy for correction of non-idealties, error correction.
- Performance metrics and non-linearity: ideal ADC; offset, gain error, differential and integral non-linearities; capacitor mismatch; impact of capacitor mismatch on SAR ADC's performance.
- Flash, folding an interpolating analog-to-digital converters: flash ADC principle, thermometer to binary coding, sparkle correction; limitations of flash converters; the folding principle, residue extraction; folding amplifiers; cascaded folding; interpolation for folding converters; cascaded folding and interpolation.
- Noise in analog-to-digital converters: types of noise; noise calculation in electronic circuit, kT/C-noise, sampled noise; noise analysis in switched-capacitor circuits; aperture time uncertainty and sampling jitter.
- Delta-sigma A/D-converters: linearity and resolution; from delta-modulation to delta-sigma modulation; first-order delta-sigma modulation, circuit level implementation; clock-jitter & SNR in delta-sigma modulators; second-order delta-sigma modulation, higher-order modulation, design procedure for a single-loop modulator.
- Algorithmic & pipelined A/D converters: algorithmic conversion principle; sample & hold stage; pipe-lined converter; multiplying DAC; flash sub-ADC and n-bit MDAC; redundancy for correction of non-idealties, error correction.
- Performance metrics and non-linearity: ideal ADC; offset, gain error, differential and integral non-linearities; capacitor mismatch; impact of capacitor mismatch on SAR ADC's performance.
- Flash, folding an interpolating analog-to-digital converters: flash ADC principle, thermometer to binary coding, sparkle correction; limitations of flash converters; the folding principle, residue extraction; folding amplifiers; cascaded folding; interpolation for folding converters; cascaded folding and interpolation.
- Noise in analog-to-digital converters: types of noise; noise calculation in electronic circuit, kT/C-noise, sampled noise; noise analysis in switched-capacitor circuits; aperture time uncertainty and sampling jitter.
- Delta-sigma A/D-converters: linearity and resolution; from delta-modulation to delta-sigma modulation; first-order delta-sigma modulation, circuit level implementation; clock-jitter & SNR in delta-sigma modulators; second-order delta-sigma modulation, higher-order modulation, design procedure for a single-loop modulator.

Prerequisites / notice
Does not take place this semester.

Literature
- M. Gustavsson et. al., CMOS Data Converters for Communications, Springer, 2010

Prerequisites / notice
It is highly recommended to attend the course "Analog Integrated Circuits" of Prof. T. Jang as a preparation for this course.

Literature
- M. Gustavsson et. al., CMOS Data Converters for Communications, Springer, 2010

Prerequisites / notice
It is highly recommended to attend the course "Analog Integrated Circuits" of Prof. T. Jang as a preparation for this course.
Abstract
This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies.

Objective
Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems.

Content
- Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc. - Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors.

Lecture notes
Handouts of presented slides. No script but an accompanying textbook is recommended.

Literature

227-0225-00L Linear System Theory W 6 credits 5G A. Iannelli

Abstract
The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.

Objective
Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.

Content
- Proof techniques and practices.
- Linear spaces, normed linear spaces and Hilbert spaces.
- Ordinary differential equations, existence and uniqueness of solutions.
- Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case.
- Controllability and observability, duality. Time invariant systems treated as a special case.
- Stability and stabilization, observers, state and output feedback, separation principle.

Lecture notes
Available on the course Moodle platform.

Prerequisites / notice
Sufficient mathematical maturity, in particular in linear algebra, analysis.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
assessed
assessed

Domain B - Method-specific Competencies
Analytical Competencies
Problem-solving
assessed
assessed

Domain D - Personal Competencies
Creative Thinking
Critical Thinking
Integrity and Work Ethics
not assessed
not assessed

227-0311-00L Qubits, Electrons, Photons W 6 credits 3V+2U T. Zambelli

Abstract
In-depth analysis of the quantum mechanics origin of nuclear magnetic resonance (qubits, two-level systems), of LASER (quantization of the electromagnetic field, photons), and of electron transfer (from electrochemistry to photosynthesis).

Objective
Beside electronics nanodevices, D-ITET is pushing its research in the fields of NMR (MRI), electrochemistry, bioelectronics, nano-optics, and quantum information, which are all rationalized in terms of quantum mechanics.

Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition!

In this way, students will work out a robust quantum mechanics (theoretical) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems.

Content
- Lagrangian and Hamiltonian: Symmetries and Poisson Brackets
- Postulates of QM: Hilbert Spaces and Operators
- Heisenberg’s Matrix Mechanics: Hamiltonian and Time Evolution Operator
- Spin: Qubits, Bloch Equations, and NMR
- Entanglement
- Symmetries and Corresponding Operators
- Schrödinger's Wave Mechanics: Electrons in a Periodic Potential and Energy Bands
- Harmonic Oscillator: Creation and Annihilation Operators
- Identical Particles: Bosons and Fermions
- Quantization of the Electromagnetic Field: Photons, Absorption and Emission, LASER
- Electron Transfer: Marcus Theory via Born-Oppenheimer, Franck-Condon, Landau-Zener

Lecture notes
No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive!

Literature

Supplementary material will be uploaded in Moodle.

+ (as rigorous and profound presentation of the mathematical framework) G. Dell’Antonio, “Lectures on the Mathematics of Quantum Mechanics I”, 2015, Springer
+ (as account of those formidable years) G. Gamow, “Thirty Years that Shook Physics”, 1985, Dover Publications Inc.
The course has been intentionally conceived to be self-consistent with respect to QM for those master students not having encountered it in their track yet. Therefore, a presumably large overlapping has to be expected with a (welcome!) QM introduction course like the D-ITET “Physics II”.

A solid base of Analysis I & II as well as of Linear Algebra is really helpful.

IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises!). Please, look at the details in moodle!

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories assessed</td>
</tr>
<tr>
<td></td>
<td>Techniques and Technologies not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management assessed</td>
</tr>
</tbody>
</table>

Course Details

227-0427-00L Signal Analysis, Models, and Machine Learning

W 6 credits 4G H.-A. Loeliger

Does not take place this semester.

This course was replaced by “Introduction to Estimation and Machine Learning” and “Advanced Signal Analysis, Modeling, and Machine Learning”.

Abstract

I. Linear signal representation and approximation: Hilbert spaces, LMMSE estimation, regularisation and sparsity.
II. Learning linear and nonlinear functions and filters: neural networks, kernel methods.
III. Structured statistical models: hidden Markov models, factor graphs, Kalman filter, Gaussian models with sparse events.

Objective

The course is an introduction to some basic topics in signal processing and machine learning.

Content

Lecture notes

Lecture notes.

Prerequisites / notice

- Prerequisites:
 - local bachelors: course “Discrete-Time and Statistical Signal Processing” (5. Sem.)
 - others: solid basics in linear algebra and probability theory

227-0468-00L Analog Signal Processing and Filtering

W 6 credits 2V+2U H. Schmid

Suitable for Master Students as well as Doctoral Students.

Abstract

This lecture provides a wide overview over analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers.

Objective

This lecture provides a wide overview over analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers. The way the exam is done allows for the different interests of the two groups.

The learning goal is that the students can apply signal-flow graphs and can understand the signal flow in such circuits and systems (including non-ideal effects) well enough to gain an understanding of further circuits and systems by themselves.

Content

At the beginning, signal-flow graphs in general and driving-point signal-flow graphs in particular are introduced. We will use them during the whole term to analyze circuits on a system level (analog continuous-time, analog discrete-time, mixed-signal and digital) and understand how signals propagate through them. The theory and CMOS implementation of active Filters is then discussed in detail using the example of Gm-C filters and active-RC filters. The ideal and nonideal behaviour of opamps, current conveyors, and inductor simulators follows. The link to the practical design of circuits and systems is done with an overview over different quality measures and figures of merit used in scientific literature and datasheets. Finally, an introduction to discrete-time and mixed-domain filters and circuits is given, including sensor read-out amplifiers, correlated double sampling, and chopping, and an introduction to sigma-delta A/D and D/A conversion on a system level.

This lecture does not go down to the details of transistor implementations. The lecture “227-0166-00L Analog Integrated Circuits” complements this lecture very well in that respect.

Lecture notes

The base for these lectures are lecture notes and two or three published scientific papers. From these papers we will together develop the technical content.

Details: https://people.ee.ethz.ch/~haschmid/askwiki/

The graph methods are also supported with teaching videos: https://tube.switch.ch/channels/d206c96c?order=episodes, and a Python-based open-source tool to manipulate graphs is available on https://github.com/hanspi42/signalflowgrapher

Some material is protected by password; students from ETHZ who are interested can write to haschmid@ethz.ch to ask for the password even if they do not attend the lecture.
The goal of this course is to understand the fundamental limitations of measurement systems relying on electromagnetic fields.

The lecture will treat the following chapters:

1. Electrodynamics
2. Introduction: intersubband optoelectronics as an example of quantum engineering
3. Intersubband absorption and scattering processes
4. Mid-IR and THz ISB Detectors
5. THz QCLs (direct and non-linear generation)
6. Mid-IR and THz ISB Detectors: waveguides, resonators, metamaterials
7. Quantum Cascade lasers:
8. Mid-IR QCLs
9. Intersubband absorption and scattering processes
10. Intersubband transitions in quantum wells are transitions between states created by quantum confinement in ultra-thin layers of semiconductors. Because of its inherent taylorability, this system can be seen as the “ultimate quantum designer’s material”.
11. THz QCLs (direct and non-linear generation)
12. further electronic confinement: interlevel Qdot transitions and magnetic field effects
13. Strong light-matter coupling in Mid-IR and THz range

The reference book for the lecture is "Quantum Cascade Lasers" by Jerome Faist, published by Oxford University Press.

Mostly the original articles, other useful reading can be found in:
- E. Rosencher and B. Vinter, Optoelectronics, Cambridge Univ. Press
- G. Bastard, Wave mechanics applied to semiconductor heterostructures, Halsted press
- Strong light-matter coupling in Mid-IR and THz range

Requirements: A basic knowledge of solid-state physics and of quantum electronics.
Understanding concepts of light localization and light-matter interactions on the sub-wavelength scale.

Nano-Optics is the study of light-matter interaction at the sub-wavelength scale. It is an flourishing field of fundamental and applied research enabled by the rapid advance of nanotechnology. Nano-optics embraces topics such as plasmonics, optical antennas, optical trapping and manipulation, and high/super-resolution imaging and spectroscopy.

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

Students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

Prerequisites / notice

- Electromagnetic fields and waves (or equivalent)
- Physics I+II

Abstract

Quantum Optics is the study of light-matter interaction at the sub-wavelength scale. It is a flourishing field of fundamental and applied research enabled by the rapid advance of nanotechnology. Quantum-optics embraces topics such as plasmonics, optical antennas, optical trapping and manipulation, and high/super-resolution imaging and spectroscopy.

Objective

Understanding concepts of light-localization and light-matter interactions on the sub-wavelength scale.

Content

We start with the angular spectrum representation of fields to understand the classical resolution limit. We continue with the theory of strongly focused light, the point spread function, and resolution criteria of conventional microscopy, before turning to super-resolution techniques, based on near- and far-fields. We introduce the local density of states and approaches to control spontaneous emission rates in inhomogeneous environments, including optical antennas. Finally, we touch upon optical forces and their applications in optical tweezers.

Literature

Lecture notes are distributed. For students enrolled in the course, additional information, lecture notes and exercises can be found on moodle (https://moodle-app2.let.ethz.ch/).

Prerequisites / notice

- Electromagnetic fields and waves (or equivalent)
- Physics I+II

Abstract

Dynamic Programming and Optimal Control

Introduces Dynamic Programming and Optimal Control.

Objective

Covers the fundamental concepts of Dynamic Programming & Optimal Control.

Content

Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.

Notice

Prerequisites / notice

Requirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.

Abstract

Advanced Machine Learning

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Fundamentals:
 - What is data?
 - Bayesian Learning
 - Computational learning theory
- Supervised learning:
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks
- Unsupervised learning:
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

Lecture notes

No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.
The course provides the foundations for the design and analysis of algorithms. Classical problems ranging from sorting up to problems on graphs are used to discuss common data structures, algorithms and algorithm design paradigms.

The course also comprises an introduction to parallel and concurrent programming.

An understanding of the analysis and design of fundamental and common algorithms and data structures. Knowledge regarding chances, problems and limits of parallel and concurrent programming.

Parallel programming: structure of parallel architectures (multicore, vectorization, pipelining) concepts of parallel programming (Amdahl's and Gustavson's laws, task/data parallelism, scheduling), problems of concurrency (data races, bad interleavings, memory reordering), process synchronisation and communication in a shared memory system (mutual exclusion, semaphores, monitors, condition variables).

The concepts are underpinned with examples of concurrent and parallel programs and with parallel algorithms, implemented in C++.

In general, the concepts provided in the course are motivated and illustrated with practically relevant algorithms and applications.

Exercises are carried out in Code-Expert, an online IDE and exercise management system.

All required mathematical tools above high school level are covered, including an introduction to graph theory.

Prerequisite: Computer Science I

Advanced Solid State Physics

This course is an extension of the introductory course on solid state physics.

The purpose of this course is to learn to navigate the complex collective quantum phases, excitations and phase transitions that are the dominant theme in modern solid state physics. The emphasis is on the main concepts and on specific experimental examples, both classic ones and those from recent research.

The goal is to study how novel phenomena emerge in the solid state.

- Today's challenges and opportunities in Solid State Physics
- Phase transitions and critical phenomena
 - Main concepts: coherence length, symmetry, order parameter, correlation functions, generalized susceptibility
 - Bragg-Williams mean field theory
 - Landau theory of phase transitions
 - Fluctuations in Landau theory
 - Critical exponents: significance, measurement, inequalities, equalities
 - Scaling and hyperscaling
 - Universality
 - Critical dynamics
 - Quantum phase transitions and quantum criticality
- Fermi surface instabilities
 - The concept of the Landau Fermi liquid in metals
 - Kohn anomalies
 - Charge density waves
 - Metallic ferromagnets and half-metals
 - Spin density waves
- Magnetism of insulators
 - Magnetic interactions in solids and the spin Hamiltonian
 - Magnetic structures and phase transitions
 - Spin waves
 - Quantum magnetism
- Electron correlations in solids
 - Mott insulating state
 - Phases of the Hubbard model
 - Layered cuprates (non-superconducting properties)

The printed material for this course involves: (1) a self-contained script, distributed electronically at semester start. (2) experimental examples (Power Point slide-style) selected from original publications, distributed at the start of every lecture.

A list of books will be distributed. Numerous references to useful published scientific papers will be provided.

This course is for students who like to be engaged in active learning. The "exercise classes" are organized in a non-traditional way:

Following the idea of "less is more", we will work on only about half a dozen topics, and this gives students a chance to take a look at original literature (provided), and to get the grasp of a topic from a broader perspective.

Students report back that this mode of "exercise class" is more satisfying than traditional modes, even if it does not mean less effort.

Semiconductor Materials: Fundamentals and Fabrication

This course gives an introduction into the fundamentals of semiconductor materials. The main focus is on state-of-the-art fabrication and characterization methods. The course will be continued in the spring term with a focus on applications.

Basic knowledge of semiconductor physics and technology. Application of this knowledge for state-of-the-art semiconductor device processing
Content

1. Fundamentals of Solid State Physics
 1.1 Semiconductor materials
 1.2 Band structures
 1.3 Carrier statistics in intrinsic and doped semiconductors
 1.4 p-n junctions
 1.5 Low-dimensional structures
2. Bulk Material growth of Semiconductors
 2.1 Czochalski method
 2.2 Floating zone method
 2.3 High pressure synthesis
3. Semiconductor Epitaxy
 3.1 Fundamentals of Epitaxy
 3.2 Molecular Beam Epitaxy (MBE)
 3.3 Metal-Organic Chemical Vapor Deposition (MOCVD)
 3.4 Liquid Phase Epitaxy (LPE)
4. In situ characterization
 4.1 Pressure and temperature
 4.2 Reflectometry
 4.3 Ellipsometry and RAS
 4.4 LEED, AES, XPS
 4.5 STM, AFM
5. The invention of the transistor - Christmas lecture

Lecture notes

Lecture notes

Lecture notes will be made available.

Several topics and corresponding papers will be offered on the moodle page of this lecture.

402-0402-00L Ultrafast Laser Physics

<table>
<thead>
<tr>
<th>W</th>
<th>10 credits</th>
<th>3V+2U</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. P. Gallmann, S. Johnson, U. Keller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Introduction to ultrafast laser physics with an outlook into cutting edge research topics such as attosecond science and coherent ultrafast processes in nature? Fundamental concepts and techniques will be linked to a selection of hot topics in current research and applications.

Objective

Understanding of basic physics and technology for pursuing research in ultrafast laser science. How are ultrashort laser pulses generated, how do they interact with matter, how can we measure these shortest man-made events and how can we use them to time-resolve ultrafast processes in nature? Fundamental concepts and techniques will be linked to a selection of hot topics in current research and applications.

Content

The lecture covers the following topics:

- a) Linear pulse propagation: mathematical description of pulses and their propagation in linear optical systems, effect of dispersion on ultrashort pulses, concepts of pulse carrier and envelope, time-bandwidth product
- b) Dispersion compensation: technologies for controlling dispersion, pulse shaping, measurement of dispersion
- c) Nonlinear pulse propagation: intensity-dependent refractive index (Kerr effect), self-phase modulation, nonlinear pulse compression, self-focusing, filamentation, nonlinear Schrödinger equation, solitons, non-instantaneous nonlinear effects (Raman/Brillouin), self-steeping, saturable gain and absorption
- d) Second-order nonlinearities with ultrashort pulses: phase-matching with short pulses and real beams, quasi-phase matching, second-harmonic and sum-frequency generation, parametric amplification and generation
- e) Relaxation oscillations: dynamical behavior of rate equations after perturbation
- f) Q-switching: active Q-switching and its theory based on rate equations, passive Q-switching and theory
- g) Active modelocking: introduction to modelocking, frequency comb versus axial modes, theory for various regimes of laser operation, Haus master equation formalism
- h) Passive modelocking: slow, fast and ideally fast saturable absorbers, semiconductor saturable absorber mirror (SESAM), designs of and materials for SESAMs, modelocking with slow absorber and dynamic gain saturation, modelocking with ideally fast saturable absorber, Kerr-lens modelocking, soliton modelocking, Q-switching instabilities in modelocked lasers, inverse saturable absorption
- i) Pulse duration measurements: rf cables and electronics, fast photodiodes, linear system theory for microwave test systems, intensity and interferometric autocorrelations and their limitations, frequency-resolved optical gating, spectral phase interferometry for direct electric-field reconstruction and more
- j) Noise: microwave spectrum analyzer as laser diagnostics, amplitude noise and timing jitter of ultrafast lasers, lock-in detection
- k) Ultrafast measurements: pump-probe scheme, transient absorption/differential transmission spectroscopy, four-wave mixing, optical gating and more
- l) Frequency combs and carrier-envelope offset phase: measurement and stabilization of carrier-envelope offset phase (CEP), time and frequency domain applications of CEP-stabilized sources
- m) High-harmonic generation and attosecond science: non-perturbative nonlinear optics / strong-field phenomena, high-harmonic generation (HHG), phase-matching in HHG, attosecond pulse generation, attosecond technology: detectors and diagnostics, attosecond metrology (streaking, RABBITT, transient absorption, attoclock), example experiments
- n) Ultrafast THz science: generation and detection, physics in THz domain, weak-field and strong-field applications
- o) Brief introduction to other hot topics: relativistic and ultra-high intensity ultrafast science, ultrafast electron sources, free-electron lasers, etc.

402-0444-00L Advanced Quantum Optics

Domain A - Subject-specific Competencies

Concepts and Theories

Techniques and Technologies

Assessed

Lecture notes

Class notes will be made available.

Prerequisites / notice

Prerequisites: Basic knowledge of quantum electronics (e.g., 402-0275-00L Quantenelektronik).
Quantum Science with Superconducting Circuits

Abstract
Superconducting Circuits provide a versatile experimental platform to explore the most intriguing quantum-physical phenomena and constitute one of the prime contenders to build quantum computers. Students will get a thorough introduction to the underlying physical concepts, the experimental setting, and the state-of-the-art of quantum computing in this emerging research field.

Objective
Based on today’s most advanced solid state platform for quantum control, the students will learn how to engineer quantum coherent devices and how to use them to process quantum information. The students will acquire both analytical and numerical methods to model the properties and phenomena observed in these systems. The course is positioned at the intersection between quantum physics and engineering.

Content

Prerequisites / notice
All students and researchers with a general interest in quantum information science, quantum optics, and quantum engineering are welcome to this course. Basic knowledge of quantum physics is a plus, but not a strict requirement for the successful participation in this course.

Literature
C. Cohen-Tannoudji et al., Atom-Photon-Interactions (recommended) A collection of review articles (will be pointed out during the lecture)

Notes and material accompanying the lecture will be provided

Applications of Quantum Computers

Abstract
This course builds up on the material covered in the Quantum Optics course. The emphasis will be on quantum optics in condensed-matter systems.

Objective
The course aims to provide the knowledge necessary for pursuing advanced research in the field of Quantum Optics in condensed matter systems. Fundamental concepts and techniques of Quantum Optics will be linked to experimental research in systems such as quantum dots, exciton-polaritons, quantum Hall fluids and graphene-like materials.

Content

Literature
Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (recommended)

Notes: Lecture notes will be provided

Introduction to Magnetism

Abstract
Quantum Gases are the most precisely controlled many-body systems in physics. This provides a unique interface between theory and experiment, which allows addressing fundamental concepts and long-standing questions. This course lays the foundation for the understanding of current research in this vibrant field.

Objective
Quantum Gases are the most precisely controlled many-body systems in physics. This provides a unique interface between theory and experiment, which allows addressing fundamental concepts and long-standing questions. This course lays the foundation for the understanding of current research in this vibrant field.

Content
Cooling and trapping of neutral atoms
- Bose and Fermi gases
- Ultracold collisions
- The Bose-condensed state
- Elementary excitations
- Vortices
- Superfluidity
- Interference and Correlations

Prerequisites / notice
Masters level quantum optics knowledge

Literature

Optical Properties of Semiconductors

Abstract
This course presents a comprehensive discussion of optical processes in semiconductors.

Objective
The rich physics of the optical properties of semiconductors, as well as the advanced processing available on these material, enabled numerous applications (lasers, LEDs and solar cells) as well as the realization of new physical concepts. Systems that will be covered include quantum dots, exciton-polaritons, quantum Hall fluids and graphene-like materials.

Content
Electronic states in III-V materials and quantum structures, optical transitions, excitons and polaritons, novel two dimensional semiconductors, spin-orbit interaction and magneto-optics.

Prerequisites / notice
Prerequisites: Quantum Mechanics I, Introduction to Solid State Physics

Notes: Lecture notes will be provided

Experimental and Theoretical Aspects of Quantum Gases

Abstract
Quantum Gases are the most precisely controlled many-body systems in physics. This provides a unique interface between theory and experiment, which allows addressing fundamental concepts and long-standing questions. This course lays the foundation for the understanding of current research in this vibrant field.

Objective
The lecture conveys a basic understanding for the current research on quantum gases. Emphasis will be put on the connection between theory and experimental observation. It will enable students to read and understand publications in this field.

Content
Bose and Fermi gases
- Ultracold collisions
- The Bose-condensed state
- Elementary excitations
- Vortices
- Superfluidity
- Interference and Correlations

Prerequisites / notice
Masters level quantum optics knowledge

Literature

Notes: Lecture notes will be provided

Atomic paramagnetism and diamagnetism, itinerant and local-moment interatomic coupling, magnetic order at finite temperature, spin precession, approach to equilibrium through thermal and quantum dynamics, dipolar interaction in solids.

Objective
- Apply concepts of quantum-mechanics to estimate the strength of atomic magnetic moments and their interactions
- Identify the mechanisms from which the exchange interaction originates in solids (itinerant and local-moment magnetism)
- Evaluate the consequences of the interplay between competing interactions and thermal energy
- Apply general concepts of statistical physics to determine the origin of bistability in realistic magnets
- Discriminate the dynamic responses of a magnet to different external stimuli

Notes: Lecture notes will be provided

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1779 of 2152
There are numerous physical phenomena that rely on time-dependent Hamiltonians (or parametric driving) to amplify, cool, squeeze or stabilize quantum states. In this course, the students will grasp the ubiquitous nature of parametric phenomena and apply it to both classical and quantum systems.

The course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of common nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots.

At the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:

1. The integer quantum Hall effect
2. Conductance quantization in quantum point contacts
3. the Aharonov-Bohm effect
4. Coulomb blockade in quantum dots

The lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisite. Very ambitious students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English.

402-0595-00L
Semiconductor Nanostructures

Content

- Introduction and overview
- Semiconductor crystals: Fabrication and molecular beam epitaxy
- Band structures of semiconductors
- k-p-theory, effective mass, envelope functions
- Heterostructures and band engineering, doping
- Surfaces and metal-semiconductor contacts, fabrication of semiconductor nanostructures
- Heterostructures and two-dimensional electron gases
- Drude Transport and scattering mechanisms
- Single- and bilayer graphene
- Electron transport in quantum point contacts; Landauer-Büttiker description, ballistic transport experiments
- Interference effects in Aharonov-Bohm rings
- Electron in a magnetic field, Shubnikov-de Haas effect
- Integer quantum Hall effect
- Coulomb blockade and quantum dots

Objective

At the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:

1. The integer quantum Hall effect
2. Conductance quantization in quantum point contacts
3. the Aharonov-Bohm effect
4. Coulomb blockade in quantum dots

Literature

- In addition to the lecture notes, the following supplementary books can be recommended:

Prerequisites / notice

The course is taught in English.

402-0469-67L
Parametric Phenomena

Abstract

There are numerous physical phenomena that rely on time-dependent Hamiltonians (or parametric driving) to amplify, cool, squeeze or couple resonating systems. In this course, we shall introduce parametric phenomena in different fields of physics, ranging from classical engineering ideas to devices proposed for quantum neural networks.

Objective

The students will understand both the theoretical foundations leading to the parametric drive as well as the experimental aspect related to the realizations of the effect. Each student will analyze an independent system using the tools acquired in the course and will present his/her insights to the class.

Content

This course will provide a general framework for understanding and linking various phenomena, ranging from the child-on-a-swing problem to quantum limited amplifiers, to optical frequency combs, and to optomechanical sensors used in the LIGO experiment. The course will combine theoretical lectures and the study of important experiments through literature.

The students will receive an extended lecture summary as well as numerous MATHEMATICA and Python scripts, including QuTiP notebooks. These tools will enable them to apply analytical and numerical methods to a wide range of systems beyond the duration of the course.
Prerequisites / notice:
The students should be familiar with wave mechanics as well as second quantization. Following the course requires a laptop with Python and MATHEMATICA installed.

Semester Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1871-00L</td>
<td>Semester Project 🗨️</td>
<td>O</td>
<td>12 credits</td>
<td>20A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Registration in myStudies required!
Supervisor must be a professor at D-ITET or D-PHYS, see http://master-qq.ee.ethz.ch/education/semester-project.html

Abstract:
Semester projects are designed to train the students for independent scientific work. A project uses the student's technical and social skills acquired during the master's program. The semester project comprises 280 hours of work and is supervised by a professor.

Prerequisites / notice:
Supervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1873-00L</td>
<td>Internship in Industry 🗨️</td>
<td>O</td>
<td>12 credits</td>
<td></td>
<td>external organisers</td>
</tr>
</tbody>
</table>

Only for Quantum Engineering MSc.

Abstract:
The main objective of the 12-week internship is to expose bachelor's students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institution.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1873-10L</td>
<td>QuanTech Workshops</td>
<td>W</td>
<td>12 credits</td>
<td></td>
<td>G. Raino, M. Frimmer</td>
</tr>
</tbody>
</table>

Only for Quantum Engineering MSc.

Abstract:
The QuanTech Workshops are a project-oriented learning environment in the context of quantum technology. Students work in teams, consisting of engineers and physicists, and jointly tackle a quantum engineering project. During the preceding course "Case Studies: Application of Quantum Technologies", students develop project proposals. Successful proposals will be realized in a QuanTech Workshop.

Objective:
Students practice development, planning, and execution of a project in the quantum engineering domain. By working in close collaboration with senior scientists and professors from the two departments D-ITET and D-PHYS, the goal is to provide solutions for pressing challenges in in the field of quantum technologies.

Prerequisites / notice:
Attendance of "227-1831-10L Case Studies: Applications of Quantum Technology" and successful "QuanTech Workshop" proposal.

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1800-00L</td>
<td>Master's Thesis 🗨️</td>
<td>O</td>
<td>30 credits</td>
<td>68D</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Admission only if ALL of the following apply:
- bachelor program successfully completed;
- acquired (if applicable) all credits from additional requirements for admission to master program;
- successfully completed the semester project.

Note: the conditions above are not applicable to incoming exchange students.

Registration in mystudies required!
Supervisor must be a professor at D-ITET or D-PHYS, see http://master-qq.ee.ethz.ch/education/master-project.html.

Abstract:
The Master Program finishes with a 6-months Master Thesis which is directed by a Professor of the Department or a Professor of another Department who is associated with the D-ITET. Students gain the ability to conduct independent scientific research on a specific research problem.

Prerequisites / notice:
Supervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

GESS Science in Perspective

<table>
<thead>
<tr>
<th>Quantum Engineering Master - Key for Type</th>
<th>O</th>
<th>W+</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td>E-</td>
<td>Z</td>
<td>Dr</td>
</tr>
<tr>
<td>Eligible for credits and recommended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible for credits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours:
- V: lecture
- G: lecture with exercise
- U: exercise
- S: seminar
- K: colloquium
- P: practical/laboratory course
- A: independent project
- D: diploma thesis
- R: revision course / private study

ECTS: European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0241-00L</td>
<td>Analysis I</td>
<td>O</td>
<td>7 credits</td>
<td>5V+2U</td>
<td>M. Akveld</td>
</tr>
<tr>
<td>Abstract</td>
<td>Mathematical tools for the engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Mathematics as a tool to solve engineering problems. Mathematical formulation of technical and scientific problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Complex numbers. Calculus for functions of one variable with applications. Simple Mathematical models in engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urs Stammbach, "Analysis III" (erhältlich im ETH Store); https://people.math.ethz.ch/~stammb/analysisskript.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-0141-00L</td>
<td>Linear Algebra</td>
<td>O</td>
<td>5 credits</td>
<td>3V+1U</td>
<td>M. Akka Ginosar</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to Linear Algebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Basic knowledge of linear algebra as a tool for solving engineering problems. Together with Analysis we develop the basic mathematical knowledge for an engineer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Introduction and linear systems of equations, matrices, quadratic matrices, determinants and traces, general vector spaces, linear mappings, bases, change of basis, diagonalization, eigenvalues and eigenvectors, orthogonal transformations, scalar-product, inner product spaces. Calculation with MATLAB will be introduced in the first exercise class.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The lecturer will provide course notes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. Nipp, D. Stoffer, Lineare Algebra, VdF Hochschulverlag ETH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Strang, Lineare Algebra, Springer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-0845-00L</td>
<td>Computer Science I</td>
<td>O</td>
<td>5 credits</td>
<td>2V+2U</td>
<td>C. Cotrini Jimenez, R. Sasse</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course covers the basic concepts of computer programming.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Basic understanding of programming concepts. Students will be able to write and read simple programs and to modify existing programs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Variablen, Typen, Kontrollanweisungen, Prozeduren und Funktionen, Scoping, Rekursion, dynamische Programmierung, vektorisierte Programmierung, Effizienz. Als Lernsprache wird Java eingesetzt. Sprechen Sie Java? Hanspeter Mössenböck dpunkt.verlag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-0313-00L</td>
<td>Spatial Planning and Landscape Development</td>
<td>O</td>
<td>5 credits</td>
<td>4G</td>
<td>A. Grét-Regamey, K. Holenstein, J. Van Wezemael</td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture introduces into the main-features of spatial planning. Attended will be the subjects planning as a national responsibility, instruments of spatial planning, techniques for problem solving in spatial planning and the Swiss concept for national planning. The lecture is complemented with in-depth topics and international examples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Die Studierenden kennen die Grundzüge der Raumplanung, ihre wichtigsten Instrumente und Problemlösungsverfahren. Sie können das vermittelte theoretische Wissen direkt an konkreten, praxisorientierten Übungsaufgaben umsetzen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Die Vorlesung deckt die Grundlagen der (Schweizerischen) Raumplanung und Landschaftsentwicklung ab:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Grundzüge der Raumplanung und ihre wichtigsten Instrumente kennenlernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Erarbeiten der Fähigkeit, räumliche Probleme zu erkennen und Problemlösungsverfahren auf diese anzuwenden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Planung und Landmanagement als interaktiven Prozess kennenlernen und anwenden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Verstehen der mit Fläche und Boden verbundenen Potentiale, Nutzungen und Prozesse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Das vermittelte theoretische Wissen direkt an konkreten, praxisorientierten Fallbeispielen umsetzen können</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Der Schwerpunkt der Vorlesung liegt auf der Erläuterung der Raumplanung als Problemlösungsverfahren. Das dabei vermittelte theoretische Wissen wird direkt an einer konkreten, praxisorientierten Übungsaufgabe umgesetzt. Im Rahmen der Übung wird das Projektgebiet während einer Exkursion besucht.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We will model and solve scientific problems with partial differential equations. Differential equations which are important in applications will be classified and solved. Elliptic, parabolic and hyperbolic differential equations will be treated. The following mathematical tools will be introduced: Laplace and Fourier transforms, Fourier series, separation of variables, methods of characteristics.

Additional Basic Courses

No offer in Autumn Semester.

Compulsory Courses

Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0243-00L</td>
<td>Analysis III</td>
<td>O</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>M. Akka Ginosar</td>
</tr>
</tbody>
</table>

Abstract

We will model and solve scientific problems with partial differential equations. Differential equations which are important in applications will be classified and solved. Elliptic, parabolic and hyperbolic differential equations will be treated. The following mathematical tools will be introduced: Laplace and Fourier transforms, Fourier series, separation of variables, methods of characteristics.

Objective

Learning to model scientific problems using partial differential equations and developing a good command of the mathematical methods that can be applied to them. Knowing the formulation of important problems in science and engineering with a view toward civil engineering (when possible). Understanding the properties of the different types of partial differential equations arising in science and in engineering.

Content

Classification of partial differential equations

Study of the Heat equation general diffusion/parabolic problems using the following tools through Separation of variables as an introduction to Fourier Series.

Systematic treatment of the complex and real Fourier Series

Study of the wave equation and general hyperbolic problems using Fourier Series, D'Alembert solution and the method of characteristics.

Laplace transform and it's uses to differential equations

Study of the Laplace equation and general elliptic problems using similar tools and generalizations of Fourier series.

Application of Laplace transform for beam theory will be discussed.

Time permitting, we will introduce the Fourier transform.
Lecture notes will be provided

large part of the material follow certain chapters of the following first two books quite closely.

The course material is taken from the following sources:

Stanley J. Farlow - Partial Differential Equations for Scientists and Engineers

G. Felder: Partielle Differenzialgleichungen.
https://people.math.ethz.ch/~felder/PDG/

Prerequisites / notice

Analysis I and II, insbesondere, gewöhnliche Differentialgleichungen.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0233-10L</td>
<td>Fundamentals of GIS</td>
<td>6</td>
<td>O</td>
<td>W. Kuhn</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of geographic information systems: spatial data modeling; metrics & topology; vector, raster and network data; thematic data; spatial statistics; system architectures; data quality; spatial queries and analysis; geovisualisation; spatial databases; group project with GIS software.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowing theoretical aspects of geographic information regarding data acquisition, representation, analysis and visualisation. Knowing the fundamentals of geoinformation technologies for the realization, application and operation of geographic information systems in engineering projects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Einführung GIS & GIScience</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Konzeptionelles Modell & Datenschema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vektorgeometrie & Topologie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rastergeometrie und -algebra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Netzwerke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Thematische Daten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Räumliche Statistik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Systemarchitekturen & Interoperabilität</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Datenqualität, Unsicherheiten & Metadaten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Räumliche Abfragen und Analysen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Präsentation raumbezogener Daten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Geodatenbanken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Vorlesungspräsentationen werden digital zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0187-02L</td>
<td>Satellite Geodesy</td>
<td>4</td>
<td>O</td>
<td>M. Rothacher</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sicherheit im Umgang mit Koordinaten-, Referenz- und Zeitsystemen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Beherrschung der Ephemeridenrechnung für ungestörte Satellitenbahnen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Grundlegendes Verständnis der geodätischen Weltraumverfahren und deren Stärken und Schwächen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kenntnis der wichtigsten Prozesse, die für Änderungen in den drei Pfeilern der Space Geodesy (der Geometrie, der Rotation und dem Schwererefeld der Erde) verantwortlich sind.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Erkennen der Anwendungsmöglichkeiten der Space Geodesy für interdisziplinäre Aufgaben (System Erde).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Koordinatensysteme, Transformationen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Referenz- und Zeitsysteme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Grundlagen Satellitenbahnen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Weltraumverfahren: GNSS, VLBI, SLR, DORIS, Altimetrie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Schwererefeldmissionen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kombination der Weltraumverfahren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Drei Pfeiler der "Space Geodesy":</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Geometrie der Erde und zeitliche Veränderungen - Erdrotation der 2. Erde und zeitliche Veränderungen - Schwerefeld der Erde und 3. zeitliche Veränderungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Global Geodetic Observing System (GGOS): Anwendungen im System Erde</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0675-00L</td>
<td>Earth Observation</td>
<td>4</td>
<td>O</td>
<td>I. Hajnsek, E. Baltavias</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation. Students should know at the end of the course:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Basics of measurement principle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Fundamentals of image acquisition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Basics of the sensor-specific geometries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Sensor-specific determination of environmental parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Lehrveranstaltung gibt einen Einblick in die heutige Erdbeobachtung mit dem folgenden skizzierten Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Einführung in die Fernerkundung von Luft- und Weltraum gestützen Systemen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Einführung in das Elektromagnetische Spektrum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Einführung in optische Systeme (optisch und hyperspektral)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Einführung in Mikrowellen-Technik (aktiv und passiv)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Einführung in atmosphärische Systeme (meteo und chemisch)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Einführung in die Techniken und Methoden zur Bestimmung von Umweltparametern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Einführung in die Anwendungen zur Bestimmung von Umweltparametern in der Hydrologie, Glaziologie, Forst und Landwirtschaft, Geologie und Topographie</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>351-1158-00L</td>
<td>Principles of Economics</td>
<td>3</td>
<td>O</td>
<td>U. Renold, T. Boll, P. McDonald, M. E. Oswald-Egg, F. Pusterla</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation. Students should know at the end of the course:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Basics of measurement principle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Fundamentals of image acquisition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Basics of the sensor-specific geometries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Sensor-specific determination of environmental parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Lehrveranstaltung gibt einen Einblick in die heutige Erdbeobachtung mit dem folgenden skizzierten Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Einführung in die Fernerkundung von Luft- und Weltraum gestützen Systemen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Einführung in das Elektromagnetische Spektrum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Einführung in optische Systeme (optisch und hyperspektral)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Einführung in Mikrowellen-Technik (aktiv und passiv)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Einführung in atmosphärische Systeme (meteo und chemisch)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Einführung in die Techniken und Methoden zur Bestimmung von Umweltparametern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Einführung in die Anwendungen zur Bestimmung von Umweltparametern in der Hydrologie, Glaziologie, Forst und Landwirtschaft, Geologie und Topographie</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture notes Folien zu jeden Vorlesungsblock werden zur Verfügung gestellt.

Literature Folien zu jeden Vorlesungsblock werden zur Verfügung gestellt.
This course introduces basic economic concepts and theories. Beginning with microeconomics, the course starts with the topics of supply and demand, markets, and behavioral economics before moving on to the key macroeconomic concepts of national accounts, the labor market, trade, and monetary policy.

Objective

After successful completion of the course you will be able to:

- Describe the basic micro- and macroeconomic problems and theories.
- Introduce economic reasoning appropriately to a given topic.
- Evaluate economic measures.

Content

Households, firms, supply and demand: How are household preferences and consumption patterns formed? How does a household react to price changes? How are goods prices formed? At what prices are companies willing to offer goods? How do we make economic decisions?

Markets: What is "perfect competition" and how does a competitive market work? Are monopolies always a bad thing? How can the state influence the market?

Market failure: What happens when prices give wrong signals?

Labour market: How do supply and demand work in the labour market? What influences unemployment?

National accounts: How big is the Swiss economy?

Foreign trade: Why do countries trade with each other? What are the consequences for the domestic market?

Money and inflation: What exactly is money? How does money creation work and what happens when there is too much (or too little) money on the market?

Students will be asked to apply these concepts to issues in their own field of study and to current issues in society. This goal will be achieved through participation in exercises, class discussions and reading material from current media. By the end of the course, students should be able to apply economic analysis confidently and independently.

Lecture notes

no script available

Literature

Sie brauchen keine Vorkenntnisse, um dem Kurs zu folgen.

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories assessed

Domain B - Method-specific Competencies

- Analytical Competencies assessed
- Decision-making assessed
- Problem-solving assessed

Domain D - Personal Competencies

- Critical Thinking assessed
- Self-direction and Self-management assessed

Introduction to Law

Students who have attended or will attend the lecture "Introduction to Law for Civil Engineering and Architecture" (851-0703-03L) or "Introduction to Law" (851-0708-00L), cannot register for this course unit.

Particularly suitable for students of D-ARCH, D-MAVT, D-MATL

This class introduces students into basic features of the legal system. Fundamental issues of constitutional law, administrative law, private law and the law of the EU are covered.

Students are able to identify basic structures of the legal system. They understand selected topics of public and private law and are able to apply the fundamentals in more advanced law classes.

Basic concepts of law, sources of law.

Private law: Contract law (particularly contract for work and services), tort law, property law.

Public law: Human rights, administrative law, procurement law, procedural law.

Insights into the law of the EU and into criminal law.

Lecture notes

Jaap Hage, Bram Akkermans (Eds.), Introduction to Law, Cham 2017 (Online Resource ETH Library)

Further documents will be available online (see https://moodle-app2.lot.ethz.ch/course/view.php?id=15142).

Examination block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0043-00L</td>
<td>Physics I</td>
<td>O</td>
<td>4</td>
<td>3V+1U</td>
<td>J. Home</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to the concepts and tools in physics with the help of demonstration experiments: mechanics of point-like and ridged bodies, periodic motion and mechanical waves.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Mechanics (motion, Newton's laws, work and energy, conservation of momentum, rotation, gravitation, fluids) Periodic Motion and Waves (periodic motion, mechanical waves, acoustics).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The lecture follows the book "Physics" by Paul A. Tipler.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Paul A. Tipler and Gene P. Mosca, Physics (for Scientists and Engineers), W. H. Freeman and Company</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

103-0253-01L	Parameter Estimation	O	4	3G	E. Brockmann
	- Beherrschung der Grundlagen der Parameterschätzung				
	- Erlangung von Kalkülsicherheit				
	- Erkennung von Problemen, die mit Parameterschätzungsverfahren gelöst werden können				
	- Im Stande sein, relevante Probleme, die auf das Parameterschätzungsverfahren abzubilden				
	- Erfassen von Messunsicherheiten umzugehen und Resultate in Bezug auf ihre Qualität / Unsicherheiten zu beurteilen				
	- Interdisziplinäre Anwendungsmöglichkeiten der Parameterschätzung erkennen				
Examination Block 3

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1004-00L</td>
<td>Operations Research</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>S. Bütkofer van Oordt</td>
</tr>
</tbody>
</table>

Abstract
This course provides an introduction to operations research methods in the fields of management science and economics. Requisite mathematical concepts are introduced with a practical, problem-solving perspective.

- Introduction to building and using quantitative models in a business / industrial environment
- Introduction to basic optimization techniques (Linear Programming and extensions, network flows, integer programming, dynamic and stochastic optimization)
- Understanding the integration of quantitative models into the managerial decision process

Objective
The economic environment of today's companies is characterized by high cost pressure, declining margins, intensified international competition, rising customer requirements and increasingly strict regulations. Strategic and operational decisions at all management levels are becoming more and more complex due to the increasing amount of data, interrelationships, conditions and target criteria to be considered. Often it is no longer possible to solve operational tasks with experience and common sense alone and to adequately estimate the consequences of decisions without software support.

Quantitative models and methods of operations research and operations management offer decision support for complex problems. Mathematical optimization models are used to precisely formulate operational decision problems so that they can subsequently be analysed and optimised using suitable solution methods. A large number of quantitative real-world problems can be formulated and solved in this general framework. Applications of operations research comprise, for instance, decision problems in production planning, supply chain management, transportation networks, machine and workforce scheduling, blending of components, telecommunication network design, airline fleet assignment and revenue management.

This course offers an introduction to operations research, emphasizing basic methodologies and underlying mathematical structures. The following topics are covered in detail:
- Introduction to system modelling and operations research
- Linear models and the importance of linear programming
- Duality theory in linear programming and shadow prices
- Integer programming
- Dynamic optimization (under uncertainty) and applications in inventory management.

Literature
- Any standard textbook in Operations Research is a useful complement to the course.
- Undergraduate calculus, linear algebra, probability and statistics are a prerequisite.

Prerequisites / notice
- Lecturer notes: A printed script will be made available.

101-0031-01L Systems Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0031-01L</td>
<td>Systems Engineering</td>
<td>O</td>
<td>4</td>
<td>4G</td>
<td>B. T. Adey</td>
</tr>
</tbody>
</table>

Abstract
Systems Engineering is a way of thinking that helps engineer sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long terms.

- This course provides an overview of the main principles of Systems Engineering, and includes an introduction to the use of operations research methods in the determination of optimal systems.

Objective
The world's growing population, changing demographics, and changing climate pose formidable challenges to humanity's ability to live sustainably. Ensuring that humanity can live sustainably requires accommodating Earth's growing and changing population through the provision and operation of a sustainable and resilient built environment. This requires ensuring excellent decision-making as how to the built environment is constructed and modified.

The objective of this course is to ensure the best possible decision making when engineering sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long term. In this course, you will learn the main principles of Systems Engineering that can help you from the first idea that a system may not meet expectations, to the quantitative and qualitative evaluation of possible system modifications. Additionally, the course includes an introduction to the use of operations research methods in the determination of optimal solutions in complex systems.

More specifically upon completion of the course, you will have gained insight into:
- how to structure the large amount of information that is often associated with attempting to modify complex systems
- how to set goals and define constraints in the engineering of complex systems
- how to generate possible solutions to complex problems in ways that limit exceedingly narrow thinking
- how to compare multiple possible solutions over time with differences in the temporal distribution of costs and benefits and uncertainty as to what might happen in the future
- how to assess values of benefits to stakeholders that are not in monetary units
- how to assess whether it is worth obtaining more information in determining optimal solution
- how to take a step back from the numbers and qualitatively evaluate the possible solutions in light of the bigger picture
- the basics of operations research and how it can be used to determine optimal solutions to complex problems, including linear, integer and network programming, dealing with multiple objectives and conducting sensitivity analyses.
Content

The weekly lectures are structured as follows:

1. Introduction – An introduction to System Engineering, a way of thinking that helps to engineer sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long terms. A high-level overview of the main principles of System Engineering. An introduction to the example that we will be working with through most of the course. The expectations of your efforts throughout the semester.

2. Situation analysis – How to structure the large amount of information that is often associated with attempting to modify complex systems.

3. Goals and constraints – How to set goals and constraints to identify the best solutions as clearly as possible.

4. Generation of possible solutions – How to generate possible solutions to problems, considering multiple stakeholders.

5. Analysis – 1/5 – The principles of net-benefit maximization and a series of methods that range from qualitative and approximate to quantitative and exact, including pairwise comparison, elimination, display, weighting, and expected value.

6. Analysis – 2/5 – The idea behind the supply and demand curves and revealed preference methods.

7. Analysis – 3/5 – The concept of equivalence, including the time value of money, interest, life times and terminal values.

8. Analysis – 4/5 – The relationship between net-benefit and the benefit-cost ratio. How incremental cost benefit analysis can be used to determine the maximum net benefit. Marginal rates of return and internal rates of return.

9. Analysis – 5/5 – How to consider multiple possible futures and use simple rules to help pick optimal solutions and to determine the value of more information.

10. Evaluation of solutions – Regardless how sophisticated an analysis is, it requires that decision makers stand back and critically evaluate the results. This week we discuss the aspects of evaluating the results of an analysis.

11. Operations research – 1/4 – Once quantitative analysis is used it becomes possible to use operations research methods to analyse large numbers of possible solutions. This week we discuss linear programming and the simplex method.

13. Operations research – 3/4 – How to use operations research to solve problems that consist of discrete values, as well as how to exploit the structure of networks to find optimal solutions to network problems.

14. Operations research – 4/4 – How to set up and solve problems when there are multiple objectives.

The course uses a combination of qualitative and quantitative approaches. The quantitative analyses requires the use of Excel. An introduction to Excel will be provided in one of the help sessions.

Lecture notes

- The lecture materials consist of a script, the slides and example calculations in Excel.
- The lecture materials will be distributed via Moodle two days before each lecture.

Literature

Appropriate literature in addition to the lecture materials will be handed out when required via Moodle.

Prerequisites / notice

This course has no prerequisites.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Competency</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td></td>
<td>assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain B - Method-specific Competencies</th>
<th>Competency</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Competencies</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td></td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain C - Social Competencies</th>
<th>Competency</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Customer Orientation</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td></td>
<td>not assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain D - Personal Competencies</th>
<th>Competency</th>
<th>Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptability and Flexibility</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td></td>
<td>assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td></td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td></td>
<td>not assessed</td>
</tr>
</tbody>
</table>

101-0515-00L Project Management

Abstract

The course gives a detailed introduction on various aspects of professional project management out of theory and practice. Established concepts and methods for project organization, planning, execution and evaluation are introduced and major challenges discussed. The course includes an introduction on specialized project management software as well as agile project management concepts.

Objective

Projects are not only the base of work in modern enterprises but also the primary type of cooperation with customers. Students of ETH will often work in or manage projects in the course of their career. Good project management knowledge is not only a guarantee for individual, but also for company wide success.

The goal of this course is to give a detailed introduction into project management. The students should learn to plan and execute a project.

Content

Project planning (aims, appointments, capacities, efforts and costs), project organization, scheduling and risk analysis, project execution, supervision and control, project evaluation, termination and documentation, conflict management, multinational project management, IT support as well as agile project management methods such as SCRUM.

Lecture notes

- No.

The lecture slides and other additional material will be available for download from Moodle a week before each class.

Elective Blocks

Geodesy and Satellite Navigation

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0139-00L</td>
<td>Geodetic Networks and Data Analysis</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>R. Hohensinn</td>
</tr>
</tbody>
</table>

Abstract

The lecture provides knowledge about the planning, computation and analysis of geodetic networks, as well as the use of data analysis methods in geodesy in general. The necessary mathematical and statistical methods are presented and applied using examples from geodesy.

Objective

After completing this course, the participants should be equipped with the necessary tools to plan, analyze and evaluate geodetic networks as well as to evaluate and analyze geodetic data in general. For typical geodetic tasks the participants should be able to provide concepts of solutions as well as to do the necessary programming work.
Digitisation and 3D Modelling

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0115-01L</td>
<td>Geodetic Measuring Technology and Laserscanning</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>M. Vollmer, A. Wieser, N. Meyer</td>
</tr>
</tbody>
</table>

Abstract
By the end of this course, the students are able to create digital 3d models of the real world covering areas with an extension up to several 100 m with accuracies in the mm- to cm-level range. They can select the appropriate geodetic instruments or terrestrial laser scanners, plan and carry out the required working steps, test the equipment before use, and describe the quality of the results. They know a broad spectrum of visualization options and can assess their respective suitability for various application cases.

Objective
- Overview: 3D Modelling from planning of data acquisition to visualization of the results
- Modern geodetic instruments
- Atmospheric effects
- Measurement techniques for high accuracy
- Introduction to terrestrial laser scanning
- Test and calibration of measurement instruments
- Point cloud processing: preprocessing, registration & georeferencing
- 3d modelling and visualization of objects, VR/AR/MR

Lecture notes
The slides and documents for enhanced study and further reading will be provided online.

Literature

Prerequisites / notice
The course is carried out in German. Basic knowledge of geodetic metrology is required as a prerequisite, corresponding to the learning objectives and content of the course Geodätische Messtechnik GZ. Besides lectures and data processing, the course also comprises extensive practical exercises in the field.

GIS and Cartography

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0717-00L</td>
<td>Geoinformation Technologies and Analysis</td>
<td>W</td>
<td>6 credits</td>
<td>5G</td>
<td>W. Kuhn</td>
</tr>
</tbody>
</table>

Abstract
Geoinformationstechnologien und -analysen für Fortgeschrittene: Mobile GIS; Web-GIS & Geo-Web-Services; Spatial Big Data; Zeitliche Aspekte in GIS; Analyse von Bewegungsdaten; Benutzerschnittstellen Übungen: Web-GIS-Semesterprojekt in Gruppenarbeit

Objective

Content
- Mobile GIS
- Web-GIS & Geo-Web-Services
- Spatial Big Data
- Zeitliche Aspekte in GIS
- Analyse von Bewegungsdaten
- Benutzerschnittstellen

Lecture notes
Vorlesungspräsentationen werden digital zur Verfügung gestellt.

Literature

Prerequisites / notice
GIS GZ

Spatial and Environmental Planning

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0325-02L</td>
<td>Integrated Spatial Planning in Cities and Districts</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>G. Di Carlo Alvarez, F. Günther</td>
</tr>
</tbody>
</table>

Abstract
Methodische und instrumentelle Grundlagen der Raumentwicklung werden aus integrierter Sicht (Städtebau, Freiraum, Verkehr) vermittelt und von den Studierenden konkret in einem Zürcher Stadtquartier als Semesterübung angewendet.

Objective
Die Studierenden lernen:
- Ein Repertoire an hilfreichen Werkzeugen sowie Denkmuster aus der Raumplanung kennen
- Quartiere eigenständig zu erkunden, Potentiale sowie Risiken der Raumentwicklung zu erkennen und zu dokumentieren
- Eigene Räumliche Entwicklungskonzepte zu entwerfen und zu präsentieren
- Massnahmen für Schlüsselgebiete zu konkretisieren, u.a. hinsichtlich Zeitplanung, Organisation und Kosten

Content
Die Vorlesung vermittelt methodische und instrumentelle Grundlagen zu planerischen Denkmustern und Repertoire sowie Hilfestellungen für Entwerfen, Argumentieren und Entscheiden.

Die Semesterübung erfolgt als Gruppenarbeit und wird der Note der Vorlesung angerechnet. Während der Vorlesungszeit sind mehrere Termine für die Gruppenarbeit, Werkstattgespräche und die Präsentation von (Zwischen-)Ergebnissen vorgesehen.

Lecture notes
Vorlesungsfolien und Unterlagen werden auf Moodle hochgeladen.

Traffic Systems
The slides of the lecture serve as lecture notes and are available as download.

The lecture series imparts basic knowledge in urban planning and design. Pressing questions and main topics of contemporary urban assessed

A. Schütler

Reference material books are provided in German and English (list disseminated at lecture), plus Skript Bahninfrastruktur; System- and

M. Wagner

not assessed

Slides, in English, are made available some days before each lecture.

Lecturers

Assessed

Assessed

Assessd

Assessed

Assessed

Assessed

Assessed

Assessed

Assessed

3 credits

2G

Assessed

Fundamentals of public and collective transport, in its different forms. Categorization of performance dimensions of public transport systems, and their implications to their design and operations.

Teaches the basic principles of public transport network and topology design, to understand the main characteristics and differences of public transport networks, based on buses, railways, or other technologies. Teaches students to recognize the interactions between the infrastructure design and the production processes, and various performance criteria based on various perspective and stakeholders.

At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate different choices of technologies to suitable cases; optimize the use of resources in public transport. Infrastructure: Planning processes and decision levels in network development and infrastructure planning, planning of topologies; tracks and roadways, station infrastructures; Fundamentals of the infrastructure design for lines; track geometries; switches and crossings

Vehicle: Classification, design and suitability for different goals. Network design: design dilemmas, conceptual models for passenger transport on long distance, urban regional transport.

Operations: Passenger/Supply requirements for line operations; timetabling, measures of realized operations, capacity

Slides, in English, are made available some days before each lecture.

Lecture notes

Literature

Taught

competencies

Domain A - Subject-specific Competencies

Concepts and Theories

Techniques and Technologies

Domain B - Method-specific Competencies

Analytical Competencies

Decision-making

Media and Digital Technologies

Problem-solving

Project Management

Domain C - Social Competencies

Communication

Cooperation and Teamwork

Customer Orientation

Leadership and Responsibility

Self-presentation and Social Influence

Sensitivity to Diversity

Negotiation

Domain D - Personal Competencies

Adaptability and Flexibility

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Self-awareness and Self-reflection

Self-direction and Self-management

Network Infrastructure

Energy and Climate Systems II

The second semester of the annual course focuses on physical principles, component and systems for the efficient and sustainable supply with electricity, daylight and artificial light. This includes concepts of on-site generation of energy, building systems controls and human-building interaction. Additionally, larger scale building energy systems for districts are discussed.

The lecture series focuses on the physical principles and technical components of relevant systems for an efficient and sustainable climatisation and energy supply of buildings. A special focus is on the interrelation of supply systems and architectural design and construction. Learning and practicing methods of quantifying demand and supply allows identifying parameters relevant for design.

Lecture notes

The slides of the lecture serve as lecture notes and are available as download.

Literature

A list of relevant literature is available at the chair.

Urban Design I

The means and potentials in the field of urban planning and design are pointed out from different perspectives in order to shape the city in the sense of a future-proof and humane environment. To this end, the basic principles are explained and concrete methods of urban design are presented.

The goal is to provide students with a broad systemic basic knowledge, that enables them to synthesize and evaluate complex urban design and planning problems.

The lecture series imparts basic knowledge in urban planning and design. Pressing questions and main topics of contemporary urban design practice and theory will be addressed. The focus is on illustrating the richness of relationships as well as the potential of the discipline and its handling in everyday urban planning and design practice.

Lecture notes

There is no script to the lecture series. The lectures are recorded on video and made available online on http://www.video.ethz.ch/lectures.html a few days after each lecture.

Literature

At the end of the year course a reader with secondary literature will be made available for download.

Prerequisites / notice

Further Informations:

https://www.staedtebau.arch.ethz.ch

Electives

Course Catalogue of ETH Zurich
Recommended Electives of Bachelor Degree Programme

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0240-00L</td>
<td>Cartography Seminar</td>
<td>W</td>
<td>4</td>
<td>9S</td>
<td>L. Hurni</td>
</tr>
<tr>
<td>Abstract</td>
<td>Independent scholarly piece based on up-to-date papers, text books, and internet sources. The thematic topic will be defined together with the supervision in the beginning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Analysis and evaluation of text and other sources; structuring and writing a concise and reader-friendly seminar Report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>An information sheet will be distributed in the beginning by the supervisor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Text references and internet sources will be distributed in the beginning by the supervisor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Cartography Fundamentals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

103-0241-00L	Cartography Lab 1	W	6	13S	L. Hurni
Abstract	Independent practical work in cartography				
Objective	Independent practical work in cartography				
Content	Choice of theme upon individual agreement				
Lecture notes	Informationsheet will be distributed by the supervisors.				
Literature	Cartography Fundamentals, Cartography II				

103-0242-00L	Cartography Lab 2	W	8	17S	L. Hurni
Abstract	Independent practical work in cartography				
Objective	Independent practical work in cartography				
Content	Choice of theme upon individual agreement				
Lecture notes	Information sheet will be distributed by the supervisors.				
Literature	Cartography Lab 1				

GESS Science in Perspective

Science in Perspective

see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-BAUG

Language Courses

see Science in Perspective: Language Courses ETH/UZH

Bachelor's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0006-10L</td>
<td>Bachelor's Thesis</td>
<td>O</td>
<td>10</td>
<td>21D</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Registration in myStudies by 15 January for theses during the spring semester, by 15 August for theses during the autumn semester.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract: The Bachelor Programme concludes with the Bachelor Thesis. This project is supervised by a professor. Writing up the Bachelor Thesis encourages students to show independence and to produce structured work.

Objective: Encourages students to show independence, to produce scientifically structured work and to apply engineering working methods.

Content: The contents base upon the fundamentals of the Bachelor Programme. Students can choose from different subjects and tasks. The thesis consists of both a written report and an oral presentation.

Geospatial Engineering Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Lecture</td>
</tr>
<tr>
<td>G</td>
<td>Lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>Exercise</td>
</tr>
<tr>
<td>S</td>
<td>Seminar</td>
</tr>
<tr>
<td>K</td>
<td>Colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>Independent project</td>
</tr>
<tr>
<td>D</td>
<td>Diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>Revision course/private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Spatial Development and Infrastructure Systems Master

Master Studies (Programme Regulations 2021)

Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

History, impact and principles of the design and operation of transport systems.

Objective

Introduction of the basic principles of the design and operation of transport systems (road, rail, air) and of the essential pathways of their impacts (investment, generalised costs, accessibilities, external effects), referring to relatively constant, and factors with substantial future uncertainty, in the past and expected evolution of transport systems.

Content

Transport systems and land use; network design; fundamental model of mobility behaviour; costs and benefits of mobility; transport history

Creative Thinking

Lecturer notes and slides as well as hints to further literature will be given during the course.

K. W. Axhausen

Landscape Planning and Environmental Systems

History, impact and principles of the design and operation of transport systems

Concepts and Theories

Classification of public transport systems; Characteristics of rail systems, bus systems, cable cars and funiculars, unconventional systems; introduction to logistics; fundamentals of rail freight transports; freight transport systems; intermodal transportation

Cooperation and Teamwork

Network layout and its impact on road traffic. Traffic control systems for urban and inter-urban areas. Fundamentals of road safety and infrastructure maintenance.

Type

M. Nollert

Hours

4G

not assessed

not assessed

ECTS

2V

Analytical Competencies

Lecturers

The aims of this course are:

1) To illustrate the concept of landscape planning, the economic relevance of landscape and nature in the context of the environmental systems (soil, water, air, climate, flora and fauna) and discussed with regard to socio-political questions of the future.

2) To show landscape planning as an integral information system for the coordination of different instruments by illustrating the aims, methods, instruments and their functions in landscape planning.

3) To show the importance of ecosystem services.

4) To learn basics about nature and landscape: Analysis and assessment of the complex interactions between landscape elements, effects of current and future land use (ecosystem goods and services, landscape functions).

5) To identify and measure the characteristics of landscape.

6) Learn how to use spatial data in landscape planning.
In this course, the following topics are discussed:
- Definition of the concept of landscape
- Relevance of landscape planning
- Landscape metrics
- Landscape change
- Methods, instruments and aims of landscape planning (policy)
- Socio-political questions of the future
- Environmental systems, ecological connectivity
- Ecosystem services
- Urban landscape services
- Practice of landscape planning
- Use of GIS in landscape planning

The contents of the course will be illustrated in the associated course 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)) or in Project LAND within the Experimental and Computer Lab (for Environmental Engineers). A combination of courses is recommended.

The students thus develop a common understanding with regard to their methodological knowledge and can henceforth work scientifically at an appropriate level.

The knowledge learned will help students to be able to assess, decide, evaluate and critically evaluate in the context of the semester assignment.

- The students can assess and explain the necessity, significance and application of the standards in scientific work.
- Students will be able to apply the content, implement it in different examples and use it to solve the exercises and the semester assignment.
- The students can assess, discuss and explain the necessity, significance and application of the standards in scientific work.
- Students will be able to identify, name, and be able to define the content taught.

The knowledge learned will help students to be able to assess, decide, evaluate and critically evaluate in the context of the semester assignment.

- Students are able to present their results in an engaging presentation together with their project group and use attractive and formally correct visualizations, maps or diagrams for this purpose.
- The students can assess, discuss and explain the necessity, significance and application of the standards in scientific work.
- Students will be able to identify, name, and be able to define the content taught.
- The students will be able to analyze and differentiate scientific sources and apply them in their work in a structured way.

The students can assess, discuss and explain the necessity, significance and application of the standards in scientific work.
- Students will be able to apply the content, implement it in different examples and use it to solve the exercises and the semester assignment.
- With the techniques learned in the course, students will be able to analyze and differentiate scientific sources and apply them in their work in a structured way.

The knowledge learned will help students to be able to assess, decide, evaluate and critically evaluate in the context of the semester assignment.

- Students are able to present their results in an engaging presentation together with their project group and use attractive and formally correct visualizations, maps or diagrams for this purpose.
- The students thus develop a common understanding with regard to their methodological knowledge and can henceforth work scientifically at an appropriate level.

The knowledge learned will help students to be able to assess, decide, evaluate and critically evaluate in the context of the semester assignment.

- Students are able to produce their results in collaboration with their group and are able to develop, formulate and design a scientific and technical report to complete the assignment.
- The students will be able to identify, name, and be able to define the content taught.

The knowledge learned will help students to be able to assess, decide, evaluate and critically evaluate in the context of the semester assignment.

- Students are able to present their results in collaboration with their group and are able to develop, formulate and design a scientific and technical report to complete the assignment.
- The students can assess, discuss and explain the necessity, significance and application of the standards in scientific work.
- Students will be able to identify, name, and be able to define the content taught.

The knowledge learned will help students to be able to assess, decide, evaluate and critically evaluate in the context of the semester assignment.

- Students are able to present their results in collaboration with their group and are able to develop, formulate and design a scientific and technical report to complete the assignment.
- The students can assess, discuss and explain the necessity, significance and application of the standards in scientific work.
- Students will be able to identify, name, and be able to define the content taught.

The knowledge learned will help students to be able to assess, decide, evaluate and critically evaluate in the context of the semester assignment.

- Students are able to present their results in collaboration with their group and are able to develop, formulate and design a scientific and technical report to complete the assignment.
- The students can assess, discuss and explain the necessity, significance and application of the standards in scientific work.
- Students will be able to identify, name, and be able to define the content taught.
Spatial planners ensure our built environment optimally meets our future needs. This course explains how spatial planners can evaluate proposed modifications to network infrastructure when there is substantial future uncertainty with respect to requirements, and how to develop implementation plans taking into consideration asset life cycles.

The objective of this course is to provide spatial planners with an introduction to two essential tools in this regard. The first tool is a methodology to systematically take into consideration the future uncertainty in infrastructure requirements when proposing changes to the built environment. This involves the identification of key uncertainties, modelling their effect on infrastructure requirements and assessing how changes in future needs and the environment may affect future decisions. The second tool is a methodology to systematically estimate the life cycles of infrastructure assets. This methodology can be used together with the state of the existing infrastructure assets to develop optimal implementation plans.

More specifically, upon completion of the course students will understand how:

- to identify and quantify the service being provided by the built environment
- to construct an objective function to be used in the evaluation of proposed modifications
- to estimate changing societal needs and their potential effect on required infrastructure
- to develop concepts for flexible/robust infrastructure alongside traditional infrastructure
- to simulate future scenarios to evaluate the costs and effects on the service provided over time by infrastructure
- to estimate the service provided by existing infrastructure now and in the future
- to determine optimal maintenance strategies for infrastructure
- to convert them into optimal intervention programs, which can be used to build strong arguments as to when system modifications should be implemented.

The course consists of 9 lectures, 2 projects and 5 help sections. The two hour weekly lecture period is used as follows:

1. Planning infrastructure interventions – This lecture provides an introduction to the course and why it is useful in helping spatial planners propose and evaluate modifications to the built environment. The requirements for successful completion of the course are discussed and the two projects are introduced.
2. Service – Arguments for modifying the built environment are built on meeting the future needs of stakeholders. This week we present how to identify, quantify and value the service provided by the built environment. The measures of service, along with intervention costs are used to construct an objective function to be used in the evaluation of proposed modifications.
3. Changing needs – Trying to modify the built environment to meet future needs, requires estimating them. This week we discuss how to estimate them and their potential effect on required infrastructure.
4. Robust and flexible infrastructure – In the face of large amounts of future uncertainty it is useful to have either robust infrastructure, i.e. infrastructure that meets a large range of possible future needs, or flexible infrastructure, i.e. infrastructure that can be easily modified to meet different possible future needs. This week we discuss the concepts of robustness and flexibility and demonstrate their roles in maximizing the net-benefit of infrastructure.
5. Evaluating robust and flexible infrastructure – Robust and flexible infrastructure sometimes comes with increased costs. Whether or not the costs are worth it depends on a myriad of factors. This week we present a methodology that helps you develop robust and flexible infrastructure.
6. Simulating the uncertain future – As a key aspect to evaluating robust and flexible infrastructure is simulating what might happen in the future, this week, we explain how use Monte Carlo simulations and conduct an in class exercise so that you have an enhanced understanding of how it is done.
7. Help sessions 7-9 – We use the lecture periods to answer any questions you might have on project 1.
8. Existing infrastructure – Deciding how to modify infrastructure does not only require thinking about how to meet future needs. It also requires thinking about how the existing infrastructure is likely to provide service in the future. This week, we discuss the connection between provided service and the state of the infrastructure and use a common methodology to predict their evolution over time.
9. Maintenance strategies – It is useful to know the optimal maintenance intervention strategies for infrastructure assets when considering how to modify infrastructure to accommodate future needs, as it is easier to justify expenditures when a maintenance intervention is planned than immediately afterwards, when it is in a like new state. This week we explain how optimal intervention strategies are estimated.
10. Maintenance programs – As planning periods approach, exact decisions need to be made as to which interventions will be executed, taking into consideration network level constraints, such as budgets. This week we demonstrate how the state of assets together with the optimal maintenance strategies and network level constraints can be combined to determine optimal maintenance programs. These programs are used to optimally integrate both maintenance and modification interventions into one intervention program.
11. Help sessions 13 and 14 – We use the lecture periods to answer any questions you might have on project 2.

The course uses a combination of qualitative and quantitative approaches. The quantitative analysis required in the project requires at least the use of Excel. Some students, however, prefer to use Python or R.

Lecture notes
- The lecture materials consist of handouts, the slides, and example calculations in Excel.
- The lecture materials will be distributed via Moodle two days before each lecture.

Literature
- Appropriate literature will be handed out when required via Moodle.

Prerequisites / notice
This course has no prerequisites.
Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed
Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making assessed
Problem-solving assessed
Domain C - Social Competencies
Cooperation and Teamwork assessed
Domain D - Personal Competencies
Critical Thinking assessed

Introduction to the Programming Language R
O 3 credits 2G M. J. Van Strien, A. Grêt-Regamey

Abstract
R is one of the most popular programming language in science and practice for data analysis, modelling and visualisation. In this course, you will learn the basics of R and some common applications of R, such as making plots, regression analysis and working with spatial data. The weekly computer labs start with a short lecture followed by exercises that have to be handed in to pass the course.

Objective
The overall objective of this course is to provide an introduction to the programming language R and to build confidence to apply R in other courses. More specifically, the objectives are:
- Understand how to import and export data, and how to work with the most important types of R-objects (e.g. vectors, data frames, matrices and lists).
- Learn how to create meaningful and visually attractive graphics and apply this knowledge to several datasets.
- Learn how to apply several types of important functions (e.g. for- and while-loops, if-else statements, data manipulation).
- Understand descriptive statistics and regression analysis and apply this knowledge to analyse several datasets.
- Understand the possibilities of analysing and plotting spatial data.
- Learn how to write own functions.

Content
The course has a strong focus on “learning by doing”. During the weekly computer lab sessions, students will be given an introduction to the programming language R. Each lab session will start with a short introductory lecture, after which students work through the script and complete the exercises. During the lab sessions, the lecturers will be available to answer individual questions. The main topics that will be covered in the lab sessions are:
- importing and exporting data
- types of R-objects
- data scraping
- plotting data
- descriptive statistics
- data manipulation
- conditionals and loops
- regression analysis
- plotting and analysing spatial data
- writing own functions

In the 7th and 14th week of the course, students have the time to finish the exercises that should be handed in at the end of those weeks.

Lecture notes
A script with theory, examples and exercises will be handed out at the beginning of the course. Data for the exercises will be made available via Moodle.

Literature

Prerequisites / notice
No prior knowledge of R or any other programming language is required for this course.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories not assessed
Techniques and Technologies assessed
Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making not assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed
Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed
Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

Major Courses
Major in Spatial and Landscape Development

Number Title Type ECTS Hours Lecturers
103-0337-00L Site and Project Development W 3 credits 2G A. Gonzalez Martinez, M. Sudau, J. Van Wezemael

Abstract
The focus of the lecture Site & Project Development is on larger contiguous areas or sites and their urban, open space and infrastructural development. In this course, students work on a semester exercise in which they “develop” a specific large-scale project from practice and evaluate it economically, strategically and in terms of feasibility.
Students in this course will pursue the following learning objectives:

- Investigate and understand a given concrete project area and identify, evaluate and articulate the current problems and relevant issues within this area.

- Consolidate their knowledge in the essential topics of site & project development and apply this in a well-founded, argued and creative manner to address the task at hand.

- Organize and structure themselves while acquiring responsibilities in their interdisciplinary project teams. The teams consist of three to five fellow students that must develop innovative, viable and resilient concepts for a real project development in a given area. Their considerations should be presented in written form (project report) and in linguistic-visual form (final presentation). At the end of the course, the students critically reflect on their experiences with the group work process together with the course instructors.

- Acquire methodological knowledge in location & market analysis, 3D visualization of a project as well as in the financial assessment of a large-scale real estate project and use this knowledge to justify their considerations and evaluate their proposal.

- Development and strengthening of their individual position as planners (spatial, urban, transport planners, etc.) in relation to the questions formulated in the proposed project within the field of Site & Development as well as within their own discipline.

The lecture is divided into several thematic sections analogous to the essential topics of Site & Project Development. The students are accompanied both in the semester exercise and in the individual lectures by a large number of external guest speakers from the praxis-field, which means that the lecture will not only thematically examine the relevant areas of Site & Project Development, but also will offer the students exclusive, practice-oriented insights. The relevant methodological knowledge for the semester exercise is imparted and, due to the proximity to practice, the students gain exclusive insights into possible professional fields of activity. In this lecture, students apply their already acquired and newly learned skills, especially in interdisciplinary teams, and work on an exciting, motivating and relevant question from the practice.

Major topics covered in the lecture include:

- Urban planning
- Location and market analysis
- Real estate development, financing and valuation
- Project development and decision-making from the perspective of investors
- Open space design and landscape architecture
- Sustainable building and sustainability certification
- Mobility, parking issues, travel models
- Cooperative planning and participation processes, mediation
- Gendered planning in project development
- Inner development & urban quality

Parallel to the lecture series, students work in interdisciplinary teams on a real-life task. In the course of the semester exercise, the lecture material is deepened and what has been learned is applied. The students visit the project area at the beginning of the semester as part of an excursion. Specific large-scale projects such as the Gaswerkareal Bern, the Sihl-Manegg Areal Zurich (Greencity) or the Areal Alter Pilatusmarkt (Nidfeld) Lucerne will be dealt with. For the possible development of the given site, visions are developed by the students on the basis of a comprehensive location and market analysis and a utilization concept is developed. In the process, the students are accompanied by experts and regularly discuss their ideas and proposed solutions with their supervisors.

- Handouts of the lectures
- Extracts from relevant scientific articles and theory literature
- Exercise material

Download: https://irl.ethz.ch/de/education/vorlesungen/msc/project_development.html

References in the lecture notes

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptable and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

This course deals with scientific and applied methods and the ways of thinking that are useful in planning practice as well as in scientific research. Students are offered interdisciplinary knowledge from planning practice and research, behavioural economics and social sciences. New perspectives on planning are opened up, which can lead to better results in future projects and research.
Objective
Keeping the general aim of exploring the basic methodologies in spatial planning research and practice, the specific course learning objectives are as follows:
- to address complex real-world spatial problems in adequate ways
- to know relevant theories and maxims that are subject to specific methods of problem solving
- to identify key questions and key concepts in contemporary planning research
- to select appropriate research methods to properly address the research questions

In practical terms, students:
- learn to deal with uncertainties and estimate quantities
- improve their ability to take decisions based on incomplete data and information
- are informed about different (qualitative and quantitative) methods and techniques for spatial research
- learn about different types of research (theoretical, empirical, action-oriented, qualitative, quantitative)
- get skilled for writing simple research essays
- are urged to question their own knowledge and challenge the course of action taken in planning processes

Content
The course is based on the following questions:
How do we deal with complex issues in planning?
- Forms of knowledge, half-knowledge and not knowing
- Occurrence and explanation patterns for irrational behaviour
- Spatial research and planning practice
- Planning maxims
- Mapping complex topics in research questions

How do we generate knowledge about complex issues?
- Methods for scientific data generation
- Applied handling of quantities and probabilities
- Estimating despite uncertainties
- Opportunities of digitisation in planning (Participation, BigData)

How do we react to complex questions in planning?
- Methods of scientific data analysis
- Making decisions despite incomplete information
- Dealing with robustness and fragility

More specifically, the lectures focus on the following topics (NB: Some content units will be presented in English, they are marked with *asterisk below)
- (Half-) knowledge/behaviour/irrationalities
- Initial situation: Solving complex problems
- Forms of knowledge, knowing of not knowing something, not knowing of not knowing something
- Behavioural patterns, occurrence and explanation patterns for irrational behaviour
- Methods for solving complex tasks in planning practice
- Spatial research and planning practice - connections, differences, overlaps
- Challenges in the solution of complex tasks: System delimitation, interdisciplinarity, retrospective vs. prospective approach (descriptive vs. action-oriented, “reflected scenario building”)
- Planning maxims
- *Methodology in spatial research
- *Research design
- *Research questions (types of research questions; research questions, hypotheses and theories; justification of research question
- *Data generation methods (interviews and questionnaires, ethnography and observation, documents, official statistics)
- *Dealing with quantities, estimations, anchor effect
- *Importance of scales and key figures in planning
- *Estimation methods
- *Danger of the anchor effect
- *Digitization in planning
- *New data sources and sizes
- *Opportunities and challenges through digitisation in planning
- *Data analysis methods (quantitative and qualitative data; quantitative analysis of survey data; qualitative analysis - content analysis, discourse analysis, case study, comparative research)
- *Research ethics
- *Decisions based on incomplete information
- *Dealing with complex systems/roughness
- *Role of science in planning - the perspective of both research and practice

Lecture notes
Learning materials: available online (Moodle) before corresponding lecture.

Literature
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-presentation and Social Influence
- Self-direction and Self-management

Abstract

System of swiss planning law,
Constitutional and statutory provisions,
Space planning and fundamental rights,
Instruments,
Application, legal protection, enforcement,
Practical training.

Objective

Basic understanding of nature and function of space planning from a legal point of view. Basic knowledge of space planning instruments,
relationship between space planning and constitutional law (especially property rights), solving of practical cases.

Content

Die Vorlesung basiert wesentlich auf der Mitwirkung der Studenten. Es finden 3 Sitzungen im Hörsaal statt, in welchen sich in der Praxis
stellende Probleme erörtert werden. Die Vorbereitung auf die jeweiligen Sitzungen erfolgt an Hand von Fallbearbeitungen und einem
Selbststudium an Hand des Lehrbuchs zum Raumplanungs- und Baurecht. Lösen von drei Aufgaben (praktischen Fällen) mit je
genügender Leistung für die Erlangung der KP. Als Lernhilfe werden Anleitungen und insbesondere ein Musterfall mit Musterlösung zur
Verfügung gestellt.

Lecture notes

Haller, Walter/Karlen, Peter, Raumplanung-, Bau- und Umweltrecht, 3.A., Zürich 1999
Hänni, Peter, Planungs-, Bau- und besonderes Umweltschutzrecht, 6.A., Bern 2016

Literature

Daniel Kurz: Die Disziplinierung der Stadt - Moderner Städtebau in Zürich 1900 bis 1940. gta Verlag 2008
Landscape Planning and Environmental Systems (GIS)

The course content of the lecture Landscape Planning and Environmental Systems (103-0347-00 V) will be illustrated in practical GIS exercises (e.g. habitat modelling, land use change, ecosystem services, connectivity).

Objective
- Practical application of theory from the lectures
- Quantitative assessment and evaluation of landscape characteristics
- Learning useful applications of GIS for landscape planning
- Developing landscape planning measures for practical case studies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Recommended literature:
- Governance models:

Planning models:

EU as a political context:

Territorial cooperation in Europe:

Planning systems in Europe:

Prerequisites / notice

Only for master students, otherwise a special permission by the lecturer is required.
This course introduces the broad variety of conflicts that arise in projects focusing on sustainable management of natural resources. It explores case studies of ecosystem management approaches and considers their practicability, their achievements and possible barriers to their uptake.

Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give considerable consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Lecture notes
A script and presentation slides for each exercise will be provided on Moodle.

Literature
Will be named in the lecture.

Prerequisites / notice
Basic GIS skills are strongly recommended.

701-1631-00L Foundations of Ecosystem Management

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competencies</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Subject-specific Competencies</td>
<td>Concepts and Theories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Techniques and Technologies</td>
</tr>
<tr>
<td>B</td>
<td>Method-specific Competencies</td>
<td>Analytical Competencies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision-making</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem-solving</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Management</td>
</tr>
<tr>
<td>C</td>
<td>Social Competencies</td>
<td>Communication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooperation and Teamwork</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Customer Orientation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
</tr>
<tr>
<td>D</td>
<td>Personal Competencies</td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Thinking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
</tr>
</tbody>
</table>

701-1453-00L Ecological Assessment and Evaluation

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competencies</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W 5 credits</td>
</tr>
</tbody>
</table>

Objective
Students will be able to:
1) critically consider biological data books and local, regional, and national inventories;
2) evaluate the validity of ecological criteria used in decision making processes;
3) critically appraise the handling of ecological data and criteria used in the process of evaluation
4) perform an ecological evaluation project from the field survey up to the decision making and planning.

Literature
Basic literature and references are listed on the webpage. Additional documents are handed out as copies.
The course structure changes between lecture parts, seminars and discussions. The didactic atmosphere is intended as working group.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>W</th>
<th>2V</th>
<th>Taught Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0705-00L</td>
<td>Landscape Architecture I</td>
<td>2 credits</td>
<td>W</td>
<td>2V</td>
<td>D. Richter</td>
</tr>
<tr>
<td>103-0468-00L</td>
<td>Participatory Modeling in Integrated Landscape Development</td>
<td>3 credits</td>
<td>W</td>
<td>2G</td>
<td>E. Celio, N. Salliou</td>
</tr>
<tr>
<td>102-0317-00L</td>
<td>Advanced Environmental Assessments</td>
<td>3 credits</td>
<td>W</td>
<td>2G</td>
<td>S. Pfister, R. Frischknecht</td>
</tr>
</tbody>
</table>

Prerequisites / Notice:

Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses:

- Pflanzen- und Vegetationsökologie
- Systematische Botanik
- Raum- und Regionalentwicklung
- Naturschutz und Naturschutzbiologie

Objective:

The course covers the basic history and theory of garden design and landscape architecture from its beginnings to the 21st century. The course aims to raise awareness of a changing perception of nature and landscape.

Content:

The lecture series on History and Theory of Garden Design and Landscape Architecture deals with the historical development of designed nature, from the beginnings of cultural landscapes and gardens to 21st century landscape architecture. In the analysis of each era, the focus is on the spatial and cultural relationship between the garden, the city and the landscape, as well as the changing perceptions of nature and its representation.

Lecture notes / Literature:

A reading list will be provided.

Prerequisites / Notice:

Handouts and a reading list will be provided.

General Information for the final exam:

Bachelor students: The content of the lectures as well as texts and exam-relevant literature provided by the Chair make up the basis for preparing for the exam. The lecture series is conceived as a yearlong course. Since the written session examination will test knowledge from both semesters, it is necessary to fully attend the lectures of both courses “Landscape Architecture I” and “Landscape Architecture II”. The themes of the examination will be announced at the end of the semester. The Chair will provide literature and texts available for download as pdfs. These allow a more in-depth understanding of the lecture material.

Exchange students or students from other departments: Students, who are attending only one semester, may pass the oral end-of-semester examination. Test-relevant literature will also be made available for download for this purpose. The students are requested to get in touch by email with the Chair.

Taught Competencies:

- **Domain A - Subject-specific Competencies**
 - Concepts and Theories
 - Techniques and Technologies

- **Domain B - Method-specific Competencies**
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Project Management

- **Domain C - Social Competencies**
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity
 - Negotiation

- **Domain D - Personal Competencies**
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

Prerequisites / notice:

Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses:

- Pflanzen- und Vegetationsökologie
- Systematische Botanik
- Raum- und Regionalentwicklung
- Naturschutz und Naturschutzbiologie

Abstract:

Introduction to the history and theory of garden design and landscape architecture. Analysis of the design of historical gardens and landscapes within the cultural background.

Objective:

The course aims to raise awareness of a changing perception of nature and landscape.

Content:

The lecture series on History and Theory of Garden Design and Landscape Architecture deals with the historical development of designed nature, from the beginnings of cultural landscapes and gardens to 21st century landscape architecture. In the analysis of each era, the focus is on the spatial and cultural relationship between the garden, the city and the landscape, as well as the changing perceptions of nature and its representation.

Lecture notes / Literature:

A reading list will be provided.

Prerequisites / notice:

Handouts and a reading list will be provided.

General Information for the final exam:

Bachelor students: The content of the lectures as well as texts and exam-relevant literature provided by the Chair make up the basis for preparing for the exam. The lecture series is conceived as a yearlong course. Since the written session examination will test knowledge from both semesters, it is necessary to fully attend the lectures of both courses “Landscape Architecture I” and “Landscape Architecture II”. The themes of the examination will be announced at the end of the semester. The Chair will provide literature and texts available for download as pdfs. These allow a more in-depth understanding of the lecture material.

Exchange students or students from other departments: Students, who are attending only one semester, may pass the oral end-of-semester examination. Test-relevant literature will also be made available for download for this purpose. The students are requested to get in touch by email with the Chair.

Taught Competencies:

- **Domain A - Subject-specific Competencies**
 - Concepts and Theories
 - Techniques and Technologies

- **Domain B - Method-specific Competencies**
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Project Management

- **Domain C - Social Competencies**
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity
 - Negotiation

- **Domain D - Personal Competencies**
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

Prerequisites / notice:

Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses:

- Pflanzen- und Vegetationsökologie
- Systematische Botanik
- Raum- und Regionalentwicklung
- Naturschutz und Naturschutzbiologie

Abstract:

The course covers the basic history and theory of garden design and landscape architecture from its beginnings to the 21st century. The course aims to raise awareness of a changing perception of nature and landscape.

Objective:

The course aims to raise awareness of a changing perception of nature and landscape.

Content:

The lecture series on History and Theory of Garden Design and Landscape Architecture deals with the historical development of designed nature, from the beginnings of cultural landscapes and gardens to 21st century landscape architecture. In the analysis of each era, the focus is on the spatial and cultural relationship between the garden, the city and the landscape, as well as the changing perceptions of nature and its representation.

Lecture notes / Literature:

A reading list will be provided.

Prerequisites / notice:

Handouts and a reading list will be provided.

General Information for the final exam:

Bachelor students: The content of the lectures as well as texts and exam-relevant literature provided by the Chair make up the basis for preparing for the exam. The lecture series is conceived as a yearlong course. Since the written session examination will test knowledge from both semesters, it is necessary to fully attend the lectures of both courses “Landscape Architecture I” and “Landscape Architecture II”. The themes of the examination will be announced at the end of the semester. The Chair will provide literature and texts available for download as pdfs. These allow a more in-depth understanding of the lecture material.

Exchange students or students from other departments: Students, who are attending only one semester, may pass the oral end-of-semester examination. Test-relevant literature will also be made available for download for this purpose. The students are requested to get in touch by email with the Chair.

Taught Competencies:

- **Domain A - Subject-specific Competencies**
 - Concepts and Theories
 - Techniques and Technologies

- **Domain B - Method-specific Competencies**
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Project Management

- **Domain C - Social Competencies**
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity
 - Negotiation

- **Domain D - Personal Competencies**
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

Prerequisites / notice:

Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses:

- Pflanzen- und Vegetationsökologie
- Systematische Botanik
- Raum- und Regionalentwicklung
- Naturschutz und Naturschutzbiologie

Abstract:

The course covers the basic history and theory of garden design and landscape architecture from its beginnings to the 21st century. The course aims to raise awareness of a changing perception of nature and landscape.

Objective:

The course aims to raise awareness of a changing perception of nature and landscape.

Content:

The lecture series on History and Theory of Garden Design and Landscape Architecture deals with the historical development of designed nature, from the beginnings of cultural landscapes and gardens to 21st century landscape architecture. In the analysis of each era, the focus is on the spatial and cultural relationship between the garden, the city and the landscape, as well as the changing perceptions of nature and its representation.

Lecture notes / Literature:

A reading list will be provided.

Prerequisites / notice:

Handouts and a reading list will be provided.

General Information for the final exam:

Bachelor students: The content of the lectures as well as texts and exam-relevant literature provided by the Chair make up the basis for preparing for the exam. The lecture series is conceived as a yearlong course. Since the written session examination will test knowledge from both semesters, it is necessary to fully attend the lectures of both courses “Landscape Architecture I” and “Landscape Architecture II”. The themes of the examination will be announced at the end of the semester. The Chair will provide literature and texts available for download as pdfs. These allow a more in-depth understanding of the lecture material.

Exchange students or students from other departments: Students, who are attending only one semester, may pass the oral end-of-semester examination. Test-relevant literature will also be made available for download for this purpose. The students are requested to get in touch by email with the Chair.

Taught Competencies:

- **Domain A - Subject-specific Competencies**
 - Concepts and Theories
 - Techniques and Technologies

- **Domain B - Method-specific Competencies**
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Project Management

- **Domain C - Social Competencies**
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity
 - Negotiation

- **Domain D - Personal Competencies**
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management
- Inventory developments, transparency, data quality, data completeness, and data exchange formats
- Allocation (multioutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Recent development in impact assessment
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Uncertainty analysis
- Subjectivity in environmental assessments
- Multicriteria analysis
- Case Studies

Lecture notes:
No script. Lecture slides and literature will be made available on Moodle.

Literature:
Literature will be made available on Moodle.

Prerequisites / notice:
Basic knowledge of environmental assessment tools is a prerequisite for this class. Students that have not done classwork in this topic before are required to read an appropriate textbook before or at the beginning of this course (e.g., Jolliet, O et al. 2016: Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).

063-0703-00L Architecture of Territory: Territorial Design in Histories, Theories and Projects

Abstract
This core course (ending with «00L») can only be passed once! Please check before signing up.

Objective
The course will enable students to critically discuss concepts of territory and urbanisation. It will invite students to revisit the history of architects' work engaging with the problematic of urbanising territories and territorial organisation. The goal is to motivate and equip students to engage with territory in the present day and age, by setting out our contemporary urban agenda.

The lectures are animated by a series of visual and conceptual exercises, usually on A4 sheets of paper. All original student contributions will be collected and bound together, creating a unique book-object. Some of the exercises are graded and count as proof of completion.

Content
Within the theme My Species, the four guest speakers engaged in fields ranging from art and landscape representation to bioethics and environmental philosophy, will approach territory through the notions such as multispecies, coexistence, and diversity. With a more-than-human perspective on the territory, the guest speakers will elaborate their take on "telling horrible stories in beautiful ways," debate "the dignity of plants," expound upon "mankind's fascination to better the world," and confer "the non-human turn" and what is to come after.

23. 09. 2021
On Territory
MILICA TOPALOVIĆ

30. 09. 2021
Architecture and Urbanisation
MILICA TOPALOVIĆ

07. 10. 2021
Methods in Territorial Research and Design
MILICA TOPALOVIĆ

14. 10. 2021
Multispecies Worldbuilding
Guest lecture by FEIFEI ZHOU

21. 10. 2021
Better Nature
Guest lecture by ALEXANDRA DAISY GINSBERG

04. 11. 2021
Planetary Urbanisation: Hinterland
MILICA TOPALOVIĆ

11. 11. 2021
Tomatoes Talk, Birch Trees Learn – Do Plants Have Dignity?
Guest lecture by FLORIANNE KOECHLIN

18. 11. 2021
Disappearance of the Countryside
MILICA TOPALOVIĆ

25. 11. 2021
What is Soul? On the Idea of Species Being
Guest lecture by OXANA TIMOFEEVA

09. 12. 2021
Our Common Territories: An Outlook
MILICA TOPALOVIĆ

This lecture series sets up an agenda for widening the disciplinary field of architecture and urbanism from their focus on the city, or the urban in the narrow sense, to wider territorial scales, which correspond to the increasing scales of contemporary urbanisation. It discusses the concepts of territory and urbanisation, and their implications for the work of architects and urbanists.
The lectures will take place on Thursdays, 10.00-12.00, at ONA Fokushalle E7 and on ZOOM.

Lecturer:
Prof. Milica Topalovic

Team:
Prof. Milica Topalovic, Nazli Tümerdem, Vesna Jovanović

Contact:
Nazli Tümerdem
tuemerdem@arch.ethz.ch

Our website:
https://topalovic.arch.ethz.ch

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competencies</th>
<th>Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td></td>
</tr>
</tbody>
</table>

Major in Transport Systems and Behaviour

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0427-01L</td>
<td>Public Transport Design and Operations</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>F. Corman, F. Leutwiler</td>
</tr>
</tbody>
</table>

Abstract

This course aims at analyzing, designing, improving public transport systems, as part of the overall transport system.

Objective

Public transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups.

Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders. The most relevant decision making problems in a planning tactical and operational point of view.

At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport.

General structure:
- general introduction of transport, modes, technologies,
- system design and line planning for different situations,
- mathematical models for design and line planning
- timetabling and tactical planning, and related mathematical approaches
- operations, and quantitative support to operational problems,
- evaluation of public transport systems.

Content

Basics for line transport systems and networks
- Passenger/Supply requirements for line operations
- Objectives of system and network planning, from different perspectives and users, design dilemmas
- Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport
- Planning process, from demand evaluation to line planning to timetables to operations
- Matching demand and modes
- Line planning techniques
- Timetabling principles
- Allocation of resources
- Management of operations
- Measures of realized operations
- Improvements of existing services

Literature

Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English)

The course provides the necessary knowledge to develop models supporting and also evaluating the solution of given planning problems. The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/policy by means of cost-benefit analysis. Interim lab session take place regularly to guide and support students with the applied part of the course.

To cope with that, the problem is divided into sub-problems, which are solved using various statistical models (e.g. regression, discrete choice analysis) and algorithms (e.g. iterative proportional fitting, shortest path algorithms, method of successive averages).
Abstract: Fundamentals of traffic flow theory and control.

Objective: The objective of this course is to fully understand the fundamentals of traffic flow theory in order to effectively manage traffic operations. By the end of this course students should be able to apply basic techniques to model different aspects of urban and inter-urban traffic performance, including congestion.

Content: Introduction to fundamentals of traffic flow theory and control. Includes understanding of traffic data collection and processing techniques, as well as data analysis, traffic modeling, and methodologies for traffic control.
This course is an introduction to urban and regional economics. It focuses on the formation and development of urban systems, and highlight how transport infrastructure investments can affect the location, size and composition of such systems.

The main objective of this course is to provide students with some basic tools to analyze the fundamental economic forces at play in urban systems (i.e., agglomeration and congestion forces), and the role of transport networks in shaping the structure of these systems. Why do urban areas grow or decline? How do transport networks affect the location of individuals and firms? Does the location of a firm determine its productivity? Can transport infrastructure investments reduce economic disparities? These are some of the questions that students should be able to answer after having completed the course.

In the second part, I discuss the planning and pricing of transport networks, moving from simple local models to more complex transport models at a global scale. The key aspects include: the first and second best road pricing, the public provision of transport networks and the demographic effects of transport networks.

In the third part, I combine the previous two parts and analyze the interaction between urban systems and transportation. Thereby, the main focus is to understand the economic mechanisms that can lead to a general equilibrium of all actors involved. However, as the study of the historical development of urban systems and transport networks provides interesting insights, I will discuss how their interaction in the past shapes today’s economic geography.

Finally, I broaden the scope of the course and explore related topics. There will be a particular emphasis on the relation between urban systems and fiscal federalism as well as environmental policies. Both aspects are important determinants of the contemporary developments of urban systems, and as such deserve our attention.

In general, this class focuses on the latest research developments in urban and regional economics, though it does not require prior knowledge in this field. It pays particular attention to economic approaches, which are based on theoretical frameworks with strong microfoundations and allow for precise policy recommendations.

In this course, the students will first learn some microscopic modelling and simulation concepts, and then complete a traffic-engineering project with microscopic traffic simulator Aimsun. Microscopic modelling and simulation concepts will include:

1. Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.).
2. Design a road transport network inside the simulation software.
3. Understand the basics behind modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network.
4. Understand how to design a complete study, implement and validate it for planning purposes, e.g. creating a new road infrastructure.
5. Make valid and concrete engineering proposals based on the simulation model and alternative scenarios.

Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario.

Upon completion of the course, the students will:

1. Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.).
2. Design a road transport network inside the simulation software.
3. Understand the basics behind modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network.
4. Understand how to design a complete study, implement and validate it for planning purposes, e.g. creating a new road infrastructure.
5. Make valid and concrete engineering proposals based on the simulation model and alternative scenarios.

Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario.

Upon completion of the course, the students will:

1. Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.).
2. Design a road transport network inside the simulation software.
3. Understand the basics behind modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network.
4. Understand how to design a complete study, implement and validate it for planning purposes, e.g. creating a new road infrastructure.
5. Make valid and concrete engineering proposals based on the simulation model and alternative scenarios.

Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario.

Upon completion of the course, the students will:

1. Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.).
2. Design a road transport network inside the simulation software.
3. Understand the basics behind modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network.
4. Understand how to design a complete study, implement and validate it for planning purposes, e.g. creating a new road infrastructure.
5. Make valid and concrete engineering proposals based on the simulation model and alternative scenarios.

Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario.

Upon completion of the course, the students will:

1. Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.).
2. Design a road transport network inside the simulation software.
3. Understand the basics behind modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network.
4. Understand how to design a complete study, implement and validate it for planning purposes, e.g. creating a new road infrastructure.
5. Make valid and concrete engineering proposals based on the simulation model and alternative scenarios.
This course provides an introduction to agent-based models for transportation policy analysis. Four essential topics are covered:

1) Introduction of agent-based modeling and its comparison to the traditional state of practice modeling
2) Introduction of MATSim, an open-source agent-based model, developed at ETH Zurich and TU Berlin, and its various parts
3) Setting up an agent-based model simulation, where different statistical methods used in the process will be introduced and explained.
4) Conducting a transport policy study. The case study will be performed in groups and will include a paper-like report.

During the course, outside lecturers will give several lectures on using MATSim in practice (i.e., SBB).

Additional relevant readings, primarily scientific articles, will be recommended throughout the course.

There are no strict preconditions in terms of which lectures the students should have previously attended. However, knowledge of basic statistical theory is expected, and experience with at least one high-level programming language (Java, R, Python, or other) is recommended.

Network Infrastructure

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0469-00L</td>
<td>Road Safety</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>M. Deublein, P. Eberling</td>
</tr>
<tr>
<td>Abstract</td>
<td>The collection and the methods of statistical and geographical analysis of road accidents are important fundamentals of this course. Safety Aspects in design of urban roads are discussed and measures for improving the safety situation are presented. Procedures of infrastructure safety management for administrations and police are another topic.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Importing knowledge base about road safety and the event of accident, presenting possibilities to increase road safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Accident origin, collection of road accidents, statistical (descriptive and multivariate, accident prediction models) and geographical analysis of road accidents, risk analysis and rehabilitation measures, road safety instruments for infrastructure with focus on road safety audit, Swiss and international transport policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Network Infrastructure

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0549-00L</td>
<td>Selected Topics on Legal Aspects in Civil Engineering</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>H. Briner, D. Trümpy</td>
</tr>
<tr>
<td>Abstract</td>
<td>Basic knowledge in public and private law of civil engineering. Examples of the subjects treated: space management, protection of the environment, legal procedures, standards for building technology and contracts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Part 1: The students shall acquire basic knowledge of the public law concerning civil engineering: space management, conception of buildings, protection of the environment, procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Part 2: The students shall acquire basic knowledge of the private law concerning civil engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>D. Trümpy: Tafeln zu den Grundzügen des schweizerischen Bauvertragsrechts (Vorlesungsunterlage) H. Briner: Tafeln zu den Grundzügen des öffentlichen Raumplanungs-, Bau- und Umweltrechts (Vorlesungsunterlage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>- Stöckli P./Siegenthaler Th. (Hrsg.) Die Planerwirtschaft, Schlussbericht 2010 - Gauch Peter, Werkvertrag. 5. Auflage, Schulthess 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Die Teilnehmer sollen stets ein Exemplar der SIA-Norm 118, der SIA-LHO 103 sowie die Gesetzesausgaben von OR und ZGB bei sich haben.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0492-00L</td>
<td>Microscopic Modelling and Simulation of Traffic Operations</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Makridis</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course introduces basics of microscopic modelling and simulation of traffic operations, including model design and development, calibration, validation, data analysis, identification of strategies for improving traffic flow performance, and evaluation of such strategies. The aim is to provide the fundamentals for building a realistic traffic-engineering project from beginning to end.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objective of this course is to conduct a realistic traffic engineering project from beginning to end. The students will first familiarize themselves with microscopic traffic models. Students will work in groups on a project that includes a base scenario on a real traffic network. Throughout the semester, along with theoretical concepts, the students will build the base scenario (design, calibration and validation) and will develop alternative scenarios regarding modification on the infrastructure, simulation of in-vehicle technologies and vehicle-to-everything (V2X) communication. Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Prerequisites / notice | Upon completion of the course, the students will:
- Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.).
- Design a road transport network inside the simulation software.
- Understand the basics behind modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network.
- Understand how to design a complete study, implement and validate it for planning purposes, e.g. creating a new road infrastructure.
- Make valid and concrete engineering proposals based on the simulation model and alternative scenarios. |
In this course, the students will first learn some microscopic modelling and simulation concepts, and then complete a traffic-engineering project with microscopic traffic simulator Aimsun.

Microscopic modelling and simulation concepts will include:
1) Car following models
2) Lane change models
3) Calibration and validation methodology

Specific tasks for the project will include:
1) Building a model with the simulator Aimsun in order to replicate and analyze the traffic conditions measured/observed.
2) Calibrating and validating the simulation model.
3) Redesigning/extend the model to improve the traffic performance through Aimsun and with/without programming in Python or C++.

The course will be based on a project that each group of students will build (design, calibrate, analyze and presentation) across the semester. A mid-term and final presentation of the work will be asked from each group of students.

It consists of weekly 2-hour lectures. The students work in pairs on a group project that completes in the end of the semester. The modelling software used is Aimsun and lectures (theory and hands on experience) are taking place in a computer room.

The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. Previous experience with Aimsun/Python/C++ is helpful but not mandatory.

The lecture notes and additional handouts will be provided before the lectures.

The slides will be made available.

Additional literature and handouts will be provided at the lectures.

The lecture notes and additional handouts will be provided before the lectures.

The slides will be made available.

Further literature: will be presented during the course

<table>
<thead>
<tr>
<th>101-0469-00L</th>
<th>Road Safety</th>
<th>W</th>
<th>6 credits</th>
<th>4G</th>
<th>M. Deublein, P. Eberling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The collection and the methods of statistical and geographical analysis of road accidents are important fundamentals of this course. Safety aspects in design of urban roads are discussed and measures for improving the safety situation are presented. Procedures of infrastructure safety management for administrations and police are another topic.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Imparting knowledge base about road safety and the event of accident, presenting possibilities to increase road safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Accident origin, collection of road accidents, statistical (descriptive and multivariate, accident prediction models) and geographical analysis of road accidents, risk analysis and rehabilitation measures, road safety instruments for infrastructure with focus on road safety audit, Swiss and international transport policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>101-0419-02L</th>
<th>Railway Infrastructures 2</th>
<th>W</th>
<th>2 credits</th>
<th>2G</th>
<th>U. A. Weidmann, P. Güldenapfel, M. Köhler, M. J. Manhart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Track geometry including calculation and measuring as well as related data systems; clearance profiles; interaction between track and vehicles, vehicle dynamics, stress; track construction including special features of railway bridges and tunnels; environmental aspects in track construction; track diagnostics and forecast; track maintenance and related methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The lecture gives a deeper insight into track geometry including clearance profile, the interaction between track and vehicles as well as in construction and dimensioning of the track. Methods for the diagnosis of the state of the track and its forecast are shown. State-of-the-art maintenance strategies and technologies are presented.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>1 - Track geometry Track geometry including calculation and measuring as well as related data systems; clearance profiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 - Interaction Interaction between track and vehicles, vehicle dynamics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 - Railway Track Stress; track construction including special features of railway bridges and tunnels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - Environmental aspects in track construction Fundamentals; noise protection; vibration protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 - Diagnostics, maintenance strategies Track diagnostics and forecast; maintenance strategies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 - Track maintenance Fundamentals of track maintenance and related methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture notes	The slides will be made available. Text book: Weidmann Ulrich / Bahninfrastrukturen: Planen - entwerfen - realisieren - erhalten			
Literature	A list with related technical literature will be handed out.			
Prerequisites / notice	Prerequisite: 101-0419-01 Railway Infrastructures 1 (FS)			

<table>
<thead>
<tr>
<th>063-0701-00L</th>
<th>Methods of Urban Research</th>
<th>W</th>
<th>2 credits</th>
<th>2G</th>
<th>C. Schmid, I. Apostol, N. Bathla, L. Howe, C. Ting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This core course (ends with «00L») can only be passed once! Please check this before signing up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course conveys an introduction into methods of urban research in social sciences through lectures and accompanying exercises. It treats the basic principles of scientific research, literature research, different forms of participant observation, qualitative interviews (expert interviews and ethnographic interviews), and the analysis of urban qualities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>363-0541-00L</th>
<th>Systems Dynamics and Complexity</th>
<th>W</th>
<th>3 credits</th>
<th>3G</th>
<th>F. Schweitzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Finding solutions: what is complexity, problem solving cycle. Implementing solutions: project management, critical path method, quality control feedback loop. Controlling solutions: Vensim software, feedback cycles, control parameters, instabilities, chaos, oscillations and cycles, supply and demand, production functions, investment and consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1807 of 2152
A successful participant of the course is able to:
- understand why most real problems are not simple, but require solution methods that go beyond algorithmic and mathematical approaches
- apply the problem solving cycle as a systematic approach to identify problems and their solutions
- calculate project schedules according to the critical path method
- setup and run systems dynamics models by means of the Vensim software
- identify feedback cycles and reasons for unintended systems behavior
- analyse the stability of nonlinear dynamical systems and apply this to macroeconomic dynamics

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions.

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed.

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles.

Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM. Another objective of the self-study tasks is to practice efficient communication of such concepts. These are provided as home work and two of these will be graded (see “Prerequisites”).

The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture.

Interdisciplinary Project Work

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0020-00L</td>
<td>Interdisciplinary Project Only for Spatial Development and Infrastructure Systems MSc. Programme Regulations 2021.</td>
<td>O</td>
<td>16 credits</td>
<td>34A</td>
<td>A. Grêt-Regamey</td>
</tr>
</tbody>
</table>

Abstract
The Interdisciplinary Project Activity (IPA) forms the key feature of the MSc RE&IS. Students work on an interdisciplinary task from the field of spatial development and infrastructure systems in a real application area. The focus of the IPA on interdisciplinary cooperation and strong communication skills are crucial expertise required in practice to communicate with and between relevant actors.

Objective
Upon completion of the IPA, students have developed skills in:

1) Investigating and understanding a given project area in a real-world context as well as identifying, evaluating and formulating the current issues and relevant topics within that area.

2) Creating, designing/developing and evaluating an overall integrated strategy for the project area with relevant measures as well as an in-depth study of a certain area or topic within the project area visualizing, describing, presenting and reporting on these in a written project report.

3) Organising, structuring and promoting team work within an interdisciplinary group of 4-5 students in self-responsibility.

4) Applying previously learnt interdisciplinary methodological and theoretical skills from different fields as well as methods and design thinking learnt during the IPA.

5) Evaluating and choosing the right way of representation (e.g.: text, statistics, images, etc.) for all pieces of information, ideas and proposals throughout the whole semester.

6) Understanding, developing and strengthening and critically self-evaluating their individual disciplinary position and role.

Students apply the full range of their previously learned theoretical and methodological skills to solve the task together in their project team. Working closely with representatives of the case study area (e.g. officials, the wider public, different experts and decision-makers), which changes annually, as well as other experts, through site visits, and through individual mentoring by the six RE&IS chairs, students work in a stimulating and motivating environment to solve real-world spatial challenges.

- The semester is structured through an intermediate and final presentation, bilateral discussions with the chairs involved as well as individual group mentoring. On these meetings, the work status has to be communicated with adequate representational means and is discussed with the professors, assistants and possibly external experts.

- The project begins with a site visit of the project area at the beginning of the semester and the identification as well as precise formulation of the issues and opportunities observed within the project area.

- The students work on a complex, rather rough task and define their exact objective independently on the basis of the as-is analysis. In the overall strategy, the future development direction for the project area is then determined and measures are formulated to steer the development in this direction. Within a focus area or focus topic, students further develop their project and deepen their overall strategy. They test and evaluate the impact of selected measures and finally reflect on their project, summarize the most important findings and make a recommendation formulated to decision-makers.

- The project gets developed in an interdisciplinary group of students. The internal structuring of the group and distribution of work is to be organised by the students themselves.

- The choice of software for the project development is up to the students. The software used should be applicable to data analysis, information processing, image production and word processing. This can include the Adobe programs such as InDesign, Illustrator or Photoshop, GIS, the Microsoft programs such as Word, PowerPoint or Excel, CAD, R, etc.)
The lecture accompanies students into a participatory modelling process. We explore topics such as urban agriculture or climate-resilient development and transformation. The history of urban design will be approached as a cross-cultural field of knowledge that integrates scientific, economic and technical innovation as well as social and cultural advances.

Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0010-10L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>20</td>
<td>43D</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Before starting the Master's thesis, students must have:

a. obtained the Bachelor's degree;
b. fulfilled all specified admission conditions, if any;
c. acquired at least 90 credits in the Master's programme, including the credits in the mandatory courses and 12 credits in the area of the interdisciplinary project.

Abstract

The Master Programme concludes with the Master Thesis, which has to be done in one of the chosen Majors and has to be completed within 16 weeks. The Master Thesis is supervised by a professor and shall attest the students ability to work independently and to produce scientifically structured work.

Objective

To work independently and to produce a scientifically structured work.

Content

The topics of the Master Thesis are published by the professors. The Topic can be set also in consultation between the student and the professor.

Master Studies (Programme Regulations 2009)

Major Courses

Major in Spatial and Landscape Development

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0468-00L</td>
<td>Participatory Modeling in Integrated Landscape Development</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>E. Celio, N. Salliou</td>
</tr>
</tbody>
</table>

Abstract

The lecture accompanies students into a participatory modelling process. We explore topics such as urban agriculture or climate-resilient city. Students will know participatory modelling tools as well as concepts and approaches related to it. Students elaborate the processes from questions to interactive operational models.

Objective

With this course, students will...

- know the phases of a participatory modelling process
- ...are able to estimate in which case the involvement of stakeholders is necessary, hence are able to discuss advantages and disadvantages of stakeholder involvement at different levels of participation.
- ...get to know diverse modelling tools and are able to select the proper tool according to the context.
- ...are able to set-up and apply a functional model in a participatory manner on a real case study.
- ...get to know techniques to analyse simulations and are able to inform stakeholders in an adequate way.
- ...are able to discuss results together with stakeholders in a structured way.

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Global History of Urban Design I

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0801-00L</td>
<td>Global History of Urban Design I</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>T. Avermaete</td>
</tr>
</tbody>
</table>

Abstract

This course focuses on the history of the design of cities, as well as on the ideas, processes and actors that engender and lead their development and transformation. The history of urban design will be approached as a cross-cultural field of knowledge that integrates scientific, economic and technical innovation as well as social and cultural advances.

Objective

The lectures deal mainly with the definition of urban design as an independent discipline, which maintains connections with other disciplines (politics, sociology, geography) that are concerned with the transformation of the city. The aim is to make students conversant with the multiple theories, concepts and approaches of urban design as they were articulated throughout time in a variety of cultural contexts, thus offering a theoretical framework for students' future design work.

Content

In the first semester the genesis of the objects of study, the city, urban culture and urban design, are introduced and situated within their intellectual, cultural and political contexts:

- 01: The History and Theory of the City as Project
- 02: Of Rituals, Water and Mud: The Urban Revolution in Mesopotamia and the Indus
- 03: The Idea of the Polis: Rome, Greece and Beyond
- 04: The Long Middle Ages and their Counterparts: From the Towns of Tuscany to Delhi
- 05: Between Ideal and Laboratory: Of Middle Eastern Grids and European Renaissance Principles
- 06: Of Absolutism and Enlightenment: Baroque, Defense and Colonization
- 07: The City of Labor: Company Towns as Cross-Cultural Phenomenon
- 09: Garden Cities of Tomorrow: From the Global North to the Global South and Back Again
- 010: Civilized Wilderness and City Beautiful: The Park Movement of Olmsted and The Urban Plans of Burnham
- 011: The Extension of the European City: From the Viennese Ringstrasse to Amsterdam Zuid
At the end of the course, the students should:

This course provides students a broad theoretical basis for understanding, analyzing, designing, and improving operations. After completing this course:

1. Students can apply key concepts of POM to detail an operations strategy.
2. Students can conduct basic process mapping analysis and elaborate on the limitations of the chosen method.
3. Students can calculate the needed capacity to meet demand.
4. Students can select and use problem-solving tools and methods.
5. Students can select and use the basic tools of lean thinking to improve the productivity of production and service operations.
6. Students can explain how new technologies and servitization affect production and operations management.
7. Additional skills: Students acquire experience in teamwork, report writing, and presentation.

The following three fundamental areas in POM are covered: (1) Introduction to POM and operations strategy. (2) Operations design and management, including demand and capacity management, production planning and control, the role of inventory, lean management, service operations, and performance measurement. (3) Operations improvement, including problem-solving and the use of new technologies in POM (“Industry 4.0” / digitalization). Students can expect to learn a range of useful concepts, principles, and methods that can be used to design, analyze, and improve value-creating processes.

POM is concerned with the productivity of technology, people, and processes. Hence, POM is a generic research field, relevant to all business sectors. Yet, many of the examples and concepts of POM stem from the manufacturing sector, which for many years have been subject to global competition and learned how to develop efficient and effective operations.

POM is concerned with the productivity of technology, people, and processes. Hence, POM is a generic research field, relevant to all business sectors. Yet, many of the examples and concepts of POM stem from the manufacturing sector, which for many years have been subject to global competition and learned how to develop efficient and effective operations.

A parallel enrolment to the lecture 363-0445-00 Production and Operations Management is mandatory.

This course provides a broad theoretical basis for understanding, analyzing, designing, and improving operations. After completing this course:

1. Students can apply key concepts of POM to detail an operations strategy.
2. Students can conduct basic process mapping analysis and elaborate on the limitations of the chosen method.
3. Students can calculate the needed capacity to meet demand.
4. Students can select and use problem-solving tools and methods.
5. Students can select and use the basic tools of lean thinking to improve the productivity of production and service operations.
6. Students can explain how new technologies and servitization affect production and operations management.
7. Additional skills: Students acquire experience in teamwork, report writing, and presentation.

The following three fundamental areas in POM are covered: (1) Introduction to POM and operations strategy. (2) Operations design and management, including demand and capacity management, production planning and control, the role of inventory, lean management, service operations, and performance measurement. (3) Operations improvement, including problem-solving and the use of new technologies in POM (“Industry 4.0” / digitalization). Students can expect to learn a range of useful concepts, principles, and methods that can be used to design, analyze, and improve value-creating processes.

POM is concerned with the productivity of technology, people, and processes. Hence, POM is a generic research field, relevant to all business sectors. Yet, many of the examples and concepts of POM stem from the manufacturing sector, which for many years have been subject to global competition and learned how to develop efficient and effective operations.

POM is concerned with the productivity of technology, people, and processes. Hence, POM is a generic research field, relevant to all business sectors. Yet, many of the examples and concepts of POM stem from the manufacturing sector, which for many years have been subject to global competition and learned how to develop efficient and effective operations.

A list of further recommended literature will be found within each chapter of the reader (Skript). Suggested literature is provided in the syllabus.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0445-00L</td>
<td>Production and Operations Management</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>T. Netland</td>
</tr>
<tr>
<td>363-0445-02L</td>
<td>Production and Operations Management – Supplement Credit</td>
<td>W</td>
<td>1 credit</td>
<td>1A</td>
<td>T. Netland</td>
</tr>
<tr>
<td>101-0491-00L</td>
<td>Agent Based Modeling in Transportation</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>M. Balac</td>
</tr>
</tbody>
</table>

Literature

Suggested literature is provided in the syllabus.

Major in Transport Systems and Behaviour

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0445-00L</td>
<td>Production and Operations Management</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>T. Netland</td>
</tr>
<tr>
<td>363-0445-02L</td>
<td>Production and Operations Management – Supplement Credit</td>
<td>W</td>
<td>1 credit</td>
<td>1A</td>
<td>T. Netland</td>
</tr>
<tr>
<td>101-0491-00L</td>
<td>Agent Based Modeling in Transportation</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>M. Balac</td>
</tr>
</tbody>
</table>
This course provides an introduction to agent-based models for transportation policy analysis. Four essential topics are covered:

1) Introduction of agent-based modeling and its comparison to the traditional state of practice modeling
2) Introduction of BATSim, an open-source agent-based model, developed at ETH Zürich and TU Berlin, and its various parts
3) Setting up an agent-based model and the event of accident, presenting possibilities to increase road safety
4) Conducting a traffic policy study. The case study will be performed in groups and will include a paper-like report.

During the course, outside lecturers will give several lectures on using BATSim in practice (i.e., SBB).

Literature

- Agent-based modeling in general

- BATSim

- Additional relevant readings, primarily scientific articles, will be recommended throughout the course.

Prerequisites / notice

There are no strict preconditions in terms of which lectures the students should have previously attended. However, knowledge of basic statistical theory is expected, and experience with at least one high-level programming language (Java, R, Python, or other) is recommended.

101-0496-00L Road Safety W 6 credits 4G M. Deublein, P. Eberling

- **Abstract**
 - The collection and the methods of statistical and geographical analysis of road accidents are important fundamentals of this course. Safety Aspects in design of urban roads are discussed and measures for improving the safety situation are presented. Procedures of infrastructure safety management for administrations and police are another topic.

- **Objective**
 - Imparting knowledge about road safety and the event of accident, presenting possibilities to increase road safety

- **Content**
 - Accident origin, collection of road accidents, statistical (descriptive and multivariate, accident prediction models) and geographical analysis of road accidents, risk analysis and rehabilitation measures, road safety instruments for infrastructure with focus on road safety audit, Swiss and international transport policy

- **Literature**
 - Basic literature: message Via sicura; Directive 2008/96/EC on road infrastructure safety management; ELVIK, R.; VAA, T. (2004). The Accident origin, collection of road accidents, statistical (descriptive and multivariate, accident prediction models) and geographical analysis of road accidents, risk analysis and rehabilitation measures, road safety instruments for infrastructure with focus on road safety audit, Swiss and international transport policy

101-0492-00L Microscopic Modelling and Simulation of Traffic Operations W 3 credits 2G M. Makridis

- **Abstract**
 - The course introduces basics of microscopic modelling and simulation of traffic operations, including model design and development, calibration, validation, data analysis, identification of strategies for improving traffic flow performance, and evaluation of such strategies. The aim is to provide the fundamentals for building a realistic traffic-engineering project from beginning to end.

- **Objective**
 - The objective of this course is to conduct a realistic traffic engineering project from beginning to end. The students will first familiarize themselves with microscopic traffic models. Students will work in groups on a project that includes a base scenario on a real traffic network.

- **Content**
 - Microscopic modelling and simulation concepts will include:
 1. Building a model with the simulator Aimsun in order to replicate and analyze the traffic conditions measured/observed.
 2. Validating and calibrating the simulation model.
 3. Redesigning/extending the model to improve the traffic performance through Aimsun and with/without programming in Python or C++.
 - Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario.

Lecture notes

The lecture notes and additional handouts will be provided before the lectures.

Literature

Additional literature recommendations will be provided at the lectures.

Prerequisites / notice

Students need to know some basic road transport concepts. The course Road Transport Systems (Verkehr III), or simultaneously taking the course Road Transport Systems (Verkehr IV), is recommended.

401-0647-00L Introduction to Mathematical Optimization W 5 credits 2V+1U D. Adjiashvili

- **Abstract**
 - Introduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.

- **Objective**
 - The goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.
At the end of the course, the students will be able to:

- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.

Information about relevant literature will be given in the lecture.

This course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications.

Network Infrastructure

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0258-00L</td>
<td>River Engineering</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>V. Weitbrecht, I. Schalko, K. Sperger</td>
</tr>
</tbody>
</table>

Abstract

The lecture addresses the fundamentals of river engineering to quantitatively describe the flow of water, transport of sediment and wood, and morphological changes such as erosion and deposition processes associated with river structures. In addition, design guidelines for river engineering structures are introduced.

Objective

- At the end of the course, the students will be able to:
- recall and describe the fundamentals of transport processes in rivers,
- apply different calculation approaches and methods to tackle river engineering problems and tasks such as the discharge capacity of a river, scour estimation, or sediment budget of a river,
- design and dimension river engineering works needed to influence the processes in watercourses, and
- determine the interaction between flow (discharge), sediment transport, wood transport and the resulting channel evolution.

Content

The first part of the lecture introduces the fundamentals of river engineering, such as methods to determine and calculate the river discharge, or sampling methods to characterize the bed material. In addition, the transport processes of sediment (bedload and suspended load) and wood in rivers will be examined, including the principles of incipient motion, and initiation of erosion or deposition processes.

In the second part of the lecture, the methods will be explained to quantify the bed load budget and the morphological changes (erosion, deposition) in river systems. Specifically, natural channel formation processes, different bed forms and plan forms of rivers (straight, meandering, braided) are examined.

The last part of the lecture focuses on the design of river engineering structures, including examples from an ongoing flood and river revitalization project at the Alpine Rhine in Austria and Switzerland.

Lecture notes

Handouts and powerpoint presentations shown in the lecture can be downloaded via Moodle.

Literature

1. Flussbau- lecture notes of fall semester 2020 by Dr. Gian Reto Bezzola (available only in German at VAW teaching assistance)

2. Erosion and Sedimentation; Pierre Y. Julien

Prerequisites / notice

Recommended lectures: Hydrology (102-0293-AAL), Hydraulics I (101-0203-01L), and Hydraulic Engineering (101-0206-00L).

Short practical exercises (voluntary) will be offered throughout the semester to improve the application of the learned subjects.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0469-00L</td>
<td>Road Safety</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>M. Deublein, P. Eberling</td>
</tr>
</tbody>
</table>

Abstract

The collection and the methods of statistical and geographical analysis of road accidents are important fundamentals of this course. Safety Aspects in design of urban roads are discussed and measures for improving the safety situation are presented. Procedures of infrastructure safety management for administrations and police are another topic.

Objective

Imparting knowledge base about road safety and the event of accident, presenting possibilities to increase road safety

Content

Accident origin, collection of road accidents, statistical (descriptive and multivariate, accident prediction models) and geographical analysis of road accidents, risk analysis and rehabilitation measures, road safety instruments for infrastructure with focus on road safety audit, Swiss and international transport policy.

Literature

Further literature: will be presented during the course

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0492-00L</td>
<td>Microscopic Modelling and Simulation of Traffic Operations</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Makridis</td>
</tr>
</tbody>
</table>

Abstract

The course introduces basics of microscopic modelling and simulation of traffic operations, including model design and development, calibration, validation, data analysis, identification of strategies for improving traffic flow performance, and evaluation of such strategies.

The aim is to provide the fundamentals for building a realistic traffic-engineering project from beginning to end.

Objective

The objective of this course is to conduct a realistic traffic engineering project from beginning to end. The students will first familiarize themselves with microscopic traffic models. Students will work in groups on a project that includes a base scenario on a real traffic network. Throughout the semester, along with theoretical concepts, the students will build the base scenario (design, calibration and validation) and will develop alternative scenarios regarding modification on the infrastructure, simulation of in-vehicle technologies and vehicle-to-everything (V2X) communication.

Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario.

Upon completion of the course, the students will:
- Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.).
- Design a road transport network inside the simulation software.
- Understand the basics underlying modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network.
- Understand how to design a complete study, implement and validate it for planning purposes, e.g. creating a new road infrastructure.
- Make valid and concrete engineering proposals based on the simulation model and alternative scenarios.
In this course, the students will first learn some microscopic modelling and simulation concepts, and then complete a traffic-engineering project with microscopic traffic simulator Aimsun.

Microscopic modelling and simulation concepts will include:
1) Car following models
2) Lane change models
3) Calibration and validation methodology

Specific tasks for the project will include:
1) Building a model with the simulator Aimsun in order to replicate and analyze the traffic conditions measured/observed.
2) Calibrating and validating the simulation model.
3) Redesigning/extending the model to improve the traffic performance through Aimsun and with/without programming in Python or C++.

The course will be based on a project that each group of students will build (design, calibrate, analyze and presentation) across the semester. A mid-term and final presentation of the work will be asked from each group of students. It consists of weekly 2-hour lectures. The students work in pairs on a group project that completes in the end of the semester. The modelling software used is Aimsun and lectures (theory and hands on experience) are taking place in a computer room.

The course Traffic Engineering is encouraged. Previous experience with Aimsun/Python/C++ is helpful but not mandatory.

The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. Previous experience with Aimsun is helpful but not mandatory.

Students need to know some basic road transport concepts. The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. Previous experience with Aimsun is helpful but not mandatory.

The slides will be made available.

A list with related technical literature will be handed out.

Prerequisite: 101-0419-01 Railway Infrastructures 1 (FS)
Literature
S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107.

Prerequisites / notice
Basic course on probability theory and statistics

Major Courses for all Majors

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0507-00L</td>
<td>Infrastructure Management 3: Optimisation Tools</td>
<td>W</td>
<td>6</td>
<td>2G</td>
<td>B. T. Adey</td>
</tr>
</tbody>
</table>

Abstract
This course will provide an introduction to the methods and tools that can be used to determine optimal inspection and intervention strategies and work programs for infrastructure.

Objective
Upon successful completion of this course students will be able:
- to use preventive maintenance models, such as block replacement, periodic preventive maintenance with minimal repair, and preventive maintenance based on parameter control, to determine when, where and what should be done to maintain infrastructure
- to take into consideration future uncertainties in appropriate ways when devising and evaluating monitoring and management strategies for physical infrastructure
- to use operation research methods to find optimal solutions to infrastructure management problems

Content
Part 1: Explanation of the principal models of preventative maintenance, including block replacement, periodic group repair, periodic maintenance with minimal repair and age replacement, and when they can be used to determine optimal intervention strategies
Part 2: Explanation of preventive maintenance models that are based on parameter control, including Markovian models and opportunistic replacement models
Part 3: Explanation of the methods that can be used to take into consideration the future uncertainties in the evaluation of monitoring strategies
Part 4: Explanation of how operations research methods can be used to solve typical infrastructure management problems

Lecture notes
A script will be given out at the beginning of the course.
Class relevant materials will be distributed electronically before the start of class.
A copy of the slides will be handed out at the beginning of each class.

Interdisciplinary Project Work

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0489-02L</td>
<td>Interdisciplinary Project</td>
<td>O</td>
<td>12</td>
<td>26A</td>
<td>A. Grêt-Regamey</td>
</tr>
</tbody>
</table>

Abstract
The Interdisciplinary Project Activity (IPA) forms the key feature of the MSc RE&IS. Students work on an interdisciplinary task from the field of spatial development and infrastructure systems in a real application area. The focus of the IPA on interdisciplinary cooperation and strong communication skills are crucial expertise required in practice to communicate with and between relevant actors.

Objective
Upon completion of the IPA, students have developed skills in:
1) Investigating and understanding a given project area in a real-world context as well as identifying, evaluating and formulating the current issues and relevant topics within that area.
2) Creating, designing/developing and evaluating an overall integrated strategy for the project area with relevant measures as well as an in-depth study of a certain area or topic within the project area visualizing, describing, presenting and reporting on these in a written project report.
3) Organising, structuring and promoting team work within an interdisciplinary group of 4-5 students in self-responsibility.
4) Applying previously learnt interdisciplinary methodological and theoretical skills from different fields as well as methods and design thinking learnt during the IPA.
5) Evaluating and choosing the right way of representation (e.g.: text, statistics, images, etc.) for all pieces of information, ideas and proposals throughout the whole semester.
6) Understanding, developing and strengthening and critically self-evaluating their individual disciplinary position and role.
Students apply the full range of their previously learned theoretical and methodological skills to solve the task together in their project team. Working closely with representatives of the case study area (e.g. officials, the wider public, different experts and decision-makers), which changes annually, as well as other experts, through site visits, and through individual mentoring by the six RE&IS chairs, students work in a stimulating and motivating environment to solve real-world spatial challenges.

- The semester is structured through an intermediate and final presentation, bilateral discussions with the chairs involved as well as individual group mentoring. On these meetings, the work status has to be communicated with adequate representational means and is discussed with the professors, assistants and possibly external experts.

- The project begins with a site visit of the project area at the beginning of the semester and the identification as well as precise formulation of the issues and opportunities observed within the project area.

- The students work on a complex, rather rough task and define their exact objective independently on the basis of the as-is analysis. In the overall strategy, the future development direction for the project area is then determined and measures are formulated to steer the development in this direction. Within a focus area or focus topic, students further develop their project and deepen their overall strategy. They test and evaluate the impact of selected measures and finally reflect on their project, summarize the most important findings and make a recommendation formulated to decision-makers.

- The project gets developed in an interdisciplinary group of students. The internal structuring of the group and distribution of work is to be organised by the students themselves.

- The choice of software for the project development is up to the students. The software used should be applicable to data analysis, information processing, image production and word processing. This can include the Adobe programs such as InDesign, Illustrator or Photoshop, GIS, the Microsoft programs such as Word, PowerPoint or Excel, CAD, R, etc.)

Lecture notes
- Literature
- Prerequisites / notice

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0010-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>24 credits</td>
<td>51D</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
Before starting the Master’s thesis, students must have
a. obtained the Bachelor’s degree;
b. fulfilled all specified admission conditions, if any;
c. acquired at least 90 credits in the Master’s programme, including the credits in the mandatory courses and 12 credits in the area of the interdisciplinary project.

Objective
The Master Programme concludes with the Master Thesis, which has to be done in one of the chosen Majors and has to be completed within 16 weeks. The Master Thesis is supervised by a professor and shall attest the students ability to work independently and to produce scientifically structured work.

Content
The topics of the Master Thesis are published by the professors. The Topic can be set also in consultation between the student and the professor.

Electives
The entire course programs of ETH Zurich and University Zurich are open to the students to individual selection. The students have themselves to check whether they meet the admission requirements for a course.

Recommended Electives of Master Degree Programme

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0227-00L</td>
<td>Cartography III</td>
<td>W</td>
<td>5 credits</td>
<td>4G</td>
<td>L. Hurni</td>
</tr>
</tbody>
</table>

Abstract
This follow-up course proceeds to a complete Web map project and introduces in 3D and animated cartography.

Objective
This course enables students to plan, design and realize interactive Web map projects. The introduction to 3D and animated cartography also provides a general knowledge about animated 3D graphics.
There are ‘Lecture Notes’ (in German) for this course.

Overview on environmental management and environmental management systems, general methods and principles.

Introduction to environmental management / environmental management systems, energy and material flows; economical and ecological problems in industry; characterisation of an enterprise (incl. management handbook); structure and contents of an environmental management system; overview on the ISO 14001 ff. series; methods for environmental evaluation and assessment; integrated management systems; planning methodology and life-cycle-design.

Information about environmental management and environmental management systems will be provided by a CD or mail.

Further information at http://www.karto.ethz.ch/studium/lehrangebot.html

151-0757-00L Environmental Management W 2 credits 2G R. Züst

Abstract
An environmental management system has the objective to continuously improve the environmental performance of the activities, products and services of a company. The company has to introduce different management procedures. The goal of this lecture is to provide basics and specific procedure to implement the environmental dimension in the planning and decision making processes of an organisation.

Objective
Overview on environmental management and environmental management systems, general methods and principles.

Content
Introduction to environmental management / environmental management systems, energy and material flows; economical and ecological problems in industry; characterisation of an enterprise (incl. management handbook); structure and contents of an environmental management system; overview on the ISO 14001 ff. series; methods for environmental evaluation and assessment; integrated management systems; planning methodology and life-cycle-design.

Lecture notes
Information about environmental management and environmental management systems will be provided by a CD or mail.

Literature
a list with literatures and links will be provided

Prerequisites / notice
Delivery of a case study, worked out in groups. Language: Teaching in English on request.

851-0703-03L Private Construction Law - Only for Civil Engineering BSc, Spatial Development and Infrastructure Systems MSc and UZH MNF Geographie/Erdystemswissenschaften W 2 credits 2V T. Ender, E. Rüegg

Abstract
This class introduces students to basic features of construction and real estate law.

Objective
Introduction to fundamental questions of construction and real estate law.

Content
Introduction (most important sources of construction and real estate law), SIA (Swiss Society of Engineers and Architects) Design Engineering Services Contract, SIA-Norm 118 (SIA General Terms and Conditions for Construction Services), liability of designers/civil engineers, construction insurance, property law for civil engineers, sale of land, contaminated sites, statutory mortgage for contractors, public procurement, litigation in construction and real estate, the civil engineer as expert.

Lecture notes
There are ‘Lecture Notes’ (in German) for this course.

101-0193-00L Systemic Design Labs: RE:GENERATE Alpine-Urban W 4 credits 2S T. Luthe

Abstract
Systemic design (SD) optimizes an entire system as a whole, rather than its parts in isolation. SD is iterative, recursive and circular, requires creative, curious, informed and critical systems thinking and doing, yielding radical resource efficiency. It systems mapping, design thinking, footprint assessment, network analysis, test planning, prototyping, fabrication, social experiments.

Objective
The teaching purpose of Systemic Design Labs (SDL) is to better tackle the complexity of today’s sustainability challenges. Often, in current education we learn to disassemble design challenges into their bits and parts for individual optimization. While being useful for developing topical expertise, this reductionism to parts with less emphasis on their interaction does not match with the growing complexity of today’s challenges. In contrast, systemic design approaches a task from a holistic perspective, zooming out of a system to reveal its structure and connections between its parts – to zoom in on the hub of influence that matters most.

The objectives of the course are to introduce students to Systemic Design as theory, methodology and practice. This includes whole systems thinking, circularity, cross-scale design, Gigamapping, and many more. The course stimulates overall reflective eco-social thinking in design, planning and engineering disciplines.

Content
Design Challenge: How to re-design alpine-urban circularity? How to revive mountain livelihoods, focusing on local identity, resilient landscapes and a regenerative economy? What is a regenerative relation between the alpine and the urban? Covid has accelerated and intensified a traditionally challenging relation of the alpine (mountain livelihoods) and the urban. Both depend on each other, but there are as well many unsustainable elements in this relation, especially for the alpine.

The specific design challenge is to identify and layout a holistic, partly quantified and visualized systems strategy for building a resilient community economy in relation to the actual Covid driven pressure factors in the relation of the alpine with the urban.

We build upon former ETH SDL students who developed a systems maps for the community of Ostana, Italy, that embraces local identity, revitalizes cultural and landscape biodiversity, and creates alpine-urban circularity.

This course will extend this systems map to more clearly understand the urban component, the source market, and design in new opportunities of urban-alpine regeneration, for circularity, for new ways of tourism, of mobility, in a creative economy.

Recap of former SDL courses:
In Ostana, a clear connection is between the local identity (culture, traditions, visions) which is formed by Occitan culture (food, music, dance, language), traditional stone building architecture which is under pressure to carefully evolve with new needs for carbon-neutral and net-positive buildings, and the Monte Viso landscape. Does how a re-growing economy that should be regenerative and circular by design, correlate with innovation in architecture, with population growth and associated challenges in mobility, waste systems and supplies, with growing tourism, new agro-forestry practices like industrial hemp and Paulownia, while impacts of climate change are clearly visible? How do the community design a vision that is based on cooperation on different governance scales, balancing local identity and urgently needed international innovation?

Deliverables & output: This SDL course RE:GENERATE builds upon related work from former courses hosted and lead by the MonViso Institute (i.e. on social innovation, mobility, architecture and local identity, tourism, circular economy, land use change) to develop and design foundations for an extension of the existing, visualized and partly quantified systems map, that will support ongoing and future innovation processes in this community. The focus now is on the urban integration into new, regenerative business models of the alpine, and in regenerative relation between both as a model for the future. This course will thus develop an extended graphical systems map from the alpine to the urban, backed up by a technical report, and connected with the existing systems maps of Ostana and the surrounding valley.

Lecture notes
see learning materials and https://systemicsdesignlabs.ethz.ch/
Introduction to Mathematical Optimization

Abstract
The goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.

This course will provide an introduction to the methods and tools that can be used to determine optimal inspection and intervention strategies and work programs for infrastructure.

Upon successful completion of this course students will be able:
- to use preventive maintenance models, such as block replacement, periodic preventive maintenance with minimal repair, and preventive maintenance based on parameter control, to determine when, where and what should be done to maintain infrastructure
- to take into consideration future uncertainties in appropriate ways when devising and evaluating monitoring and management strategies for physical infrastructure
- to use operation research methods to find optimal solutions to infrastructure management problems

Content

Part 1: Explanation of the principal models of preventative maintenance, including block replacement, periodic group repair, periodic maintenance with minimal repair and age replacement, and when they can be used to determine optimal intervention strategies

Part 2: Explanation of preventive maintenance models that are based on parameter control, including Markovian models and opportunistic replacement models

Part 3: Explanation of the methods that can be used to take into consideration the future uncertainties in the evaluation of monitoring strategies

Part 4: Explanation of how operations research methods can be used to solve typical infrastructure management problems.

Lecture notes
A script will be given out at the beginning of the course.
Class relevant materials will be distributed electronically before the start of class.
A copy of the slides will be handed out at the beginning of each class.

Prerequisites / notice
Successful completion of IM1: 101-0579-00 Evaluation tools is a prerequisite for this course.

Infrastructure Management 3: Optimisation Tools

Does not take place this semester

W 6 credits 2G B. T. Adey

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

Literature

Prerequisites / notice
Depending on the Covid situation, some part of the course will be virtual via Zoom, using a Miro design board.
If possible, we will do a field trip. Some travel costs may apply.
Students need to be motivated to design in teams on the preparation of the deliverables, a systemic strategy map and a written report.

Teaching methods

Class relevant materials will be distributed electronically before the start of class.

Part 1: Explanation of the principal models of preventative maintenance, including block replacement, periodic group repair, periodic maintenance with minimal repair and age replacement, and when they can be used to determine optimal intervention strategies

Part 2: Explanation of preventive maintenance models that are based on parameter control, including Markovian models and opportunistic replacement models

Part 3: Explanation of the methods that can be used to take into consideration the future uncertainties in the evaluation of monitoring strategies

Part 4: Explanation of how operations research methods can be used to solve typical infrastructure management problems.

Lecture notes
A script will be given out at the beginning of the course.
Class relevant materials will be distributed electronically before the start of class.
A copy of the slides will be handed out at the beginning of each class.

Successful completion of IM1: 101-0579-00 Evaluation tools is a prerequisite for this course.

Introducing Mathematical Optimization

Introduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.

The goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.

Topics covered in this course include:
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.

Information about relevant literature will be given in the lecture.

This course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications.

River Engineering

W 3 credits 2G V. Weitbrecht, I. Schalko, K. Sperger

101-0258-00L

Autumn Semester 2021

Page 1817 of 2152
The lecture addresses the fundamentals of river engineering to quantitatively describe the flow of water, transport of sediment and wood, and morphological changes such as erosion and deposition processes associated with river structures. In addition, design guidelines for river engineering structures are introduced.

Objective
At the end of the course, the students will be able to:
- recall and describe the fundamentals of transport processes in rivers,
- apply different calculation approaches and methods to tackle river engineering problems and tasks such as the discharge capacity of a river, scour estimation, or sediment budget of a river,
- design and dimension river engineering works needed to influence the processes in watercourses, and
determine the interaction between flow (discharge), sediment transport, wood transport and the resulting channel evolution.

Content
The first part of the lecture introduces the fundamentals of river engineering, such as methods to determine and calculate the river discharge, or sampling methods to characterize the bed material. In addition, the transport processes of sediment (bedload and suspended load) and wood in rivers will be examined, including the principles of incipient motion, and initiation of erosion or deposition processes.

In the second part of the lecture, the methods will be explained to quantify the bed load budget and the morphological changes (erosion, deposition) in river systems. Specifically, natural channel formation processes, different bed forms and plan forms of rivers (straight, meandering, braided) are examined.

The last part of the lecture focuses on the design of river engineering structures, including examples from an ongoing flood and river revitalization project at the Alpine Rhine in Austria and Switzerland.

Lecture notes
Hands-on and powerpoint presentations shown in the lecture can be downloaded via Moodle.

Literature
1. «Flussbau» lecture notes of fall semester 2020 by Dr. Gian Reto Bezzola (available only in German at VAW teaching assistance)
2. Erosion and Sedimentation; Pierre Y. Julien
3. River Mechanics; Pierre Y. Julien

Prerequisites / notice
Recommended lectures:
Hydrology (102-0293-AAL), Hydraulics I (101-0203-01L), and Hydraulic Engineering (101-0206-00L).

Short practical exercises (voluntary) will be offered throughout the semester to improve the application of the learned subjects.

701-0565-00L Fundamentals of Natural Hazards Management W 3 credits 3G 3 credits

Abstract
Risks to life and human assets result when settlement areas and infrastructure overlap regions where natural hazard processes occur. This course utilizes case studies to teach how a future natural hazards-specialist should analyze, assess and manage risks.

Objective
Concepts will be explained step-by-step through a set of case studies, and applied in lab by the students. The following principal steps are used when coping with natural hazard-risks. At each step, students will learn and apply the following skills:
- Risk analysis - What can happen? - Identify threats to human life and assets exposed to natural hazards and estimate possible drawbacks or damages.
- Risk assessment - What are the acceptable levels of risk? - Apply principles to determine acceptable risks to human life and assets in order to identify locations which should receive added protection.
- Explain causes for conflicts between risk perception and risk analysis.
- Risk management - What steps should be taken to manage risks? - Explain how various hazard mitigation approaches reduce risk.
- Describe hazard scenarios as a base for adequate dimensioning of control measures.
- Identify the best alternative from a set of thinkable measures based on an evaluation scheme.
- Explain the principles of risk-governance.

Suggested literature is provided in the syllabus.
Global History of Urban Design I

052-0801-00L

W 2 credits 2G T. Avermaete

Abstract
This course focuses on the history of the design of cities, as well as on the ideas, processes and actors that engender and lead their development and transformation. The history of urban design will be approached as a cross-cultural field of knowledge that integrates scientific, economic and technical innovation as well as social and cultural advances.

Objective
The lectures deal mainly with the definition of urban design as an independent discipline, which maintains connections with other disciplines (politics, sociology, geography) that are concerned with the transformation of the city. The aim is to make students conversant with the multiple theories, concepts and approaches of urban design as they were articulated throughout time in a variety of cultural contexts, thus offering a theoretical framework for students' future design work.

Content
In the first semester the genesis of the objects of study, the city, urban culture and urban design, are introduced and situated within their intellectual, cultural and political contexts:

01. The History and Theory of the City as Project
02. Of Rituals, Water and Mud: The Urban Revolution in Mesopotamia and the Indus
03: The Idea of the Polis: Rome, Greece and Beyond
04: The Long Middle Ages and their Counterparts: From the Towns of Tuscany to Delhi
05: Between Ideal and Laboratory: Of Middle Eastern Grids and European Renaissance Principles
06: Of Absolutism and Enlightenment: Baroque, Defense and Colonization
07: The City of Labor; Company Towns as Cross-Cultural Phenomenon
09: Garden Cities of Tomorrow: From the Global North to the Global South and Back Again
10:1: Civilized Wilderness and City Beautiful: The Park Movement of Olmsted and The Urban Plans of Burnham
11:1: The Extension of the European City: From the Viennese Ringstrasse to Amsterdam Zuid

Lecture notes
Prior to each lecture a chapter of the reader (Skript) will be made available through the webpage of the Chair. These chapters will provide an introduction to the lecture, the basic visual references of each lecture, key dates and events, as well as references to the compulsory and additional reading.

Literature
There are three books that will function as main reference literature throughout the course:

These books will be reserved for consultation in the ETH Baubibliothek, and will not be available for individual loans.

Prerequisites / notice
A list of further recommended literature will be found within each chapter of the reader (Skript).

Students are required to familiarize themselves with the conventions of architectural drawing (reading and analyzing plans at various scales).

Structural Reliability and Risk Analysis

101-0187-00L

W 3 credits 2G S. Marelli

Abstract
Structural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment.

Objective
The goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field.

Content
Engineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro-codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making.

The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented.

The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information.

The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented.

Lecture notes
The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis.

Literature

Prerequisites / notice
Basic course on probability theory and statistics
This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?

The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=15062) contains announcements, course information and lecture slides.

This book can also be used for the course ’363-0503-00L Principles of Microeconomics’ (Filippini).

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.

052-0707-00L Urban Design III

W 2 credits 2V H. Klumpner, M. Fessel

Students are introduced to a narrative of ‘Urban Stories’ through a series of three tools driven by social, governance, and environmental transformations in today’s urbanization processes. Each lecture explores one city's spatial and organizational ingenuity born out of a particular place's realities, allowing students to transfer these inventions into a catalog of conceptual tools.

How can architects become active agents of change? What does it take to go beyond a building's scale, making design-relevant decisions to the city rather than a single client? How can we design in cities with a lack of land, tax base, risk, and resilience, understanding that Zurich is the exception and these other cities are the rule? How can we discover, set rather than follow trends and understand existing urban phenomena activating them in a design process? The lecture series produces a growing catalog of operational urban tools across the globe, considering Governance, Social, and Environmental realities. Instead of limited binary comparing of cities, we are building a catalog of change, analyzing what design solutions cities have been developing informally incrementally over time, why, and how. We look at the people, institutions, culture behind the design and make concepts behind these tools visible. Students get first-hand information from cities where the chair as a Team has researched, worked, or constructed projects over the last year, allowing competent, practical insight about the people and topics that make these places unique. Students will be able to use and expand an alternative repertoire of experiences and evidence-based design tools, go to the conceptual core of them, and understand how and to what extent they can be relevant in other places. Urban Stories is the basic practice of architecture and urban design. It introduces a repertoire of urban design instruments to the students to use, test, and start their designs.

Urban form cannot be reduced to physical space. Cities result from social construction, under the influence of technologies, ecology, culture, the impact of experts, and accidents. Urban un-concluded processes respond to political interests, economic pressure, cultural inclinations, along with the imagination of architects and urbanists and the informal powers at work in complex adaptive systems. Current urban phenomena are the result of urban evolution. The facts stored in urban environments include contributions from its entire lifecycle, visible in the physical environment, and non-physical aspects. This imaginary city exists along with its potentials and problems and with the conflicts that have evolved. Knowledge and understanding, along with a critical observation of the actions and policies, are necessary to understand the diversity and instability present in the contemporary city and understand how urban form evolved to its current state.

How did cities develop into the cities we live in now? Urban plans, instruments, visions, political decisions, economic reasonings, cultural inputs, and social organization have been used to operate in urban settlements in specific moments of change. We have chosen cities that exemplify how these instruments have been implemented and how they have shaped urban environments. We transcribe these instruments into urban operational tools that we have recognized and collected within existing tested cases in contemporary cities across the globe.

This lecture series will introduce urban knowledge and the way it has introduced urban models and operational modes within different concrete realities, therefore shaping cities. The lecture series translates urban knowledge into operational tools, extracted from cities where they have been tested and become exemplary samples, most relevant for understanding how the urban landscape has taken shape. The tools are clustered in twelve thematic clusters and three tool scales for better comparability and cross-reflection.

The Tool case studies are compiled into a global urbanization toolbox, which we use as typological models to read the city and critically reflect upon it. The presented contents are meant to serve as inspiration for positioning in future professional life and provide instruments for future design decisions.

In an interview with a local designer, we measure our insights against the most pressing design topics in cities today, including inclusion, affordable housing, provision of public spaces, and infrastructure for all.
Assessed

Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.

Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.

Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.

Concepts and Theories

Production and Operations Management – Analytical Competencies

Mathematical treatment of optimization techniques for linear and combinatorial optimization problems.

Abstract

Objective

Content

Prerequisites / notice

Formal background in linear algebra.

Former course title: Mathematical Optimization.

Domain A - Subject-specific Competencies

Domain B - Method-specific Competencies

Domain C - Social Competencies

Domain D - Personal Competencies

401-0625-01L

Applied Analysis of Variance and Experimental Design

W

5 credits

2V+1U

L. Meier

401-3901-00L

Linear & Combinatorial Optimization

W

11 credits

4V+2U

R. Zenklusen

Former course title: Mathematical Optimization.

Concepts and Theories

Techniques and Technologies

Analytical Competencies

Decision-making

Media and Digital Technologies

Problem-solving

Project Management

Communication

Cooperation and Teamwork

Customer Orientation

Leadership and Responsibility

Self-presentation and Social Influence

Sensitivity to Diversity

Negotiation

Adaptability and Flexibility

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Self-awareness and Self-reflection

Self-direction and Self-management

The learning material, available via https://moodle-app2.let.ethz.ch/ is comprised of:

- Toolbox 'Reader' with an introduction to the lecture course and tool summaries
- Weekly exercise tasks
- Infographics with basic information of each city
- Quiz question for each tool
- Additional reading material
- Interviews with experts
- Archive of lecture recordings
- Reading material will be provided throughout the semester.

The lectures in this course are highly interactive. To pass this course, students need to complete a course assignment in pairs. The course assignment consists of two parts: preparations for the lecture and a reflection essay after the lecture.

This course (1ECTS) is offered as an extension to the D-MTEC core course 363-0445-02 Production and Operations Management (3 ECTS). To take this course, you have to follow the core course.

Due to its practical format, this course is limited to ca 30 students. Note that we offer this course primarily for students who need the extra credit (total of 4 ECTS) to complete their study plans. This will typically be students from D-MAVT and, in some cases, exchange students.

Students from all other departments (including D-MTEC) are welcome to apply to the lecturer. If capacity, applicants may receive written acceptance by the teaching team to join.

Does not take place this semester.

A parallel enrollment to the lecture 363-0445-00L Production and Operations Management is mandatory.

Extension to course 363-0445-00 Production and Operations Management.

This course strengthens the learning objectives of the POM core course (see separate syllabus). After completing this course, students can use lean thinking to improve the productivity of production processes, students can conduct fundamental process mapping analyses, students can select and implement many lean production techniques, students can select and use problem-solving tools and methods, and students understand the role of management in manufacturing.

This course is an extension to the course 363-0445-00 Production and Operations Management. Participants get an extra deep dive into key concepts of POM.

Linear programming and polyhedra;
Flows and cuts;
Combinatorial optimization problems and polyhedral techniques;
Equivalence between optimization and separation.

Former course title: Mathematical Optimization.

Concepts and Theories

Techniques and Technologies

Analytical Competencies

Decision-making

Media and Digital Technologies

Problem-solving

Project Management

Communication

Cooperation and Teamwork

Customer Orientation

Leadership and Responsibility

Self-presentation and Social Influence

Sensitivity to Diversity

Negotiation

Adaptability and Flexibility

Creative Thinking

Critical Thinking

Integrity and Work Ethics

Self-awareness and Self-reflection

Self-direction and Self-management

The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.

The lectures in this course are highly interactive. To pass this course, students need to complete a course assignment in pairs. The course assignment consists of two parts: preparations for the lecture and a reflection essay after the lecture.

Due to its practical format, this course is limited to ca 30 students. Note that we offer this course primarily for students who need the extra credit (total of 4 ECTS) to complete their study plans. This will typically be students from D-MAVT and, in some cases, exchange students.

Students from all other departments (including D-MTEC) are welcome to apply to the lecturer. If capacity, applicants may receive written acceptance by the teaching team to join.

Does not take place this semester.

A parallel enrollment to the lecture 363-0445-00L Production and Operations Management is mandatory.

Extension to course 363-0445-00 Production and Operations Management.

This course strengthens the learning objectives of the POM core course (see separate syllabus). After completing this course, students can use lean thinking to improve the productivity of production processes, students can conduct fundamental process mapping analyses, students can select and implement many lean production techniques, students can select and use problem-solving tools and methods, and students understand the role of management in manufacturing.
The overarching goal of the course is to deepen knowledge on special aspects in hydraulic engineering and to understand the procedures.

Different selected topics in hydraulic engineering will be focused on, e.g. dam safety, materials in dam building, possible problems at hydraulic engineering, water management and aquatic ecology relating to hydropower and flood protection projects.

Lecture notes will be available online.

The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.

101-0249-00L
Hydraulic Engineering: Selected Topics
Prerequisites: 101-0247-01L Hydraulic Engineering II or equivalent course.

Abstract
The lecture focuses on selected topics in hydraulic engineering, water management and aquatic ecology relating to hydropower and flood protection projects.

Objective
The overarching goal of the course is to deepen knowledge on special aspects in hydraulic engineering and to understand the procedures and the planning sequence of hydropower projects.

Content
Different selected topics in hydraulic engineering will be focused on, e.g. dam safety, materials in dam building, possible problems at reservoirs like natural hazards by impulse waves, the hydraulics of spillways and intake structures at dams and weirs and the area of conflict between hydropower and ecology. Another focus will be put on typical approaches and procedures in the planning process of hydropower projects at the national and international level.

Lecture notes
Lecture notes will be available online.

Literature
External speakers will be involved to present current topics and projects in Switzerland and abroad.

Electives ETH Zurich

Course Catalogue of ETH Zurich

GESS Science in Perspective

see GESS Science in Perspective: Language Courses
ETH/UEH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-BAUG.

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0031-AAL</td>
<td>Systems Engineering</td>
<td>E-</td>
<td>4</td>
<td>9R</td>
<td>B. T. Adey</td>
</tr>
</tbody>
</table>

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

- Systems Engineering is a way of thinking that helps engineer sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium, and long terms.
- This course provides an overview of the main principles of Systems Engineering, and includes an introduction to the use of operations research methods in the determination of optimal systems.

Objective

The world's growing population, changing demographics, and changing climate pose formidable challenges to humanity's ability to live sustainably. Ensuring that humanity can live sustainably requires accommodating Earth's growing and changing population through the provision and operation of a sustainable and resilient built environment. This requires ensuring excellent decision-making as to how the built environment is constructed and modified.

The objective of this course is to ensure the best possible decision making when engineering sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long term. In this course, you will learn the main principles of Systems Engineering that can help you from the first idea that a system may not meet expectations, to the quantitative and qualitative evaluation of possible system modifications. Additionally, the course includes an introduction to the use of operations research methods in the determination of optimal solutions in complex systems.

More specifically upon completion of the course, you will have gained insight into:

- how to structure the large amount of information that is often associated with attempting to modify complex systems
- how to set goals and define constraints in the engineering of complex systems
- how to generate possible solutions to complex problems in ways that limit exceedingly narrow thinking
- how to compare multiple possible solutions over time with differences in the temporal distribution of costs and benefits and uncertainty as to what might happen in the future
- how to assess values of benefits to stakeholders that are not in monetary units
- how to assess whether it is worth obtaining more information in determining optimal solution
- how to take a step back from the numbers and qualitatively evaluate the possible solutions in light of the bigger picture
- the basics of operations research and how it can be used to determine optimal solutions to complex problems, including linear, integer and network programming, dealing with multiple objectives and conducting sensitivity analyses.
The weekly content is structured as follows:

1. Introduction – An introduction to System Engineering, a way of thinking that helps to engineer sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long terms. A high-level overview of the main principles of System Engineering. An introduction to the example that we will be working with through most of the course. The expectations of your efforts throughout the semester.
2. Situation analysis – How to structure the large amount of information that is often associated with attempting to modify complex systems.
3. Goals and constraints – How to set goals and constraints to identify the best solutions as clearly as possible.
4. Generation of possible solutions – How to generate possible solutions to problems, considering multiple stakeholders.
5. Analysis – 1/5 – The principles of net-benefit maximization and a series of methods that range from qualitative and approximate to quantitative and exact, including pairwise comparison, elimination, display, weighting, and expected value.
6. Analysis – 2/5 – The idea behind the supply and demand curves and revealed preference methods.
7. Analysis – 3/5 – The concept of equivalence, including the time value of money, interest, life times and terminal values.
8. Analysis – 4/5 – The relationship between net-benefit and the benefit-cost ratio. How incremental cost benefit analysis can be used to determine the maximum net benefit. Marginal rates of return and internal rates of return.
9. Analysis – 5/5 – How to consider multiple possible futures and use simple rules to help pick optimal solutions and to determine the value of more information.
10. Evaluation of solutions – Regardless how sophisticated an analysis is, it requires that decision makers stand back and critically evaluate the results. This week we discuss the aspects of evaluating the results of an analysis.
11. Operations research – 1/4 – Once quantitative analysis is used it becomes possible to use operations research methods to analyse large numbers of possible solutions. This week we discuss linear programming and the simplex method.
13. Operations research – 3/4 – How to use operations research to solve problems that consist of discrete values, as well as how to exploit the structure of networks to find optimal solutions to network problems.
14. Operations research – 4/4 – How to set up and solve problems when there are multiple objectives.

The course uses a combination of qualitative and quantitative approaches. The quantitative analyses requires the use of Excel. An introduction to Excel will be provided in one of the help sessions.

The script for the original course is in German. The English material that can be used for the virtual course is:

The course introduces the basic concepts, approaches and methods of transport planning in both their theoretical and practical contexts.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
The course introduces the basic theories and methods of transport planning.

Objective
Basic theoretical links between transport, space and economic development; basic terminology; measurement and observation of travel behaviour; methods of the four stage approach; cost-benefit analysis.

Literature

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>E- Credits</th>
<th>U- Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0414-AAL</td>
<td>Transport Planning (Transportation I)</td>
<td>6R</td>
<td>K. W. Axhausen</td>
<td></td>
</tr>
<tr>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture course discusses the basic concepts, approaches and methods of transport planning in both their theoretical and practical contexts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course introduces the basic theories and methods of transport planning.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Basic theoretical links between transport, space and economic development; basic terminology; measurement and observation of travel behaviour; methods of the four stage approach; cost-benefit analysis.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>E- Credits</th>
<th>U- Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0515-AAL</td>
<td>Project Management</td>
<td>4R</td>
<td>B. T. Adey</td>
<td></td>
</tr>
<tr>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>General introduction to the development, the life cycle and the characteristics of projects. Introduction to, and experience with, the methods and tools to help with the preparation, evaluation, organisation, planning, controlling and completion of projects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>To introduce the methods and tools of project management. To impart knowledge in the areas of project organisation and structure, project planning, resource management, project controlling and on team leadership and team work.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content
- From strategic planning to implementation (Project phases, goals, constraints, and feasibility)
- Project leadership (Leadership, Teams)
- Project organization (Structure)
- Project planning (Schedule, cost and resource planning)
- Project controlling
- Risk and Quality Management
- Project completion

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Method-specific Competencies</th>
<th>Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Concepts and Theories</td>
<td>Techniques and Technologies</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td>B</td>
<td>Analytical Competencies</td>
<td>Problem-solving</td>
<td></td>
</tr>
</tbody>
</table>

102-0516-AAL Environmental Impact Assessment
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Focus of the course are the method, the process and content of the Environmental Impact Assessment (EIA) as well as the legal bases and methods for compiling an environmental impact study (EIS). Excursions provide a comprehensive view of the EIA. Using exemplary projects, the process of an EIA will be worked out by the students.

Objective
- Understanding the context of spatial planning and environmental protection
- Ability to use central planning instruments and procedures for assessing the environmental impacts and risks of projects
- Ability to apply quantitative methods to assess the environmental impacts and risks of projects
- Knowledge about the process and content of an EIA
- A capacity for critical review of environmental impact assessments
- Nominal and functional environmental protection in Switzerland
- Instruments of environmental protection
- Need for coordination between environmental protection and spatial planning
- Environmental Protection and environmental impact assessment
- Legal basis of the EIA
- Procedure of EIA
- Content of the EIA
- Application of the impact analysis
- Monitoring and Controlling
- View regarding the strategic environmental assessment (SEA)
- Excursions to projects obligated under the EIA

Lecture notes
No script. The documents for the lecture can be found for download on the homepage of the Chair of Planning of Landscape and Urban Systems.

Literature
Supplementary literature is available for download on the homepage of the Chair of Planning of Landscape and Urban Systems.

103-0116-AAL Ecology and Soil Science
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
The main focus of the lecture are the basics of ecology and soil science. Students learn about the interdependence of organisms and environment, resource cycles, ecosystems as well as soil characteristics and genesis. The impact of human behavior on ecosystems and the problems of different land use are covered by the lecture, too.

Objective
- Getting insights into the basics of ecology
- Ability to assess the consequences of spatial planning on ecosystems
- Understanding of ecological processes and interdependency
- Understanding of function and potential of soil

Content
Basics of Ecology
- Definition of ecology, types, habitat, ecosystem, environment
- Human influence on ecosystem
- Context of landscape and ecology
- Ecological context for practical application (e.g. in spatial planning)

Basics of Soil Science
- Basic concept and definition of soil, soil type and essential parameters
- Soil water balance (irrigation, drainage)
- Soil compaction and erosion
- Reclamation and renaturation
- Material pollution of soil and remediation approaches
- Soil and spatial planning

Lecture notes
Lecture notes and slides (in German) can be downloaded from the PLUS homepage.

Literature
Lecture notes and slides (in German) can be downloaded from the PLUS homepage.

103-0313-AAL Spatial Planning and Landscape Development
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
The lecture introduces into the main features of spatial planning. Attended will be the subjects of planning as a national responsibility, instruments of spatial planning, techniques for problem solving in spatial planning and the Swiss concept for regional planning.

Objective
- To get to know the interaction between the community and our living space and their resulting conflicts.
- Link theory and practice in spatial planning.
- To get to know instruments and facilities to process problems in spatial planning.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>E-Credits</th>
<th>R Credits</th>
<th>Professor/Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0357-AAL</td>
<td>Environmental Planning</td>
<td>3</td>
<td>6</td>
<td>S.-E. Rabe</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture covers tools, methods and procedures of Landscape and Environmental Planning developed. By means of field trips their implementation will be illustrated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Knowledge of the various instruments and possibilities for the practical implementation of environmental planning. Knowledge of the complex interactions of the instruments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Topics of the Lectures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- forest planning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- inventories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- intervention and compensation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ecological network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- agricultural policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- landscape development concepts (LEK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- parks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- swiss landscape concept</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- riverine zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- natural hazards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>there are several non-obligatory field trips as part of the lecture. It is recommended to participate at these to boost the in-depth understanding of the different topics.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>- lecture notes concerning the instruments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- handouts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- copies of selected literature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Download</td>
<td>http://www.plus.ethz.ch/de/studium/vorlesungen/bsc/environmental_planning.html</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-0414-AAL</td>
<td>Transport Basics</td>
<td>4</td>
<td>9</td>
<td>K. W. Axhausen</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>-Introduction to the fundamentals of transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Developing an understanding of the interactions between land use and transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Introduction to the dynamics of transport systems: daily patterns and historical developments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>-Accessibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Equilibrium in transport networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Fundamental transport models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Traffic flow and control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Vehicle dynamics on rail and road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Transport modes and supply patterns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Time tables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-0846-AAL</td>
<td>Computer Science II</td>
<td>4</td>
<td>9</td>
<td>F. O. Friedrich Wicker, R. Sasse</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course offers an introduction to variables, control structures (branch, loop), algorithms and data structures, as well as an outlook to modularisation and oriented techniques. In the exercises students train programming skills (in the programming language JAVA). Students can solve the exercises on their own laptop or in the computer labs at ETH. The software used in this course runs on MS Windows, MacOS X and Linux.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>-Accessibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Equilibrium in transport networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Fundamental transport models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Traffic flow and control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Vehicle dynamics on rail and road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Transport modes and supply patterns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Time tables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: 252-0845-00 Computer Science I (D-BAUG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406-0242-AAL</td>
<td>Analysis II</td>
<td>7</td>
<td>15</td>
<td>M. Akveld</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Mathematical tools of an engineer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Mathematics as a tool to solve engineering problems, mathematical formulation of problems in science and engineering. Basic mathematical knowledge of an engineer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Textbooks in English:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- J. Stewart: Multivariable Calculus, Thomson Brooks/Cole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- V. I. Smirnov: A course of higher mathematics. Vol. II. Advanced calculus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- M. Akveld, R. Sperb, Analysis II, vdf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- L. Papula: Mathematik für Ingenieure 2, Vieweg Verlag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406-0251-AAL</td>
<td>Mathematics I</td>
<td>6</td>
<td>13</td>
<td>F. Da Lio</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1825 of 2152
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
This course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.

Objective
Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.

Content
1. Linear Algebra and Complex Numbers:
 systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

2. Single-Variable Calculus:
 review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

3. Ordinary Differential Equations:
 separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.

Literature
- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).

Prerequisites / notice
Prerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

Assistance:
Tuesdays and Wednesdays 17-19h, in Room HG E 41.

406-0603-AAL Stochastics (Probability and Statistics) E- 4 credits 9R M. Kalisch

Abstract
Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.

Objective
The objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".

Content
From "Statistics for research" (online)
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's t Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
Ch 1: Basics
Ch 2: The R Environment
Ch 3: Probability and distributions
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation

Literature
- "Statistics for research" by S. Dowdy et. al. (3rd edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI: 10.1002/0471477435
From within the ETH, this book is freely available online under: http://onlinelibrary.wiley.com/book/10.1002/0471477435

From within the ETH, this book is freely available online under: http://www.springerlink.com/content/m1757b/

103-2233-AAL GIS Basics E- 6 credits 13R W. Kuhn

Abstract
Fundamentals in geoinformation technologies: database principles, including modeling of spatial information, geometric and semantic models, topology and metrics; practical training with GIS software.

Objective
Know the fundamentals in geoinformation technologies for the realization, application and operation of geographic information systems in engineering projects.

Content
Modelling of spatial information
Geometric and semantic models
Topology & metrics
Raster and vector models
Databases
Applications
Labs with GIS software

Literature
Abstract

Objective

Primäres Lernziel der Vorlesung ist die Befähigung zum Programmieren mit C++. Studenten beherrschen nach erfolgreichem Abschluss der Vorlesung die Mechanismen zum Erstellen eines Programms, sie kennen die fundamentalen Kontrollstrukturen, Datenstrukturen und verstehen, wie man ein algorithmisches Problem in ein Programm abbildet. Sie haben eine Vorstellung davon, was "hinter den Kulissen" passiert, wenn ein Programm übersetzt und ausgeführt wird.

Content

Lecture notes

Ein Skript in englischer Sprache wird semesterbegleitend herausgegeben. Das Skript und die Folien werden auf der Vorlesungshomepage zum Herunterladen bereitgestellt.

Literature

Bjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010

103-0717-AAL

Geoinformation Technologies and Analysis

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Advanced geoinformation technologies and analyses methods: Mobile GIS; Web-GIS & Geo-Web-Services; Spatial Big Data; Temporal aspects in GIS; Analysis of movement data; User interfaces

Objective

Knowing advanced topics of geoinformation technologies (Mobile GIS and Web-GIS) and spatio-temporal analysis methods for the realization, application and operation of Web-GIS in engineering projects.

Prerequisites / notice

Introductory GIS course

Literature

103-0234-AAL

GIS II

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Advanced course in geoinformation technologies: conceptual and logical modelling of networks, 3D- and 4D-data and spatial processes in GIS; raster data structures and operations; mobile GIS; Internet and GIS; interoperability and data transfer; legal and technical foundations of spatial data infrastructures (SDI)

Objective

Students will be able to carry out the following phases of a GIS project: data modelling, mobile data acquisition and analysis, Web publication of data and integration of interoperable geospatial web services into a Spatial Data Infrastructure (SDI).

Students will deepen their knowledge of conceptual and logical modeling by means of the particular requirements of networks as well as 3D- and 4D-data.

Literature

Spatial Development and Infrastructure Systems Master - Key for Type

O

Compulsory

W+

Eligible for credits and recommended

W

Eligible for credits

Key for Hours

V

lecture

P

practical/laboratory course

G

lecture with exercise

A

independent project

U

exercise

D

diploma thesis

S

seminar

R

revision course / private study

K

colloquium

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Computational Science and Engineering Bachelor

First Year Compulsory Courses

First Year Examination Block 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0151-00L</td>
<td>Linear Algebra</td>
<td>O</td>
<td>5</td>
<td>3V+2U</td>
<td>V. C. Gradinaru</td>
</tr>
<tr>
<td>Abstract</td>
<td>Contents: Linear systems - the Gaussian algorithm, matrices - LU decomposition, determinants, vector spaces, least squares - QR decomposition, linear maps, eigenvalue problem, normal forms - singular value decomposition; numerical aspects; introduction to MATLAB.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Einführung in die Lineare Algebra für Ingenieure unter Berücksichtigung numerischer Aspekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>eigenes Aufschrieb und K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-0025-01L</td>
<td>Discrete Mathematics</td>
<td>O</td>
<td>7</td>
<td>4V+2U</td>
<td>U. Maurer</td>
</tr>
<tr>
<td>Abstract</td>
<td>Content: Mathematical reasoning and proofs, abstraction. Sets, relations (e.g. equivalence and order relations), functions, (un-)countability, number theory, algebra (groups, rings, fields, polynomials, subalgebras, morphisms), logic (propositional and predicate logic, proof calculi).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The primary goals of this course are (1) to introduce the most important concepts of discrete mathematics, (2) to understand and appreciate the role of abstraction and mathematical proofs, and (3) to discuss a number of applications, e.g. in cryptography, coding theory, and algorithm theory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>See course description.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>available (in english)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-0856-00L</td>
<td>Computer Science</td>
<td>O</td>
<td>4</td>
<td>2V+2U</td>
<td>F. O. Friedrich Wicker, R. Sasse</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Primary educational objective is to learn programming with C++. After having successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed. Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking like a computer scientist.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>English lecture notes will be provided during the semester. The lecture notes and the lecture slides will be made available for download on the course web page. Exercises are solved and submitted online.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Literature | Bjørn Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000 | | | |

First Year Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0231-10L</td>
<td>Analysis I</td>
<td>O</td>
<td>8</td>
<td>4V+3U</td>
<td>T. Rivièr</td>
</tr>
<tr>
<td>Abstract</td>
<td>Students in BSc EEIT may instead register for 401-1261-07L/Analysis I: One Variable (for BSc Mathematics, BSc Physics and BSc Interdisciplinary Science (Phys Chem)) and take the performance assessment of the corresponding two-semester course. Students in BSc EEIT who wish to register for 401-1261-07L/401-1262-07L Analysis I: One Variable/Analysis II: Several Variables instead of 401-0231-10L/401-0232-10L Analysis I/Analysis II must get in touch with the Study Administration before the registration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Reelle und komplexe Zahlen, Grenzwerte, Folgen, Reihen, Potenzreihen, stetige Abbildungen, Differential- und Integralrechnung einer Variablen, Einführung in gewöhnliche Differentialgleichungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Einführung in die Grundlagen der Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Literature | Konrad Koenigsberger, Analysis I.
Christian Blatter, Ingenieur-Analyse (Kapitel 1-4) | | | |
| 402-0043-00L | Physics I | O | 4 | 3V+1U | J. Home |
| Abstract | Introduction to the concepts and tools in physics with the help of demonstration experiments: mechanics of point-like and ridged bodies, periodic motion and mechanical waves. | | | |
| Objective | The concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science. | | | |
| Content | Mechanics (motion, Newton's laws, work and energy, conservation of momentum, rotation, gravitation, fluids)
Periodic Motion and Waves (periodic motion, mechanical waves, acoustics). | | | |
<p>| Lecture notes | The lecture follows the book "Physics" by Paul A. Tipler. | | | |
| Literature | Paul A. Tipler and Gene P. Mosca, Physics (for Scientists and Engineers), W. H. Freeman and Company | | | |</p>
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0353-00L</td>
<td>Analysis 3</td>
<td>O</td>
<td>4</td>
<td>2V+2U</td>
<td>M. Iacobelli</td>
</tr>
</tbody>
</table>

Abstract
In this lecture we treat problems in applied analysis. The focus lies on the solution of quasilinear first order PDEs with the method of characteristics, and on the study of three fundamental types of partial differential equations of second order: the Laplace equation, the heat equation, and the wave equation.

Objective
The aim of this class is to provide students with a general overview of first and second order PDEs, and to teach them how to solve some of these equations using characteristics and/or separation of variables.

Content
1. General introduction to PDEs and their classification (linear, quasilinear, semilinear, nonlinear / elliptic, parabolic, hyperbolic)
2. Quasilinear first order PDEs
 - Solution with the method of characteristics
 - Conservation laws
3. Hyperbolic PDEs
 - wave equation
 - d'Alembert formula in (1+1)-dimensions
 - method of separation of variables
4. Parabolic PDEs
 - heat equation
 - maximum principle
 - method of separation of variables
5. Elliptic PDEs
 - Laplace equation
 - maximum principle
 - method of separation of variables
 - variational method

Literature

Prerequisites / notice
Prerequisites: Analysis I and II, Fourier series (Complex Analysis)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0647-00L</td>
<td>Introduction to Mathematical Optimization</td>
<td>O</td>
<td>5</td>
<td>2V+1U</td>
<td>D. Adjiashvili</td>
</tr>
</tbody>
</table>

Abstract
Introduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.

Objective
The goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.

Content
Topics covered in this course include:
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.

Literature
Information about relevant literature will be given in the lecture.

Prerequisites / notice
This course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-2673-00L</td>
<td>Numerical Methods for CSE</td>
<td>O</td>
<td>9</td>
<td>2V+2U+4P</td>
<td>R. Hiptmair</td>
</tr>
</tbody>
</table>

Abstract
The course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.

Objective
- Knowledge of the fundamental algorithms in numerical mathematics
- Knowledge of the essential terms in numerical mathematics and the techniques used for the analysis of numerical algorithms
- Ability to choose the appropriate numerical method for concrete problems
- Ability to interpret numerical results
- Ability to implement numerical algorithms efficiently

Content
- Computing with Matrices and Vectors
- Direct Methods for linear systems of equations
- Least Squares Techniques
- Data Interpolation and Fitting
- Iterative Methods for non-linear systems of equations
- Filtering Algorithms
- Approximation of Functions
- Numerical Quadrature

Lecture notes
Lecture materials (PDF documents and codes) will be made available to the participants through the course web page, whose address will be announced in the beginning of the course.

Literature

- M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

Prerequisites / notice
The course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Knowledge of C++ is taken for granted.
Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Media and Digital Technologies
Problem-solving
Project Management

Domain A - Subject-specific Competencies
Classificational
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Media and Digital Technologies
Problem-solving
Project Management

Block G2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0811-00L</td>
<td>Programming Techniques for Scientific Simulations I</td>
<td>O</td>
<td>5</td>
<td>4G</td>
<td>R. Käppeli</td>
</tr>
<tr>
<td>Abstract</td>
<td>This lecture provides an overview of programming techniques for scientific simulations. The focus is on basic and advanced C++ programming techniques and scientific software libraries. Based on an overview over the hardware components of PCs and supercomputer, optimization methods for scientific simulation codes are explained.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of the course is that students learn basic and advanced programming techniques and scientific software libraries as used and applied for scientific simulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

252-0061-00L | Systems Programming and Computer Architecture | O | 7 | 4V+2U | T. Roscoe, A. Klimovic |
Abstract	Introduction to systems programming. C and assembly language, floating point arithmetic, basic translation of C into assembler, compiler optimizations, manual optimizations. How hardware features like superscalar architecture, exceptions and interrupts, caches, virtual memory, multicore processors, devices, and memory systems function and affect correctness, performance, and optimization.
Objective	The course objectives are for students to:
	1. Develop a deep understanding of, and intuition about, the execution of all the layers (compiler, runtime, OS, etc.) between programs in high-level languages and the underlying hardware: the impact of compiler decisions, the role of the operating system, the effects of hardware on code performance and scalability, etc.
	2. Be able to write correct, efficient programs on modern hardware, not only in C but high-level languages as well.
	3. Understand Systems Programming as a complement to other disciplines within Computer Science and other forms of software development.
Content	This course does not cover how to design or build a processor or computer.
Lecture notes	- C programming
- Integers
- Pointers and dynamic memory allocation
- Basic computer architecture
- Compiling C control flow and data structures
- Code vulnerabilities
- Implementing memory allocation
- Linking
- Floating point
- Optimizing compilers
- Architecture and optimization
- Caches
- Exceptions
- Virtual memory
- Multicore
- Devices |
| Literature | The course is based in part on "Computer Systems: A Programmer's Perspective" (3rd Edition) by R. Bryant and D. O'Hallaron, with additional material. |
| Prerequisites / notice | 252-0029-00L Parallel Programming |
| | 252-0028-00L Design of Digital Circuits |

Block G3

All course units within Block G3 are offered in the spring semester.

Block G4

All course units within Block G4 are offered in the spring semester.
Core Courses from Group I (Modules)

Module A

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0107-20L</td>
<td>High Performance Computing for Science and Engineering (HPCSE) I</td>
<td>W</td>
<td>4</td>
<td>4G</td>
<td>P. Koumoutsakos, S. M. Martin</td>
</tr>
</tbody>
</table>

Abstract
This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.

Objective
With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

Content
1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)
2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)
3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models
4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis
5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods

Module B

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-2800-00L</td>
<td>Design of Parallel and High-Performance Computing</td>
<td>W</td>
<td>9</td>
<td>3V+2U+3A</td>
<td>T. Hoefler, M. Püschel</td>
</tr>
</tbody>
</table>

Abstract
Advanced topics in parallel and high-performance computing.

Objective
Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.

Content
We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Module C

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-7851-00L</td>
<td>Theoretical Astrophysics (University of Zurich)</td>
<td>W</td>
<td>10</td>
<td>4V+2U</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

Abstract
This course covers the foundations of astrophysical fluid dynamics, the Boltzmann equation, equilibrium systems and their stability, the structure of stars, astrophysical turbulence, accretion disks and their stability, the foundations of radiative transfer, collisionless systems, the structure and stability of dark matter halos and stellar galactic disks.

Core Courses from Group II

No offering in the Autumn Semester.

Fields of Specialization

Astrophysics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-7851-00L</td>
<td>Theoretical Astrophysics (University of Zurich)</td>
<td>W</td>
<td>10</td>
<td>4V+2U</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>
Computational Astrophysics (University of Zurich)

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: AST245

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline.s.html

Objective
Acquire knowledge of main methodologies for computer-based models of astrophysical systems, the physical equations behind them, and train such knowledge with simple examples of computer programmes.

Content
1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility
2. Large-N gravity calculation, collisionless N-body systems and their simulation
3. Fast Fourier Transform and spectral methods in general
4. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiter
5. Lagrangian Hydrodynamics: The SPH method
6. Resolution and instabilities in Hydrodynamics
7. Initial Conditions: Cosmological Simulations and Astrophysical Disks
8. Physical Approximations and Methods for Radiative Transfer in Astrophysics

Literature
Galactic Dynamics (Binney & Tremaine, Princeton University Press),
Computer Simulation using Particles (Hockney & Eastwood CRC press),
Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)

Prerequisites
Some knowledge of UNIX, scripting languages (see www.physik.uzh.ch/lectures/informatik/python/ as an example), some prior experience programming, knowledge of C, C++ beneficial

Physics of the Atmosphere

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0023-00L</td>
<td>Atmosphere</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>E. M. Fischer, T. Peter</td>
</tr>
</tbody>
</table>

Abstract
Basic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.

Objective
Understanding of basic physical and chemical processes in the atmosphere. Understanding of mechanisms of and interactions between: weather - climate, atmosphere - ocean - continents, troposphere - stratosphere. Understanding of environmentally relevant structures and processes on vastly differing scales. Basis for the modelling of complex interrelations in the atmosphere.

Content
Basic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.

Lecture notes
Written information will be supplied.

Literature

Chemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-0004-01L</td>
<td>Classical Simulation of (Bio)Molecular Systems</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>P. H. Hünenberger, J. Dolenc, S. Riniker</td>
</tr>
</tbody>
</table>

Abstract
Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).

Objective
Introduction to classical (atomic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations.

Content
Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).

Lecture notes
The powerpoint slides of the lectures will be made available weekly on the website in pdf format (on the day preceding each lecture).

Literature
See: www.csms.ethz.ch/education/CSBMS

Fluid Dynamics

For more information about the lecture: www.csms.ethz.ch/education/CSBMS
Systems and Control

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0103-00L</td>
<td>Control Systems</td>
<td>W</td>
<td>6</td>
<td>2+2</td>
<td>F. Dörfler</td>
</tr>
</tbody>
</table>

Abstract
Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.

Objective
Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.

Content

Literature

Prerequisites / notice
Prerequisites: Signal and Systems Theory II.
MATLAB is used for system analysis and simulation.

Robotics

- **Only one of the two course units**
- **227-0447-00L Image Analysis and Computer Vision may be recognised for credits. More precisely, it is also not allowed to have recognised one course unit for the Bachelor's and the other course unit for the Master's degree.**

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10</td>
<td>3+2+4</td>
<td>J. M. Buhmann, C. Cotrini Jimenez</td>
</tr>
</tbody>
</table>

Abstract
Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
Objective

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- **Fundamentals:**
 - What is data?
 - Bayesian Learning
 - Computational learning theory

- **Supervised learning:**
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks

- **Unsupervised learning:**
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

Lecture notes

No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.
The primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.

The course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.

Prerequisites / notice
It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.
Introduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics as well as some interdisciplinary applications are used to introduce modern programming methods for numerical simulations using Julia. Furthermore, an overview of existing software libraries for numerical simulations is presented.

Lecture notes and slides are available online and will be distributed if desired.

Lecture and exercise lessons in English, exams in German or in English.

Computational Finance

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3913-01L</td>
<td>Mathematical Foundations for Finance</td>
<td>W</td>
<td>4 credits</td>
<td>3V+2U</td>
<td>B. Acciaio</td>
</tr>
<tr>
<td>Abstract</td>
<td>First introduction to main modelling ideas and mathematical tools from mathematical finance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This course gives a first introduction to the main modelling ideas and mathematical tools from mathematical finance. It mainly aims at non-mathematicians who need an introduction to the main tools from stochastics used in mathematical finance. However, mathematicians who want to learn some basic modelling ideas and concepts for quantitative finance (before continuing with a more advanced course) may also find this of interest. The main emphasis will be on ideas, but important results will be given with (sometimes partial) proofs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Topics to be covered include</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- financial market models in finite discrete time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- absence of arbitrage and martingale measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- valuation and hedging in complete markets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- basics about Brownian motion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- stochastic integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- stochastic calculus: Itô’s formula, Girsanov transformation, Itô’s representation theorem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Black-Scholes formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes will be sold at the beginning of the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Lecture notes will be sold at the beginning of the course. Additional (background) references are given there.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites / notice

Prerequisites: Results and facts from probability theory as in the book "Probability Essentials" by J. Jacod and P. Protter will be used freely. Especially participants without a direct mathematics background are strongly advised to familiarise themselves with those tools before (or very quickly during) the course. (A possible alternative to the above English textbook are the (German) lecture notes for the standard course "Wahrscheinlichkeitstheorie").

For those who are not sure about their background, we suggest to look at the exercises in Chapters 8, 9, 22-25, 28 of the Jacod/Protter book. If these pose problems, you will have a hard time during the course. So be prepared.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-4657-00L</td>
<td>Numerical Analysis of Stochastic Ordinary Differential Equations</td>
<td>W</td>
<td>6 credits</td>
<td>3V+1U</td>
<td>A. Stein</td>
</tr>
<tr>
<td>Abstract</td>
<td>Course on numerical approximations of stochastic ordinary differential equations driven by Wiener processes. These equations have several applications, for example in financial option valuation. This course also contains an introduction to random number generation and Monte Carlo methods for random variables.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The aim of this course is to enable the students to carry out simulations and their mathematical convergence analysis for stochastic models originating from applications such as mathematical finance. For this course the teacher teaches a decent knowledge of the different numerical methods, their underlying ideas, convergence properties and implementation issues.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Generation of random numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Monte Carlo methods for the numerical integration of random variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Stochastic processes and Brownian motion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Stochastic ordinary differential equations (SODEs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Numerical approximations of SODEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Applications to computational finance: Option valuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>There will be English, typed lecture notes for registered participants in the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites / notice

Prerequisites: Mandatory: Probability and measure theory, basic numerical analysis and basics of MATLAB/Python programming.

a) mandatory courses: Elementary Probability, Probability Theory I.

b) recommended courses: Stochastic Processes.

Electromagnetics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-2037-00L</td>
<td>Physical Modelling and Simulation</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>J. Smajic</td>
</tr>
<tr>
<td>Abstract</td>
<td>This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objective

Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.

Content

The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HP-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS.

In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.

Geophysics

Recommended combinations:
Subject 1 + Subject 2
Subject 1 + Subject 3
Subject 2 + Subject 3
Subject 3 + Subject 4
Subject 5 + Subject 6 + Subject 8
Subject 4 + Subject 5
Subject 7 + Subject 8

Geophysics: Subject 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4007-00L</td>
<td>Continuum Mechanics</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>T. Gerya</td>
</tr>
</tbody>
</table>

Abstract

In this course, students learn crucial partial differential equations (conservation laws) that are applicable to any continuum including the Earth's mantle, core, atmosphere and ocean. The course will provide step-by-step introduction into the mathematical structure, physical meaning and analytical solutions of the equations. The course has a particular focus on solid Earth applications.

Objective

The goal of this course is to learn and understand few principal partial differential equations (conservation laws) that are applicable for analysing and modelling of any continuum including the Earth's mantle, core, atmosphere and ocean. By the end of the course, students should be able to write, explain and analyse the equations and apply them for simple analytical cases. Numerical solving of these equations will be discussed in the Numerical Modelling I and II course running in parallel.

Content

A provisional week-by-week schedule (subject to change) is as follows:

Weeks 1,2: The continuity equation
Exercise: Computing the divergence of velocity field.

Weeks 3,4: Density and gravity
Exercises: Computing density, thermal expansion and compressibility from an equation of state. Derivation of gravitational acceleration and its divergence from gravitational potential.

Weeks 5,6: Stress and strain
Exercises: Analysing strain rate tensor for solid body rotation. Computing stress invariants

Weeks 7,8: The momentum equation

Week 9: Viscous rheology of rocks
Theory: Solid-state creep of minerals and rocks as themajor mechanism of deformation of the Earths interior. Dislocation and diffusion creep mechanisms. Rheological equations for minerals and rocks. Effective viscosity and its dependence on temperature, pressure and strain rate. Formulation of the effective viscosity from empirical flow laws.
Exercise: Deriving viscous rheological equations for computing effective viscosities from empirical flow laws.

Weeks 10,11: The heat conservation equation

Week 12,13: Elasticity and plasticity

Lecture notes

GRADING will be based on homeworks (1/3) and oral exam (2/3).

Literature

In this 13-week sequence, students learn how to write programs from scratch to solve partial differential equations that are useful for Earth science applications. Programming will be done in MATLAB and will use the finite-difference method and marker-in-cell technique. The course will emphasise a hands-on learning approach rather than extensive theory. The goal of this course is for students to learn how to program numerical applications from scratch. By the end of the course, students should be able to write state-of-the-art MATLAB codes that solve systems of partial-differential equations relevant to Earth and Planetary Science applications using finite-difference method and marker-in-cell technique. Applications include Poisson equation, buoyancy driven variable viscosity flow, heat diffusion and advection, and state-of-the-art thermomechanical code programming. The emphasis will be on commonality, i.e., using a similar approach to solve different applications, and modularity, i.e., re-use of code in different programs. The course will emphasise a hands-on learning approach rather than extensive theory, and will begin with an introduction to programming in MATLAB.

A provisional week-by-week schedule (subject to change) is as follows:

Week 1: Introduction to the finite difference approximation to differential equations. Introduction to programming in Matlab. Solving of 1D Poisson equation.

Week 3: Solving momentum and continuity equations in case of constant viscosity with stream function/vorticity formulation.

Weeks 5: Conservative finite differences for the momentum equation. "Free slip" and "no slip" boundary conditions. Solving momentum and continuity equations in case of variable viscosity using pressure-velocity formulation with staggered grid.

Week 7: Advection in 2-D with Marker-in-cell method. Combining flow calculation and advection for buoyancy driven flow.

Week 9: Solving 2D heat conservation equation in case of constant thermal conductivity with explicit and implicit approaches.

Week 10: Solving 2D heat conservation equation in case of variable thermal conductivity with implicit approach. Temperature advection with markers. Creating thermomechanical code by combining mechanical solution for 2D buoyancy driven flow with heat diffusion and advection based on marker-in-cell approach.

Week 11: Implementation of radioactive, adiabatic and shear heating to the thermomechanical code.

Week 12: Programming of solution of coupled solid-fluid momentum and continuity equations for the case of melt percolation in a rising mantle plume.

GRADING will be based on weekly programming homeworks (50%) and a term project (50%) to develop an application of their choice to a more advanced level.

Literature

Geophysics: Subject 3
Offered in the spring semester

Geophysics: Subject 4
Offered in the spring semester

Geophysics: Subject 5

Numerical Modelling in Fortran

This course gives an introduction to programming in Fortran, and is suitable for students who have only minimal programming experience. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts.

Fortran is a modern programming language that is updated every few years (most recently in 2018) and is specifically designed for scientific and engineering applications. This course gives an introduction to programming in this language, and is suitable for students who have only minimal programming experience, for example with MATLAB scripts. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts, using example scientific problems relevant to Earth science.

See http://jupiter.ethz.ch/~pjt/FORTRAN/FortranClass.html

Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.

The course provides an introduction to key concepts in developmental biology. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.

Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

The aim of this course is to provide an introductory overview of mathematical and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.

The course provides an introduction to key concepts in developmental biology. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.

Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

The aim of this course is to provide an introductory overview of mathematical and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

The aim of this course is to provide an introductory overview of mathematical and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

The aim of this course is to provide an introductory overview of mathematical and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

The aim of this course is to provide an introductory overview of mathematical and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

The aim of this course is to provide an introductory overview of mathematical and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).
Understanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.

This course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedback and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.

Electives

In the 'electives' subcategory, at least two course units must be successfully completed.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0709-00L</td>
<td>Stochastic Methods for Engineers and Natural Scientists</td>
<td>W</td>
<td>4 credits</td>
<td>4G</td>
<td>D. W. Meyer-Massetti</td>
</tr>
</tbody>
</table>

Taught competencies

- **Domain A - Subject-specific Competencies**: Concepts and Theories assessed, Techniques and Technologies assessed.
- **Domain B - Method-specific Competencies**: Analytical Competencies assessed, Decision-making assessed, Media and Digital Technologies assessed, Problem-solving assessed.
- **Domain D - Personal Competencies**: Creative Thinking assessed, Critical Thinking assessed, Integrity and Work Ethics assessed, Self-direction and Self-management assessed.
The course provides an introduction to non-linear finite element analysis. The treated sources of non-linearity are related to material properties (hyperelasticity, plasticity), kinematics (large deformations, instability problems) and boundary conditions (contact).

Didactical concept:
The course consists of lectures and exercises.

Taught competencies:

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>Techniques and Technologies</td>
<td>Analytical Competencies</td>
<td>Communication</td>
</tr>
<tr>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>Cooperation and Teamwork</td>
</tr>
<tr>
<td></td>
<td></td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>assessed</td>
<td>assessed</td>
</tr>
</tbody>
</table>

151-0833-00L Applied Finite Element Analysis

Abstract:
Most problems in engineering are of nonlinear nature. The nonlinearities are caused basically due to the nonlinear material behavior, contact conditions and instability of structures. The principles of the nonlinear Finite-Element-Method (FEM) will be introduced for treating such problems. The finite element program ABAQUS is introduced to investigate real engineering problems.

Objective:
The goal of the lecture is to provide the students with the fundamentals of the non linear Finite Element Method (FEM). The lecture focuses on the principles of the nonlinear Finite-Element-Method based on explicit and implicit formulations. Typical applications of the nonlinear Finite-Element-Methods are simulations of:

- Crash
- Collapse of structures
- Material behavior (metals and rubber)
- General forming processes

Special attention will be paid to the modeling of the nonlinear material behavior, thermo-mechanical processes and processes with large plastic deformations. The ability to independently create a virtual model which describes the complex non linear systems will be acquired through accompanying exercises. These will include the Matlab programming of important model components such as constitutive equations. The FEM Program ABAQUS will be introduced to investigate real engineering problems.

Content:
- introduction into FEM
- Fundamentals of continuum mechanics to characterize large plastic deformations
- Elasto-plastic material models
- Lagrange and Euler approaches
- FEM implementation of constitutive equations
- Element formulations
- Implicit and explicit FEM methods
- FEM formulations of coupled thermo-mechanical problems
- Modeling of tool contact and the influence of friction
- Solvers and convergence
- Instability problems

Lecture notes:
Lecture slides

Literature:

151-0529-00L Computational Mechanics II: Nonlinear FEA

Abstract:
The course provides an introduction to non-linear finite element analysis. The treated sources of non-linearity are related to material properties (hyperelasticity, plasticity), kinematics (large deformations, instability problems) and boundary conditions (contact).

Objective:
To be able to address all major sources of non-linearity in theory and numerics, and to apply this knowledge to the solution of relevant problems in solid mechanics.

Content:
1. Introduction: various sources of nonlinearities and implications for FEA.

Lecture notes:
Lecture notes will be provided. However, students are encouraged to take their own notes.

Prerequisites:
Mechanics 1, 2, Dynamics, Continuum Mechanics I and Introduction to FEA. Ideally also Continuum Mechanics II.

263-2800-00L Design of Parallel and High-Performance Computing

Abstract:
Advanced topics in parallel and high-performance computing.

Objective:
Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.

Content:
We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites:
This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallel Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

227-0102-00L Discrete Event Systems

Abstract:
Introduction to discrete event systems. We start out by studying popular models of discrete event systems. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.
Objective
Over the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems. We first examine discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queuing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queuing.

Content
1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus

Lecture notes
Available

Literature
[bertsekas] Data Networks
Dimitri Bertsekas, Robert Gallager

[borodin] Online Computation and Competitive Analysis
Allan Borodin, Ran El-Yaniv.
Cambridge University Press, 1998

[boudec] Network Calculus
J.-Y. Le Boudec, P. Thiran
Springer, 2001

[cassandras] Introduction to Discrete Event Systems
Christos Cassandras, Stéphane Lafortune.

[fiat] Online Algorithms: The State of the Art
A. Fiat and G. Woeginger
D. Hochbaum

[schickinger] Diskrete Strukturen (Band 2: Wahrscheinlichkeitstheorie und Statistik)
T. Schickinger, A. Steger
Springer, Berlin, 2001

[sipser] Introduction to the Theory of Computation
Michael Sipser.

227-0116-00L
VLSI 1: HDL based design for FPGAs
W 6 credits 5G F. K. Gürkaynak, L. Benini

Abstract
This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.

Objective
Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.

Content
This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

Lecture notes
Textbook and all further documents in English.

Literature

Abstract
This third course in our VLSI series is concerned with full-custom digital integrated circuits. The goals are to learn how to design digital circuits on the schematic, layout, gate, and register-transfer levels. The use of state-of-the-art CAD software (Cadence Virtuoso) in order to simulate, optimize, and characterize digital circuits is another important topic of this course.

Objective
At the end of this course you will
- understand how the main building blocks of state-of-the-art digital integrated circuits are designed
- be able to design and optimize digital integrated circuits on the schematic, layout, and gate levels
- be able to use standard industry software (Cadence Virtuoso) for drawing, simulating, and characterizing digital circuits
- understand the performance trade-offs between speed, area, and power consumption

Content
The third VLSI course begins with the basics of metal-oxide-semiconductor (MOS) field-effect transistors (FETs) and moves up the stack towards logic gates and increasingly complex digital circuit structures. The topics of this course include:
- Nanometer MOSFETs
- Static and dynamic behavior of complementary MOS (CMOS) inverters
- CMOS gate design, sizing, and timing
- Full-custom standard-cell design
- Wire models and parasitics
- Latch and flip-flop circuits
- Gate-level timing analysis and optimization
- Static and dynamic power consumption; low-power techniques
- Alternative logic styles (dynamic logic, pass-transistor logic, etc.)
- Arithmetic and logic circuits
- Fixed-point and floating-point arithmetic
- Memory circuits (ROM, SARAM, and DRAM)
- In- and near-memory processing architectures
- Full-custom accelerator circuits for machine learning

The exercises are concerned with schematic entry, layout, and simulation of digital integrated circuits using a disciplined standard-cell-based approach with Cadence Virtuoso.

Literature
N. H. E. Weste and D. M Harris, CMOS VLSI Design: A Circuits and Systems Perspective (4th Ed.), Addison-Wesley

Prerequisites / notice
VLSI3 can be taken in parallel with “VLSI I: HDL based design for FPGAs” and is designed to complement the topics of this course. Basic analog circuit knowledge is required.

227-0148-00L VLSI III: Test and Fabrication of VLSI Circuits W 6 credits 4G L. Benini

Does not take place this semester.

Abstract
In this course, we will cover how modern microchips are fabricated, and we will focus on methods and tools to uncover fabrication defects, if any, in these microchips. As part of the exercises, students will get to work on an industrial 1 million dollar automated test equipment.

Objective
Learn about modern IC manufacturing methodologies, understand the problem of IC testing. Cover the basic methods, algorithms and techniques to test circuits in an efficient way. Learn about practical aspects of IC testing and apply what you learn in class using a state-of-the-art tester.

Content
In this course we will deal with modern integrated circuit (IC) manufacturing technology and cover topics such as:
- Today’s nanometer CMOS fabrication processes (HKMG).
- Optical and post optical Photolithography.
- Potential alternatives to CMOS technology and MOSFET devices.
- Evolution paths for design methodology.
- Industrial roadmaps for the future evolution of semiconductor technology (ITRS).

If you want to earn money by selling ICs, you will have to deliver a product that will function properly with a very large probability. The main emphasis of the lecture will be discussing how this can be achieved. We will discuss fault models and practical techniques to improve testability of VLSI circuits. At the IIS we have a state-of-the-art automated test equipment (Advantest SoC V93000) that we will make available for in class exercises and projects. At the end of the lecture you will be able to design state-of-the-art digital integrated circuits such as to make them testable and to use automatic test equipment (ATE) to carry out the actual testing.

During the first weeks of the course there will be weekly practical exercises where you will work in groups of two. For the last 5 weeks of the class students will be able to choose a class project that can be:
- The test of their own chip developed during a previous semester thesis
- Developing new setups and measurement methods in C++ on the tester
- Helping to debug problems encountered in previous microchips by IIS.

Lecture notes

Prerequisites / notice
Although this is the third part in a series of lectures on VLSI design, you can follow this course even if you have not visited VLSI I and VLSI II lectures. An interest in integrated circuit design, and basic digital circuit knowledge is required though.

Course website: https://iis-students.ee.ethz.ch/lectures/vlsi-iii/

227-0417-00L Information Theory I W 6 credits 4G A. Lapidoth

Abstract
This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.

Objective
The fundamentals of Information Theory including Shannon's source coding and channel coding theorems

Content
The entropy rate of a source, Typical sequences, the asymptotic equi-partition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity

Literature
T.M. Cover and J. Thomas, Elements of Information Theory (second edition)

227-0427-00L Signal Analysis, Models, and Machine Learning W 6 credits 4G H.-A. Loeliger

Abstract
This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.
A scriptum will be handed out for a part of the course. Copies of the slides will be available for download. We will also provide a detailed list,

Books:

Objective
The course is an introduction to some basic topics in signal processing and machine learning.

Content

Lecture notes
Lecture notes.

Prerequisites
- local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.)
- others: solid basics in linear algebra and probability theory

227-0971-00L Computational Psychiatry

Objective
Please note that participation in this course and the practical sessions requires additional registration at: http://www.translationalneuromodeling.org/cpcourse/

Content
This six-day course teaches state-of-the-art methods in computational psychiatry. It covers various computational models of cognition (e.g., learning and decision-making) and brain physiology (e.g., effective connectivity) for relevance of psychiatric disorders. The course not only provides theoretical background, but also demonstrates open source software in application to concrete examples.

Lecture notes
Yes.

Literature

252-0206-00L Visual Computing

Objective
This course acquaints students with core knowledge in computer graphics, image processing, multimedia and computer vision. Topics include: Graphics pipeline, perception and camera models, transformations, shading, global illumination, texturing, sampling, filtering, image representations, image and video compression, edge detection and optical flow.

Content
This course provides an in-depth introduction to the core concepts of computer graphics, computer processing, multimedia and computer vision. The course forms a basis for the specialization track Visual Computing of the master program at ETH.

Lecture notes
A scriptum will be handed out for a part of the course. Copies of the slides will be available for download. We will also provide a detailed list of references and textbooks.

Literature

252-0543-01L Computer Graphics

Objective
This course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.

Content
At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.

Lecture notes
No.

Literature
Books:
- High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
- Multiple view geometry in computer vision
- Physically Based Rendering: From Theory to Implementation
252-0546-00L
Physically-Based Simulation in Computer Graphics
W 5 credits 2V+1U+1A
V. da Costa de Azevedo, B. Solenthaler, B. Thomaszewski

Abstract
This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.

Objective
This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.

Content
The lecture covers topics in physically-based modeling, such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation.

Prerequisites / notice
Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended. The programming assignments will be in C++. This will not be taught in the class.

252-0834-00L
Information Systems for Engineers
W 4 credits 2V+1U
G. Fourny

Abstract
This course provides the basics of relational databases from the perspective of the user. We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).

Objective
This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.
2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).
3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.
4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality
5. Explain what bad design is and why it matters.
6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".
7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.
8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.
9. Explain what data independence is all about and didn't age a bit since the 1970s.
10. Explain, in the big picture, how a relational database is physically implemented.
11. Know and deal with the natural syntax for relational data, CSV.
12. Explain the data cube model including slicing and dicing.
13. Store data cubes in a relational database.
14. Map cube queries to SQL.
15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.

Content
Using a relational database

1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level

6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database

12. Data cubes

Outlook

13. Outlook

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1845 of 2152
Analytical Competencies

Adaptability and Flexibility

Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling

Knowledge of methods and basic theory for high-dimensional statistical inference

High-Dimensional Statistics

401-3627-00L

High-Dimensional Statistics

W 4 credits 2V P. L. Bühlmann

Abstract

"High-Dimensional Statistics" deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.

Objective

Knowledge of methods and basic theory for high-dimensional statistical inference

Content

Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling

Time Series Analysis

401-4623-00L

Time Series Analysis

W 6 credits 3G F. Balabdaoui

Abstract

The course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary Models, ARMA processes, Spectral Analysis, Forecasting, Nonstationary Models, ARIMA Models and an introduction to GARCH models.

Objective

The goal of the course is to have a a good overview of the different types of time series and the approaches used in their statistical analysis.

Content

This course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework, the main feature exhibited by time series is the dependence between successive observations.

The key topics which will be covered as:

Stationarity
Autocorrelation
Trend estimation
Elimination of seasonality
Spectral analysis, spectral densities
Forecasting
ARIMA, ARIMA, Introduction into GARCH models

Forecasting

Spectral analysis, spectral densities
Elimination of seasonality
Trend estimation
Autocorrelation
Stationarity

Time Series Analysis

401-3901-00L

Linear & Combinatorial Optimization

W 11 credits 4V+2U R. Zenklusen

Abstract

Mathematical treatment of optimization techniques for linear and combinatorial optimization problems.

Objective

The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.

Content

- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and polyhedral techniques;
- Equivalence between optimization and separation;
- Equivalence between optimization and separation.

Literature

Prerequisites / notice

Solid background in linear algebra.

Domain A - Subject-specific Competencies

Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies

Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving

Domain C - Social Competencies

Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies

Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management
Classical Mechanics

Abstract
A conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, spinning top, relativistic space-time structure, particles in an electromagnetic field, Hamiltonian mechanics, canonical transformations, integrable systems, Hamilton-Jacobi equation.

Objective
Fundamental understanding of the description of Mechanics in the Lagrangian and Hamiltonian formulation. Detailed understanding of important applications, in particular, the Kepler problem, the physics of rigid bodies (spinning top) and of oscillatory systems.

227-1033-00L Neurornorphic Engineering I

Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots. Preference is given to students that require this class as part of their major.

Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module INI404 at UZH.
Please mind the ETH enrolment deadlines for UZH students: https://www.ethz.ch/en/studies/non-degree-courses/special-students/special-students-university-of-zurich.html

Abstract
This course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.

Objective
Understanding of the characteristics of neuromorphic circuit elements.

Content
Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time simulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.

Literature
S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.

Prerequisites / notice
Particular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.

327-1201-00L Transport Phenomena I

Abstract
Phenomenological approach to "Transport Phenomena" based on balance equations supplemented by thermodynamic considerations to formulate the undetermined fluxes in the local species mass, momentum, and energy balance equations; Solutions of a few selected problems relevant to materials science and engineering both analytical and using numerical methods.

Objective
The teaching goals of this course are on five different levels:
(1) Deep understanding of fundamentals: local balance equations, constitutive equations for fluxes, entropy balance, interfaces, idea of dimensionless numbers and scaling,
(2) Ability to use the fundamental concepts in applications
(3) Insight into the role of boundary conditions (mainly part 2)
(4) Knowledge of a number of applications
(5) Flavor of numerical techniques: finite elements and finite differences.

Content
Part 1 Approach to Transport Phenomena
Equilibrium Thermodynamics
Balance Equations
Forces and Fluxes
Applications
1. Measuring Transport Coefficients
2. Fluid mechanics
3. Combined heat and flow

Lecture notes

Literature

Prerequisites / notice
Complex numbers, Vector analysis (integrability; Gauss' divergence theorem). Laplace and Fourier transforms. Ordinary differential equations (basic ideas). Linear algebra (matrices; functions of matrices; eigenvectors and eigenvalues; eigenfunctions). Probability theory (Gaussian distributions; Poisson distributions; averages; moments; variances; random variables). Numerical mathematics (integration). Equilibrium thermodynamics (Gibbs' fundamental equation; thermodynamic potentials; Legendre transforms). Maxwell equations.

Teaching competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
Problem-solving

see also Fields of Specialization

Electives (CSE Master)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4053-05L</td>
<td>Boundary Layer Meteorology</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>M. Rotach, P. Calanca</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1847 of 2152
Abstract

The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. The course starts by providing the theoretical background and reviewing idealized concepts. These are contrasted to real world applications and discussed in the context of current research issues.

Objective

Overall goals of this course are given below. Focus is on the theoretical background and idealized concepts.

Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).

Content

- Introduction
- Turbulence
- Statistical treatment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Scaling and similarity theory
- Spectral characteristics
- Concepts for non-ideal boundary layer conditions

Lecture notes

available (i.e. in English)

Literature

Prerequisites / notice

Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science

701-1221-00L

Dynamics of Large-Scale Atmospheric Flow

W 4 credits 2V+1U H. Wernli, L. Papritz

Abstract

This lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostrophic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course.

Objective

Understanding the dynamics of large-scale atmospheric flow

Content

Dynamical Meteorology is concerned with the dynamical processes of the earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.

Lecture notes

Dynamics of large-scale atmospheric flow

Literature

- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997

Prerequisites / notice

Physics I, II, Environmental Fluid Dynamics

529-0003-01L

Advanced Quantum Chemistry

W 6 credits 3G M. Reiher, A. Baiardi

Abstract

Advanced, but fundamental topics central to the understanding of theory in chemistry and for solving actual chemical problems with a computer. Examples are:

* Operators derived from principles of relativistic quantum mechanics
* Relativistic effects + methods of relativistic quantum chemistry
* Open-shell molecules + spin-density functional theory
* New electron-correlation theories

Objective

The aim of the course is to provide an in-depth knowledge of theory and method development in theoretical chemistry. It will be shown that this is necessary in order to be able to solve actual chemical problems on a computer with quantum chemical methods.

Content

1) Introductory lecture: basics of quantum mechanics and quantum chemistry
2) Einstein's special theory of relativity and the (classical) electromagnetic interaction of two charged particles
3) Klein-Gordon and Dirac equation; the Dirac hydrogen atom
4) Numerical methods based on the Dirac-Fock-Coulomb Hamiltonian, two-component and scalar relativistic Hamiltonians
5) Response theory and molecular properties, derivation of property operators, Breit-Pauli-Hamiltonian
6) Relativistic effects in chemistry and the emergence of spin
7) Spin in density functional theory
8) New electron-correlation theories: Tensor network and matrix product states, the density matrix renormalization group
9) Quantum chemistry without the Born-Oppenheimer approximation

Lecture notes

A set of detailed lecture notes will be provided, which will cover the whole course.
T. Rösgen

Fundamentals of optics, flow visualization and electronic image acquisition.

Methods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course). The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student’s choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.

151-0105-00L Quantitative Flow Visualization

<table>
<thead>
<tr>
<th>Objective</th>
<th>Abstract</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notice</td>
<td>The course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include image velocimetry, laser induced fluorescence, liquid crystal thermography and interferometry. The physical foundations and measurement configurations are explained. Image analysis algorithms are presented in detail and programmed during the exercises.</td>
<td>Frequently used image processing techniques (filtering, correlation processing, FFTs, color space transforms). Image Velocimetry (tracking, pattern matching, Doppler imaging). Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography). Laser induced fluorescence. (Digital) Schlieren techniques, phase contrast imaging, interferometry, phase unwrapping. Wall shear and heat transfer measurements. Pattern recognition and feature extraction, proper orthogonal decomposition.</td>
</tr>
</tbody>
</table>

151-0109-00L Turbulent Flows

<table>
<thead>
<tr>
<th>Objective</th>
<th>Abstract</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notice</td>
<td>Basic physical phenomena of turbulent flows, quantitative and statistical description, basic and averaged equations, principles of turbulent flow computation and elements of turbulence modelling</td>
<td>- Laminar and turbulent flows, instability and origin of turbulence - Statistical description: averaging, turbulent energy, dissipation, closure problem - Scalings, Homogeneous isotropic turbulence, correlations, Fourier representation, energy spectrum - Free turbulence: wake, jet, mixing layer - Wall turbulence: Channel and boundary layer - Computation and modelling of turbulent flows</td>
</tr>
</tbody>
</table>

151-0213-00L Fluid Dynamics with the Lattice Boltzmann Method

<table>
<thead>
<tr>
<th>Objective</th>
<th>Abstract</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notice</td>
<td>Methods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.</td>
<td>S.B. Pope, Turbulent Flows, Cambridge University Press, 2000</td>
</tr>
</tbody>
</table>
The course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
 Particle’s distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation; Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
 Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
 Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
 Lattice Boltzmann simulations of turbulent flows; numerical stability and accuracy.

5. Microflow:
 Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
 Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
 Relativistic fluid dynamics; flows with phase transitions.

Lecture notes
Lecture notes on the theoretical parts of the course will be made available.
Selected original and review papers are provided for some of the lectures on advanced topics.
Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.

Prerequisites / notice
The course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.

252-0535-00L Advanced Machine Learning W 10 credits 3V+2U+4A J. M. Buhmann, C. Cotin Jimenez

Abstract
Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
What is data?
Bayesian Learning
Computational learning theory

Supervised learning:
Ensembles: Bagging and Boosting
Max Margin methods
Neural networks

Unsupervised learning:
Dimensionality reduction techniques
Clustering
Mixture Models
Non-parametric density estimation
Learning Dynamical Systems

Lecture notes
No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice
The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

636-0017-00L Computational Biology W 6 credits 3G+2A T. Vaughan

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1850 of 2152
Abstract
The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.

Objective
Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:
* stochastic models in molecular evolution
* phylogenetic & phylodynamic inference
* maximum likelihood and Bayesian statistics
Attendees will apply these concepts to a number of applications yielding biological insight into:
* epidemiology
* pathogen evolution
* macroevolution of species

Content
The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS.
Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phyloдинamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.

Lecture notes
Lecture slides will be available on moodle.

Literature
The course is not based on any of the textbooks below, but they are excellent choices as accompanying material:
* Yang, Z. 2006. Computational Molecular Evolution.
* Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.

Prerequisites / notice
Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-Bsse students, we highly recommend the voluntary course ‘Introduction to Programming’, which takes place at D-Bisse from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date http://www.cbb.ethz.ch/news-events.html
For the Zurich-based students without R experience, we recommend the R course http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2018W&anichts=KATALOOGDATEN&lerneinheitId=123546&lang=d or working through the script provided as part of this R course.

Case Studies Seminar (Autumn Semester 2021)

Number	Title	Type	ECTS	Hours	Lecturers
401-3667-71L | Case Studies Seminar (Autumn Semester 2021) | W | 3 credits | 2S | V. C. Gradinaru, R. Hiptmair, M. Reiher

Abstract
Invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list. Students have to register their presentations online on https://rw.ethz.ch/the-programme/case-studies.html by the first week of the teaching period.

Content
In the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list (containing articles from, e.g., Nature, Science, Scientific American, etc.). If the underlying paper comprises more than 15 pages, two or three consecutive case studies presentations delivered by different students can be based on it. Consistency in layout, style, and contents of those presentations is expected.

Students have to register their presentations online on https://rw.ethz.ch/the-programme/case-studies.html by the first week of the teaching period.

Prerequisites / notice
The talks might be given via Zoom; talks in presence should be also streamed in Zoom.

75% attendance and a short presentation on a published paper out of a list or on some own project are mandatory.

Students have to register their presentations online until the second Wednesday of the semester on https://rw.ethz.ch/the-programme/case-studies.html

The student talks will be grouped by subject, so we’ll decide the actual dates of the individual talks.

Students that realize that they will not fulfill this criteria have to contact the teaching staff or de-register before the end of semester from the Seminar if they want to avoid a “Fail” in their documents. Later de-registrations will not be considered.

Taught competencies

Domain A - Subject-specific Competencies	Techniques and Technologies	not assessed
Domain B - Method-specific Competencies	Analytical Competencies	not assessed
	Decision-making	not assessed
	Media and Digital Technologies	not assessed
	Problem-solving	not assessed
	Project Management	not assessed
Domain C - Social Competencies	Communication	not assessed
	Cooperation and Teamwork	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed
	Creative Thinking	not assessed
	Critical Thinking	not assessed
	Integrity and Work Ethics	not assessed
	Self-awareness and Self-reflection	not assessed
	Self-direction and Self-management	not assessed
If you wish to have recognised 402-2000-00L Scientific Works in Physics instead of 401-2000-00L Scientific Works in Mathematics (as allowed for the CSE programme), take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having passed the performance assessment.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-2000-00L</td>
<td>Scientific Works in Mathematics</td>
<td>O</td>
<td>0</td>
<td>M. Burger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target audience:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Third year Bachelor students;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master students who cannot document to have received an adequate training in working scientifically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-2000-01L</td>
<td>Lunch Sessions – Thesis Basics for Mathematics</td>
<td>Z</td>
<td>0</td>
<td>Speakers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students Details and registration for the optional MathBib training course: https://www.math.ethz.ch/mathbib-schulungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402-2000-00L</td>
<td>Scientific Works in Physics</td>
<td>W</td>
<td>0</td>
<td>C. Eichler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target audience:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master students who cannot document to have received an adequate training in working scientifically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Directive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic standards for scientific works in physics: How to write a Master Thesis. What to know about research integrity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3990-18L</td>
<td>Bachelor’s Thesis</td>
<td>O</td>
<td>14</td>
<td>30D</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Successful participation in the course unit 401-2000-00L Scientific Works in Mathematics or 402-2000-00L Scientific Works in Physics is required. For more information, see www.math.ethz.ch/intranet/students/study-administration/theses.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The BSc thesis concludes the curriculum. In their BSc thesis, students should demonstrate their ability to carry out independent, structured scientific work. The purpose of the BSc thesis is to deepen knowledge in a certain subject and to bring students into closer contact with applications in an existing computational group. The BSc thesis requires approximately 160 hours of work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In their Bsc thesis students should demonstrate their ability to carry out independent, structured scientific work. The purpose is to deepen knowledge in a certain subject and to enable students to collaborate in an existing scientific group to take a computational approach to problems encountered in applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-5650-00L</td>
<td>Zurich Colloquium in Applied and Computational Mathematics</td>
<td>E-</td>
<td>0</td>
<td>1K</td>
<td>R. Abgrall, R. Alaifari, H. Ammari, R. Hiptmair, S. Mishra, S. Sauter</td>
</tr>
<tr>
<td></td>
<td>Research colloquium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3990-01L</td>
<td>Bachelor’s Thesis</td>
<td>O</td>
<td>8</td>
<td>11D</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Only for Computational Science and Engineering BSc, Programme Regulations 2016.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Successful participation in the course unit 401-2000-00L
Abstract

The BSc thesis concludes the curriculum. In their BSc thesis, students should demonstrate their ability to carry out independent, structured scientific work. The purpose of the BSc thesis is to deepen knowledge in a certain subject and to bring students into closer contact with applications in an existing computational group. The BSc thesis requires approximately 160 hours of work.

Objective

In their BSc thesis students should demonstrate their ability to carry out independent, structured scientific work. The purpose is to deepen knowledge in a certain subject and to enable students to collaborate in an existing scientific group to take a computational approach to problems encountered in applications.

Prerequisites / notice

The supervisor responsible for the Bachelor thesis defines the task and determines the start and the submission date. The Bachelor thesis concludes with a written report. The Bachelor thesis is graded.

Computational Science and Engineering Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
<th>Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

- **European Credit Transfer and Accumulation System**
- Special students and auditors need special permission from the lecturers.
Computational Science and Engineering Master

▲ Core Courses

In the ‘core courses’ subcategory, at least two course units must be successfully completed.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-4671-00L</td>
<td>Advanced Numerical Methods for CSE</td>
<td>W</td>
<td>9</td>
<td>4V+2U+1P</td>
<td>S. Mishra</td>
</tr>
</tbody>
</table>

Abstract

This course will focus on teaching different advanced topics in numerical methods for science and engineering. The main aim would be to introduce novel algorithms and discuss their implementation.

Objective

- Presentation of state of the art numerical methods in computational fluid dynamics.
- Advanced implementation in C++
- Introduction of the role of data in scientific computing, particularly in the context of uncertainty quantification (UQ).

Content

A selection of the following topics will be covered:

1. Advanced numerical methods in fluid dynamics:
 - Finite volume schemes
 - High-resolution schemes on both structured and unstructured grids

2. Uncertainty quantification in fluid dynamics
 - Modeling of uncertainty in terms of random fields.
 - Monte Carlo methods
 - Multi-level Monte Carlo methods.
 - Quasi-Monte Carlo methods.

Lecture notes

Lecture material will be created during the course and will be made available.

Prerequisites / notice

- Familiarity with basic numerical methods
- Knowledge of numerical methods for differential equations (as covered in the course "Numerical Methods for Partial Differential Equations").

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0535-00L</td>
<td>Advanced Machine Learning</td>
<td>W</td>
<td>10</td>
<td>3V+2U+4A</td>
<td>J. M. Buhmann, C. Cotrini Jimenez</td>
</tr>
</tbody>
</table>

Abstract

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Fundamentals:
 - What is data?
 - Bayesian Learning
 - Computational learning theory

- Supervised learning:
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks

- Unsupervised learning:
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

Lecture notes

No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

▲ Fields of Specialization

► Astrophysics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-7851-00L</td>
<td>Theoretical Astrophysics (University of Zurich)</td>
<td>W</td>
<td>10</td>
<td>4V+2U</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: AST512

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1854 of 2152
This course covers the foundations of astrophysical fluid dynamics, the Boltzmann equation, equilibrium systems and their stability, the structure of stars, astrophysical turbulence, accretion disks and their stability, the foundations of radiative transfer, collisionless systems, the structure and stability of dark matter halos and stellar galactic disks.

This course covers the foundations of astrophysical fluid dynamics, the theory of collisions and the Boltzmann equation, the notion of equilibrium systems and their stability, the structure of stars, the theory of astrophysical turbulence, the theory of accretion disks and their stability, the foundations of astrophysical radiative transfer, the theory of collisionless system, the structure and stability of dark matter halos and stellar galactic disks.

Course Materials:
- 1- The Physics of Astrophysics, Volume 1: Radiation by Frank H. Shu
- 2- The Physics of Astrophysics, Volume 2: Gas Dynamics by Frank H. Shu
- 3- Foundations of radiation hydrodynamics, Dimitri Mihalas and Barbara Weibel-Mihalas
- 4- Radiative Processes in Astrophysics, George B. Rybicki and Alan P. Lightman
- 5- Galactic Dynamics, James Binney and Scott Tremaine

Prerequisites / notice
This is a full black board ad chalk experience for students with a strong background in mathematics and physics.

Prerequisites:
Introduction to Astrophysics
Mathematical Methods for the Physicist
Quantum Mechanics
(All preferred but not obligatory)

Prior Knowledge:
Mechanics
Quantum Mechanics and atomic physics
Thermodynamics
Fluid Dynamics
Electrodynamics

401-7855-00L Computational Astrophysics (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
UZH Module Code: AST245

Objective
Acquire knowledge of main methodologies for computer-based models of astrophysical systems, the physical equations behind them, and train such knowledge with simple examples of computer programmes

Content
1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility
2. Large-N gravity calculation, collisionless N-body systems and their simulation
3. Fast Fourier Transform and spectral methods in general
4. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiters
5. Lagrangian Hydrodynamics: The SPH method
6. Resolution and instabilities in Hydrodynamics
7. Initial Conditions: Cosmological Simulations and Astrophysical Disks
8. Physical Approximations and Methods for Radiative Transfer in Astrophysics

Literature
Galactic Dynamics (Binney & Tremaine, Princeton University Press),
Computer Simulation using Particles (Hockney & Eastwood CRC press),
Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)

Prerequisites / notice
Some knowledge of UNIX, scripting languages (see www.physik.uzh.ch/lectures/informatik/python/ as an example), some prior experience programming, knowledge of C, C++ beneficial

Physics of the Atmosphere

Number Title Type ECTS Hours Lecturers
701-0023-00L Atmosphere W 3 credits 2V E. M. Fischer, T. Peter

Abstract
Basic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.

Objective
Understanding of basic physical and chemical processes in the atmosphere. Understanding of mechanisms of and interactions between: weather - climate, atmosphere - ocean - continents, troposphere - stratosphere. Understanding of environmentally relevant structures and processes on vastly differing scales. Basis for the modelling of complex interrelations in the atmospHERE.

Content
Basic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, radiation, condensation, clouds, oxidation capacity and ozone layer.

Lecture notes
Written information will be supplied.

651-4053-05L Boundary Layer Meteorology

Abstract
The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. The course starts by providing the theoretical background and reviewing idealized concepts. These are contrasted to real world applications and discussed in the context of current research issues.

Objective
Overall goals of this course are given below. Focus is on the theoretical background and idealized concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).
Understanding the dynamics of large-scale atmospheric flow, J. Dolenc, L. Papritz

This seminar is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostrophic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course.

Objective
Understanding the dynamics of large-scale atmospheric flow

Content
Dynamical Meteorology is concerned with the dynamical processes of the earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.

Literature

ECTS
4 credits

Prerequisites / notice
In this seminar it is mandatory to write a proposal about an upcoming MSc thesis or semester project. If no such project is planned, this Seminar cannot be taken. Please contact the lecturers (hanna.joos@env.ethz.ch) on time if you plan to take this seminar.

Chemistry

529-0004-01L Classical Simulation of (Bio)Molecular Systems

Abstract
Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).

Objective
Introduction to classical (atomistic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations.

Content
Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).

Lecture notes
See: www.cms.ethz.ch/education/CSBMS

Prerequisites / notice
Since the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark).

For more information about the lecture: www.csms.ethz.ch/education/CSBMS

529-0003-01L Advanced Quantum Chemistry

Abstract
Advanced, but fundamental topics central to the understanding of theory in chemistry and for solving actual chemical problems with a computer. Examples are:
* Operators derived from principles of relativistic quantum mechanics
* Relativistic effects + methods of relativistic quantum chemistry
* Open-shell molecules + spin-density functional theory
* New electron-correlation theories
The aim of the course is to provide an in-depth knowledge of theory and method development in theoretical chemistry. It will be shown that this is necessary in order to be able to solve actual chemical problems on a computer with quantum chemical methods.

The relativistic re-derivation of all concepts known from (nonrelativistic) quantum mechanics and quantum-chemistry lectures will finally explain the form of all operators in the molecular Hamiltonian - usually postulated rather than deduced. From this, we derive operators needed for molecular spectroscopy (like those required by magnetic resonance spectroscopy). Implications of other assumptions in standard non-relativistic quantum chemistry shall be analyzed and understood, too. Examples are the Born-Oppenheimer approximation and the expansion of the electronic wave function in a set of pre-defined many-electron basis functions (Slater determinants). Overcoming these concepts, which are so natural to the theory of chemistry, will provide deeper insights into many-particle quantum mechanics. Also revisiting the workhorse of quantum chemistry, namely density functional theory, with an emphasis on open-shell electronic structures (radicals, transition-metal complexes) will contribute to this endeavor. It will be shown how these insights allow us to make more accurate predictions in chemistry in practice - at the frontier of research in theoretical chemistry.

Lecture notes
A set of detailed lecture notes will be provided, which will cover the whole course.

Disclosure
Note also the standard textbooks:
A) A. Szabo, N.S. Ostlund, Verlag, Dover Publications
B) I. N. Levine, Quantum Chemistry, Pearson

Prerequisites / notice
Strongly recommended (preparatory) courses are: quantum mechanics and quantum chemistry

401-5940-00L Seminar in Chemistry for CSE
W 4 credits 2S 3 credits P. H. Hünenberger, M. Reiher
Abstract
The student will carry out a literature study on a topic of his or her liking (suggested by or in agreement with the supervisor) in the area of computer simulation in chemistry (Prof. Hünenberger) or of quantum chemistry (Prof. Reiher), the results of which are to be presented both orally and in written form.

For more information:
http://www.csms.ethz.ch/education/CSE_seminar.html

Fluid Dynamics
One of the course units
151-0103-00L Fluid Dynamics II
151-0109-00L Turbulent Flows
is compulsory.

Students able to follow courses in German are advised to choose 151-0103-00L Fluid Dynamics II.

Number Title Type ECTS Hours Lecturers
151-0103-00L Fluid Dynamics II O 3 credits 2V+1U P. Jenny
Abstract

Content
Explore basic knowledge of fluid dynamics. Concepts, phenomena and quantitative description of irrotational (potential), rotational, and one-dimensional compressible flows.

Prerequisites / notice
Analysis I/II, Knowledge of Fluid Dynamics I, thermodynamics of ideal gas
The course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include:

1. Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.
3. Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations.
4. Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.
5. Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance.

The course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.

(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.

(2) Near equilibrium dynamics: Linear and Lyapunov stability.

(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations.

(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.

(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance.

The class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.

- Prerequisites: Analysis, linear algebra and a basic course in differential equations.
- Exam: two-hour written exam in English.
- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.

Abstract

Objective

Content

Lecture notes

Literature

Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.

Type

P. Jenny

Hours

Control Systems

Enlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics

Lecturers

F. Dörfler

Lecture notes

Lecture notes on the theoretical parts of the course will be made available.

Selected original and review papers are provided for some of the lectures on advanced topics.

Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.

Prerequisites / notice

The course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.

401-5950-00L

Seminar in Fluid Dynamics for CSE

Enlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics

Objective

Enlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics

Prerequisites / notice

Contact Prof. P. Jenny or Prof. T. Rösgen before the beginning of the semester

Systems and Control

Number

227-0103-00L

Content

I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.

II Theoretical basis of statistical mechanics and kinetic equations.

III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
 Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory; Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
 Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
 Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
 Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
 Lattice Boltzmann simulations of turbulent flows;
 numerical stability and accuracy.

5. Microflow:
 Rarefactive effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
 Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
 Relativistic fluid dynamics; flows with phase transitions.

Lecturer

T. Rösgen

Prerequisites / notice

MATLAB is used for system analysis and simulation.

Prerequisites: Signal and Systems Theory II.

Regulator, optimal state estimation.

The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.

Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.

- Proof techniques and practices.
- Linear spaces, normed linear spaces and Hilbert spaces.
- Ordinary differential equations, existence and uniqueness of solutions.
- Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case.
- Controllability and observability, duality. Time invariant systems treated as a special case.
- Stability and stabilization, observers, state and output feedback, separation principle.

Available on the course Moodle platform.

Sufficient mathematical maturity, in particular in linear algebra, analysis.
Abstract
Signals and Systems arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals.

Objective
Master the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise.

Content

Literature
Lecture notes available on course website.

Prerequisites / notice
Control Systems I is helpful but not required.
Theory of Robotics and Mechatronics

Abstract
This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Objective
Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Content
An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Lecture notes available.

Advanced Machine Learning

Abstract
Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

Content
The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Fundamentals:
 - What is data?
 - Bayesian Learning
 - Computational learning theory

- Supervised learning:
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks

- Unsupervised learning:
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

Lecture notes
No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice
The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

Deep Learning

Number of participants limited to 320.

Abstract
Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective
In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
Prerequisites / notice

This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

Advanced Machine Learning
https://ml2.inf.ethz.ch/courses/aml/

Computational Intelligence Lab
http://da.inf.ethz.ch/teaching/2019/CIL/

Introduction to Machine Learning
https://las.inf.ethz.ch/teaching/introml-S19

Statistical Learning Theory
http://ml2.inf.ethz.ch/courses/slt/

Computational Statistics
https://stat.ethz.ch/lectures/ss19/comp-stats.php

Probabilistic Artificial Intelligence
https://las.inf.ethz.ch/teaching/pai-f18

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-5210-00L</td>
<td>Deterministic Continuous-Time Optimal Control</td>
</tr>
<tr>
<td>263-5902-00L</td>
<td>Computer Vision</td>
</tr>
<tr>
<td>227-0447-00L</td>
<td>Image Analysis and Computer Vision</td>
</tr>
<tr>
<td>151-0563-01L</td>
<td>Dynamic Programming and Optimal Control</td>
</tr>
</tbody>
</table>

263-5210-00L

Course Title: Deterministic Continuous-Time Optimal Control

Objective:
- To introduce the fundamental concepts of Dynamic Programming & Optimal Control.
- Covers the fundamental concepts of Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.

Prerequisites:
- Solid basic knowledge in statistics, algorithms and programming.
- The material covered in the course “Introduction to Machine Learning” is considered as a prerequisite.

263-5902-00L

Course Title: Computer Vision

Objective:
- The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.
- The objectives of this course are:
 1. To introduce the main concepts and techniques used to solve those.
 2. To introduce the main concepts and techniques used to solve those.
 3. To enable participants to implement solutions for reasonably complex problems.
 4. To enable participants to make sense of the computer vision literature.

Prerequisites:
- It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.

227-0447-00L

Course Title: Image Analysis and Computer Vision

Objective:
- Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.

Prerequisites:
- Course material Script, computer demonstrations, exercises and problem solutions

151-0563-01L

Course Title: Dynamic Programming and Optimal Control

Objective:
- Introduces Dynamic Programming and Optimal Control.
- Covers the fundamental concepts of Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.

Prerequisites:
- Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.
- The course language is English.
151-0851-00L: Robot Dynamics

Abstract
We will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.

Objective
The primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.

Content
The course consists of three parts: First, we will refresh and deepen the student’s knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.

Prerequisites / notice
The contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.

401-5860-00L: Seminar in Robotics for CSE

Abstract
This course provides an opportunity to familiarize yourself with the advanced topics of robotics and mechatronics research. The study plan has to be discussed with the lecturer based on your specific interests and/or the relevant seminar series such as the IRIS’s Robotics Seminars and BiRONZ lectures, for example.

Objective
The students are familiar with the challenges of the fascinating and interdisciplinary field of Robotics and Mechatronics. They are introduced in the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently.

Content
This 4 ECTS course requires each student to discuss a study plan with the lecturer and select minimum 10 relevant scientific publications to read through, or attend 5-10 lectures of the public robotics oriented seminars (e.g. Public robotics seminars such as the IRIS’s Robotics Seminars http://www.iris.ethz.ch/iris/series/ and BiRONZ lectures http://www.bir.ethz.ch/bironz/index are good examples). At the end of the semester, the results should be presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account.

Physics

For the field of specialization 'Physics' basic knowledge in quantum mechanics is required.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0809-00L</td>
<td>Introduction to Computational Physics</td>
<td>W</td>
<td>8</td>
<td>2V+2U</td>
<td>A. Adelmann</td>
</tr>
</tbody>
</table>

Abstract
This course offers an introduction to computer simulation methods for physics problems and their implementation on PCs and super computers. The covered topics include classical equations of motion, partial differential equations (wave equation, diffusion equation, Maxwell’s equations), Monte Carlo simulations, percolation, phase transitions, and N-Body problems.

Objective
Students learn to apply the following methods: Random number generators, Determination of percolation critical exponents, numerical solution of problems from classical mechanics and electrodynamics, canonical Monte-Carlo simulations to numerically analyze magnetic systems. Students also learn how to implement their own numerical frameworks in Julia and how to use existing libraries to solve physical problems. In addition, students learn to distinguish between different numerical methods to apply them to solve a given physical problem.

Content
Introduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics as well as some interdisciplinary applications are used to introduce modern programming methods for numerical simulations using Julia. Furthermore, an overview of existing software libraries for numerical simulations is presented.

Lecture notes
Lecture notes and slides are available online and will be distributed if desired.

Literature
Lecture recommendations and references are included in the lecture notes.

Prerequisites / notice
Lecture and exercise lessons in english, exams in German or in English

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0205-00L</td>
<td>Quantum Mechanics I</td>
<td>W</td>
<td>10</td>
<td>2V+2U</td>
<td>M. Gaberdiel</td>
</tr>
</tbody>
</table>

Abstract

Objective
Introduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems.

Content
The beginnings of quantum theory with Planck, Einstein and Bohr; Wave mechanics; Simple examples; The formalism of quantum mechanics (states and observables, Hilbert spaces and operators, the measurement process); Heisenberg uncertainty relation; Harmonic oscillator; Symmetries (in particular rotations); Hydrogen atom; Angular momentum addition; Quantum mechanics and classical physics (EPR paradox and Bell's inequality); Perturbation theory.

Lecture notes
Auf Moodle, in deutscher Sprache

Literature
G. Baym, Lectures on Quantum Mechanics
E. Merzbacher, Quantum Mechanics
L.I. Schiff, Quantum Mechanics
R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals
J.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics
Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

402-0461-00L Quantum Information Theory

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>402-0461-00L</td>
<td>Quantum Information Theory</td>
<td>W</td>
<td>8</td>
<td>3V+1U</td>
</tr>
</tbody>
</table>

Abstract
The goal of this course is to introduce the concepts and methods of quantum information theory. It starts with an introduction to the mathematical formulation of quantum theory: entanglement, density operators, quantum channels and their representations. Basic tools of quantum information theory: distinguishability of states and channels, formulation as semidefinite programs, entropy and its properties. Applications of the concepts and tools: communication of classical or quantum information over noisy channels, quantitative uncertainty relations, randomness generation, entanglement distillation, security of quantum cryptography.

<table>
<thead>
<tr>
<th>Lecture notes</th>
<th>Distributed via moodle.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature</td>
<td>Nielsen and Chuang, Quantum Information and Computation</td>
</tr>
<tr>
<td></td>
<td>Preskill, Lecture Notes on Quantum Computation</td>
</tr>
<tr>
<td></td>
<td>Wilde, Quantum Information Theory</td>
</tr>
<tr>
<td></td>
<td>Watrous, The Theory of Quantum Information</td>
</tr>
</tbody>
</table>

| 402-0777-00L | Particle Accelerator Physics and Modeling I | W | 6 | 2V+1U | A. Adelmann |

Abstract
This is the first of two courses, introducing particle accelerators from a theoretical point of view and covers state-of-the-art modelling techniques.

<table>
<thead>
<tr>
<th>Lecture notes</th>
<th>Lecture notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites / notice</td>
<td>Physics, Computational Science (RW) at BSc. Level</td>
</tr>
</tbody>
</table>

401-5810-00L Seminar in Physics for CSE

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-5810-00L</td>
<td>Seminar in Physics for CSE</td>
<td>W</td>
<td>4</td>
<td>2S</td>
</tr>
</tbody>
</table>

Abstract
In this seminar, the students present a talk on an advanced topic in modern theoretical or computational physics. An implementation of an advanced algorithm can also be presented.

Objective
To teach students the topics of current interest in computational and theoretical physics.

Computational Finance

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3913-01L</td>
<td>Mathematical Foundations for Finance</td>
<td>W</td>
<td>4</td>
<td>3V+2U</td>
</tr>
</tbody>
</table>

Abstract
First introduction to main modelling ideas and mathematical tools from mathematical finance

Objective
This course gives a first introduction to the main modelling ideas and mathematical tools from mathematical finance. It mainly aims at non-mathematicians who need an introduction to the main tools from stochastics used in mathematical finance. However, mathematicians who want to learn some basic modelling ideas and concepts for quantitative finance (before continuing with a more advanced course) may also find this of interest. The main emphasis will be on ideas, but important results will be given with (sometimes partial) proofs.

| Lecture notes | Lecture notes will be sold at the beginning of the course. |
Lecture notes will be sold at the beginning of the course. Additional (background) references are given there.

Prerequisites: Results and facts from probability theory as in the book "Probability Essentials" by J. Jacod and P. Protter will be used freely. Especially participants without a direct mathematics background are strongly advised to familiarise themselves with those tools before (or very quickly during) the course. (A possible alternative to the above English textbook are the (German) lecture notes for the standard course "Wahrscheinlichkeitstheorie").

For those who are not sure about their background, we suggest to look at the exercises in Chapters 8, 9, 22-25, 28 of the Jacod/Protter book. If these pose problems, you will have a hard time during the course. So be prepared.

401-4657-00L Numerical Analysis of Stochastic Ordinary Differential Equations

Abstract
Course on numerical approximations of stochastic ordinary differential equations driven by Wiener processes. These equations have several applications, for example in financial option valuation. This course also contains an introduction to random number generation and Monte Carlo methods for random variables.

Objective
The aim of this course is to enable the students to carry out simulations and their mathematical convergence analysis for stochastic models originating from applications such as mathematical finance. For this course the teachers in conjunction with the students develop a deep knowledge of the different numerical methods, their underlying ideas, convergence properties and implementation issues.

Content
- Generation of random numbers
- Monte Carlo methods for the numerical integration of random variables
- Stochastic processes and Brownian motion
- Stochastic ordinary differential equations (SODEs)
- Numerical approximations of SODEs
- Applications to computational finance: Option valuation

Literature

Prerequisites / notice
- Mandatory: Probability and measure theory, basic numerical analysis and basics of MATLAB/Python programming.
 - a) mandatory courses: Elementary Probability, Probability Theory I.
 - b) recommended courses: Stochastic Processes.

401-8905-00L Financial Engineering (University of Zurich)

Abstract
This lecture is intended for students who would like to learn more on equity derivatives modelling and pricing.

Objective
Quantitative models for European option pricing (including stochastic volatility and jump models), volatility and variance derivatives, American and exotic options.

Content
- After introducing fundamental concepts of mathematical finance including no-arbitrage, portfolio replication and risk-neutral measure, we will present the main models that can be used for pricing and hedging European options e.g. Black-Scholes model, stochastic and jump-diffusion models, and highlight their assumptions and limitations. We will cover several types of derivatives such as European and American options, Barrier options and Variance-Swaps. Basic knowledge in probability theory and stochastic calculus is required. Besides attending class, we strongly encourage students to stay informed on financial matters, especially by reading daily financial newspapers such as the Financial Times or the Wall Street Journal.

Lecture notes
Script.

Prerequisites / notice
- Basic knowledge of probability theory and stochastic calculus.
- Asset Pricing.

363-0561-00L Financial Market Risks

Abstract
I aim to introduce students to the concepts and tools of modern finance and to make them understand the limits of these tools, and the many problems met by the theory in practice. I will put this course in the context of the on-going financial crises in the US, Europe, Japan and China, which provide fantastic opportunities to make the students question the status quo and develop novel solutions.
Objective
The course explains the key concepts and mechanisms of financial economics, their depth and then stresses how and why the theories and models fail and how this is impacting investment strategies and even a global view of citizenship, given the present developing crises in the US since 2007 and in Europe since 2010.

- Development of the concepts and tools to understand these risks and master them.
- Working knowledge of the main concepts and tools in finance (Portfolio theory, asset pricing, options, real options, bonds, interest rates, inflation, exchange rates)
- Strong emphasis on challenging assumptions and developing a systemic understanding of financial markets and their many dimensional risks

Content
1- The Financial Crises: what is really happening? Historical perspective and what can be expected in the next decade(s). Bubbles and crashes. The illusion of the perpetual money machine.

2- Risks in financial markets
- What is risk?
- Measuring risks of financial assets
- History of financial markets, diversification, market risks

3- Introduction to financial risks and its management.
- Relationship between risk and return
- Portfolio theory: the concept of diversification and optimal allocation
- How to price assets: the Capital Asset Pricing Model
- How to price assets: the Arbitrage Pricing Theory, the factor models and beyond

4- Financial markets: role and efficiency
- What is an efficient market?
- Financial markets as valuation engines: exogeneity versus endogeneity (reflexivity)
- Deviations from efficiency, puzzles and anomalies in the financial markets
- Financial bubbles, crashes, systemic instabilities

5- An introduction to Options and derivatives
- Calls, Puts and Shares and other derivatives
- Financial alchemy with options (options are building blocs of any possible cash flow)
- Determination of option value; concept of risk hedging

6- Valuation and using options
- A first simple option valuation model
- The Binomial method for valuing options
- The Black-scholes model and formula
- Practical examples and implementation
- Realized prices deviate from these theories: volatility smile and real option trading
- How to imperfectly hedge with real markets?

7- Real options
- The value of follow-on investment opportunities
- The timing option
- The abandonment option
- Flexible production
- Conceptual aspects and extensions

8- Government bonds and their valuation
- Relationship between bonds and interest rates
- Real and nominal rates of interest
- Term structure and Yields to maturity
- Explaining the term structure
- Different models of the term structure

9- Managing international risks
- The foreign exchange market
- Relations between exchanges rates and interest rates, inflation, and other economic variables
- Hedging currency risks
- Currency speculation
- Exchange risk and international investment decisions

Lecture notes
Lecture slides will be available on the site of the lecture

Literature
Corporate Finance
Brealey / Myers / Allen
Eight edition

+ Additional paper reading provided during the lectures

Prerequisites / notice
None

401-5820-00L Seminar in Computational Finance for CSE W 4 credits 2S J. Teichmann

We aim to comprehend recent and exciting research on the nature of stochastic volatility: an extensive econometric research [4] lead to new insights on stochastic volatility, in particular that very rough fractional processes of Hurst index about 0.1 actually provide very attractive models. Also from the point of view of pricing [1] and microfoundations [2] these models are very convincing.

More precisely each student is expected to work on one specified task consisting of a theoretical part and an implementation with financial data, whose results should be presented in a 45 minutes presentation.
![Electromagnetics](image)

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
227-0110-00L | Electromagnetic Waves: Materials, Effects, and Antennas | W | 6 credits | 2V+2U | U. Koch

Abstract
This course provides profound knowledge of electromagnetic waves. Various types of materials, nonlinear and resonant effects, and antenna applications are discussed.

Objective
You can describe wave propagation in classical and nonclassical theories and know the fundamental solutions. You know how waves interact with matter and about nonlinear and resonant effects. You can apply the acquired knowledge in scattering, waveguiding, radiation, and antenna problems.

Content
The lecture covers the following topics:
- Generic time-harmonic electromagnetic fields
- Fundamental solutions of the wave equation
- Wave propagation in various types of materials
- Interaction of waves with matter
- Nonlinear effects
- Resonant effects
- Applications like scattering, waveguiding, radiation
- Radio frequency and optical antennas

Lecture notes
Lecture notes and slides will be handed out during the lectures.

Prerequisites / notice
Requirements: sound understanding of stochastic concepts and concepts of mathematical Finance, ability to implement econometric or simulation routines in MATLAB.

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
227-2037-00L | Physical Modelling and Simulation | W | 6 credits | 4G | J. Smajic

Abstract
This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.

Objective
Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.

Content
The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS.

In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.

227-0301-00L | Optical Communication Fundamentals | W | 6 credits | 2V+1U+1P | J. Leuthold

Abstract
The path of an analog signal in the transmitter to the digital world in a communication link and back to the analog world at the receiver is discussed. The lecture covers the fundamentals of all important optical and optoelectronic components in a fiber communication system. This includes the transmitter, the fiber channel and the receiver with electronic and digital signal processing elements.

Objective
An in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societal, economical and environmental aspects related to the on-going exponential growth in the field of communications.

Content
- Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.
- Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.
- Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection techniques, Error correction coding.
- Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.
- Chapter 7: Optical Amplifiers: Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.

Lecture notes
Lecture notes are handed out.

Literature
Govind P. Agrawal; "Fiber-Optic Communication Systems"; Wiley, 2010

Prerequisites / notice

401-4785-00L | Mathematical and Computational Methods in Photonics | W | 8 credits | 4G | H. Ammari

Abstract
The aim of this course is to review new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods used to address challenging problems in nanophotonics. The emphasis will be on analyzing plasmon resonant nanoparticles, super-focusing & super-resolution of electromagnetic waves, photonic crystals, electromagnetic cloaking, metamaterials, and metasurfaces.
The field of photonics encompasses the fundamental science of light propagation and interactions in complex structures, and its technological applications.

The recent advances in nanoscience present great challenges for the applied and computational mathematics community. In nanophotonics, the aim is to control, manipulate, reshape, guide, and focus electromagnetic waves at nanometer length scales, beyond the resolution limit. In particular, one wants to break the resolution limit by reducing the focal spot and confine light to length scales that are significantly smaller than half the wavelength.

Interactions between the field of photonics and mathematics has led to the emergence of a multitude of new and unique solutions in which today's conventional technologies are approaching their limits in terms of speed, capacity and accuracy. Light can be used for detection and measurement in a fast, sensitive and accurate manner, and thus photonics possesses a unique potential to revolutionize healthcare. Light-based technologies can be used effectively for the very early detection of diseases, with non-invasive imaging techniques or point-of-care applications. They are also instrumental in the analysis of processes at the molecular level, giving a greater understanding of the origin of diseases, and hence allowing precise diagnosis along with new treatments. Photonic technologies also play a major role in addressing the needs of our ageing society: from pace-makers to synthetic bones, and from endoscopes to the micro-cameras used in in-vivo processes. Furthermore, photonics are also used in advanced lighting technology, and in improving energy efficiency and quality. By using photonic media to control waves across a wide band of wavelengths, we have an unprecedented ability to fabricate new materials with specific microstructures.

The main objective in this course is to report on the use of sophisticated mathematics in diffractive optics, plasmonics, super-resolution, photonic crystals, and metamaterials for electromagnetic invisibility and cloaking. The book merges highly nontrivial multi-mathematics in order to make a breakthrough in the field of mathematical modelling, imaging, and optimal design of optical nanodevices and nanostructures capable of light enhancement, and of the focusing and guiding of light at a subwavelength scale. We demonstrate the power of layer potential techniques in solving challenging problems in photonics, when they are combined with asymptotic analysis and the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions.

In this course we shall consider both analytical and computational matters in photonics. The issues we consider lead to the investigation of fundamental problems in various branches of mathematics. These include asymptotic analysis, spectral analysis, mathematical imaging, optimal design, stochastic modelling, and analysis of wave propagation phenomena. On the other hand, deriving mathematical foundations, and new and efficient computational frameworks and tools in photonics, requires a deep understanding of the different scales in the wave propagation problem, an accurate mathematical modelling of the nanodevices, and fine analysis of complex wave propagation phenomena. An emphasis is put on mathematically analyzing plasmon resonant nanoparticles, diffractive optics, photonic crystals, super-resolution, and metamaterials.

401-5870-00L Seminar in Electromagnetics for CSE

Abstract
Various topics of electromagnetics, including electromagnetic theory, computational electromagnetics, electromagnetic wave propagation, applications from statics to optics. Traditional problems such as antennas, electromagnetic scattering, waveguides, resonators, etc. as well as modern topics such as photonic crystals, metamaterials, plasmonics, etc. are considered.

Objective
Knowledge of the fundamentals of electromagnetic theory, development and application of numerical methods for solving Maxwell equations, analysis and optimal design of electromagnetic structures

Geophysics

Recommended combinations:
Subject 2 + Subject 5 + Subject 6 + Subject 7
Subject 2 + Subject 4 + Subject 5 + Subject 6 + Subject 8
Subject 2 + Subject 5 + Subject 6 + Subject 8 + (Subject 1 or Subject 3)

Geophysics: Subject 1

651-4007-00L Continuum Mechanics

Abstract
In this course, students learn crucial partial differential equations (conservation laws) that are applicable to any continuum including the Earth's mantle, core, atmosphere and ocean. The course will provide step-by-step introduction into the mathematical structure, physical meaning and analytical solutions of the equations. The course has a particular focus on solid Earth applications.

Objective
The goal of this course is to learn and understand few principal partial differential equations (conservation laws) that are applicable for analysing and modelling of any continuum including the Earth's mantle, core, atmosphere and ocean. By the end of the course, students should be able to write, explain and analyse the equations and apply them for simple analytical cases. Numerical solving of these equations will be discussed in the Numerical Modelling I and II course running in parallel.
A provisional week-by-week schedule (subject to change) is as follows:

Weeks 1, 2: The continuity equation
Exercise: Computing the divergence of velocity field.

Weeks 3, 4: Density and gravity
Exercise: Computing density, thermal expansion and compressibility from an equation of state. Derivation of gravitational acceleration and its divergence from gravitational potential.

Weeks 5, 6: Stress and strain
Exercise: Analysing strain rate tensor for solid body rotation. Computing stress invariants.

Weeks 7, 8: The momentum equation
Exercise: Deriving momentum equation. Computing velocity for magma flow in a channel.

Week 9: Viscous rheology of rocks
Theory: Solid-state creep of minerals and rocks as the major mechanism of deformation of the Earth's interior. Dislocation and diffusion creep mechanisms. Rheological equations for minerals and rocks. Effective viscosity and its dependence on temperature, pressure and strain rate. Formulation of the effective viscosity from empirical flow laws.
Exercise: Deriving viscous rheological equations for computing effective viscosities from empirical flow laws.

Weeks 10, 11: The heat conservation equation

Week 12, 13: Elasticity and plasticity
Exercise: Compute viscoelastic stress evolution.

GRADING will be based on homeworks (1/3) and oral exam (2/3).

Lecture notes
Script and Exam questions are available by request: tgerya@ethz.ch

Literature
A provisional week-by-week schedule (subject to change) is as follows:

Week 1: Introduction to the finite difference approximation to differential equations. Introduction to programming in Matlab. Solving of 1D Poisson equation.

Week 3: Solving momentum and continuity equations in case of constant viscosity using stream function/vorticity formulation.

Weeks 5: Conservative finite differences for the momentum equation. "Free slip" and "no slip" boundary conditions. Solving momentum and continuity equations in case of variable viscosity using pressure-velocity formulation with staggered grid.

Week 7: Advection in 2-D with Marker-in-cell method. Combining flow calculation and advection for buoyancy driven flow.

Week 9: Solving 2D heat conservation equation in case of constant thermal conductivity with explicit and implicit approaches.

Week 10: Solving 2D heat conservation equation in case of variable thermal conductivity with implicit approach. Temperature advection with markers. Creating thermomechanical code by combining mechanical solution for 2D buoyancy driven flow with heat diffusion and advection based on marker-in-cell approach.

Week 11: Implementation of radioactive, adiabatic and shear heating to the thermomechanical code.

Week 12: Programming of solution of coupled solid-fluid momentum and continuity equations for the case of melt percolation in a rising mantle plume.

GRADING will be based on weekly programming homeworks (50%) and a term project (50%) to develop an application of their choice to a more advanced level.

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4014-00L</td>
<td>Seismic Waves II</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>T. Diehl, F. Lanza, A. Obermann</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course provides an overview on the most widely used seismological methods to image the Earth's interior with a focus on crustal and upper-mantle structures. Topics include controlled source methods such as refraction and wide-angle reflection, as well as passive body-wave and surface-wave based methods. The course will discuss the strengths and weaknesses of each method.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understand the strengths and weaknesses of various active and passive tomographic methods to image the structure of the Earth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4273-00L</td>
<td>Numerical Modelling in Fortran</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>P. Tackley</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course gives an introduction to programming in Fortran, and is suitable for students who have only minimal programming experience. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geophysics: Seminar

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-5880-00L</td>
<td>Seminar in Geophysics for CSE</td>
<td>W</td>
<td>4</td>
<td>2S</td>
<td>T. Gerya, P. Tackley</td>
</tr>
</tbody>
</table>

Objective
The seminar in geophysics for CSE is a work on a small research project for 4 credit points. The project can be supervised and graded by any member of the Institute of Geophysics with doctoral degree.

Content
Students should find a project of interest by contacting potential supervisors from the Institute of Geophysics and agree on the content and timing of the project. At the end of the project, a written report of free format should be submitted by the student, which is then graded by the supervisor.

Literature
Relevant literature should be provided by the project supervisor.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Biology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0007-00L</td>
<td>Computational Systems Biology</td>
<td>W</td>
<td>6</td>
<td>3V+2U</td>
<td>J. Stelling</td>
</tr>
</tbody>
</table>

Objective
The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.

Content
Biological processes and the associated systems can be represented by mathematical models that are able to analyze the relevant parameters, the level of individual cells, and the interaction between them. Making extensive use of example systems, the course will focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometry, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches, (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.

Literature

- http://www.csb.ethz.ch/education/lectures.html

Computational Biology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>636-0017-00L</td>
<td>Computational Biology</td>
<td>W</td>
<td>6</td>
<td>3G+2A</td>
<td>T. Vaughan</td>
</tr>
</tbody>
</table>

Abstract
The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.
Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:

* stochastic models in molecular evolution
* phylogenetic & phylodynamic inference
* maximum likelihood and Bayesian statistics

Attendees will apply these concepts to a number of applications yielding biological insight into:

* epidemiology
* pathogen evolution
* macroevolution of species

The course is self-contained. The course assumes no background in biology but a good foundation regarding mathematical and computational techniques.

For the Zurich-based students without R experience, we recommend the R course at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date, e.g. working through the script provided as part of this R course.

The lecture course is not based on any textbook. The following textbooks are related to some of its content. The textbooks may be of interest for further reading, but are not necessary to follow the course:

* Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.
* Kreyszig, Engineering Mathematics, Wiley
* Murray, Mathematical Biology, Springer
* Forgacs and Newman, Biological Physics of the Developing Embryo, CUP
* Keener and Sneyd, Mathematical Physiology, Springer
* Fall et al, Computational Cell Biology, Springer
* Szallasi et al, System Modeling in Cellular Biology, MIT Press
* Wolkenhauer, Systems Biology
* Kreyzig, Engineering Mathematics, Wiley
The main goal of this lecture is to provide a comprehensive overview into the learning principles neuronal networks as well as to introduce a diverse skill set (e.g. simulating a spiking neuronal network) that is required to understand learning in large, hierarchical neuronal networks. To achieve this the lectures and exercises will merge ideas, concepts and methods from machine learning and neuroscience. These will include training basic ANNs, simulating spiking neuronal networks as well as being able to read and understand the main ideas presented in today's neuroscience papers.

After this course students will be able to:
- read and understand the main ideas and methods that are presented in today's neuroscience papers
- explain the basic ideas and concepts of plasticity in the mammalian brain
- implement alternative ANN learning algorithms to 'error backpropagation' in order to train deep neuronal networks.
- use a diverse set of ANN regularization methods to improve learning
- simulate spiking neuronal networks that learn simple (e.g. digit classification) tasks in a supervised manner.

Deep-learning a brain-inspired weak form of AI allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images. The origins of deep hierarchical learning can be traced back to early neuroscience research by Hubel and Wiesel in the 1960s, who first described the neuronal processing of visual inputs in the mammalian neocortex. Similar to their neocortical counterparts ANNs seem to learn by interpreting and structuring the data provided by the external world. However, while on specific tasks such as playing (video) games deep ANNs outperform humans (Minh et al., 2015, Silver et al., 2018), ANNs are far from matching human performance when it comes to recognizing actions in movie data and their ability to act as generalizable problem solvers is still far behind of what the human brain seems to achieve effortlessly. Moreover, biological neuronal networks can learn far more effectively with fewer training examples, they achieve a much higher performance in recognizing complex patterns in time series data (e.g. recognizing actions in movies), they dynamically adapt to new tasks without losing performance and they achieve unmatched performance to detect and integrate out-of-domain data examples (data they have not been trained with). In other words, many of the big challenges and unknowns that have emerged in the field of deep learning over the last years are already mastered exceptionally well by biological neuronal networks in our brain. On the other hand, many facets of typical ANN design and training algorithms seem biologically implausible, such as the non-local weight updates, discrete processing of time, and scalar communication between neurons. Recent evidence suggests that learning in biological systems is the result of the complex interplay of diverse error feedback signaling processes acting at multiple scales, ranging from single synapses to entire networks.

The lecture slides will be provided as a PDF after each lecture.

This advanced level lecture requires some basic background in machine/deep learning. Thus, students are expected to have a basic mathematical foundation, including linear algebra, multivariate calculus, and probability. The course is not to be meant as an extended tutorial of how to train deep networks in PyTorch or Tensorflow, although these tools used.

The participation in the course is subject to the following conditions:

1) The number of participants is limited to 120 students (MSc and PhDs).
2) Students must have taken the exam in Deep Learning (263-3210-00L) or have acquired equivalent knowledge.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1037-00L</td>
<td>Introduction to Neuroinformatics</td>
<td>W</td>
<td>6 credits</td>
<td>2V+1U+1A</td>
<td>V. Mante, M. Cook, B. Grewe, G. Indiveri, D. Kiper, W. von der Behrens</td>
</tr>
</tbody>
</table>

Objective
Understanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.

Content
- ANNs are brain-inspired weak forms of AI which allows training of large artificial neuronal networks (ANNs) that, like humans, can learn real-world tasks such as recognizing objects in images.
- The origins of deep hierarchical learning can be traced back to early neuroscience research by Hubel and Wiesel in the 1960s.
- However, biological neuronal networks can learn far more effectively with fewer training examples, they achieve a much higher performance in recognizing complex patterns in time series data (e.g. recognizing actions in movies), they dynamically adapt to new tasks without losing performance and they achieve unmatched performance to detect and integrate out-of-domain data examples (data they have not been trained with).
- The goal of this course is to offer a practical approach to solve systems of differential equations in parallel on GPUs using the Julia language.

Electives

In the 'electives' subcategory, at least two course units must be successfully completed.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Objective
Quantitative assessment of physical processes governing natural and engineered systems relies on numerically solving differential equations, fast and accurate solutions require performant algorithms leveraging parallel hardware. The goal of this course is to offer a practical approach to solve systems of differential equations in parallel on GPUs using the Julia language. Julia combines high-level language conciseness to low-level language performance which enables efficient code development.

The course will be taught in a hands-on fashion, putting emphasis on you writing code and completing exercises; lecturing will be kept at a minimum. In a final project you will solve a solid mechanics or fluid dynamics problem of your own interest, such as the shallow water equation, the shallow ice equation, acoustic wave propagation, nonlinear diffusion, viscous flow, elastic deformation, viscous or elastic poromechanics, frictional heating, and more. Your Julia GPU application will be hosted on a git-platform and implement modern software development practices.
Part 1 - Discovering a modern parallel computing ecosystem
- Learn the basics of the Julia language;
- Learn about the diffusion process and how to solve it;
- Understand the practical challenges of parallel and distributed computing: (multi-)GPUs, multi-core CPUs;
- Learn about software development tools: git, version control, continuous integration (CI), unit tests.

Part 2 - Developing your own parallel algorithms
- Implement wave propagation (or more advanced physics);
- Apply spatial and temporal discretisation (finite-differences, various time-stepper);
- Implement efficient iterative algorithms;
- Implement shared (on CPU and GPU) and, if time allows, distributed memory parallelisation (multi-GPUs/CPUs);
- Learn about main simulation performance limiters.

Part 3 - Final project
- Apply your new skills in a final project;
- Implement advanced physical processes (solid and fluid dynamic - elastic and viscous solutions).

Creative Thinking
Concepts and Theories
Virtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technology for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems.

Media and Digital Technologies

Problem-solving

Decision-making

Media and Digital Technologies

Analytical Competencies

Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving

Domain D - Personal Competencies
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-direction and Self-management

Literature
Links to relevant literature will be provided during classes.

Prerequisites / notice
Completed BSc studies. Interest in and basic knowledge of numerics, applied mathematics, and physics/engineering sciences. Basic programming skills (in e.g. Matlab, Python, Julia); advanced programming skills are a plus.

Stochastic Methods for Engineers and Natural Scientists

Objective
By the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, you should be able to develop basic stochastic models of such systems.

Content
- Probability theory, single and multiple random variables, mappings of random variables
- Estimation of statistical moments and probability densities based on data
- Stochastic differential equations, Ito calculus, PDF evolution equations
- Monte Carlo integration with importance and stratified sampling
- Markov-chain Monte Carlo sampling
- Control-variate and multi-level Monte Carlo estimation

Visualization, Simulation and Interaction - Virtual Reality II

Abstract
This lecture provides deeper knowledge on the possible applications of virtual reality, its basic technology, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes.

Objective
Virtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technology for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems.

Content
Introduction into Virtual Reality; basics of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of simulation; compression procedures of image-, audio-, and video signals; new materials for force feedback devices; introduction into data security; cryptography; definition of free-form surfaces; digital factory; new research fields of virtual reality

Didactical concept:
The course consists of lectures and exercises.

Prerequisites:
"Visualization, Simulation and Interaction - Virtual Reality I" is recommended, but not mandatory.

Advanced Model Predictive Control

Abstract
By the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, mathematical techniques are presented that are used to quantify uncertainty in various engineering applications.

Objective
By the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, you should be able to develop basic stochastic models of such systems.

Content
- Probability theory, single and multiple random variables, mappings of random variables
- Estimation of statistical moments and probability densities based on data
- Stochastic differential equations, Ito calculus, PDF evolution equations
- Monte Carlo integration with importance and stratified sampling
- Markov-chain Monte Carlo sampling
- Control-variate and multi-level Monte Carlo estimation

Lecture notes
Digital lecture notes, interactive Julia notebooks, online material.

Literature

Abstract
Model predictive control (MPC) has established itself as a powerful control technique for complex systems under state and input constraints. This course discusses the theory and application of recent advanced MPC concepts, focusing on system uncertainties and safety, as well as data-driven formulations and learning-based control.

Objective
Design, implement and analyze advanced MPC formulations for robust and stochastic uncertainty descriptions, in particular with data-driven formulations.

Content
Topics include:
- Review of Bayesian statistics, stochastic systems and Stochastic Optimal Control
- Nominal MPC for uncertain systems (nominal robustness)
- Robust MPC
- Stochastic MPC
- Set-membership Identification and robust data-driven MPC
- Bayesian regression and stochastic data-driven MPC
- MPC as safety filter for reinforcement learning

Lecture notes
Lecture notes will be provided.

Prerequisites / notice
Basic courses in control, advanced course in optimal control, basic MPC course (e.g. 151-0660-00L Model Predictive Control) strongly recommended. Background in linear algebra and stochastic systems recommended.

151-0833-00L

Abstract
Most problems in engineering are of nonlinear nature. The nonlinearities are caused basically due to the nonlinear material behavior, contact conditions and instability of structures. The principles of the nonlinear Finite-Element-Method (FEM) will be introduced for treating such problems. The finite element program ABAQUS is introduced to investigate real engineering problems.

Objective
The goal of the lecture is to provide the students with the fundamentals of the non linear Finite Element Method (FEM). The lecture focuses on the principles of the nonlinear Finite-Element-Method based on explicit and implicit formulations. Typical applications of the nonlinear Finite-Element-Methods are simulations of:
- Crash
- Collapse of structures
- Material behavior (metals and rubber)
- General forming processes

Content
- Introduction to FEM
- Fundamentals of continuum mechanics to characterize large plastic deformations
- Elasto-plastic material models
- Lagrange and Euler approaches
- FEM implementation of constitutive equations
- Element formulations
- Implicit and explicit FEM methods
- FEM formulations of coupled thermo-mechanical problems
- Modeling of tool contact and the influence of friction
- Stabilization

Lecture notes
Lecture slides

Literature

151-0529-00L

Abstract
The course provides an introduction to non-linear finite element analysis. The treated sources of non-linearity are related to material properties (hyperelasticity, plasticity), kinematics (large deformations, instability problems) and boundary conditions (contact).

Objective
To be able to address all major sources of non-linearity in theory and numerics, and to apply this knowledge to the solution of relevant problems in solid mechanics.

Content
1. Introduction: various sources of non-linearities and implications for FEA.

Lecture notes
Lecture notes will be provided. However, students are encouraged to take their own notes.

Prerequisites / notice
Mechanics 1, 2, Dynamics, Continuum Mechanics I and Introduction to FEA. Ideally also Continuum Mechanics II.

263-2800-00L

Abstract
Advanced topics in parallel and high-performance computing.

Objective
Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency patterns.

Content
We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.

Prerequisites / notice
This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.

263-5905-00L

Abstract
The goal of this course is an introduction and hands-on experience on latest mixed reality technology at the cross-section of 3D computer graphics and vision, human-machine interaction, as well as gaming technology.

Objective
After attending this course, students will:
1. Understand the foundations of 3D graphics, Computer Vision, and Human-Machine Interaction
2. Have a clear understanding on how to build mixed reality apps
3. Have a good overview of state-of-the-art Mixed Reality
4. Be able to critically analyze and assess current research in this area.
This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high
performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and
automatic synthesis for producing industrial-quality circuits.

Content
- Introduction to Discrete Event Systems
- Automata and Languages
- Smarter Automata
- Specification Models
- Stochastic Discrete Event Systems
- Worst-Case Event Systems
- Network Calculus

Lecture notes
Available

Literature
- [bertsekas] Data Networks
 Dimitri Bertsekas, Robert Gallager
- [borodin] Online Computation and Competitive Analysis
 Allan Borodin, Ran El-Yaniv.
 Cambridge University Press, 1998
- [boudec] Network Calculus
 J.-Y. Le Boudec, P. Thiran
 Springer, 2001
- [cassandras] Introduction to Discrete Event Systems
 Christos Cassandras, Stéphane Lafortune.
- [fiat] Online Algorithms: The State of the Art
 A. Fiat and G. Woeginger
 Springer, 2001
 D. Hochbaum
- [schickinger] Diskrete Strukturen (Band 2: Wahrscheinlichkeitstheorie und Statistik)
 T. Schickinger, A. Steger
 Springer, Berlin, 2001
- [sipser] Introduction to the Theory of Computation
 Michael Sipser

Prerequisites / notice
Prerequisites include:
- Good programming skills (C# / C++ / Java etc.)
- Computer graphics/vision experience: Students should have taken, at a minimum, Visual Computing. Higher level courses are
 recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

Objective
Over the past few decades the rapid evolution of computing, communication, and information technologies has brought about the
proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans.
The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a
keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event
systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems. We first examine discrete
event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and
queuing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems
from a worst-case perspective using the theory of online algorithms and adversarial queuing.

Content
1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus

Abstract
This course introduces latest mixed reality technology and provides introductory elements for a number of related fields including:
Introduction to Mixed Reality / Augmented Reality / Virtual Reality Introduction to 3D Computer Graphics, 3D Computer Vision. This will
take place in the form of short lectures, followed by student presentations discussing the current state-of-the-art. The main focus of this
course are student projects on mixed reality topics, where small groups of students will work on a particular project with the goal to design,
develop and deploy a mixed reality application. The project topics are flexible and can reach from proof-of-concept vision/graphics/HMI
research, to apps that support teaching with interactive augmented reality, or game development. The default platform will be Microsoft
HoloLens in combination with C# and Unity3D - other platforms are also possible to use, such as tablets and phones.

Objective
Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable
Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from
architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected
with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality
VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic
Design Automation (EDA) tools.
This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.

Lecture notes
Textbook and all further documents in English.

Literature

Prerequisites / notice
Prerequisites:
Basics of digital circuits.

Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German.

Further details:
https://iis-students.ee.ethz.ch/lectures/vlsi-i/

Abstract
This third course in our VLSI series is concerned with full-custom digital integrated circuits. The goals are to learn how to design digital circuits on the schematic, layout, gate, and register-transfer levels. The use of state-of-the-art CAD software (Cadence Virtuoso) in order to simulate, optimize, and characterize digital circuits is another important topic of this course.

Objective
At the end of this course you will
- understand how the main building blocks of state-of-the-art digital integrated circuits are designed
- be able to design and optimize digital integrated circuits on the schematic, layout, and gate levels
- be able to use standard industry software (Cadence Virtuoso) for drawing, simulating, and characterizing digital circuits
- understand the performance trade-offs between speed, area, and power consumption

Content
The third VLSI course begins with the basics of metal-oxide-semiconductor (MOS) field-effect transistors (FETs) and moves up the stack towards logic gates and increasingly complex digital circuit structures. The topics of this course include:
• Nanometer MOSFETs
• Static and dynamic behavior of complementary MOS (CMOS) inverters
• CMOS gate design, sizing, and timing
• Full-custom standard-cell design
• Wire models and parasitics
• Latch and flip-flop circuits
• Gate-level timing analysis and optimization
• Static and dynamic power consumption; low-power techniques
• Alternative logic styles (dynamic logic, pass-transistor logic, etc.)
• Arithmetic and logic circuits
• Fixed-point and floating-point arithmetic
• Memory circuits (ROM, SRAM, and DRAM)
• In- and near-memory processing architectures
• Full-custom accelerator circuits for machine learning

The exercises are concerned with schematic entry, layout, and simulation of digital integrated circuits using a disciplined standard-cell-based approach with Cadence Virtuoso.

Literature
N. H. E. Weste and D. M Harris, CMOS VLSI Design: A Circuits and Systems Perspective (4th Ed.), Addison-Wesley

Prerequisites / notice
VLSI3 can be taken in parallel with "VLSI1: HDL based design for FPGAs" and is designed to complement the topics of this course. Basic analog circuit knowledge is required.

227-0148-00L VLSI III: Test and Fabrication of VLSI Circuits W 6 credits 4G L. Benini

Abstract
Does not take place this semester.

Objective
Learn about modern IC manufacturing methodologies, understand the problem of IC testing. Cover the basic methods, algorithms and techniques to test circuits in an efficient way. Learn about practical aspects of IC testing and apply what you learn in class using a state-of-the-art tester.

Autumn Semester 2021
In this course we will deal with modern integrated circuit (IC) manufacturing technology and cover topics such as:
- Today’s nanometer CMOS fabrication processes (HKMG).
- Optical and post optical Photolithography.
- Potential alternatives to CMOS technology and MOSFET devices.
- Evolution paths for design methodology.
- Industrial roadmaps for the future evolution of semiconductor technology (ITRS).

If you want to earn money by selling ICs, you will have to deliver a product that will function properly with a very large probability. The main emphasis of the lecture will be on discussing how this can be achieved. We will discuss the fundamentals of Information Theory including Shannon's source coding and channel coding theorems, the source-channel separation theorem, and feedback capacity.

During the first weeks of the course there will be weekly practical exercises where you will work in groups of two. For the last 5 weeks of the class the students will be able to choose a class project that can be:
- The test of their own chip developed during a previous semester thesis
- Developing new setups and measurement methods in C++ on the tester
- Helping to debug problems encountered in previous microchips by IIS.

The course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equipartition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.

The fundamentals of Information Theory include Shannon's source coding and channel coding theorems.

The entropy rate of a source, Typical sequences, the asymptotic equipartition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity.

Although this is the third part in a series of lectures on VLSI design, you can follow this course even if you have not visited VLSI I and VLSI II lectures. An interest in integrated circuit design, and basic digital circuit knowledge is required though.

Course website: https://iis-students.ee.ethz.ch/lectures/vlsi-iii/

- **227-0417-00L** Information Theory I
 - **Objective**
 - The fundamentals of Information Theory including Shannon's source coding and channel coding theorems
 - **Content**
 - The entropy rate of a source, Typical sequences, the asymptotic equipartition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity
 - **Literature**
 - T.M. Cover and J. Thomas, Elements of Information Theory (second edition)

- **227-0427-00L** Signal Analysis, Models, and Machine Learning
 - **Abstract**
 - This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.
 - **Objective**
 - The fundamentals of Information Theory including Shannon's source coding and channel coding theorems
 - **Content**
 - The entropy rate of a source, Typical sequences, the asymptotic equipartition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity
 - **Literature**
 - T.M. Cover and J. Thomas, Elements of Information Theory (second edition)

- **227-0124-00L** Embedded Systems
 - **Abstract**
 - An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The course covers theoretical and practical aspects of embedded system design and includes a series of lab sessions.
 - **Objective**
 - Understanding specific requirements and problems arising in embedded system applications.
 - **Content**
 - An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems FreeRTOS, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment.
 - **More information available at** https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html
Will be announced in the lecture.

Randomized Algorithms are algorithms that “flip coins” to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Abstract
This course aims at bridging the gap between mathematical modelers and clinical neuroscientists by teaching computational techniques in the context of clinical applications. The hope is that the acquisition of a joint language and tool-kit will enable more effective communication and joint translational research between fields that are usually worlds apart.

Objective
This course teaches state-of-the-art methods in computational psychiatry. It covers various computational models of cognition (e.g., learning and decision-making) and brain physiology (e.g., effective connectivity) of relevance for psychiatric disorders. The course not only provides theoretical background, but also demonstrates open source software in application to concrete examples. Furthermore, practical exercises provide in-depth exposure to different software packages. Please see http://www.translationalneuromodeling.org/cpcourse/ for details.

Content
This six-day course teaches state-of-the-art methods in computational psychiatry. It covers various computational models of cognition (e.g., learning and decision-making) and brain physiology (e.g., effective connectivity) of relevance for psychiatric disorders. The course not only provides theoretical background, but also demonstrates open source software in application to concrete examples. Furthermore, practical exercises provide in-depth exposure to different software packages. Please see http://www.translationalneuromodeling.org/cpcourse/ for details.

Lecture notes
The situations in which object-oriented programming does not provide encapsulation, and how to avoid them

Prerequisites / notice
Prerequisites: Basic knowledge in computer architectures and programming.

Literature

Prerequisites / notice
Prerequisites: Basic knowledge in computer architectures and programming.

227-0971-00L Computational Psychiatry W 3 credits 4S K. Stephan

Abstract
This six-day course teaches state-of-the-art methods in computational psychiatry. It covers various computational models of cognition (e.g., learning and decision-making) and brain physiology (e.g., effective connectivity) of relevance for psychiatric disorders. The course not only provides theoretical background, but also demonstrates open source software in application to concrete examples.

Objective
This course aims at bridging the gap between mathematical modelers and clinical neuroscientists by teaching computational techniques in the context of clinical applications. The hope is that the acquisition of a joint language and tool-kit will enable more effective communication and joint translational research between fields that are usually worlds apart.

Content
This six-day course teaches state-of-the-art methods in computational psychiatry. It covers various computational models of cognition (e.g., learning and decision-making) and brain physiology (e.g., effective connectivity) of relevance for psychiatric disorders. The course not only provides theoretical background, but also demonstrates open source software in application to concrete examples. Furthermore, practical exercises provide in-depth exposure to different software packages. Please see http://www.translationalneuromodeling.org/cpcourse/ for details.

Literature

Prerequisites / notice
Prerequisites: Basic knowledge in computer architectures and programming.

252-0237-00L Concepts of Object-Oriented Programming W 8 credits 3V+2U+2A P. Müller

Abstract
Course that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection

Objective
After this course, students will:
- Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features.
- Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs.
- Be able to learn new languages more rapidly.
- Be aware of many subtle problems of object-oriented programming and know how to avoid them.

Content
The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In the course, we discuss alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages.

The topics discussed in the course include among others:
- The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing).
- The key problems of single and multiple inheritance and how different languages address them.
- Generic type systems, in particular, Java generics, C# generics, and C++ templates.
- The situations in which object-oriented programming does not provide encapsulation, and how to avoid them.
- The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing.
- How to maintain the consistency of data structures.

Literature
W

Prerequisites / notice
Prerequisites:
- Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming), programming experience

252-0417-00L Randomized Algorithms and Probabilistic Methods W 10 credits 3V+2U+4A A. Steger

Abstract
Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks

Objective
After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.

Content
Randomized Algorithms are algorithms that “flip coins” to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.

Lecture notes
Yes.

Literature

252-0543-01L Computer Graphics W 8 credits 3V+2U+2A

Abstract
This course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.

Objective
At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students’ curiosity to explore the field of computer graphics in subsequent courses or on their own.

Content
This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering.

Lecture notes
Does not take place this semester.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1879 of 2152
The course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary High-Dimensional Statistics. The course will consist of three topic clusters that will cover different aspects of data science problems in Biomedicine: Computational Biomedicine, Physically Based Simulation in Computer Graphics, and Linear & Combinatorial Optimization.

Prerequisites
- **Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.** The programming assignments will be in C++. This will not be taught in the class.

Content
- **Physically-Based Simulation in Computer Graphics**
 - **Prerequisites:** Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
 - **Abstract:** This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.
 - **Objective:** This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an additional course project, topics from the lecture will be implemented into a 3D game or a comparable application.
 - **Content:** The lecture covers topics in physically-based modeling, such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation.

- **Computational Biomedicine**
 - **Prerequisites:** Fundamentals of calculus and physics, basic concepts of algorithms and data structures, basic programming skills in C++. Knowledge on numerical mathematics as well as ordinary and partial differential equations is an asset, but not required.
 - **Abstract:** The course critically reviews central problems in Biomedicine and discusses the technical foundations and solutions for these problems. Over the past years, rapid technological advancements have transformed classical disciplines such as biology and medicine into fields of applied data science. While the sheer amount of the collected data often makes computational approaches inevitable for analysis, it is the domain specific structure and close relation to research and clinic, that call for accurate, robust and efficient algorithms. In this course we will critically review central problems in Biomedicine and will discuss the technical foundations and solutions for these problems.
 - **Objective:** The course will consist of three topic clusters that will cover different aspects of data science problems in Biomedicine:
 1) String algorithms for the efficient representation, search, comparison, composition and compression of large sets of strings, mostly originating from DNA or RNA Sequencing. This includes genome assembly, efficient index data structures for strings and graphs, alignment techniques as well as quantitative approaches.
 2) Statistical models and algorithms for the assessment and functional analysis of individual genomic variations, this includes the identification of variants, prediction of functional effects, imputation and integration problems as well as the association with clinical phenotypes.
 3) Models for organization and representation of large scale biomedical data. This includes ontolgy concepts, biomedical databases, sequence annotation and data compression.

Literature
- **Books:**
 - High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
 - Multiple view geometry in computer vision
 - Physically Based Rendering: From Theory to Implementation
 - Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling
 - Three-dimensional human body modeling
 - High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
 - Introduction to Machine Learning, Statistics/Probability, Programming in Python, Unix Command Line
 - Introduction to Machine Learning, Statistics/Probability, Programming in Python, Unix Command Line

Prerequisites
- **Fundamentals of Mathematical Statistics**
 - The course covers the basics of inferential statistics.

Content
- **Fundamentals of Mathematical Statistics**
 - **Prerequisites:** Knowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational models).
 - **Abstract:** "High-Dimensional Statistics" deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.
 - **Objective:** Knowledge of methods and basic theory for high-dimensional statistical inference
 - **Content:** Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and 1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling
 - **Prerequisites:** Knowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational models).

Literature
- **Books:**
 - High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
 - Multiple view geometry in computer vision
 - Physically Based Rendering: From Theory to Implementation
 - Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling
 - Three-dimensional human body modeling
 - High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
 - Introduction to Machine Learning, Statistics/Probability, Programming in Python, Unix Command Line

Prerequisites
- **Time Series Analysis**
 - The course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary Models, ARMA processes, Spectral Analysis, Forecasting, Nonstationary Models, ARIMA Models and an introduction to GARCH models.

Content
- **Time Series Analysis**
 - **Prerequisites:** Basic knowledge in probability and statistics
 - **Abstract:** The course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework, the main feature exhibited by time series is the dependence between successive observations.
 - **Objective:** The goal of the course is to have a good overview of the different types of time series and the approaches used in their statistical analysis.

Literature
- **Books:**
 - Introduction to Time Series and Forecasting
 - ARMA, ARIMA, Introduction into GARCH models

Prerequisites
- **Linear & Combinatorial Optimization**
 - Mathematical treatment of optimization techniques for linear and combinatorial optimization problems.
Objective
The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.

Content
Key topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and polyhedral techniques;
- Equivalence between optimization and separation.

Literature

Prerequisites / notice
Solid background in linear algebra.
Neuromorphic Engineering I

Abstract
This course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.

Objective
Understanding of the characteristics of neuromorphic circuit elements.

Content
Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.

Literature
S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.

Prerequisites
Particular: The course is highly recommended for those who intend to take the spring semester course ‘Neuromorphic Engineering II’, that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Transport Phenomena I

Abstract
Phenomenological approach to "Transport Phenomena" based on balance equations supplemented by thermodynamic considerations to formulate the underdetermined fluxes in the local species mass, momentum, and energy balance equations; Solutions of a few selected problems relevant to materials science and engineering both analytical and using numerical methods.

Objective
The teaching goals of this course are on five different levels:
1. Deep understanding of fundamentals: local balance equations, constitutive equations for fluxes, entropy balance, interfaces, idea of dimensionless numbers and scaling, ...
2. Ability to use the fundamental concepts in applications
3. Insight into the role of boundary conditions (mainly part 2)
4. Knowledge of a number of applications.
5. Flavor of numerical techniques: finite elements and finite differences.

Content
Part 1 Approach to Transport Phenomena
Equilibrium Thermodynamics
Balance Equations
Forces and Fluxes
Applications
1. Measuring Transport Coefficients
2. Fluid mechanics
3. combined heat and flow

Prerequisites
Complex numbers, Vector analysis (integrability; Gauss' divergence theorem), Laplace and Fourier transforms. Ordinary differential equations (basic ideas). Linear algebra (matrices; functions of matrices; eigenvectors and eigenvalues; eigenfunctions). Probability theory (Gaussian distributions; Poisson distributions; averages; moments; variances; random variables). Numerical mathematics (integration), Equilibrium thermodynamics (Gibbs' fundamental equation; thermodynamic potentials; Legendre transforms). Maxwell equations.

Taught competencies
Domain A - Subject-specific Competencies: Concepts and Theories assessed
Domain B - Method-specific Competencies: Techniques and Technologies assessed

Natural Language Processing

Abstract
This course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

Objective
The objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.

Content
This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

Literature
Lectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.
The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.

Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/reliableai21):

- Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
- Defenses against attacks
- Combining gradient-based optimization with logic for encoding background knowledge
- Complete Certification of deep neural networks via automated reasoning (e.g., via numerical relaxations, mixed-integer solvers)
- Probabilistic certification of deep neural networks
- Training deep neural networks to be provably robust via automated reasoning
- Fairness (different notions of fairness, certifiably fair representation learning)
- Federated Learning (introduction, security considerations)

While not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in "Intro to ML" classes at most institutions (e.g., "Introduction to Machine Learning" at ETH).

For solving assignments, some programming experience in Python is expected.

Case Studies

Abstract
Invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list. Students have to register their presentations online on https://rw.ethz.ch/the-programme/case-studies.html

Content
In the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list (containing articles from, e.g., Nature, Science, Scientific American, etc.). If the underlying paper comprises more than 15 pages, two or three consecutive case studies presentations delivered by different students can be based on it. Consistency in layout, style, and contents of those presentations is expected.

Students have to register their presentations online on https://rw.ethz.ch/the-programme/case-studies.html by the first week of the teaching period.

The talks might be given via Zoom; talks in presence should be also streamed in Zoom.

75% attendance and a short presentation on a published paper out of a list or on some own project are mandatory.

Students have to register their presentations online until the second Wednesday of the semester on https://rw.ethz.ch/the-programme/case-studies.html.

The student talks will be grouped by subject, so we’ll decide the actual dates of the individual talks.

Students that realize that they will not fulfill this criteria have to contact the teaching staff or de-register before the end of semester from the Seminar if they want to avoid a "Fail" in their documents. Later de-registrations will not be considered.

Semester Paper

There are several course units "Semester Paper" that are all equivalent. If, during your studies, you write several semester papers, choose among the different numbers in order to be able to obtain credits again.

Abstract
Successful participation in the course unit 401-2000-00L
Scientific Works in Mathematics or 402-2000-00L
Scientific Works in Physics is required. For more information, see...
Semester Papers serve to develop the students' ability for independent mathematical work as well as to enhance skills in presenting mathematical results in writing.

Objective
Semester papers serve to develop the students' ability for independent mathematical work as well as to enhance skills in presenting mathematical results in writing.

Prerequisites / notice
There are several course units "Semester Paper" that are all equivalent. If, during your studies, you write several semester papers, choose among the different numbers in order to be able to obtain credits again.

401-3740-02L Semester Paper (No. 2) W 8 credits 11A Supervisors
Successful participation in the course unit 401-2000-00L Scientific Works in Mathematics or 402-2000-00L Scientific Works in Physics is required.

Abstract
Semester Papers help to deepen the students' knowledge of a specific subject area. Students are offered a selection of topics. These papers serve to develop the students' ability for independent mathematical work as well as to enhance skills in presenting mathematical results in writing.

Objective
Semester papers serve to develop the students' ability for independent mathematical work as well as to enhance skills in presenting mathematical results in writing.

Prerequisites / notice
There are several course units "Semester Paper" that are all equivalent. If, during your studies, you write several semester papers, choose among the different numbers in order to be able to obtain credits again.

GESS Science in Perspective
Two credits are needed from the "Science in Perspective" programme with language courses excluded if three credits from language courses have already been recognised for the Bachelor's degree. See https://ethz.ch/content/dam/ethz/common/docs/weisungssammlung/lehrveranstaltungen/mathe-fachbereiche/german-language-courses.pdf (Eight credits must be acquired in this category: normally six during the Bachelor's degree programme, and two during the Master's degree programme. A maximum of three credits from language courses from the range of the Language Center of the University of Zurich and ETH Zurich may be recognised. In addition, only advanced courses (level B2 upwards) in the European languages English, French, Italian and Spanish are recognised. German language courses are recognised from level C2 upwards.)

see Science in Perspective: Language Courses ETH/UZH
see Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended Science in Perspective (Type B) for D-MATH.

Master's Thesis
If you wish to have recognised 402-2000-00L Scientific Works in Physics instead of 401-2000-00L Scientific Works in Mathematics (as allowed for the CSE programme), take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having passed the performance assessment.

Number Title Type ECTS Hours Lecturers
401-2000-00L Scientific Works in Mathematics O 0 credits M. Burger
Target audience: Third year Bachelor students;
Master students who cannot document to have received an adequate training in working scientifically.

Abstract
Introduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.)

Objective
Learn the basic standards of scientific works in mathematics.

Content
- Types of mathematical works
- Publication standards in pure and applied mathematics
- Data handling
- Ethical issues
- Citation guidelines

Prerequisites / notice

401-2000-01L Lunch Sessions – Thesis Basics for Mathematics Students Z 0 credits Speakers
Details and registration for the optional MathBib training course: https://www.math.ethz.ch/mathbib-schulungen

Abstract
Optional MathBib training course

402-2000-00L Scientific Works in Physics W 0 credits C. Eichler
Target audience: Master students who cannot document to have received an adequate training in working scientifically.

Abstract
Literature Review: ETh-Library, Journals in Physics, Google Scholar; Thesis Structure: The IMRAD Model; Document Processing: LaTeX and BibTeX, Mathematical Writing, AVETH Survival Guide; ETH Guidelines for integrity; Authorship Guidelines; ETH Citation Etiquettes; Declaration of Originality.

Objective
Basic standards for scientific works in physics: How to write a Master Thesis. What to know about research integrity.

401-4990-01L Master's Thesis O 30 credits 57D Supervisors

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1884 of 2152
Only students who fulfill the following criteria are permitted to commence the Master's thesis:

a. successful completion of the Bachelor's programme;

b. fulfilling of any additional requirements necessary to gain admission to the Master's programme;

c. successful completion of
 1) at least two course units in the category 'Core courses';
 2) at least five course units, including a seminar, in the category 'Fields of specialisation'; and
 3) the semester paper.

Successful participation in the course unit 401-2000-00L Scientific Works in Mathematics or 402-2000-00L Scientific Works in Physics is required.

For more information, see www.math.ethz.ch/intranet/students/study-administrationtheses.html

Abstract

The master's thesis concludes the study programme. Thesis work should prove the students' ability to independent, structured and scientific working.

Objective

Thesis work should prove the students' ability to independent, structured and scientific working.

► Colloquia

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-5650-00L</td>
<td>Zurich Colloquium in Applied and Computational Mathematics</td>
<td>E-</td>
<td>0 credits</td>
<td>1K</td>
<td>R. Abgrall, R. Alaifari, H. Ammari, R. Hiptmair, S. Mishra, S. Sauter</td>
</tr>
</tbody>
</table>

Abstract

Research colloquium

► Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>406-0353-AAL</td>
<td>Analysis III</td>
<td>E-</td>
<td>4 credits</td>
<td>9R</td>
<td>A. Iozzi</td>
</tr>
</tbody>
</table>

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics.

Objective

Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations.

Content

- Laplace Transforms:
 - Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
 - Transforms of Derivatives and Integrals, ODEs
 - Unit Step Function, t-Shifting
 - Short Impulses, Dirac's Delta Function, Partial Fractions
 - Convolution, Integral Equations
 - Differentiation and Integration of Transforms

- Fourier Series, Integrals and Transforms:
 - Fourier Series
 - Functions of Any Period p=2L
 - Even and Odd Functions, Half-Range Expansions
 - Forced Oscillations
 - Approximation by Trigonometric Polynomials
 - Fourier Integral
 - Fourier Cosine and Sine Transform

- Partial Differential Equations:
 - Basic Concepts
 - Modeling: Vibrating String, Wave Equation
 - Solution by separation of variables; use of Fourier series
 - D'Alembert Solution of Wave Equation, Characteristics
 - Heat Equation: Solution by Fourier Series
 - Heat Equation: Solutions by Fourier Integrals and Transforms
 - Modeling Membrane: Two Dimensional Wave Equation
 - Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
 - Solution of PDEs by Laplace Transform

Literature

Prerequisites / notice

For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis (Download PDF)

Up-to-date information about this course can be found at:
http://www.math.ethz.ch/education/bachelor/lectures/hs2013/other/analysis3_itet
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.

Objective
The objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".

Content
From "Statistics for research" (online)
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's T Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
Ch 1: Basics
Ch 2: The R Environment
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation

Literature
"Statistics for research" by S. Dowdy et. al. (3rd edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI: 10.1002/0471477435
From within the ETH, this book is freely available online under: http://onlinelibrary.wiley.com/book/10.1002/0471477435

From within the ETH, this book is freely available online under: http://www.springerlink.com/content/m17578/

401-2673-AAL Numerical Methods for CSE
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
The course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.

Objective
* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms efficiently

Content
* Direct Methods for linear systems of equations
* Least Squares Techniques
* Data Interpolation and Fitting
* Filtering Algorithms
* Approximation of Functions
* Numerical Quadrature
* Iterative Methods for non-linear systems of equations

Lecture notes
Lecture materials (PDF documents and codes) will be made available to participants.

Literature

M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002

Prerequisites / notice
Solid knowledge about fundamental concepts and techniques from linear algebra & calculus as taught in the first year of science and engineering curricula.

The course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.

401-0674-AAL Numerical Methods for Partial Differential Equations
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Derivation, properties, and implementation of fundamental numerical methods for a few key partial differential equations: convection-diffusion, heat equation, wave equation, conservation laws. Implementation in C++ based on a finite element library.
Objective

Main skills to be acquired in this course:
* Ability to implement fundamental numerical methods for the solution of partial differential equations efficiently.
* Ability to modify and adapt numerical algorithms guided by awareness of their mathematical foundations.
* Ability to select and assess numerical methods in light of the predictions of theory.
* Ability to identify features of a PDE (= partial differential equation) based model that are relevant for the selection and performance of a numerical algorithm.
* Ability to understand research publications on theoretical and practical aspects of numerical methods for partial differential equations.
* Skills in the efficient implementation of finite element methods on unstructured meshes.

This course is neither a course on the mathematical foundations and numerical analysis of methods nor an course that merely teaches recipes and how to apply software packages.
1 Case Study: A Two-point Boundary Value Problem [optional]

1.1 Introduction
1.2 A model problem
1.3 Variational approach
1.4 Simplified model
1.5 Discretization
1.5.1 Galerkin discretization
1.5.2 Collocation [optional]
1.5.3 Finite differences
1.6 Convergence

2 Second-order Scalar Elliptic Boundary Value Problems
2.1 Equilibrium models
2.1.1 Taut membrane
2.1.2 Electrostatic fields
2.1.3 Quadratic minimization problems
2.2 Sobolev spaces
2.3 Variational formulations
2.4 Equilibrium models: Boundary value problems
3 Finite Element Methods (FEM)
3.1 Galerkin discretization
3.2 Case study: Triangular linear FEM in two dimensions
3.3 Building blocks of general FEM
3.4 Lagrangian FEM
3.4.1 Simplicial Lagrangian FEM
3.4.2 Tensor-product Lagrangian FEM
3.5 Implementation of FEM in C++
3.5.1 Mesh file format (Gmsh)
3.5.2 Mesh data structures (DUNE)
3.5.3 Assembly
3.5.4 Local computations and quadrature
3.5.5 Incorporation of essential boundary conditions
3.6 Parametric finite elements
3.6.1 Affine equivalence
3.6.2 Example: Quadrilateral Lagrangian finite elements
3.6.3 Transformation techniques
3.6.4 Boundary approximation
3.7 Linearization [optional]

4 Finite Differences (FD) and Finite Volume Methods (FV) [optional]
4.1 Finite differences
4.2 Finite volume methods (FVM)
5 Convergence and Accuracy
5.1 Galerkin error estimates
5.2 Empirical Convergence of FEM
5.3 Finite element error estimates
5.4 Elliptic regularity theory
5.5 Variational crimes
5.6 Duality techniques [optional]
5.7 Discrete maximum principle [optional]

6 2nd-Order Linear Evolution Problems
6.1 Parabolic initial-boundary value problems
6.1.1 Heat equation
6.1.2 Spatial variational formulation
6.1.3 Method of lines
6.1.4 Timestepping
6.1.5 Convergence
6.2 Wave equations [optional]
6.2.1 Vibrating membrane
6.2.2 Wave propagation
6.2.3 Method of lines
6.2.4 Timestepping
6.2.5 CFL-condition

7 Convection-Diffusion Problems [optional]
7.1 Heat conduction in a fluid
7.1.1 Modelling fluid flow
7.1.2 Heat convection and diffusion
7.1.3 Incompressible fluids
7.1.4 Transient heat conduction
7.2 Stationary convection-diffusion problems
7.2.1 Singular perturbation
7.2.2 Upwinding
7.3 Transient convection-diffusion BVP
7.3.1 Method of lines
7.3.2 Transport equation
7.3.3 Lagrangian split-step method
7.3.4 Semi-Lagrangian method
8 Numerical Methods for Conservation Laws
8.1 Conservation laws: Examples
8.2 Scalar conservation laws in 1D
8.3 Conservative finite volume discretization
8.3.1 Semi-discrete conservation form
8.3.2 Discrete conservation property
8.3.3 Numerical flux functions
8.3.4 Monotone schemes
8.4 Timestepping
8.4.1 Linear stability
8.4.2 CFL-condition
8.4.3 Convergence
8.5 Higher order conservative schemes [optional]
8.5.1 Slope limiting
8.5.2 MUSCL scheme
8.6. FV-schemes for systems of conservation laws [optional]

Lecture notes
- "optional" indicates that the corresponding topic might be skipped depending on the progress of the course.
- The lecture will be taught in flipped classroom format.
- Video tutorials for all thematic units will be published online.
- Solution of homework problems will partly be covered by video tutorials.
- Lecture documents and tablet notes accompanying the videos will be made available to the audience as PDF.

Literature
- Chapters of the following books provide supplementary reading (detailed references in course material):

Prerequisites / notice
- However, study of supplementary literature is not important for for following the course.
- Important: Coding skills and experience in C++ are essential.

Homework assignments involve substantial coding, partly based on a C++ finite element library. The written examination will be computer based and will comprise coding tasks.

252-0232-AAL Software Engineering E- 6 credits 13R F. O. Friedrich Wicker, M. Schwerhoff

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
This course introduces both theoretical and applied aspects of software engineering. It covers:
- Software Architecture
- Informal and formal Modeling
- Design Patterns
- Software Engineering Principles
- Code Refactoring
- Program Testing

Objective
The course has two main objectives:
- Obtain an end-to-end (both, theoretical and practical) understanding of the core techniques used for building quality software.
- Be able to apply these techniques in practice.

Content
While the lecture will provide the theoretical foundations for the various aspects of software engineering, the students will apply those techniques in project work that will span over the whole semester - involving all aspects of software engineering, from understanding requirements over design and implementation to deployment and change requests.

Literature
Will be announced in the lecture

Computational Science and Engineering Master - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>E-</th>
<th>Recommended, not eligible for credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

V	lecture	P	practical/laboratory course
G	lecture with exercise	A	independent project
U	exercise	D	diploma thesis
S	seminar	R	revision course / private study
K	colloquium		

ECTS
European Credit Transfer and Accumulation System
- Special students and auditors need special permission from the lecturers.
Robotics, Systems and Control Master

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering. With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind. The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind. The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86) 2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP) 3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models 4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis 5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes: Class notes, handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Literature | • An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
• Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
• Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
• Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
• Lecture notes |
| Prerequisites / notice | Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations. |

151-0325-00L Planning and Decision Making for Autonomous Robots

- Lecture notes: Course notes and other education material will be provided for free in an electronic form.
- Literature: There is no required textbook, but an excellent reference is Steve Lalivre's book on "Planning Algorithms."
- Prerequisites / notice: Students should have taken basic courses in optimization, control systems, probability theory, and should be familiar with basic programming (e.g., Python, and/or C/C++). Previous exposure to robotic systems is a definite advantage.
- Taught competencies:
 - Domain A - Subject-specific Competencies: Concepts and Theories assessed
 - Techniques and Technologies assessed

151-0371-00L Advanced Model Predictive Control

- Lecture notes: Lecture notes will be provided.
- Prerequisites / notice: Basic courses in control, advanced course in optimal control, basic MPC course (e.g. 151-0660-00L Model Predictive Control) strongly recommended. Background in linear algebra and stochastic systems recommended.

151-0509-00L Microscale Acoustofluidics

- Abstract: In this lecture the basics as well as practical aspects (from modelling to design and fabrication) are described from a solid and nonlinear mechanics perspective with applications to microsystems and lab on a chip devices.
- Objective: Understanding acoustophoresis, the design of devices and potential applications
- Content: Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microRobots to surface acoustic wave devices
An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, and covers the fundamentals of Dynamic Programming & Optimal Control.

Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.

Prerequisite courses are Control Systems I and Informatics I.

This course is restricted to 33 students due to limited lab infrastructure. Interested students please contact Marianne Schmid Daners (E-Mail: marischm@ethz.ch) after your reservation has been confirmed please register online at www.mystudies.ethz.ch.

Detailed information can be found on the course website http://www.idsc.ethz.ch/education/lectures/embedded-control-systems.html

151-0601-00L

Theory of Robotics and Mechatronics

- This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.
- The objective of this course is to expose students to the fundamental aspects of the emerging field of micro-robotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.

151-0604-00L

Microrobotics

- Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field.

- The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
Main topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of bioclipic micro robots

The lecture will be taught in English.

Vision Algorithms for Mobile Robotics (University of Zurich)

W

<table>
<thead>
<tr>
<th>151-0632-00L</th>
<th>6 credits</th>
<th>2V+2U</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Scaramuzza</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objective

Learn the fundamental computer vision algorithms used in mobile robotics, in particular: filtering, feature extraction, structure from motion, multiple view geometry, dense reconstruction, tracking, image retrieval, event-based vision, and visual-inertial odometry and Simultaneous Localization And Mapping (SLAM) (the algorithms behind Hololens, Facebook-Oculus Quest, and the NASA Mars rovers).

Content

- An Invitation to 3D Vision, by Y. Ma, S. Soatto, J. Kosecka, S.S. Sastry.
- Multiple view Geometry, by R. Hartley and A. Zisserman.

Lecture notes

Lecture slides will be made available on the course official website: http://pgp.ilf.uzh.ch/teaching.html

Prerequisites / notice

Fundamentals of algebra, matrix calculus, and Matlab programming.

Note: If you are interested in taking UZH courses, you must register as an incoming mobility student at UZH. For details, see as follows:

UZH course enrollment for ETH student at University of Zurich (UZH) > Mobility within Switzerland – Incoming > Module Mobility: The easiest way to take individual modules/courses to supplement your studies at your home university is with module mobility. This option is not available to students who have dropped out of their home university or have been definitely excluded or banned from the relevant area of study/program. Applications are submitted via the UZH application portal (https://www.uzh.ch/cmsssl/en/studies/application/deadline.html).

The lecture will be taught in English.

Robert Dynamics

W

<table>
<thead>
<tr>
<th>151-0851-00L</th>
<th>4 credits</th>
<th>2V+2U</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Hutter, R. Siegwart</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objective

The primary objective of this course is that the student develops an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.

Content

- Fundamentals of algebra, matrix calculus, and Matlab programming.

Lecture notes

Lecture slides will be made available on the course official website: http://pgp.ilf.uzh.ch/teaching.html

Prerequisites / notice

The contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.

Introduction to Aircraft and Car Aerodynamics

W

<table>
<thead>
<tr>
<th>151-1116-00L</th>
<th>4 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G</td>
<td>3G</td>
</tr>
<tr>
<td>M. Immer, F. Schröder</td>
<td></td>
</tr>
</tbody>
</table>

Objective

An introduction to the basic principles and interrelationships of aircraft and automotive aerodynamics.

Content

- Aircraft aerodynamics: atmosphere, aircraft aerodynamics (ascending force; profile, wings, Resistance, residual resistance, induced resistance); thrust (overview of the propulsion system, aerodynamics of the propellers), introduction to static longitudinal stability.

Lecture notes

Preparation materials & slides are provided prior to each class.
Literature

- Schlichting.H und Truckenbrodt, E: Aerodynamik des Flugzeuges (Bd I und II), Springer Verlag, 1960
- Hoerner, S.F.: Fluid Dynamic Lift, Hoerner Fluid Dynamics, 1975

Vehicle Aerodynamics

151-0532-00L Nonlinear Dynamics and Chaos I W 4 credits 2V+2U G. Haller

Abstract
Basic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.

Objective
This course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.

Content
(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.
(2) Near equilibrium dynamics: Linear and Lyapunov stability
(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations
(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.
(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance

Lecture notes
The class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.

Prerequisites / notice
- Prerequisites: Analysis, linear algebra and a basic course in differential equations.
- Exam: two-hour written exam in English.
- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.

227-0102-00L Discrete Event Systems W 6 credits 4G R. Jacob, L. Vanbever, R. Wattenhofer

Abstract
Introduction to discrete event systems. We start out by studying popular models of discrete event systems, in the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.

Objective
Over the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems. We first examine discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queuing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queuing.

Content
1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus

Lecture notes
Available
An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed to perform specific tasks. The concept of feedback is fundamental in the design of embedded systems. The course will cover topics such as control systems, process automation, and computer-based synthesis methods. MATLAB is used for system analysis and simulation.

Literature

- **Dimitri Bertsekas, Robert Gallager**

- **Allan Borodin, Ran El-Yaniv**

- **J. Y. Le Boudec, P. Thiran**
 - *Network Calculus* (Springer, 2001)

- **Christos Cassandras, Stéphane Lafortune**

- **A. Fiat and G. Woeginger**
 - *Online Algorithms: The State of the Art*

- **D. Thielemann, M. Magno**

- **J. Aström and R. Murray**

Prerequisites

- Signal and Systems Theory II
- Regelsungstechnik 1 and 2

Content

Prerequisites / notice

- Prerequisites: Signal and Systems Theory II.

Lecture notes

- More information is available at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html

<table>
<thead>
<tr>
<th>227-0103-00L</th>
<th>Control Systems</th>
<th>W</th>
<th>6 credits</th>
<th>2V+2U</th>
<th>F. Dörfler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>227-0124-00L</th>
<th>Embedded Systems</th>
<th>W</th>
<th>6 credits</th>
<th>4G</th>
<th>L. Thiele, M. Magno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The course covers theoretical and practical aspects of embedded system design and includes a series of lab sessions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding architectures and components, their hardware-software interfaces, the memory architecture, communication between components, embedded operating systems, real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Using the formal models and methods in embedded system design in practical applications using the programming language C, the operating system FreeRTOS, a commercial embedded system platform and the associated design environment. The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems FreeRTOS, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment. Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>More information is available at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html. The following information will be available: Lecture material, publications, exercise sheets and laboratory documentation at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detailed understanding of the principle of operation and modulation of advanced power electronics converter systems, especially of zero voltage switching and zero current switching non-isolated and isolated DC/DC converter systems and three-phase voltage DC link inverter systems. Furthermore, the course should convey knowledge on the switching frequency related loss mechanisms of magnetic components and inductive power components and introduce the concept of space vector calculus which provides a basis for the comprehensive discussion of three-phase PWM converters systems in the lecture Power Electronic Systems II.

The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.

The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.

The goal of this course is understanding the stationary and dynamic problems in electrical power systems and the application of analysis tools in steady and dynamic states.

The course is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.

The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.
Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics

Introduction to process automation: system architecture, data handling, communication (fieldbuses), process visualization, and

W

Introduction to industrial automation systems with application to the process industry, power generation as well as discrete manufacturing.

Lecture notes.

Introduction to modeling: Black-box and grey-box models; Parametric and non-parametric models; ARX, ARMAX (etc.) models.

Optimal experimental design, Cramer-Rao bounds, input signal design.

Parametric identification methods. On-line and batch approaches.

Closed-loop identification strategies. Trade-off between controller performance and information available for identification.

Additional papers will be available via the course Moodle.

Control systems (227-0216-00L) or equivalent.

Industrial Process Control

W

4 credits

3G

A. Horch, M. Mercangöz

Objective

Introduction to industrial automation systems with application to the process industry, power generation as well as discrete manufacturing.

General understanding of industrial automation systems in different industries. Purpose, architecture, technologies, application examples, current and future trends.

Introduction to process automation: system architecture, data handling, communication (fieldbuses), process visualization, and engineering. Differences and characteristics of discrete and process industries.

Analysis and design of open loop control problems: discrete automata, finite state machines, decision tables, and petri-nets. Practical analysis and design of closed-loop control for the process industry.

Automation Engineering: Application programming in IEC 61131-3 (ladder diagrams, function blocks, sequence control, structured text); PLC programming and simulation, process visualization and operation; engineering integration from sensors, cabling, topology design, function, visualization, diagnosis, to documentation; Industry standards (e.g., OPC, Profibus); Ergonomic design, safety (IEC61508) and availability, supervision and diagnosis.

Automation standards: Communication, Architecture, Engineering, dependable systems, functional safety, automation security.

Extensive practical examples from different process industries, power generation, gas compressor control, and automotive manufacturing.

Slides will be available as .PDF documents, see “Learning materials” (for registered students only)

References will be given at the end of individual lectures.

Exercises: Tuesday 15-16

Practical exercises will illustrate some topics, e.g. some control software coding using industry standard programming tools based on IEC61131-3.

Seminar in Systems and Control

Z

0 credits

1S

F. Dörfler, R. D'Andrea, E. Frazzoli, M. H. Khammash, J. Lygeros, R. Smith

Current topics in Systems and Control presented mostly by external speakers from academia and industry.

Advanced Machine Learning

W

10 credits

3V+2U+4A

J. M. Buhmann, C. Cotrini Jimenez

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
What is data?
Bayesian Learning
Computational learning theory

Supervised learning:
Ensembles: Bagging and Boosting
Max Margin methods
Neural networks

Unsupervised learning:
Dimensionality reduction techniques
Clustering
Mixture Models
Non-parametric density estimation
Learning Dynamical Systems

Prerequisites / notice

see above

Lecture notes

No lecture notes, but slides will be made available on the course webpage.
Literature

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Semester</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-3110-00L</td>
<td>Human Computer Interaction</td>
<td>W</td>
<td>6</td>
<td>2V+1U+2A</td>
<td>O. Hilliges, C. Holz</td>
</tr>
<tr>
<td>252-5051-00L</td>
<td>Advanced Topics in Machine Learning</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>J. M. Buhmann, R. Cotterell, J. Vogt, F. Yang</td>
</tr>
<tr>
<td>252-5701-00L</td>
<td>Advanced Topics in Computer Graphics and Vision</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>M. Pollefeys, O. Sorkine Hornung, S. Tang</td>
</tr>
<tr>
<td>263-5210-00L</td>
<td>Probabilistic Artificial Intelligence</td>
<td>W</td>
<td>8</td>
<td>3V+2U+2A</td>
<td>A. Krause</td>
</tr>
</tbody>
</table>

Literature

- The course website can be found here: https://teaching.siplab.org/human_computer_interaction/2021/
- The course website can be found here: https://teaching.siplab.org/human_computer_interaction/2021/
- The course website can be found here: https://teaching.siplab.org/human_computer_interaction/2021/
Content

Topics covered:
- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

Prerequisites / notice

The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite.

263-5902-00L Computer Vision

W 8 credits 3V+1U+3A M. Pollefeys, S. Tang, F. Yu

Abstract

The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.

Objective

The objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

Content

Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition

Prerequisites / notice

It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.

263-5905-00L Mixed Reality

W 5 credits 3G+1A I. Armeni, F. Bogo, M. Pollefeys

Abstract

The goal of this course is an introduction and hands-on experience on latest mixed reality technology at the cross-section of 3D computer graphics and vision, human machine interaction, as well as gaming technology.

Objective

After attending this course, students will:
1. Understand the foundations of 3D graphics, Computer Vision, and Human-Machine Interaction
2. Have a clear understanding on how to build mixed reality apps
3. Have a good overview of state-of-the-art Mixed Reality
4. Be able to critically analyze and assess current research in this area.

Content

The course introduces latest mixed reality technology and provides introductory elements for a number of related fields including:
Introduction to Mixed Reality / Augmented Reality / Virtual Reality
Introduction to 3D Computer Graphics, 3D Computer Vision. This will take place in the form of short lectures, followed by student presentations discussing the current state-of-the-art. The main focus of this course are student projects on mixed reality topics, where small groups of students will work on a particular project with the goal to design, develop and deploy a mixed reality application. The project topics are flexible and can reach from proof-of-concept vision/graphics/HMI research, to apps that support teaching with interactive augmented reality, or game development. The default platform will be Microsoft HoloLens in combination with C# and Unity3D - other platforms are also possible to use, such as tablets and phones.

Prerequisites / notice

Prerequisites include:
- Good programming skills (C# / C++ / Java etc.)
- Computer graphics/vision experience: Students should have taken, at a minimum, Visual Computing. Higher level courses are recommended, such as Introduction to Computer Graphics, 3D Vision, Computer Vision.

376-1504-00L Physical Human Robot Interaction (pHRI)

W 4 credits 2V+2U O. Lambercy

Abstract

This course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems.

Objective

The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems.

By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de-sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to:

1) identify critical human factors in physical human-robot interaction and use these to derive design requirements;
2) compare and select mechatronic components that optimally fulfill the defined design requirements;
3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system;
4) design control hardware and software and implement and test human-interactive control strategies on the physical setup;
5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics;
6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation.

Content

This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits.

Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (https://relab.ethz.ch/downloads/open-hardware/haptic-paddle.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties.

Lecture notes

Will be distributed on Moodle before the lectures.
This course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, ETH Zurich Distinguished Seminar in Robotics, Computational Systems Biology

Biology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label “Systems Biology”, focuses on how networks, which are more than the mere sum of their parts’ properties, establish biological function. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

The registration is limited to 26 students. The students are expected to have basic control knowledge from previous classes.

http://www.relab.ethz.ch/education/courses/phri.html

636-0007-00L Computational Systems Biology W 6 credits 3V+2U J. Stelling

Abstract
Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).

Objective
The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.

Content
Biological systems have an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label “Systems Biology”, focuses on how networks, which are more than the mere sum of their parts’ properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks.

We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological Engineering with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.

Lecture notes
http://www.csb.ethz.ch/education/lectures.html

Literature

Multidisciplinary Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0623-00L</td>
<td>ETH Zurich Distinguished Seminar in Robotics, Systems and Controls</td>
<td>W</td>
<td>1 credit</td>
<td>1S</td>
<td>B. Nelson, M. Chill, M. Hutter, R. Katzschmann, R. Rienner, R. Siegwart</td>
</tr>
</tbody>
</table>

Abstract
This course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls.

Objective
Obtain an overview of various topics in Robotics, Systems, and Controls from leaders in the field. Please see http://www.msr1.ethz.ch/education/distinguished-seminar-in-robotics-systems-controls--151-0623-0.html for a list of upcoming lectures.
This course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls. MSc students in Robotics, Systems, and Controls are required to attend every lecture. Attendance will be monitored. If for some reason a student cannot attend one of the lectures, the student must select another ETH or University of Zurich seminar related to the field and submit a one page description of the seminar topic. Please see http://www.msrl.ethz.ch/education/distinguished-seminar-in-robotics--systems--controls--151-0623-0.html for a suggestion of other lectures.

Students are required to attend all seven lectures to obtain credit. If a student must miss a lecture then attendance at a related special lecture will be accepted that is reported in a one page summary of the attended lecture. No exceptions to this rule are allowed.

GESS Science in Perspective

- see GESS Science in Perspective: Language Courses
- see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-MAVT.

Semester Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1014-00L</td>
<td>Semester Project Robotics, Systems and Control</td>
<td>O</td>
<td>8 credits</td>
<td>17A</td>
<td>Professors</td>
</tr>
</tbody>
</table>

The subject of the Semester Project and the choice of the supervisor (ETH-professor) are to be approved in advance by the tutor.

Abstract
The semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.

Objective
The semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program.

Industrial Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1090-00L</td>
<td>Industrial Internship</td>
<td>O</td>
<td>8 credits</td>
<td></td>
<td>external organisers</td>
</tr>
</tbody>
</table>

Access to the company list and request for recognition under www.mavt.ethz.ch/praxis.

Abstract
No registration required via myStudies.

Objective
The main objective of the minimum twelve-week internship is to expose Master's students to the industrial work environment. The aim of the Industrial Internship is to apply engineering knowledge to practical situations.

Master’s Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1016-00L</td>
<td>Master's Thesis Robotics, Systems and Control</td>
<td>O</td>
<td>30 credits</td>
<td>64D</td>
<td>Professors</td>
</tr>
</tbody>
</table>

Students who fulfill the following criteria are allowed to begin with their Master's Thesis:
- a. successful completion of the bachelor program;
- b. fulfilling of any additional requirements necessary to gain admission to the master programme;
- c. successful completion of the semester project;
- d. achievement of 28 ECTS in the category "Core Courses".

The Master’s Thesis must be approved in advance by the tutor and is supervised by a professor of ETH Zurich or an adjunct faculty of RSC.

Abstract
Master's programs are concluded by the master's thesis. The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem. The subject of the master's thesis, as well as the project plan and roadmap, are proposed by the tutor and further elaborated with the student.

Objective
The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem.

Robotics, Systems and Control Master - Key for Type

- **O** Compulsory
- **W+** Eligible for credits and recommended
- **W** Eligible for credits
- **E-** Recommended, not eligible for credits
- **Z** Courses outside the curriculum
- **Dr** Suitable for doctorate

Key for Hours

- **V** lecture
- **G** lecture with exercise
- **U** exercise
- **S** seminar
- **K** colloquium
- **P** practical/laboratory course
- **A** independent project
- **D** diploma thesis
- **R** revision course / private study

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Cornerstone Science, Technology, and Policy

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>860-0003-00L</td>
<td>Cornerstone Science, Technology, and Policy</td>
<td>O</td>
<td>2</td>
<td>1S</td>
<td>T. Bernauer</td>
</tr>
<tr>
<td></td>
<td>Only for Science, Technology, and Policy MSc and PhD. ISTP-PhD students please register via the Study Administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This course introduces students to the MSc STP programme. It provides a general introduction to the study of STP.

Objective

This course introduces students to the MSc program in two ways. First, it provides a general introduction to the study of STP. Second, it exposes students to various complex policy problems and ways and means of coming up with proposals for and assessments of policy options.

In a reading workshop, students will learn how to improve their skills in reading and understanding scientific papers in the English language.

Content

- Introduction to Science, Technology and Policy,
- Reading Workshop: Reading and understanding scientific papers in English language.

A detailed programme will be sent out to the participants in advance to the course.

Literature

Literature and references will be available on Moodle.

Bridging Science, Technology, and Policy

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>860-0004-00L</td>
<td>Bridging Science, Technology, and Policy</td>
<td>O</td>
<td>3</td>
<td>2S</td>
<td>T. Bernauer, T. Schmidt</td>
</tr>
<tr>
<td></td>
<td>Only for Science, Technology, and Policy MSc and PhD. ISTP-PhD students please register via the Study Administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This course focuses on technological innovations from the beginning of humanity through the industrial revolution up until today. It provides students with a deeper understanding of the factors that drive technological innovations, and the roles government policies, society, science, and industry play in this regard.

Objective

This course picks up on the ISTP Cornerstone Science, Technology and Policy course and goes into greater depth on issues covered in that course, as well as additional issues where science and technology are among the causes of societal challenges but can also help in finding solutions.

Content

- Week 1: no class because of ISTP Cornerstone Science, Technology and Policy course
- Week 2: technology & society in historical perspective - technological innovations up to the industrial revolution
- Week 3: technology & society in historical perspective - technological innovations during the industrial revolution - engines & electricity
- Week 4: technology & society in historical perspective - from the industrial revolution to modernity - mobility and transport (railroads, ships, cars, airplanes, space)
- Week 5: food production: the green revolutions.
- Week 6: microelectronics, computing & the internet
- Week 7: life sciences: pharmaceuticals & diagnostic technology
- Week 8: energy: primary fuels, renewables, networks
- Week 9: automation: self-driving cars & trains, drones
- Week 10: communication & Big Data: semiconductors and software
- Week 11: military & security issues associated with technological innovation
- Week 12: possible futures (1): nuclear fusion, geengineering
- Week 13: possible Future (2): information, communication, robotics, synthetic biology, nanotech, quantum computing

Lecture notes

Skript: Course materials will be available on moodle.

Colloquium Science, Technology, and Policy (HS)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>860-0005-00L</td>
<td>Colloquium Science, Technology, and Policy (HS)</td>
<td>O</td>
<td>1</td>
<td>2K</td>
<td>T. Schmidt, T. Bernauer</td>
</tr>
<tr>
<td></td>
<td>Only for Science, Technology, and Policy MSc and PhD. ISTP-PhD students please register via the Study Administration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Presentations by invited guest speakers from academia and practice/policy. Students are assigned to play a leading role in the discussion and write a report on the respective event.

Objective

Presentations by invited guest speakers from academia and practice/policy. Students are assigned to play a leading role in the discussion and write a report on the respective event.

Content

See the program on the ISTP website: http://www.istp.ethz.ch/events/colloquium.html

The series is open to the public. Lectures last about 60 minutes followed by an open discussion.

Prerequisites / notice

open to anyone from ETH

Policy Analysis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>860-0031-00L</td>
<td>Policy Analysis</td>
<td>O</td>
<td>4</td>
<td>2V</td>
<td>T. Schmidt, B. Steffen, F. M. Egli</td>
</tr>
<tr>
<td></td>
<td>Only for Science, Technology, and Policy MSc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The course Policy Analysis 1 will introduce important concepts and methods for ex-ante policy analysis. It will mostly focus on the policy content (vis-à-vis the policy process). We will primarily discuss quantitative methods. The course will contain several practical assignments in which students have to apply the concepts and methods studied.

Objective

Students should gain the skill to perform policy analyses independently. To this end, students will be enabled to understand a policy problem and the rationale for policy intervention; to select appropriate impact categories and methods to address a policy problem through policy analysis; to assess policy alternatives, using various ex-ante policy analysis methods; and to communicate the results of the analysis.

Content

The course has four major topics:
- Rationales for public policy in Science and Technology
- Impact of policies on firms and investors
- Impacts of policies on socio-technical systems
- Impact of policies on society at large

Principles of Microeconomics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0503-00L</td>
<td>Principles of Microeconomics</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>M. Filippini</td>
</tr>
<tr>
<td></td>
<td>GESELL Science in Perspective: This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.
The learning objectives of the course are:

1. Students must be able to discuss basic principles, problems and approaches in microeconomics.
2. Students can analyse and explain simple economic principles in a market using supply and demand graphs.
3. Students can contrast different market structures and describe firm and consumer behaviour.
4. Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole.
5. Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics.
6. Students can apply simple mathematical concepts on economic problems.

Topics covered by the course are:
- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade
- International trade
- International trade

The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:

The book can also be used for the course 'Principles of Macroeconomics' (Sturm)

Complementary:

Prerequisites / notice

GEDS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies not assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Media and Digital Technologies not assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies
- Communication not assessed
- Cooperation and Teamwork not assessed
- Customer Orientation not assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity not assessed
- Negotiation not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility not assessed
- Creative Thinking not assessed
- Critical Thinking assessed
- Integrity and Work Ethics not assessed
- Self-awareness and Self-reflection assessed
- Self-direction and Self-management not assessed

Statistics 1

Only for Science, Technology and Policy MSc.

Abstract
This course covers the necessary fundamentals for the use of statistics to understand policy. Theoretically the course will provide a survey of foundational concepts and techniques statistics and mathematics. The applied part of the course will focus on implementing these techniques in R, as well as the practical skills required to develop their own data based research projects.

Objective
Gain a familiarity with foundational concepts and techniques in statistics, and be able to apply these to new problems. Be comfortable independently conducting a variety of tasks in R, such as data cleaning, visualisation and analysis. Produce summaries of statistical analyses that non-specialists can understand.

Content
This course introduces students to the necessary fundamentals of statistics, and its application, to understand policy. Theoretically the course will provide a survey of foundational concepts and techniques statistics and mathematics. The applied part of the course will focus on implementing these techniques in R, as well as developing the practical skills in the language required to be able to independently conduct data based research projects.

By doing so, students will gain a familiarity with foundational concepts and techniques in statistics, and be able to apply these to new problems. Students will also develop the requisite skills to be able to independently conduct a variety of tasks in R, such as data cleaning, visualisation and analysis. Finally, students will be able to produce summaries of statistical analyses that non-specialists can understand.

Minor in Natural Sciences and Engineering

Urbanization and Planning

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>063-0703-00L</td>
<td>Architecture of Territory: Territorial Design in Histories, Theories and Projects</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>M. Topalovic</td>
</tr>
</tbody>
</table>

This core course (ending with «00L») can only be passed.
Abstract
This lecture series sets up an agenda for widening the disciplinary field of architecture and urbanism from their focus on the city, or the urban in the narrow sense, to wider territorial scales, which correspond to the increasing scales of contemporary urbanisation. It discusses the concepts of territory and urbanisation, and their implications for the work of architects and urbanists.

Objective
The course will enable students to critically discuss concepts of territory and urbanisation. It will invite students to revisit the history of architects’ work engaging with the problematic of urbanising territories and territorial organisation. The goal is to motivate and equip students to engage with territory in the present day and age, by setting out our contemporary urban agenda.

Content
Within the theme My Species, the four guest speakers engaged in fields ranging from art and landscape representation to bioethics and environmental philosophy, will approach territory through the notions such as multispecies, coexistence, and diversity. With a more-than-human perspective on the territory, the guest speakers will elaborate their take on “telling horrible stories in beautiful ways,” debate “the dignity of plants,” expound upon “mankind’s fascination to better the world,” and confer “the non-human turn” and what is to come after.

23. 09. 2021
On Territory
MILICA TOPALOVIĆ

30. 09. 2021
Architecture and Urbanisation
MILICA TOPALOVIĆ

07. 10. 2021
Methods in Territorial Research and Design
MILICA TOPALOVIĆ

14. 10. 2021
Multispecies Worldbuilding
Guest lecture by FEIFEI ZHOU

21. 10. 2021
Better Nature
Guest lecture by ALEXANDRA DAISY GINSBERG

04. 11. 2021
Planetary Urbanisation: Hinterland
MILICA TOPALOVIĆ

11. 11. 2021
Tomatoes Talk, Birch Trees Learn – Do Plants Have Dignity?
Guest lecture by FLORIANNE KOECHLIN

18. 11. 2021
Disappearance of the Countryside
MILICA TOPALOVIĆ

25. 11. 2021
What is Soul? On the Idea of Species Being
Guest lecture by OXANA TIMOFEEVA

09. 12. 2021
Our Common Territories: An Outlook
MILICA TOPALOVIĆ

Prerequisites / notice
The lectures will take place on Thursdays, 10.00-12.00, at ONA Fokushalle E7 and on ZOOM.

Lecturer:
Prof. Milica Topalovic

Team:
Prof. Milica Topalović, Nazlı Tümerdem, Vesna Jovanović

Contact:
Nazlı Tümerdem
tuemerdem@arch.ethz.ch

Our website:
https://topalovic.arch.ethz.ch

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Domain C - Social Competencies	Communication	assessed
Domain D - Personal Competencies	Self-presentation and Social Influence	assessed
	Creative Thinking	assessed
	Critical Thinking	assessed
	Self-awareness and Self-reflection	assessed

701-1453-00L
Ecological Assessment and Evaluation

W 3 credits 3G 3G
F. Knaus

Abstract
The course provides methods and tools for ecological evaluations dealing with nature conservation or landscape planning. It covers census methods, ecological criteria, indicators, indices and critically appraises objectivity and accuracy of the available methods, tools and procedures. Birds and plants are used as main example guiding through different case studies.

Objective
Students will be able to:
1) critically consider biological data books and local, regional, and national inventories;
2) evaluate the validity of ecological criteria used in decision making processes;
3) critically appraise the handling of ecological data and criteria used in the process of evaluation
4) perform an ecological evaluation project from the field survey up to the decision making and planning.
there are a large number of efforts around the world to obtain more net benefits from infrastructure assets. This can be seen through the

This course is an introduction to urban and regional economics. It focuses on the formation and development of urban systems, and

Urban Systems and Transportation

Infrastructure asset management is the process used to ensure that infrastructure provides adequate levels of service for specified periods

The course structure changes between lecture parts, seminars and discussions. The didactic atmosphere is intended as working group.

Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses:
- Pflanzen- und Vegetationsökologie
- Systematische Botanik
- Raum- und Regionalentwicklung
- Naturschutz und Naturschutzbiologie

| 363-1047-00L | Urban Systems and Transportation | W | 3 credits | 2G | G. Loumeau

Abstract
This course is an introduction to urban and regional economics. It focuses on the formation and development of urban systems, and highlight how transport infrastructure investments can affect the location, size and composition of such systems.

Objective
The main objective of this course is to provide students with some basic tools to analyze the fundamental economic forces at play in urban systems (i.e., agglomeration and congestion forces), and the role of transport networks in shaping the structure of these systems. Why do urban areas grow or decline? How do transport networks affect the location of individuals and firms? Does the location of a firm determine its productivity? Can transport infrastructure investments reduce economic disparities? These are some of the questions that students should be able to answer after having completed the course.

Content
The course is organized in four parts. I start with the key observation that economic activity (both in terms of population density and productivity) is unevenly distributed in space. For instance, the share of the population living in urban centers is increasing globally, from 16% in 1900 and 50% in 2000 to about 68% by the year 2050 (UN, World Economic Prospects, 2014). The goal of the first part is then to understand the economic forces at play behind these trends, looking at the effects within and across urban areas. I will also discuss how natural or man-made geographical characteristics (e.g., rivers, mountains, borders, etc.) affect the development of such urban systems.

In the second part, I discuss the planning and pricing of transport networks, moving from simple local models to more complex transport models at a global scale. The key aspects include: the first and second best road pricing, the public provision of transport networks and the demographic effects of transport networks.

In the third part, I combine the previous two parts and analyze the interaction between urban systems and transportation. Thereby, the main focus is to understand the economic mechanisms that can lead to a general equilibrium of all actors involved. However, as the study of the historical development of urban systems and transport networks provides interesting insights, I will discuss how their interaction in the past shapes today’s economic geography.

Finally, I broaden the scope of the course and explore related topics. There will be a particular emphasis on the relation between urban systems and fiscal federalism as well as environmental policies. Both aspects are important determinants of the contemporary developments of urban systems, and as such deserve our attention.

In general, this class focuses on the latest research developments in urban and regional economics, though it does not require prior knowledge in this field. It pays particular attention to economic approaches, which are based on theoretical frameworks with strong micro-foundations and allow for precise policy recommendations.

| 101-0509-00L | Infrastructure Management 1: Process | W | 6 credits | 3G | B. T. Adey

Abstract
Infrastructure asset management is the process used to ensure that infrastructure provides adequate levels of service for specified periods of time. This course provides an overview of the process, from setting goals to developing intervention programs to analyzing the process itself. It consists of weekly lectures and a group project. Additionally, there is a weekly help session.

Objective
There are a large number of efforts around the world to obtain more net benefits from infrastructure assets. This can be seen through the proliferation of codes and guidelines and the increasing amount of research in road infrastructure asset management. Many of these codes and guidelines and much of the research, however, are focused on only part of the large complex problem of infrastructure asset management.

The objective of this course is to provide an overview of the entire infrastructure management process. The high-level process described can be used as a starting point to ensure that infrastructure management is done professionally, efficiently and effectively. It also enables a clear understanding of where computer systems can be used to help automate parts of the process. Students can use this process to help improve the specific infrastructure management processes in the organisations in which they work in the future.

More specifically upon completion of the course, students will
- understand the main tasks of an infrastructure manager and the complexity of these tasks,
- understand the importance of setting goals and constraints in the management of infrastructure,
- be able to predict the deterioration of individual assets using discrete states that are often associated with visual inspections,
- be able to develop and evaluate simple management strategies for individual infrastructure assets,
- be able to develop and evaluate intervention programs that are aligned with their strategies,
- understand the principles of guiding projects and evaluating the success of projects,
- be able to formally model infrastructure management processes, and
- understand the importance of evaluating the infrastructure management process and have a general idea of how to do so.
The weekly lectures are structured as follows:

1. Introduction: An introduction to infrastructure management, with emphasis on the consideration of the benefits and costs of infrastructure to all members of society, and balancing the need for prediction accuracy with analysis effort. The expectations of your throughout the semester, including a description of the project.

2. Positioning infrastructure management in society. As infrastructure plays such an integral part in society, there is considerable need to ensure that infrastructure managers are managing it as best possible. A prominent network regulator explains the role and activities of a network regulator.

3. Setting goals and constraints – To manage infrastructure you need to know what you expect from it in terms of service and how much you are willing to pay for it. We discuss the measures of service for this purpose, as well as the ideas of quantifiable and non-quantifiable benefits, proxies of service, and valuing service.

4. Predicting the future – As infrastructure and our expectations of service from it change over time, these changes need to be included in the justification of management activities. This we discuss the connection between provided service and the physical state of the infrastructure and one way to predict their evolution over time.

5. Help session 1

6. Determining and justifying general interventions - It is advantageous to be able to explain why infrastructure assets need to be maintained, and not simply say that they need to be maintained. This requires explanation of the types of interventions that should be executed and how these interventions will achieve the goals. It also requires explaining which interventions are to be done if it is not possible to do everything due to for example budget constraints. This week we cover how to determine optimal intervention strategies for individual assets, and how to convert these strategies into network level intervention programs.

7. Determining and justifying monitoring – Once it is clear how infrastructure might change over time, and the optimal intervention strategies are determined, you need to explain how you are going to know that these states exist. This requires the construction of monitoring strategies for each of asset. This week we focus on how to develop monitoring strategies that ensure interventions are triggered at the right time.

8. Converting programs to projects / Analysing projects – Once programs are completed and approved, infrastructure managers must create, supervise and analyse projects. This week we focus on this conversion and the supervision and analysis of projects.

9. Help session 2

10. Ensuring good information – Infrastructure management requires consistent and correct information. This is enabled by the development of a good information model. This week we provide an introduction to information models and how they are used in infrastructure management.

11. Ensuring a well-run organization – How people work together affects how well the infrastructure is managed. This week we focus on the development of the human side of the infrastructure management organisation.

12. Describing the IM process – Infrastructure management is a process that is followed continually and improved over time. It should be written down clearly. This week we will concentrate on how this can be done using the formal modelling notation BPMN 2.0.

13. Evaluating the IM process – Infrastructure management processes can always be improved. Good managers acknowledge this, but also have a plan for continual improvement. This week we concentrate on how you can systematically evaluate the infrastructure management process.

14. Help session 3 and submission of project report.

The course uses a combination of qualitative and quantitative approaches. The quantitative analysis required in the project requires at least the use of Excel. Some students, however, prefer to use Python or R. The course uses a combination of qualitative and quantitative approaches. The quantitative analysis required in the project requires at least the use of Excel. Some students, however, prefer to use Python or R.

The lecture materials will be distributed via Moodle two days before each lecture.

Lecture notes
- The lecture materials consist of handouts, the slides, and example calculations in Excel.
- The lecture materials will be distributed via Moodle two days before each lecture.

Literature
- Appropriate literature will be handed out when required via Moodle.

This course has no prerequisites.

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed
- Project Management: assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: not assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

103-0347-01L Landscape Planning and Environmental Systems (GIS W Exercises) 3 credits 2U A. Grét-Regamey, C. Brouillet, N. Klein

Abstract
The course content of the lecture Landscape Planning and Environmental Systems (103-0347-00 V) will be illustrated in practical GIS exercises (e.g. habitat modelling, land use change, ecosystem services, connectivity).

Objective
- Practical application of theory from the lectures
- Quantitative assessment and evaluation of landscape characteristics
- Learning useful applications of GIS for landscape planning
- Developing landscape planning measures for practical case studies

Content
- Applications of GIS in landscape planning
- Landscape analysis
- Landscape structural metrics
- Modelling habitats and land use change
- Calculating urban ecosystem services
- Ecological connectivity

Lecture notes
A script and presentation slides for each exercise will be provided on Moodle.

Literature
Will be named in the lecture.
Abstract
In this course, students learn about methods for the identification and measurement of landscape characteristics, as well as measures and policies for landscape planning. Landscape planning is put into the context of environmental systems (soil, water, air, climate, flora and fauna) and discussed with regard to socio-political questions of the future.

Objective
The aims of this course are:
1) To illustrate the concept of landscape planning, the economic relevance of landscape and nature in the context of the environmental systems (soil, water, air, climate, flora and fauna).
2) To show landscape planning as an integral information system for the coordination of different instruments by illustrating the aims, methods, instruments and their functions in landscape planning.
3) To show the importance of ecosystem services.
4) To learn basics about nature and landscape: Analysis and assessment of the complex interactions between landscape elements, effects of current and future land use (ecosystem goods and services, landscape functions).
5) To identify and measure the characteristics of landscape.
6) Learn how to use spatial data in landscape planning.

Content
In this course, the following topics are discussed:
- Definition of the concept of landscape
- Relevance of landscape planning
- Landscape metrics
- Landscape change
- Methods, instruments and aims of landscape planning (policy)
- Socio-political questions of the future
- Environmental systems, ecological connectivity
- Ecosystem services
- Urban landscape services
- Practice of landscape planning
- Use of GIS in landscape planning

Lecture notes
No script. The documentation, consisting of presentation slides are partly handed out and are provided for download on Moodle.

Prerequisites / notice
The contents of the course will be illustrated in the associated course 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)) or in Project LAND within the Experimental and Computer Lab (for Environmental Engineers). A combination of courses is recommended.
Objective
Public transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups.

Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders. The most relevant decision making problems in a planning tactical and operational point of view
At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport.

General structure:
general introduction of transport, modes, technologies, system design and line planning for different situations, mathematical models for design and line planning timetabling and tactical planning, and related mathematical approaches operations, and quantitative support to operational problems, evaluation of public transport systems.

Content
Basics for line transport systems and networks Passenger/Supply requirements for line operations Objectives of system and network planning, from different perspectives and users, design dilemmas Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport
Planning process, from demand evaluation to line planning to timetables to operations Matching demand and modes Line planning techniques Timetabling principles
Allocation of resources Management of operations Measures of realized operations Improvements of existing services

Lecture notes
Lecture slides are provided.

Literature
Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English)

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making assessed
Media and Digital Technologies assessed
Problem-solving assessed
Project Management not assessed

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork assessed
Customer Orientation assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

103-0317-00L Introduction to Spatial Development and Transformation W 3 credits 2G M. Nollert, D. Kaufmann

Only for master students, otherwise a special permission by the lecturer is required.

Abstract
The course deals with important theoretical, material and methodical foundations for action and decision-making of spatial relevance. This course discusses central tasks and possible solutions for current and future challenges of spatial development in Switzerland and Europe.
Spatial development deals with the development, formation and arrangement of our environment. In order to be able to mediate between the different demands, interests and projects of multiple actors, a forward-looking, action-oriented and robust planning is necessary. It is committed - in the sense of a sustainable spatial development - to the economical handling of resources, in particular of the non-replicable resource soil.

The lecture introduces necessary basic knowledge and is based on the following main topics:
- Inward development and challenges of spatial transformation
- Planning approaches and The (political) steering of spatial development
- Interplay of formal and informal processes and processes across different scales of spatial development
- Methods of action-oriented planning in situations of insecurity
- Integrated space and infrastructure development
- Different types of participation in spatial development

By taking up the lecture, the students are able to recognize cross-scale, complex tasks of spatial development and transformation and to use their theoretical, methodical and professional knowledge to clarify them.

-Present and future core tasks of spatial development
- Different types of participation in spatial development
- Planning approaches and political organization in Switzerland
- Key figures and ratios
- Drivers of spatial development
- Steering spatial development I: Policy
- Steering spatial development II: Formal and informal instruments
- Organizing spatial development I: Governance
- Organizing spatial development II: Processes and organization
- Methods in spatial planning I
- Methods in spatial planning II
- Planning in complex situations
- Participation in spatial development

-Taught competencies

052-0707-00L Urban Design III

W 2 credits 2V H. Klumpner, M. Fessel

Objective

How can students of architecture become active agents of change? What does it take to go beyond a building’s scale, making design-tools are clustered in twelve thematic clusters and three tool scales for better comparability and cross-reflection.

Focuses on understanding that Zurich is the exception and these other cities are the rule? How can we discover, set rather than follow trends and relevant decisions to the city rather than a single client? How can we design in cities with a lack of land, tax base, risk, and resilience, understanding that Zurich is the exception and these other cities are the rule? How can we discover, set rather than follow trends and understand existing urban phenomena activating them in a design process? The lecture series produces a growing catalog of operational urban tools across the globe, considering Governance, Social, and Environmental realities. Instead of limited binary comparing of cities, we are building a catalog of change, analyzing what design solutions cities have been developing informally incrementally over time, why, and how. We look at the people, institutions, culture behind the design and make concepts behind these tools visible. Students get first-hand information from cities where the chair as a Team has researched, worked, or constructed projects over the last year, allowing competent, practical insight about the people and topics that make these places unique. Students will be able to use and expand an alternative repertoire of experiences and evidence-based design tools, go to the conceptual core of them, and understand how and to what extent they can be relevant in other places. Urban Stories is the basic practice of architecture and urban design. It introduces a repertoire of urban design instruments to the students to use, test, and start their designs.

Content

Further information and the documents for the lecture can be found on the homepage of IRL/STL

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies
- Cooperation and Teamwork not assessed

Domain D - Personal Competencies
- Critical Thinking assessed
- Self-direction and Self-management not assessed

Domain D - Personal Competencies
- Critical Thinking assessed
- Self-direction and Self-management not assessed

Urban Design III

Students are introduced to a narrative of ‘Urban Stories’ through a series of three tools driven by social, governance, and environmental transformations in today’s urbanization processes. Each lecture explores one city’s spatial and organizational ingenuity born out of a particular place’s realities, allowing students to transfer these inventions into a catalog of conceptual tools.

Abstract

Exemplify how these instruments have been implemented and how they have shaped urban environments. We transcribe these instruments into urban operational tools that we have recognized and collected within existing tested cases in contemporary cities across the globe.

Urban Design III

How can students of architecture become active agents of change? What does it take to go beyond a building's scale, making design-

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies
- Cooperation and Teamwork not assessed

Domain D - Personal Competencies
- Critical Thinking assessed
- Self-direction and Self-management not assessed

Urban Design III

Students are introduced to a narrative of ‘Urban Stories’ through a series of three tools driven by social, governance, and environmental transformations in today’s urbanization processes. Each lecture explores one city’s spatial and organizational ingenuity born out of a particular place’s realities, allowing students to transfer these inventions into a catalog of conceptual tools.

Abstract

Exemplify how these instruments have been implemented and how they have shaped urban environments. We transcribe these instruments into urban operational tools that we have recognized and collected within existing tested cases in contemporary cities across the globe.

How did cities develop into the cities we live in now? Urban plans, instruments, visions, political decisions, economic reasonsings, cultural inputs, and social organization have been used to operate in urban settlements in specific moments of change. We have chosen cities that exemplify how these instruments have been implemented and how they have shaped urban environments. We transcribe these instruments into urban operational tools that we have recognized and collected within existing tested cases in contemporary cities across the globe.

This lecture series introduces urban knowledge and the way it has introduced urban models and operational modes within different concrete realities, therefore shaping cities. The lecture series translates urban knowledge into operational tools, extracted from cities where they have been tested and become exemplary samples, most relevant for understanding how the urban landscape has taken shape. The tools are clustered in twelve thematic clusters and three tool scales for better comparability and cross-reflection.

The Tool case studies are compiled into a global urbanization toolbox, which we use as typological models to read the city and critically reflect upon it. The presented contents are meant to serve as inspiration for positioning in future professional life and provide instruments for future design decisions.

In an interview with a local designer, we measure our insights against the most pressing design topics in cities today, including inclusion, affordable housing, provision of public spaces, and infrastructure for all.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1908 of 2152
The learning material, available via https://moodle-app2.let.ethz.ch/ is comprised of:
- Toolbox ‘Reader’ with an introduction to the lecture course and tool summaries
- Weekly exercise tasks
- Infographics with basic information of each city
- Quiz question for each tool
- Additional reading material
- Interviews with experts
- Archive of lecture recordings
- Reading material will be provided throughout the semester.

851-0252-08L Evidence-Based Design: Methods and Tools For Evaluating Architectural Design
Number of participants limited to 40

Particularly suitable for students of D-ARCH

Abstract
Students are taught a variety of analytic techniques that can be used to evaluate architectural design. The concept of evidence-based design is introduced, and complemented with theoretical background on space syntax and spatial cognition. This is a project-oriented course, students implement a range of methods on a sample project. The course is tailored for architecture design students.

Objective
The course aims to teach students how to evaluate a design project from the perspective of the end user. The concept of evidence-based design is introduced through a series of case studies. Students are given a theoretical background in space syntax and spatial cognition, with a view to applying this knowledge during the design process. The course covers a range of methods including visibility analysis, network analysis, conducting real-world observations, and virtual reality for architectural design. Students apply these methods to a case study of their choice, which can be at building or urban scale. For students taking a B-ARCH or M-ARCH degree, this can be a completed or ongoing design studio project. The course gives students the chance to implement the methods iteratively and explore how best to address the needs of the eventual end-user during the design process.

The course is tailored for students studying for B-ARCH and M-ARCH degrees. As an alternative to obtaining D-GESS credit, architecture students can obtain course credit in “Vertiefungsfach” or “Wahlfach”.

Energy and Mobility

Number Title Type ECTS Hours Lecturers
151-0216-00L Wind Energy W 4 credits 2V+1U N. Chokani

Abstract
The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics.

Objective
The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy.

Content
This mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines.

227-0731-00L Power Market I - Portfolio and Risk Management

Abstract
Portfolio and risk management in the electrical power business, Pan-European power market and trading, futures and forward contracts, hedging, options and derivatives, performance indicators for the risk management, modelling of physical assets, cross-border trading, ancillary services, balancing power market, Swiss market model.

Objective

Content
1. Pan-European power market and trading
 1.1. Power trading
 1.2. Development of the European power markets
 1.3. Energy economics
 1.4. Spot and OTC trading
 1.5. European energy exchange EEX
2. Market model
 2.1. Market place and organisation
 2.2. Balance groups / balancing energy
 2.3. Ancillary services
 2.4. Market for ancillary services
 2.5. Cross-border trading
 2.6. Capacity auctions
3. Portfolio and Risk management
 3.1. Portfolio management 1 (introduction)
 3.2. Forward and futures contracts
 3.3. Risk management 1 (m2m, VaR, hpfc, volatility, cVaR)
 3.4. Risk management 2 (PaR)
 3.5. Contract valuation (HPFC)
 3.6. Portfolio management 2
 2.8. Risk Management 3 (enterprise wide)
4. Energy & Finance
 4.1. Options 1 basics
 4.2. Options 2 hedging with options
 4.3. Introduction to derivatives (swaps, cap, floor, collar)
 4.4. Financial modelling of physical assets
 4.5. Trading and hydro power
 4.6. Incentive regulation

Lecture notes
Handouts of the lecture

Prerequisites / notice
1 excursion per semester, 2 case studies, guest speakers for specific topics.

Course Moodle: https://moodle-app2.let.ethz.ch/enrol/index.php?id=11636
This course is an introduction to urban and regional economics. It focuses on the formation and development of urban systems, and how transport infrastructure investments can affect the location, size and composition of such systems.

The main objective of this course is to provide students with some basic tools to analyze the fundamental economic forces at play in urban systems (i.e., agglomeration and congestion forces), and the role of transport networks in shaping the structure of these systems. Why do urban areas grow or decline? How do transport networks affect the location of individuals and firms? Does the location of a firm determine its productivity? Can transport infrastructure investments reduce economic disparities? These are some of the questions that students should be able to answer after having completed the course.

The course is organized in four parts. I start with the key observation that economic activity (both in terms of population density and productivity) is unevenly distributed in space. For instance, the share of the population living in urban centers is increasing globally, from 16% in 1900 and 50% in 2000 to about 68% by the year 2050 (UN, World Economic Prospects, 2014). The goal of the first part is then to understand the economic forces at play behind these trends, looking at the effects within and across urban areas. I will also discuss how natural or man-made geographical characteristics (e.g., rivers, mountains, borders, etc.) affect the development of such urban systems.

In the second part, I discuss the planning and pricing of transport networks, moving from simple local models to more complex transport models at a global scale. The key aspects include: the first and second best road pricing, the public provision of transport networks and the demographic effects of transport networks.

In the third part, I combine the previous two parts and analyze the interaction between urban systems and transportation. Thereby, the main focus is to understand the economic mechanisms that can lead to a general equilibrium of all actors involved. However, as the study of the historical development of urban systems and transport networks provides interesting insights, I will discuss how their interaction in the past shapes today's economic geography.

Finally, I broaden the scope of the course and explore related topics. There will be a particular emphasis on the relation between urban systems and fiscal federalism as well as environmental policies. Both aspects are important determinants of the contemporary developments of urban systems, and as such deserve our attention.

In general, this class focuses on the latest research developments in urban and regional economics, though it does not require prior knowledge in this field. It pays particular attention to economic approaches, which are based on theoretical frameworks with strong micro-foundations and allow for precise policy recommendations.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.

This course is intended for students outside of D-MAVT.
Taught competencies

Domain A - Subject-specific Competencies

<table>
<thead>
<tr>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Domain B - Method-specific Competencies

<table>
<thead>
<tr>
<th>Analytical Competencies</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Domain C - Social Competencies

<table>
<thead>
<tr>
<th>Communication</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>assessed</td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

Domain D - Personal Competencies

<table>
<thead>
<tr>
<th>Adaptability and Flexibility</th>
<th>not assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

151-0567-00L Engine Systems

W 4 credits **3G**

C. Onder

Abstract

Introduction to current and future engine systems and their control systems

Objective

Introduction to methods of control and optimization of dynamic systems. Application to real engines. Understand the structure and behavior of drive train systems and their quantitative descriptions.

Content

Physical description and mathematical models of components and subsystems (mixture formation, load control, supercharging, emissions, drive train components, etc.).

Case studies of model-based optimal design and control of engine systems with the goal of minimizing fuel consumption and emissions.

Lecture notes

Introduction to Modeling and Control of Internal Combustion Engine Systems

Guzzella Lino, Onder Christopher H.

ISBN: 978-3-642-10774-0

Prerequisites / notice

Combined homework and testbench exercise (air-to-fuel-ratio control or idle-speed control) in groups

227-0122-00L Introduction to Electric Power Transmission: System & Technology

W 4 credits **2V+2U**

C. Franck, G. Hug

Abstract

Introduction to theory and technology of electric power transmission systems.

Objective

At the end of this course, the student will be able to: describe the structure of electric power systems, name the most important components and describe what they are needed for, apply models for transformers and overhead power lines, explain the technology of transformers and lines, calculate stationary power flows and other basic parameters in simple power systems.

Content

Structure of electric power systems, transformer and power line models, analysis of and power flow calculation in basic systems, technology and principle of electric power systems.

Lecture notes

Lecture script in English, exercises and sample solutions.

227-0665-00L Battery Integration Engineering

W 3 credits **2V+1U**

T. J. Patey

Abstract

Priority given to Electrical and Mechanical Engineering students

Students are required to have attended one of the following courses:

- 227-0664-00L Technology and Policy of Electrical Energy Storage
- 529-0440-00L Physical Electrochemistry and Electrocatalysis
- 529-0191-01L Renewable Energy Technologies II, Energy Storage and Conversion
- 529-0659-00L Electrochemistry (Exception for PhD students).
Abstract
Batteries enable sustainable mobility, renewable power integration, various power grid services, and residential energy storage. Linked with low cost PV, Li-ion batteries are positioned to shift the 19th-century centralized power grid into a 21st-century distributed one. As with battery integration, this course combines understanding of electrochemistry, heat & mass transfer, device engineering.

Objective
The learning objectives are:
- Apply critical thinking on advancements in battery integration engineering. Assessment reflects this objective and is based on review of a scientific paper, with mark weighting of 10 / 25 / 65 for a proposal / oral presentation / final report, respectively.
- Design battery system concepts for various applications in the modern power system and sustainable mobility, with a deep focus on replacing diesel buses with electric buses combined with charging infrastructure.
- Critically assess progresses in battery integration engineering: from material science of novel battery technologies to battery system design.
- "Apply "lessons learned" from the history of batteries to assess progress in battery technology.
- Apply experimental and physical concepts to develop battery models in order to predict lifetime.
- Battery systems for the modern power grid and sustainable mobility.
- Battery lifetime modeling by aging, thermal, and electric sub-models.
- Electrical architecture of battery energy storage systems.
- History and review of electrochemistry & batteries, and metrics to assess future developments in electrochemical energy storage systems.
- Sustainability and life cycle analysis of battery system innovations.

Content
- Battery systems for the modern power grid and sustainable mobility.
- Battery lifetime modeling by aging, thermal, and electric sub-models.
- Electrical architecture of battery energy storage systems.

Prerequisites / notice
Limited to 30 Students. Priority given to Electrical and Mechanical Engineering students.

Mandatory - background knowledge in batteries & electrochemistry acquired in one of the following courses:
- 227-0664-00L Technology and Policy of Electrical Energy Storage
- 529-0440-00L Physical Electrochemistry and Electroanalysis
- 529-0191-01L Renewable Energy Technologies II, Energy Storage and Conversion
- 529-0659-00L Electrochemistry

Exception given for PhD students

Data and Computer Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>263-3210-00L</td>
<td>Deep Learning</td>
<td>W</td>
<td>8</td>
<td>3V+2U+2A</td>
<td>F. Perez Cruz, A. Lucchi</td>
</tr>
</tbody>
</table>

Number of participants limited to 320.

Abstract
Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective
In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.

Prerequisites / notice
This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:
 - Advanced Machine Learning
 https://ml2.inf.ethz.ch/courses/aml/
 - Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/
 - Introduction to Machine Learning
 https://ias.inf.ethz.ch/teaching/introml-S19
 - Statistical Learning Theory
 http://ml2.inf.ethz.ch/courses/slt/
 - Computational Statistics
 https://stat.ethz.ch/lectures/ss19/comp-stats.php
 - Probabilistic Artificial Intelligence
 https://las.inf.ethz.ch/teaching/pai-f18

252-1414-00L | System Security | W | 7 | 2V+2U+2A | S. Capkun, A. Perrig |

Abstract
The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.

Objective
In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.
The first part of the lecture covers individual system’s aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detection systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.

Abstract

Some of today’s most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them.

This course is accompanied by practical machine learning projects.

Content

The course will cover topics spanning four broad themes with a focus on the first two themes:

1. **Network Security**
 - Students are familiar with fundamental network-security concepts.
 - Students can implement network-security protocols based on cryptographic libraries.

2. **Adaptability and Flexibility**
 - Students can implement network-security protocols based on cryptographic libraries.

3. **Advanced Machine Learning**
 - Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

4. **Data: 11.11.2021 12:40**

Presuppositions / notice

This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L. Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.

The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
	Decision-making	assessed
	Media and Digital Technologies	assessed
	Problem-solving	assessed
	Project Management	assessed
Domain C - Social Competencies	Communication	not assessed
	Cooperation and Teamwork	not assessed
	Customer Orientation	not assessed
	Leadership and Responsibility	not assessed
	Self-presentation and Social Influence	not assessed
	Sensitivity to Diversity	not assessed
	Negotiation	not assessed
Domain D - Personal Competencies	Adaptability and Flexibility	not assessed
	Creative Thinking	assessed
	Critical Thinking	assessed
	Integrity and Work Ethics	not assessed
	Self-awareness and Self-reflection	not assessed
	Self-direction and Self-management	assessed

263-4640-00L Network Security

- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

Objective

- Students can implement network-security protocols based on cryptographic libraries.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.

Prerequisites / notice

This course provides an in-depth study of network attack techniques and methods to defend against them.

This course is accompanied by practical machine learning projects.

Abstract

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course will cover the implementation aspects of data management systems using relational database engines as a starting point to assess reliable and trustworthy artificial intelligence.

The course will first cover fundamental concepts in data management: storage, locality, query optimization, declarative interfaces, and neural networks. The course will place an emphasis on understanding these basic principles as they are key to understanding what problems existing systems try to address. It will then proceed to explore their implementation in modern relational engines supporting SQL to then represent data in a system based on the learned material.

For solving assignments, some programming experience in Python is expected.

Content

- **Fundamentals:**
 - What is data?
 - Bayesian Learning
 - Computational learning theory

- **Supervised learning:**
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks

- **Unsupervised learning:**
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

Lecture notes

No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice

- The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
- Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

263-2400-00L Reliable and Trustworthy Artificial Intelligence

- **W 6 credits**
- **2V+2U+1A**
- **M. Vechev**

Abstract

Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.

Objective

The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.

Content

This comprehensive course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/reliableai21):

- * Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
- * Defenses against attacks
- * Combining gradient-based optimization with logic for encoding background knowledge
- * Complete Certification of deep neural networks via automated reasoning (e.g., via numerical relaxations, mixed-integer solvers).
- * Probabilistic certification of deep neural networks
- * Training deep neural networks to be provably robust via automated reasoning
- * Fairness (different notions of fairness, certifiably fair representation learning)
- * Federated Learning (introduction, security considerations)

Prerequisites / notice

While not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in "Intro to ML" classes at most institutions (e.g., "Introduction to Machine Learning" at ETH).

For solving assignments, some programming experience in Python is expected.

263-3845-00L Data Management Systems

- **W 8 credits**
- **3V+1U+3A**
- **G. Alonso**

Abstract

The course will cover the implementation aspects of data management systems using relational database engines as a starting point to cover the basic concepts of efficient data processing and then expanding those concepts to modern implementations in data centers and the cloud.

Objective

The goal of the course is to convey the fundamental aspects of efficient data management from a systems implementation perspective: storage, access, organization, indexing, consistency, concurrency, transactions, distribution, query compilation vs interpretation, data representations, etc. Using conventional relational engines as a starting point, the course will aim at providing an in depth coverage of the latest technologies used in data centers and the cloud to implement large scale data processing in various forms.

Content

The course will first cover fundamental concepts in data management: storage, locality, query optimization, declarative interfaces, concurrency control and recovery, buffer managers, management of the memory hierarchy, presenting them in a system independent manner. The course will place an special emphasis on understanding these basic principles as they are key to understanding what problems existing systems try to address. It will then proceed to explore their implementation in modern relational engines supporting SQL to then expand the range of systems used in the cloud: key value stores, geo-replication, query as a service, serverless, large scale analytics engines, etc.

Literature

- The main source of information for the course will be articles and research papers describing the architecture of the systems discussed.
- The list of papers will be provided at the beginning of the course.

Prerequisites / notice

- The course requires to have completed the Data Modeling and Data Bases course at the Bachelor level as it assumes knowledge of databases and SQL.

Taught competencies

- Domain A - Subject-specific Competencies: assessed
- Concepts and Theories: assessed
- Techniques and Technologies: assessed
The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.

Objective

The objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve these.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.

Prerequisites / notice

It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.

Content

Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition.

Life Science and Health

Number

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0021-00L</td>
<td>Materials and Mechanics in Medicine</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>M. Zenobi-Wong, J. G. Snedeker</td>
</tr>
<tr>
<td>Abstract</td>
<td>Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>course website on Moodle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1103-00L</td>
<td>Frontiers in Nanotechnology</td>
<td>W</td>
<td>4</td>
<td>4V</td>
<td>V. Vogel, further lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within mammade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently sizzling in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1714-00L</td>
<td>Biocompatible Materials</td>
<td>W</td>
<td>4</td>
<td>3V</td>
<td>K. Maniura, M. Rotmar, M. Zenobi-Wong</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course covers the following topics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Introduction into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. The concept of biocompatibility.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Introduction into methodology used in biomaterials research and application.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Introduction to different material classes in use for medical applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.

A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.

Handouts are deposited online (moodle).

Literature:

(available online via ETH library)

Handouts and references therin.
Objective
Understanding of current knowledge, and lack thereof, in stem cell biology, regenerative medicine and required technologies. Theoretical preparation for practical laboratory experimentation with stem cells.

Content
We will use different diseases to discuss how to potentially model, diagnose or heal them by stem cell based therapies. This will be used as a guiding framework to discuss relevant concepts and technologies in cell and molecular biology, engineering, imaging, bioinformatics, tissue engineering, that are required to manipulate stem cells for therapeutic application.

Topics will include:
- Embryonic and adult stem cells and their niches
- Induced stem cells by directed reprogramming
- Relevant basic cell biology and developmental biology
- Relevant molecular biology
- Cell culture systems
- Cell fates and their molecular control by transcription factors and signalling pathways
- Cell reprogramming
- Disease modelling
- Tissue engineering
- Bioprinting, Bioinformatics
- Single cell technologies

376-0225-00L Physical Activities and Health W 3 credits 2V R. Knols, E. de Bruin, further speakers

Abstract
This course introduces/explores the complex relationship between physical activity, sedentary behavior and health. It will discuss the evolution of current physical activity recommendations. It will examine the current evidence base that has informed physical activity recommendations and that identified physical activity as a key modifiable lifestyle behavior contributing to disease and mortality.

Objective
On completion of this course students will be able to demonstrate:
1. knowledge of and critical awareness of the role of physical activity and sedentary behavior in the maintenance of health and the aetiology, prevention and treatment of disease.
2. thorough knowledge and critical awareness of current recommendations for physical activity, and current prevalence and trends of physical activity and associated diseases
3. awareness of current national and international physical activity policies and how these impact on global challenges

Content
Introduction to Physical Activity for Health, including sedentary behavior
Physical activity epidemiology; concepts principles and approaches
Physical activity and all cause morbidity and mortality
Physical activity and chronic disease; Coronary heart disease, diabetes, bone health, cancer and obesity
Physical activity and brain health
Physical activity and sedentary behavior recommendations
Population prevalence of physical activity and sedentary behavior
Physical activity policies
Physical activity assessment

Literature
Core texts for this course are:
Selective journal articles from relevant journals such as Journal of Physical Activity and Health and Journal of Aging and Physical Activity

Prerequisites / notice
From the BSc-course the following book is recommended: ‘Essentials of strength training and conditioning” T. Baechle, R. Earle (3rd Edition)

Resources and Environment

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0347-00L</td>
<td>Landscape Planning and Environmental Systems</td>
<td>W</td>
<td>3</td>
<td>2</td>
<td>A. Grêt-Regamey</td>
</tr>
</tbody>
</table>

Abstract
In the course, students learn about methods for the identification and measurement of landscape characteristics, as well as measures and policies for landscape planning. Landscape planning is put into the context of environmental systems (soil, water, air, climate, flora and fauna) and discussed with regard to socio-political questions of the future.

Objective
The aims of this course are:
1) To illustrate the concept of landscape planning, the economic relevance of landscape and nature in the context of the environmental systems (soil, water, air, climate, flora and fauna).
2) To show landscape planning as an integral information system for the coordination of different instruments by illustrating the aims, methods, instruments and their functions in landscape planning.
3) To show the importance of ecosystem services.
4) To learn basics about nature and landscape: Analysis and assessment of the complex interactions between landscape elements, effects of current and future land use (ecosystem goods and services, landscape functions).
5) To identify and measure the characteristics of landscape.
6) Learn how to use spatial data in landscape planning.

Content
In this course, the following topics are discussed:
- Definition of the concept of landscape
- Relevance of landscape planning
- Landscape metrics
- Landscape change
- Methods, instruments and aims of landscape planning (policy)
- Socio-political questions of the future
- Environmental systems, ecological connectivity
- Ecosystem services
- Urban landscape services
- Practice of landscape planning
- Use of GIS in landscape planning

Lecture notes
No script. The documentation, consisting of presentation slides are partly handed out and are provided for download on Moodle.

Prerequisites / notice
The contents of the course will be illustrated in the associated course 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)) or in Project LAND within the Experimental and Computer Lab (for Environmental Engineers). A combination of courses is recommended.
The goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.

Domain C - Social Competencies
Communication assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

651-4057-00L Climate History and Palaeoclimatology W 3 credits 2G H. Stoll, I. Hernández Almeida, H. Zhang

Abstract
Climate history and palaeoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport.

Objective
The student will be able to describe the natural factors leading to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.

Content
1. Overview of elements of the climate system and earth energy balance
2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene?
3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future?
4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? And when and why has this happened before?

701-1341-00L Water Resources and Drinking Water W 3 credits 2G S. Hug, M. Berg, F. Hammes, U. von Gunten

Abstract
The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.

Objective
The goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.

Content
The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwaters and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.

Lecture notes
Handouts will be distributed

Literature
Will be mentioned in handouts

701-1677-00L Quantitative Vegetation Dynamics: Models from Tree to Globe W 3 credits 3G H. Lischke, U. Hiltner, B. Rohner

Abstract
This course provides hands-on experience with models of vegetation dynamics across temporal and spatial scales. The underlying principles, assets and trade-offs of the different approaches are introduced, and students work in a number of small projects with these models to gain first-hand experience.

Objective
Students will
- be able to understand, assess and evaluate the fundamental properties of dynamic systems using vegetation models as case studies
- obtain an overview of dynamic modelling techniques from the individual plant to the global level
- understand the basic assumptions of the various model types, which dictate the skill and limitations of the respective model
- be able to work with such model types on their own
- appreciate the methodological basis for impact assessments of future climate change and other environmental changes on ecosystems.
Content
- Models of individuals
 - Deriving single-plant models from inventory measurements
 - Plant models based on 'first principles'

- Models at the stand scale
 - Simple approaches: matrix models
 - Competition for light and other resources as central mechanisms
 - Individual-based stand models: distance-dependent and distance-independent
 - Theoretical models

- Models at the landscape scale
 - Simple approaches: cellular automata
 - Dispersal and disturbances (windthrow, fire, bark beetles) as key mechanisms
 - Landscape models

- Global models
 - Sacrificing local detail to attain global coverage: processes and entities
 - Dynamic Global Vegetation Models (DGVMs)
 - DGVMs as components of Earth System Models

Lecture notes
Handouts will be available in the course and for download

Literature
Will be indicated at the beginning of the course

Prerequisites / notice
- Basic training in modelling and systems analysis
- Basic knowledge of programming, ideally in R
- Good knowledge of general ecology, vegetation dynamics, and forest systems

Applied Mineralogy and Non-Metallic Resources I

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>W Credits</th>
<th>2G Credits</th>
<th>R. Kündig</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4097-00L</td>
<td>Applied Mineralogy and Non-Metallic Resources I</td>
<td>3</td>
<td>2G</td>
<td>R. Kündig</td>
</tr>
</tbody>
</table>

Abstract
Geological and mineralogical aspects to important non-metallic mineral resources. Industrial use of specific mineral resources as well as economic, strategic and environmental aspects are discussed. Examples from all over the world with a specific focus on the non-mineral mineral resources potential in Switzerland.

Course contents
Course “Applied mineralogy and non-metallic resources I” (autumn/winter semester):
- Non-metallic resources. Occurrences, geology, extraction, properties, fabrication and use. Industrial aspects, (new) technologies, market, stock, situation, reserves & resources, trends and development, environmental aspects, law.

- Chapters: e.g. coal/carbon (coal, graphite, diamond, fullerene); oil/gas (oil- and tarsands, oil-shists); phosphates/nitrates; aluminum (bauxite, corundum); salt; carbonates; titanium; clay and clay minerals; sulphur; gypsum/anhydrite; fluoride; asbestos; talc; micas; rare earth elements.

- Course “Applied mineralogy and non-metallic resources II” (fall/summer semester):

- Chapters: e.g. Stone industry - technical aspects of building stones, properties, weathering, treatment, quarries, products. Crushed stones - quarries, products, planning, environment. Gravel an sand - resources/reserves, environment (protection/law), alternative products (substitution). Cement and concrete (geological resources, prospection, fabrication, environment).

Lecture notes
Will be given according to the lessons. Partially integration of e-learning tools.

Literature

Carbon Mitigation

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>W Credits</th>
<th>2G Credits</th>
<th>R. Kündig</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1346-00L</td>
<td>Carbon Mitigation</td>
<td>3</td>
<td>2G</td>
<td>N. Gruber</td>
</tr>
</tbody>
</table>

Abstract
Future climate change can only kept within reasonable bounds when CO2 emissions are drastically reduced. In this course, we will discuss a portfolio of options involving the alteration of natural carbon sinks and carbon sequestration. The course includes introductory lectures, presentations from guest speakers from industry and the public sector, and final presentations by the students.

Course contents
The goal of this course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences.

Content
From the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group.

Landscape Planning and Environmental Systems (GIS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>W Credits</th>
<th>2U Credits</th>
<th>A. Grêt-Regamey, C. Brouillet, N. Klein</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0347-00L</td>
<td>Landscape Planning and Environmental Systems (GIS)</td>
<td>3</td>
<td>2U</td>
<td>A. Grêt-Regamey, C. Brouillet, N. Klein</td>
</tr>
</tbody>
</table>

Abstract
The course content of the lecture Landscape Planning and Environmental Systems (103-0347-00 V) will be illustrated in practical GIS exercises (e.g. habitat modelling, land use change, ecosystem services, connectivity).
Objective
- Practical application of theory from the lectures
- Quantitative assessment and evaluation of landscape characteristics
- Learning useful applications of GIS for landscape planning
- Developing landscape planning measures for practical case studies

Content
- Applications of GIS in landscape planning
- Landscape analysis
- Landscape structural metrics
- Modelling habitats and land use change
- Calculating urban ecosystem services
- Ecological connectivity

Lecture notes
A script and presentation slides for each exercise will be provided on Moodle.

Literature
Will be named in the lecture.

Prerequisites / notice
Basic GIS skills are strongly recommended.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Method-specific Competencies</th>
<th>Social Competencies</th>
<th>Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>Decision-making</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>Creative Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td></td>
</tr>
</tbody>
</table>

701-1253-00L Analysis of Climate and Weather Data

W 3 credits 2G C. Frei

Does not take place this semester.

Abstract
An introduction into methods of statistical data analysis in meteorology and climatology. Applications of hypothesis testing, extreme value analysis, evaluation of deterministic and probabilistic predictions, principal component analysis. Participants understand the theoretical concepts and purpose of methods, can apply them independently and know how to interpret results professionally.

Objective
Students understand the theoretical foundations and probabilistic concepts of advanced analysis tools in meteorology and climatology. They can conduct such analyses independently, and they develop an attitude of scrutiny and an awareness of uncertainty when interpreting results. Participants improve skills in understanding technical literature that uses modern statistical data analyses.

Content
The course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the theoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interpret results critically.

Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis.

The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results.

R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course.

Lecture notes
Documentation and supporting material:
- slides used during the lecture
- exercise sets and solutions
- R-packages with software and example datasets for workshop sessions

All material is made available via the lecture web-page.

Literature
For complementary reading:

Prerequisites / notice
Prerequisites: Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umweltnaturwissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology.

701-1551-00L Sustainability Assessment

W 3 credits 2G P. Krüttli, D. Nef

Number of participants limited to 35.

Waiting list will be deleted October 1st, 2021.

No enrollment possible after October 1st, 2021.

Abstract
The course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability. The format of the course is seminar-like, interactive.
Objective
At the end of the course, students:
- know core concepts of sustainable development, main features of social justice in the context of sustainability, a selection of methodologies for the assessment of sustainable development
- have a deepened understanding of the challenges of trade-offs between the different dimensions of sustainable development and their respective impacts on individual and societal decision-making

Content
The course is structured as follows:
- overview of rationale, objectives, concepts and origins of sustainable development (approx. 15%)
- overview of the concept of social justice as guiding principle of the social dimension of sustainability (approx. 20%)
- analysis of a selection of concepts and methodologies to assess sustainable development in a variety of contexts (approx. 65%)

Lecture notes
Handouts are provided

Literature
Selected scientific articles and book-chapters

Prerequisites / notice
Students of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L)

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

701-1257-00L European Climate Change

Abstract
The lecture provides an overview of climate change in Europe, from a physical and atmospheric science perspective. It covers the following topics:
- observational datasets, observation and detection of climate change;
- underlying physical processes and feedbacks;
- numerical and statistical approaches;
- currently available projections.

Objective
At the end of this course, participants should:
- understand the key physical processes shaping climate change in Europe;
- know about the methodologies used in climate change studies, encompassing observational, numerical, as well as statistical approaches;
- be familiar with relevant observational and modeling data sets;
- be able to tackle simple climate change questions using available data sets.

Content
Contents:
- global context
- observational data sets, analysis of climate trends and climate variability in Europe
- global and regional climate modeling
- statistical downscaling
- key aspects of European climate change: intensification of the water cycle, Polar and Mediterranean amplification, changes in extreme events, changes in hydrology and snow cover, topographic effects
- projections of European and Alpine climate change

Lecture notes
Slides and lecture notes will be made available at http://www.iac.ethz.ch/edu/courses/master/electives/european-climate-change.html

Prerequisites / notice
Participants should have a background in natural sciences, and have attended introductory lectures in atmospheric sciences or meteorology.

Case Studies

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>860-0011-00L</td>
<td>Agent-Based Modeling and Social System Simulation - With Coding Project</td>
<td>W</td>
<td>6 credits</td>
<td>2S+2A</td>
<td>N. Antulov-Fantulin, T. Asikis, D. Helbing</td>
</tr>
</tbody>
</table>

Abstract
Prerequisites: Good mathematical skills, basic programming skills, elementary probability and statistics.

This course introduces mathematical and computational models to study techno-socio-economic systems and the process of scientific research.

Students develop a significant project to tackle techno-socio-economic challenges in application domains of complex systems. They are expected to implement a model and communicating their results through a seminar thesis and a short oral presentation.

Objective
The students should be able to implement simulation models and document their skills through a seminar thesis and finally give a short oral presentation.

Content
The students are expected to implement themselves models of various social processes and systems, including agent-based models, complex networks models, decision making, group dynamics, human crowds, or game-theoretical models.

Part of this course will consist of supervised programming exercises. Credit points are finally earned for the implementation of a mathematical or empirical model from the complexity science literature and the documentation in a seminar thesis.

Lecture notes
The lecture slides will be presented on the course web page after each lecture.
Agent-Based Modeling
https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2

Social Self-Organization

Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Pedestrian, Crowd, and Evacuation Dynamics
https://www.research-collection.ethz.ch/handle/20.500.11850/45424

The hidden geometry of complex, network-driven contagion phenomena (relevant for modeling pandemic spread)
https://science.sciencemag.org/content/342/6164/1337

Further literature will be recommended in the lectures.

The number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Good programming skills and a good understanding of probability & statistics and calculus are expected.

Prerequisites / notice
The number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Customer Orientation</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Sensitivity to Diversity</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Negotiation</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>Self-direction and Self-management</td>
<td>assessed</td>
<td></td>
</tr>
</tbody>
</table>

Transport Planning Methods

The course provides the necessary knowledge to develop models supporting and also evaluating the solution of given planning problems. The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/policy by means of cost-benefit analysis.

Objective
- Knowledge and understanding of statistical methods and algorithms commonly used in transport planning
- Comprehend the reasoning and capabilities of transport models
- Ability to independently develop a transport model able to solve/answer planning problems
- Getting familiar with cost-benefit analysis as a decision-making supporting tool

Content
The course provides the necessary knowledge to develop models supporting the solution of given planning problems and also introduces cost-benefit analysis as a decision-making tool. Examples of such planning problems are the estimation of traffic volumes, prediction of estimated utilization of new public transport lines, and evaluation of effects (e.g. change in emissions of a city) triggered by building new infrastructure and changes to operational regulations.

To cope with that, the problem is divided into sub-problems, which are solved using various statistical models (e.g. regression, discrete choice analysis) and algorithms (e.g. iterative proportional fitting, shortest path algorithms, method of successive averages).

The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/policy by means of cost-benefit analysis. Interim lab session take place regularly to guide and support students with the applied part of the course.

Lecture notes
Moodle platform (enrollment needed)

Literature

Creative Thinking

Based on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation.

In this course, which is reserved to STP students, the participants will be individually coached by one of the instructors and do research and develop a case-study paper on an international water challenge of their choice. The topic should avoid overlap with the work in course 860-0012-00L.

STP students should sign up for both courses, 860-0012-00L and 860-0012-01L.

860-0012-00L Cooperation and Conflict Over International Water Resources

Number of participants limited to 40.
Priority for Science, Technology, and Policy MSc.

This is a research seminar at the Master level. PhD students are also welcome.

Abstract

This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.

Objective

Ability to (1) understand the causes and consequences of water scarcity and water pollution problems in large international river systems; (2) understand ways and means of addressing such water challenges; and (3) analyse when and why international efforts in this respect succeed or fail.

Content

Based on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in small teams coached by the instructors, carry out research on a case of their choice (i.e. an international river basin where riparian countries are trying to find solutions to water allocation and/or water quality problems associated with a large dam project). They will write a brief paper and present their findings towards the end of the semester.

Lecture notes

Slides and reading materials will be distributed electronically.

Literature

The UN World Water Development Reports provide a broad overview of the topic: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/

Prerequisites / notice

The course is open to Master and PhD students from any area of ETH.

ISTP students who take this course should also register for the course 860-0012-01L - Cooperation and conflict over international water resources; In-depth case study.

857-0098-00L The Politics of Cybersecurity

Number of participants limited to 15.
MACIS students are given priority.

Abstract

This research seminar focuses on the rise of "cyber security" as a security political issue. We focus on the interrelationship between digital technologies, their development, their use and misuse by human actors on the one hand and enduring negotiation processes between the state and its bureaucracies, society, and the private sector to develop solution on the other.

Objective

The aim of this research seminar is to introduce students to different waves of cybersecurity literature, have them reflect critically on the development and main focal points, and to give them enough theoretical background so that they can write a research papers on a cybersecurity politics topic of their choice.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Sensitivity to Diversity: not assessed

Domain C - Social Competencies

Domain D - Personal Competencies

- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-direction and Self-management: not assessed

Electives

Number Title Type ECTS Hours Lecturers
351-0778-01L Discovering Management (Exercises) W 1 credit 1U B. Clarysse, L. P. T. Vandeweghe

Prerequisite: Participation and successful completion of the module Discovering Management (351-0778-00L) is mandatory.

Abstract

This course is offered complementary to the basis course 351-0778-00L, "Discovering Management". The course offers an additional exercise.
The general objective of Discovering Management (Exercises) is to complement the course "Discovering Management" with one larger additional exercise.

Discovering Management (Exercises) thus focuses on developing the skills and competences to apply management theory to a real-life exercise from practice.

Students who are enrolled for "Discovering Management Exercises" are asked to write an essay about a particular management issue of choice, using your insights from Discovering Management. Students have the option to either write this alone or in a group of two students.

All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle. These course materials will form the point of departure for the lectures, class discussions and team work.

The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.

This course addresses the role of policy and its underlying politics in the transformation of the energy sector. It covers historical, socio-economic, and political perspectives and applies various theoretical concepts to understand specific aspects of the governance of the energy transition.

In particular, the aims of the course are to: (1) broaden understanding of management principles and frameworks (2) advance insights into the sources of corporate and entrepreneurial success (3) develop skills to apply this knowledge to real-life managerial problems

The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / or appreciate the challenges that entrepreneurs and managers deal with.

The course consists of a set of theory and practice sessions, which will be taught on a weekly basis. The course will cover business management knowledge in corporate as well as entrepreneurial contexts.

The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.

This course introduces the social and environmental challenges involved in the energy sector and discusses the implications of these challenges for the rate and direction of technical change in the energy sector. It compares the current situation with historical socio-technical transitions and derives the consequences for policy-making. It introduces theoretical frameworks and concepts for studying innovation and transitions. It then focuses on the role of policy and policy change in governing the energy transition, considering the role of political actors, institutions and policy feedback.

The grade will be determined by a final exam.
Does not take place this semester.

The goal of this course is to engage students in a multidisciplinary collaboration to tackle real world problems. Following a design thinking approach, students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.

Information and application: http://sparklabs.ch/

During the course, students will learn about different design thinking methods and tools. This will enable them to:
- Generate deep insights through the systematic observation and interaction of key stakeholders (empathy).
- Engage in collaborative ideation with a multidisciplinary team.
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.

The purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validate them through quick iterations of prototyping and testing using different tools and materials. The students will work in multidisciplinary teams on a set of challenges that are organized as a one-week, a three-week, and a final six-week project with an external project partner. In this course, the students will learn about the different Design Thinking methods and tools that are needed to generate deep insights, to engage in collaborative ideation, rapid prototyping and iterative testing.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

For more information and the application visit: http://sparklabs.ch/

Please note that the class is designed for full-time MSc students. Interested MAS students need to send an email to Linda Armbuster to learn about the requirements of the class.

857-0027-00L International Organizations (Field Trip)
W 2 credits 1S D. Hangartner

Abstract
A two-day field trip to international organizations in Geneva - e.g., the World Trade Organization, the World Health Organization and the International Committee of the Red Cross.

Objective
Become familiar with the work and challenges of international organizations based in Geneva.

Literature

860-0023-00L International Environmental Politics
W 3 credits 2V T. Bernauer

Abstract
This course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

Objective
The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.

Content
This course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, readings assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

Literature
Assigned reading materials and slides will be available via Moodle.

Data: 11.11.2021 12:40
Autumn Semester 2021
This course teaches the basics of public opinion surveys. We start with the theoretical foundations of the formation of (public) opinion formation and ideology, then turn to the practical lessons of developing and implementing own surveys with a focus on causal inference via survey experiments. Finally, we give practical insights into the analysis of (complex) survey data.

The goals of this course are:
- to understand the basics of public opinion research
- to translate this theoretical knowledge into the practical design and implementation of surveys
- to make use of survey experiments for causal inference

At the end of the course, students should be able to use and evaluate public opinion data and design survey experiments to test policy-relevant questions.

This course introduces students to key methods for quantitative policy impact evaluation and covers the different stages of the research process. Acquired skills are applied in a self-selected project applying experimental methods. Students also learn how to perform simple statistical analyses with the statistical Software R.

Policy impact evaluation employs a wide variety of research methods, such as statistical analysis of secondary data, surveys or laboratory and field experiments. The course will begin with an overview of the various methodological approaches, including their advantages and disadvantages and the conditions under which their use is appropriate. It will continue with a discussion of the different stages of a policy impact evaluation, including hypothesis generation, formulating a research design, measurement, sampling, data collection and data analysis. For data analysis, linear regression models will be revised, with a focus on difference-in-difference methods, regression discontinuity design and randomized controlled trials used for policy evaluation. Students, who already have a solid background in these methods can skip these sessions.

Throughout the course, students will work on a self-selected project on a suitable topic. In addition, students will have to solve bi-weekly assignments.

This course introduces the broad variety of conflicts that arise in projects focusing on sustainable management of natural resources. It will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic dimensions across relevant temporal and spatial scales.

Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

860-0034-00L Designing and Implementing Public Opinion Surveys and Experiments

<table>
<thead>
<tr>
<th>860-0008-00L</th>
<th>Policy Evaluation and Applied Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1631-00L</td>
<td>Foundations of Ecosystem Management</td>
</tr>
</tbody>
</table>

Prerequisites / notice

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

860-0034-00L Designing and Implementing Public Opinion Surveys and Experiments

Abstract

This course teaches the basics of public opinion surveys. We start with the theoretical foundations of the formation of (public) opinion formation and ideology, then turn to the practical lessons of developing and implementing own surveys with a focus on causal inference via survey experiments. Finally, we give practical insights into the analysis of (complex) survey data.

Objective

The goals of this class are:
- to understand the basics of public opinion research
- to translate this theoretical knowledge into the practical design and implementation of surveys
- to make use of survey experiments for causal inference

At the end of the course, students should be able to use and evaluate public opinion data and design survey experiments to test policy-relevant questions.

865-0008-00L Policy Evaluation and Applied Statistics

Abstract

This course introduces students to key methods for quantitative policy impact evaluation and covers the different stages of the research process. Acquired skills are applied in a self-selected project applying experimental methods. Students also learn how to perform simple statistical analyses with the statistical Software R.

Objective

Students
- know strategies to test causal hypotheses using experimental methods and regression analysis.
- are able to formulate and implement a research design for a particular policy question and a particular type of data.
- are able to critically read and assess published studies on policy evaluation.
- are able to use the statistical software R for data analysis.
- can apply all the steps involved in a policy impact evaluation.

Content

Policy impact evaluation employs a wide variety of research methods, such as statistical analysis of secondary data, surveys or laboratory and field experiments. The course will begin with an overview of the various methodological approaches, including their advantages and disadvantages and the conditions under which their use is appropriate. It will continue with a discussion of the different stages of a policy impact evaluation, including hypothesis generation, formulating a research design, measurement, sampling, data collection and data analysis. For data analysis, linear regression models will be revised, with a focus on difference-in-difference methods, regression discontinuity design and randomized controlled trials used for policy evaluation. Students, who already have a solid background in these methods can skip these sessions.

Throughout the course, students will work on a self-selected project on a suitable topic. In addition, students will have to solve bi-weekly assignments.

701-1631-00L Foundations of Ecosystem Management

Abstract

This course introduces the broad variety of conflicts that arise in projects focusing on sustainable management of natural resources. It explores case studies of ecosystem management approaches and considers their practicability, their achievements and possible barriers to their uptake.

Objective

Students should be able to
a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales.

b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management.

Content

Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

No Script

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1926 of 2152
Abstract
This seminar will present speakers who discuss the challenges and opportunities arising for our cities and societies with the digital revolution. Besides discussing questions of automation using Big Data, AI and other digital technologies, we will reflect on the question of how democracy could be digitally upgraded to promote innovation, sustainability, and resilience.

Objective
To collect credit points, students will have to give a 30-40 minute presentation in the seminar, after which the presentation will be discussed. The presentation will be graded.

Content
This seminar will present speakers who discuss the challenges and opportunities arising for our cities and societies with the digital revolution. Besides discussing questions of automation using Big Data, AI and other digital technologies, we will also reflect on the question of how democracy could be digitally upgraded, and how citizen participation could contribute to innovation, sustainability, resilience, and quality of life. This includes questions around collective intelligence and digital platforms that support creativity, engagement, coordination and cooperation.

Literature
Martin Treiber and Arne Kesting
Traffic Flow Dynamics: Data, Models and Simulation

Dirk Helbing
Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

Dirk Helbing
An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Michael Batty, Kay Axhausen et al.
Smart cities of the future

Books by Michael Batty
https://link.springer.com/article/10.1140/epjst/e2012-01703-3

How social influence can undermine the wisdom of crowd effect
https://www.pnas.org/content/108/22/9020

Evidence for a collective intelligence factor in the performance of human groups
https://science.sciencemag.org/content/330/6004/686.full

Optimal incentives for collective intelligence
https://www.pnas.org/content/114/20/5077.short

Collective Intelligence: Creating a Prosperous World at Peace
https://www.amazon.com/Collective-Intelligence-Creating-Prosperous-World/dp/097156616X/

Big Mind: How Collective Intelligence Can Change Our World
https://www.amazon.com/Big-Mind-Collective-Intelligence-Change/dp/0691170797/

Programming Collective Intelligence
https://www.amazon.com/Programming-Collective-Intelligence-Building-Applications/dp/0596529325/

Urban architecture as connective-collective intelligence. Which spaces of interaction?
https://www.mdpi.com/2071-1050/5/7/2928

Build digital democracy
https://www.nature.com/news/society-build-digital-democracy-1.18690

How to make democracy work in the digital age
http://www.huffingtonpost.com/entry/how-to-make-democracy-work-in-the-digital-age_us_57a2f488e4b0456cb7e17e0f

Digital Democracy: How to make it work?
http://futurict.blogspot.com/2020/06/digital-democracy-how-to-make-it-work.html

Proof of witness presence: Blockchain consensus for augmented democracy in smart cities

Iterative Learning Control for Multi-agent Systems Coordination
https://www.amazon.co.uk/Iterative-Learning-Control-Multi-agent-Coordination-ebook/dp/B06XJVQC41/ref=sr_1_fkmr1_1?dchild=1&keywords=coordination+Jennings+multi-agent&qid=1601973480&sr=8-1-fkmr1

Decentralized Collective Learning for Self-managed Sharing Economies
https://dl.acm.org/doi/abs/10.1145/3277668

Further literature will be recommended in the lectures.
Abstract
The seminar aims at three-fold integration: (1) bringing modeling and computer simulation of techno-socio-economic processes and phenomena together with related empirical, experimental, and data-driven work, (2) combining perspectives of different scientific disciplines (e.g. sociology, computer science, physics, complexity science, engineering), (3) bridging between fundamental and applied work.

Objective
Participants of the seminar should understand how tightly connected systems lead to networked risks, and why this can imply systems we do not understand and cannot control well, thereby causing systemic risks and extreme events.

They should also be able to explain how systemic instabilities can be understood by changing the perspective from a component-oriented to an interaction- and network-oriented view, and what fundamental implications this has for the proper design and management of complex dynamical systems.

Computational Social Science and Global Systems Science serve to better understand the emerging digital society with its close co-evolution of information and communication technology (ICT) and society. They make current theories of crises and disasters applicable to the solution of global-scale problems, taking a data-based approach that builds on a serious collaboration between the natural, engineering, and social sciences, i.e. an interdisciplinary integration of knowledge.

Literature
Computational Social Science
https://science.sciencemag.org/content/sci/323/5915/721.full.pdf

Manifesto of Computational Social Science
https://link.springer.com/article/10.1140/epjst/e2012-01697-8

Social Self-Organisation

How simple rules determine pedestrian behaviour and crowd disasters
https://www.pnas.org/content/108/17/6884.short

Peer review and competition in the Art Exhibition Game
https://www.pnas.org/content/113/30/8414.short

Generalized network dismantling
https://www.pnas.org/content/116/14/6554.short

Computational Social Science: Obstacles and Opportunities
https://science.sciencemag.org/content/369/6507/10607?rss%3D1=

Bit by Bit: Social Research in the Digital Age
https://www.amazon.co.uk/Bit-Social-Research-Digital-Age-ebook/dp/B072MPFXX2/

Further literature will be recommended in the lectures.
Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

Abstract

Resource and Environmental Economics

W 3 credits 2G L. Bretschger

Objective

A successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and environmental economics and the ability to solve typical problems using appropriate tools consisting of concise verbal explanations, diagrams or mathematical expressions. Concrete goals are first of all the acquisition of knowledge about the main questions of resource and environmental economics and about the foundation of the theory with different normative concepts in terms of efficiency and fairness. Secondly, students should be able to deal with environmental externalities and internalisation through appropriate policies or private negotiations, including knowledge of the available policy instruments and their relative strengths and weaknesses. Thirdly, the course will allow for in-depth economic analysis of renewable and non-renewable resources, including the role of stock constraints, regeneration functions, market power, property rights and the impact of technology. A fourth objective is to successfully use the well-known tool of cost-benefit analysis for environmental policy problems, which requires knowledge of the benefits of an improved natural environment. The last two objectives of the course are the acquisition of sufficient knowledge about the economics of sustainability and the application of environmental economic theory and policy at international level, e.g. to the problem of climate change.

Content

The course covers all the interactions between the economy and the natural environment. It introduces and explains basics welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overdose of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

Literature

Abstract

Climate Policy

W 6 credits 3G A. Patt, S. Hanger-Kopp

This course provides an in-depth analysis both of the theoretical underpinnings to different approaches to climate policy at the international and national levels, and how these different approaches have played out in practice. Students will learn how legislative frameworks have developed over the last 25 years, and also be able to appraise those frameworks critically.
Climate change is one of the defining challenges of our time, touching all aspects of the environment and of society. There is broad recognition (although with some dissent) that governments ought to do something about it: making sure that emissions of greenhouse gases (GHGs) stop within the next 30 to 40 years; helping people to adapt to the consequences of the climate change to which we have already committed ourselves; and, most controversially, perhaps taking measures to actively remove GHG’s from the atmosphere, or to alter the radiation balance of the Earth through solar engineering.

It’s a complicated set of problems, especially the first of these, known as mitigation. Fundamentally this is because it means doing something that humanity has never really tried before at a planetary scale: deliberately altering the ways the we produce, convert, and consume energy, which is at the heart of modern society. Modern society – the entire anthropocene – grew up on fossil fuels, and the huge benefits they offered in terms of energy that was inexpensive, easy to transport and store, and very dense in terms of its energy content per unit mass or volume. How to manage a society of over 7 billion people, at anything like today’s living standards, without the benefits of that energy, is a question for which there is no easy answer. There are also other challenges outside of energy. How do we build houses, office buildings, and infrastructure networks without cement, a substance that releases large amounts of CO2 as it hardens? How do we reverse the pace of deforestation, particularly in developing countries? How do we eliminate the GHG emissions from agriculture: the methane from cows’ bellies and rice paddies, together with the chemicals that enter the atmosphere from the application of fertilizer?

These are all tough questions at a technical level, but even tougher when you consider that governments typically need to employ indirect methods to get these things to happen. Arguably a government could simply pass a law that forbids people from using fossil fuels. But politically this is simply unrealistic, at least while so many people depend on fossil fuels in their daily lives. What is to be done? For this, one needs to turn to various ideas about how government can and should influence society. On the one hand are ideas suggesting that government ought to play a very limited role, relative to private actors, and should step in only to correct “market failures,” with interventions designed specifically around that failure. On the other hand are ideas suggesting that government (meaning all of us, working together through a democratic process) is the appropriate decision-making body for core decisions on where society can and should go. These issues come to the fore in climate policy discussions and debates.

This course is about all that. The goal is to give students a glimpse into the enormous complexity of this policy area, an understanding of some of the many debates that are currently raging (of which the debate about whether climate change is actually real is probably the least complicated or interesting). We want to give students the ability to evaluate policy arguments made by politicians, experts, and academics with a critical eye, informed by a knowledge of history, an understanding of the theoretical underpinnings, and the results of empirical testing of different strategies. A student taking this course ought to be able to step into an NGO or government agency involved in climate policy analysis or political advocacy, and immediately be able to make an informed and creative contribution. Moreover, by experiencing the depth of this policy area, students should be able to appreciate the complexity inherent in all policy areas.

There will be daily reading assignments, which we will then discuss critically during the class sessions. All of these will be posted in PDF format on a course Moodle. In addition, there will be two books to be read over the course of the semester. Both of these can be accessed from the ETH library or in PDF form free of charge. They are:

Students are introduced to a narrative of ‘Urban Stories’ through a series of three tools driven by social, governance, and environmental transformations in today’s urbanization processes. Each lecture explores one city’s spatial and organizational ingenuity born out of a particular place’s realities, allowing students to transfer these inventions into a catalog of conceptual tools. How can students of architecture become active agents of change? What does it take to go beyond a building’s scale, making design-relevant decisions to the city rather than a single client? How can we design in cities with a lack of land, tax base, risk, and resilience, understanding that Zurich is the exception and these other cities are the rule? How can we discover, set rather than follow trends and understand existing urban phenomena activating them in a design process? The lecture series produces a growing catalog of operational urban tools across the globe, considering Governance, Social, and Environmental realities. Instead of limited binary comparing of cities, we are building a catalog of change, analyzing what design solutions cities have been developing informally incrementally over time, why, and how. We look at the people, institutions, culture behind the design and make concepts behind these tools visible. Students get first-hand information from cities where the chair as a Team has researched, worked, or constructed projects over the last year, allowing competent, practical insight about the people and topics that make these places unique. Students will be able to use and expand an alternative repertoire of experiences and evidence-based design tools, go to the conceptual core of them, and understand how and to what extent they can be relevant in other places. Urban Stories is the basic practice of architecture and urban design. It introduces a repertoire of urban design instruments to the students to use, test, and start their designs.
Content

Urban form cannot be reduced to physical space. Cities result from social construction, under the influence of technologies, ecology, culture, the impact of experts, and accidents. Urban un-concluded processes respond to political interests, economic pressure, cultural inclinations, along with the imagination of architects and urbanists and the informal powers at work in complex adaptive systems. Current urban phenomena are the result of urban evolution. The facts stored in urban environments include contributions from its entire lifecycle, visible in the physical environment, and non-physical aspects. This imaginary city exists along with its potentials and problems and with the conflicts that have evolved. Knowledge and understanding, along with a critical observation of the actions and policies, are necessary to understand the diversity and instability present in the contemporary city and understand how urban form evolved to its current state.

How did cities develop into the cities we live in now? Urban plans, instruments, visions, political decisions, economic reasonings, cultural inputs, and social organization have been used to operate in urban settlements in specific moments of change. We have chosen cities that exemplify how these instruments have been implemented and how they have shaped urban environments. We transcribe these instruments into urban operational tools that we have recognized and collected within existing tested cases in contemporary cities across the globe.

This lecture series will introduce urban knowledge and the way it has introduced urban models and operational modes within different concrete realities, therefore shaping cities. The lecture series translates urban knowledge into operational tools, extracted from cities where they have been tested and become exemplary samples, most relevant for understanding how the urban landscape has taken shape. The tools are clustered in twelve thematic clusters and three tool scales for better comparability and cross-reflection.

The Tool case studies are compiled into a global urbanization toolbox, which we use as typological models to read the city and critically reflect upon it. The presented contents are meant to serve as inspiration for positioning in future professional life and provide instruments for future design decisions.

In an interview with a local designer, we measure our insights against the most pressing design topics in cities today, including inclusion, affordable housing, provision of public spaces, and infrastructure for all.

Lecture notes

The learning material, available via https://moodle-app2.let.ethz.ch/ is comprised of:
- Toolbox 'Reader' with an introduction to the lecture course and tool summaries
- Weekly exercise tasks
- Infographics with basic information of each city
- Quiz question for each tool
- Additional reading material
- Interviews with experts
- Archive of lecture recordings
- Reading material will be provided throughout the semester.

<table>
<thead>
<tr>
<th>Internship</th>
</tr>
</thead>
<tbody>
<tr>
<td>The performance counts as electives.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>860-0600-00L</td>
<td>Internship - Short</td>
<td>W</td>
<td>6 credits</td>
<td></td>
<td>external organisers</td>
</tr>
<tr>
<td>Abstract</td>
<td>The internship can be started the earliest in the second semester. The internship needs to be approved by the study director. Therefore students need to hand in a short description to the study secretary before they start the internship.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The internship is a voluntary part of the MSc curriculum.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The internship serves to make students familiar with policy analysis in a real world setting, for instance in a government agency, a NGO, a regulatory or public affairs division of a private sector firm, or a consulting firm focused on policy analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The short internship corresponds to a workload of 180 hours, to be accomplished within 3 months.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>860-0700-00L</td>
<td>Internship - Long</td>
<td>W</td>
<td>12 credits</td>
<td></td>
<td>external organisers</td>
</tr>
<tr>
<td>Abstract</td>
<td>The internship can be started the earliest in the second semester. The internship needs to be approved by the study director. Therefore students need to hand in a short description to the study secretary before they start the internship.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The internship is a voluntary part of the MSc curriculum.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The internship serves to make students familiar with policy analysis in a real world setting, for instance in a government agency, a NGO, a regulatory or public affairs division of a private sector firm, or a consulting firm focused on policy analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The long internship corresponds to a workload of 360 hours, to be accomplished within 6 months.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Master's Thesis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>860-0900-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30 credits</td>
<td>64D</td>
<td>Professors</td>
</tr>
<tr>
<td>Abstract</td>
<td>Only students who fulfill the following criteria are allowed to begin with their master thesis: a. successful completion of the bachelor programme; b. fulfilling of any additional requirements necessary to gain admission to the master programme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The thesis should demonstrate the students ability to conduct independent research on the basis of the theoreticel and methodological knowledge acquired during the MSc program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Science, Technology, and Policy Master - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
</tbody>
</table>

<p>| E- | Recommended, not eligible for credits |
| Z | Courses outside the curriculum |
| Dr | Suitable for doctorate |</p>
<table>
<thead>
<tr>
<th>Key for Hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Educational Science

Course offerings in the category Educational Science are listed under "Programme: Educational Science for Teaching Diploma and TC".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-15L</td>
<td>Designing Educational Environments in Physical Education (EW2 Sport)</td>
<td>O</td>
<td>4</td>
<td>2S</td>
<td>H. Gubelmann, R. Scharpf</td>
</tr>
<tr>
<td></td>
<td>Compulsory course requirements for EW2 Sport: This course is required to be taken prior to EW4 Sport</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Outdoor Education: Concepts and Practice" (851-0242-00L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract: Students learn principles of teaching beyond classroom and regular PE-Lessons:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Planning and organizing camps and events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Teaching the "Ergänzungsfach" Sport</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Long-term-curricula in PE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>As a practical part students design the Outdoor event in EW4 of the following term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective: Students know</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. How to plan events and camps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. To assess curricula critically and to use them properly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. How to combine theoretical and practical issues in the "Ergänzungsfach"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content: 1. LV Semestereinführung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. LV Planung Outdoor-Weekend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. LV Auswertung Outdoor-Event</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. LV Planung Event</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. LV Event-Präsentationen / Schlussveranstaltung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice: EW2 is compulsory requirement for EW4 Sport</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0240-00L</td>
<td>Human Learning (EW1)</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>E. Stern</td>
</tr>
<tr>
<td></td>
<td>This lecture is only apt for students who intend to enrol in the programs "Teaching Diploma" or "Teaching Certificate". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract: This course looks into scientific theories and also empirical studies on human learning and relates them to the school.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective: Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way humans process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers are put in a position where they can further educate themselves in the field of research into teaching and learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content: Thematische Schwerpunkte: Lernen als Verhaltensänderung und als Informationsverarbeitung; Das menschliche Gedächtnis unter besonderer Berücksichtigung der Verarbeitung symbolischer Information; Lernen als Wissenskonstruktion und Kompetenzerwerb unter besonderer Berücksichtigung des Wissenstransfers; Lernen durch Instruktion und Erklärungen; Die Rolle von Emotion und Motivation beim Lernen; Interindividuelle Unterschiede in der Lernfähigkeit und ihre Ursachen; Intelligenztheorien, Geschlechtsunterschiede beim Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes: Folien werden zur Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice: This lecture is only apt for students who intend to enrol in the programs "Lehrdiplom" or "Didaktisches Zertifikat". It is about learning in childhood and adolescence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0242-08L</td>
<td>Research Methods in Educational Science</td>
<td>W</td>
<td>1</td>
<td>2S</td>
<td>P. Edelsbrunner, T. Braas, C. M. Thurn</td>
</tr>
<tr>
<td></td>
<td>Number of participants limited to 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course unit can only be enrolled after successful participation in, or during enrollment in the course "Human Learning (EW 1)".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract: Literature from the learning sciences is critically discussed with a focus on research methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>At the first meeting, working groups will be assembled and meetings with those will be set up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In the small groups students will write critical essays about the read literature. At the third meeting, we will discuss the essays and develop research questions in group work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective: - Understand research methods used in the empirical educational sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Understand and critically examine information from scientific journals and media</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Understand pedagogically relevant findings from the empirical educational sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subject Didactics in Sport

Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>557-0315-00L</td>
<td>Sports Didactics 1</td>
<td>O</td>
<td>4</td>
<td>2V</td>
<td>R. Scharpf, O. Graf</td>
</tr>
<tr>
<td></td>
<td>Only for Teaching Diploma Sports.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simultaneous enrolment in Introductory Internship Sports - course 557-0210-00L - is compulsory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract: Practical implementation in sports of general didactics, with the planning, implementation and evaluation of topics from all the sports-specific areas of tuition in secondary school Level II.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 1933 of 2152
Objective
The students:
- implement the objectives of general didactics in respect of the different types of sport at school.
- master the planning, implementation and evaluation of topics from all the sports-specific areas of tuition.
- gain an overview of the prerequisites necessary for the different requirements placed on a sports teacher at secondary school Level II.
- try out different teaching structures, such as the lesson, teaching unit, block periods and extra units in sport in addition to those on the imetable.

Content
Implementation of practical sport into general teacher training with planning, execution and evaluation of the topics from all sport-specific areas of the education at this level in Section II.

Lecture notes
Implementation of practical sport into general teacher training with planning, execution and evaluation of the topics from all sport-specific areas of the education at this level in Section II.

Literature
Kernlernmittel Jugend und Sport

Prerequisites / notice
Lehrdiplom-Studierende müssen die Fachdidaktik Sport I zusammen mit dem Einfüh rungspraktikum Sport - LE 557-0210-00 - belegen.

557-0203-01L Mentored Work Subject Didactics Sport ■ O 4 credits 9A Supervisors

Only for Teaching Diploma Sports.

Abstract
In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.

Objective
planning and organization of a longer period of instruction in school.

Content
connection of educational goals and instruction

Lecture notes
siehe moodle 00 - Leh rdiplom Sport
https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php

Literature
Dieder P. Dida-Methodische Modelle in der Ausbildung, Dissertation in 2004, 152
Loosch E., Allgemeine Bewegungslehre, Limpert VerlagWiesbaden 1999
Roth K. & K. Willemczik, Bewegungswissenschaft, Rowohlt Verlag Reinbek 1999
Röthig P. Sportwissenschaftliches Lexikon, Schorndorf Verlag 2003

Prerequisites / notice
abgeschlossene Fachdidaktik I

Professional Training in Sport

Important: You can only enrol in the courses of this category if you have not more than 12 CP left for possible additional requirements.

Number Title Type ECTS Hours Lecturers
557-0210-00L Introductory Internship Sports ■ O 3 credits 6P O. Graf, R. Scharpf

Only for Teaching Diploma Sports.

Abstract
During the introductory teaching practice, the students sit in on 3 lessons given by the teacher responsible for their teaching practice, and teach 7 lessons themselves. The students are given observation and reflection assignments by the teacher responsible for their teaching practice.

Objective
Right at the start of their training, students acquire initial experience with the observation of teaching, the establishment of concepts for teaching and the implementation of teaching. This early confrontation with the complexity of everything that teaching involves helps students decide whether they wish to and, indeed, ought to, continue with the training. It forms a basis for the subsequent pedagogical and subject-didactics training.

Content
Students observe 3 and teach 7 lessons, supervised by experienced teachers.

Lecture notes
see moodle 00 - Leh rdiplom Sport
https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php

Literature
Dieder P. Dida-Methodische Modelle in der Ausbildung, Dissertation in 2004, 152
Loosch E., Allgemeine Bewegungslehre, Limpert VerlagWiesbaden 1999
Roth K. & K. Willemczik, Bewegungswissenschaft, Rowohlt Verlag Reinbek 1999
Röthig P. Sportwissenschaftliches Lexikon, Schorndorf Verlag 2003

557-0208-00L Teaching Internship Sport ■ O 8 credits 17P O. Graf, R. Scharpf

Only for Teaching Diploma Sports.

Abstract
The teaching practice takes in 50 sessions. The teaching practice lasts 4-6 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice.

Objective
Students use their disciplinary skills and educational knowledge for teaching.

They know how to judge topics of their subject and can present them in class.

Teaching and classroom management in practice is the main target of this course; students have to find a balance between instruction and self-determined activity of their pupils.

Together with their supervisors they learn to assess their tasks and achievements.

Content
Students apply their theoretical background in practice. By teaching sports lessons they improve their teaching skills and classroom management and learn how to interact with pupils. Together with their supervisor they develop an ability of critical reflection of their tasks.

Lecture notes
see moodle 00 - Leh rdiplom Sport
https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1934 of 2152
The teaching practice takes in 30 Sessions. It lasts 4-6 weeks. It gives students the opportunity to implement the contents of their

1. Students use their disciplinary skills and educational knowledge for teaching.

2. Students apply their theoretical background in practice. By teaching sports lessons they improve their teaching skills and classroom

3. Students become experts in planning, teaching and analyzing lessons in all fields of sports that are part of school curricula.

4. Students know the principles of learning and are able to promote them with different methods.

5. Students become experts in planning, teaching and analyzing lessons in all fields of sports that are part of school curricula.

6. Students know the principles of learning and are able to promote them with different methods.

7. Students become experts in planning, teaching and analyzing lessons in all fields of sports that are part of school curricula.

8. Students know the principles of learning and are able to promote them with different methods.

9. Students become experts in planning, teaching and analyzing lessons in all fields of sports that are part of school curricula.

10. Students know the principles of learning and are able to promote them with different methods.

11. Students become experts in planning, teaching and analyzing lessons in all fields of sports that are part of school curricula.

12. Students know the principles of learning and are able to promote them with different methods.

Specialized Courses in Respective Subject with Educational Focus I
At least 6 CPs must be obtained in this category.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1033-00L</td>
<td>History of Sports</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>M. Gisler</td>
</tr>
<tr>
<td>Abstract</td>
<td>Comprehension for development and changes of sports from the ancient world to the present. Description of sports in services of national idea, from education and health promotion from the middle of the 18th century till this day.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding for the development and adaptation of sports from the ancient world to present times.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Ein Skript für die aktuelle Veranstaltung wird abgegeben.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

376-1107-00L	Sport Pedagogy	W	2	2V	C. Herrmann
Abstract	The teacher-student interaction presents a complex psychosocial event, demonstrating the need for a psychological extension of the classical social science / sports pedagogical perspective. Therefore, this lecture will be focused on "pedagogical-psychological aspects of competence development in the context of a multi-perspective physical education".				
Objective	Development of pedagogical-psychological competences for the optimisation of future teaching activities.				
Content	- Subject area of educational psychology				
	- Motivating students in physical education				
	- Building self-efficacy and strengthen the self-concept				
	- Promoting positive emotions and a positive attitude to anxiety				
	- Encouraging self-directed learning				
	- Leading classes and promoting cooperation				
	- Communicating with students efficiently				
	- Reflecting your own expectations critically				
	- Handling gender issues sensitively				
	- Promoting inclusion / Strengthening social and moral development				
	- Dealing with difficult students				
	- Evaluating achievements of students				
Literature	Teaching materials for the individual lectures are provided to the students via moodle.				

376-1117-00L	Sport Psychology	W	2	2V	H. Gubelmann
Abstract	This lecture is intended as an introduction to sport psychology and imparts knowledge on selected areas of the subject.				
Objective	Students are given insight into different work areas of sport psychology. In order to understand what «sport psychology» is, it is necessary to explain the essence and tasks of sport psychology and what it relates to, and to work out an underlying basis for key topics, such as cognition and emotions. Students' expertise is furthered by presenting and providing more in-depth treatment of additional topics of sport psychology. Selected intervention forms are intended to provide insight into applied sport psychology and ensure that mental processes and their impact in sport can be recognised. Case studies and practical exercises (e.g. objective training) are intended to prompt students to reflect to a greater extent on the forms in which sport psychology can be applied in their practice of sports and to integrate these in their teaching.				
Content	Main Topics				
	- Introduction to sport psychology				
	- Cognitions in sports: mental rehearsal and mental training				
	- Emotions and stress				
	- Motivation: goal-setting in sports				
	- Career and career transition in elite sport				
	- Coach-Athlete-Interaction				
	- Psychological aspects of sport-injury rehabilitation				
	- Group dynamics in sport				

376-1127-00L	Sociology of Sport	W	2	2V	R. Bürgi, M. Lamprecht
Abstract	These lectures deal with the current changes in society and sport and provide an overview of the many different problems and perspectives of sport sociology.				
Objective	The lectures set out to:				
	- present the different dimensions, functions and interrelationships of present-day sport				
	- provide an introduction to the central theories and models of (sport) sociology				
	- show how far sport reflects society and how it changes and becomes more differentiated in the process				
	- take current examples to highlight the sociological view of sport.				
Content	Sport and social change: developments and trends				
	The economy and the media: dependencies, consequences, scandals				
	Social inequalities and distinctions: gender differences and group behavior				
	Conflicts and politics: sports organizations, doping, violence				
Literature	Selected materials for the lecture are available on the Moodle platform.				

Domain A - Subject-specific Competencies

Concepts and Theories

Domain B - Method-specific Competencies

Analytical Competencies

Domain C - Social Competencies

Sensitivity to Diversity

Domain D - Personal Competencies

Critical Thinking

557-0205-00L Mentored Work Specialised Courses in the Respective Subject with an Educational Focus Sport A

Only for Teaching Diploma Sports.

Subject: Pedagogical application of research projects for schools

Abstract

Introduction of sports pedagogical oriented research projects. Competency to a youth friendly movement and sports education. Competent ‘pedagogical application’ of research projects in the field of movement and sport. Feed in of scientific findings to school lesson settings.

Objective

The students combine and apply general educational aims with a general and specific background of research projects. They know the different educational concepts of the above mentioned, recognise its strengths and weaknesses and are able to apply concepts appropriate to the situation. They are interested in the (thought-) processes of education and research in sports in Switzerland. They use their knowledge of research matters to guide educational thought-processes. They are interested in processes of research in sports. They approach the research interest of their pupils with the knowledge of sports psychology, sports sociology, sports pedagogy, and sports history.

Content

Lecture notes

Skript unter: https://moodle-app2.let.ethz.ch/course/view.php?id=117

Literaturverweise erfolgen jeweils in den gewählten Fachbereichen

Prerequisites / notice

Auswahl von 2 aus 4 Angeboten:

a) Motor-Learning im Sport (Fachbereich Sportpsychologie)
- Vorlesung
- Praktische Umsetzung von Forschungsprojekten für die Schule

b) Sport im Spannungsfeld zwischen Ethik und Kommerz (Fachbereich Sportsoziologie)
- Vorlesung
- Praktische Umsetzung von Forschungsprojekten für die Schule

c) Mehrperspektivität im Sportunterricht (Fachbereich Sportpädagogik)
- Vorlesung
- Praktische Umsetzung von Forschungsprojekten für die Schule

d) Historische Entwicklung der Lehr und Lernmodell im Sportunterricht (Fachbereich Sportgeschichte)
- Vorlesung
- Praktische Umsetzung von Forschungsprojekten für die Schule

Alle Wahlfachangebote beinhalten:
- Sportsprachliche Fachpraxis
- Praktische Umsetzung der Erkenntnisse für die Schule

Specialized Courses in Respective Subject with Educational Focus II

At least 6 CPs must be obtained in this category.

Further courses must be chosen from the "Sport Practical: Major Education".

Number Title Type ECTS Hours Lecturers

557-0206-00L Mentored Work Specialised Courses in the Respective Subject with an Educational Focus Sport B

Only for Teaching Diploma Sports.

Prerequisite: Sports Didactics I

Abstract

Refurbishment of research projects dealing with motor competencies in sport and professional scientific content related to this area. Competent "didactical implementation" of research content. The Fachwissenschaftliche Vertiefung II orientates itself to the guiding principles of cognitive, conditional and coordination aspects of movement.

Objective

Connection of sport and human movement science and educational instruction.

Content

Scientific analysis of sports disciplines in order to improve instruction

Lecture notes

Skript unter: https://moodle-app2.let.ethz.ch/course/view.php?id=117

see specific subjects

Literature

see Sport Teaching Diploma, Sport Practical: Major Education

Compulsory Elective Courses

At least 6 CPs must be acquired in this category.

Further courses must be chosen from the "Sports Practice: Major Education and Specialized Education".

see Sport Teaching Diploma, Sport Practical: Major Education

Sports Practice

The Teaching Diploma in Sports will only be granted to students holding a Master, Diploma or Licentiate degree in Human Movement Sciences and Sports or Health Sciences and Technology. Additionally, a Sports Practice encompassing 56 CPs is required. The Sports Practice can be partly conducted during the Bachelor and Master programmes in Sports.

Assessments

Number Title Type ECTS Hours Lecturers

557-0101-00L Assessment I Shaping

Only for Health Sciences and Technology BSc and Teaching Diploma Sports.

O 2 credits 2G M.-M. Jäggi, C. König

Data: 11.11.2021 12:40

Autumn Semester 2021

Page 1937 of 2152
Dance and movement comprise of expression, strength, endurance, suppleness, flexibility, rhythmic movement sequences, coordination and dance cant with music - combined with creativity. Implementation of these aspects.

Objective
The assessment monitors both the physical fitness of the students and their skills in the fields of athletics and fitness, which forms the basis for a successful rounding off of the respective direction of study.

Content
- To understand music and to be able to interpret the music's character
- To improve coordination with the help of music
- To gain insight into different dance styles
- To expand the diversity and repertoire of movements
- To understand music and to be able to interpret the music's character
- Dance enhances the consciousness about body and posture, helps in a holistic personality development and assists in body language: a way to express emotions
- To enjoy dancing without prior knowledge and to experience the possibilities within dance from easy to hard
- To expand one's own dance technique in framework of the topics offered: To acquire and expand personal skills and knowledge
- To improve coordination with the help of music
- To understand music and to be able to interpret the music's character

Lecturers
C. Gmünder

Literature
- Trampolinschule nach der Part-Methode, BASPO 2013

557-0433-00L Apparatus Gymnastics and Trampoline I W 2 credits 2G M.-M. Jäggi

Abstract
To get to and understand the basics of movement (core movements) and its respective actions and functions on apparatuses, on the floor and in acrobatics as well as to create individual and cooperative combinations according to qualitative criteria.

Objective
The students should be able to:
- acquire and consolidate apparatus related core movements as well as apply and create such combinations
- utilize their own strength as well as the resulting impact in a differentiate way in order to precisely move the swinging, flying, falling and twisting body
- gain orientation safety and room orientation while twisting and flying
- gain sensitivity for social competences (e.g. to assist, to observe, to advise) within a small group.
- structural relationships within rotations (turnarounds, handsprings and free somersaults)
- core poses as motor basic training
- variety of position modifications in handstands
- core movements and combinations on parallel bars, high bar, floor and in swinging rings
- different forms of vaulting as well as springing in movements like handstands and somersaults

Content
- different forms of vaulting as well as springing in movements like handstands and somersaults
- structural relationships within rotations (turnarounds, handsprings and free somersaults)
- core poses as motor basic training
- variety of position modifications in handstands
- core movements and combinations on parallel bars, high bar, floor and in swinging rings
- different forms of vaulting as well as springing in movements like handstands and somersaults

Literature
- Gerling I.E.; Basibuch Geräteturnen für alle; Meyer 2005.
- Trampolinschule nach der Part-Methode, BASPO 2013

557-0454-01L Swimming I W 2 credits 2G M. Perk

Abstract
Basic education in swimming: swimming, diving, water polo and artistic swimming

Literature
- Trampolinschule nach der Part-Methode, BASPO 2013
Objective

All kind of swimming:
- learns to know and understand the individual basic techniques
- improvement of technical skills and crafts

Content

- Artistic Swimming: Erwerben und festigen Wassertreten, Paddeln, einzelne Grundfiguren.

Lecture notes

Wird abgegeben

Literature

- Swimsports.ch: Schweizerische Tests im Schwimmsport

Prerequisites / notice

Assessment II BSc HST erfolgreich abgeschlossen.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>W</th>
<th>2G</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>557-0503-01L</td>
<td>Basketball 1</td>
<td></td>
<td></td>
<td>C. Ferrari</td>
</tr>
<tr>
<td>Prerequisites: Assessment III (BSc HST).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Basketball-Basics: Basic technical skills: dribbling/ballhandling, passing, shooting, footwork and defense related to the specific Basketball rules. Tactical skills: 1 on 1, give & go, hand-off, pick & roll, pick & pop and the application of these skills in a game 3 on 3 on one basket.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students know the technical basic Basketball elements (dribbling, changes of hand, stops, starts, footwork, pass, shot, defense), they can demonstrate them and use them correctly in a game situation 3 on 3 on one basket. The students know the tactical Basketball elements (1 on 1, give & go, hand-off, pick & roll, pick & pop) and can apply these skills in a game 3 on 3 on one basket. The students know the main rules of the game.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Learning the basic elements in drills and games, learning (pre-)tactical elements (1-1, getting open, 2-2, backdoor cut, frontdoor cut, 3-3, give & go, hand-off, pick & roll, pick & pop, spacing) and assemble them into systems, that can be used in a game 3 on 3 on one basket.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>available on Moodle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chervet, Michel: Basektball. Fundamental skills for offensive play. Video (german / french). Magglingen, BASPO, 2003 (CHF 34.-). Order at video@baspo.admin.ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

557-0514-03L Soccer I

Prerequisites: Assessment III BSc HST.

Abstract

Acquisition/consolidation basic skills for soccer.

Objective

Support and development the individual conditions/talent/skill and introduction of basic methods will be treated.

Content

Technique:
- Dribble, short passport play, get the ball under control, shot,

Individual tactics:
- offensive/defensive 1vs1; keep ball in own rows

various contests in support of different techniques and tactics

Literature

- Bucher, Walter (Hrsg.) 1020 Spiel- und Übungsformen im Kinderfußball, 7. unveränderte Auflage 2011, Hofmann-Verlag, Schorndorf

Prerequisites / notice

1. Prerequisites:
- Small being able in soccer.
- Readiness to train.

2. After this course you can get the licence "manager for children".

Prerequisites: Only 1 absence from the lessons "football for children", the book "Kinderfußball" can be bought in the course.
557-0533-01L Floorball I W 2 credits 2G F. Ungrad

Prerequisites: Assessment III BSc HST

Abstract
Experiencing Unihockey/Floorball as an indoor sportsgame
Learning by doing to improve personal sport skills and widening personal abilities in ball sports
Learning by practising/playing and linking that knowledge to theories of motor learning

Objective
Practising unihockey to improve personal sport skills and widening personal abilities in ball sports
Improvement of personal unihockey-skills
Learning by practising/playing and linking that knowledge with theories of motor learning

Content
Transfer of ideas into motor movements and motor skills
Personal improvement by practising different motor skills as moving the ball/ballcontrol, passing, shooting
Training of personal sports abilities in ballgames
Analysis of play-situations and corresponding motor movement
Understanding, learning and applying the rules of the game
Practical test of skills and in game activities at the end of the semester

Lecture notes
Classes are based on insights from the book “unihockey basics” by B.Beutler, M.Wolf.

Literature
unihockey basics, by B.Beutler, M.Wolf, ingold verlag, CH-3360 Herzogenbuchsee, 2004,
is the authorized book of the swiss unihockey federation for the formation of trainers and coaches.
ISBN 3-03700-043-0

Prerequisites / notice
Please bring your personal hockey stick with you to class.

557-0522-01L Handball I W 2 credits 2G F. Lüchinger

Prerequisites: Assessment III (BSc HST).

Abstract
Learn by playing - from three-a-side to four-a-side games.
Game development takes place over the zone play of the game (2/1) or 3/2 to the game 4/4 or (6/6).

The introduced technical elements form the requirements for the tactically- orientated zone plays and are exclusively trained in the execution and formation steps.

Objective
The students improve their personal skills and demonstrate the game in teams as well as groups of 4 against 4.
They deepen the development of the game
They improve their personal skills with an individual emphasis on game and practice.

Content
Spielend Handball lernen - Über das Spiel zum Spiel (Vom Spiel 3/3 zum Spiel 4/4)
Techniktrainig ist Sache der Studierenden.
Die individuelle Grundschulung wird mit Lernkontrollen überprüft (Kontrollblätter).
Alle ausgewählten Formen müssen als Lernkontrolle durchführbar sein.

Lecture notes
Lehrunterlagen können von der Homepage abgerufen werden.

Literature
Literatur
* Obligatorisch Spielerziehung: O. Buholzer SHV Kosten Fr. 15.
* Obligatorisch Spielend Handball lernen A. Emrich Limpert Kosten Fr. 20.
* Freiwillig Spielen lernen M. Ochsenbein: O. Buholzer SHV Kosten Fr. 15.
* Freiwillig Technik lernen O. Buholzer SHV Muss selbständig erworben oder bei Semesterbeginn bestellt werden.

Prerequisites / notice
Testatbedingungen: Präsenz:
Maximale Abwesenheiten (3 entschuldigte und 3 unentschuldigte Absenzen)
Testübungen: Im Rahmen der Ausbildung werden Zonenspiele und Fertigkeiten erarbeitet. Für das Testat (Bewegungswissenschafter) müssen insgesamt 6 Testatübungen aus mind. 4 praktischen Bereichen abgegeben werden.

Prüfungen: Inhalte: Die Prüfungsinhalte werden während des Semesters erarbeitet und am Ende des Semesters schriftlich abgegeben.

557-0601-00L Badminton I W 2 credits 2G F. Ungrad

Does not take place this semester.
Prerequisites: Assessment III (BSc HST).

Abstract
To learn and to deepen technical and tactical abilities and skills of the game: to show methodical learning- and structural series

to learn the basic strokes
to learn the basic foot work
to get to know single and double tactics
to try out different game variations

Objective
The students:
- J+S Education possibility
- Transfer Offpist
- Transfer Nordic Cross

Lecture notes
Die Skriptunterlagen können auf moodle heruntergeladen werden

Literature
Lehrunterlagen von Shuttle Time

Prerequisites / notice
Präsenz: maximale Anwesenheit empfahlen

557-0603-01L Snowsports I - Ski W 2 credits 2G F. Lüchinger

Prerequisites: Assessment I-II (BSc HST) passed.

Abstract
Education in the disciplines of winter sports.
- J+S Education possibility
- Transfer Offpist
- Transfer Nordic Cross

Objective
The students:
- experience the different winter sports.
- gain an understanding of how to ski off-piste.
- Transfer: Input Nordic Cross!

Content
- To apply and vary personal technique of alpine skiing
- To acquire and vary personal technique of cross-country skiing
- Competition in ski-jumping, and giant slalom
- To gain an understanding in how to ski off-piste
- To gain Nordic Cross

Prerequisites / notice
Requirement: Assessment I + II (BSc HST)
Education in the disciplines of winter sports.
- J+S Education possibility
- Transfer Offpist
- Transfer Nordic Cross

The students:
- Experience the different winter sports!
- Gain an understanding of how to ski off-piste!
- Gain an understanding of how to Nordic Cross.

Prerequisites / notice
Requirement: Assessment I + II (BSc HST)

557-0426-00L Fitness II
Prerequisites: successful completion of Basic Education in Fitness

- Anamnese und Trainingsplanung
- Trainingsmittel im Fitnessbereich
- Methoden im Kraft und Ausdauerbereich
- Einführung von Personen an Fitnessgeräten, Instruktion und Korrektur
- Funktionelle Anatomiekennnisse im Fitnessbereich
- Sicherheits- und Trainingsregeln im Group Fitness
- verbales & visuelles Cueing
- Funktionelles Training im Group Fitness
- Training der Tiefenmuskulatur ohne/mit instabiler Unterlage
- Intervaltraining als Stundenformat
- Koordinationstraining ohne/mit Hilfsmittel
- Dehnmethoden
- Zielgruppenangepasste Stundenformate

Wird im Unterricht abgegeben oder auf Moodle bereitgestellt

Literature
- Skript und Unterlagen Fitness I
- Training fundiert erklärt, J. Hegner, 5. Auflage 2012

557-0539-00L Gymnastics / Acrobatics II
Prerequisite: Successful completion of the basic course “Apparatus Gymnastics and Trampoline I” (557-0433-00L).

- Anamnese und Trainingsplanung
- Trainingsmittel im Fitnessbereich
- Methoden im Kraft und Ausdauerbereich
- Einführung von Personen an Fitnessgeräten, Instruktion und Korrektur
- Funktionelle Anatomiekennnisse im Fitnessbereich
- Sicherheits- und Trainingsregeln im Group Fitness
- verbales & visuelles Cueing
- Funktionelles Training im Group Fitness
- Training der Tiefenmuskulatur ohne/mit instabiler Unterlage
- Intervaltraining als Stundenformat
- Koordinationstraining ohne/mit Hilfsmittel
- Dehnmethoden
- Zielgruppenangepasste Stundenformate

Prerequisites / notice
Voraussetzungen:
- abgeschlossene (nicht zwingend bestandene) Grundausbildung in Akrobatik
- Geräteturnen/Trampolin

557-0541-00L Badminton / Volleyball II
Prerequisite: Successful completion of the basic courses “Badminton I” and “Volleyball I” (557-0601-00L / 557-0542-01L).

- further core movements und its combinations on different apparatuses
- handsprings and (free) somersaults back- and forwards, respectively twists back- and forwards on different apparatuses
- creative and cooperative composition in a threesome accompanied by music
- vault springs and touching down springs (stuetz springs) to overcome obstacles in an artful way (Freerunning)
- integrated theoretical coherences of the qualitative movement learning process
- conveyance of methodical and didactical principles as well as topic specific criteria
- functional warm-up with regard to specific contents

Lecture notes
Wird im Unterricht abgegeben oder auf Moodle bereitgestellt

Literature
- Skript und Unterlagen Fitness I
- Training fundiert erklärt, J. Hegner, 5. Auflage 2012

Prerequisites / notice
Voraussetzungen:
abgeschlossene (nicht zwingend bestandene) Grundausbildung in
- Akrobatik
- Geräteturnen/Trampolin
Abstract

Badminton:
In this course you will build up and experience different tactical and technical exercise forms for classes. At the same time you will be able to deepen your own skills.

Volleyball:
Identify and experience the main aspects of teaching volleyball and adapt it for your own lessons using didactical and methodical concepts. Improve individual technical and tactical skills in volleyball.

Objective

The level II courses focus on methodological concepts and didactics. The goal is to learn how to teach the specific sport at high school level. The didactical aspects are often conveyed through new skills and elements. It is not required to have passed the level I course, but it is mandatory to have attended it previously.

Badminton:
- To build methodical and didactical concepts to teach badminton classes.
- To deepen your own technical and tactical abilities.

Volleyball:
- You identify and experience the main aspects of teaching volleyball and adapt it for your own lessons using didactical and methodical concepts.
- You improve your individual technical and tactical skills in volleyball.

Content

Badminton:
In this course we work on possibilities to build up different tactical and technical exercise forms and structures for classes. You get to know a variety of games. You learn how you can diversify exercises – depending on the level and the age of your pupils.

Volleyball:
- You experience and discuss the main problems of teaching volleyball in school. You learn in practice how to deal with it and work out your own solutions.
- You improve your individual technical and tactical skills in diverse games and practice drills.

Lecture notes

Published during the semester on "moodle".

Prerequisites / notice

Prerequisite:
Basic course completed

Education Acquired Outside ETH

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>557-0450-00L</td>
<td>Life Saving Rescue Test Plus Pool SLRG</td>
<td>O</td>
<td>2 credits</td>
<td>external organisers</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Acknowledgment of course attendance Brevet Basis Pool and Brevet Plus Pool SLRG.

External education! Credit points only for Teaching Diploma Sports!

Objective

- To recognize danger in, on and around water
- Knowledge and handling of life saving equipment
- Rescue and towing techniques
- Orientation under water
- To rescue a person
- Basis knowledge in anatomy and first aid

Prerequisites / notice

Prerequisites: please consult www.slrgr.ch

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>557-0451-00L</td>
<td>First Responder Level 2</td>
<td>O</td>
<td>2 credits</td>
<td>external organisers</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Acquisition of the certificate "Ersthelfer Stufe II IVR".

Objective

- To be able to judge an injured person and to apply life saving actions
- To carry out wound treatment with actual bandage
- To list the characteristics of a sprain, strain, dislocation and to apply first-aid interventions
- To carry out fixed bandages with common material
- To explain the function of the cardiovascular system
- To name the symptoms of poisoning
- To list the signs of acute illness
- To put together the content of a first-aid box
- To carry out safety interventions in daily situations.

Content

* Hautverletzungen
* Wundinfektion / Blutvergiftung
* Stürze im Alltag (Verstauchungen, Prellungen, Quetschungen)
* Sportverletzungen, Knochenbrüche
* Herzkreislaufrüste
* Alltagselerkrankungen in der Familie

Prerequisites / notice

Prerequisites: please consult www.samariter.ch

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>557-0452-00L</td>
<td>J+S-Coach School and Youth Sports</td>
<td>O</td>
<td>2 credits</td>
<td>external organisers</td>
<td></td>
</tr>
</tbody>
</table>

Acquisition of the certificate "J+S-Coach School and
Youth Sports.

External education! Credit points only for Teaching Diploma Sports.
Information on signing in for the course will be provided by the study administration HST.

Abstract
Acquisition of the Certificate "J+S-Coach School and Youth Sports" in the course of "Magglinger Hochschulwochen".

Objective
- to experience and reflect on qualitatively good sports using practical examples.
- to get to know the institution BASPO/EHSM with its tasks and network.
- to get to know the J+S program.
- to gain proficiency as a J+S Coach in school and youth sports.

ॐ Compensation Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>557-0603-01L</td>
<td>Snowsports I - Ski</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>C. Elmiger-Schnyder, further lecturers</td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Assessment I+II (BSc HST) passed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Education in the disciplines of winter sports.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- J+S Education possibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transfer Offpist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transfer Nordic Cross</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- experience the different winter sports.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- gain an understanding of how to ski off-piste.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transfer: Input Nordic Cross!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- To apply and vary personal technique of alpine skiing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To acquire and vary personal technique of cross-country skiing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Competition in ski-jumping, and giant slalom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To gain an understanding in how to ski off-piste</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To gain Nordic Cross</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Requirement: Assessment I + II (BSc HST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

557-0603-02L	Snowsports I - Snowboard	W	2 credits	2G	C. Elmiger-Schnyder, further lecturers
	Prerequisites: Assessment I+II (BSc HST) passed.				
Abstract	Education in the disciplines of winter sports.				
	- J+S Education possibility				
	- Transfer Offpist				
	- Transfer Nordic Cross				
Objective	The students:				
	- Experience the different winter sports!				
	- Gain an understanding of how to ski off-piste!				
	- Gain an understanding of how to Nordic Cross.				
Content	- To apply and vary personal technique of snowboarding				
	- To acquire and vary personal technique of cross-country skiing				
	Competition in ski-jumping, and giant slalom				
	- To gain an understanding in how to ski off-piste				
	- To gain an understanding in how to Nordic Cross				
Prerequisites / notice	Requirement: Assessment I + II (BSc HST)				

557-0605-01L	Snowsports II - Ski	W	2 credits	2G	C. Elmiger-Schnyder, further lecturers
	Prerequisite: Basic course Snowsports I passed.				
Abstract	Specialization training: Acquisitions of special skills, getting to know the performance factors and training methods in the areas of Snowsports.				
Objective	Snow sports Skiing:				
	- To deepen and expand experience and skills in snow sports and in the personal competency of technique of the chosen snow sport.				
Content	Snow sports skiing:				
	- General and specific education of personal competency in technique of the chosen snow sport.				
Prerequisites / notice	Requirement: Basic course in Snowsport I completed.				

557-0605-02L	Snowsports II - Snowboard	W	2 credits	2G	C. Elmiger-Schnyder, further lecturers
	Prerequisite: Basic course Snowsports I passed.				
Abstract	Specialization training: Acquisitions of special skills, getting to know the performance factors and training methods in the areas of Snowsports.				
Objective	Snow sports (Snowboarding):				
	- To deepen and expand experience and skills in snow sports and in the personal competency of technique of the chosen snow sport.				
Content	Snow sports (snowboarding):				
	- General and specific education of personal competency in technique of the chosen snow sport: Park, Piste and Off-Piste				
Prerequisites / notice	Requirement: Basic course in Snowsport I completed.				

557-0605-03L	Snowsports II - Telemark	W	2 credits	2G	C. Elmiger-Schnyder, further lecturers
	Prerequisite: Basic course Snowsports I passed.				
Abstract	Specialization training: Acquisitions of special skills, getting to know the performance factors and training methods in the areas of Snowsports.				
Comprehension for development and changes of sports from the ancient world to the present. Description of sports in the service of national ideas, from education and health promotion from the middle of the 18th century to today.

Movement- and sports biomechanics deals with the attributes of the human body and their link to mechanics. The course includes topics such as functional anatomy, biomechanics of daily activities (gait, running, etc.) and looks at movement in sport from a mechanical point of view. Furthermore, simple reflections on the loading analysis of joints in various situations are discussed. Additionally, questions covering the statics and dynamics of rigid bodies, and inverse dynamics, relevant to biomechanics are investigated.

This course provides an overview over molecular and systemic aspects of neuromuscular, cardiovascular and respiratory adaptations to acute and chronic exercise as well as the interactions of the different systems influencing factors, e.g. genetics, gender, age, altitude/deep, heal/cold, with respect to performance and health.

Movement- and sports biomechanics deals with the attributes of the human body and their link to mechanics. The course includes topics such as functional anatomy, biomechanics of daily activities (gait, running, etc.) and looks at movement in sport from a mechanical point of view. Furthermore, simple reflections on the loading analysis of joints in various situations are discussed. Additionally, questions covering the statics and dynamics of rigid bodies, and inverse dynamics, relevant to biomechanics are investigated.

Objective
- To deepen and expand experience and skills in snow sports and personal pedagogical-competency in detail of the chosen snow sport.
- To expand skills to the area of telemark

Content
- General and specific education of personal competency in technique of the chosen snow sport.
- Telmark as an extra experience in the framework of technique on slope, park and off-piste.

Prerequisites / notice
- Requirement: Basic course in Snowsports I completed.

Additional Requirements in Sports Science

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-0203-00L</td>
<td>Movement and Sport Biomechanics</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>B. Taylor, R. List</td>
</tr>
<tr>
<td>Abstract</td>
<td>Learning to view the human body as a (bio-) mechanical system. Making the connections between everyday movements and sports activity with injury, discomfort, prevention and rehabilitation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students are able to describe the human body as a mechanical system. They analyse and describe human movement according to the laws of mechanics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Movement- and sports biomechanics deals with the attributes of the human body and their link to mechanics. The course includes topics such as functional anatomy, biomechanics of daily activities (gait, running, etc.) and looks at movement in sport from a mechanical point of view. Furthermore, simple reflections on the loading analysis of joints in various situations are discussed. Additionally, questions covering the statics and dynamics of rigid bodies, and inverse dynamics, relevant to biomechanics are investigated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

376-0207-00L	Exercise Physiology	W	4	3G	C. Spengler, F. Gabe Beltrami, R. M. Rossi
Abstract	This course provides an overview over molecular and systemic aspects of neuromuscular, cardiovascular and respiratory adaptations to acute and chronic exercise as well as the interactions of the different systems influencing factors, e.g. genetics, gender, age, altitude/deep, heal/cold, with respect to performance and health.				
Objective	The aim of this course is to understand molecular and systemic aspects of neuromuscular, cardiovascular and respiratory adaptations to acute and chronic exercise as well as the interaction of the different systems regarding health-relevant aspects and performance in healthy people and persons with selected diseases. Furthermore, students will understand the influence of genetics, gender, age, altitude/deep, heal and cold on the named factors.				
Content	History of Exercise Physiology, research methods, fibertype heterogeneity and its functional significance, neural control of muscle force, molecular nad cellular mechanisms of muscle adaptation to resistance, endurance and stretching exercise, interindividual variability in the response to training, cardiorespiratory and metabolic responses to acute and chronic exercise, sexi differences relevant to exercise performance, exercise in hot and cold environment, children and adolescents in sport and exercise, exercise at altitude and depth, aging and exercise performance, exercise for health, exercise in the context of disease.				
Literature	Online material is provided during the course.				
Prerequisites / notice	Wird in der Vorlesung bekannt gegeben.				

376-1033-00L	History of Sports	W	2	2V	M. Gisler
Abstract	Comprehension for development and changes of sports from the ancient world to the presence. Description of sports in services of national idea, from education and health promotion from the middle of the 18th century till this day.				
Objective	Understanding for the development and adaptation of sports from the ancient world to present times.				
Lecture notes	Ein Skript für die aktuelle Veranstaltung wird abgegeben.				

376-1107-00L	Sport Pedagogy	W	2	2V	C. Herrmann
Abstract	The teacher-student interaction presents a complex psychosocial event, demonstrating the need for a psychological extension of the classical social science / sports pedagogical perspective. Therefore, this lecture will be focused on "pedagogical-psychological aspects of competence development in the context of a multi-perspective physical education".				
Objective	Development of pedagogical-psychological competences for the optimisation of future teaching activities.				

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1944 of 2152
Content

- Subject area of educational psychology
- Motivating students in physical education
- Building self-efficacy and strengthen the self-concept
- Promoting positive emotions and a positive attitude to anxiety
- Encouraging self-directed learning
- Leading classes and promoting cooperation
- Communicating with students efficiently
- Reflecting your own expectations critically
- Handling gender issues sensitively
- Promoting inclusion / Strengthening social and moral development
- Dealing with difficult students
- Evaluating achievements of students

Literature

Prüfbar. Literatur:

376-1117-00L Sport Psychology

Abstract

This lecture is intended as an introduction to sport psychology and imparts knowledge on selected areas of the subject.

Objective

Students are given insight into different work areas of sport psychology. In order to understand what «sport psychology» is, it is necessary to explain the essence and tasks of sport psychology and what it relates to, and to work out an underlying basis for key topics, such as cognition and emotions. Students’ expertise is furthered by presenting and providing more in-depth treatment of additional topics of sport psychology. Selected intervention forms are intended to provide insight into applied sport psychology and ensure that mental processes and their impact in sport can be recognised. Case studies and practical exercises (e.g. objective training) are intended to prompt students to reflect to a greater extent on the forms in which sport psychology can be applied in their practice of sports and to integrate these in their teaching.

Content

- Introduction to sport psychology
- Cognitions in sports: mental rehearsal and mental training
- Emotions and stress
- Motivation: goal-setting in sports
- Career and career transition in elite sport
- Coach-Athlete-Interaction
- Psychological aspects of sport-injury rehabilitation
- Group dynamics in sport

Lecture notes

Teaching materials for the individual lectures are provided to the students via moodle.

Literature

Teaching materials for the individual lectures are provided to the students via moodle.

376-1127-00L Sociology of Sport

Abstract

These lectures deal with the current changes in society and sport and provide an overview of the many different problems and perspectives of sport sociology.

Objective

- The lectures set out to:
 - present the different dimensions, functions and interrelationships of present-day sport
 - provide an introduction to the central theories and models of (sport) sociology
 - show how far sport reflects society and how it changes and becomes more differentiated in the process
 - take current examples to highlight the sociological view of sport.

Content

- Sport and social change: developments and trends
- The economy and the media: dependencies, consequences, scandals
- Social inequalities and distinctions: gender differences and group behavior
- Conflicts and politics: sports organizations, doping, violence

Lecture notes

Selected materials for the lecture are available on the Moodle platform.

Literature

376-0130-00L Laboratory Course in Exercise Physiology

Objective

Conduct physical performance tests and measurements that are typically used to assess performance of athletes and/or patients and that deepen the understanding of physiological processes in response to physical exertion.

Content

- Laboratory course:
 - Various exercise tests assessing human performance and assessments of physiological responses to activity (examples are VO2max-test, Conconi-Tests, Determination of anaerobic threshold, Cooper-Test, 1-repetition maximum test, lactate minimum test), dynamometry, mechanography, body composition etc.). Insight into measurements in Sports Medicine.

Lecture notes

Tutorial on Laboratory Experiments in Exercise Physiology

(Title: Exercise Physiology Lab)

Literature

- Schmidt/Lang/Heckmann: Physiologie des Menschen, Springer-Verlag, Heidelberg
- Kenney/Wilmore/Costill: Physiology of Sport and Exercise, Human Kinetics
Prerequisites / notice

Prerequisite:
Anatomy and physiology classes and lab course in physiology successfully completed (BWS students please contact C. M. Spengler)

Desirable:
Exercise Physiology Lecture (concomitantly or passed; is selection criterion in case of more applications than lab spaces)

376-2019-00L Applied Movement Analysis W 2 credits 2G R. Scharpf, P. Schütz

Abstract
Based on examples from sports science, practical training and movement therapy, different methods of movement analysis are applied and compared.

Objective
Students are able to assess human movements using various methods of movement analysis. They learn to systematically analyse movements by structured observation and to apply scientific methods according to the situation. They use modern technology as well as their own perception and experience.

Content
During the lecture students get acquainted with different scientific and practical methods of functional and biomechanical movement analysis.
Based on concrete examples, these methods will be applied and compared. The examples range from sport, everyday movement to therapy, such as ball sports, gymnastics/acrobatics, gait/running and strength training.
In the first phase of the lecture, the different approaches are presented and applied. In the process, current technical devices will be used.
In a second phase, individual projects are worked out in small teams. The projects will be discussed, presented and graded.

Lecture notes
Class material will be distributed using the moodle platform.

Sport Teaching Diploma - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>Compulsory</th>
<th>Dr</th>
<th>Suitable for doctorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
<td>W</td>
<td>Eligible for credits</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
<th>P</th>
<th>practical/laboratory course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
<td>R</td>
<td>revision course / private study</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Public Policy Bachelor

1. Semester

Core Courses First Year Examinations

Examination Block 1

Students are free to take the exam either in German or in French. They may choose between 853-0729-00L 'Introduction to Torts, Contract and Insurance Law' or 851-0709-00L 'Introduction to Civil Law' (French)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>853-0723-00L</td>
<td>Introduction to Torts, Contracts and Insurance Law</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only for Public Policy BA</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>C. von Zedwitz</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to Torts, Contracts and Insurance Law.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course shall make sure that the participants are fit to make the adequate decisions when encountering legal questions and issues in their career.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course touches upon relevant topics of Contract Law (formation of contract and contract performance), Tort Law (including liability limitation), corporate law (types of corporations, formation of LLC), civil procedure (jurisdiction and applicable law, costs, when and how to engage a lawyer) and insurance law (duty to disclose relevant facts, gross negligence).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>The course 'Introduction au Droit civil' (851-0709-00) provides an introduction to the law of Contracts and Torts in French.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>851-0709-00L</th>
<th>Introduction to Civil Law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The course Private Law focuses on the Swiss Code of Obligations (contracts, torts) and on Property Law (ownership, mortgage and easements). In addition, the course will provide a short overview of Civil Procedure and Enforcement.</td>
</tr>
<tr>
<td>Objective</td>
<td>Teaching of the principles of law, particularly private law. Introduction to law.</td>
</tr>
<tr>
<td>Content</td>
<td>Le cours de droit civil porte notamment sur le droit des obligations (droit des contrats et responsabilité civile) et sur les droits réels (propriété, gages et servitudes). De plus, il est donné un bref aperçu du droit de la procédure et de l'exécution forcée.</td>
</tr>
<tr>
<td>Literature</td>
<td>Editions officielles récentes des lois fédérales, en langue française (Code civil et Code des obligations) ou italienne (Codice civile e Codice delle obbligazioni), disponibles auprès de la plupart des librairies.</td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Remarques - Le cours de droit civil et le cours de droit public (2e sem.) sont l'équivalent des cours "Recht I" et "Recht II" en langue allemande et des exercices y relatifs. - Les examens peuvent se faire en français ou en italien. - Examen au 1er propédeutique; convient pour travail de semestre. - Con riassunti in italiano. E possibile sostener l'esame in italiano.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>851-0577-00L</th>
<th>Principles of Political Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This course covers basic questions, concepts, theories, methods, and empirical findings of political science.</td>
</tr>
<tr>
<td>Objective</td>
<td>This course covers basic questions, concepts, theories, methods, and empirical findings of political science.</td>
</tr>
<tr>
<td></td>
<td>Tipp: Lesen Sie zuerst genau die Übungsfragen für das zu studierende Buchkapitel (https://ib.ethz.ch/teaching/pwgrundlagen.html) und erst danach das betreffende Kapitel. Sie wissen dann beim Lesen schon vorweg, auf was Sie besonders genau schauen sollten.</td>
</tr>
<tr>
<td></td>
<td>Übungsfragen und ein Glossar finden Sie hier: https://ib.ethz.ch/teaching/pwgrundlagen.html</td>
</tr>
</tbody>
</table>
| | Leistungskontrollen
| | a) Erster Test (12.11.2021, 14:15–15:00)
| | b) Zweiter Test (17.12.2021, 14:15–15:00)
| | Ergebnis gemittelt das Ergebnis der benoteten Semesterleistung |
| | Ja nach Covid-19 Situation werden die beiden Tests entweder im Kursraum oder online durchgeführt (ausschliesslich eine der beiden Varianten, keine Wahlmöglichkeit). |
| | Kreditpunkte
| | 4 ECTS-Punkte (Zeitaufwand insgesamt ca. 120 Arbeitsstunden) |
The lectures "Leadership I" (WS) and "Leadership II" (SS) have been designed as a two-semester lecture series, but may also be followed independently or in reverse order. "Leadership I" covers the following fields: leadership basics, leadership theories and leadership styles, the concept of leadership responsibility and the role of communication in practical leadership.

For the students of the BA Public Policy and DAS Military Sciences only.

For BA Public Policy and DAS Military Sciences only.

Microeconomics

Introduction to the economic decisions of households and firms, and their coordination through markets. Analysis of different market structures and of situations in which markets may lead to socially undesirable outcomes.

Economics as a science, division of labour and welfare (concept of comparative advantage), supply and demand (market equilibrium, elasticity), households (preferences, demand), firms (technology, cost analysis, profit maximisation, supply), perfect competition, monopoly and oligopoly, externalities, public goods, information, factor markets and income distribution

via email

Course macroeconomics in the spring term

Leadership I

Understanding of basic microeconomic models. Ability to apply these models to real world economic situations.

3 credits

Type

ECTS

Hours

Lecturers

351-1034-00L

Microeconomics

O

3 credits

2V

A. Fetz, M. Gysler

Autumn Semester 2021
At the end of this lecture course, students can: (a) highlight the most important changes in the "long nineteenth century" in Europe (b) explain their long-term effects; and (c) relate these changes to global developments today.

The thematic foci include: Industrialization on the British Isles, urban growth in Switzerland, the difficult road to democracy in Germany, and French individualism.

Power Point Slides and references will be made available in digital form during the course of the semester. Mandatory and further reading will be listed on the course plan that is made available as from the first session.

This lecture series does not build upon specific previous knowledge by the students.

History Part One: Europe (The Cradle of Modernity, Britain, 1789-1914)

Abstract
A range of fundamental processes have transformed European societies in the course of the 19th and the 20th centuries. This lecture series asks whether one single model of modernization prevailed on the 'Old Continent' or whether we need to differentiate regionally. A special focus lies on the Swiss experience.

Objective
At the end of this lecture course, students can: (a) highlight the most important changes in the "long nineteenth century" in Europe (b) explain their long-term effects; and (c) relate these changes to global developments today.

Content
The thematic foci include: Industrialization on the British Isles, urban growth in Switzerland, the difficult road to democracy in Germany, and French individualism.

Lecture notes
Power Point Slides and references will be made available in digital form during the course of the semester.

Literature
Mandatory and further reading will be listed on the course plan that is made available as from the first session.

This lecture series does not build upon specific previous knowledge by the students.

Military Psychology and Pedagogy I

Abstract
Examine the fundamentals of the two sciences and establish links with military life. Discuss various schools of thought in psychology and focus on content and process theories of motivation. Explore characteristics of pedagogical thinking and discuss the values of military education with reference to the young adult serving in the armed forces.

Objective
- Becoming acquainted with basic psychological views of human behaviour and experience
- Knowing content- and process theories of motivation and being able to transfer them to the military context
- Knowing the possibilities and limitations of military education and deriving consequences

Content
Overall, the objective is to become acquainted with the basics of both scientific areas and to make references to military practice. Military psychology is a branch of applied psychology; consequently selected aspects of psychological principles will be covered. Military pedagogy hasn't yet established itself firmly as an independent scientific discipline, it nevertheless can draw on a deep-seated tradition in Switzerland. Thus, the great importance that has been attached to the discussion of education in Swiss society and academia will be taken into account. Subjects:
- History of military psychology
- Psychological images of humanity (psychoanalysis, behavioural biology, humanistic psychology, cognitivism)
- Motivational theories
- Defence-, service-, operational- and combat motivation
- Swiss military pedagogy
- Education as defining feature of pedagogic thinking and acting

This course is completely by a compulsory one week course between terms.

Literature
- Annen, H., Steiger, R. & Zwygart, U.: Gemeinsam zum Ziel, Huber, Frauenfeld 2004 (provided as pdf)
- Stadelmann, J.: Führung unter Belastung, Huber, Frauenfeld 1998 (provided as pdf)

The lecture is supported by a virtual learning environment containing relevant documents (presentations and texts) and information to further literature.

Remaining Core Courses of the Bachelor Programme

Proseminar I: Political Methodology

Abstract
Teaching of formal requirements of scientific work (philosophy of science with a focus on the social sciences); literature reviews and the basics of conducting independent research on short as well as simple topics; basics of conceptualizing research designs for politically relevant questions and hypotheses.
1) Understanding the goal and the basic procedures of empirical social sciences scientific work (philosophy of science, theory building, research design, as well as the correct employment of sources, data and literature).

2) Identification of relevant research questions.

3) Creating a common basis for a thorough and systematic analysis of these.

Political Methodology I seeks to introduce students to the basics of scientific work and procedures in the social sciences, which in turn shall allow them - also in conjunction with Political Methodology II - to conduct work that fulfills satisfactory standards of research quality throughout their further studies.

With regard to Political Methodology I, this seminar primarily focuses on the philosophy and theory of empirical social sciences, its structure, and procedures. The seminar emphasizes substantive contents and ways of presenting them, research and, conceptual work.

Additionally, it deals with the basis of establishing research designs with politically relevant questions and hypotheses.

Each student will be graded by two exercises (50% each).

1) Source analysis and acquisition: based upon a research question that will be given by the lecturer, the student shall collect a comprehensive list of the relevant literature and summarize that with her/his own words.

2) Critical analysis of sources: based upon a research article that the student chooses on her/his own, the student shall write a critical analysis of that, which mirrors frame and structure of scientific writing.

Submission dates will be communicated in the first meeting.

853-0064-00L

Military Sociology I

| Domain A - Subject-specific Competencies | Concepts and Theories | Taught
| | assessed |
| | Techniques and Technologies | assessed |

Abstract

Beside of the most important terms of sociology, demographic changes and the related value and structure change will be analysed. The second part focuses on organizational sociology. Thirdly, the course examines to which extent armed forces can be considered as organizations like any other and to which extent they constitute a special case from an organizational and normative point of view.

Objective

Recognize and explain current changes (social change) in modern society (individualisation, pluralisation); describe demographic changes in Switzerland; explain the structures of societies; define issues and fields of research in modern military sociology and explain the foundations of organisational sociology; explain the military in terms of organisational sociology and identify specific traits of the military as an organisation.

Literature

A reader with a set of texts will be handed out.

Prerequisites / notice

Each student will be graded by two exercises (50% each).

Languages

First Foreign Language

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
853-0405-00L | Conflict Research I: Political Violence | O | 4 credits | 2V+1U | A. Juon

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
853-0015-00L | Conflict Research I: Political Violence | O | 4 credits | 2V+1U | A. Juon

3. Semester

Remaining Core Courses of the Bachelor Programme

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
853-0015-00L | Conflict Research I: Political Violence | O | 4 credits | 2V+1U | A. Juon
The lecture outlines the development of the armed forces (assets regarding manpower, technology and armament), the concepts of warfare and the actual warfare in the 19th and 20th century.

Objective
- Knowledge on different types of political violence and their causes.
- This course offers an introduction to research on the causes and solutions to political violence in domestic and international politics. First, we discuss the definitions and concepts used in conflict research, the data and methods commonly applied and their historical development. Second, we focus on interstate wars and examine in this context state formation, nationalism and democracy. The third part of the course focuses on different types of political violence, including civil war, terrorism or social protests.

Prerequisites / notice
The course «Conflict Research II» in the following semester further examines civil wars.

Exercises complete the lectures, where the literature will be further discussed. The participants write a short memo (max. 3 pages) about one of the required readings.

853-0047-00L World Politics Since 1945: The History of International Relations Only for Public Policy BA and DAS Military Sciences

Abstract
This lecture series provides students with an overview of the development of international relations since the end of World War II. The first part of the series deals with the development of and changes in Cold War security policy structures. The second part deals with the period after the transformation of 1989/91; the focus here is on current issues in international security policy.

Objective
By the end of the semester, participants should have a solid knowledge of the history and theoretical foundations of International Relations since the end of the Second World War.

Content
- Exemplify the issues regarding the evolution of the combat (First and Second World War, Vietnam War and Algerian War).
- Based on the approach regarding revolution in military affairs, describe the evolution of the armed forces and of warfare;
- Reflection of common business practices.

Prerequisites / notice
The lecture is being supported by a website on Moodle. If you have any questions, please contact Oliver Roos (oliver.roos@siro.isess.ethz.ch)

853-0065-00L Business Administration I Only for Public Policy BA

Abstract
The course BA I provides an understanding of the principles of General Business Management. It comprises an introduction to the basic business principles within a business acumen with a clear focus on value creation. The theory conveyed is illustrated with exercises, case studies and examples from business practice.

Objective
- Understanding and application of instruments and methods of general management.
- Driving customer equity.
- Reflection of common business practices.

Content
I ENTERPRENEURIAL THINKING AND ACTION
1. Customer orientation and value creation
2. Business and Environment
3. Legal forms of business under Swiss corporate law
II BUSINESS PROCESSES
4. Marketing I
5. Marketing II
III SUPPORTING PROCESSES
6. Human Resource Management I
7. Human Resource Management II
IV MANAGEMENT PROCESSES
8. Organisation
9. Value-based management
10. Mission, Business Norms and Business Culture
11. Strategic Management

Literature

853-0063-00L Military History I Only for Public Policy BA

Abstract
The lecture outlines the development of the armed forces (assets regarding manpower, technology and armament), the concepts of warfare and the actual warfare in the 19th and 20th century.

Objective
- Distinguish between military history as a subject and historiography as a way of describing events;
- Analyse the modern developments regarding armed forces and warfare in the context of socio-economic changes;
- Based on the approach regarding revolution in military affairs, describe the evolution of the armed forces and of warfare;
- Exemplify the issues regarding the evolution of the combat (First and Second World War, Vietnam War and Algerian War).

Content
The lecture first examines the bases of the science of (military) history. It focuses on how military history developed from war history, on specific similarities and differences between military history and general historiography, the different ways of dealing with history in Switzerland, Germany, France and in the Anglo-Saxon cultural area (different approaches) as well as on institutions which deal with military history such as universities, military academies, national and international commissions and associations etc.

The lecture is structured along the lines of the concept of "Military Revolution" and starts with the formation of modern, European armed forces after the Oranian Army reform in the 17th century.

Based on the "Military Revolution" approach, the lecture examines the structural changes regarding the armed forces and the development of warfare from the 18th to the 20th century. Special emphasis will be put on how the battlefield was revolutionized due to the Napoleonic wars, the industrialization in the 19th century, the First World War, the mechanization and totalization during the Second World War and the period of the Cold War.

Literature

853-0082-00L Strategic Studies I

Abstract
The lecture series treats high-impact strategic theory from antiquity to the present.
The participants know how the understanding of strategy has evolved over time. They understand the interplay of strategy's basic components: ends, ways, means. They know the most important classics of strategy and war theory, especially against their specific historical background. Based on the analysis of historical and contemporary examples, they are aware of the mismatch between declaration and implementation of any given strategy.

They are capable of analyzing original texts and modern scholarly works in the field of strategic studies.

The two-semester lecture series treats classic texts of strategic studies from antiquity to the present. Term 1 covers the theories up until roughly 1900, term 2 treats the theories eversince.

Theories are considered classic if they were prominent in their respective times and if they enjoyed a strong reception thereafter, be it in literature, in academic debates or as guidelines for action (doctrine). Each out of some 50 theories is discussed in three steps: historical context, core elements and reception.

Prior to the lectures, the respective slides are provided as well as primary sources and literature, as preparatory readings (via Moodle). The program is also available online (www.milak.ch).

The seminar is designed to help students understand the European Union as a particular kind of political system that differs both from the nation-state and from other international organizations. It imparts basic knowledge on the development, institutions, procedures, and policies of the EU and provides an introduction to major approaches to integration theory and political science research on the EU.

The course (lecture and tutorial) covers the theory, development, and core policy fields of European integration as well as structures and processes of the EU as a decision- and policy-making system. The two-term lecture series treats classic texts of strategic studies from antiquity to the present. Term 1 covers the theories up until roughly 1900, term 2 treats the theories eversince.

Theories are considered classic if they were prominent in their respective times and if they enjoyed a strong reception thereafter, be it in literature, in academic debates or as guidelines for action (doctrine). Each out of some 50 theories is discussed in three steps: historical context, core elements and reception.

Prior to the lectures, the respective slides are provided as well as sources and literature, as preparatory readings (via Moodle). The program is also available online (www.milak.ch).

The lecture is held in German. Passive knowledge of English and French are required.

Die Leistungskontrolle findet durch eine Seminarpräsentation und einen schriftlichen Schlusstest statt.

Schimmelenning, Frank: Europäische Integration (erhältlich zu Beginn des Kurses)

Literatur wird über Moodle bereitgestellt.

Die Leistungskontrolle findet durch eine Seminarpräsentation und einen schriftlichen Schlusstest statt.

In terms of structure and content, the event follows the lecturer's book "Militärökonomie" (Military Economics), which is available in two language versions:

- German language: ISBN 978-3-658-06146-3

- Recognizing parallels and contrasts between business and military thinking;
- Recognize and analyze planned economic systems;
- Understand the link between institutions, human action and economic results.

The contents correspond to sections 1 to 2.2.5 of the above book. The following will be discussed:

1. fundamental military economic problems including historical introduction to the topic
2. the institutional foundations of a military organisation
3. the modern military as a planned economy system
4. actors and stakeholders in the system

The semester program of the course is divided into 14 modules of 90 minutes each, which combine lecture (teaching of analytical techniques) and exercise (application by means of concrete case studies).

The contents correspond to sections 1 to 2.2.5 of the above book. The following will be discussed:

1. fundamental military economic problems including historical introduction to the topic
2. the institutional foundations of a military organisation
3. the modern military as a planned economy system
4. actors and stakeholders in the system

Lecture slides are given to the participants before the first lecture. In addition, the above mentioned book will be handed over to the participants. Participants of the lecture who are not professional officer candidates are requested to obtain the book from the library or bookstore.

ISBN 978-3-658-06146-3

ISBN 978-3-658-25287-8

none.
Based on the research design prepared in part I of the seminar, candidates write a comprehensive academic term paper. The term paper consists of three parts: I. Basics, II. Security policy instruments, III. Consolidation.

The knowledge and skills acquired in the second semester serve as a basis for further improvements in the areas of speaking, listening, reading and writing, which will enable students to enroll for the Cambridge exams. The goal is to reach Council of Europe (CEFR) level C1 or C2 depending on the linguistic proficiency of the students.

This three-semester English course should enable the participants to successfully use the English language in an international military setting.

Read, analyse and write military and civilian documents
- Listening comprehension using current radio or TV reports
- Practise speaking with group discussions and short presentations
- Systematic revision and extension of key grammar points
- Systematic acquisition of general and military vocabulary

5. Semester

Remaining Core Courses of the Bachelor's Programme

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>853-0049-00L</td>
<td>Introduction to Constitutional Law in Security Policy</td>
<td>O</td>
<td>3 credits</td>
<td>2V</td>
<td>R. Müller</td>
</tr>
</tbody>
</table>

The course will be supported by an e-learning environment.

Advanced Course II (Seminar)

This two-semester course is divided into several groups. A core question relating to the topic of the seminar paper is being developed (I), which will be chosen in coordination and under the guidance of the respective lecturers. Upon conclusion, the paper will be presented in class (II). Based on the qualifications obtained in the Proseminar, a high academic standard is expected.

Based on the research design prepared in part I of the seminar, candidates write a comprehensive academic term paper. The term paper should be considered as a good preparation for the BA thesis.
Seminar II builds on the findings of seminar I. Within the broader framework of the overall theme of the seminar (Foreign Policies and Security Strategies of the Great Powers) and based on the approved research design of seminar I, participants write their term paper (in close consultation with the lecturer).

Lecture notes
A Reader was provided as part of seminar I (cf. online platform Moodle).

Literature
cf. Reader and Reading List Seminar I

Prerequisites / notice
German

853-0061-00L

Introduction to Cybersecurity Politics

O 3 credits 2G M. Dunn Cavelty, F. J. Egloff

Abstract
The lecture is an introduction to global cybersecurity politics. The focus is on the strategic use of cyberspace by state and non-state actors (threats) and different answers to these new challenges (countermeasures).

Objective
Participants learn to assess the advantages and disadvantages of cyberspace as a domain for strategic military operations. They understand the technical basics of cyber operations and know how technology and politics are interlinked in this area. They understand the security challenges for and the motivations of states to be active in cyberspace offensively and defensively and they are familiar with the consequences for international politics.

Content
We start with an overview of cybersecurity issues from 1980 to today and look at events and actors responsible for turning cybersecurity matters into a security political issue with top priority. After familiarizing ourselves with the technical basics, we look at different forms of ciberviolence and trends in cyber conflicts (technique in social and political practice). Then, we turn to countermeasures: we compare national cybersecurity strategies, examine international norms building, and scrutinize concepts such as cyber-power and cyber-deterrence (technique in social and political regulatory contexts).

Lecture notes
A script with background information and comments on the literature will be made available at the beginning of the semester.

Literature
Literature for each session will be available on Moodle.

The lecture is being supported by a website on Moodle.

Taught competencies

Domain A - Subject-specific Competencies	Concepts and Theories	assessed
Domain B - Method-specific Competencies	Analytical Competencies	assessed
Decision-making	not assessed	
Media and Digital Technologies	not assessed	
Problem-solving	assessed	
Domain C - Social Competencies	Communication	not assessed
Cooperation and Teamwork	not assessed	
Sensitivity to Diversity	not assessed	
Domain D - Personal Competencies	Creative Thinking	assessed
Critical Thinking	assessed	
Self-direction and Self-management	not assessed	

853-0046-00L

Social Psychology of Groups

O 3 credits 2V T. Heilmann

Abstract
Basic social psychological topics are elaborated, presented, and discussed in the most application-oriented way.

Objective
You are able to recognize and explain various social psychological aspects and factors and to evaluate them in your everyday decisions in terms of planning, content and operations. This means you will be able to assess when various social psychological aspects may play a role in your everyday work. And you are able to assess what this may subsequently mean for your work or leadership processes.

Content

1) Führungspychologie: Kurzer Einblick in neuere Führungstheorien.
2) Destructive Führung: Was sollten wir nicht machen?
3) Soziale Kognition: Warum und auf Basis welcher wenigen Informationen wir sehr schnell Urteile über Personen treffen.
4) Soziale Wahrnehmung/Attribution: Wie erklären wir uns, dass sich jemand im Alltag in gewisser Art und Weise verhält?
5) Diversity & Frauen & Führung: Woran kann es liegen, dass weibliche Führungskräfte besondere Herausforderungen bei der Ausübung von Führung haben?
6) Sozialer Einfluss: Welche Normen erleben Sie beim Militär? Und wie leiten diese Erwartungen unser Verhalten im Berufssalltag?
7) Gruppenspsychologie: Was heisst "Gruppe"? Wie entwickeln sich (militärische) Gruppen, z.B. in der RS? Welche Prozesse können zwischen Gruppen geschehen?
9) Überzeugungsstrategien
Literature

Prerequisites / notice

Lehrangebot im Studiengang Berufsoffizier

Languages

Second Foreign Language

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>853-0402-00L</td>
<td>German, Part II</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>S. Schweizer</td>
</tr>
<tr>
<td>Only for Public Policy BA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Based on the knowledge and skills acquired during the first semester, speaking and discussion skills related to military situations are examined and put into practice. Attention is focused on issues such as instruction, qualification and career interviews.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>This two-semester German course should enable the French and Italian speaking participants to fulfil their function as professional officers also in the German language.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Read, analyse and write military and civilian documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Listening comprehension using current radio or TV reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practise speaking with group discussions and short presentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systematic revision and extension of key grammar points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systematic acquisition of general and military vocabulary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

853-0404-00L	French, Part II	W	3	2G	S. Schweizer
Only for Public Policy BA					
Abstract	Based on the knowledge and skills acquired during the first semester, speaking and discussion skills related to military situations are examined and put into practice. Attention is focused on issues such as instruction, qualification and career interviews.				
Objective	This two-semester French course should enable the German speaking participants to fulfil their function as professional officers also in the French language.				
Content	Read, analyse and write military and civilian documents				
	Listening comprehension using current radio or TV reports				
	Practise speaking with group discussions and short presentations				
	Systematic revision and extension of key grammar points				
	Systematic acquisition of general and military vocabulary				

Bachelor's Colloquium and Bachelor's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>853-0315-00L</td>
<td>BA Colloquium</td>
<td>O</td>
<td>2</td>
<td>2K</td>
<td>F. Schimmelfennig</td>
</tr>
<tr>
<td>Only for BA Public Policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The BA Colloquium prepares students for their BA thesis with regard to content, administration, and methodology. During the colloquium, students choose a topic and a supervisor for their thesis. The skills students have acquired during the course of their studies are also enhanced and optimized.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are being prepared administratively and methodologically to write their BA-thesis after completing the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The BA Colloquium prepares students for their BA thesis with regard to content, administration, and methodology. During the colloquium, each student has to choose a topic for his/her BA-thesis. The students also choose their supervisors, whereas the goal is an even distribution of the supervisors. Finally, the methodological competences which were acquired during the first four semesters will be complemented.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This lecture is intended as an introduction to sport psychology and imparts knowledge on selected areas of the subject.

Objective

- Students are given insight into different work areas of sport psychology.
- In order to understand what «sport psychology» is, it is necessary to reflect to a greater extent on the forms in which sport psychology can be applied in their practice of sports and to integrate these in their work.
- Selected intervention forms are intended to provide insight into applied sport psychology and ensure that mental processes and their impact in sport can be recognised.
- Case studies and practical exercises (e.g. objective training) are intended to prompt students to explain the essence and tasks of sport psychology and what it relates to, and to work out an underlying basis for key topics, such as cognition and emotions.
- Students' expertise is furthered by presenting and providing more in-depth treatment of additional topics of sport psychology. Selected intervention forms are intended to provide insight into applied sport psychology and ensure that mental processes and their impact in sport can be recognised.

Content

- Understanding for the development and adaptation of sports from the ancient world to present times.
- A. Dossi, M. Leese,

Literature

Lituratur für die einzelnen Sitzungen wird auf Moodle bereitgestellt.

Prerequisites / notice

The lecture is being supported by a website on Moodle. If you have any questions, please contact Oliver Roos, oliver.roos@sipio.gess.ethz.ch.

Additional Elective Courses

These Electives may be chosen from the start of the Bachelor Study Programme.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1033-00L</td>
<td>History of Sports</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>M. Gisler</td>
</tr>
<tr>
<td>Abstract</td>
<td>Comprehension for development and changes of sports from the ancient world to the presence. Description of sports in services of national idea, from education and health promotion from the middle of the 18th century till this day.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding for the development and adaptation of sports from the ancient world to present times.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Ein Skript für die aktuelle Veranstaltung wird abgegeben.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

376-1107-00L	Sport Pedagogy	W	2 credits	2V	C. Herrmann
Abstract	The teacher-student interaction presents a complex psychosocial event, demonstrating the need for a psychological extension of the classical social science / sports pedagogical perspective. Therefore, this lecture will be focused on "pedagogical-psychological aspects of competence development in the context of a multi-perspective physical education".				
Objective	Development of pedagogical-psychological competences for the optimisation of future teaching activities.				
Content	- Subject area of educational psychology				
- Motivating students in physical education
- Building self-efficacy and strengthen the self-concept
- Promoting positive emotions and a positive attitude to anxiety
- Encouraging self-directed learning
- Leading classes and promoting cooperation
- Communicating with students efficiently
- Reflecting your own expectations critically
- Handling gender issues sensitively
- Promoting inclusion / Strengthening social and moral development
- Dealing with difficult students
- Evaluating achievements of students |
| Lecture notes | Teaching materials for the individual lectures are provided to the students via moodle. |

376-1117-00L	Sport Psychology	W	2 credits	2V	H. Gubelmann
Abstract	This lecture is intended as an introduction to sport psychology and imparts knowledge on selected areas of the subject. Students are given insight into different work areas of sport psychology. In order to understand what «sport psychology» is, it is necessary to explain the essence and tasks of sport psychology and what it relates to, and to work out an underlying basis for key topics, such as cognition and emotions. Students' expertise is furthered by presenting and providing more in-depth treatment of additional topics of sport psychology. Selected intervention forms are intended to provide insight into applied sport psychology and ensure that mental processes and their impact in sport can be recognised. Case studies and practical exercises (e.g. objective training) are intended to prompt students to reflect to a greater extent on the forms in which sport psychology can be applied in their practice of sports and to integrate these in their teaching.				
Objective					

Additional Electives

- Domain A - Subject-specific Competencies
 - Techniques and Technologies
- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Project Management
- Domain D - Personal Competencies
 - Creative Thinking
 - Integrity and Work Ethics
 - Self-direction and Self-management
Content

Main Topics
- Introduction to sport psychology
- Cognitions in sports: mental rehearsal and mental training
- Emotions and stress
- Motivation: goal-setting in sports
- Career and career transition in elite sport
- Coach-Athlete-Interaction
- Psychological aspects of sport-injury rehabilitation
- Group dynamics in sport

Lecture notes

Instructional materials for each course will be made available to students. All lecture materials will be available to students on Moodle.

Literature

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>ECTS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1127-00L</td>
<td>Sociology of Sport</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>R. Bürgi, M. Lamprecht</td>
</tr>
<tr>
<td>851-0589-00L</td>
<td>Technology and Innovation for Development</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>P. Aerni</td>
</tr>
</tbody>
</table>

Abstract

Sociology of Sport

These lectures deal with the current changes in society and sport and provide an overview of the many different problems and perspectives of sport sociology.

Objective

The lectures set out to:
- present the different dimensions, functions and interrelationships of present-day sport
- provide an introduction to the central theories and models of (sport) sociology
- show how far sport reflects society and how it changes and becomes more differentiated in the process
- take current examples to highlight the sociological view of sport.

Content

Sport and social change: developments and trends
- The economy and the media: dependencies, consequences, scandals
- Social inequalities and distinctions: gender differences and group behavior
- Conflicts and politics: sports organizations, doping, violence

Lecture notes

Selected materials for the lecture are available on the Moodle platform.

Literature

A detailed program with additional references will be delivered at the beginning of the lecture.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories

Domain B - Method-specific Competencies
- Analytical Competencies

Domain C - Social Competencies
- Sensitivity to Diversity

Domain D - Personal Competencies
- Critical Thinking

Technology and Innovation for Development

Technological change plays a crucial role in efforts to create a more sustainable future. In this context, policy decision makers must design rules that minimize its risks and maximize its benefits for society at large. The course discusses this challenge from an interdisciplinary perspective taking into account legal, economic, historical, development and environmental aspects.

Objective

- to recognize the challenges and opportunities of technological change in terms of sustainable development
- to become familiar with policy instruments to promote innovation
- to improve understanding of political decision-making processes in the regulation of science & technology
- improved understanding of the role of science and technology in the context of human and societal development

Content

Science and Technology Policy is normally associated with the improvement of national competitiveness; yet, it is also an integral part of effective environmental and development policies. The course will discuss the challenges and opportunities of technological change in terms of sustainable development and show how public policy on the national and the international level is responding to this change.

In this context, students are to become familiar with the basic principles of political economy and New Growth Theory and how such theories help explain political decisions as well as political outcomes in the area of Science, Technology and Innovation. State interventions are either designed to regulate (e.g. environmental regulations, anti-trust law) or facilitate (e.g. intellectual property rights protection, public investment in R&D and technical education, technology transfer) technological change. This will be illustrated by looking at different industries and different national systems of innovation. Subsequently the positive and negative consequences for society and the natural environment will be discussed from a short-term and a long-term perspective.

Lecture notes

Reader with issue-specific articles. E-version is partly available under https://www.ethz.ch/content/specialinterest/gess/cis/international-relations/en/teaching/materials/tech.html
The objectives of this course are (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a mark (a) will have a weight of 40% and (b) 60%. In addition, they will have to pass a written test at the end of the course in order to obtain 3 credit points in the ECTS System. In the final discussion (c) preparation of questions for a selected invited speaker, and subsequent submission of protocol about the content of the talk and the preparation in class (15 Minutes) based on a paper to be discussed on a particular day in class. Students will be asked to make a contribution in class choosing one out of three options:

860-0023-00L International Environmental Politics

Particularly suitable for students of D-ITET, D-USYS

This course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

The objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems and how they could be solved.
This course deals with how and why international problem solving efforts (cooperation) in environmental politics emerge, and under what circumstances such efforts are effective. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution, protection of biodiversity, how to deal with plastic waste, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:

1. **A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units**
2. **Reading assignments, available via Moodle, for a few selected course units**
3. **Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit)**

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

- **Assigned reading materials and slides will be available via Moodle.**
- **Assigned reading materials and slides will be available via Moodle.**

This course will take place fully online. Course units have three components:

1. **A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units**
2. **Reading assignments, available via Moodle, for a few selected course units**
3. **Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit)**

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.
Getting acquainted to the extended risk concept

Analytical Competencies

Copies of slides and selected documents will be distributed

Environmental Ethics

assessed

Business Law

assessed

Projects are not only the base of work in modern enterprises but also the primary type of cooperation with customers. Students of ETH will

- Risks and technical systems (risk categories, risk perception, risk management)

assessed

The pressing environmental challenges of today demand a critical reflection. Ethics is an important tool for doing so. This lecture introduces

- Concepts and Theories
- Analytical Competencies
- Decision-making
- Problem-solving

Taught competencies

Domain A - Subject-specific Competencies

Domain B - Method-specific Competencies

Domain C - Social Competencies

Domain D - Personal Competencies

Communication

Leadership and Responsibility

Sensitivity to Diversity

Adaptability and Flexibility

Creative Thinking

Critical Thinking

Integrity and Work Ethics

not assessed

851-0735-10L

Business Law

Number of participants limited to 100

W 2 credits

2V P. Peyrot

Particularly suitable for students of D-ITET, D-MAVT

The students shall obtain a basic knowledge about business law. They shall be able to recognize and evaluate issues in the area of business law and suggest possible solutions.

The students shall obtain the following competence:
- They shall obtain a working knowledge on the legal aspects involved in setting up and managing an enterprise.
- They shall be acquainted with corporate functions as contracting, negotiation, claims management and dispute resolution
- They shall be familiar with the issues of corporate compliance, i.e. the system to ascertain that all legal and ethical rules are observed.
- They shall be able to contribute to the legal management of the company and to discuss legal issues.
- They shall have an understanding of the law as a part of the corporate strategy and as a valuable resource of the company.

A comprehensive script will be made available online on the moodle platform.

101-0515-00L

Project Management

W 2 credits

2G C. G. C. Marxt

The course gives a detailed introduction on various aspects of professional project management out of theory and practice. Established concepts and methods for project organization, planning, execution and evaluation are introduced and major challenges discussed. The course includes an introduction on specialized project management software as well as agile project management concepts.

Projects are not only the base of work in modern enterprises but also the primary type of cooperation with customers. Students of ETH will often work in or manage projects in the course of their career. Good project management knowledge is not only a guarantee for individual, but also for company wide success.

The goal of this course is to give a detailed introduction into project management. The students should learn to plan and execute a project.

Project planning (aims, appointments, capacities, efforts and costs), project organization, scheduling and risk analysis, project execution, supervision and control, project evaluation, termination and documentation, conflict management, multinational project management, IT support as well as agile project management methods such as SCRUM.

No.

The lecture slides and other additional material will be available for download from Moodle a week before each class.

701-0985-00L

Social Intercourse with Current Environmental Risks

W 1 credit

1V B. Nowack

Does not take place this semester.

The lecture treats the social intercourse with risks of technical systems. The notion of risk and the perception of risk are discussed by case studies (e.g. nanotechnology) and socio-political instruments for decision-making are presented. Methods that are presented can be applied to deal with environmental risks and how they can be used for sustainable innovation.

Getting acquainted to the extended risk concept
- Evaluation of the risks caused by technology within the societial context
- Knowledge about the mode science and society handle current environmental risks (examples gene- and nanotechnology)
- Knowledge about handling risks (e.g. precautionary principle, protection goal, damage definition, ethics)

Objective

Content

Knowledge about possibilities for sustainable innovation
- Risks and technical systems (risk categories, risk perception, risk management)
- Illustration with case studies (nanotechnology)
- Implementation (politics, science, media, etc.)
- Decision making (technology assessment, cost/benefit analysis etc.)
- The role of the media
- prospects for future developments

Lecture notes

Copies of slides and selected documents will be distributed

Prerequisites / notice

The lecture is held biweekly (for 2 hours). The dates are 3.9.; 30.9. (instead of 7.10); 21.10; 4.11.; 18.11.; 2.12.; 16.12.

701-0703-00L

Environmental Ethics

W 2 credits

2V A. Deplazes Zemp

The pressing environmental challenges of today demand a critical reflection. Ethics is an important tool for doing so. This lecture introduces the basics of ethics and provides in-depth knowledge of environmental ethics and its debates. This theoretical background will be applied and critically reflected using examples of current environmental challenges.

On completion of this lecture, you have acquired the ability to identify, analyze, critically reflect and resolve ethical challenges in general and specifically regarding the environment. You know basic concepts, positions and lines of argumentation from the debate in environmental ethics, which you have applied and discussed in smaller exercises.

Introduction to general and applied ethics.
- Overview and discussion of ethical theories relevant to address environmental challenges.
- Familiarisation with various basic standpoints within environmental ethics.
- Cross-section topics, such as sustainability, intergenerational justice, protection of species, etc.
- Practicing of newly acquired knowledge in smaller exercises.

Objective

Content

Presentation slides of the individual sessions will be distributed, including the most important theories and keywords; extended reading lists.

- Andrew Light/Holmes Rolston III, Environmental Ethics. An Anthology, 2003
- John O'Neill et al., Environmental Values, 2008

Literature

Generel introductions:
- Marcus Düssel el. al (Hrsg.), Handbuch Ethik, 2. Auflage, Stuttgart (Metzler Verlag), 2006
- Johann S. Acht et. al. (Hrsg.), Grundkurs Ethik 1. Grundlagen, Paderborn (mentis) 2008

- Cross-section topics, such as sustainability, intergenerational justice, protection of species, etc.
- Practicing of newly acquired knowledge in smaller exercises.

Number of participants limited to 100

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1960 of 2152
Participants of the course Research Ethics will

We expect participants to engage in and contribute to discussions for keeping the course interesting and lively.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Prerequisites / notice</th>
<th>Title</th>
<th>Hours</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0757-00L</td>
<td></td>
<td></td>
<td>W</td>
<td>2</td>
<td>G. Achermann, P. Emch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R. Züst</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
An environmental management system has the objective to continuously improve the environmental performance of the activities, products and services of a company. The company has to introduce different management procedures. The goal of this lecture is to provide basics and specific procedure to implement the environmental dimension in the planning and decision making processes of an organisation.

Objective
Overview on environmental management and environmental management systems, general methods and principles.

Content
Introduction to environmental management / environmental management systems, energy and material flows; economical and ecological problems in industry; characterisation of an enterprise (incl. management handbook); structur and contents of an environmental management system; overview on the ISO 14001 ff. series; methods for environmental evaluation and assessment; integrated management systems; planning methodology and life-cycle-design design; planning example

Lecture notes
Information about environmental management and environmental management systems will be provided by a CD or mail.

Literature
A list with literatures and links will be provided

Prerequisites / notice
Delivery of a case study, worked out in groups. Language: Teaching in English on request.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Prerequisites / notice</th>
<th>Title</th>
<th>Hours</th>
<th>Credits</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0180-00L</td>
<td></td>
<td></td>
<td>W</td>
<td>2</td>
<td>G. Achermann, P. Emch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R. Züst</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Research Ethics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of participants limited to 40

Abstract
Students are able to identify and critically evaluate moral arguments, to analyse and to solve moral dilemmas considering different normative perspectives and to create their own well-justified reasoning for taking decisions to the kind of ethical problems a scientist is likely to encounter during the different phases of biomedical research.

Objective
Participants of the course Research Ethics will

- Develop an understanding of the role of certain moral concepts, principles and normative theories related to scientific research;
- Improve their moral reasoning skills (such as identifying and evaluating reasons, conclusions, assumptions, analogies, concepts and principles), and their ability to use these skills in assessing other people’s arguments, making decisions and constructing their own reasoning to the kinds of ethical problems a scientist is likely to encounter;

Content
I. Introduction to Moral Reasoning

1. Ethics - the basics
 - 1.1 What ethics is not… 1.2 Recognising an ethical issue (awareness) 1.3 What is ethics? Personal, cultural and ethical values, principles and norms 1.4 Ethics: a classification 1.5 Research Ethics: what is it and why is it important?

2. Normative Ethics
 - 2.1 What is normative ethics? 2.2 Types of normative theories – three different ways of thinking about ethics: Virtue theories, duty-based theories, consequentialist theories 2.3 The plurality of normative theories (moral pluralism); 2.4 Roles of normative theories in “Research Ethics”

3. Decision making: How to solve a moral dilemma
 - 3.1 How (not) to approach ethical issues 3.2 What is a moral dilemma? Is there a correct method for answering moral questions? 3.3 Methods of making ethical decisions 3.4 Is there a “right” answer?

II. Research Ethics - Internal responsibilities

1. Integrity in research and research misconduct
 - 1.1 What is research integrity and why is it important? 1.2 What is research misconduct? 1.3 Questionable/Detrimental Research Practice (QRP/DRP) 1.4 What is the incidence of misconduct? 1.5 What are the factors that lead to misconduct? 1.6 Responding to research wrongdoing 1.7 The process of dealing with misconduct 1.8 Approaches to misconduct prevention and for promoting integrity in research

2. Data Management
 - 2.1 Data collection and recordkeeping 2.2 Analysis and selection of data 2.3 The (mis)representation of data 2.4 Ownership of data 2.5 Retention of data 2.6 Sharing of data (open research data) 2.7 The ethics of big data

3. Publication ethics / Responsible publishing
 - 3.1 Background 3.2 Criteria for being an author 3.3 Ordering of authors 3.4 Publication practices

III. Research Ethics – External responsibilities

1. Research involving human subjects
 - 1.1 History of research with human subjects 1.2 Basic ethical principles – The Belmont Report 1.3 Requirements to make clinical research ethical 1.4 Social value and scientific validity

2. Social responsibility
 - 2.1 What is social responsibility? a) Social responsibility of the individual scientist b) Social responsibility of the scientific community as a whole; 2.2 Participation in public discussions: a) Debate & Dialogue b) Communicating risks & uncertainties c) Science and the media 2.3 Public advocacy (policy making)

3. Dual use research
 - 3.1 Introduction to Dual use research 3.2 Case study – Censuring science? 3.3 Transmission studies for avian flu (H5N1) 3.4 Synthetic biology

Lecture notes
Course material (handouts, case studies, exercises, surveys and papers) will be available during the lectures and on the course homepage.
Prerequisites / notice

What are the requirements?
First and foremost your strong willingness to seriously achieve the main learning outcomes as indicated in the Course Catalogue (specific learning outcomes for each module will be provided at the beginning of the course). For successfully completing the course Research Ethics, the following commitment is absolutely necessary (but not sufficient) (observed success factors for many years!):

1. Your regular presence is absolutely required (so please no double, parallel enrollment for courses taking place at the identical time!) connected with your active participation during class, e.g. taking notes, contributing to discussions (in group as well as in plenary class), solving exercises.
2. Having the willingness and availability of the necessary time for regularly preparing the class (at least 1 hour per week, probably even more...).

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Analytical Competencies: assessed
- Decision-making: assessed
- Problem-solving: assessed

Domain B - Method-specific Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed

Domain C - Social Competencies
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: assessed
- Self-awareness and Self-reflection: assessed

Domain D - Personal Competencies

851-0861-01L Arabic I A1.1
No enrolment to this course at ETH Zurich. Book the corresponding course directly at "Language Center of UZH and ETH Zürich".

Course fees: https://www.sprachenzentrum.uzh.ch/en/Sprachkurse/Kursegebuehren1.html
Registration dates: https://www.sprachenzentrum.uzh.ch/en/angebot.html

Abstract
Arabic I leads to A1.1 level on the Common European Framework of Reference for Languages. Arabic I is the first part (A1.1 level) of a four-semester Arabic course. The goal of the course is for participants to acquire basic language skills in speaking, listening comprehension, and the reading and writing of Arabic script.

Objective
Participants are able to use the Arabic language adequately in selected areas. The focus is on speaking; reading and listening comprehension at A1.1 level on the Common European Framework of Reference for Languages; learning Arabic script; and the development of cultural competence. The following content areas are embedded in various communicative tasks: Greeting each other, introducing yourself and speaking about yourself (personal and professional identity, place of residence), making simple phone calls, requesting information, and making appointments.

Public Policy Bachelor - Key for Type

Dr Suitable for doctorate W Eligible for credits
O Compulsory E- Recommended, not eligible for credits
W+ Eligible for credits and recommended Z Courses outside the curriculum

Key for Hours

V lecture P practical/laboratory course
G lecture with exercise A independent project
U exercise D diploma thesis
S seminar R revision course / private study
K colloquium

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
The main reference for this course is the book "Introduction to Time Series and Forecasting", by P. J. Brockwell and R. A. Davis.

The course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary.

Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of

In regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression

Stationarity
Autocorrelation
Trend estimation
Elimination of seasonality
Spectral analysis, spectral densities
Forecasting
ARMA, ARIMA, Introduction into GARCH models

This course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework,

The key topics which will be covered as:

The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an

The course covers the basics of inferential statistics.

The two core courses Fundamentals of Mathematical Statistics (401-3621-00L) and Likelihood Inference (401-8623-00L) are similar in content. Therefore only one of them can be recognised towards the Master’s degree in the core course area »Mathematical Statistics«.

Overview over the basics of likelihood inference.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3601-00L</td>
<td>Probability Theory</td>
<td>W</td>
<td>10</td>
<td>4V+1U</td>
<td>W. Werner</td>
</tr>
<tr>
<td></td>
<td>At most one of the three course units (Bachelor Core Courses)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3461-00L</td>
<td>Functional Analysis I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3531-00L</td>
<td>Differential Geometry I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3601-00L</td>
<td>Probability Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basics of probability theory and the theory of stochastic processes in discrete time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned: Basics in measure theory, series of independent random variables, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned: Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>will be available in electronic form.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Bauer, Probability Theory, de Gruyter 1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. Jacod and P. Protter, Probability essentials, Springer 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Williams, Probability with martingales, Cambridge University Press 1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3627-00L</td>
<td>High-Dimensional Statistics</td>
<td>W</td>
<td>4</td>
<td>2V</td>
<td>P. L. Bühlmann</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“High-Dimensional Statistics” deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge of methods and basic theory for high-dimensional statistical inference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l_1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-3612-00L</td>
<td>Stochastic Simulation</td>
<td>W</td>
<td>5</td>
<td>3G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course provides an introduction to statistical Monte Carlo methods. This includes applications of simulations in various fields (Bayesian statistics, statistical mechanics, operations research, financial mathematics), algorithms for the generation of random variables (accept-reject, importance sampling), estimating the precision, variance reduction, introduction to Markov chain Monte Carlo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stochastic simulation (also called Monte Carlo method) is the experimental analysis of a stochastic model by implementing it on a computer. Probabilities and expected values can be approximated by averaging simulated values, and the central limit theorem gives an estimate of the error of this approximation. The course shows examples of the many applications of stochastic simulation and explains different algorithms used for simulation. These algorithms are illustrated with the statistical software R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A script will be available in English.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Familiarity with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-4633-00L</td>
<td>Data Analytics in Organisations and Business</td>
<td>W</td>
<td>5</td>
<td>2V+1U</td>
<td>I. Flückiger</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>On the end-to-end data analytics process in organizations & businesses and how to transform data into insights for fact-based decisions. Presentation of the process from the beginning with framing the business problem to presenting the results and making decisions using data analytics. For each topic, case studies from the financial service, healthcare, and retail sectors will be given.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course aims to give the students an understanding of the data analytics process in the business world, with a particular focus on the skills and techniques used besides the technical skills. The student will become familiar with the "business language," current problems, and thinking in organizations and business and tools used.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Framing the Business Problem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Framing the Analytics Problem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methodology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deployment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model Lifecycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soft Skills for the Statistical/Mathematical Professional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The lecture's presentation slides will be provided.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1964 of 2152
<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>401-6217-00L</th>
<th>Using R for Data Analysis and Graphics (Part II)</th>
<th>W</th>
<th>1.5 credits</th>
<th>1G</th>
<th>M. Mächler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions. Note: This part builds on "Using R: (Part I)", but can be taken independently if the basics of R are already known.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students will be able to use the software R efficiently for data analysis, graphics and simple programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course provides the second part of an introduction to the statistical software R (https://www.r-project.org/) for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R. Part II of the course builds on part I and covers the following additional topics: - Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects; - More on R functions; - Applying functions to elements of vectors, matrices and lists; - Object oriented programming with R: classes and methods; - Taylorizing R: options - Extending basic R: packages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org An introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Basic knowledge of R equivalent to "Using R .. (part 1)" (= 401-6215-00L) is a prerequisite for this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The course resources will be provided via the Moodle web learning platform. As from FS 2019, subscribing via Mystudies should "automatically" make you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=15522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>401-0627-00L</th>
<th>Smoothing and Nonparametric Regression with Examples</th>
<th>W</th>
<th>4 credits</th>
<th>2G</th>
<th>S. Beran-Ghosh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Starting with an overview of selected results from parametric inference, kernel smoothing will be introduced along with some asymptotic theory, optimal bandwidth selection, data driven algorithms and some special topics. Examples from environmental research will be used for motivation, but the methods will also be applicable elsewhere.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students will learn about methods of kernel smoothing and application of concepts to data. The aim will be to build sufficient interest in the topic and intuition as well as the ability to implement the methods to various different datasets.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Rough Outline: - Parametric estimation methods: selection of important results o Method of Least squares: regression & diagnostics - Nonparametric curve estimation o Density estimation, Kernel regression, Local polynomials, Bandwidth selection, various theoretical results related to consistency o Selection of special topics (as time permits, we will discuss some of the following): rapid change points, mode estimation, partial linear models, probability and quantile curve estimation, etc. - Applications: potential areas of applications will be discussed such as, change assessment, trend and surface estimation and others.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Brief summaries or outlines of some of the lecture material will be posted at https://www.wsl.ch/en/employees/ghosh.html.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>NOTE: The posted notes will tend to be just sketches whereas only the in-class lessons will contain complete information.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>LOG IN: In order to have access to the posted notes, you will need the course user id & the password. These will be given out on the first day of the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Additional references will be given out in the lectures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: Basic statistics and probability theory and regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>401-0627-00L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
<th>447-5289-00L</th>
<th>Sampling Surveys</th>
<th>W</th>
<th>2 credits</th>
<th>1G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Does not take place this semester. Special Students "University of Zurich (UZH)" in the Master Program in Biostatistics at UZH cannot register for this course unit electronically. Forward the lecturer's written permission to attend to the Registrar's Office. Alternatively, the lecturer may also send an email directly to registrar@ethz.ch. The Registrar's Office will then register you for the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The elements of a sample survey are explained. The most important classical sample designs (simple random sampling and stratified random sampling) with their estimation procedures and the use of auxiliary information including the Horvitz-Thompson estimator are introduced. Data preparation, non-response and its treatment, variance estimation and analysis of survey data is discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Knowledge of the Elements and the process of a sample survey. Understanding of the paradigm of random samples. Knowledge of simple random sampling and stratified random sampling and capability to apply the corresponding methods. Knowledge of further methods of sampling and estimation as well as data preparation and analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to the statistical methods of survey research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: A background in Linear Algebra, Calculus, Probability & Statistical Inference including Estimation and Testing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>401-3628-14L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autumn Semester 2021
Data: 11.11.2021 12:40
Abstract
Introduction to the Bayesian approach to statistics: decision theory, prior distributions, hierarchical Bayes models, empirical Bayes, Bayesian tests and model selection, empirical Bayes, Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods.

Objective
Students understand the conceptual ideas behind Bayesian statistics and are familiar with common techniques used in Bayesian data analysis.

Content
Topics that we will discuss are:

- Difference between the frequentist and Bayesian approach (decision theory, principles), priors (conjugate priors, noninformative priors, Jeffreys prior), tests and model selection (Bayes factors, hyper-g priors for regression), hierarchical models and empirical Bayes methods, computational methods (Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods).

Lecture notes
A script will be available in English.

Literature

Prerequisites / notice
Familiarity with basic concepts of frequentist statistics and with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.

401-3901-00L
Linear & Combinatorial Optimization
W 11 credits 4V+2U R. Zenklusen

Abstract
Mathematical treatment of optimization techniques for linear and combinatorial optimization problems.

Objective
The goal of this course is to get a thorough understanding of classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.

Content
Key topics include:

- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and polyhedral techniques;
- Equivalence between optimization and separation.

Literature

Prerequisites / notice
Solid background in linear algebra.

401-4944-20L
Mathematics of Data Science
W 8 credits 4G A. Bandeira

Abstract
Mostly self-contained, but fast-paced, introductory masters level course on various theoretical aspects of algorithms that aim to extract information from data.

Objective
Introduction to various mathematical aspects of Data Science.

Content
These topics lie in overlaps of (Applied) Mathematics with: Computer Science, Electrical Engineering, Statistics, and/or Operations Research. Each lecture will feature a couple of Mathematical Open Problem(s) related to Data Science. The main mathematical tools used will be Probability and Linear Algebra, and a basic familiarity with these subjects is required. There will also be some (although knowledge of these tools is not assumed) Graph Theory, Representation Theory, Applied Harmonic Analysis, among others. The topics treated will include Dimension reduction, Manifold learning, Sparse recovery, Random Matrices, Approximation Algorithms, Community detection in graphs, and several others.

Lecture notes

Prerequisites / notice
The main mathematical tools used will be Probability, Linear Algebra (and real analysis), and a working knowledge of these subjects is required. In addition to these prerequisites, this class requires a certain degree of mathematical maturity—including abstract thinking and the ability to understand and write proofs.

We encourage students who are interested in mathematical data science to take both this course and "227-0434-10L Mathematics of Information" taught by Prof. H. Bölcskei. The two courses are designed to be complementary.

A. Bandeira and H. Bölcskei
Abstract

Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.

Objective

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real-world data.

Content

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Fundamentals:
 - What is data?
 - Bayesian Learning
 - Computational learning theory

- Supervised learning:
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks

- Unsupervised learning:
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

Lecture notes

No lecture notes, but slides will be made available on the course webpage.

Literature

Prerequisites / notice

The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.

Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-3005-00L</td>
<td>Natural Language Processing</td>
<td>W</td>
<td>5 credits</td>
<td>2V+2U+1A</td>
</tr>
<tr>
<td>272-0423-00L</td>
<td>Neural Network Theory</td>
<td>W</td>
<td>4 credits</td>
<td>2V+1U</td>
</tr>
<tr>
<td>401-6282-00L</td>
<td>Statistical Analysis of High-Throughput Genomic and Transcriptomic Data (University of Zurich)</td>
<td>W</td>
<td>5 credits</td>
<td>3G</td>
</tr>
</tbody>
</table>

Number of participants limited to 400.

This course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

The objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.

This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

Lectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1967 of 2152
Course: Statistical and Computational Methods in Bioinformatics

Abstract
A range of topics will be covered, including basic molecular biology, genomics technologies and in particular, a wide range of statistical and computational methods that have been used in the analysis of DNA microarray and high throughput sequencing experiments.

Objective
- Understand the fundamental "scientific process" in the field of Statistical Bioinformatics
- Be equipped with the skills/tools to preprocess genomic data (Unix, Bioconductor, mapping, etc.) and ensure reproducible research (Sweave)
- Have a general knowledge of the types of data and biological applications encountered with microarray and sequencing data
- Gain the ability to apply statistical methods/knowledge/software to a collaborative biological project
- Gain the ability to critically assess the statistical bioinformatics literature
- Write a coherent summary of a bioinformatics problem and its solution in statistical terms

Content
Lectures will include: microarray preprocessing; normalization; exploratory data analysis techniques such as clustering, PCA and multidimensional scaling; Controlling error rates of statistical tests (FPR versus FDR versus FWER); limma (linear models for microarray analysis); mapping algorithms (for RNA/ChIP-seq); RNA-seq quantification; statistical analyses for differential count data; isoform switching; epigenomics data including DNA methylation; gene set analyses; classification

Prerequisites / notice
Prerequisites: Basic knowledge of the programming language R, sufficient knowledge in statistics

Course: Clinical Biostatistics

Abstract
Discussion of the different statistical methods that are used in clinical research.

Content
Discussion of the different statistical methods that are used in clinical research. Among other subjects the following will be introduced: sample size calculation, randomization and blinding, analysis of clinical trials (parallel groups design, analysis of covariance, crossover design, equivalence studies), intention-to-treat analysis, multiple testing, group sequential methods, adaptive designs, diagnostic studies, and agreement studies.

Literature

Prerequisites / notice
Basic knowledge of the programming language R, sufficient knowledge in calculus, linear algebra, probability, statistics

Course: Deep Learning

Abstract
Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.

Objective
In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
Prerequisites / notice

This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

 Advanced Machine Learning
 https://ml2.inf.ethz.ch/courses/aml/

 Computational Intelligence Lab
 http://da.inf.ethz.ch/teaching/2019/CIL/

 Introduction to Machine Learning
 https://ias.inf.ethz.ch/teaching/introml-S19

 Statistical Learning Theory
 http://ml2.inf.ethz.ch/courses/slt/

 Computational Statistics
 https://stat.ethz.ch/lectures/ss19/comp-stats.php

 Probabilistic Artificial Intelligence
 https://las.inf.ethz.ch/teaching/pai-f18

263-5210-00L Probabilistic Artificial Intelligence W 8 credits 3V+2U+2A A. Krause

Abstract
This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.

Objective
How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.

Content
Topics covered:
- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning

Prerequisites / notice
Solid basic knowledge in statistics, algorithms and programming. The material covered in the course “Introduction to Machine Learning” is considered as a prerequisite.

Free Electives
Several further courses offered at the University of Zurich belong to the curriculum of the Master's Programme in Statistics. With the consent by the Advisor (http://stat.ethz.ch/~kalisch/) such a course is eligible as a free elective.

Course Catalogue

Master Studies (Programme Regulations 2014)

Core Courses
In each subject area, the core courses offered are normally mathematical as well as application-oriented in content. For each subject area, only one of these is recognised for the Master degree.

Regression

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>W</td>
<td>5</td>
<td>2V+1U</td>
</tr>
</tbody>
</table>

Abstract
This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.

Objective
The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.

Content
The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.

Lecture notes
A script will be available.

Literature
Faraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

401-3622-00L Statistical Modelling

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0625-01L</td>
<td>Applied Analysis of Variance and Experimental Design</td>
<td>W</td>
<td>5 credits</td>
<td>2V+1U</td>
<td>L. Meier</td>
</tr>
</tbody>
</table>

Analysis of Variance and Design of Experiments

Abstract
In regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression with one or more covariates, high-dimensional linear models, nonlinear models and generalized linear models, robust methods, model choice and nonparametric models. Several numerical examples will illustrate the theory.

Objective
Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.

Content
Introduction into theory and practice of a broad and popular area of statistics, from a modern viewpoint.

Literature

Prerequisites / notice
This is the course unit with former course title "Regression". Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).

Multivariate Statistics

No course offerings in this semester.

Time Series and Stochastic Processes

Number
401-4623-00L

Title
Time Series Analysis

Abstract
The course offers an introduction into analyzing time series, that is observations which occur in time. The material will cover Stationary Models, ARMA processes, Spectral Analysis, Forecasting, Nonstationary Models, ARIMA Models and an introduction to GARCH models.

Objective
The goal of the course is to have a a good overview of the different types of time series and the approaches used in their statistical analysis.

Content
This course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework, the main feature exhibited by time series is the dependence between successive observations.

The key topics which will be covered as:

- Stationarity
- Autocorrelation
- Trend estimation
- Elimination of seasonality
- Spectral analysis, spectral densities
- Forecasting
- ARMA, ARIMA, Introduction into GARCH models

Literature
The main reference for this course is the book "Introduction to Time Series and Forecasting", by P. J. Brockwell and R. A. Davis

Prerequisites / notice
Basic knowledge in probability and statistics

Mathematical Statistics

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1970 of 2152
Number	Title	Type	ECTS	Hours	Lecturers
401-3621-00L | Fundamentals of Mathematical Statistics | W | 10 credits | 4V+1U | S. van de Geer

Abstract
The course covers the basics of inferential statistics.

401-8623-00L | Likelihood Inference (University of Zurich) | W | 5 credits | 3G | University lecturers

Abstract
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.

UZH Module Code: STA402

Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html

401-3601-00L | Probability Theory | W | 10 credits | 4V+1U | W. Werner

Abstract
Basics of probability theory and the theory of stochastic processes in discrete time

Objective
This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:

- Basics in measure theory, series of independent random variables, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).

Content
This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:

- Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson processes, Markov chains (classification and convergence results).

Lecture notes
will be available in electronic form.

Literature
H. Bauer, Probability Theory, de Gruyter 1996
J. Jacod and P. Protter, Probability essentials, Springer 2004
A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006
D. Williams, Probability with martingales, Cambridge University Press 1991

401-3627-00L | High-Dimensional Statistics | W | 4 credits | 2V | P. L. Bühlmann

Abstract
“High-Dimensional Statistics” deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.

Objective
Knowledge of methods and basic theory for high-dimensional statistical inference

Content
Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and 1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling

Literature

Prerequisites / notice
Knowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics).

401-3612-00L | Stochastic Simulation | W | 5 credits | 3G | P. Glasserman

Abstract
This course provides an introduction to statistical Monte Carlo methods. This includes applications of simulations in various fields (Bayesian statistics, statistical mechanics, operations research, financial mathematics), algorithms for the generation of random variables (accept-reject, importance sampling), estimating the precision, variance reduction, introduction to Markov chain Monte Carlo.

Objective
Stochastic simulation (also called Monte Carlo method) is the experimental analysis of a stochastic model by implementing it on a computer. Probabilities and expected values can be approximated by averaging simulated values, and the central limit theorem gives an estimate of the error of this approximation. The course shows examples of the many applications of stochastic simulation and explains different algorithms used for simulation. These algorithms are illustrated with the statistical software R.

Content

Lecture notes
A script will be available in English.

Literature
The students will be able to use the software R efficiently for data analysis, graphics and simple programming. The lecture's presentation slides will be provided.

References:
- Rough Outline:
 - Parametric estimation methods: selection of important results
 - Method of Least squares: regression & diagnostics
 - Nonparametric curve estimation
 - Density estimation, Kernel regression, Local polynomials, Bandwidth selection, various theoretical results related to consistency
 - Selection of special topics (as time permits, we will discuss some of the following): rapid change points, mode estimation, partial linear models, probability and quantile curve estimation, etc.
 - Applications: potential areas of applications will be discussed such as, change assessment, trend and surface estimation and others.

Lecture notes
- Brief summaries or outlines of some of the lecture material will be posted at https://www.wsl.ch/en/employees/ghosh.html.

Additional references will be given out in the lectures.

Prerequisites / notice
- Familiarity with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.

401-4633-00L Data Analytics in Organisations and Business

Abstract	On the end-to-end data analytics process in organizations & businesses and how to transform data into insights for fact-based decisions. Presentation of the process from the beginning with framing the business problem to presenting the results and making decisions using data analytics. For each topic, case studies from the financial service, healthcare, and retail sectors will be given.
Objective	This course aims to give the students an understanding of the data analytics process in the business world, with a particular focus on the skills and techniques used besides the technical skills. The student will become familiar with the "business language," current problems, and thinking in organizations and business and tools used.
Content	Framing the Business Problem Framing the Analytics Problem Data Methodology Model Building Deployment Model Lifecycle Soft Skills for the Statistical/Mathematical Professional
Lecture notes	The lecture's presentation slides will be provided.
Prerequisites / notice	Prerequisites: Basic statistics and probability theory and regression

401-6217-00L Using R for Data Analysis and Graphics (Part II)

Abstract	The course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions. Note: This part builds on "Using R... (Part I)", but can be taken independently if the basics of R are already known.
Objective	The course provides the second part of an introduction to the statistical software R (https://www.r-project.org/) for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.
Content	Part II of the course builds on part I and covers the following additional topics: - Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects; - More on R functions; - Applying functions to elements of vectors, matrices and lists; - Object oriented programming with R: classes and methods; - Tayloring R: options; - Extending basic R: packages
Lecture notes	An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf
Prerequisites / notice	Basic knowledge of R equivalent to "Using R... (part 1)" (= 401-6215-00L) is a prerequisite for this course.

401-0627-00L Smoothing and Nonparametric Regression with Examples

Abstract	Starting with an overview of selected results from parametric inference, kernel smoothing will be introduced along with some asymptotic theory, optimal bandwidth selection, data driven algorithms and some special topics. Examples from environmental research will be used for motivation, but the methods will also be applicable elsewhere.
Objective	The students will learn about methods of kernel smoothing and application of concepts to data. The aim will be to build sufficient interest in the topic and intuition as well as the ability to implement the methods to various different datasets.
Content	Rough Outline: - Parametric estimation methods: selection of important results o Method of Least squares: regression & diagnostics - Nonparametric curve estimation o Density estimation, Kernel regression, Local polynomials, Bandwidth selection, various theoretical results related to consistency o Selection of special topics (as time permits, we will discuss some of the following): rapid change points, mode estimation, partial linear models, probability and quantile curve estimation, etc. - Applications: potential areas of applications will be discussed such as, change assessment, trend and surface estimation and others.
Lecture notes	Brief summaries or outlines of some of the lecture material will be posted at https://www.wsl.ch/en/employees/ghosh.html.
Literature	- Application Smoothing Techniques for Data Analysis: the Kernel Approach With S-Plus Illustrations, by A.W. Bowman, A. Azzalini, Oxford University Press.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1972 of 2152
Prerequisites / notice

Prerequisites: A background in Linear Algebra, Calculus, Probability & Statistical Inference including Estimation and Testing.

447-6221-00L Nonparametric Regression

<table>
<thead>
<tr>
<th>W</th>
<th>1 credit</th>
<th>1G</th>
<th>M. Mächler</th>
</tr>
</thead>
</table>

Abstract

This course focuses on nonparametric estimation of probability densities and regression functions. These recent methods allow modelling without restrictive assumptions such as 'linear function'. These smoothing methods require a weight function and a smoothing parameter. Focus is on one dimension, higher dimensions and samples of curves are treated briefly. Exercises at the computer.

447-6233-00L Spatial Statistics

<table>
<thead>
<tr>
<th>W</th>
<th>1 credit</th>
<th>1G</th>
</tr>
</thead>
</table>

Abstract

In many research fields, spatially referenced data are collected. When analysing such data the focus is either on exploring their structure (dependence on explanatory variables, autocorrelation) and/or on spatial prediction. The course provides an introduction to geostatistical methods that are useful for such purposes.

Objective

The course will provide an overview of the basic concepts and stochastic models that are commonly used to model geostatistical data sets. In addition, the participants will learn a number of geostatistical techniques and acquire some familiarity with software that is useful for analysing spatial data.

Content

After an introductory discussion of the types of problems and the kind of data that arise in environmental research, an introduction into linear geostatistics (models: stationary random processes, modelling large-scale spatial patterns by regression, modelling autocorrelation by variogram; kriging: mean-square prediction of spatial data) will be taught. The lectures will be complemented by data analyses that the participants have to do themselves.

Lecture notes

Slides, descriptions of the problems for the data analyses and worked-out solutions to them will be provided.

Literature

447-6245-00L Data Mining

<table>
<thead>
<tr>
<th>W</th>
<th>1 credit</th>
<th>1G</th>
<th>M. Mächler</th>
</tr>
</thead>
</table>

Abstract

Block course only on prediction problems, aka "supervised learning".

Part 1, Classification: logistic regression, linear/quadratic discriminant analysis, Bayes classifier; additive and tree models; further flexible ("nonparametric") methods.

Part 2, Flexible Prediction: additive models, MARS, Y-Transformation models (ACE,AVAS); Projection Pursuit Regression (PPR), neural nets.
"Data Mining" is a large field from which in this block course, we only treat so called prediction problems, aka "supervised learning".

Part 1, Classification, recalls logistic regression and linear / quadratic discriminant analysis (LDA/QDA) and extends these (in the framework of "Bayes classifier") to (generalized) additive (GAM) and tree models (CART), and further mentions other flexible ("nonparametric") methods.

Part 2, Flexible Prediction (of continuous or "class" response/target) contains additive models, MARS, Y-Transformation models (ACE, AVAS); Projection Pursuit Regression (PPR), neural nets.

The block course is based on (German language) lecture notes.

The exercises are done exclusively with the (free, open source) software "R" (http://www.r-project.org). A final exam will also happen at the computers, using R (and your brains!).

The exercises are done exclusively with the (free, open source) software "R" (http://www.r-project.org). A final exam will also happen at the computers, using R (and your brains!).
conditional probability; bayes inference (conjugate distributions, HPD-areas; linear and empirical bayes); determination of the a-posteriori distribution through simulation (MCMC with R2Winbugs); introduction to multilevel/hierarchical models.

Bayes statistics is attractive, because it allows to make decisions under uncertainty where a classical frequentist statistical approach fails. The course provides an introduction into bayesian methods. It is moderately mathematically technical, but demands a flexibility of mind, which should not be underestimated.

Kruschke, J.K., Doing Bayesian Data Analysis, Elsevier2011.

Prerequisite:Basic knowledge of statistics; Knowledge of R.

<table>
<thead>
<tr>
<th>401-3913-01L</th>
<th>Mathematical Foundations for Finance</th>
<th>W</th>
<th>4 credits</th>
<th>3V+2U</th>
<th>B. Acciaio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>First introduction to main modelling ideas and mathematical tools from mathematical finance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Topics to be covered include</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- financial market models in finite discrete time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- absence of arbitrage and martingale measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- valuation and hedging in complete markets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- basics about Brownian motion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- stochastic integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- stochastic calculus: Itô's formula, Girsanov transformation, Itô's representation theorem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Black-Scholes formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Lecture notes will be sold at the beginning of the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>401-3901-00L</th>
<th>Linear & Combinatorial Optimization</th>
<th>W</th>
<th>11 credits</th>
<th>4V+2U</th>
<th>R. Zenkluesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Mathematical treatment of optimization techniques for linear and combinatorial optimization problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The goal of this course is to get a thorough understanding of various classical mathematical optimization techniques for linear and combinatorial optimization problems, with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on such structural insights.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Key topics include:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Linear programming and polyhedra;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Flows and cuts;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Combinatorial optimization problems and polyhedral techniques;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Equivalence between optimization and separation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: Results and facts from probability theory as in the book “Probability Essentials” by J. Jacod and P. Protter will be used freely. Especially participants without a direct mathematics background are strongly advised to familiarise themselves with those tools before (or very quickly during) the course. (A possible alternative to the above English textbook are the (German) lecture notes for the standard course “Wahrscheinlichkeitstheorie”.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For those who are not sure about their background, we suggest to look at the exercises in Chapters 8, 9, 22-25, 28 of the Jacod/Protter book. If these pose problems, you will have a hard time during the course. So be prepared.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>401-4944-20L</th>
<th>Mathematics of Data Science</th>
<th>W</th>
<th>8 credits</th>
<th>4G</th>
<th>A. Bandaie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Mostly self-contained, but fast-paced, introductory masters level course on various theoretical aspects of algorithms that aim to extract information from data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction to various mathematical aspects of Data Science.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1975 of 2152
These topics lie in overlaps of (Applied) Mathematics with: Computer Science, Electrical Engineering, Statistics, and/or Operations Research. Each lecture will feature a couple of Mathematical Open Problem(s) related to Data Science. The main mathematical tools used will be Probability and Linear Algebra, and a basic familiarity with these subjects is required. There will also be some (although knowledge of these tools is not assumed) Graph Theory, Representation Theory, Applied Harmonic Analysis, among others. The topics treated will include Dimension reduction, Manifold learning, Sparse recovery, Random Matrices, Approximation Algorithms, Community detection in graphs, and several others.

Lectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.

The course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

The main mathematical tools used will be Probability, Linear Algebra (and real analysis), and a working knowledge of these subjects is required. In addition to these prerequisites, this class requires a certain degree of mathematical maturity--including abstract thinking and the ability to understand and write proofs.

We encourage students who are interested in mathematical data science to take both this course and ```227-0434-10L Mathematics of Information```
taught by Prof. H. Bölcskei. The two courses are designed to be complementary.

We will not require students to use any specific software for this course. However, students will need a computer with internet access to be able to participate in the discussion and exercise sessions. The course will be held online, and all materials will be available online.

Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensable to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.

The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Fundamentals:
 - What is data?
 - Bayesian Learning
 - Computational learning theory

- Supervised learning:
 - Ensembles: Bagging and Boosting
 - Max Margin methods
 - Neural networks

- Unsupervised learning:
 - Dimensionality reduction techniques
 - Clustering
 - Mixture Models
 - Non-parametric density estimation
 - Learning Dynamical Systems

- An overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.

- Number of participants limited to 400.

- PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.

- Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

- Literature will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.

- After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.
1. Universal approximation with single- and multi-layer networks
2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory
3. Fundamental limits of deep neural network learning
4. Geometry of decision surfaces
5. Separating capacity of nonlinear decision surfaces
6. Vapnik-Chervonenkis (VC) dimension
7. VC dimension of neural networks
8. Generalization error in neural network learning

Lecture notes
Detailed lecture notes are available on the course web page
https://www.mins.ee.ethz.ch/teaching/nnl/

Prerequisites / notice
This course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.

Statistical Analysis of High-Throughput Genomic and Transcriptomic Data (University of Zurich)

Course Code: 401-6282-00L

** Credits**: 5

Type: W

Module Code: STA426

Abstract
A range of topics will be covered, including basic molecular biology, genomics technologies and in particular, a wide range of statistical and computational methods that have been used in the analysis of DNA microarray and high throughput sequencing experiments.

Objective
- Understand the fundamental "scientific process" in the field of Statistical Bioinformatics.
- Be equipped with the skills/tools to preprocess genomic data (Unix, Bioconductor, mapping, etc.) and ensure reproducible research (Sweave).
- Have a general knowledge of the types of data and biological applications encountered with microarray and sequencing data.
- Have the general knowledge of the range of statistical methods that get used with microarray and sequencing data.
- Gain the ability to apply statistical methods/knowledge/software to a collaborative biological project.
- Gain the ability to critically assess the statistical bioinformatics literature.
- Write a coherent summary of a bioinformatics problem and its solution in statistical terms.

Content
Lectures will include: microarray preprocessing; normalization; exploratory data analysis techniques such as clustering, PCA and multidimensional scaling; Controlling error rates of statistical tests (FPR versus FDR versus FWER); limma (linear models for microarray analysis); mapping algorithms (for RNA/ChIP-seq); RNA-seq quantification; statistical analyses for differential count data; isoform switching; epigenomics data including DNA methylation; gene set analyses; classification.

Literature

Prerequisites / notice
Prerequisites: Basic knowledge of the programming language R, sufficient knowledge in statistics.

Clinical Biostatistics (University of Zurich)

Course Code: 401-8625-00L

** Credits**: 6

Type: W

Module Code: STA404

Abstract
Discussion of the different statistical methods that are used in clinical research.

Content
Discussion of the different statistical methods that are used in clinical research. Among other subjects the following will be introduced: sample size calculation, randomization and blinding, analysis of clinical trials (parallel groups design, analysis of covariance, crossover design, equivalence studies), intention-to-treat analysis, multiple testing, group sequential methods, adaptive designs, diagnostic studies, and agreement studies.

Literature

Prerequisites / notice
Prerequisites: Basic knowledge of the programming language R, sufficient knowledge in calculus, linear algebra, probability, statistics.

Nonparametric and Resampling Methods

Course Code: 447-6201-00L

** Credits**: 2

Type: W

Module Code: STA414

Abstract
Basic knowledge of the programming language R, sufficient knowledge in statistics.

Litertature

Prerequisites / notice
Basic knowledge of the programming language R, sufficient knowledge in statistics.
Nonparametric tests, randomization tests, jackknife and bootstrap, as well as asymptotic properties of estimators.

For classical parametric models there exist optimal statistical estimators and test statistics whose distributions can often be determined exactly. The methods covered in this course allow for finding statistical procedures for more general models and to derive exact or approximate distributions of complicated estimators and test statistics.

Nonparametric tests, randomization tests, jackknife and bootstrap, as well as asymptotic properties of estimators.

This course is part of the programme for the certificate and diploma in Advanced Studies in Applied Statistics. It is given every second year in the winter semester break.

Statistical and Mathematical Courses: not eligible for credits

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-6215-00L</td>
<td>Using R for Data Analysis and Graphics (Part I)</td>
<td>E-</td>
<td>1.5 credits</td>
<td>1G</td>
<td>M. Mächler</td>
</tr>
</tbody>
</table>

The course provides the first part an introduction to the statistical software R (https://www.r-project.org/) for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.

The students will be able to use the software R for simple data analysis and graphics.

Part I of the course covers the following topics:
- What is R?
- R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics;
- Types of data: numeric, character, logical and categorical data, missing values;
- Simple (statistical) functions: summary, mean, var, etc., simple statistical tests;
- Writing simple functions;
- Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots.

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org

Lecture notes
An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf

As from FS 2019, subscribing via Mystudies should *automatically* make you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=15518

Application Areas

Students select one area of application and look for suitable courses in which quantitative methods and modeling play a role. They need the consent by the Advisor (http://stat.ethz.ch/~kalisch/) that the chosen courses are eligible in the category “Application Areas”.

For the category assignment of eligible courses keep the choice “no category” and take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat/staff/ekuenti) after having received the credits. The Study Administration Office needs the Advisor's consent.

Seminar or Semester Paper

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-3620-20L</td>
<td>Student Seminar in Statistics: Inference in Some Non-Standard Regression Problems</td>
<td>W</td>
<td>4 credits</td>
<td>2S</td>
<td>F. Balabdaoui</td>
</tr>
</tbody>
</table>

Number of participants limited to 24.

Mainly for students from the Mathematics Bachelor and Master Programmes who, in addition to the introductory course unit 401-2604-00L Probability and Statistics, have heard at least one core or elective course in statistics. Also offered in the Master Programmes Statistics resp. Data Science.

Review of some non-standard regression models and the statistical properties of estimation methods in such models.

The main goal is the students get to discover some less known regression models which either generalize the well-known linear model (for example monotone regression) or violate some of the most fundamental assumptions (as in shuffled or unlinked regression models).

Linear regression is one of the most used models for prediction and hence one of the most understood in statistical literature. However, linearity might be too simplistic to capture the actual relationship between some response and given covariates. Also, there are many real data problems where linearity is plausible but the actual pairing between the observed covariates and responses is completely lost or at partially. In this seminar, we review some of the non-classical regression models and the statistical properties of the estimation methods considered by well-known statisticians and machine learners. This will encompass:
1. Monotone regression
2. Single index model
3. Unlinked regression

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 178 of 2152
In the following is the tentative material that will be read and studied by each pair of students (all the items listed below are available through the ETH electronic library or arXiv). Some of the items might change.

8. "Linear regression with shuffled data: statistical and computation limits of permutation recovery" by A. Pananjady, M. Wainwright and T. A. Courtade , 2018, IEEE transactions in Information Theory, Volume 64, 3286-3300

9. "Linear regression without correspondence" by D. Hsu, K. Shi and X. Sun, 2017, NIPS

11. "Uncoupled isotonic regression via minimum Wasserstein deconvolution" by P. Rigollet and J. Weed, 2019, Information and Inference, Volume 00, 1-27

Prerequisites / notice
The students need to be confident with regression models, classical estimation methods (Least squares, Maximum Likelihood estimation...), rates of convergence, asymptotic normality, etc.

<table>
<thead>
<tr>
<th>401-3630-04L</th>
<th>Semester Paper</th>
<th>W</th>
<th>4 credits</th>
<th>6A</th>
<th>Supervisors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Successful participation in the course unit 401-2000-00L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scientific Works in Mathematics is required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For more information, see www.math.ethz.ch/intranet/students/study-administration/theses.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>401-3630-06L</th>
<th>Semester Paper</th>
<th>W</th>
<th>6 credits</th>
<th>9A</th>
<th>Supervisors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Successful participation in the course unit 401-2000-00L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scientific Works in Mathematics is required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For more information, see www.math.ethz.ch/intranet/students/study-administration/theses.html</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>252-5051-00L</th>
<th>Advanced Topics in Machine Learning</th>
<th>W</th>
<th>2 credits</th>
<th>2S</th>
<th>J. M. Buhmann, R. Cotterell, J. Vogt, F. Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of participants limited to 40.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The deadline for deregistering expires at the end of the fourth week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.

Abstract
In this seminar, recent papers of the pattern recognition and machine learning literature are presented and discussed. Possible topics cover statistical models in computer vision, graphical models and machine learning.

Objective
The seminar "Advanced Topics in Machine Learning" familiarizes students with recent developments in pattern recognition and machine learning. Original articles have to be presented and critically reviewed. The students will learn how to structure a scientific presentation in English which covers the key ideas of a scientific paper. An important goal of the seminar presentation is to summarize the essential ideas of the paper in sufficient depth while omitting details which are not essential for the understanding of the work. The presentation style will play an important role and should reach the level of professional scientific presentations.

Content
The seminar will cover a number of recent papers which have emerged as important contributions to the pattern recognition and machine learning literature. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. Frequently, papers are selected from computer vision or bioinformatics - two fields, which relies more and more on machine learning methodology and statistical models.

Literature
The papers will be presented in the first session of the seminar.

▶ GESS Science in Perspective

Two credits are needed from the "Science in Perspective" programme with language courses excluded if three credits from language courses have already been recognised for the Bachelor's degree. see https://ethz.ch/content/dam/ethz/common/docs/weisungssammlung/files-en/science-in-perspective.pdf (Eight credits must be acquired in this category: normally six during the Bachelor's degree programme, and two during the Master's degree programme. A maximum of three credits from language courses from the range of the Language Center of the University of Zurich and ETH Zurich may be recognised. In addition, only advanced courses (level B2 upwards) in the European languages English, French, Italian and Spanish are recognised. German language courses are recognised from level C2 upwards.)

see GESS Science in Perspective: Language Courses
ETH/ETHZ

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-MATH.
Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-2000-00L</td>
<td>Scientific Works in Mathematics</td>
<td>O</td>
<td>0</td>
<td></td>
<td>M. Burger</td>
</tr>
</tbody>
</table>

Abstract

Introduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.)

Objective

Learn the basic standards of scientific works in mathematics.

Content

- Types of mathematical works
- Publication standards in pure and applied mathematics
- Data handling
- Ethical issues
- Citation guidelines

Prerequisites / notice

| 401-2000-01L | Lunch Sessions – Thesis Basics for Mathematics | Z | 0 | | Speakers |

Abstract

Optional MathBib training course

| 401-4990-02L | Master's Thesis | O | 30 | 57D | Supervisors |

Abstract

The master's thesis concludes the study programme. Thesis work should prove the students' ability to independent, structured and scientific working.

Objective

Thesis work should prove the students' ability to independent, structured and scientific working.

Content

Five-month project to solve a research question. The content can be more theoretical (e.g. proving a new result) or applied (developing new methods or making a very sophisticated application and adapting existing methods).

Prerequisites / notice

Supervisors are chosen on a first-come-first-served basis. Collaborations with industry are possible.

Course Units for Additional Admission Requirements

The courses below are only available for MSc students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>406-0173-AAL</td>
<td>Linear Algebra I and II</td>
<td>E-</td>
<td>6</td>
<td>13R</td>
<td>N. Hungerbühler</td>
</tr>
</tbody>
</table>

Abstract

Linear algebra is an indispensable tool of engineering mathematics. The course is an introduction to basic methods and fundamental concepts of linear algebra and its applications to engineering sciences.

Objective

After completion of this course, students are able to recognize linear structures and to apply adequate tools from linear algebra in order to solve corresponding problems from theory and applications. In addition, students have a basic knowledge of the software package Matlab.

Content

Reading:

Gilbert Strang "Introduction to linear algebra", Wellesley-Cambridge Press: Chapters 1-6, 7.1-7.3, 8.1, 8.2, 8.6

Literature

| 406-0243-AAL | Analysis I and II | E- | 14 | 30R | M. Akveld |

Abstract

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Abstract
Mathematical tools for the engineer

Objective
Mathematics as a tool to solve engineering problems. Mathematical formulation of technical and scientific problems.

Content

Literature
Textbooks in English:

Textbooks in German:
- M. Akveld, R. Sperb: Analysis I, vdf
- M. Akveld, R. Sperb: Analysis II, vdf
- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- L. Papula: Mathematik für Ingenieure 2, Vieweg Verlag

406-0603-AAL Stochastics (Probability and Statistics)
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.

Objective
The objective of this course is to build a solid fundamend in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".

Content
From "Statistics for research" (online)
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's t Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
Ch 1: Basics
Ch 2: The R Environment
Ch 3: Probability and distributions
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation

Literature
- "Statistics for research" by S. Dowdy et. al. (3rd edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI: 10.1002/0471477435
 From within the ETH, this book is freely available online under: http://onlinelibrary.wiley.com/book/10.1002/0471477435
 From within the ETH, this book is freely available online under: http://www.springerlink.com/content/m17578/

406-2604-AAL Probability and Statistics
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction to probability and statistics with many examples, based on chapters from the books "Probability and Random Processes" by G. Grimmett and D. Stirzaker and "Mathematical Statistics and Data Analysis" by J. Rice.

Objective
The goal of this course is to provide an introduction to the basic ideas and concepts from probability theory and mathematical statistics. In addition to a mathematically rigorous treatment, also an intuitive understanding and familiarity with the ideas behind the definitions are emphasized. Measure theory is not used systematically, but it should become clear why and where measure theory is needed.

Content
Probability: Chapters 1-5 (Probabilities and events, Discrete and continuous random variables, Generating functions) and Sections 7.1-7.5 (Convergence of random variables) from the book "Probability and Random Processes". Most of this material is also covered in Chap. 1-5 of "Mathematical Statistics and Data Analysis", on a slightly easier level.

Statistics:
Sections 8.1 - 8.5 (Estimation of parameters), 9.1 - 9.4 (Testing Hypotheses), 11.1 - 11.3 (Comparing two samples) from "Mathematical Statistics and Data Analysis".

Literature

Statistics Master - Key for Type

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
- European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Environmental Engineering Bachelor

1. Semester

First Year Examinations (1. Sem.)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0241-00L</td>
<td>Analysis I</td>
<td>O</td>
<td>7</td>
<td>5V+2U</td>
<td>M. Akveld</td>
</tr>
<tr>
<td>Abstract</td>
<td>Mathematical tools for the engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Mathematics as a tool to solve engineering problems.</td>
<td></td>
<td></td>
<td></td>
<td>Mathematical formulation of technical and scientific problems.</td>
</tr>
<tr>
<td>Content</td>
<td>Complex numbers. Calculus for functions of one variable with applications.</td>
<td></td>
<td></td>
<td></td>
<td>Simple Mathematical models in engineering.</td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Wird auf der Vorlesungshomepage zu Verfügung gestellt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urs Stammbach, "Analysis III" (erhältlich im ETH Store);</td>
<td></td>
<td></td>
<td></td>
<td>https://people.math.ethz.ch/~stammb/analysisskript.html</td>
</tr>
<tr>
<td>401-0141-00L</td>
<td>Linear Algebra</td>
<td>O</td>
<td>5</td>
<td>3V+1U</td>
<td>M. Akka Ginosar</td>
</tr>
<tr>
<td>Abstract</td>
<td>Introduction to Linear Algebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Basic knowledge of linear algebra as a tool for solving engineering problems.</td>
<td></td>
<td></td>
<td></td>
<td>Understanding of abstract mathematical formulation of technical and scientific problems. Together with Analysis we develop the basic mathematical knowledge for an engineer.</td>
</tr>
<tr>
<td>Content</td>
<td>Introduction and linear systems of equations, matrices, quadratic matrices, determinants and traces, general vector spaces, linear mappings, bases, change of basis, diagonalization, eigenvalues and eigenvectors, orthogonal transformations, scalar-product, inner product spaces.</td>
<td></td>
<td></td>
<td></td>
<td>Calculation with MATLAB will be introduced in the first exercise class.</td>
</tr>
<tr>
<td>Literature</td>
<td>The lecturer will provide course notes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. Nipp, D. Stoffer, Lineare Algebra, VdF Hochschulverlag ETH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Strang, Lineare Algebra, Springer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-0845-00L</td>
<td>Computer Science I</td>
<td>O</td>
<td>5</td>
<td>2V+2U</td>
<td>C. Cotrini Jimenez, R. Sasse</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course covers the basic concepts of computer programming.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Basic understanding of programming concepts. Students will be able to write and read simple programs and to modify existing programs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Variablen, Typen, Kontrollanweisungen, Prozeduren und Funktionen, Scoping, Rekursion, dynamische Programmierung, vektorisierte Programmierung, Effizienz.</td>
<td></td>
<td></td>
<td></td>
<td>Als Lernsprache wird Java eingesetzt.</td>
</tr>
<tr>
<td>Literature</td>
<td>Sprechen Sie Java? Hanspeter Mössenböck dpunkt.verlag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-0031-01L</td>
<td>Systems Engineering</td>
<td>O</td>
<td>4</td>
<td>4G</td>
<td>B. T. Adey</td>
</tr>
<tr>
<td>Abstract</td>
<td>• Systems Engineering is a way of thinking that helps engineer sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long terms.</td>
<td></td>
<td></td>
<td></td>
<td>The world's growing population, changing demographics, and changing climate pose formidable challenges to humanity's ability to live sustainably. Ensuring that humanity can live sustainably requires accommodating Earth's growing and changing population through the provision and operation of a sustainable and resilient built environment. This requires ensuring excellent decision-making as to how the built environment is constructed and modified.</td>
</tr>
<tr>
<td>Objective</td>
<td>• This course provides an overview of the main principles of Systems Engineering, and includes an introduction to the use of operations research methods in the determination of optimal systems.</td>
<td></td>
<td></td>
<td></td>
<td>The objective of this course is to ensure the best possible decision making when engineering sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long term. In this course, you will learn the main principles of Systems Engineering that can help you from the first idea that a system may not meet expectations, to the quantitative and qualitative evaluation of possible system modifications. Additionally, the course includes an introduction to the use of operations research methods in the determination of optimal solutions in complex systems.</td>
</tr>
<tr>
<td></td>
<td>• The world's growing population, changing demographics, and changing climate pose formidable challenges to humanity's ability to live sustainably. Ensuring that humanity can live sustainably requires accommodating Earth's growing and changing population through the provision and operation of a sustainable and resilient built environment. This requires ensuring excellent decision-making as to how the built environment is constructed and modified.</td>
<td></td>
<td></td>
<td></td>
<td>More specifically upon completion of the course, you will have gained insight into:</td>
</tr>
<tr>
<td></td>
<td>• how to structure the large amount of information that is often associated with attempting to modify complex systems</td>
<td></td>
<td></td>
<td></td>
<td>• how to structure the large amount of information that is often associated with attempting to modify complex systems</td>
</tr>
<tr>
<td></td>
<td>• how to set goals and define constraints in the engineering of complex systems</td>
<td></td>
<td></td>
<td></td>
<td>• how to set goals and define constraints in the engineering of complex systems</td>
</tr>
<tr>
<td></td>
<td>• how to generate possible solutions to complex problems in ways that limit exceedingly narrow thinking</td>
<td></td>
<td></td>
<td></td>
<td>• how to generate possible solutions to complex problems in ways that limit exceedingly narrow thinking</td>
</tr>
<tr>
<td></td>
<td>• how to compare multiple possible solutions over time with differences in the temporal distribution of costs and benefits and uncertainty as to what might happen in the future</td>
<td></td>
<td></td>
<td></td>
<td>• how to compare multiple possible solutions over time with differences in the temporal distribution of costs and benefits and uncertainty as to what might happen in the future</td>
</tr>
<tr>
<td></td>
<td>• how to assess values of benefits to stakeholders that are not in monetary units</td>
<td></td>
<td></td>
<td></td>
<td>• how to assess values of benefits to stakeholders that are not in monetary units</td>
</tr>
<tr>
<td></td>
<td>• how to assess whether it is worth obtaining more information in determining optimal solution</td>
<td></td>
<td></td>
<td></td>
<td>• how to assess whether it is worth obtaining more information in determining optimal solution</td>
</tr>
<tr>
<td></td>
<td>• how to take a step back from the numbers and qualitatively evaluate the possible solutions in light of the bigger picture</td>
<td></td>
<td></td>
<td></td>
<td>• how to take a step back from the numbers and qualitatively evaluate the possible solutions in light of the bigger picture</td>
</tr>
<tr>
<td></td>
<td>• the basics of operations research and how it can be used to determine optimal solutions to complex problems, including linear, integer and network programming, dealing with multiple objectives and conducting sensitivity analyses.</td>
<td></td>
<td></td>
<td></td>
<td>• the basics of operations research and how it can be used to determine optimal solutions to complex problems, including linear, integer and network programming, dealing with multiple objectives and conducting sensitivity analyses.</td>
</tr>
</tbody>
</table>
This course gives an overview of the basic concepts of geology and petrography and shows some links to the application of these concepts. The course consists of weekly lectures and bi-weekly exercises in groups.

The course uses a combination of qualitative and quantitative approaches. The quantitative analyses require the use of Excel. An introduction to Excel will be provided in one of the help sessions.

The lecture materials consist of a script, the slides and example calculations in Excel.

The lecture materials will be distributed via Moodle two days before each lecture.

Appropriate literature in addition to the lecture materials will be handed out when required via Moodle.

This course has no prerequisites.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Domain B - Method-specific Competencies
- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Domain C - Social Competencies
- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Domain D - Personal Competencies
- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

651-0032-00L Geology and Petrography
- O 4 credits
- 2V+1U
- K. Rauchenstein, M. O. Saar

Abstract
This course gives an overview of the basic concepts of geology and petrography and shows some links to the application of these concepts. The course consists of weekly lectures and bi-weekly exercises in groups.

Objective
This course gives an overview of the basic concepts of geology and petrography and shows some links to the application of these concepts.

Content

Lecture notes
Weekly handouts of PPT slides via MyStudies.

Literature
Übungen zum Gesteinsbestimmen und Lesen von geologischen, tektonischen und geotechnischen Karten, einfache Konstruktionen.

529-2001-02L Chemistry I
- O 4 credits
- 2V+2U
- J. Cvengros, J. E. E. Buschmann, P. Funck, E. C. Meister, R. Verel

Abstract
General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium.

Objective
Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.
Content
1. Stoichiometry
 Amount of substance and mass. Composition of chemical compounds. Reaction equation. Ideal gas law.
2. Atoms
 Elementary particles and atoms. Electron configuration of the elements. Periodic system.
4. Basics of chemical thermodynamics
 System and surroundings. Description of state and change of state of chemical systems.
5. First law of thermodynamics
6. Second law of thermodynamics
 Entropy. Change of entropy in chemical systems and universe. Reaction entropy.
7. Gibbs energy and chemical potential.
8. Chemical equilibrium
 Law of mass action. Reaction quotient and equilibrium constant. Phase transition equilibrium.
9. Acids and bases
10. Dissolution and precipitation.
 Heterogeneous equilibrium. Dissolution and solubility product. Carbon dioxide-carbonic acid-carbonate equilibrium.

Lecture notes
Online-Skript mit durchgerechneten Beispielen.

Literature

Weiterführende Literatur:

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories assessed
Techniques and Technologies assessed
Analytical Competencies assessed
Domain B - Method-specific Competencies
Decision-making assessed
Media and Digital Technologies not assessed
Problem-solving assessed
Project Management not assessed
Domain C - Social Competencies
Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed
Domain D - Personal Competencies
Adaptability and Flexibility not assessed
Creative Thinking assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management assessed

3. Semester
Compulsory Courses 3. Semester
Examination Block 1

Number Title Type ECTS Hours Lecturers
402-0023-01L Physics O 7 credits 5V+2U S. Johnson

Abstract
This course gives an overview of important concepts in classical dynamics, thermodynamics, electromagnetism, quantum physics, atomic physics, and special relativity. Emphasis is placed on demonstrating key phenomena using experiments, and in developing skills for quantitative problem solving.

Objective
The goal of this course is to make students able to explain and apply the basic principles and methodology of physics to problems of interest in modern science and engineering. An important component of this is learning how to solve new, complex problems by breaking them down into parts and applying simplifications. A secondary goal is to provide to students an overview of important subjects in both classical and modern physics.

Content
Electrodynamics, Thermodynamics, Quantum physics, Waves and Oscillations, special relativity

Lecture notes
Lecture notes and exercise sheets will be distributed via Moodle

Literature
Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies

- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies

- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: not assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: assessed

Content

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Textbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0203-01L</td>
<td>Hydraulics I</td>
<td>5</td>
<td>O</td>
<td>R. Stocker</td>
</tr>
<tr>
<td>103-0233-01L</td>
<td>GIS I (for Environmental Engineers)</td>
<td>3</td>
<td>2G</td>
<td>P. Kiefer</td>
</tr>
<tr>
<td>102-0293-00L</td>
<td>Hydrology</td>
<td>3</td>
<td>2G</td>
<td>P. Burlando</td>
</tr>
</tbody>
</table>

Abstract

- The course teaches the basics of hydromechanics, relevant for civil and environmental engineers.
- Familiarization with the basics of hydromechanics of steady state flows
- Properties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall
- The course teaches the basics of hydromechanics, relevant for civil and environmental engineers.
- Knowing the fundamentals of geoinformation technologies for the realization, application and operation of geographic information systems in engineering projects.
- Fundamentals of geoinformation technologies: spatial data modeling, metrics & topology, vector and raster data, thematic data, spatial queries and analysis, spatial databases; lab sessions with GIS software
- The course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, and snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis.

Objective

- The course teaches the basics of hydromechanics, relevant for civil and environmental engineers.
- Familiarization with the basics of hydromechanics of steady state flows
- Properties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall
- The course teaches the basics of hydromechanics, relevant for civil and environmental engineers.
- Knowing the fundamentals of geoinformation technologies for the realization, application and operation of geographic information systems in engineering projects.
- Fundamentals of geoinformation technologies: spatial data modeling, metrics & topology, vector and raster data, thematic data, spatial queries and analysis, spatial databases; lab sessions with GIS software
- The course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, and snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis.

Content

- The course teaches the basics of hydromechanics, relevant for civil and environmental engineers.
- Familiarization with the basics of hydromechanics of steady state flows
- Properties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall
- The course teaches the basics of hydromechanics, relevant for civil and environmental engineers.
- Knowing the fundamentals of geoinformation technologies for the realization, application and operation of geographic information systems in engineering projects.
- Fundamentals of geoinformation technologies: spatial data modeling, metrics & topology, vector and raster data, thematic data, spatial queries and analysis, spatial databases; lab sessions with GIS software
- The course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, and snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis.

Literature

- Vorlesungspäsentationen werden digital zur Verfügung gestellt.

Lecture notes

- The lecture notes as well as the lecture presentations and handouts may be downloaded from the website of the Chair of Hydrology and Water Resources Management.
Students are able to understand the objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research. Microbiology

Generelle Ökologie:

Program
Lecturers
Unterlagen, Vorlesungsfolien und relevante Literatur sind in Moddle abrufbar. Die Unterlagen für die nächste Vorlesung stehen jeweils spätestens am Freitagmorgen zur Verfügung.

C. Buser Moser

Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms

C. Frei

Biology III: Essentials of Ecology

Abstract
This introductory lecture in ecology covers basic ecological concepts and the most important levels of complexity in ecological research. Ecological concepts are exemplified by using aquatic and terrestrial systems; corresponding methodological approaches are demonstrated. The objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research. The students should learn ecological concepts at these different levels in the context of concrete examples from terrestrial and aquatic ecology. Corresponding methods for studying the systems will be presented. A further aim of the lecture is that students achieve an understanding of biodiversity, why it is threatened and how it can be managed.

Objective
The students should learn ecological concepts at these different levels in the context of concrete examples from terrestrial and aquatic ecology. Corresponding methods for studying the systems will be presented. A further aim of the lecture is that students achieve an understanding of biodiversity, why it is threatened and how it can be managed.

Content
- Einfuss von Umweltfaktoren (Temperatur, Strahlung, Wasser, Nährstoffe etc.) auf Organismen; Anpassung an bestimmte Umweltbedingungen
- Populationsdynamik: Ursachen, Beschreibung, Vorhersage und Regulation
- Interaktionen zwischen Arten (Konkurrenz, Koexistenz, Prädation, Parasitismus, Nahrungsnetze)
- Lebensgemeinschaften: Struktur, Stabilität, Sukzession
- Ökosysteme: Kompartimente, Stoff- und Energieflusse
- Biodiversität: Variation, Ursachen, Gefährdung und Erhaltung
- Aktuelle Naturschutzprobleme und -massnahmen
- Evolutionäre Ökologie: Methodik, Spezialisierung, Koevolution

Lecture notes
Unterlagen, Vorlesungssfolien und relevante Literatur sind in Moddle abrufbar. Die Unterlagen für die nächste Vorlesung stehen jeweils spätestens am Freitagmorgen zur Verfügung.

Literature
Generelle Ökologie:

Aquatische Ökologie:

Lampert & Sommer 1999. Limnoökologie. Thieme, 2. Aufl., ca. Fr. 55.-%

Bohle 1995. Limnische Systeme. Springer, ca. Fr. 50.-

Naturschutzbiologie:

Examination Block 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-4001-00L</td>
<td>Microbiology</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>M. Ackermann, M. Schuppler, J. Vorholt-Zambelli</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Teaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Teaching of basic knowledge in microbiology.</td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td>Der Schwerpunkt liegt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie.</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>Wird von den jeweiligen Dozenten ausgegeben.</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td>Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms</td>
</tr>
<tr>
<td>752-0100-00L</td>
<td>Biochemistry</td>
<td>O</td>
<td>2</td>
<td>2V</td>
<td>C. Frei</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td>Basic knowledge of enzymology, in particular the structure, kinetics and chemistry of enzyme-catalysed reaction in vitro and in vivo. Biochemistry of metabolism: Those completing the course are able to describe and understand fundamental cellular metabolic processes.</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td>Students are able to understand- the structure and function of biological macromolecules - the kinetic bases of enzyme reactions - thermodynamic and mechanistic basics of relevant metabolic processes Students are able to describe the relevant metabolic reactions in detail</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td></td>
<td></td>
<td></td>
<td>Introduction, basics, composition of cells, biochemical units, repetition of relevant organic chemistry Structure and function of proteins Carbohydrates Lipids an biological membranes Enzymes and enzyme kinetics Catalytic strategies Metabolism: Basic concepts and design. Repetition of basic thermodynamics Glycolysis, fermentation The citric acid cycle Oxidative phosphorylation Fatty acid metabolism</td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td>Horton et al. (Pearson) serves as lecture notes.</td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td>Basic knowledge in biology and chemistry is a prerequisite.</td>
</tr>
</tbody>
</table>
5. Semester

Compulsory Courses 5. Semester

 Examination Block 3

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0215-00L</td>
<td>Urban Water Management II</td>
<td>O</td>
<td>4</td>
<td>2G</td>
<td>M. Maurer, P. Stauffer</td>
</tr>
<tr>
<td>Objective</td>
<td>Consolidation of the basic procedures for design and operation of technical networks in water engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Demand Side Management versus Supply Side Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimierung von Wasserverteilnetzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kalkausfällung, Korrosion von Leitungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hygiene in Verteilsystemen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siedlungshydrologie: Niederschlag, Abflussbildung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instationäre Strömungen in Kanalisationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stofftransport in der Kanalisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einleitbedingungen bei Regenwetter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Versickerung von Regenwasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generelle Entwässerungsplanung (GEP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Written material will be available digital.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisite: Introduction to Urban Water Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught competencies</td>
<td>Domain A - Subject-specific Competencies</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102-0455-01L</td>
<td>Groundwater I</td>
<td>O</td>
<td>4</td>
<td>3G</td>
<td>J. Jimenez-Martinez, M. Willmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course provides a quantitative introduction to groundwater flow and contaminant transport processes. Formulation and solving of practical problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Understanding of the basic concepts on groundwater flow and contaminant transport processes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Properties of porous and fractured media, Darcy’s law, flow equation, stream functions, interpretation of pumping tests, transport processes, transport equation, analytical solutions for transport, numerical methods: finite differences methods, aquifers remediation, case studies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Script and collection of problems available</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. Kinzelbach, R. Rausch, Grundwassermodellierung, Gebrüder Bornträger, Stuttgart, 1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102-0635-01L</td>
<td>Air Pollution Control</td>
<td>O</td>
<td>6</td>
<td>4G</td>
<td>J. Wang, B. Buchmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture provides in the first part an introduction to the formation of air pollutants by technical processes, the emission of these chemicals into the atmosphere and their impact on air quality. The second part covers different strategies and techniques for emission reduction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students gain general knowledge of the technical processes resulting in air pollution and study the methods used for air pollution control. The students can identify major air pollution sources and understand the methods for measuring pollutants, collecting and analyzing data. The students can suggest and evaluate possible control methods and equipment, design control systems and estimate their efficiency and efforts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The students know the different strategies of air pollution control and are familiar with their scientific fundamentals. They are able to incorporate goals concerning air quality into their engineering work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

Part 1 Emission, Immission, Transmission
Fluxes of pollutants and their environmental impact:
- physical and chemical processes leading to emission of pollutants
- mass and energy of processes
- Emission measurement techniques and concepts
- quantification of emissions from individual and aggregated sources
- extent and development of the emissions (Switzerland and global)
- propagation and transport of pollutants (transmission)
- meteorological parameters influencing air pollution dispersion
- deterministic and stochastic models, describing air pollution dispersion
- dispersion models (Gaussian model, box model, receptor model)
- measurement concepts for ambient air (immission level)
- extent and development of ambient air mixing ratios
- goal and instrument of air pollution control

Part 2 Air Pollution Control Technologies
The reduction of the formation of pollutants is done by modifying the processes (pro cessintegrated measures) and by different engineering operations for the cleaning of waste gas (downstream pollution control). It will be demonstrated, that the variety of these procedures can be traced back to the application of a few basic physical and chemical principles.

Procedures for the removal of particles (inertial separator, filtration, electrostatic precipitators, scrubbers) with their different mechanisms (field forces, impaction and diffusion processes) and the modelling of these mechanisms.

Procedures for the removal of gaseous pollutants and the description of the driving forces involved, as well as the equilibrium and the kinetics of the relevant processes (absorption, adsorption as well as thermal, catalytic and biological conversions).

Discussion of the technical possibilities to solve the actual air pollution problems.

Lecture notes
Brigitte Buchmann, Air pollution control, Part I
Jing Wang, Air pollution control, Part II
Lecture slides and exercises

Literature
List of literature included in script
College lectures on basic physics, chemistry and mathematics.
Language of instruction: In German or in English.

102-0675-00L Earth Observation O 4 credits 3G I. Hajnsek, E. Baltsavias
Abstract
The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation.

Objective
The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation. Students should know at the end of the course:
1. Basics of measurement principle
2. Fundamentals of image acquisition
3. Basics of the sensor-specific geometries
4. Sensor-specific determination of environmental parameters

Content
Die Lehrveranstaltung gibt einen Einblick in die heutige Erdbeobachtung mit dem folgenden skizzierten Inhalt:
1. Einführung in die Fernerkundung von Luft- und Weltraum gestützten Systemen
2. Einführung in das Elektromagnetische Spektrum
3. Einführung in optische Systeme (optisch und hyperspektral)
4. Einführung in Mikrowellen-Technik (aktiv und passiv)
5. Einführung in atmosphärische Systeme (meteo und chemisch)
6. Einführung in die Techniken und Methoden zur Bestimmung von Umweltparametern
7. Einführung in die Anwendungen zur Bestimmung von Umweltparametern in der Hydrologie, Glaziologie, Forst und Landwirtschaft, Geologie und Topographie

Lecture notes
Folien zu jeden Vorlesungsblock werden zur Verfügung gestellt.

Literature
Ausgewählte Literatur wird am Anfang der Vorlesung vorgestellt.

Examination Block 4

Number Title Type ECTS Hours Lecturers
101-0031-02L Business Administration O 2 credits 2V M. Passardi, P. Barmettler
Abstract
Introduction to business administration
Principles of accounting and financial management
Financial planning and capital budgeting of projects
Costing systems by corporations

Objective
Prepare and analyze the financial statements of organizations
Establish budget and determine profitability of investment
Understand the major costing systems
Perform some product calculations

Content
Overview in business administration
Financial Accounting
- Balance sheet, income statement
- Accounts, double-entry bookkeeping
- Year-end closing and financial statements

Financial Management
- Financial statement analysis
- Financial planning
- Investment decisions

Management Accounting
- Full costing and marginal costing
- Product costing
- Management decisions

Lecture notes
Nicht vorhanden.

Literature
Nicht vorhanden.
The course is organized in the form of seminars held by the students. Topics selected from the core disciplines of the curriculum (water management, urban water engineering, material fluxes, waste technology, air pollution, earth observation) are discussed in the class on the basis of scientific papers that are illustrated and critically reviewed by the students.

Lecture notes
Christoph Jäger/Andreas Bühler, Schweizerisches Umweltrecht, Bern 2016

Literature
Weitere Literaturangaben folgen in der Vorlesung

851-0723-00L
Environmental Law I: Fundamentals and Concepts

Only for Environmental Engineering BSc

Abstract
This class introduces students to the fundamentals of legal systems, focusing on environmental law. It covers the fundamentals of constitutional and administrative law, as opposed to private and criminal law. The class will focus on concepts, terminology and procedures of Swiss environmental law and selected aspects of European environmental law, supplemented through case studies.

Objective
Students learn fundamental structures of the legal system, understand core concepts and selected problems of public law, focusing on Swiss and European environmental law. These insights can be applied in further law courses, in particular in the course “Environmental law: Areas and Case Studies.”

Content
The Vorlesung begins with an allgemeinen Einführung in das Recht (was ist Recht?) and situates the Umweltrecht in the schweizerischen Rechtsordnung. Anschliessend folgen die Darstellung der Rechtsquellen sowie die juristische Methodenlehre, insbesondere die Auslegung und Anwendung von Rechtsnormen. Darauf aufbauend behandelt die Vorlesung die Ziele und Grundsätze des Umweltrechts, zeigt die rechtlichen Handlungsf orm en auf, insbesondere die Verfügung. Die Studierenden lernen die grundlegenden Schritte der Rechtsanwendung bzw. eines Verwaltungsverfahrens kennen. Sie erhalten auch einen kurzen Überblick über das Bau- und Planungsrecht. Ein Block zum europäischen Umweltrecht rundet die Vorlesung thematisch ab. Integrierte Fallbeispiele und Falldiskussionen zeigen die Praxisrelevanz auf und bieten Gelegenheit zur aktiven Mitarbeit der Studierenden.

Lecture notes
Christoph Jäger/Andreas Bühler, Schweizerisches Umweltrecht, Bern 2016

Literature
Weitere Literaturangaben folgen in der Vorlesung

101-0515-00L
Project Management

Abstract
The course gives a detailed introduction on various aspects of professional project management out of theory and practice. Established concepts and methods for project organization, planning, execution and evaluation are introduced and major challenges discussed. The course includes an introduction on specialized project management software as well as agile project management concepts.

Objective
The goal of this course is to give a detailed introduction into project management. The students should learn to plan and execute a project.

Content
Project planning (aims, appointments, capacities, efforts and costs), project organization, scheduling and risk analysis, project execution, supervision and control, project evaluation, termination and documentation, conflict management, multinational project management, IT support as well as agile project management methods such as SCRUM.

Lecture notes
No. The lecture slides and other additional material will be available for download from Moodle a week before each class.

Additional Compulsory Courses

102-0515-01L
Environmental Engineering Seminars

Abstract
The course is organized in the form of seminars held by the students. Topics selected from the core disciplines of the curriculum (water resources, urban water engineering, material fluxes, waste technology, air pollution, earth observation) are discussed in the class on the basis of scientific papers that are illustrated and critically reviewed by the students.

Objective
Learn about recent research results in environmental engineering and analyse practical applications in environmental engineering.

Elective Blocks

Elective Block: Environmental Planning

102-0535-00L
Noise Abatement

Abstract

Objective
The students will understand the basics of noise abatement: acoustics, impact of noise, measurement techniques and legislation. The students will be able to analyze different noise problems and they will be able to solve simple problems of noise abatement.
Elective Block: Soil Protection

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0501-00L</td>
<td>Pedosphere</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>R. Kretzschmar</td>
</tr>
</tbody>
</table>

Abstract
Introduction to the formation and properties of soils as a function of parent rock, landscape position, climate, and soil organisms. Complex relationships between soil forming processes, physical and chemical soil properties, soil biota, and ecological soil properties are explained and illustrated by numerous examples.

Objective
Understanding of soils as integral parts of ecosystems, development and distribution of soils as a function of environmental factors, and processes leading to soil degradation.

Content
Definition of the pedosphere, soil functions, rocks as parent materials, minerals and weathering, soil organisms, soil organic matter, soil fertility, land use and soil degradation.

Prerequisites / notice
Skript "Lärmbehandlung" als PDF ab Beginn der Vorlesung verfügbar.

Elective Block: Civil Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0339-00L</td>
<td>Environmental Geotechnics</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>M. Plötze</td>
</tr>
</tbody>
</table>

Abstract
Introduction of basic knowledge about problems with contaminated sites, investigation of this sites, risk management, remediation and reclamation techniques as well as monitoring systems. Introduction in landfill design and engineering with focus on barrier- and drainage systems and lining materials, evaluation of geotechnical problems, e.g. stability.

Objective
Introduction of basic knowledge about problems with contaminated sites, investigation of this sites, risk management, remediation and reclamation techniques as well as monitoring systems. Introduction in landfill design and engineering with focus on barrier- and drainage systems as well as monitoring systems.

Content
Definition of contaminated sites, site investigation methods, historical research and technical investigation, risk assessment, contamination transport, remediation, clean-up and retaining techniques (e.g. bioremediation, incineration, retaining walls, pump-and-treat, permeable reactive barriers), monitoring, research projects and results numbers.

Prerequisites / notice
Elective Block: Soil Protection

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0113-10L</td>
<td>Theory of Structures for Environmental Engineering</td>
<td>W</td>
<td>3 credits</td>
<td>2.5G</td>
<td>B. Sudet</td>
</tr>
</tbody>
</table>

Abstract
Introduction to structural mechanics, statically determinate beams and frame structures, trusses. Stresses in statically determinate structures.

Objective
- Understanding the response of elastic beam and frame structures
- Ability to correctly apply the equilibrium conditions
- Understanding the basics of continuum mechanics
- Computation of stresses in elastic structures
Content
- Equilibrium, reactions, static determinacy
- Internal forces (normal and shear forces, moments)
- Arches and cables
- Elastic trusses
- Influence lines
- Basics of continuum mechanics
- Stresses in elastic beams

Lecture notes
Bruno Sudret, "Einführung in die Baustatik" (2018)

Additional course material will be available on the web page: https://sudret.ibk.ethz.ch/education/baustatik-for-environmental-engineers.html

Literature

Elective Block: Energy

At least 10 KP must be achieved for the elective block: Energy.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-1635-00L</td>
<td>Electric Circuits</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>M. Zima, D. Shchetinin</td>
</tr>
</tbody>
</table>

Abstract
Introduction to analysis methods and network theorems to describe operation of electric circuits. Theoretical foundations are essential for the analysis of the electric power transmission and distribution grids as well as many modern technological devices – consumer electronics, control systems, computers and communications.

Objective
At the end of this course, the student will be able to: understand variables in electric circuits, evaluate possible approaches and analyse simple electric circuits with RLC elements, apply circuit theorems to simple meshed circuits, analyze AC circuits in a steady state and understand the connection of the explained principles to the modelling of the 3-phase electric power systems.

Content
- Course will introduce electric circuits variables, circuit elements (resistive, inductive, capacitive), resistive circuits and theorems (Kirchoff's laws, Norton and Thévenin equivalents), nodal and mesh analysis, superposition principle; it will continue by discussing the complete network analysis using Ohm's law, Kirchhoff's laws, Norton and Thévenin equivalents), nodal and mesh analysis, superposition principle; it will continue by discussing the complete network analysis using Ohm's law, Kirchhoff's laws, and thevenin/norton equivalents.
- It will then introduce the analysis of the electric power transmission and distribution grids as well as many modern technological devices – consumer electronics, control systems, computers and communications.

Prerequisites / notice
This course is intended for students outside of D-ITET. No prior course in electrical engineering is required.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1633-00L</td>
<td>Energy Conversion</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>I. Karlin, G. Sansavini</td>
</tr>
</tbody>
</table>

Abstract
This course provides the students with an introduction to thermodynamics and energy conversion. Students shall gain basic understanding of thermodynamics and energy interactions as well as their link to energy conversion technologies.

Objective
Thermodynamics is key to understanding and use of energy conversion processes in Nature and technology. Main objective of this course is to give a compact introduction into basics of Thermodynamics: Thermodynamic states and thermodynamic processes; Work and Heat; First and Second Laws of Thermodynamics. Students shall learn how to use energy balance equation in the analysis of power cycles and shall be able to evaluate efficiency of internal combustion engines, gas turbines and steam power plants. The course shall extensively use thermodynamic charts to build up students' intuition about opportunities and restrictions to increase useful work output of energy conversion. Thermodynamic functions such as entropy, enthalpy and free enthalpy shall be used to understand chemical and phase equilibrium. The course also gives introduction to refrigeration cycles, combustion and refrigeration. The course compactly covers the standard course of thermodynamics for engineers, with additional topics of a general physics interest (nonideal gas equation of state and Joule-Thomson effect) also included.

Content
1. Thermodynamic systems, states and state variables
2. Properties of substances: Water, air and ideal gas
3. Energy conservation in closed and open systems: work, internal energy, heat and enthalpy
4. Second law of thermodynamics and entropy
5. Energy analysis of steam power cycles
6. Energy analysis of gas power cycles
7. Refrigeration and heat pump cycles
8. Nonideal gas equation of state and Joule-Thomson effect
9. Maximal work and exergy
10. Mixtures
11. Chemical reactions and combustion systems; chemical and phase equilibrium

Lecture notes
Lecture slides and supplementary documentation will be available online.

Literature

Prerequisites / notice
This course is intended for students outside of D-MAVT.

Students are assumed to have an adequate background in calculus, physics, and engineering mechanics.
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Electives

The entire course programs of ETH Zurich and the University of Zurich are open to the students to individual selection.

Electives ETH Zurich

Course Catalogue of ETH Zurich

GESS Science in Perspective

see GESS Science in Perspective: Language Courses ETH/UZH

see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-BAUG.

Bachelor’s Thesis

Number Title Type ECTS Hours Lecturers
102-0006-00L Bachelor’s Thesis O 10 credits 21D Lecturers

Abstract
The Bachelor Programme concludes with the Bachelor Thesis. This project is supervised by a professor. Writing up the Bachelor Thesis encourages students to show independence and to produce structured work.

Objective
Encourages students to show independence, to produce scientifically structured work and to apply engineering working methods.

Content
The contents base upon the fundamentals of the Bachelor Programme. Students can choose from different subjects and tasks. The thesis consists of both a written report and an oral presentation.

Environmental Engineering Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Key for Hours</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td></td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
<td>Courses outside the curriculum</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
<td>Suitable for doctorate</td>
<td></td>
</tr>
</tbody>
</table>

Key for Hours

V	lecture
G	lecture with exercise
U	exercise
S	seminar
K	colloquium

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Environmental Engineering Master

► Majors

►► Major Urban Water Management

►►► Ecological System Design

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0307-01L</td>
<td>Advanced Environmental, Social and Economic Assessments</td>
<td>O</td>
<td>5 credits</td>
<td>4G</td>
<td>A. E. Braunschweig, S. Pfister, R. Frischknecht</td>
</tr>
</tbody>
</table>

Abstract

This course deepens students’ knowledge of environmental, economic, and social assessment methodologies and their various applications.

Objective

This course has the aim of deepening students’ knowledge of the environmental, economic and social assessment methodologies and their various applications.

In particular, students completing the course should have the
- ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- knowledge about the current state of the scientific discussion and new research developments
- ability to properly plan, conduct and interpret environmental assessment studies

In the course element “Implementation of Environmental and other Sustainability Goals”, students will learn to
- describe key sustainability problems of the current economic system and measuring units.
- describe the management system of an organisation and how to develop a sustainability orientation
- discuss approaches to measure environmental performance of an organisation, including ‘organisational LCA’ (Ecobalance)
- explain the pros and cons of single score environmental assessment methods
- demonstrate life cycle costing
- interpret stakeholder relations of an organisation
- (if time allows) describe sustainable supply chain management and stakeholder management

Content

Part I (Advanced Environmental Assessments)
- Inventory database developments, transparency, data quality, data completeness, and data exchange formats, uncertainties
- Software tools (MFA, LCA)
- Allocation (multiooutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Impact assessment of waterborne chemical emissions, sum parameters, mixture toxicity
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Subjectivity in environmental assessments
- Multicriteria Decision Analysis
- Case Studies

Part II (Implementation of Environmental and other Sustainability Goals):
- Sustainability problems of the current economic system and its measuring units;
- The structure of a management system, and elements to integrate environmental management (ISO 14001) and social management (SA8000) as well as ISO 26000), especially into strategy development, planning, controlling and communication;
- Sustainability Opportunities and Innovation
- The concept of ‘Continuous Improvement’
- Life Cycle Costing, Life Cycle Management
- environmental performance measurement of an organisation, including ‘organisational LCA’ (Ecobalance), based on practical examples of companies and new concepts
- single score env. assessment methods (Swiss ecopoints)
- stakeholder management and sustainability oriented communication
- an intro into sustainability issues of supply chain management

Students will get small exercises related to course issues.

Lecture notes

Part I: Slides and background reading material will be available on lecture homepage
Part II: Documents will be available on Ilias

Literature

Will be made available.

Prerequisites / notice

This course should only be elected by students of environmental engineering with a with a Module in Ecological Systems Design. All other students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other Sustainability goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. (2016). Environmental Life Cycle Assessment, CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).

102-0317-03L Advanced Environmental Assessment (Computer Lab I) O 1 credit 1U S. Pfister

Abstract

Different tools and software used for environmental assessments, such as LCA are introduced. The students will have hands-on exercises in the computer rooms and will gain basic knowledge on how to apply the software and other resources in practice

Objective

Become acquainted with various software programs for environmental assessment including life cycle assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.

►►► Process Engineering in Urban Water Management

No courses in autumn semester (HS), only in spring semester (FS).

►►► System Analysis in Urban Water Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0227-00L</td>
<td>Systems Analysis and Mathematical Modeling in Urban Water Management</td>
<td>O</td>
<td>6 credits</td>
<td>4G</td>
<td>E. Morgenroth, M. Maurer</td>
</tr>
</tbody>
</table>

Number of participants limited to 50.
Abstract

Objective
The goal of this course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.

Content
The course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:
- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)

Lecture notes
Copies of overheads will be made available.

Literature
There will be a required textbook that students need to purchase:

Prerequisites / notice
Students should have a general understanding of urban water management as many examples are taken from processes relevant to related systems. This course is offered in parallel with the course Process Engineering Ia. It is beneficial but not necessary to follow both courses simultaneously.

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competencies</th>
<th>Taught</th>
<th>Taught Competencies</th>
<th>Taught Competencies</th>
<th>Taught Competencies</th>
<th>Taught Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Subject-specific</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Method-specific</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td>Decision-making</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>assessed</td>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Social</td>
<td>Project Management</td>
<td>not assessed</td>
<td>Communication</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Personal</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
<td>Creative Thinking</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td></td>
</tr>
</tbody>
</table>

102-0217-00L Process Engineering Ia

Abstract
Biological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.

Objective
Students should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.

Content
Stoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization

Literature
There will be a textbook that students need to purchase (see http://www.sww.ifu.ethz.ch/education/lectures/process-engineering-ia.html for further information).

Prerequisites / notice
For detailed information on prerequisites the student should consult the lecture program and important information (syllabus) of Process Engineering Ia that can be downloaded at http://www.sww.ifu.ethz.ch/education/lectures/process-engineering-ia.html

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competencies</th>
<th>Taught</th>
<th>Taught Competencies</th>
<th>Taught Competencies</th>
<th>Taught Competencies</th>
<th>Taught Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Subject-specific</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Method-specific</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td>Decision-making</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Social</td>
<td>Project Management</td>
<td>not assessed</td>
<td>Communication</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Personal</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
<td>Creative Thinking</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td></td>
</tr>
</tbody>
</table>

E. Morgenroth

102-0217-00L Process Engineering Ia

Abstract
Biological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.

Objective
Students should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.

Content
Stoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization

Literature
There will be a textbook that students need to purchase (see http://www.sww.ifu.ethz.ch/education/lectures/process-engineering-ia.html for further information).

Prerequisites / notice
For detailed information on prerequisites the student should consult the lecture program and important information (syllabus) of Process Engineering Ia that can be downloaded at http://www.sww.ifu.ethz.ch/education/lectures/process-engineering-ia.html

Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Competencies</th>
<th>Taught</th>
<th>Taught Competencies</th>
<th>Taught Competencies</th>
<th>Taught Competencies</th>
<th>Taught Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Subject-specific</td>
<td>Concepts and Theories</td>
<td>assessed</td>
<td>Techniques and Technologies</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Method-specific</td>
<td>Analytical Competencies</td>
<td>assessed</td>
<td>Decision-making</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
<td>Problem-solving</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Social</td>
<td>Project Management</td>
<td>not assessed</td>
<td>Communication</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Personal</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
<td>Creative Thinking</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
<td>Critical Thinking</td>
<td>assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Type</td>
<td>ECTS</td>
<td>Hours</td>
<td>Lecturers</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
<td>-----------</td>
<td>-------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>102-0250-00L</td>
<td>Urban Drainage Planning and Modelling</td>
<td>O</td>
<td>6 credits</td>
<td>4G</td>
<td>M. Maurer, D. Gregorio, U. Karaus, J. P. Leitão Correia, J. Rieckermann</td>
<td></td>
</tr>
</tbody>
</table>

Only for Environmental Engineers Msc in the module Water Infrastructure Planning and Stormwater Management.

Abstract

In this course, the students learn modern urban drainage engineering approaches, critical thinking, decision making in a complex environment as well as dealing with insufficient data and ill-defined problems.

Objective

By the end of the course, you should be able to do the following:

- Apply different methods and methodologies to assess the impact of urban drainage on water pollution and flooding potential.
- Distinguish between hydrological and hydrodynamic models and their correct application.
- Identify the difference between emission and immersion oriented approaches for identifying drainage measures.
- Identify relevant measures, quantify their effects and assess their relative ranking/priority.
- Consider uncertainties and handle correctly incomplete data and information.
- Make decisions and recommendations in a complex application case.
- Teamwork. State principles of effective team performance and the functions of different team roles; work effectively in problem-solving teams.
- Communication. Communicate and document your findings in concise group presentations and a written report.

Content

In urban drainage, the complexity of the decision-making, the available methodologies and the data availability have increased strongly. In current environmental engineering practice, the focus shifted from tables and nomograms to sophisticated simulation tools.

The topics cover:

- Integrated urban water management
- Hydrological and hydrodynamic modelling
- Water quality based assessment
- Freshwater ecology
- Hydraulic capacity assessment
- Sewer network operation
- Decision analysis

Prerequisites / notice

Prerequisites: 102-0214-00 Siedlungswasserwirtschaft and 102-0215-00 Siedlungswasserwirtschaft II or comparable educational background.

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Techniques and Technologies
- Domain B - Method-specific Competencies
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Project Management
- Domain C - Social Competencies
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Sensitivity to Diversity
 - Negotiation
- Domain D - Personal Competencies
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Self-awareness and Self-reflection
 - Self-direction and Self-management

Major Environmental Technologies

Air Quality Control

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0377-00L</td>
<td>Air Pollution Modeling and Chemistry</td>
<td>O</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Henne, S. Reimann Bhend, X. Zhang</td>
</tr>
</tbody>
</table>

Abstract

Air pollutants cause negative effects on humans, wildlife and buildings. To control and reduce the impact of air pollutants, their transfer from sources to receptors needs to be known. This transfer includes transport within the atmospheric boundary layer, chemical transformation reactions and phase-transfer processes from gases to particles.

Objective

The students understand the fundamental principles of atmospheric transport, dispersion and chemistry of pollutants on the local to regional scale and their transfer gas to particle phases (secondary aerosols). This includes the knowledge of important atmospheric reactions, sources and sinks. The obtained understanding enables the students to apply computational tools to predict the transport and transformation of chemicals at the local to regional scale.

Content

- Structure of the Atmosphere
- Thermodynamics of the atmosphere
- Atmospheric stability
- Atmospheric boundary layer and turbulence
- Dispersion in the atmospheric boundary layer
- Numerical models of atmospheric dispersion
- Gas phase reaction kinetics
- Tropospheric chemistry and ozone formation
- Chemistry box models
- Volatile organic pollutants (VOCs) and semi-volatile organic pollutants (SVOCs)
- Aerosol modelling
- Air pollution source apportionment
- Inverse modelling of emissions
Lecture notes

Continued updates of:
- Slides and handouts
- Home assignments and sample solutions
- R package and code for some of the home assignments
- MATLAB codes
- Key journal articles as discussed during lecture

Literature

Atmospheric chemistry

Environmental organic chemistry and mass transfer

Mackay D., Multimedia environmental models : the fugacity approach; Boca Raton, Fla. : Lewis Publishers; 2001; 2nd ed

Atmospheric dynamics and boundary layer

Atmospheric modelling

Introduction to R

Prerequisites / notice

strongly recommended: 102-0635-01L Luftreinhaltung (Air Pollution Control) or similar

Process Engineering in Urban Water Management

No courses in autumn semester (HS), only in spring semester (FS).

System Analysis in Urban Water Management

Number Title Type ECTS Hours Lecturers

102-0227-00L Systems Analysis and Mathematical Modeling in Urban Water Management O 6 credits 4G E. Morgenroth, M. Maurer

Number of participants limited to 50.

The goal of this course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.

The course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:
- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)

Copies of overheads will be made available.

Prerequisites / notice

Students should have a general understanding of urban water management as many examples are taken from processes relevant to related systems. This course is offered in parallel with the course Process Engineering Ia. It is beneficial but not necessary to follow both courses simultaneously.

Domain A - Subject-specific Competencies

Concepts and Theories assessed
Techniques and Technologies assessed

Domain B - Method-specific Competencies

Analytical Competencies assessed
Decision-making assessed
Media and Digital Technologies assessed
Problem-solving assessed

Domain C - Social Competencies

Communication not assessed
Cooperation and Teamwork not assessed
Customer Orientation not assessed
Leadership and Responsibility not assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversity not assessed
Negotiation not assessed

Domain D - Personal Competencies

Adaptability and Flexibility not assessed
Creative Thinking not assessed
Critical Thinking assessed
Integrity and Work Ethics not assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed

102-0217-00L Process Engineering Ia O 3 credits 2G E. Morgenroth

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 1997 of 2152
Waste Management

Remark: 102-0337-00 Landfilling, Contaminated Sites and Radioactive Waste Repositories only for those students also taking module "System Analysis in Urban Water Management" as replacement of 102-0217-00 Process Engineering Ia in module "Waste Management".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0357-00L</td>
<td>Waste Recycling Technologies</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>R. Bunge</td>
</tr>
<tr>
<td></td>
<td>Waste Recycling Technology (WRT) is a sub-discipline of Mechanical Process Engineering. WRT is employed in production plants processing contaminated soil, construction wastes, scrap metal, recovered paper and the like. While WRT is well established in Central Europe, it is only now catching on in emerging markets as well.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>At the core of this course is the separation of mixtures of solid bulk materials according to physical properties such as color, electrical conductivity, magnetism and so forth. After having taken this course, the students should have concept not only of the unit operations employed in WRT but also of how these unit operations are integrated into the flow sheets of production plants.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste Recycling: Scope and objectives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste recycling technologies in Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Properties of particles: Liberation conditions, Particle size and shape, Porosity of bulk materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid dynamics of particles: Stationary particle beds, Fluidized beds, Free settling particles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flow sheet basics: Balancing mass flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard processes: batch vs. continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment of separation success: Separation function; grade vs. recovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Separation Processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Separation according to size and shape (Classification): Screening, Flow separation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Separation according to material properties (Concentration): Manual Sorting, Gravity concentration; Magnetic separation, Eddy current separation, Electrostatic separation, Sensor technology, Froth flotation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The script consists of the slides shown during the lectures. Background material will be provided on the script-server.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites / notice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The topic will be discussed not from the perspective of theory, but rather in the context of practical application. However, solid fundamentals in physics (in particular in mechanics) are strongly recommended.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

102-0337-00L	Landfilling, Contaminated Sites and Radioactive Waste Repositories	O	3	2G	M. Plötze, W. Hummel
	Only for Environmental Engineering MSc.				
Abstract	Practices of landfilling and remediation of contaminated sites and disposal of radioactive waste are based on the same concepts that aim to protect the environment. The assessment of contaminants that may leach into the environment as a function of time and how to reduce the rate of their release is key to the design of chemical, technical and geological barriers.				
Objective	Upon successful completion of this course students are able to:				
	- assess the risk posed to the environment of landfills, contaminated sites and radioactive waste repositories in terms of fate and transport of contaminants				
	- describe technologies available to minimize environmental contamination				
	- describe the principles in handling of contaminated sites and to propose and evaluate suitable remediation techniques				
	- explain the concepts that underlie radioactive waste disposal practices				
This lecture course comprises of lectures with exercises and guided case studies.
- A short overview of the principles of environmental protection in waste management and how this is applied in legislation.
- A overview of the chemistry underlying the release and transport of contaminants from the landfilled/contaminated material/radioactive waste repository focusing on processes that control redox state and pH buffer capacity; mobility of heavy metals and organic compounds
- Technical barrier design and function. Clay as a barrier.
- Contaminated site remediation: Site evaluation, remediation technologies
- Concepts and safety in radioactive waste management
- Role of the geological and engineered barriers and radionuclide transport in geological media.

Lecture notes
Short script plus copies of overheads

Content

102-0217-00L Process Engineering Ia

Abstract
Biological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.

Objective
Students should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.

Content
Stoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization

Literature
There will be a textbook that students need to purchase (see http://www.sww.ifu.ethz.ch/education/lectures/process-engineering-ia.html for further information).

Prerequisites / notice
For detailed information on prerequisites the student should consult the lecture program and important information (syllabus) of Process Engineering Ia that can be downloaded at http://www.sww.ifu.ethz.ch/education/lectures/process-engineering-ia.html

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making not assessed
- Media and Digital Technologies not assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies
- Communication not assessed
- Cooperation and Teamwork not assessed
- Customer Orientation not assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence not assessed
- Sensitivity to Diversity not assessed
- Negotiation not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility not assessed
- Creative Thinking not assessed
- Critical Thinking assessed
- Integrity and Work Ethics not assessed
- Self-awareness and Self-reflection not assessed
- Self-direction and Self-management not assessed

102-0307-01L Advanced Environmental, Social and Economic Assessments

The combined course unit is only for Master students in Environmental Engineering. All other students enrol for one or both out of the single courses.

Abstract
This course deepens students' knowledge of environmental, economic, and social assessment methodologies and their various applications.

Objective
This course has the aim of deepening students' knowledge of the environmental, economic and social assessment methodologies and their various applications.

In particular, students completing the course should have the
- ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- knowledge about the current state of the scientific discussion and new research developments
- ability to properly plan, conduct and interpret environmental assessment studies

In the course element "Implementation of Environmental and other Sustainability Goals", students will learn to
- describe key sustainability problems of the current economic system and measuring units.
- describe the management system of an organisation and how to develop a sustainability orientation
- discuss approaches to measure environmental performance of an organisation, including 'organisational LCA' (Ecobalance)
- explain the pros and cons of single score environmental assessment methods
- demonstrate life cycle costing
- interpret stakeholder relations of an organisation
- (if time allows) describe sustainable supply chain management and stakeholder management
Part I (Advanced Environmental Assessments)
- Inventory database developments, transparency, data quality, data completeness, and data exchange formats, uncertainties
- Software tools (MFA, LCA)
- Allocation (multioutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Impact assessment of waterborne chemical emissions, sum parameters, mixture toxicity
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Subjectivity in environmental assessments
- Multicriteria Decision Analysis
- Case Studies

Part II (Implementation of Environmental and other Sustainability Goals):
- Sustainability problems of the current economic system and its measuring units;
- The structure of a management system, and elements to integrate environmental management (ISO 14001) and social management (SA8000 as well as ISO 26000), especially into strategy development, planning, controlling and communication.
- Sustainability Opportunities and Innovation
- The concept of 'Continuous Improvement'
- Life Cycle Costing, Life Cycle Management
- environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance), based on practical examples of companies and new concepts
- single score env. assessment methods (Swiss ecopoints)
- stakeholder management and sustainability oriented communication
- an intro into sustainability issues of supply chain management

Students will get small excercises related to course issues.

Lecture notes
Part I: Slides and background reading material will be available on lecture homepage
Part II: Documents will be available on Ilias

Literature
Will be made available.

Prerequisites / notice
This course should only be elected by students of environmental engineering with a with a Module in Ecological Systems Design. All other students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other Sustainability goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al (2016). Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).

102-0317-03L Advanced Environmental Assessment (Computer Lab I) O 1 credit 1U S. Pfister

Abstract
Different tools and software used for environmental assessments, such as LCA are introduced. The students will have hands-on exercises in the computer rooms and will gain basic knowledge on how to apply the software and other resources in practice

Objective
Become acquainted with various software programs for environmental assessment including Life Cycle Assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.

Module is offered in Spring Semester.

Module is offered in Spring Semester.

Remark: 102-0337-00 Landfilling, Contaminated Sites and Radioactive Waste Repositories only for those students also taking module "System Analysis in Urban Water Management" as replacement of 102-0217-00 Process Engineering Ia in module "Waste Management".

Number Title Type ECTS Hours Lecturers
102-0357-00L Waste Recycling Technologies O 3 credits 2G R. Bunge

Abstract
Waste Recycling Technology (WRT) is a sub-discipline of Mechanical Process Engineering. WRT is employed in production plants processing contaminated soil, construction wastes, scrap metal, recovered paper and the like. While WRT is well established in Central Europe, it is only just now catching on in emerging markets as well.

Objective
At the core of this course is the separation of mixtures of solid bulk materials according to physical properties such as color, electrical conductivity, magnetism and so forth. After having taken this course, the students should have concept not only of the unit operations employed in WRT but also of how these unit operations are integrated into the flow sheets of production plants.

Content
Introduction
Waste Recycling: Scope and objectives
Waste recycling technologies in Switzerland
Fundamentals
Properties of particles: Liberation conditions, Particle size and shape, Poresity of bulk materials
Fluid dynamics of particles: Stationary particle beds, Fluidized beds, Free settling particles
Flow sheet basics: Balancing mass flows
Standard processes: batch vs. continuous
Assessment of separation success: Separation function; grade vs. recovery

Lecture notes
The script consists of the slides shown during the lectures. Background material will be provided on the script-server.

102-0337-00L Landfilling, Contaminated Sites and Radioactive Waste Repositories O 3 credits 2G M. Plötze, W. Hummel

Abstract
Practices of landfilling and remediation of contaminated sites and disposal of radioactive waste are based on the same concepts that aim to protect the environment. The assessment of contaminants that may leach into the environment as a function of time and how to reduce the rate of their release is key to the design of chemical, technical and geological barriers.
Upon successful completion of this course students are able to:
- assess the risk posed to the environment of landfills, contaminated sites and radioactive waste repositories in terms of fate and transport of contaminants
- describe technologies available to minimize environmental contamination
- evaluate the performance of contaminated sites and to propose and evaluate suitable remediation techniques
- explain the concepts that underlie radioactive waste disposal practices

This lecture course comprises of lectures with exercises and guided case studies.
- A short overview of the principles of environmental protection in waste management and how this is applied in legislation.
- A review of the chemistry underlying the release and transport of contaminants from the landfilled/contaminated material/radioactive waste repository focusing on processes that control redox state and pH buffer capacity; mobility of heavy metals and organic compounds
- Technical barrier design and function. Clay as a barrier.
- Contaminated site remediation: Site evaluation, remediation technologies
- Concepts and safety in radioactive waste management
- Role of the geological and engineered barriers and radionuclide transport in geological media.

Literature
- Literature will be made available.

Prerequisites / notice
- For detailed information on prerequisites the student should consult the lecture program and important information (syllabus) of Process Engineering Ia that can be downloaded at http://www.swv.ifu.ethz.ch/education/lectures/process-engineering-ia.html

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>Analytical Competencies</td>
<td>Communication</td>
<td>Adaptable and Flexibility</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>Decision-making</td>
<td>Cooperation and Teamwork</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>Customer Orientation</td>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>Leadership and Responsibility</td>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>Self-presentation and Social Influence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>Self-direction and Self-management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
<td></td>
</tr>
</tbody>
</table>

ECTS
- 3 credits

Lecturers
- E. Morgenroth
- P. Molnar

102-0217-00L Process Engineering Ia

Abstract
Biological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.

Objective
Students should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.

Content
- Stoichiometry
- Microbial transformation processes
- Introduction to design and modeling of activated sludge processes
- Anaerobic processes, industrial applications, sludge stabilization

Literature
- There will be a textbook that students need to purchase (see http://www.swv.ifu.ethz.ch/education/lectures/process-engineering-ia.html for further information).

Introduction to design and modeling of activated sludge processes

Performance in the graded exercises and 40% by a semester-end oral examination (30 mins) on watershed modelling concepts.

Exercise hours during the week focus on explanation of the tasks. The course is evaluated 60% by performance in the graded exercises and 40% by a semester-end oral examination (30 mins) on watershed modelling concepts.

The course covers GIS use in watershed analysis, models types from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises).

The main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on thematic lectures (2 hrs a week) and practical exercises (2 hrs a week). Theory and concepts in the lectures are underpinned by many examples from scientific studies. A comprehensive exercise block builds on the lectures with a series of 5 practical tasks to be conducted during the semester in group work. Exercise hours during the week focus on explanation of the tasks. The course is evaluated 60% by performance in the graded exercises and 40% by a semester-end oral examination (30 mins) on watershed modelling concepts.

Watershed Modelling is a practical course on numerical water balance models for a range of catchment-scale water resource applications. The course covers GIS use in watershed analysis, models types from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises).

The first part (A) of the course is on watershed properties analysed from DEMs, and on global sources of hydrological data for modelling applications. Here students learn about GIs applications (ArcGIS, Q-GIS) in hydrology - flow direction routines, catchment morphology, extracting river networks, and defining hydrological response units. In the second part (B) of the course on conceptual watershed models students build their own simple bucket model (Matlab, Python), learn about performance measures in modelling, how to calibrate the parameters and how to validate models, about methods to simulate stochastic climate to drive models, uncertainty analysis. The third part (C) of the course is focussed on physically-based model components. Here students learn about components for soil water fluxes and evapotranspiration, they practice with a fully-distributed physically-based model Topkapi-ETH, and learn about other similar models. They apply Topkapi-ETH to an alpine catchment and study simulated discharge, snow, soil moisture and evapotranspiration spatial patterns. The final part (D) of the course provides open classroom discussion and simulation of a round-table discussion between modellers and clients about using watershed models in a case study.

There is no textbook. Learning materials consist of (a) video-recording of lectures; (b) lecture presentations; and (c) exercise task documents that allow independent work.

Literature
- Literature consists of collections from standard hydrological textbooks and research papers, collected by the instructors on the course moodle page.

Prerequisites / notice
- Basic Hydrology in Bachelor Studies (engineering, environmental sciences, earth sciences). Basic knowledge of Matlab (Python), ArcGIS (Q-GIS).

Autumn Semester 2021
Major Water Resources Management

Flow and Transport

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0267-01L</td>
<td>Numerical Hydraulics</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>M. Holzner</td>
</tr>
</tbody>
</table>

Abstract

In the course Numerical Hydraulics the basics of numerical modelling of flows are presented.

Objective

The goal of the course is to develop the understanding of the students for numerical simulation of flows to an extent that they can later use commercial software in a responsible and critical way.

Content

The basic equations are derived from first principles. Possible simplifications relevant for practical problems are shown and their applicability is discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated.

All methods discussed are applied practically in exercises. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generally available softwares such as BASEMENT for non-steady shallow water flows are used. Lecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German.

ECTS

2G

Type

Lecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German.

Given in lecture

Groundwater

Module is offered in Spring Semester.

Landscape

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0259-00L</td>
<td>Ecohydraulics and Habitat Modelling</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>R. Stocker, K.-D. Jorde, L. G. Martins da Silva, A. Siviglia</td>
</tr>
</tbody>
</table>

Abstract

At a time in which humans have significantly affected the natural environment and yet society increasingly values the many services of natural ecosystems, accounting for ecological processes in engineering design is a major contemporary challenge for environmental and civil engineers.

Objective

This is the fundamental topic in ecohdydraulics, the discipline that focuses on the consequences of fluid flow and related physical processes on the organisms that inhabit aquatic environments. While still a young science, ecohdydraulics already endows the engineer with an overall understanding and quantitative tools to predict how physical processes shape habitat quality and quantity, enabling the analysis of different management options for natural and man-made water bodies in terms of their ecosystem consequences.

Content

This class will take a broad view of ecohdydraulics and introduce students to key concepts in aquatic habitat modeling. Recognizing that an ecosystem is composed of diverse organisms with different seasonal habitat requirements across a range of scales, the class will focus on multiple representative groups of organisms, including fish, macroinvertebrates, plankton, and vegetation. The lectures will build on the students' knowledge of hydraulics, to give them both an appreciation for the dependence of organisms on their physical environment and a set of quantitative modeling approaches that they can take with them into engineering practice, in fields ranging from hydropower development and upgrade, to reservoir operation, river restoration, flood protection, water management and beyond. At the broadest scale, this class will contribute to the students' appreciation of the tight link between the natural and the built or impacted environment, and of the imperatives of considering both in the design process.

ECTS

3 credits

Type

Lecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German.

Given in lecture

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2002 of 2152
The course presents a view of the catchment processes of sediment production and transport that shape the landscape. Focus is on sediment fluxes from sources on hillslopes to the river network. Students learn about how a fluvial system functions, how to identify sediment sources and sinks, how to make predictions with numerical models, develop sediment budgets, and quantify geomorphic change.

Objective

The course consists of four sections: (1) Introduction to fluvial forms and processes and geomorphic concepts of landscape change, including climatic and human activities acting on the system. Concepts like thresholds, equilibrium, self-organised criticality, etc. are presented. (2) Landscape evolution modelling as a tool for describing the shape of the land surface. Soil formation and sediment production at long timescales. (3) The processes of sediment production, upland sheet-rill-gully erosion, basin sediment yield, rainfall-triggered landsliding, sediment budgets, and the modelling of the individual processes involved. Here we combine model concepts with field observations and look at many examples. (4) Processes in the river, floodplain and riparian zone, including river network topology, river geometry, aquatic habitat, role of riparian vegetation, including basics of fluvial system management. The main focus of the course is on the hydrology-sediment connections at the field and catchment scale.

Content

The course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from textbooks, professional papers, and ongoing research activities of the instructor. All material is on the course webpage.

Prerequisites / notice

Prerequisites: Basic Hydrology and Watershed Modelling (or contact instructor).

Water Resources Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0468-10L</td>
<td>Watershed Modelling</td>
<td>O</td>
<td>6</td>
<td>4G</td>
<td>P. Molnar</td>
</tr>
</tbody>
</table>

Major River and Hydraulic Engineering

Flow and Transport

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0267-01L</td>
<td>Numerical Hydraulics</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>M. Holzner</td>
</tr>
</tbody>
</table>
The basic equations are derived from first principles. Possible simplifications relevant for practical problems are shown and their applicability is discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated.

All methods discussed are applied practically in exercises. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generally available softwares such as BASEMENT for non-steady shallow water flows are used.

Handouts and powerpoint presentations shown in the lecture can be downloaded via Moodle.

The goal of the course is to develop the understanding of the students for numerical simulation of flows to an extent that they can later use commercial software in a responsible and critical way.

This is the fundamental topic in ecohydraulics, the discipline that focuses on the consequences of fluid flow and related physical processes on the organisms that inhabit aquatic environments. While still a young science, ecohydraulics enables understanding and quantitative tools to predict how physical processes shape habitat quality and quantity, enabling the analysis of different management options for natural and man-made water bodies in terms of their ecosystem consequences.

This class will take a broad view of ecohydraulics and introduce students to key concepts in aquatic habitat modelling. Recognizing that an ecosystem is composed of diverse organisms with different seasonal habitat requirements across a range of scales, the class will focus on multiple representative groups of organisms, including fish, macroinvertebrates, plankton, and vegetation. The lectures will build on the students' knowledge of hydraulics, to give them both an appreciation for the dependence of organisms on their physical environment and a set of quantitative modeling approaches that they can take with them into engineering practice, in fields ranging from hydropower development and upgrade, to reservoir operation, river restoration, flood protection, water management and beyond. At the broadest scale, this class will contribute to the students' appreciation of the tight link between the natural and the built or impacted environment, and of the imperatives of considering both in the design process.

Hydraulic Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0247-01L</td>
<td>Hydraulic structures II</td>
<td>O</td>
<td>6</td>
<td>4G</td>
<td>R. Boes</td>
</tr>
</tbody>
</table>

Abstract

Hydraulic structures and their functions within hydraulic systems are treated in this lecture. The basic concepts of their layout and design with regard to economy and safety are provided.

Objective

Knowledge of hydraulic structures and their function within hydraulic systems. Skills for the layout and design of hydraulic structures with regard to economy and safety.

Content

Weirs: Weir stability, gates, inflatable dams, appurtenant structures, fish up- and downstream passages.
Conduits: Design of headshafts, pressure shafts, and penstocks, constructive details and construction.
Power plants: Power house and turbine types, design, structure, construction.
Dams: Types, appurtenant structures (temporary diversions, spillways, bottom and low-level outlets), dam type selection criteria, layout and design of gravity dams, buttress dams, arch dams, rockfill dams with central core or concrete face, measures in the foundation, mass concrete, RCC dams, reservoir siltation and sediment management, dam surveillance.
Artificial reservoirs: Purpose, layout, sealing, appurtenant structures, environmental aspects.

Lecture notes

Manuscript and further documentation

Prerequisites / notice

Information: Because Hydraulic Structures II is strongly based on Hydraulic Engineering (101-0206-00L) it is strongly recommended to have taken this course (101-0206-00L) or a similar one previously.

River Systems

Remark: partly in German.

Note: Students taking both of the modules LAND and RIVER must take the course 101-1250-00 Wildbach- und Hangverbau as replacement for for Fluvial Systems that is listed in both modules.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0258-00L</td>
<td>River Engineering</td>
<td>O</td>
<td>3</td>
<td>2G</td>
<td>V. Weibrecht, I. Schalko, K. Sperger</td>
</tr>
</tbody>
</table>

Abstract

The lecture addresses the fundamentals of river engineering to quantitatively describe the flow of water, transport of sediment and wood, and morphological changes such as erosion and deposition processes associated with river structures. In addition, design guidelines for river engineering structures are introduced.

Objective

At the end of the course, the students will be able to:
- recall and describe the fundamentals of transport processes in rivers,
- apply different calculation approaches and methods to tackle river engineering problems and tasks such as the discharge capacity of a river, scour estimation, or sediment budget of a river,
- design and dimension river engineering works needed to influence the processes in watercourses, and
- determine the interaction between flow (discharge), sediment transport, wood transport and the resulting channel evolution.

Content

The first part of the lecture introduces the fundamentals of river engineering, such as methods to determine and calculate the river discharge, or sampling methods to characterize the bed material. In addition, the transport processes of sediment (bedload and suspended load) and wood in rivers will be examined, including the principles of incipient motion, and initiation of erosion or deposition processes.

In the second part of the lecture, the methods will be explained to quantify the bed load budget and the morphological changes (erosion, deposition) in river systems. Specifically, natural channel formation processes, different bed forms and plan forms of rivers (straight, meandering, braided) are examined.

The last part of the lecture focuses on the design of river engineering structures, including examples from an ongoing flood and river revitalization project at the Alpine Rhine in Austria and Switzerland.

Lecture notes

Handouts and powerpoint presentations shown in the lecture can be downloaded via Moodle.
ECTS
The course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from standard hydrological textbooks and research papers, collected by the instructors on the course webpage. There is no script. Recommended lectures:
1. «Flussbau» lecture notes of fall semester 2020 by Dr. Gian Reto Bezzola (available only in German at VAW teaching assistance)
2. Basic Hydrology (QGIS)
3. River Mechanics; Pierre Y. Julien
4. Erosion and Sedimentation; Pierre Y. Julien

Short practical exercises (voluntary) will be offered throughout the semester to improve the application of the learned subjects.

102-0287-00L River Basin Erosion

Abstract
The course presents a view of the catchment processes of sediment production and transport that shape the landscape. Focus is on sediment fluxes from sources on hillslopes to the river network. Students learn about how a fluvial system functions, how to identify sediment sources and sinks, how to make predictions with numerical models, develop sediment budgets, and quantify geomorphic change.

Objective
The course has two fundamental aims: (1) The first aim is to provide environmental engineers with the physical process basis needed to understand fluvial system change, using the right language and terminology to describe landforms. We will cover the main geomorphic concepts of landscape change, e.g. thresholds, equilibrium, criticality, to describe change. Students will learn about the importance of the concepts of connectivity and timescales of change. (2) The second aim is to provide quantitative skills in making simple and more complex predictions of change and the data and models required. We will learn about typical landscape evolution models, and about hillslope erosion model concepts like RUSLE. We will learn how to identify sediment sources and sinks, and develop simple sediment budgets with the right data needed for this purpose. Finally we will learn about methods to describe the topology of river networks as conduits of sediment through the fluvial system.

Content
The course consists of four sections: (1) Introduction to fluvial forms and processes and geomorphic concepts of landscape change, including climatic and human activities acting on the system. Concepts like thresholds, equilibrium, self-organised criticality, etc. are presented. (2) Landscape evolution modelling as a tool for describing the shape of the land surface. Soil formation and sediment production at long timescales. (3) The processes of sediment production, upland sheet-rill-gully erosion, basin sediment yield, rainfall-triggered landsliding, sediment budgets, and the modelling of the individual processes involved. Here we combine model concepts with field observations and look at many examples. (4) Processes in the river, floodplain and riparian zone, including river network topology, channel geometry, aquatic habitat, role of riparian vegetation, including basics of fluvial system management. The main focus of the course is on the hydrology-sediment connections at the field and catchment scale.

Lecture notes
There is no script.

Literature
The course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from textbooks, professional papers, and ongoing research activities of the instructor. All material is on the course webpage.

Prerequisites / notice
Prerequisites: Basic Hydrology and Watershed Modelling (or contact instructor).

Water Resources Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0468-10L</td>
<td>Watershed Modelling</td>
<td>O</td>
<td>6 credits</td>
<td>4G</td>
<td>P. Molnar</td>
</tr>
</tbody>
</table>

Abstract
Watershed Modelling is a practical course on numerical water balance models for a range of catchment-scale water resource applications. The course covers GIS use in watershed analysis, models types from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises).

Objective
The main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on thematic lectures (2 hrs a week) and practical exercises (2 hrs a week). Theory and concepts in the lectures are underpinned by many examples from the literature. A comprehensive exercise block builds on the lectures with a series of 5 practical tasks to be conducted during the semester in group work. Exercise hours during the week focus on explanation of the tasks. The course is evaluated 60% by performance in the graded exercises and 40% by a semester-end oral examination (30 mins) on watershed modelling concepts.

Content
The first part (A) of the course is on watershed properties asynthesized from DEMs, and on global sources of hydrological data for modelling applications. Here students learn about GIS applications (ArcGIS, Q-GIS) in hydrology - flow direction routines, catchment morphometry, extracting river networks, and defining hydrological response units. In the second part (B) of the course on conceptual watershed models students build their own simple bucket model (Matlab, Python), they learn about performance measures in modelling, how to calibrate the parameters and how to validate models, about methods to simulate stochastic climate to drive models, uncertainty analysis. The third part (C) of the course is focused on physically-based model components. Here students learn about components for soil water fluxes and evapotranspiration, they practice with a fully-distributed physically-based model Topkapi-ETH, and learn about other similar models. They apply Topkapi-ETH to an alpine catchment and study simulated discharge, snow moisture and evapotranspiration spatial patterns. The final part (D) of the course provides open class discussion and simulation of a round-table discussion between modellers and clients about using watershed models in a case study.

Lecture notes
There is no textbook. Learning materials consist of (a) video-recording of lectures; (b) lecture presentations; and (c) exercise task documents that allow independent work.

Literature
Literature consists of collections from standard hydrological textbooks and research papers, collected by the instructors on the course moodle page.

Prerequisites / notice
Basic Hydrology in Bachelor Studies (engineering, environmental sciences, earth sciences), Basic knowledge of Matlab (Python), ArcGIS (Q-GIS).

Project Work (for all Majors)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0999-00L</td>
<td>Project Work</td>
<td>O</td>
<td>12 credits</td>
<td>26A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Abstract
Working during one semester on a task on a topic in the chosen major.

Objective
Promote independent, structured and scientific work; learn to apply engineering methods; deepen the knowledge in the field of the treated task.

Content
The project work is supervised by a professor. Students can choose from different subjects and tasks.

Elective Modules

For all majors.

EM: Air Quality Control

Elective Module for Majors "Resource Management", "River and Hydraulic Engineering" "Urban Water Management" and "Water Resources Management".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0377-00L</td>
<td>Air Pollution Modeling and Chemistry</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Henne, S. Reimann Bhend, X. Zhang</td>
</tr>
</tbody>
</table>
Abstract

Air pollutants cause negative effects on humans, wildlife and buildings. To control and reduce the impact of air pollutants, their transfer from sources to receptors needs to be known. This transfer includes transport within the atmospheric boundary layer, chemical transformation reactions and phase-transfer processes from gases to particles.

Objective

The students understand the fundamental principles of atmospheric transport, dispersion and chemistry of pollutants on the local to regional scale and their transfer gas to particle phases (secondary aerosols). This includes the knowledge of important atmospheric reactions, sources and sinks. The obtained understanding enables the students to apply computational tools to predict the transport and transformation of chemicals at the local to regional scale.

Content

- Structure of the Atmosphere
- Thermodynamics of the atmosphere
- Atmospheric stability
- Atmospheric boundary layer and turbulence
- Dispersion in the atmospheric boundary layer
- Numerical models of atmospheric dispersion
- Gas phase reaction kinetics
- Tropospheric chemistry and ozone formation
- Chemistry box models
- Volatile organic pollutants (VOCs) and semi-volatile organic pollutants (SVOCs)
- Aerosol modelling
- Air pollution source apportionment
- Inverse modelling of emissions

Lecture notes

Continued updates of:
- Slides and handouts
- Home assignments and sample solutions
- R package and code for some of the home assignments
- MATLAB codes
- Key journal articles as discussed during lecture

Literature

Atmospheric chemistry

Environmental organic chemistry and mass transfer

Mackay D., Multimedia environmental models : the fugacity approach; Boca Raton, Fla. : Lewis Publishers; 2001; 2nd ed

Atmospheric dynamics and boundary layer

Atmospheric modelling

Introduction to R

Prerequisites / notice

strongly recommended: 102-0635-01L Luftreinhaltung (Air Pollution Control) or similar

EM: Ecological System Design

Elective Module for Majors "Environmental Technologies", "River and Hydraulic Engineering" and "Water Resources Management".

Number	Title	Type	ECTS	Hours	Lecturers
102-0307-01L | Advanced Environmental, Social and Economic Assessments | W | 5 credits | 4G | A. E. Braunschweig, S. Pfister, R. Frischknecht

Abstract

This combined course unit is only for Master students in Environmental Engineering. All other students enroll for one or both of the single courses.

Objective

This course has the aim of deepening students' knowledge of the environmental, economic and social assessment methodologies and their various applications.

In particular, students completing the course should have the
- ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- knowledge about the current state of the scientific discussion and new research developments
- ability to properly plan, conduct and interpret environmental assessment studies

In the course element "Implementation of Environmental and other Sustainability Goals", students will learn to
- describe key sustainability problems of the current economic system and measuring units.
- describe the management system of an organisation and how to develop a sustainability orientation
- discuss approaches to measure environmental performance of an organisation, including 'organisational LCA' (Ecobalance)
- explain the pros and cons of single score environmental assessment methods
- demonstrate life cycle costing
- interpret stakeholder relations of an organisation
- (if time allows) describe sustainable supply chain management and stakeholder management
Part I (Advanced Environmental Assessments)
- Inventory database developments, transparency, data quality, data completeness, and data exchange formats, uncertainties
- Software tools (MFA, LCA)
- Allocation (multiooutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Impact assessment of waterborne chemical emissions, sum parameters, mixture toxicity
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Subjectivity in environmental assessments
- Multicriteria Decision Analysis
- Case Studies

Part II (Implementation of Environmental and other Sustainability Goals):
- Sustainability problems of the current economic system and its measuring units;
- The structure of a management system, and elements to integrate environmental management (ISO 14001) and social management (SA8000 as well as ISO 26000), especially into strategy development, planning, controlling and communication
- Sustainability Opportunities and Innovation
- The concept of 'Continuous Improvement'
- Life Cycle Costing, Life Cycle Management
- environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance), based on practical examples of companies and products
- single score env. assessment methods
- stakeholder management and sustainability oriented communication
- an intro into sustainability issues of supply chain management

Students will get small exercises related to course issues.

Lecture notes
Part I: Slides and background reading material will be available on lecture homepage
Part II: Documents will be available on Ilias

Prerequisites / notice
This course should only be elected by students of environmental engineering with a with a Module in Ecological Systems Design. All other students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other Sustainability goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. (2016). Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).

102-0317-03L Advanced Environmental Assessment (Computer Lab I)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0267-01L</td>
<td>Numerical Hydraulics</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
</tr>
</tbody>
</table>

Objective Become acquainted with various software programs for environmental assessment including Life Cycle Assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.

EM: Flow and Transport
Elective Module for Majors "Environmental Technologies", "Resource Management" and "Urban Water Management".

EM: Groundwater
Elective Module for Majors "Environmental Technologies", "River and Hydraulic Engineering" and "Urban Water Management". Module is offered in FS.

EM: Hydraulic Engineering
Elective Module for Majors "Environmental Technologies", "Resource Management", "Urban Water Management" and "Water Resources"
EM: Landscape

Elective Module for Majors "Environmental Technologies", "Resource Management", "River and Hydraulic Engineering" and "Urban Water Management".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0347-00L</td>
<td>Landscape Planning and Environmental Systems</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>A. Grêt-Regamey</td>
</tr>
</tbody>
</table>

Abstract
In the course, students learn about methods for the identification and measurement of landscape characteristics, as well as measures and policies for landscape planning. Landscape planning is put into the context of environmental systems (soil, water, air, climate, flora and fauna) and discussed with regard to socio-political questions of the future.

Objective
The aims of this course are:
1. To illustrate the concept of landscape planning, the economic relevance of landscape and nature in the context of the environmental systems (soil, water, air, climate, flora and fauna).
2. To show landscape planning as an integral information system for the coordination of different instruments by illustrating the aims, methods, instruments and their functions in landscape planning.
3. To show the importance of ecosystem services.
4. To learn basics about nature and landscape: Analysis and assessment of the complex interactions between landscape elements, effects of current and future land use (ecosystem goods and services, landscape functions).
5. To identify and measure the characteristics of landscape.
6. Learn how to use spatial data in landscape planning.

Content
In this course, the following topics are discussed:
- Definition of the concept of landscape
- Relevance of landscape planning
- Landscape metrics
- Landscape change
- Methods, instruments and aims of landscape planning (policy)
- Socio-political questions of the future
- Environmental systems, ecological connectivity
- Ecosystem services
- Urban landscape services
- Practice of landscape planning
- Use of GIS in landscape planning

Lecture notes
No script. The documentation, consisting of presentation slides are partly handed out and are provided for download on Moodle.

Prerequisites / notice
The contents of the course will be illustrated in the associated course 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)) or in Project LAND within the Experimental and Computer Lab (for Environmental Engineers). A combination of courses is recommended.
The course presents a view of the catchment processes of sediment production and transport that shape the landscape. Focus is on sediment fluxes from sources on hillslopes to the river network. Students learn about how a fluvial system functions, how to identify sediment sources and sinks, and how to make predictions with numerical models, develop sediment budgets, and quantify geomorphic change.

At the end of the course the student has the understanding of environmental parameter estimation. The outline of the course is the following:

1. Introduction into SAR basics and principles
2. SAR polarimetry,
3. SAR interferometry and environmental parameter estimation from multi-parametric SAR data
4. Environmental parameter estimation in module “Landscape” have to chose one out following list:
 1. 701-0104-00L Statistical Modelling of Spatial Data (FS) oder
 2. 701-1674-00L Spatial Analysis, Modelling and Optimisation (FS) oder
 3. 701-1644-00L Mountain Forest Hydrology (HS).

102-0287-00L River Basin Erosion

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0287-00L</td>
<td>River Basin Erosion</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>P. Molnar</td>
</tr>
</tbody>
</table>

Abstract

The course presents a view of the catchment processes of sediment production and transport that shape the landscape. Focus is on sediment fluxes from sources on hillslopes to the river network. Students learn about how a fluvial system functions, how to identify sediment sources and sinks, and how to make predictions with numerical models, develop sediment budgets, and quantify geomorphic change.

Objective

The course has two fundamental aims: (1) The first aim is to provide environmental engineers with the physical process basis needed to understand fluvial system change, using the right language and terminology to describe landforms. We will cover the main geomorphic concepts of landscape change, e.g. thresholds, equilibrium, criticality, to describe change. Students will learn about the importance of the concepts of connectivity and timescales of change. (2) The second aim is to provide quantitative skills in making simple and more complex predictions of change and the data and models required. We will learn about typical landscape evolution models, and about hillslope erosion model concepts like RUSLE. We will learn how to identify sediment sources and sinks, and develop simple sediment budgets with the right data needed for this purpose. Finally we will learn about methods to describe the topology of river networks as conduits of sediment through the fluvial system.

Content

The course consists of four sections: (1) Introduction to fluvial forms and processes and geomorphic concepts of landscape change, including climatic and human activities acting on the system. Concepts like thresholds, equilibrium, self-organised criticality, etc. are presented. (2) Landscape evolution modelling as a tool for describing the shape of the land surface. Soil formation and sediment production at long timescales. (3) The processes of sediment production, upland sheet-rill-gully erosion, basin sediment yield, rainfall-triggered landsliding, sediment budgets, and the modelling of the individual processes involved. Here we combine model concepts with field observations and look at many examples. (4) Processes in the river, floodplain and riparian zone, including river network topology, channel geometry, aquatic habitat, role of riparian vegetation, including basics of fluvial system management. The main focus of the course is on the hydrology-sediment connections at the field and catchment scale.

Lecture notes

There is no script.

Literature

The course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from textbooks, professional papers, and ongoing research activities of the instructor. All material is on the course webpage.

Prerequisites

Prerequisites: Basic Hydrology and Watershed Modelling (or contact instructor).
The rationale behind the structure of the course follows the idea that radar imaging and radar/SAR interferometry are closely related and that a basic understanding of the radar imaging concept is helpful to understand and interpret interferometric radar data for various applications.

The course starts with the real-aperture radar case and a first introduction to the concept of radar interferometry with applications to topographic mapping and mapping of surface displacements.

Based on that, the 2-D imaging concept used in synthetic aperture radar imaging is treated.

Then, we expand further on radar and SAR interferometric (InSAR) concepts and processing steps for single interferograms and stacks of interferograms also using persistent scatterer interferometry (PSI) to measure deformation based on time series of interferometric SAR data.

Finally, the 3-D radar imaging case (SAR tomography) is put into context with PSI/InSAR time series as an extension of the more classical interferometric approaches thereby closing the circle around the strongly related concepts of SAR imaging and interferometry.

Lecture notes

Lecture notes/handouts for each topic will be provided online.

Literature

Additional reading material:

ISBN: 978-0-306-47633-4
https://doi.org/10.1007/0-306-47633-9

It is highly recommended that the student has previously taken the following courses:

102-0617-00L: Basics and Principles of Radar Remote Sensing
102-0617-01L: Methodologies for Image Processing of Remote Sensing Data

EM: River Systems

Remark: partly in German.

Note: Students taking both of the modules LAND and RIVER must take the course 101-1250-00 Wildbach- und Hangverbau as replacement for for Fluvial Systems that is listed in both modules.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0258-00L</td>
<td>River Engineering</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>V. Weitbrecht, I. Schalko, K. Sperger</td>
</tr>
</tbody>
</table>

Abstract

The lecture addresses the fundamentals of river engineering to quantitatively describe the flow of water, transport of sediment and wood, and morphological changes such as erosion and deposition processes associated with river structures. In addition, design guidelines for river engineering structures are introduced.

Objective

At the end of the course, the students will be able to:
- recall and describe the fundamentals of transport processes in rivers,
- apply different calculation approaches and methods to tackle river engineering problems and tasks such as the discharge capacity of a river, scour estimation, or sediment budget of a river,
- design and dimension river engineering works needed to influence the processes in watercourses, and
- determine the interaction between flow (discharge), sediment transport, wood transport and the resulting channel evolution.

Content

The first part of the lecture introduces the fundamentals of river engineering, such as methods to determine and calculate the river discharge, or sampling methods to characterize the bed material. In addition, the transport processes of sediment (bedload and suspended load) and wood in rivers will be examined, including the principles of incipient motion, and initiation of erosion or deposition processes.

In the second part of the lecture, the methods will be explained to quantify the bed load budget and the morphological changes (erosion, deposition) in river systems. Specifically, natural channel formation processes, different bed forms and plan forms of rivers (straight, meandering, braided) are examined.

The last part of the lecture focuses on the design of river engineering structures, including examples from an ongoing flood and river revitalization project at the Alpine Rhine in Austria and Switzerland.

Lecture notes

Handouts and powerpoint presentations shown in the lecture can be downloaded via Moodle.

Literature

1. «Flussbau» lecture notes of fall semester 2020 by Dr. Gian Reto Bezzola (available only in German at VAW teaching assistance)
2. Erosion and Sedimentation; Pierre Y. Julien
3. River Mechanics; Pierre Y. Julien

Prerequisites / notice

Recommended lectures:
Hydrology (102-0293-AAL), Hydraulics I (101-0203-01L), and Hydraulic Engineering (101-0206-00L),

Short practical exercises (voluntary) will be offered throughout the semester to improve the application of the learned subjects.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0287-00L</td>
<td>River Basin Erosion</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>P. Molnar</td>
</tr>
</tbody>
</table>

Abstract

The course presents a view of the catchment processes of sediment production and transport that shape the landscape. Focus is on sediment fluxes from sources on hillslopes to the river network. Students learn about how a fluvial system functions, how to identify sediment sources and sinks, how to make predictions with numerical models, develop sediment budgets, and quantify geomorphic change.

Objective

The course has two fundamental aims: (1) The first aim is to provide environmental engineers with the physical process basis needed to understand fluvial system change, using the right language and terminology to describe landforms. We will cover the main geomorphic concepts of landscape change, e.g. thresholds, equilibrium, criticality, to describe change. Students will learn about the importance of the concepts of connectivity and timescales of change. (2) The second aim is to provide quantitative skills in making simple and more complex predictions of change and the data and models required. We will learn about typical landscape evolution models, and about hillslope erosion model concepts like RUSLE. We will learn how to identify sediment sources and sinks, and develop simple sediment budgets with the right data needed for this purpose. Finally we will learn about methods to describe the topology of river networks as conduits of sediment through the fluvial system.
The course consists of four sections: (1) Introduction to fluvial forms and processes and geomorphic concepts of landscape change, including climatic and human activities acting on the system. Concepts like thresholds, equilibrium, self-organised criticality, etc. are presented. (2) Landscape evolution modelling as a tool for describing the shape of the land surface. Soil formation and sediment production at long timescales. (3) The processes of sediment production, upland sheet-rill-gully erosion, basin sediment yield, rainfall-triggered landsliding, sediment budgets, and the modelling of the individual processes involved. Here we combine model concepts with field observations and look at many examples. (4) Processes in the river, floodplain and riparian zone, including river network topology, channel geometry, aquatic habitat, role of riparian vegetation, including basins of fluvial system management. The main focus of the course is on the hydrology-sediment connections at the field and catchment scale.

Lecture notes
There is no script.

Literature
The course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from textbooks, professional papers, and ongoing research activities of the instructor. All material is on the course webpage.

Prerequisites
Prerequisites: Basic Hydrology and Watershed Modelling (or contact instructor).

EM: Soil

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0535-00L</td>
<td>Environmental Soil Physics/Vadose Zone Hydrology</td>
<td>W</td>
<td>3</td>
<td>2V+1U</td>
<td>A. Carminati, P. U. Lehmann Grunder</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales. Students are able to characterize porous media at different scales, parameterize structural, flow and transport properties of partially-saturated porous media, quantify driving forces and resulting fluxes of water, solute, and heat in soils. Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Week 1: Introduction, soil and vadose zone, units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil water content; soil texture; particle size distributions; Week 2: Pore scale consideration, pore sizes, shapes and connectivity, coordination number, continuity and percolation, surface area, soil structure Week 3: Capillarity – capillary rise, surface tension, Young-Laplace equation; Washburn equation; numerical lab Week 4: Soil Water Potential - the energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); units and calculations and measurement of equilibrium soil water potential components Week 5: Soil water characteristics - definitions and measurements; parametric models, fitting and interpretation, hysteresis; demo lab Week 6: Saturated water flow in soils - laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; permeability and hydraulic conductivity, measurement and theoretical concepts (Kozeny-Carman) Week 7: Unsaturated water flow in soils - unsaturated hydraulic conductivity models and applications; Richards equation, approximations of Richards equation for steady state; approximate solutions to infiltration (Green-Ampt, Philip); outlook on unstable and preferential flow Week 8: Numerical solution of Richards equation – using Hydrus1D for simulation of unsaturated flow; choosing class project Week 9: Energy balance and land atmosphere interactions - radiation and energy balance; evapotranspiration, definitions and estimation; evaporation stages and characteristic length; soil thermal properties; steady state heat flow, non-steady heat flow Week 10: Root water uptake and transpiration Week 11: Solute and gas transport in soils; transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion equation; solutions for pulse and step solute application; parameter estimation; salt balance. Week 12: Summary of lectures; solution of old exam Week 13: Written semester-end exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1343-00L</td>
<td>Soil-Plant Water Relations</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>A. Carminati</td>
</tr>
<tr>
<td>Abstract</td>
<td>Water limitation is a primary constraint on plant growth and terrestrial fluxes worldwide. In this course, the principles of water flow in soil and plants are discussed, with particular attention on the effect of drought on root water uptake, transpiration and plant growth. Strategies of plants to tolerate drought are discussed. The students are able to explain and compare systematically the drivers of water stress to plants; to solve the equations of water flow in plants; to critically review and present one of plants to tolerate drought are discussed. and plants are discussed, with particular attention on the effect of drought on root water uptake, transpiration and plant growth. Strategies of plants to tolerate drought are discussed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>01.10: Soil water relations; Principles of soil water retention and soil water flow; Soil hydraulic properties. 08.10: Root water uptake; soil hydraulic constraints on transpiration 15.10: Rhizosphere processes and properties; root-soil contact; root hairs; mycorrhiza; rhizodeposition. 22.10: Water flow in roots and xylem; root anatomy, architecture and plasticity: cavitation. 29.10: Transpiration; Vapor Pressure Deficit; Photosynthesis; Stomatal regulation. 05.11: Soil-plant-atmospheric continuum; Below- and above-ground feedbacks; Soil and atmospheric drivers of transpiration losses. 12.11: Modelling Soil-Plant Water Relations (Concept) 19.11: Modelling Soil-Plant Water Relations (Implementation) 26.11: Plant response to drought and consequences for agriculture and forests. Open questions and introduction to seminar topics. 03.12: Group work in the class 10.12: Seminar (presentation of papers) 17.12: Seminar (presentation of papers) 24.12: Seminar (presentation of papers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>24.09: Introduction. 01.10: Soil water relations; Principles of soil water retention and soil water flow; Soil hydraulic properties. 08.10: Root water uptake; soil hydraulic constraints on transpiration 15.10: Rhizosphere processes and properties; root-soil contact; root hairs; mycorrhiza; rhizodeposition. 22.10: Water flow in roots and xylem; root anatomy, architecture and plasticity: cavitation. 29.10: Transpiration; Vapor Pressure Deficit; Photosynthesis; Stomatal regulation. 05.11: Soil-plant-atmospheric continuum; Below- and above-ground feedbacks; Soil and atmospheric drivers of transpiration losses. 12.11: Modelling Soil-Plant Water Relations (Concept) 19.11: Modelling Soil-Plant Water Relations (Implementation) 26.11: Plant response to drought and consequences for agriculture and forests. Open questions and introduction to seminar topics. 03.12: Group work in the class 10.12: Seminar (presentation of papers) 17.12: Seminar (presentation of papers) 24.12: Seminar (presentation of papers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Lecture notes; selection of articles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2011 of 2152
EM: System Analysis in Urban Water Management

Elective Module for Majors "Resource Management", "River and Hydraulic Engineering" and "Water Resources Management".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0227-00L</td>
<td>Systems Analysis and Mathematical Modeling in Urban Water Management</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>E. Morgenroth, M. Maurer</td>
</tr>
</tbody>
</table>

Abstract

Objective
The goal of this course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.

Content
The course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:
- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)

Lecture notes
Copies of overheads will be made available.

Literature

102-0217-00L Process Engineering Ia

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0217-00L</td>
<td>Process Engineering Ia</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>E. Morgenroth</td>
</tr>
</tbody>
</table>

Abstract
Biological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.

Objective
Students should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.

Content
Stoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization

Literature
There will be a textbook that students need to purchase (see http://www.sww.ifu.ethz.ch/education/lectures/process-engineering-ia-ia.html for further information).

Prerequisites / notice
For detailed information on prerequisites the student should consult the lecture program and important information (syllabus) of Process Engineering Ia that can be downloaded at http://www.sww.ifu.ethz.ch/education/lectures/process-engineering-ia-ia.html

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2012 of 2152
Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies
- Communication: not assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

EM: Waste Management

Elective Module for Majors "River and Hydraulic Engineering" "Urban Water Management" and "Water Resources Management".

Remark: 102-0337-00 Landfilling, Contaminated Sites and Radioactive Waste Repositories only for those students also taking module "System Analysis in Urban Water Management" as replacement of 102-0217-00 Process Engineering Ia in module "Waste Management".

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0217-00L</td>
<td>Process Engineering Ia</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>E. Morgenroth</td>
</tr>
</tbody>
</table>

Abstract
Biological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.

Objective
- Students should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.

Content
- Stoichiometry
- Microbial transformation processes
- Introduction to design and modeling of activated sludge processes
- Anaerobic processes, industrial applications, sludge stabilization

Literature
There will be a textbook that students need to purchase (see http://www.sww.ifu.ethz.ch/education/lectures/process-engineering-ia.html for further information).

Prerequisites / notice
For detailed information on prerequisites the student should consult the lecture program and important information (syllabus) of Process Engineering Ia that can be downloaded at http://www.sww.ifu.ethz.ch/education/lectures/process-engineering-ia.html

Autumn Semester 2021

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2013 of 2152
This lecture course comprises of lectures with exercises and guided case studies.
- A short overview of the principles of environmental protection in waste management and how this is applied in legislation.
- A overview of the chemistry underlying the release and transport of contaminants from the landfilled/contaminated material/radioactive waste repository focusing on processes that control redox state and pH buffer capacity, mobility of heavy metals and organic compounds
- Technical barrier design and function. Clay as a barrier.
- Contaminated site remediation: Site evaluation, remediation technologies
- Concepts and safety in radioactive waste management
- Role of the geological and engineered barriers and radionuclide transport in geological media.

Lecture notes
Short script plus copies of overheads

Literature
Literature will be made available.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0357-00L</td>
<td>Waste Recycling Technologies</td>
<td>W</td>
<td>3</td>
<td></td>
<td>R. Bunge</td>
</tr>
</tbody>
</table>

Abstract
Waste Recycling Technology (WRT) is a sub-discipline of Mechanical Process Engineering. WRT is employed in production plants processing contaminated soil, construction wastes, scrap metal, recovered paper and the like. While WRT is well established in Central Europe, it is only just now catching on in emerging markets as well.

Objective
At the core of this course is the separation of mixtures of solid bulk materials according to physical properties such as color, electrical conductivity, magnetism and so forth. After having taken this course, the students should have concept not only of the unit operations employed in WRT but also of how these unit operations are integrated into the flow sheets of production plants.

Content
Introduction
Waste Recycling: Scope and objectives
Waste recycling technologies in Switzerland

Fundamentals
- Properties of particles: Liberation conditions, Particle size and shape, Porosity of bulk materials
- Fluid dynamics of particles: Stationary particle beds, Fluidized beds, Free settling particles
- Flow sheet basics: Balancing mass flows
- Standard processes: batch vs. continuous
- Assessment of separation success: Separation function; grade vs. recovery

Separation Processes
Separation according to size and shape (Classification): Screening, Flow separation
Separation according to material properties (Concentration): Manual Sorting, Gravity concentration; Magnetic separation, Eddy current separation, Electrostatic separation, Sensor technology, Froth flotation

Lecture notes
The script consists of the slides shown during the lectures. Background material will be provided on the script-server.

Literature
A list of recommended books will be provided.

Prerequisites / notice
The topic will be discussed not from the perspective of theory, but rather in the context of practical application. However, solid fundamentals in physics (in particular in mechanics) are strongly recommended.

EM: Water Infrastructure Planning and Stormwater Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>102-0250-00L</td>
<td>Urban Drainage Planning and Modelling</td>
<td>W</td>
<td>6</td>
<td>4G</td>
<td>M. Maurer, D. Gregorio, U. Karaus, J. P. Leitão Correia, J. Rieckermann</td>
</tr>
</tbody>
</table>

Abstract
In this course, the students learn modern urban drainage engineering approaches, critical thinking, decision making in a complex environment as well as dealing with insufficient data and ill-defined problems.

Objective
By the end of the course, you should be able to do the following:
- Apply different methods and methodologies to assess the impact of urban drainage on water pollution and flooding potential.
- Distinguish between hydrological and hydrodynamic models and their correct application.
- Identify the difference between emission and immersion oriented approaches for identifying drainage measures.
- Identify relevant measures, quantify their effects and assess their relative ranking/priority.
- Consider uncertainties and handle correctly incomplete data and information
- Make decisions and recommendations in a complex application case.
- Teamwork. State principles of effective team performance and the functions of different team roles; work effectively in problem-solving teams.
- Communication. Communicate and document your findings in concise group presentations and a written report.

Content
In urban drainage, the complexity of the decision-making, the available methodologies and the data availability have increased strongly. In current environmental engineering practice, the focus shifted from tables and nomograms to sophisticated simulation tools.

The topics cover:
- Integrated urban water management
- Hydrological and hydrodynamic modelling
- Water quality based assessment
- Freshwater ecology
- Hydraulic capacity assessment
- Sewer network operation
- Decision analysis

Prerequisites / notice
Prerequisites: 102-0214-00 Siedlungswasserwirtschaft and 102-0215-00 Siedlungswasserwirtschaft II or comparable educational background.
Domain A - Subject-specific Competencies
- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies
- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: assessed
- Problem-solving: assessed

Domain C - Social Competencies
- Communication: assessed
- Cooperation and Teamwork: assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: assessed
- Negotiation: not assessed

Domain D - Personal Competencies
- Adaptability and Flexibility: assessed
- Creative Thinking: assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: assessed
- Self-direction and Self-management: assessed

Watershed Modelling

Abstract
Watershed Modelling is a practical course on numerical water balance models for a range of catchment-scale water resource applications. The course covers GIS use in watershed analysis, models types from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises).

Objective
The main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on Experimental and Computer Laboratory I (Year 1) and runs as a continuation of the laboratory courses. Experiments are conducted in different disciplines of environmental engineering. Data collected during experiments are compared to the corresponding numeric simulations. The results are documented in reports or presentations.

Content
The students will learn the following skills: basic scientific work, planning and conducting scientific experiments, uncertainty estimations of measurements, applied numerical simulations, modern sensor technology, writing reports.

Prerequisites / notice
Basic Hydrology in Bachelor Studies (engineering, environmental sciences, earth sciences). Basic knowledge of Matlab (Python), ArcGIS (Q-GIS).

Experimental and Computer Laboratory I (Year Course)

Abstract
In the Experimental and Computer Laboratory students are introduced to research and good scientific practice. Experiments are conducted in different disciplines of environmental engineering. Data collected during experiments are compared to the corresponding numeric simulations. The results are documented in reports or presentations.

Objective
The student will learn the following skills: basic scientific work, planning and conducting scientific experiments, uncertainty estimations of measurements, applied numerical simulations, modern sensor technology, writing reports.

Content
103-0347-70L Supplementary Course to Project LAND within Experimental and Computer Lab. I

This is a supplementary course for students in the Laboratory Courses in Environmental Engineering who wish to complete all the exercises in Landscape planning and environmental system, as in the 3CP course 103-0347-01L Landscape Planning and Environmental Systems (GIS Exercises).

Abstract
Supplement course to Project LAND in the Experimental and Computer Lab. Methods for the identification and measurement of landscape structure, changes, functions and services, as well as measures and implementation of landscape planning are deepened.

Elctives
The entire course programs of ETH Zurich and the University of Zurich are open to the students to individual selection.

Master's Thesis
The Master Programme concludes with the Master Thesis, which has to be done in one of the chosen Majors and has to be completed within 28 weeks. The Master Thesis is supervised by a professor and shall attest the students ability to work independently and to produce scientifically structured work.

Abstract
The topics of the Master Thesis are published by the professors. The Topic can be set also in consultation between the student and the professor.

GESS Science in Perspective
see GESS Science in Perspective: Language Courses ETH/UZH
see GESS Science in Perspective: Type A: Enhancement of Reflection Capability
Recommended GESS Science in Perspective (Type B) for D-BAUG.

Course Units for Additional Admission Requirements
The courses below are only available for MSc students with additional admission requirements.

Hydraulics I
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract
The course teaches the basics of hydromechanics, relevant for civil and environmental engineers.

Objective
Familiarization with the basics of hydromechanics of steady state flows

Content
Properties of water, hydrostatics, continuity, Euler equation of motion, Navier Stokes equation, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids-real fluids, boundary layer, pipe flow, open channel flow, flow in porous media, flow measurements, demonstration experiments in the lecture hall and in the laboratory

Literature
Bolrich, Technische Hydromechanik 1, Verlag Bauwesen, Berlin

Introduction to Urban Water Management
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract
Introduction to urban water management (water supply, urban drainage, wastewater treatment, sewage sludge treatment). Introduction to Urban Water Management is a self-study course.

Objective
This course provides an introduction and an overview over the topics of urban water management (water supply, urban drainage, wastewater treatment, sewage sludge treatment). It supports the understanding of the interactions of the relevant technical and natural systems. Simple design models are introduced.

Content
Overview over the field of urban water management, introduction into systems analysis, characterization of water and water quality, requirement of drinking water, production of wastewater and pollutants, production and supply of drinking water, urban drainage, treatment of combined sewer overflow, wastewater treatment, nutrient elimination, sludge handling, planning of urban water infrastructure.

In this self-study course the students must work through and understand selected sections from the following book:

Students must understand and be able to discuss the required reading in a 30 min oral exam. The required reading is explained in detail on the website of the professorships of urban water management. Additional information can be asked during the office hours of the professors' assistants.

The required reading and studying should correspond roughly the time invested in the course Siedlungswasserwirtschaft GZ. Students are welcome to ask the assistants (http://www.sww.ifu.ethz.ch/group/teaching-assistants.html) for help with questions they have regarding the reading.

Prerequisites / notice:

Some students joining the MSc program in Environmental Engineering at ETH Zürich have to take additional courses from our BSc program. The decision of what courses to take is done at the time of admission at ETH.

The course on “Introduction to Urban Water Management” is offered at ETH Zürich only in German. Students who can speak and understand German must take the course (Siedlungswasserwirtschaft GZ) and get a passing grade. For students that do not have sufficient German language skills there is a self-study course and they have to take an oral exam.

This course is required for further in depth courses in urban water management.

Prerequisite: Hydraulics I and Hydrology

102-0324-AAL Ecological Systems Analysis
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract:
Methodological basics and application of various environmental assessment tools.

Objective:
Students learn about environmental assessment tools, such as material flow analysis, risk assessment, and life cycle assessment. They can identify and apply the appropriate tool in a given situation. Also, they are able to critically assess existing studies.

Content:
- Methodological basics of material flow analysis, risk assessment, and life cycle assessment
- Application of these methods to case studies

Lecture notes:
No script, but literature available on moodle

102-0325-AAL Waste Management
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract:
Introduction into the problems of waste handling with the goal to get the ability of seeing and improving the influence of commodities and products with their packaging to the environment - as they are becoming waste. Knowing the different mechanical and chemical processes, which are applicable in the field of waste management.

Objective:
*To reconstruct the historical development of the waste problems
*To know the problems of a modern waste management
*To see and to improve the influence of commodities and products to the environment
*To recognize waste and its components as raw material and resources and to get the know how for a correct handling
*To know the different mechanical and chemical processes, which are applicable in the field of waste management

Content:
This lecture gives a comprehensive overview of the different waste-types and waste handling possibilities:
*Waste composition as a mirror of the human evolution
*Waste definition (formation, amount, energy content, waste composition)
*Several recycling possibilities and processes
*Thermal waste treatment (electricity/district heat as products), including off-gas cleaning and incineration residue handling with regards to the final residue storage in a landfill and the problems which have to be solved there
*Special fields like biological waste handling (composting, fermentation), handling of special wastes and municipal sewage sludge treatment
*Economical aspects

Lecture notes:
Martin F. Lemann, Christoph Leitzinger, Leo S. Morf: Waste Management Edition 2020, 433 pages
ISBN 978-3-9525297-0-6

Literature:
Martin F. Lemann, Christoph Leitzinger, Leo S. Morf: Waste Management Edition 2020, 433 pages
ISBN 978-3-9525297-0-6
Autumn Semester 2021

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies

- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies

- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

102-0455-AAL Groundwater I

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

The course provides a quantitative introduction to groundwater flow and contaminant transport.

Objective

Understanding of the basic concepts on groundwater flow and contaminant transport processes. Formulation and solving of practical problems.

Content

- Properties of porous and fractured media, Darcy’s law, flow equation, stream functions, interpretation of pumping tests, transport processes, transport equation, analytical solutions for transport, numerical methods: finite differences method, aquifers remediation, case studies.

Literature

K. de Ridder, Untersuchung und Anwendung von Pumpvorsuchen, Verl. R. Müller, Köln, 1970
W. Kinzelbach, R. Rausch, Grundwassermodellierung, Gebrüder Bornträger, Stuttgart, 1995

102-0635-AAL Air Pollution Control

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

The lecture provides an introduction to the formation of air pollutants by technical processes, the emission of these chemicals into the atmosphere and the impact on air quality. Theoretical description and modeling of these processes, air quality measurement techniques and pollution control techniques are covered.

Objective

The students gain general knowledge of the factors resulting in air pollution and the techniques used for air pollution control. The students can identify major air pollution sources and understand the methods for measurement, data collection and analysis. The students can evaluate possible control methods and equipment, design a control system and estimate the efficiency and cost.

Content

- the physical and chemical processes leading to emission of pollutants
- air quality analysis
- the meteorological parameters influencing air pollution dispersion
- deterministic and stochastic models, describing the air pollution dispersion
- measurement concepts to observe ambient air pollution
- removal of gaseous pollutants by absorption and adsorption
- control of NOx and SOx
- fundamentals of particulate control
- design and application of wet scrubbers

Literature

Text book

Prerequisites / notice

College lectures on basic physics, chemistry and mathematics.

102-0474-AAL Introduction to Water Resources Management

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

The course offers an introduction to the basics of water resources analysis and management covering the topics of water demand vs availability, water exploitation and reservoir design, aquatic physics, water quality and pollution, water conservation and remediation in rivers, lakes and aquifers, sustainable water use.

Objective

Introductions to the basics of sustainable water resources management based on relevant hydrological processes, management approaches and mathematical models.

Example of application of modelling techniques are made available on selected topics. Four computer-based class exercises on selected topics are offered and guided through teaching assistants.

Handouts of slides and additional reading material are provided on the Moodle course webpage (https://moodle-app2.let.ethz.ch/course/view.php?id=14738).

Knowledge from the course “Hydrology” (3rd semester Environmental Engineering) and about basic statistics and probability theory is a prerequisite (not formal).

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Introduction to programming in Java. Procedural foundations of programming and outlook to object oriented programming. Variables, types, assignments, control structures (branch, loop), data structures, algorithms, line graphics, graphical user interface. Writing small programs. Working with a professional programming environment (Eclipse).

The students will be able to write simple programs and to modify existing programs.

This course offers an introduction to variables, control structures (branch, loop), algorithms and data structures, as well as an outlook to modularisation and object oriented techniques. In the exercises students train programming skills (in the programming language JAVA). Students can solve the exercises on their own laptop or in the computer labs at ETH. The software used in this course runs on MS Windows, MacOS X and Linux.

Prerequisites: 252-0845-00 Computer Science I (D-BAUG)
Domain A - Subject-specific Competencies

| Concepts and Theories | assessed |
| Techniques and Technologies | assessed |

Domain B - Method-specific Competencies

Analytical Competencies	assessed
Decision-making	assessed
Media and Digital Technologies	not assessed
Problem-solving	assessed
Project Management	not assessed

Domain C - Social Competencies

Communication	not assessed
Cooperation and Teamwork	not assessed
Customer Orientation	not assessed
Leadership and Responsibility	not assessed
Self-presentation and Social Influence	not assessed
Sensitivity to Diversity	not assessed
Negotiation	not assessed

Domain D - Personal Competencies

Adaptability and Flexibility	not assessed
Creative Thinking	assessed
Critical Thinking	assessed
Integrity and Work Ethics	not assessed
Self-awareness and Self-reflection	not assessed
Self-direction and Self-management	assessed

Abstract

Chemistry II: Redox reactions, chemistry of the elements, introduction to organic chemistry

Objective

Erweitern der allgemeinen Grundlagen und Erarbeiten einer Basis, um Prozesse in komplexeren Umweltsystemen (Wasser / Luft / Boden) in ihrem zeitlichen und quantitativen Ablauf verstehen und beurteilen zu können.

Content

1. Redoxreactions

2. Inorganic Chemistry

 Rules for nomenclature of inorganic compounds. Systematic description of the groups of elements in the periodical system and the most important compounds of these elements. Formation of compounds as a consequence of the electronoc structure of the elements.

3. Introduction to organic chemistry

 Description of the most important classes of compounds and of the functional groups. Principal reactivity of these functional groups. Stereochemistry.

 Reaction mechanisms: SN1- and SN2-reactions, electrophilic aromatic substitutions, eliminations (E1 and E2), addition reactions (C=C and C=O double bonds). Chemistry of carbony and carboxyl groups.

 Rules for nomenclature of inorganic compounds. Systematic description of the groups of elements in the periodical system and the most important compounds of these elements. Formation of compounds as a consequence of the electronoc structure of the elements.

Lecture notes

Taught competencies

Domain A - Subject-specific Competencies

| Concepts and Theories | assessed |
| Techniques and Technologies | assessed |

Domain B - Method-specific Competencies

Analytical Competencies	assessed
Decision-making	assessed
Media and Digital Technologies	not assessed
Problem-solving	assessed
Project Management	not assessed

Domain C - Social Competencies

Communication	not assessed
Cooperation and Teamwork	not assessed
Customer Orientation	not assessed
Leadership and Responsibility	not assessed
Self-presentation and Social Influence	not assessed
Sensitivity to Diversity	not assessed
Negotiation	not assessed

Domain D - Personal Competencies

Adaptability and Flexibility	not assessed
Creative Thinking	assessed
Critical Thinking	assessed
Integrity and Work Ethics	not assessed
Self-awareness and Self-reflection	not assessed
Self-direction and Self-management	assessed
Abstract
Basic knowledge of enzymology, in particular the structure, kinetics and chemistry of enzyme-catalysed reaction in vitro and in vivo.

Objective
Biochemistry of metabolism: Those completing the course are able to describe and understand fundamental cellular metabolic processes.

Content
Program
Introduction, basics, composition of cells, biochemical units, repetition of relevant organic chemistry
Structure and function of proteins
Carbohydrates, structure of DNA
Lipids and biological membranes
Enzymes and enzyme kinetics
Catalytic strategies
Metabolism: Basic concepts and design. Repetition of basic thermodynamics
Glycolysis
The citric acid cycle
Oxidative phosphorylation
Fatty acid metabolism

Prerequisites / notice
Basic knowledge in biology and chemistry is a precondition.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 2021 of 2152
Der hydrologische Kreislauf: globale Wasserressourcen, Wasserbilanz, räumliche und zeitliche Dimension der hydrologischen Prozesse.

Energiebilanzmethode, empirische Methode.

Einzugsgebietskarakteristik: Morphologie des Einzugsgebiets, topografische und unterirdische Wasserscheide, hypsometrische Kurve, Gefälle, Dichte des Entwässerungsnets.

Schnee und Eis: Schneegehaschaften und -messungen Schätzung des Schneeschmelzprozesses durch die Energiebilanzmethode, Abluff aus Schneeschmelze, Temperatur-Index- und Grad-Tag-Verfahren.

Schnee und Eis: Schneegehaschaften und -messungen Schätzung des Schneeschmelzprozesses durch die Energiebilanzmethode, Abluff aus Schneeschmelze, Temperatur-Index- und Grad-Tag-Verfahren.

Abstract
This course gives an overview of important concepts in classical dynamics, thermodynamics, electromagnetism, quantum physics, and special relativity. Emphasis is placed on demonstrating key phenomena using experiments, and in developing skills for quantitative problem solving.

Objective
The goal of this course is to make students able to explain and apply the basic principles and methodology of physics to problems of interest in modern science and engineering. An important component of this course is learning how to solve new, complex problems by breaking them down into parts and applying approximations.

Content
Oscillations and waves in matter
Thermodynamics (temperature, heat, equations of state, laws of thermodynamics, entropy, transport)
Electromagnetism (electrostatics, magnetostatics, circuits, Maxwell's equations, electromagnetic waves, induction, electromagnetic properties of materials)
Overview of quantum and atomic physics

Lecture notes
Ein internes Skript ist zur Verfügung (kostenpflichtig, nur Herstellungskosten)

The Kopie der Folien zur Vorlesung können auf den Webseiten der Professur für Hydrologie und Wasserwirtschaft herunterladen werden.

Prerequisites / notice
Vorlesungen zu verstehen notwendig ist, kann zusammengefasst werden, wie hintereinander es beschrieben wird.
Elementare Datenverarbeitung: Hydrologische Grundlagen und Daten, Datenreduzierung (grafische Darstellungen und numerische Kategorisieren).
Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>assessed</td>
</tr>
</tbody>
</table>

406-0603-AAL Stochastics (Probability and Statistics)

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract

Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.

Objective

The objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".

Content

From "Statistics for research" (online)
- Ch 1: The Role of Statistics
- Ch 2: Populations, Samples, and Probability Distributions
- Ch 3: Binomial Distributions
- Ch 6: Sampling Distribution of Averages
- Ch 7: Normal Distributions
- Ch 8: Student's t Distribution
- Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
- Ch 1: Basics
- Ch 2: The R Environment
- Ch 3: Probability and distributions
- Ch 4: Descriptive statistics and tables
- Ch 5: One- and two-sample tests
- Ch 6: Regression and correlation

Literature

- "Statistics for research" by S. Dowdy et. al. (3rd edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI: 10.1002/0471477435

 - From within the ETH, this book is freely available online under: http://www.springerlink.com/content/m17578

406-0141-AAL Linear Algebra

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Abstract

Introduction to Linear Algebra and Numerical Analysis for Engineers. This reading course is based on chapters from the book "Introduction to Linear Algebra" by Gilbert Strang (SIAM 2009), and "A first Course in Numerical Methods" by U. Ascher and C. Greif (SIAM, 2011).

Objective

To acquire basic knowledge of Linear Algebra and some aspects of related numerical methods and the ability to apply basic algorithms to simple problems.
1 Introduction, calculations using MATLAB
2 Linear systems I
3 Linear systems II
4 Scalar- & vector product
5 Basics of matrix algebra
6 Linear maps
7 Orthogonal maps
8 Trace & determinant
9 General vector spaces
10 Metric & scalar products
11 Basis, basis transform & similar matrices
12 Eigenvalues & eigenvectors
13 Spectral theorem & diagonalisation
14 Repetition

Knowledge of elementary calculus

406-0242-AAL Analysis II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Mathematical tools of an engineer

Objective
Mathematics as a tool to solve engineering problems, mathematical formulation of problems in science and engineering. Basic mathematical knowledge of an engineer.

Content

Literature
Textbooks in English:
- J. Stewart: Multivariable Calculus, Thomson Brooks/Cole
- V. I. Smirnov: A course of higher mathematics. Vol. II. Advanced calculus
- M. Akveld, R. Sperb, Analysis II, vdf
- L. Papula: Mathematik für Ingenieure 2, Vieweg Verlag

406-0243-AAL Analysis I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Mathematical tools for the engineer

Objective
Mathematics as a tool to solve engineering problems. Mathematical formulation of technical and scientific problems. Basic mathematical knowledge for engineers.

Content
Complex numbers.
Calculus for functions of one variable with applications.

Literature
Textbooks in English:
- M. Akveld, R. Sperb: Analysis I, vdf
- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- L. Papula: Mathematik für Ingenieure 2, Vieweg Verlag

Environmental Engineering Master - Key for Type

<table>
<thead>
<tr>
<th>O</th>
<th>W+</th>
<th>W</th>
<th>E-</th>
<th>Z</th>
<th>Dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td>Eligible for credits and recommended</td>
<td>Eligible for credits</td>
<td>Recommended, not eligible for credits</td>
<td>Courses outside the curriculum</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>G</th>
<th>U</th>
<th>S</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td>lecture with exercise</td>
<td>exercise</td>
<td>seminar</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>A</td>
<td>D</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>practical/laboratory course</td>
<td>independent project</td>
<td>diploma thesis</td>
<td>revision course / private study</td>
<td></td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way humans process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers put in a position where they can further educate themselves in the field of research into teaching and learning.

Research Methods in Educational Science

- Understand research methods used in the empirical educational sciences
 2) E. Stern

Cognitively Activating Instructions in MINT Subjects

- Get information about recent literature on learning and instruction
- Get to know cognitively activating instructions in MINT subjects
- Understand pedagogically relevant findings from the empirical educational sciences
- Understanding findings relevant for education

Prerequisites / notice

- Für eine reibungslose Semesterplanung wird um frühe Anmeldung und persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.
- Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport).
- Number of participants limited to 20.
- Number of participants limited to 30.
- Diploma Sport).
- Diploma or Teaching Certificate. It is about learning in childhood and adolescence.
- Understanding of research methods used in the empirical human sciences
- Understanding of research methods used in the empirical educational sciences
- Understanding findings relevant for education
- Getting to know intelligence tests
- Understanding and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences
- Understanding findings relevant for education

Prerequisites / notice

- The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.
- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

Prerequisites / notice

- Anyone wishing to be a successful teacher must first of all understand the learning process. Against this background, theories and findings on the way humans process information and on human behaviour are prepared in such a manner that they can be used for planning and conducting lessons. Students additionally gain an understanding of what is going on in learning and behavioural research so that teachers put in a position where they can further educate themselves in the field of research into teaching and learning.

Prerequisites / notice

- The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.
- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

Prerequisites / notice

- The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.
- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

Prerequisites / notice

- The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.
- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences

Prerequisites / notice

- The focus will be on the book "Intelligenz: Grosse Unterschiede und ihre Folgen" by Stern and Neubauer. Participation at the first meeting is obligatory. It is required that all participants read the complete book. Furthermore, in two meetings of 90 minutes, concept papers developed in small groups (5 - 10 students) will be discussed.
- Understanding of research methods used in the empirical human sciences
- Getting to know intelligence tests
- Understanding and critically examine information from scientific journals and media
- Understand pedagogically relevant findings from the empirical educational sciences
Students possess theoretical knowledge and practical competences to be able to cope with the psychosocial demands of teaching.

- They know relevant rules of conversation and conflict management and are able to apply them in an appropriate way in the school context (e.g. in parental talks).
- They know core aspects of classroom management and know how to apply it concretely (e.g. promoting a positive learning atmosphere, avoiding disciplinary difficulties) and they are aware of possible contacts (e.g. illegal or psychological services).

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0823-00L</td>
<td>Environmental Education Didactics I</td>
<td>O</td>
<td>4 credits</td>
<td>3G</td>
<td>C. Colberg, F. Keller</td>
</tr>
<tr>
<td>701-0827-00L</td>
<td>Teaching Internship Including Examination Lessons</td>
<td>O</td>
<td>6 credits</td>
<td>13P</td>
<td>C. Colberg, F. Keller</td>
</tr>
</tbody>
</table>

Environmental Education Didactics supplies the basic concepts for the application of the contents of the lecture Human Learning (EW 1) in environmental education. On the basis of selected environmental topics didactical theories are used practice-oriented, whereas the appliance of different teaching methods is pointed out. In addition a didactical topic is exercised exemplary in an assignment.

Prerequisite: Enrolment only possible with matriculation in Teaching Diploma or Teaching Certificate (excluding Teaching Diploma Sport). Prerequisite: students should be taking the course 851-0240-00L Human Learning (EW1) in parallel, or have successfully completed it.

In this seminar, we introduce some of the major gender-related issues in the context of education and science learning, such as the under-representation of girls and women in science, technology, engineering and mathematics (STEM). Common perspectives, controversies and empirical evidence will be discussed.

- To familiarize students with gender issues in the educational and STEM context and with controversies regarding these issues
- To develop a critical view on existing research and perspectives
- To integrate this knowledge with teacher’s work.

Gender Issues In Education and STEM ▮

Why do fewer women than men specialize in STEM (science, technology, engineering and mathematics)? Are girls better in language and boys better in math? This and other questions about gender differences relevant to education and STEM learning have been occupying researchers for decades. In this seminar, students learn about major gender issues in the educational context and the different perspectives for understanding them.

The seminar builds on the active participation of students in reading, presenting and critically discussing selected papers in the field. We focus on empirical research and integrate implications for the classroom context. In a final small-group assignment, students integrate and elaborate on the topics learned in the seminar.

Prerequisite: Successful participation in the course 851-0240-00L Human Learning (EW1).
Environmental Studies TC - Key for Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>Dr</td>
<td>Suitable for doctorate</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>529-2001-02L</td>
<td>Chemistry I</td>
<td>O</td>
<td>4 credits</td>
<td>2V+2U</td>
<td>J. Cveengros, J. E. E. Buschmann, P. Funck, E. C. Meister, R. Verel</td>
</tr>
</tbody>
</table>

Abstract
General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium.

Objective
Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.

Content
1. Stoichiometry
 Amount of substance and mass. Composition of chemical compounds. Reaction equation. Ideal gas law.
2. Atoms
 Elementary particles and atoms. Electron configuration of the elements. Periodic system.
4. Basics of chemical thermodynamics
 System and surroundings. Description of state and change of state of chemical systems.
5. First law of thermodynamics
6. Second law of thermodynamics
 Entropy. Change of entropy in chemical systems and universe. Reaction entropy.
7. Gibbs energy and chemical potential.
8. Chemical equilibrium
 Law of mass action. Reaction quotient and equilibrium constant. Phase transition equilibrium.
9. Acids and bases
10. Dissolution and precipitation.
 Heterogeneous equilibrium. Dissolution and solubility product. Carbon dioxide-carbonic acid-carbonate equilibrium.

Lecture notes
Online-Skript mit durchgerechneten Beispielen.

Literature
Weiterführende Literatur:
Catherine Housecroft, Edwin Constable, CHEMISTRY: AN INTRODUCTION TO ORGANIC, INORGANIC AND PHYSICAL CHEMISTRY, 3. Auflage, Prentice Hall, 2005.(englisch)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0251-00L</td>
<td>Mathematics I</td>
<td>O</td>
<td>6 credits</td>
<td>4V+2U</td>
<td>F. Da Lio</td>
</tr>
</tbody>
</table>

Abstract
This course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.

Objective
Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Content
1. Single-Variable Calculus:
 review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

2. Linear Algebra and Complex Numbers:
 systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, fundamental theorem of algebra.

3. Ordinary Differential Equations:
 separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.

- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).

Prerequisites / notice
Prerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

701-0007-00L Tackling Environmental Problems I O 5 credits 4G C. E. Pohl, M. Mader, B. B. Pearce
Only for Environmental Sciences BSc.

Abstract
Each year in the case study we analyse a different topic from the field of sustainable development and develop solutions to it.

Objective
Students are able:
- carry out research on a given topic and present the results in a structured report which (a) shows the state of knowledge and (b) the need for knowledge and action (UPL I),
- to integrate knowledge of diverse perspectives in a qualitative systems model, to identify problems and to suggest possible solutions from a specific stakeholder's perspective (UPL II),
- name the different roles within a group, explain the role(s) they are suited for, self-organise in groups, identify problems of collaboration and constructively address the problems (UPL I and II).

Content
In the first semester the students compile what is known about the case topic, its principles and challenges. Each group of students makes an inquiry to a given part of the overall problem. The inquiry includes a thematic as well as stakeholder analysis. The results are written in a report and presented at an internal conference.

During synthesis week, which takes place after the first semester break, the results of the different part inquiries are integrated in a qualitative system model. The students identify specific problems and develop solutions.

In the second semester, students work independently and in exchange with stakeholders on previously identified problems. They develop a sustainability project with concrete measures that they could implement voluntarily in the third semester. The course concludes with the presentation of the student projects on the "Market of Measures".

Most of the time students work independently in groups. Tutors support the students in key steps. Introductions are given for:
- The overall topic of the case study (by external experts),
- Inquiry, scientific writing and managing references (by experts of ETH library),
- Role behaviour and collaboration in groups,
- Preparing reports, posters and presentations,
- Qualitative system modelling (SystemQ),
- Developing solutions (design thinking, Checklands’ soft systems methodology, sustainability assessment).

Lecture notes
Tutors will compile the case study dossier on the basis of the student reports.

Literature
Methodological documentation will be made available on Moodle during the case study together with the relevant background literature.

Taught competencies

551-0001-00L General Biology I O 3 credits 3V U. Sauer, O. Y. Martin, A. Widmer

Abstract
Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny.

Objective
The understanding of some basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.

Content
The first semester focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34.

Week 1-7 by Alex Widmer, Chapters 12-25
12 Cell biology Mitosis
13 Genetics Sexual life cycles and meiosis
14 Genetics Mendelian genetics
15 Genetics Linkage and chromosomes
20 Genetics Evolution of genomes
21 Evolution How evolution works
22 Evolution Phylogenetic reconstructions
23 Evolution Microevolution
24 Evolution Species and speciation
25 Evolution Macroevolution

Week 8-14 by Oliver Martin, Chapters 26-34
26 Diversity of Life Introduction to viruses
27 Diversity of Life Prokaryotes
28 Diversity of Life Origin & evolution of eukaryotes
29 Diversity of Life Nonvascular&seedless vascular plants
30 Diversity of Life Seed plants
31 Diversity of Life Introduction to fungi
32 Diversity of Life Overview of animal diversity
33 Diversity of Life Introduction to invertebrates
34 Diversity of Life Origin & evolution of vertebrates

Lecture notes
no script

Literature

Prerequisites / notice
The lecture is the first in a series of two lectures given over two semesters for students with biology as a basic subject.
Lecture notes or other documentation are provided by instructors and accessible via moodle. The lecture discusses the role of the environmental systems based on selected environmental problems, among these the exploration of...

Title
Lecturers
Environmental Systems II
M. Dahinden
Biology III: Essentials of Ecology
Slides are provided by instructors and are accessible via moodle.

Objective
The objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research. The students should learn ecological concepts at these different levels in the context of concrete examples from terrestrial and aquatic ecology. Corresponding methods for studying the systems will be presented. A further aim of the lecture is that students achieve an understanding of biodiversity, why it is threatened and how it can be managed.

Content
- Einfluss von Umweltfaktoren (Temperatur, Strahlung, Wasser, Nährstoffe etc.) auf Organismen; Anpassung an bestimmte Umweltbedingungen
- Populationsdynamik: Ursachen, Beschreibung, Vorhersage und Regulierung
- Interaktionen zwischen Arten (Konkurrenz, Koexistenz, Prädation, Parasitismus, Nahrungsnetze)
- Lebensgemeinschaften: Struktur, Stabilität, Sukzession
- Ökosysteme: Kompartimente, Stoff- und Energiefluss
- Biodiversität: Variation, Ursachen, Gefährdung und Erhaltung
- Aktuelle Naturschutzprobleme und -massnahmen
- Evolutionäre Ökologie: Methodik, Spezialisierung, Koevolution

Lecture notes
Unterlagen, Vorlesungsfolien und relevante Literatur sind in Moodle abrufbar. Die Unterlagen für die nächste Vorlesung stehen jeweils spätestens am Freitagmorgen zur Verfügung.

Literature
Generelle Ökologie:

Aquatische Ökologie:
Lampert & Sommer 1999. Limnökologie. Thieme, 2. Aufl., ca. Fr. 55.-;
Bohle 1995. Limnische Systeme. Springer, ca. Fr. 50.-

Naturschutzbiologie:

Additional First Year Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-0839-00L</td>
<td>Informatics</td>
<td>O</td>
<td>2</td>
<td>2G</td>
<td>L. E. Fässler, M. Dahinden</td>
</tr>
</tbody>
</table>
| Abstract | Students learn to apply selected concepts and tools from computer science for working on interdisciplinary projects. The following topics are covered: modeling and simulations, managing data with lists and tables and with relational databases, introduction to programming. The students learn to
| Content | 1. Modeling and simulations
| | 2. Data management with lists and tables
| | 3. Data management with a relational database
| | 4. Introduction to macro programming
| | 5. Introduction to programming with Python
| Lecture notes | All materials for the lecture are available at www.evim.ethz.ch
| Prerequisites | This course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available.

| 529-0030-00L | Laboratory Course: Elementary Chemical Techniques | O | 3 | 6P | A. de Mello, F. Jenny, M. H. Schroth |
| Abstract | This practical course provides an introduction to elementary laboratory techniques. The experiments cover a wide range of techniques, including analytical and synthetic techniques (e.g. investigation of soil and water samples or the preparation of simple compounds). Furthermore, the handling of gaseous substances is practised. This course is intended to provide an overview of experimental chemical methods. The handling of chemicals and proper laboratory techniques represent the main learning targets. Furthermore, the description and recording of laboratory processes is an essential part of this course.
Content
The classification and analysis of natural and artificial compounds is a key subject of this course. It provides an introduction to elementary laboratory techniques, and the experiments cover a wide range of analytic and synthetic tasks:
Selected samples (e.g. soil and water) will be analysed with various methods, such as titrations, spectroscopy or ion chromatography. The chemistry of aqueous solutions (acid-base equilibria and solvatation or precipitation processes) is studied.
The synthesis of simple inorganic complexes or organic molecules is practised. Furthermore, the preparation and handling of environmentally relevant gaseous species like carbon dioxide or nitrogen oxides is a central subject of the Praktikum.

Lecture notes
The script will be published on the web.
Details will be provided on the first day of the semester.

Literature
A thorough study of all script materials is requested before the course starts.

Prerequisites / notice
Safety concept: https://chab.ethz.ch/studium/bachelor1.html

751-0801-00L Fundamentals of Microscopy and Plant Biology O 1 credit 1V+2G E. B. Truernit
Abstract
Objective
Capability of preparing biological specimen, microscopy and documentation. Understanding the correlation between plant structure and function at the level of organs, tissues and cells.
Content
Awareness of the link between plant anatomy, systematics, physiology, ecology, and development.
Special features of plant cells: Plastids, vacuole, cell wall. Anatomy of seed plants: From cells to organs. Anatomy and function of various plant tissues (epidermis, vascular tissue, wood, etc.). Anatomy and function of different plant organs (root, stem, leaf, flower, fruit, seed). Anatomical adaptations to different environments.

Lecture notes
Handouts

752-4001-00L Microbiology O 2 credits 2V M. Ackermann, M. Schuppler, J. Vorholt-Zambelli
Abstract
Teaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.
Objective
Teaching of basic knowledge in microbiology.
Content
Lecture notes

Wird von den jeweiligen Dozenten ausgegeben.

Literature
Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms

752-0624-00L Mathematics IV: Statistics O 4 credits 2V+1U J. Ernest
Abstract
Introduction to basic methods and fundamental concepts of statistics and probability theory for practitioners in natural sciences. The concepts will be illustrated with some real data examples and applied using the statistical software R.
Comparison of quantitative and qualitative methods for addressing specific environmental problems. The objective of the Systems Analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space. Understanding and applying the systems-analytic approach, i.e., recognizing the core of the problem - simplification - quantitative approach - prediction. Basic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer. Understanding of basic physical and chemical processes in the atmosphere. Understanding of mechanisms of and interactions between: weather - climate, atmosphere - ocean - continents, troposphere - stratosphere. Understanding of environmentally relevant structures and processes on vastly differing scales. Basis for the modelling of complex interrelations in the atmosphere.

Introduction to the formation and properties of soils as a function of parent rock, landscape position, climate, and soil organisms. Complex relationships between soil forming processes, physical and chemical soil properties, soil biota, and ecological soil properties are explained and illustrated by numerous examples. Definition of the pedosphere, soil functions, rocks as parent materials, minerals and weathering, soil organisms, soil organic matter, soil formation, principles of soil classification, global soil regions, physical soil properties and functions, chemical soil properties and functions, soil fertility, land use and soil degradation.

Learning with the basic principles of scientific experimentation. By performing experiments in different fields of experimental physics the students will learn the usage of measurement instruments as well as the correct analysis and assessment of the measurements. Physics as a personal experience will play an important role in it.
Objective

Working in a laboratory forms an important part of modern scientific education. Using simple experimental setup the laboratory course will provide basic knowledge of:
- the setup of experiments,
- various measurement techniques,
- the use of various measurement instruments,
- the correct performance of experiments,
- the analysis of the accuracy of the measurements,
- and the interpretations of the measured quantities.
The course will also deepen the knowledge of experimental physics.

In addition to experiments selected from the physics lab for physicists, this lab course offers experiments specially developed for bachelor students in environmental sciences, which illustrate the mutual relationships between physical processes and chemical and biological phenomena.

Content

The students select 5 out of 18 offered experiments which they like to perform. For each of these experiments the students document and analyze their measurements, estimate in written reports the accuracy of their results and compare these with the values expected according to the laws of physics.

Lecture notes

Manuals for the experiments are provided online on the Moodle pages of the course.

Prerequisites / notice

Enrollment not in MyStudies but at https://www.lehrbetrieb.ethz.ch/laborpraktika.

Social Sciences and Humanities

Compulsory

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0707-00L</td>
<td>Analysing Arguments in Science and Ethics</td>
<td>O</td>
<td>2 credits</td>
<td>2G</td>
<td>C. J. Baumberger</td>
</tr>
</tbody>
</table>

This lecture was offered until spring semester 17 under the title: "Analyzing Texts". Students who completed this lecture already are not allowed to earn credits for this lecture again.

Abstract

Problems of the environment and sustainable development are complex from a scientific as well as from an ethical point of view. Addressing them requires the ability to deal with arguments. This course provides basic knowledge and methods for reconstructing, analysing and evaluating arguments. We exercise and improve these abilities by using examples from science, ethics and political debates.

Objective

Students acquire basic knowledge and methods for analyzing arguments. They are able to apply these methods to complex arguments concerning scientific and ethical questions about the environment and sustainable development, and to construct themselves arguments and apply them successfully. Moreover, they are able to evaluate the contribution of arguments to controversial debates with the help of rules. Students acquire thereby a crucial skill for Critical Thinking, which aims at responsible argumentation, communication and action.

Content

In the sciences as well as in public discussions or in our everyday life, we try to convince others or to achieve consent in matters of disagreement. We do this with the help of arguments. But what are the criteria for arguments to be convincing and for claims to be clear? And how do we expediently feed arguments into a debate? How can we identify and avoid fallacies in reasoning? How do we analyse and define concepts? This course provides basic knowledge of conceptual analysis and argumentation theory as well as methods for identifying, reconstructing and evaluating claims and arguments. Its focus is on systematically addressing the following two questions: What do you mean? How do you know? The first question aims at a better understanding of the claim in question, the second at assessing the reasons that support or undermine the claim. We exercise and improve the abilities to address these questions by using texts on scientific and ethical questions concerning the environment and sustainable development. The course provides thus crucial skills for Critical Thinking, which aims at responsible argumentation, communication and action.

Lecture notes

Handouts will be available.

Literature

Prerequisites / notice

This is a compulsory course in the social sciences and humanities in the second year of the BA Environmental Sciences. For 2 ECTS-credits, all written tasks that are distributed during the course need to be solved.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0747-00L</td>
<td>Environmental Policy of Switzerland</td>
<td>O</td>
<td>3 credits</td>
<td>2G</td>
<td>E. Lieberherr</td>
</tr>
</tbody>
</table>

Number of participants limited to 130.
Priority is given to the target group: Bachelor Study programme Environmental Sciences until September 27th, 2021.
Waiting list will be deleted October 1st, 2021.

Abstract

This course presents the basics of public policy analysis and the specific characteristics of Swiss environmental policy. Policy instruments, actors and processes are addressed from a political science perspective both theoretically as well as by means of current Swiss environmental policy examples.

Objective

Beyond acquiring basic knowledge about public policy analysis, this course teaches students how to analytically address current and concrete questions of environmental policy. Through exercises the students learn about political science concepts and frameworks as well as real-life political decision-making processes. The well-grounded examination of complex political conflict situations is an important precondition for the entry into the (environmental policy) workforce or a future research career.

Content

The processes of change, overuse or destruction of the natural environment through humans have historically placed high demands on social and political institutions. In the interplay between the environment, society and economy, the environmental policy field encompasses the sum of public measures that have the goal to eliminate, reduce or avoid environmental degradation. The course systematically presents the basics of environmental policy instruments, actors, programs and processes as well as their change over time. Invited practitioners will provide us with insight regarding the current developments in forest, water and spatial planning policies. A key aspect is the distinction between politics and political science and specifically environmental policy.

Lecture notes

The reader and additional lecture material and exercises will be posted on Moodle.

Literature

Reader and additional lecture material on moodle.

Prerequisites / notice

The detailed semester program (syllabus) is made available to the students at the beginning of the semester. During the lecture we will work with Moodle and eduApp. We ask that all students register themselves on these platforms before the lecture and to bring a laptop, tablet or smartphone to class, so that you can complete exercises using Moodle and eduApp.
This course introduces basic economic concepts and theories. Beginning with microeconomics, the course starts with the topics of supply and demand, markets, and behavioral economics before moving on to the key macroeconomic concepts of national accounts, the labor market, trade, and monetary policy.

Objective

After successful completion of the course you will be able to:

- Describe the basic micro- and macroeconomic problems and theories.
- Introduce economic reasoning appropriately to a given topic.
- Evaluate economic measures.

Content

- Households, firms, supply and demand: How are household preferences and consumption patterns formed? How does a household react to price changes? How are goods prices formed? At what prices are companies willing to offer goods? How do we make economic decisions?
- Markets: What is “perfect competition” and how does a competitive market work? Are monopolies always a bad thing? How can the state influence the market?
- Market failure: What happens when prices give wrong signals?
- Labour market: How do supply and demand work in the labour market? What influences unemployment?
- National accounts: How big is the Swiss economy?
- Foreign trade: Why do countries trade with each other? What are the consequences for the domestic market?
- Money and inflation: What exactly is money? How does money creation work and what happens when there is too much (or too little) money on the market?

Students will be asked to apply these concepts to issues in their own field of study and to current issues in society. This goal will be achieved through participation in exercises, class discussions and reading material from current media. By the end of the course, students should be able to apply economic analysis confidently and independently.

Literature

Taught competencies

- Domain A - Subject-specific Competencies
 - Concepts and Theories
 - Analytical Competencies
 - Sensitivity to Diversity
 - Critical Thinking
 - Self-direction and Self-management

Taught competencies

- Domain B - Method-specific Competencies
 - Decision-making
 - Problem-solving

- Domain D - Personal Competencies
 - Critical Thinking
 - Self-direction and Self-management

Prerequisites / notice

Sie brauchen keine Vorkenntnisse, um dem Kurs zu folgen.

Electives

Module Economics

Environmental Management

- **Number**: 151-0757-00L
- **Type**: W
- **ECTS**: 2 credits
- **Hours**: 2G
- **Lecturers**: R. Züst

Abstract

An environmental management system has the objective to continuously improve the environmental performance of the activities, products and services of a company. The company has to introduce different management procedures. The goal of this lecture is to provide basics and specific procedure to implement the environmental dimension in the planning and decision making processes of an organisation.

Objective

- Overview on environmental management and environmental management systems, general methods and principles.
- Introduction to environmental management / environmental management systems, energy and material flows; economical and ecological problems in industry; characterisation of an enterprise (incl. management handbook); structure and contents of an environmental management system; overview on the ISO 14001 ff. series; methods for environmental evaluation and assessment; integrated management systems; planning methodology and life-cycle-design design; planning exampl

Lecture notes

Information about environmental management and environmental management systems will be provided by a CD or mail.
351-0778-00L Discovering Management

Entry level course in management for BSc, MSc and PhD students at all levels not belonging to D-MTEC. This course can be complemented with Discovering Management (Exercises) 351-0778-01.

Abstract
Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC.

Objective
The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship.

Content
- The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case.
- Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam.

Prerequisites / notice
- A list with literatures and links will be provided
- Delivery of a case study, worked out in groups. Language: Teaching in English on request.

Literature

Taught competencies
- Domain A - Subject-specific Competencies: Concepts and Theories assessed
- Domain B - Method-specific Competencies: Analytical Competencies assessed
- Domain C - Social Competencies: Communication assessed
- Domain D - Personal Competencies: Creative Thinking assessed

351-0778-01L Discovering Management (Exercises)

Abstract
This course is offered complementary to the basis course 351-0778-00L, "Discovering Management". The course offers an additional exercise.

Objective
The general objective of Discovering Management (Exercises) is to complement the course "Discovering Management" with one larger additional exercise.

Content
- Students who are enrolled for "Discovering Management Exercises" are asked to write an essay about a particular management issue of choice, using your insights from Discovering Management.
- Students have the option to either write this alone or in a group of two students.

Taught competencies
- Domain A - Subject-specific Competencies: Concepts and Theories assessed
- Domain B - Method-specific Competencies: Analytical Competencies assessed
- Domain C - Social Competencies: Communication assessed
- Domain D - Personal Competencies: Creative Thinking assessed

363-0387-00L Corporate Sustainability

Abstract
The lecture explores current challenges of corporate sustainability and prepares students to become champions for sustainable business practices. In the beginning, traditional lectures are complemented by e-modules that allow students to train critical thinking skills. In the 2nd half of the semester, students work in teams on sustainability challenges related to water, energy, mobility, and food.

Objective
- Students
 - assess the limits and the potential of corporate sustainability for sustainable development
 - develop critical thinking skills (argumentation, communication, evaluative judgment) that are useful in the context of corporate sustainability using an innovative writing and peer review method.
 - recognize and realize opportunities through team work for corporate sustainability in a business environment
 - present strategic recommendations in teams with different output formats (tv-style debate, consultancy pitch, technology model walk-through, campaign video)

Prerequisites / notice
- All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle.
- The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching.

Literature
- N. U. Blum, J. Meuer
- L. P. T. Vandeweghe
- V. Hoffmann, C. Bening-Bach, N. U. Blum, J. Meuer

Taught competencies
- Domain A - Subject-specific Competencies: Concepts and Theories assessed
- Domain B - Method-specific Competencies: Analytical Competencies assessed
- Domain C - Social Competencies: Communication assessed
- Domain D - Personal Competencies: Creative Thinking assessed
In the first part of the semester, Prof. Volker Hoffmann and Dr. Johannes Meuer will share his insights on corporate sustainability with you through a series of lectures. They introduce you to a series of critical thinking exercises and build a foundation for your group work. In the second part of the semester, you participate in one of four tracks in which SusTec researchers will coach your groups through a seven-step program. Our ambition is that you improve your analytic and organizational skills and that you can confidently stand up for corporate sustainability in a professional setting. You will share the final product of your work with fellow students in a final puzzle session at the end of the semester.

http://www.sustec.ethz.ch/teaching/lectures/corporate-sustainability.html

Presentation slides will be made available on moodle prior to lectures. Literature recommendations will be distributed during the lecture.

TEACHING FORMAT / ATTENDANCE: Please note that we aim to offer you the course in-class and online, but at this point we cannot guarantee that a purely online participation is possible. Irrespective of the format (in-class or online), the course includes several mandatory sessions that participants must attend to successfully earn credit points.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>W</th>
<th>Credits</th>
<th>GESS</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1109-00L</td>
<td>Introduction to Microeconomics</td>
<td>3</td>
<td>3</td>
<td>2G</td>
<td>M. Wörter, M. Beck</td>
</tr>
<tr>
<td></td>
<td>GESS (Science in Perspective):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course is only for students enrolled in a Bachelor's degree programme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students enrolled in a Master's degree programme may attend "Principles of Microeconomics" (LE 363-0503-00L) instead.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note for D-MAVT students: If you have already successfully completed "Principles of Microeconomics" (LE 363-0503-00L), then you will not be permitted to attend it again.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course introduces basic principles, problems and approaches of microeconomics. It describes economic decisions of households and firms, and their coordination through perfectly competitive markets.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students acquire a deeper understanding of basic microeconomic models.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>They acquire the ability to apply these models in the interpretation of real world economic contexts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students acquire a reflective and contextual knowledge on how societies use scarce resources to produce goods and services and distribute them among themselves.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Market, budget constraint, preferences, utility function, utility maximisation, demand, technology, profit function, cost minimisation, cost functions, perfect competition, information and communication technologies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course material in e-learning environment https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>W</th>
<th>Credits</th>
<th>GESS</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-1057-00L</td>
<td>Resource and Environmental Economics</td>
<td>3</td>
<td>2G</td>
<td></td>
<td>L. Bretschger</td>
</tr>
<tr>
<td></td>
<td>Relationship between economy and environment, market failures, external effects and public goods, contingent valuation, internalisation of externalities, economics of non-renewable resources, economics of renewable resources, environmental cost-benefit analysis, sustainability economics, and international resource and environmental problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and environmental economics and the ability to solve typical problems using appropriate tools consisting of concise verbal explanations, diagrams or mathematical expressions. Concrete goals are first of all the acquisition of knowledge about the main questions of resource and environmental economics and about the foundation of the theory with different normative concepts in terms of efficiency and fairness. Secondly, students should be able to deal with environmental externalities and internalisation through appropriate policies or private negotiations, including knowledge of the available policy instruments and their relative strengths and weaknesses. Thirdly, the course will allow for in-depth economic analysis of renewable and non-renewable resources, including the role of stock constraints, regeneration functions, market power, property rights and the impact of technology. A fourth objective is to successfully use the well-known tool of cost-benefit analysis for environmental policy problems, which requires knowledge of the benefits of an improved natural environment. The last two objectives of the course are the acquisition of sufficient knowledge about the economics of sustainability and the application of environmental economic theory and policy at international level, e.g. to the problem of climate change.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>W</th>
<th>Credits</th>
<th>GESS</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-0503-00L</td>
<td>Principles of Microeconomics</td>
<td>3</td>
<td>2G</td>
<td></td>
<td>L. Bretschger</td>
</tr>
<tr>
<td></td>
<td>GESS (Science in Perspective):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course is only for students enrolled in a Bachelor's degree programme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students enrolled in a Master's degree programme may attend "Principles of Microeconomics" (LE 363-0503-00L) instead.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note for D-MAVT students: If you have already successfully completed "Principles of Microeconomics" (LE 363-0503-00L), then you will not be permitted to attend it again.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course introduces basic principles, problems and approaches of microeconomics. It describes economic decisions of households and firms, and their coordination through perfectly competitive markets.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students acquire a deeper understanding of basic microeconomic models.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>They acquire the ability to apply these models in the interpretation of real world economic contexts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students acquire a reflective and contextual knowledge on how societies use scarce resources to produce goods and services and distribute them among themselves.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Market, budget constraint, preferences, utility function, utility maximisation, demand, technology, profit function, cost minimisation, cost functions, perfect competition, information and communication technologies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course material in e-learning environment https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Taught competencies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Subject-specific Competencies</th>
<th>Method-specific Competencies</th>
<th>Social Competencies</th>
<th>Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain A</td>
<td>Concepts and Theories</td>
<td>Techniques and Technologies</td>
<td>Decision-making</td>
<td>Media and Digital Technologies</td>
</tr>
<tr>
<td>Domain B</td>
<td>Analytical Competencies</td>
<td></td>
<td>Negotiation</td>
<td>Problem-solving</td>
</tr>
<tr>
<td>Domain C</td>
<td>Communication</td>
<td></td>
<td></td>
<td>Project Management</td>
</tr>
<tr>
<td>Domain D</td>
<td>Adaptability and Flexibility</td>
<td></td>
<td>Problem-solving</td>
<td>Self-presentation and Social Influence</td>
</tr>
</tbody>
</table>

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies

- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Problem-solving

Domain D - Personal Competencies

- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

851-0626-01L International Aid and Development

Number of participants limited to 60

Prerequisites: Basic knowledge of economics

Abstract
The course gives economic and empirical foundations for a sound understanding of the instruments, prospects and limitations of international development aid.

Objective
- Students have a theoretically and empirically sound understanding of the prospects and limitations of international development aid.
- Students are able to critically discuss the various aid instruments of bi- and multilateral donors and NGOs.

Content
- Introduction to the Determinants of Underdevelopment
- History of Aid
- Aid and Development: Theories and Empirics
- Political Economy of Aid
- Experience and Impact of Aid
- New Instruments of Aid: e.g. Micro-Finance, Budget-Support, Fair-Trade

Literature
Articles and book abstracts will be uploaded to a course website.

Module Political and Social Sciences

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0985-00L</td>
<td>Social Intercourse with Current Environmental Risks</td>
<td>W</td>
<td>1</td>
<td>1V</td>
</tr>
</tbody>
</table>

Abstract
The lecture treats the social intercourse with risks of technical systems. The notion of risk and the perception of risk are discussed by case studies (e.g. nanotechnology) and socio-political instruments for decision-making are presented. Methods are presented that can be applied to deal with environmental risks and how they can be used for sustainable innovation.

Objective
- Getting acquainted to the extended risk concept
- Evaluation of the risks caused by technology within the societal context
- Knowledge about the mode science and society handle current environmental risks (examples gene- and nanotechnology)
- Knowledge about handling risks (e.g. precautionary principle, protection goal, damage definition, ethics)
- Knowledge about possibilities for sustainable innovation

Content
- Risks and technical systems (risk categories, risk perception, risk management)
- Illustration with case studies (nanotechnology)
- Implementation (politics, science, media, etc.)
- Decision making (technology assessment, cost/benefit analysis etc.)
- The role of the media
- Prospects for future developments

Lecture notes
Copies of slides and selected documents will be distributed.

Prerequisites / notice
The lecture is held biweekly (for 2 hours). The dates are 3.9.; 30.9. (instead of 7.10); 21.10.; 4.11.; 18.11.; 2.12.; 16.12.

851-0577-00L Principles of Political Science

Abstract
This course covers basic questions, concepts, theories, methods, and empirical findings of political science.

Objective
This course covers basic questions, concepts, theories, methods, and empirical findings of political science.
Dieser Kurs wird aufgrund der immer noch prekären Covid-19-Lage voraussichtlich online durchgeführt. Alle Studierenden, die den Kurs via mystudies belegt haben, werden rund eine Woche vor Kursbeginn über die aktuelle Situation informiert.

Tipp: Lesen Sie zuerst genau die Übungsaufgaben für das zu studierende Buchkapitel (https://ib.ethz.ch/teaching/pwgrundlagen.html) und erst danach das betreffende Kapitel. Sie wissen dann beim Lesen schon vorweg, auf was Sie besonders genau schauen sollten.

Übungsaufgaben und ein Glossar finden Sie hier: https://ib.ethz.ch/teaching/pwgrundlagen.html

Leistungskontrollen

a) Erster Test (12.11.2021, 14:15–15:00)
b) Zweiter Test (17.12.2021, 14:15–15:00)

Ergebnisse werden über das IB-Portal mittei.-lungsrechtlich an die Studierenden verteilt. Die Anmeldung für den Kurs in mystudies deckt alles ab.

Prüfungsstoff ist der gesamte Inhalt der Vorlesung und des Tutorats. Für diesen Kurs ist keine zusätzliche (separate) Prüfung notwendig; die Anmeldung für den Kurs in mystudies deckt alles ab.
Objective

The course focuses on the conditions under which problem solving efforts in international environmental politics emerge and the conditions under which such efforts and the respective public policies are effective.

Content

This course will take place fully online. Course units have three components:

1. **A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units**
2. **Reading assignments, available via Moodle, for a few selected course units**
3. **Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).**

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

1. **A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units**
2. **Reading assignments, available via Moodle, for a few selected course units**
3. **Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).**

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.
Content

I. Introduction
- Topics: Environment, Science, Risks, Media
- Forms, Functions, Effects of Public and Mass Communication

II. Stakeholders and their Public Relations Efforts
- Public Relations and Science PR: Theoretical Perspectives, Instruments

III. Science and Environmental Issues in the Media
- Forms and Functions of Science Journalism
- Problems of Selection, Interpretation, Quality
- Media Content Analysis
- Online Communication

IV. Uses and Effects of Science and Environmental Communication
- Extent of Media Use
- Effects on Knowledge, Risk Perceptions, Environmental Attitudes
- Effects on Science itself

Lecture notes

- Literature and powerpoint presentations will be provided on the OLAT platform.

Die Vorlesung wendet sich auch an Studierende der Publizistikwissenschaft der Universität Zürich.

Voraussetzungen: Die Vorlesung hat einführenden Charakter.

<table>
<thead>
<tr>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>701-0903-00L</th>
<th>The Sustainable Development Goals Book Club</th>
<th>W</th>
<th>2 credits</th>
<th>B. B. Pearce, J. Ghazoul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The ETH Sustainable Development Goals Book Club is a colloquium for Bachelor students within and outside of Department of Environmental Systems Science centered around the discussion of themes from a single book, with the aim of fostering interdisciplinary, intellectual and critical exploration of the scientific and societal complexities related to the Sustainable Development Goals.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Objective** | The aims of this course are to:
- Create an interdisciplinary approach to understanding key concepts of sustainable development and the SDGs
- Create solidarity through a cultural of intellectual exchange at ETH Zurich
- Create a common object of intellectual reference for students with different disciplinary interests to enable diverse ways and modes of thinking

The course is similar to 701-0019-00L Readings in Environmental Thinking with the following differences:
- Targeted at Bachelor’s students (especially first and second year, but open to all) within and outside of the department.
- All participating students will read one book whose themes will be the basis for discussions.
- These discussions, taking place both online and in-person, will be moderated by the main lecturers of the course and discussed by additional professors from within and outside of D-USYS.
- Each discussion will be based on a chapter of a book, always linked to a particular aspect of the SDGs.
- The modes of discussion will vary in length and form, ranging from the traditional, sit-down meeting, to a Twitter book club format (as already pioneered and popularized by author Robert MacFarlane).
- Both students and professors will lead the discussions alternatively.
- Each discussion session will result in a visual output or another shareable output that will be developed by a student or group of students. |
| **Literature** | TBD |
| **Other possibilities:** | - Thinking in systems
- Limits to Growth
- Operating Manual for Spaceship Earth
- Small is Beautiful
- For the Common Good
- Factfulness
- The Prize: The Epic Quest for Oil, Money and Power (history of the global petroleum industry from 1850s-1990) |

<table>
<thead>
<tr>
<th>752-2120-00L</th>
<th>Consumer Behaviour I</th>
<th>W</th>
<th>2 credits</th>
<th>2V</th>
<th>M. Siegrist, A. Bearth, A. Berthold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Introduction in consumer research. The following aspects will be emphasized in the course: Consumer decision making, individual determinants of consumer behavior, environmental influences on consumer behavior, influencing consumer behavior.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Introduction in consumer research. The following aspects will be emphasized in the course: Consumer decision making, individual determinants of consumer behavior, environmental influences on consumer behavior, influencing consumer behavior.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advanced English for Academic Purposes (C1-C2)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0703-00L</td>
<td>Environmental Ethics</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>A. Deplazes Zemp</td>
</tr>
</tbody>
</table>

Abstract
The pressing environmental challenges of today demand a critical reflection. Ethics is an important tool for doing so. This lecture introduces the basics of ethics and provides in-depth knowledge of environmental ethics and its debates. This theoretical background will be applied and critically reflected using examples of current environmental challenges.

Objective
On completion of this lecture, you have acquired the ability to identify, analyze, critically reflect and resolve ethical challenges in general and specifically regarding the environment. You know basic concepts, positions and lines of argumentation from the debate in environmental ethics, which you have applied and discussed in smaller exercises.

Content
- Introduction to general and applied ethics.
- Overview and discussion of ethical theories relevant to address environmental challenges.
- Familiarisation with various basic standpoints within environmental ethics.
- Cross-section topics, such as sustainability, intergenerational justice, protection of species, etc.
- Practicing of newly acquired knowledge in smaller exercises.

Lecture notes
Presentation slides of the individual sessions will be distributed, including the most important theories and keywords; extended reading lists.

Literature
- Andrew Light/Holmes Rolston III, Environmental Ethics. An Anthology, 2003
- John O'Neill et al., Environmental Values, 2008
- Konrad Ott/Jan Dierses/Lieske Vogel-Klesch, Handbuch Umweltethik, 2016

Prerequisites / notice
The procedure for accumulating CP will be explained at the start of term.

Creditable Language Courses

Of the listed English language courses, a maximum of 2 CP can be credited.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>851-0832-10L</td>
<td>Advanced English for Academic Purposes (C1-C2)</td>
<td>W</td>
<td>2</td>
<td>2G</td>
<td>University lecturers</td>
</tr>
</tbody>
</table>

Course fees:

Registration dates:

Abstract
This course is designed for Bachelor’s and Master’s students from all disciplines who wish to improve their English from C1 towards C2 level and train their language skills at mastery level. Selected academic English features are included to add value to the course to meet standard entrance requirements by leading universities and colleges worldwide.

Objective
Students should already have reached C1 level (advanced) as defined in the Common European Framework of Reference for Languages (CEFR). The course is also open to participants whose level is above C1.

The course aims to train and develop linguistic skills at mastery level, with a focus on formal and informal academic lexicon, on listening and oral communication skills, and on increasing fluency, accuracy, and complexity of spoken language. Students will work on writing well-structured descriptive texts and argumentative essays, with the aim of fulfilling the language requirements for study at an English-speaking university or following university Master’s courses held in English.

Highly recommended Natural Science and Technical Electives

For the Specialization in Biogeochemistry

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0225-00L</td>
<td>Organic Chemistry</td>
<td>W</td>
<td>2</td>
<td>2V+1U</td>
<td>K. McNeill</td>
</tr>
</tbody>
</table>

Abstract
Basics of Organic Chemistry. Reaction mechanisms in organic chemistry (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy)

Objective
This course builds on General Chemistry I and II.

The students will learn the basic reaction mechanisms in organic chemistry. They will be able to understand and formulate simple organic reactions.

Content
- Descriptive chemistry of functional groups (alkyl halides, aikenes, aromatic systems, carbonyls).
- Reaction mechanisms (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution).
- NMR spectroscopy.

Literature
Carsten Schmuck, Basisbuch Organische Chemie, Pearson

Prerequisites / notice
Der Stoff der Basischemie wird vorausgesetzt.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-0100-00L</td>
<td>Biochemistry</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>C. Frei</td>
</tr>
</tbody>
</table>

Abstract
Basic knowledge of enzymology, in particular the structure, kinetics and chemistry of enzyme-catalysed reaction in vitro and in vivo. Biochemistry of metabolism: Those completing the course are able to describe and understand fundamental cellular metabolic processes.

Objective
Students are able to understand
- the structure and function of biological macromolecules
- the kinetic bases of enzyme reactions
- thermodynamic and mechanistic basics of relevant metabolic processes
Students are able to describe the relevant metabolic reactions in detail
Introduction, basics, composition of cells, biochemical units, repetition of relevant organic chemistry
Structure and function of proteins
Carbohydrates
Lipids and biological membranes
Enzymes and enzyme kinetics
Catalytic strategies
Metabolism: Basic concepts and design. Repetition of basic thermodynamics
Glycolysis, fermentation
The citric acid cycle
Oxidative phosphorylation
Fatty acid metabolism

Program

Lecture notes
Horton et al. (Pearson) serves as lecture notes.

Prerequisites / notice
Basic knowledge in biology and chemistry is a prerequisite.

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Media and Digital Technologies
Problem-solving
Project Management

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Customer Orientation
Leadership and Responsibility
Self-presentation and Social Influence
Sensitivity to Diversity
Negotiation

Domain D - Personal Competencies
Adaptability and Flexibility
Creative Thinking
Critical Thinking
Integrity and Work Ethics
Self-awareness and Self-reflection
Self-direction and Self-management

For the Specialization in Environmental Biology

Number	Title	Type	ECTS	Hours	Lecturers
227-0399-10L | Physiology and Anatomy for Biomedical Engineers I | W | 3 credits | 2G | M. Wyss

Abstract
This course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging.

Objective
To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research.

Content
- The Human Body: nomenclature, orientations, tissues
- Musculoskeletal system, Muscle contraction
- Blood vessels, Heart, Circulation
- Blood, Immune system
- Respiratory system
- Acid-Base-Homeostasis

Lecture notes
Lecture notes and handouts

Literature
Silbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008
Faller A., Schuenke M. The Human Body; Thieme 2004
Netter F. Atlas of human anatomy; Elsevier 2014

For the Specialization in Forest and Landscape

Number	Title	Type	ECTS	Hours	Lecturers
701-0266-00L | Introduction to Dendrology | W | 3 credits | 3P | A. Rudow, M. Ibrahim

Abstract
Woody plants are important elements of forest ecosystems and landscapes. The course gives an introduction to dendrology as well as to the identification of native tree and shrub species. It is a highly recomended course for the BSc specialization of Forest and Landscape and it provides the basic requirements for the consecutive course Woody Plants of Central Europe in the spring semester.

Objective
Knowledge of selected native tree and shrub species. Understanding of biological and ecological relations by means of in situ observation of woody plants. Differentiated view on forest ecosystems.

Content
Introduction to dendrology on the basis of concrete examples. Emphasis on identification of tree and shrub species (80 frequent tree and shrub species) and on the understanding of tree structure (morphology of woody plants). The illustrating way of presentation and the relations between different scale levels (organ, individual, stand, ecosystem) provide an attractive insight into forest and landscape topics as well as into environmental biology.

Lecture notes
Rudow, A., 2020: Dendrologie 1 - Folien (in German).

Literature
Rudow, A., 2011: eBot Dendrologie (Betaversion). E-learning-Tool for the support of dendrology courses at ETHZ (application integrated in eBot, in German).

Prerequisites / notice
Half of the course will be held in form of excursions and practical training in the forest (ETH Hönggerberg). Besides that 4 half day excursions (Zurich and surroundings, on weekends, dates by arrangement). Weatherproof clothes are presupposed.
The course provides the basic knowledge for the advanced course 701-0316-00L Woody plants of Central Europe (Dendrology 2)
Theoretical basics and fundamental concepts of Geographic Information Science (GIS) are imparted and subsequently further elaborated with the software ArcGIS. At the end, the students will be able to independently solve basic realistic GIS problems.

Objective

Students are able to:
- elucidate the theoretical and conceptional foundations of geographic information systems (GIS)
- independently perform normal GIS work using commercial software and practical examples

Content

The course covers the following topics:
- What is GIS? What are spatial data?
- The representation of reality by means of spatial data models: vector, raster, TIN
- The four phases of data modelling: Spatial, conceptual, logical and physical model
- Possibilities of data collection
- Transition of reference frame
- Spatial Analysis I: query and manipulation of vector data
- Spatial Analysis II: operators and functions with raster data
- Digital elevation models and derived products
- Process modelling with vector and raster data
- Presentation possibilities of spatial data

One Friday is reserved for a field trip or guest speaker;

Literature

Prerequisites / notice

Aufgrund der Grösse des verfügbaren EDV-Schulungsraumes ist die Teilnehmerzahl auf 50 Studierende beschränkt! Für die Übungen werden die Studierenden auf zwei Zeitfenster aufgeteilt. Pro Zeitfenster können maximal 25 Studierende betreut werden.

Natural Science and Technical Electives

Agroecology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-0013-00L</td>
<td>World Food System</td>
<td>W</td>
<td>4 credits</td>
<td>4V</td>
<td>A. K. Gilgen, J. Baumgartner, A. Bearth, R. Finger, M. Loessner, R. Mezzenga, B. Studer</td>
</tr>
<tr>
<td>751-1311-00L</td>
<td>Introduction to Agricultural Management</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>R. Finger</td>
</tr>
<tr>
<td>751-3401-00L</td>
<td>Plant Nutrition I</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>E. Frossard</td>
</tr>
</tbody>
</table>

Abstract

Knowledge about the World Food System will be provided, based on case studies along food value chains in countries with various stages of development and dependent on multiple boundary conditions. This shall generate profound understanding of the associated global challenges especially food scarcity, suboptimal diet and nutrition, food quality and safety as well as effects on the environment.

Objective

Attending this course, the students will recognize the elements of the World Food System (WFS) approach and the problems it is supposed to treat. They will especially comprehend the four pillars of global food security, namely (I) food availability (including sustainable production and processing), (II) access to food (physical and monetary), (III) food use (including quality and safety as well as the impact on human health and well being) and (IV) resilience to the boundary conditions (environmental, economic and political). This insight will make them aware of the global driving forces behind our ETH research on food security and is expected to alleviate motivation and understanding for the association of subsequent specific courses within a general context. The course equivalently implements agricultural and food sciences, thus supporting the interdisciplinary view on the WFS scope.

Content

Case studies on certain foods of plant and animal origin serve to demonstrate the entire food value chain from the production of raw material to processed food and its consumer relevant property functions. In doing so, important corresponding aspects for developed, emerging and developing countries are demonstrated, by use of engineering as well as natural and social science approaches.

Lecture notes

Handouts and links are provided online.

Literature

Information on books and other literature references is communicated during the course.

Prerequisites / notice

The course shall particularly elucidate the cross section of Agro- and Food Sciences in the context of important global problems to be solved. Furthermore the students in the first year of studies shall be given some insight and outlook supporting the development of their views and interests in agricultural and food sciences further.

The course is part of the block exam after the first study year. Paper copies can be used (“Open Book”) during the on-line exam, but no other means are not allowed. The course is taught in German.

Number of participants limited to 50. Waiting list will be deleted October 8th, 2021.

Number of participants limited to 50. Waiting list will be deleted October 8th, 2021.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2043 of 2152
Objective At the end of the lecture, students know how mineral nutrients are taken up through roots and circulate in the plants and what their roles in plants are. They understand the importance of nutrients for yield formation and for crop product quality. They are able to propose fertilization plans adapted for field crops growing under Swiss conditions.

Content A general introduction explains the needs of appropriately managing nutrients in plant production. Afterwards, we will study the physiology of plant nutrition (nutrient uptake by roots; nutrient transports in the plant; physiological roles of nutrients in the plant). Then the role of nutrients for yield formation and their effects on crop quality is dealt with. Finally, the bases of crop fertilization are taught (availability of nutrient in soil: N, P and K fertilization; different types of fertilizers).

Lecture notes The slides will be distributed.

Schubert S 2006 Pflanzenernährung Grundwissen Bachelor Ulmer UTB
Richner W. & Sinaj S. 2017. Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz (GRUD 2017). Agrarforschung Schweiz 8 (6), Spezialpublikation,
http://www.tll.de/visuplant/v_p_idx.htm

751-3700-00L Plant Ecophysiology W 2 credits 2V M. Gharun, M. Lehmann, A. Walter

Abstract The general theme of this course is the effect of environmental factors (such as light, temperature, relative humidity, CO2 concentrations, etc.) on plant physiology: water uptake and transport, transpiration, CO2 gas exchange of plants (photosynthesis, respiration), growth and C allocation, yield and production, stress physiology. Lab and field measurements are included.

Objective The students will understand the impact of environmental factors on plant physiology and will learn the theoretical basis and terminology of plant ecophysiology that is necessary to analyze yield potentials in agriculture. The students will learn about classical and latest studies in plant ecophysiology and will have hands-on experiences with equipment used in plant ecophysiology.

Content The course will address a wide range of agricultural and food system challenges (e.g. food security, climate change, soil degradation, etc.) systematically analyse and discuss case studies from ongoing agroecological and food system research.

Prerequisites / notice

Literature Handouts stehen online.

751-5003-00L Sustainable Agroecosystems II W 2 credits 2V K. Benabderrazik, M. Hartmann

Abstract This class conveys current topics and methods of agroecological and food systems research through selected case studies from ongoing research of the Sustainable Agroecosystems group. Students will be encouraged to develop critical thinking competencies, through individual and group work, on major agricultural and food system challenges and paths towards agricultural and food system transformation.

Objective (1) Systematically analyse and discuss case studies from ongoing agroecological and food system research.
(2) Learn and experiment on methods for field and laboratory investigations in agroecology.
(3) Engage with positive and empowering frameworks that motivate critical reflection and action on the types of transformative responses needed to adapt and thrive within agricultural and food systems.
(4) Reflect critically on agricultural and food system transformation tools and methods from the perspective a food system stakeholder.
(5) Identify and describe institutions in the context of sustainable agricultural development (for Bachelor and Master thesis and internships).

Content The course will address a wide range of agricultural and food system challenges (e.g. food security, climate change, soil degradation, etc.) in both temperate and tropical contexts, from building food system resilience through innovative measures, to addressing soil fertility and GHG emissions. A wide variety of case studies will be presented, covering different scales (e.g. value-chains, farm and soil management). The course is complemented by a role-playing exercise on food system transformation. Students will gain an overview on institutions and actors' roles in the field of sustainable agricultural development. Throughout the exercise, students will learn to cooperate through a teamwork exercise and understand what is the role of each stakeholders in the food system in order to support a sustainable transformation.

(recommended text book)

Prerequisites / notice

Prior participation in the lecture Nachhaltige Agrarökosysteme I (Sustainable Agroecosystems I) 751-5000-00G (spring term) recommended.

Domain A - Subject-specific Competencies
Concepts and Theories assessed
Analytical Competencies assessed
Problem-solving assessed
Cooperation and Teamwork assessed
Sensitivity to Diversity assessed
Critical Thinking assessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed

Domain B - Personal Competencies
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed

751-5005-00L Agroecology and the Transition to Sustainable Food Systems W 2 credits 2G M. Sonneveld, M. Grant, S. E. Ulbrich, B. Wehrli

Abstract The aim of this lecture series is to offer students and the interested public a deeper insight into the fundamentals of agroecology and its potential role in transforming food systems. For more information on the public lecture part of this course, please visit: https://worldfoodsystem.ethz.ch/outreach-and-events/past-events/agroecology-lectures-2021.html

Objective Students know the elements of agroecology and are able to critically reflect on the important properties as well as benefits and trade-offs of agroecological systems and approaches. Students are able to understand and explain how the 10 elements could be implemented as guiding principles for policymakers, practitioners and other stakeholders across the food system in planning, managing and evaluating agroecological transitions. This course enables students and an interested public to engage in a lively and critical debate and to learn about scientific contributions to agroecology. Based on the knowledge gained, students are able to form a personal opinion on the role of agroecology and to reflect on the different facets and real-world applications supporting a transition towards sustainable food systems.
Organization of the lecture:
The lecture series will take place in the fall semester of ETH Zurich, starting in the week of September 20, 2021 and lasting until December 17, 2021. During this period, the lecture will take place once a week, on Tuesdays from 18:00-20:00 (CEST/CET).
Each lecture will be organized in an online format and will be set up in two parts consisting of a public and a student lecture:
At the end of the lecture series, the course will be evaluated with the students.

Public lecture part (virtually via Zoom webinar):
The public lecture (18:00-19:00 CEST/CET) will take place virtually via this Zoom webinar: https://ethz.zoom.us/j/64352765873.
While most public lectures will take one hour, the last public lecture on “Agroecology, The Way Forward”, on Tuesday, 7th December 2021, will last 90 minutes.

Student’s lecture part (exchange with course instructors online via zoom):
The student’s lecture (19:15-20:00h CEST/CET) will take place online via a normal Zoom call: https://ethz.zoom.us/j/61315399346.

For further details, please refer to the Moodle-page of this course: https://moodle-app2.let.ethz.ch/course/view.php?id=15210

Lecture notes
On the Moodle-page you can find some pre-readings for the course.

Literature
Specific literature recommendations will be provided by the lecturers as appropriate

Prerequisites / notice
The course is designed as a public lecture on “Agroecology in the transition to sustainable food systems” to allow for different perspectives to be represented, heard and discussed.

751-7501-00L

Animal Housing and Behaviour

Abstract
The overall goal of this course is to provide general knowledge about the behaviour, housing and welfare of domestic animals.

Students will:
- Understand the basis of animal behaviour and how it is measured
- Acquire knowledge of housing systems and management of domestic animals
- Get a concept of animal needs and welfare

Objective
- The Human Body: nomenclature, orientations, tissues
- Musculoskeletal system, Muscle contraction
- Blood vessels, Heart, Circulation
- Blood, Immune system
- Respiratory system
- Acid/Base-Homeostasis

Lecture notes
Handouts/scripts are provided by the lecturers.

Literature
Silbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008
Faller A., Schuenke M. The Human Body; Thieme 2004
Netter F. Atlas of human anatomy; Elsevier 2014

Prerequisites / notice
This course is part of the Agricultural Sciences Bachelor (3rd Semester)

Biomedicine

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>227-0399-10L</td>
<td>Physiology and Anatomy for Biomedical Engineers I</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Wyss</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course offers an introduction into the structure and function of the human body, and how these are interconnected with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>- The Human Body: nomenclature, orientations, tissues
- Musculoskeletal system, Muscle contraction
- Blood vessels, Heart, Circulation
- Blood, Immune system
- Respiratory system
- Acid/Base-Homeostasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

551-0317-00L	Immunology I	W	3	2V	M. Kopf, A. Oxenius
Abstract	Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.				
Objective	Introduction into structural and functional aspects of the immune system. Basic knowledge of the mechanisms and the regulation of an immune response.				

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2045 of 2152
Introduction and historical background
- Innate and adaptive immunity, Cells and organs of the immune system
- B cells and antibodies
- Generation of diversity
- Antigen presentation and Major Histocompatibility (MHC) antigens
- Thymus and T cell selection
- Autoimmunity
- Cytotoxic T cells and NK cells
- Th1 and Th2 cells, regulatory T cells
- Allergies
- Hypersensitivities
- Vaccines, immune-therapeutic interventions

There is no script. Powerpoint presentations will be made available.

Electronic access to the documentation will be provided. The link can be found at "Lernmaterialien"

Kuby, Immunology, 9th edition, Freemen + Co., New York, 2020

This course introduces basic concepts of micro- and macronutrient nutrition. Micronutrients studied include fat-soluble and water-soluble vitamins, minerals and trace elements. Macronutrients include proteins, fat and carbohydrates. Special attention is given to nutrient digestion, bioavailability, metabolism and excretion with some focus on energy metabolism.

The nutrients are described in relation to digestion, absorption and metabolism. Special aspects of homeostasis and homeorhesis are emphasized.

There is no script. Powerpoint presentations will be made available.

Elmadfa I & Leitzmann C: Ernährung des Menschen
UTB Ulmer, Stuttgart, 4. überarb. Ausgabe 2004

Garrow JS and James WPT: Human Nutrition and Dietetics
Churchill Livingstone, Edinburgh, 11th rev. ed. 2005

This course covers chemical and biogeochemical processes in soils and water and their influence on the behavior and cycling of nutrients and pollutants in terrestrial and aquatic systems. Approaches for quantitative modeling of the processes are introduced and applied in selected examples.

1. Understanding of important chemical properties and processes of soils and water and their influence on the behavior (e.g., chemical speciation, bioavailability, mobility) of nutrients and pollutants.
2. Quantitative applications of chemical equilibria to processes in natural systems.

Chemical equilibria in aqueous solutions, gas equilibria, precipitation and dissolution of mineral phases, silicate weathering, weathering kinetics, formation of secondary minerals (clay minerals, oxides, sulfides), redox processes in natural systems, pH buffering and acidification, salinity and salinization, environmental behavior of selected essential and toxic trace elements.

Lecture slides on Moodle

Soil and Water Chemistry
- Chapters 1, 3, 4, 6, 7 and 11 in Sigg/Stumm – Aquatische Chemie, 6. Auflage, vdf, 2016.

Environmental Soil Physics/Vadose Zone Hydrology

The lecture courses Pedosphere and Hydrosphere are highly recommended.

752-6001-00L
Introduction to Nutritional Science

W 3 credits 2V M. B. Zimmermann, C. Wolfrum

This course introduces basic concepts of micro- and macronutrient nutrition. Micronutrients studied include fat-soluble and water-soluble vitamins, minerals and trace elements. Macronutrients include proteins, fat and carbohydrates. Special attention is given to nutrient digestion, bioavailability, metabolism and excretion with some focus on energy metabolism.

Domain A - Subject-specific Competencies
- Concepts and Theories
- Techniques and Technologies

Domain B - Method-specific Competencies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain C - Social Competencies
- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation

Domain D - Personal Competencies
- Adaptability and Flexibility
- Creative Thinking
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Objective
To introduce the students to the both macro- and micronutrients in relation to food and metabolism.

Content
The course is divided into two parts. The lectures on micronutrients are given by Prof. Zimmermann and the lectures on macronutrients are given by Prof. Wolfrum. Prof. Zimmermann discusses the micronutrients, including fat-soluble vitamins, water-soluble vitamins, minerals and trace elements. Prof. Wolfrum introduces basic nutritional aspects of proteins, fats, carbohydrates and energy metabolism.

Bachelor of Science (BSc) in Environmental Science

Autumn Semester 2021
Abstract

The course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales.

Objective

- characterize porous media at different scales
- parameterize structural, flow and transport properties of partially-saturated porous media
- quantify driving forces and resulting fluxes of water, solute, and heat in soils

Content

Week 1: Introduction, soil and vadose zone, units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil water content; soil texture; particle size distributions;

Week 2: Pore scale consideration, pore sizes, shapes and connectivity, coordination number, continuity and percolation, surface area, soil structure

Week 3: Capillarity – capillary rise, surface tension, Young-Laplace equation; Washburn equation; numerical lab

Week 4: Soil Water Potential - the energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); units and calculations and measurement of equilibrium soil water potential components

Week 5: Soil water characteristics - definitions and measurements; parametric models, fitting and interpretation, hysteresis; demo lab

Week 6: Saturated water flow in soils - laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; permeability and hydraulic conductivity, measurement and theoretical concepts (Kozeny-Carman)

Week 7: Unsaturated water flow in soils - unsaturated hydraulic conductivity models and applications; Richards equation, approximations of Richards equation for steady state; approximate solutions to infiltration (Green-Ampt, Philip); outlook on unstable and preferential flow

Week 8: Numerical solution of Richards equation – using Hydrus1D for simulation of unsaturated flow; choosing class project

Week 9: Energy balance and land atmosphere interactions - radiation and energy balance; evapotranspiration, definitions and estimation; evaporation stages and characteristic length; soil thermal properties; steady state heat flow; non-steady heat flow

Week 10: Root water uptake and transpiration

Week 11: Solute and gas transport in soils; transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion equation; solutions for pulse and step solute application; parameter estimation; salt balance.

Week 12: Summary of lectures; solution of old exam

Week 13: Written semester-end exam

Week 14: Short presentations of Hydrus class projects; discussion of written exam

Literature

Supplemental textbook (not mandatory) - Introduction to Environmental Soil Physics, by: D. Hillel

651-0032-00L Geology and Petrography W 4 credits 2V+1U K. Rauchenstein, M. O. Saar

Abstract

This course gives an overview of the basic concepts of geology and petrography and shows some links to the application of these concepts. The course consists of weekly lectures and bi-weekly exercises in groups.

Objective

This course gives an overview of the basic concepts of geology and petrography and shows some links to the application of these concepts.

Content

Lecture notes

Weekly handouts of PPT slides via MyStudies

Literature

The course is based on Press & Siever book Dynamic Earth by Grotzinger et al., available to ETH students via https://link.springer.com/book/10.1007/978-3-662-48342-8

651-3525-00L Introduction to Engineering Geology W 4 credits 2V+1U S. Löw

Abstract

This introductory course starts from a descriptions of the behavior and phenomena of soils and rocks under near surface loading conditions and their key geotechnical properties. Lab and field methods for the characterization of soils, rocks and rock masses are introduced. Finally practical aspects of ground engineering, including tunneling and landslide hazards are presented.

Objective

Understanding the basic geotechnical and geomechanical processes and properties of rocks and soils. Understanding the interaction of rock and soil masses with technical systems. Understanding the fundamentals of geological hazards.

Content

Lecture notes

Written course documentation available under “Kursunterlagen”.

Literature

751-3401-00L Plant Nutrition I W 2 credits 2V E. Frossard

Abstract

The aim of these lecture is to present the processes controlling the uptake and transport of nutrients by the plant, the assimilation of nutrients in the plant, the effect of nutrients on crop yield and quality, the role of the soil as a source of nutrients for crops, and the basic principles of fertilization of different crop types using mineral and organic fertilizers.
Objective
At the end of the lecture, students know how mineral nutrients are taken up through roots and circulate in the plants and what their roles in plants are. They understand the importance of nutrients for yield formation and for crop product quality. They are able to propose fertilization plans adapted for field crops growing under Swiss conditions.

Content
A general introduction explains the needs of appropriately managing nutrients in plant production. Afterwards, we will study the physiology of plant nutrition (nutrient uptake by roots; nutrient transports in the plant; physiological roles of nutrients in the plant). Then the role of nutrients for yield formation and their effects on crop quality is dealt with. Finally, the bases of crop fertilization are taught (availability of nutrient in soil; N, P and K fertilization; different types of fertilizers).

Lecture notes
The slides will be distributed

Literature
Schubert S 2006 Pflanzenährung Grundwissen Bachelor Ulmer UTB
Richner W. & Sinaj S., 2017. Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz (GRUD 2017). Agrarforschung Schweiz 8 (6), Spezialpublikation,
http://www.tll.de/visuplant/vp_idx.htm

Methods of Statistical Data Analysis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0625-01L</td>
<td>Applied Analysis of Variance and Experimental Design</td>
<td>W</td>
<td>5</td>
<td>2V+1U</td>
<td>L. Meier</td>
</tr>
<tr>
<td>401-0649-00L</td>
<td>Applied Statistical Regression</td>
<td>W</td>
<td>5</td>
<td>2V+1U</td>
<td>M. Dettling</td>
</tr>
</tbody>
</table>

Objective
The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear models.

Content
The students will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.

Lecture notes
The slides will be distributed

Literature

Prerequisites / notice
The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L “Applied Statistical Regression” and 401-3622-00L “Statistical Modelling” are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.

401-6215-00L Using R for Data Analysis and Graphics (Part I)

Abstract
The course provides the first part an introduction to the statistical software R (https://www.r-project.org/) for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.

Objective
The students will be able to use the software R for simple data analysis and graphics.
The course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part I of the course covers the following topics:
- What is R?
- R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics;
- Types of data: numeric, character, logical and categorical data, missing values;
- Simple (statistical) functions: summary, mean, var, etc., simple statistical tests;
- Writing simple functions;
- Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots.

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org

Note: Part I of UsingR is complemented and extended by Part II, which is offered during the second part of the semester and which can be taken independently from Part I.

Lecture notes
An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf

Prerequisites / notice
The course resources will be provided via the Moodle web learning platform.
As from FS 2019, subscribing via Mystudies should "automatically" make you a student participant of the Moodle course of this lecture, which is at
https://moodle-app2.let.ethz.ch/course/view.php?id=15518

401-6217-00L Using R for Data Analysis and Graphics (Part II) W 1.5 credits 1G M. Mächler

Abstract
The course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions.

Note: This part builds on "Using R... (Part I)", but can be taken independently if the basics of R are already known.

Objective
The students will be able to use the software R efficiently for data analysis, graphics and simple programming

Content
The course provides the second part of an introduction to the statistical software R (https://www.r-project.org/) for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part II of the course builds on part I and covers the following additional topics:
- Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects;
- More on R functions;
- Applying functions to elements of vectors, matrices and lists;
- Object oriented programming with R: classes and methods;
- Tayloring R: options
- Extending basic R: packages

Lecture notes
An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf

Prerequisites / notice
Basic knowledge of R equivalent to "Using R .. (part 1)" (= 401-6215-00L) is a prerequisite for this course.

The course resources will be provided via the Moodle web learning platform.
As from FS 2019, subscribing via Mystudies should "automatically" make you a student participant of the Moodle course of this lecture, which is at
https://moodle-app2.let.ethz.ch/course/view.php?id=15522

Ecology and Conservation Biology

701-0305-00L Vertebrate Ecology W 2 credits 2G J. Senn, K. Bollmann

Abstract
The course covers the ecology and conservation biology of birds and mammals. Important concepts from physiology, behavioural ecology, population biology, biogeography and community ecology will be linked to applications in conservation and management. A worldwide perspective will be complemented by a focus on the Central European fauna and its dynamics.

Objective
The students are familiar with important topics in animal ecology, with an emphasis on birds and mammals. They are able to link theoretical concepts with ecological phenomena and view them against an evolutionary backdrop. They can thus appraise applied aspects of the conservation and the use of animal populations, such as the influence of larger predators on prey populations or of herbivores on vegetation, the effects of hunting, landscape change, or of other human influences on animal populations. They understand the biogeographical characteristics of the Central European vertebrate fauna and its temporal and spatial dynamics.
The course deals with a number of main topics that include feeding and resource use, spatial behaviour and migrations, reproduction, population dynamics, competition and predation, parasites and diseases, biodiversity and distributions, and dynamics of the Central European fauna. There is an emphasis on linking theory with management issues in conservation and management of wildlife populations. During the first half of the course, examples will be drawn worldwide whereas during the second half, the course will focus more strongly on the European fauna, particularly of the Alpine region. Although the course is not designed to teach natural history of the native species, examples will cover much of the taxonomic breadth of the European fauna.

Program (JS: Josef Senn, KB: Kurt Bollmann):

27.9. – Birds and mammals: similarities & differences, evolution, moult in birds (JS & KB)
4.10. – Feeding I: Food, metabolism (KB)
11.10. - Feeding II: Herbivory, Foraging (KB)
18.10. – Distribution and habitat use (KB)
25.10. – Reproduction (KB)
1.11. – Population dynamics (KB)
8.11. - Predation (KB)
15.11. – Competition (JS)
22.11. – Parasitism and diseases (JS)
29.11. – Biogeography of central European birds and mammals (JS)
6.12. – Herbivores as landscape engineers (JS)
13.12. – Exploitation of mammals and birds (JS)
20.12. – Conservation biology, case studies (JS)

Lecture notes
Lecture notes will be available.

Literature
Literature will be listed in the lecture notes. Some additional papers will be distributed.

Some books relevant to the course are (optional reading):
- Suter, W. 2017. Ökologie der Wirbeltiere. Vögel und Säugetiere. UTB/Haupt, Bern. This book is based on the course. It is in German.

701-0405-00L Fresh Water: Concepts and Methods for Sustainable Management

Abstract
In this course, we will discuss inland water ecosystems, their basic ecological characteristics, as well as their anthropogenic influences and changes. Case studies are used to discuss concepts and methods for sustainable management. The case studies are mostly from Switzerland and refer to the Water Protection Act and the Swiss Biodiversity Strategy.

Objective
• basics concerning the functioning of the most important freshwater ecosystems
• basics of the sustainable management of aquatic ecosystems
• application of these principles with case studies
• critical analyses, organization of discussion groups

Content
1) 1st lesson: Student working groups, working method
2nd lesson: Water Protection Act
2) Biodiversity in floodplains
3) Revitalization of rivers and lakes
4) Floodplain management and revitalisation
5) Protection of watercourses and lakes
6) River widenings and ramps
7) Restoration of the sediment dynamics
8) Changing discharge and temperature regimes in rivers and lakes
9) Planning and operation of pumped storage power plants
10) Water and health, including climate change
11) Fish migration in multi-purpose watercourses
12) Mire protection
13) Final/ Evaluation/ Feedback

Lecture notes
Themenspezifische Unterlagen (Vorlesung Dozierende, Literatur) werden verteilt und auf Moodle zugänglich gemacht (Link folgt).

Literature
Literaturlisten zu den Gruppenarbeiten werden abgegeben und auf Moodle zugänglich gemacht (Link folgt).

Prerequisites / notice
Students will organize discussion groups.

Taught competencies

Domain A - Subject-specific Competencies
- Concepts and Theories assessed
- Techniques and Technologies assessed

Domain B - Method-specific Competencies
- Analytical Competencies assessed
- Decision-making assessed
- Media and Digital Technologies assessed
- Problem-solving assessed
- Project Management assessed

Domain C - Social Competencies
- Communication assessed
- Cooperation and Teamwork assessed
- Customer Orientation assessed
- Leadership and Responsibility assessed
- Self-presentation and Social Influence assessed
- Sensitivity to Diversity assessed
- Negotiation assessed

Domain D - Personal Competencies
- Adaptability and Flexibility assessed
- Creative Thinking assessed
- Critical Thinking assessed
- Integrity and Work Ethics assessed
- Self-awareness and Self-reflection assessed
- Self-direction and Self-management assessed

551-0421-00L Biology and Ecology of Fungi in Forests
Number of participants limited to 10.

The enrolment is done by the D-BIOL study
The students will understand the impact of environmental factors on plant physiology and will learn the theoretical basis and terminology of plant ecophysiology that is necessary to analyze yield potentials in agriculture. The students will learn about classical and latest studies in plant ecophysiology and will have hands-on experiences with equipment used in plant ecophysiology.

Abstract

Introduction of the biological and ecological basics of fungi in forests. Focusing on mycorrhizal, saprobic, and pathogenic fungi and their functional relevance in the forest ecosystems. To get to know current methodological research approaches on the basis of selected examples with practical works in forest and lab as well as excursions and lectures.

Objective

Knowledge of the fungi of forest and its ecological significance. Knowing of current methodological research approaches. Self-reliant and deepened activities of selected topics of fungi from forests.

Content

Introduction of the biological and ecological basics of fungi in forests. Focusing on mycorrhizal, saprobic, and pathogenic fungi and their functional relevance in the forest ecosystems. To get to know current methodological research approaches on the basis of selected examples with practical works in forest and lab as well as excursions and lectures.

Lecture notes

Unterlagen zum Kurs werden abgegeben.

Literature

Prerequisites / notice

Der Blockkurs findet an der Eidg. Forschungsanstalt WSL in Birmensdorf statt. Der Wald vor der Haustüre des Institutes macht diesen Kurs besonders praxisnah.

Erreichbarkeit mit Tram 14 bis Triemli, danach PTT-Bus 220 oder 350 bis Birmensdorf Sternen/WSL, oder mit S9 bis Birmensdorf SBB und mit PTT-Bus eine Station in Richtung Zürich bis Birmensdorf Sternen/WSL.

751-3700-00L Plant Ecophysiology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-3700-00L</td>
<td>Plant Ecophysiology</td>
<td>W</td>
<td>2 credits</td>
<td>2V</td>
<td>M. Gharun, M. Lehmann, A. Walter</td>
</tr>
</tbody>
</table>

Abstract

The general theme of this course is the effect of environmental factors (such as light, temperature, relative humidity, CO2 concentrations, etc.) on plant physiology: water uptake and transport, transpiration, CO2 gas exchange of plants (photosynthesis, respiration), growth and C allocation, yield and production, stress physiology. Lab and field measurements are included.

Objective

The students will understand the impact of environmental factors on plant physiology and will learn the theoretical basis and terminology of plant ecophysiology that is necessary to analyze yield potentials in agriculture. The students will learn about classical and latest studies in plant ecophysiology and will have hands-on experiences with equipment used in plant ecophysiology.

Content

Lecture notes

Handout stehen online.

Literature

Prerequisites / notice

Dieser Kurs basiert auf Grundlagen der Pflanzenbestimmung und der Pflanzenphysiologie. Er ist Basis für die Veranstaltungen Pflanzenbau, Teil Futterbau und Grasslandsysteme.

751-4801-00L System-Oriented Management of Herbivore Insects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-4801-00L</td>
<td>System-Oriented Management of Herbivore Insects</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>to be announced</td>
</tr>
</tbody>
</table>

Abstract

The focus is on the potential to assess strategies and tactics of pest management, in view of the demands from the economy, environment and society. Significant management measures will be explained using practical examples, such as surveillance and forecasting, resistance management, biological control as well as the use of plant protection products, incl. regulatory aspects and ecotoxicology.

Objective

The students gain a good understanding of fundamental aspects of pest management in agroecosystems. They will be able to assess options for action in view of requirements from the economy, environment and society. Further, they will learn to elaborate on current issues in pest management, and to critically evaluate case studies.

Environmental Chemistry/Ecotoxicology

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0201-00L</td>
<td>Introduction to Environmental Organic Chemistry</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>M. Sander, K. McNeill</td>
</tr>
</tbody>
</table>

Abstract

This course is an introduction to the environmental chemistry of organic molecules, focusing on equilibrium partitioning processes and non-redox reactions.

Objective

The students are able to:
- name and recognize the most important classes of environmentally relevant anthropogenic chemicals and identify chemical moieties governing their fate processes.
- explain, on the basis of physical-chemical foundations, the most important processes (i.e., partitioning and substitution and elimination reactions) which determine the environmental behavior of organic pollutants.
- identify, on the basis of chemical structure, the processes relevant for the environmental behavior of a compound.
- critically evaluate published work and data.
Analytical Chemistry I
- Overview of the most important classes of environmental organic pollutants
- Molecular interactions that determine the partitioning behavior (adsorption and absorption processes) of organic compounds between different environmental compartments (gas, liquid, solid)
- Physical-chemical properties (vapor pressure, aqueous solubility, air-water partition constant, organic solvent-water partition constants, etc.) and partitioning behavior of organic compounds between environmentally relevant phases (air, aerosols, soil, water, biota)
- Chemical transformation reactions of organic pollutants in aquatic and in terrestrial environments (hydrolysis, elimination, addition)

Lecture notes
Script will be distributed

Literature

Prerequisites / notice
Die Lehrveranstaltung richtet sich nicht nur an jene Studierenden, welche sich später chemisch vertiefen wollen, sondern ausdrücklich auch an alle jene, welche sich mit der Problematik von organischen Schadstoffen in der Umwelt vertraut machen wollen, um dieses Wissen in anderen Verflechtungen anzuwenden

701-0225-00L Organic Chemistry
- Reaction mechanisms in organic chemistry (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy)

Objective
This course builds on General Chemistry I and II.

The students will learn the basic reaction mechanisms in organic chemistry. They will be able to understand and formulate simple organic reactions.

Content
Descriptive chemistry of functional groups (alkyl halides, alkenes, aromatic systems, carbonyls).

NMR spectroscopy.

Literature
Carsten Schmuck, Basisbuch Organische Chemie, Pearson

Prerequisites / notice
Der Stoff der Basischemie wird vorausgesetzt.

529-0051-00L Analytical Chemistry I
- Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:
 - Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
 - IR spectroscopy: Experimental basics, chemical shift, spin-spin coupling.
 - NMR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy.
 - UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) and optical rotation dispersion (ORD).

Objective
Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications

Content
Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation

Literature
- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995

Prerequisites / notice
Exercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounds" (4th semester) is recommended.

Environmental Physics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0479-00L Environmental Fluid Dynamics</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>H. Wernli, M. Röthlisberger</td>
<td></td>
</tr>
</tbody>
</table>
Abstract
This course covers the basic physical concepts and mathematical equations used to describe environmental fluid systems on the rotating Earth. Fundamental concepts (e.g. vorticity dynamics and waves) are formally introduced, applied quantitatively and illustrated using examples. Exercises help to deepen knowledge of the material.

Objective
- to name the bases, concepts and methods of environmental fluid dynamics.
- to understand and discuss the components of the basic physical equations in fluid dynamics
- to apply basic mathematical equations to simple problems of environmental fluid dynamics

Content
Basic physical terminology and mathematical laws:
- Continuum hypothesis, forces, constitutive laws, state equations and basic principles of thermodynamics, kinematics, laws of mass and momentum on rotating earth.
- Concepts and illustrative flow systems: vorticity dynamics, boundary layers, instability, turbulence - with respect to environmental fluid systems.
- Scale analysis: dimensionless variables and dynamical similarity, simplification of the fluid system, e.g. shallow water assumption, geostrophic flow.
- Waves in environmental fluid systems.

Lecture notes
In english language

Literature
Will be presented in class.
See also: web-site.

101-0203-01L Hydraulics I | W | 5 credits | 3V+1U | R. Stocker |
Abstract
The course teaches the basics of hydromechanics, relevant for civil and environmental engineers.

Objective
Familiarization with the basics of hydromechanics of steady state flows

Content
Properties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall.
Tackling Environmental Problems I & II, students analyze a sustainability topic, identify a specific problem within it, develop measures to address sustainability problems, and test the measures for feasibility by presenting them to concerned stakeholders. Some of the students develop their measures to such a degree, that the measures could actually be implemented. Tackling Environmental Problems III provides the opportunity to do so. Together with partners from civil society, the private and the public sector, students agree on the implementation plan, the financial and legal aspects and put the measure into practice.

Environmental Planning

101-0515-00 Projektmanagement and 103-0313-00 Raum- und Landschaftsentwicklung are prerequisites for the Master's degree in Spatial Development and Infrastructure Systems and should be successfully completed in the Bachelor's degree if possible.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0009-00L</td>
<td>Tackling Environmental Problems III</td>
<td>W</td>
<td>3</td>
<td>4U</td>
<td>C. E. Pohl, M. Mader, B. B. Pearce</td>
</tr>
</tbody>
</table>

Students put the measures they developed during the courses Tackling Environmental Problems I & II into practice, in collaboration with partners from civil society, the public and the private sector.

Students are able to put the measures they developed to address sustainability problems into practice.

In Tackling Environmental Problems I & II, students analyze a sustainability topic, identify a specific problem within it, develop measures to address the problem and test the measures for feasibility by presenting them to concerned stakeholders. Some of the students develop their measures to such a degree, that the measures could actually be implemented. Tackling Environmental Problems III provides the opportunity to do so. Together with partners from civil society, the private and the public sector, students agree on the implementation plan, the financial and legal aspects and put the measure into practice.

Tackling Environmental Problems I & II is a prerequisite for taking the course Tackling Environmental Problems III.
ETH Week 2021: Health for Tomorrow

All ETH Bachelor’s, Master’s and exchange students can take part in the ETH Week. No prior knowledge is required.

Objective
- Domain specific knowledge: Students have immersed knowledge about a certain complex, societal topic which will be selected every year. They understand the complex system context of the current topic, by comprehending its scientific, technical, political, social, ecological and economic perspectives.

- Analytical skills: The ETH Week participants are able to structure complex problems systematically using selected methods. They are able to acquire further knowledge and to critically analyse the knowledge in interdisciplinary groups and with experts and the help of team tutors.

- Design skills: The students are able to use their knowledge and skills to develop concrete approaches for problem solving and decision making to a selected problem statement, critically reflect these approaches, assess their feasibility, to transfer them into a concrete form (physical model, prototypes, strategy paper, etc.) and to present this work in a creative way (role-plays, videos, exhibitions, etc.).

- Self-competence: The students are able to plan their work effectively, efficiently and autonomously. By considering approaches from different disciplines they are able to make a judgment and form a personal opinion. In exchange with non-academic partners from business, politics, administration, nongovernmental organisations and media they are able to communicate appropriately, present their results professionally and creatively and convince a critical audience.

- Social competence: The students are able to work in multidisciplinary teams, i.e. they can reflect critically their own discipline, debate with students from other disciplines and experts in a critical-constructive and respectful way and can relate their own positions to different intellectual approaches. They can assess how far they are able to actively make a contribution to society by using their personal and professional talents and skills and as "Change Agents".

- Remote collaboration competence: The students work in a hybrid setting blending physical and virtual communication and collaboration methods and tools. They experience the potential and limitations of remote collaboration.

While deepening their knowledge about health and well-being, students will be introduced to various methods and tools for generating creative ideas and understand how different people are affected by each part of the system. In addition to lectures and literature, students will acquire knowledge via excursions into the real world, empirical observations, and conversations with researchers and experts.

A key attribute of the ETH Week is that students are expected to find their own problem, rather than just solve the problem that has been handed to them.

Therefore, the first three days of the week will concentrate on identifying a problem the individual teams will work on, while the last two days are focused on generating solutions and communicating the team’s ideas.

No prerequisites. Programme is open to Bachelor and Masters from all ETH Departments. All students must apply through a competitive application process at www.ethz.ch/ethweek. Participation is subject to successful selection through this competitive process.
The course covers the following topics:
- What is GIS? What are spatial data?
- The representation of reality by means of spatial data models: vector, raster, TIN
- The four phases of data modelling: Spatial, conceptual, logical and physical model
- Possibilities of data collection
- Transition of reference frame
- Spatial Analysis I: query and manipulation of vector data
- Spatial Analysis II: operators and functions with raster data
- Digital elevation models and derived products
- Process modelling with vector and raster data
- Presentation possibilities of spatial data

One Friday is reserved for a field trip or guest speaker;

Prerequisites / notice
Aufgrund der Größe des verfügbaren EDV-Schulungsraumes ist die Teilnehmerzahl auf 50 Studierende beschränkt! Für die Übungen werden die Studierenden auf zwei Zeitfenster aufgeteilt. Pro Zeitfenster können maximal 25 Studierende betreut werden.

701-0967-00L Project Development in Renewable Energies

Number of participants limited to 30.

Waiting list will be deleted October 6th, 2021.

Waiting list will be deleted October 6th, 2021.

Abstract

Realization of projects in the field of renewable energy, analysis of legal frame conditions and risks.

The students learn basics of renewable energy project realization from international experts active in the field.

They identify different tasks of various investor types.

They develop sample projects in groups.

Objective

You become acquainted with the regulatory, juridical and economic requirements of project development in renewable energies in the field of wind power, solar power and hydro power.

You learn to launch and judge projects by exercises in groups.

You recognize chances and risks of renewable energy projects.

Content

Business models for renewable energy projects

Introduction of market trends, market structure, technical trends and regulation in Switzerland and in the EU internal energy market.

Necessary frame conditions for profitable projects.

Project development samples and exercises in wind power, solar power, hydro power, photovoltaics.

due diligence and country assessment.

Literature

IEA PVPS: TRENDS 2014 IN PHOTOVOLTAIC APPLICATIONS

http://www.iea-pvps.org/

Bundesamt für Energie: Perspektiven für die Grosswasserkraft in der Schweiz

UNEP: Global Trends in Renewable Energy Investments

Mit einer grünen Anlage schwarze Zahlen schreiben

http://www.rechsteiner-basel.ch/index.php?id=27

Lecture notes

PPT presentation will be distributed (in German).

special frames:

http://www.rechsteiner-basel.ch/Lehrmittel.27.0.html

Prerequisites / notice

For group exercise and presentation reasons the number of participants is limited to 30 students. For exercises students build learning and presentational groups.

103-0313-00L Spatial Planning and Landscape Development

W 5 credits 4G A. Grêt-Regamey, K. Hollenstein, J. Van Weizemael

Waiting list will be deleted October 6th, 2021.

Waiting list will be deleted October 6th, 2021.

Abstract

The lecture introduces into the main-features of spatial planning.

Attended will be the subjects planning as a national responsibility, instruments of spatial planning, techniques for problem solving in spatial planning and the Swiss concept for national planning.

The lecture is complemented with in-depth topics and international examples.

Objective

Die Studierenden kennen die Grundzüge der Raumplanung, ihre wichtigsten Instrumente und Problemlösungsverfahren. Sie können das vermittelte theoretische Wissen direkt an konkreten, praxisorientierten Übungsaufgaben umsetzen.

- Grundzüge der Raumplanung und ihre wichtigsten Instrumente kennenlernen
- Erarbeiten der Fähigkeit, räumliche Probleme zu erkennen und Problemlösungsverfahren auf diese anzuwenden
- Planung und Landmanagement als interaktiven Prozess kennenlernen und anwenden
- Verstehen der mit Fläche und Boden verbundenen Potentiale, Nutzung und Prozesse
- Das vermittelte theoretische Wissen direkt an konkreten, praxisorientierten Fallbeispielen umsetzen können
Public Transport and Railways

101-0415-00L

Abstract
Fundamentals of public and collective transport, in its different forms.

Categorization of performance dimensions of public transport systems, and their implications to their design and operations.

Objective
Teaches the basic principles of public transport network and topology design, to understand the main characteristics and differences of public transport networks, based on buses, railways, or other technologies.

Teaches students to recognize the interactions between the infrastructure design and the production processes, and various performance criteria based on various perspective and stakeholders.

At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate different choices of technologies to suitable cases; optimize the use of resources in public transport.

Content
- Infrastructure: Planning processes and decision levels in network development and infrastructure planning, planning of topographies; tracks and roadways, station infrastructures; Fundamentals of the infrastructure design for lines; track geometries; switches and crossings
- Vehicles: Classification, design and suitability for different goals
- Network design: design dilemmas, conceptual models for passenger transport on long distance, urban regional transport.

Lecture notes
Slides, in English, are made available some days before each lecture.

Literature
Reference material books are provided in German and English (list disseminated at lecture), plus Skript Bahninfrastruktur; System- und Netzplanung

Taught competencies
- **Domain A - Subject-specific Competencies**
 - Concepts and Theories
 - Techniques and Technologies
 - Assessed

- **Domain B - Method-specific Competencies**
 - Analytical Competencies
 - Decision-making
 - Media and Digital Technologies
 - Problem-solving
 - Assessed

- **Domain C - Social Competencies**
 - Communication
 - Cooperation and Teamwork
 - Customer Orientation
 - Leadership and Responsibility
 - Self-presentation and Social Influence
 - Self-awareness and Self-reflection
 - Assessed

- **Domain D - Personal Competencies**
 - Adaptability and Flexibility
 - Creative Thinking
 - Critical Thinking
 - Integrity and Work Ethics
 - Assessed

101-0515-00L

Abstract
The course gives a detailed introduction on various aspects of professional project management out of theory and practice. Established concepts and methods for project organization, planning, execution and evaluation are introduced and major challenges discussed. The course includes an introduction on specialized project management software as well as agile project management concepts.

Objective
Projects are not only the base of work in modern enterprises but also the primary type of cooperation with customers. Students of ETH will often work in or manage projects in the course of their career. Good project management knowledge is not only a guarantee for individual, but also for company wide success.

The goal of this course is to give a detailed introduction into project management. The students should learn to plan and execute a project.

Content
Project planning (aims, appointments, capacities, efforts and costs), project organization, scheduling and risk analysis, project execution, supervision and control, project evaluation, termination and documentation, conflict management, multinational project management, IT support as well as agile project management methods such as SCRUM.

Lecture notes
No. The lecture slides and other additional material will be available for download from Moodle a week before each class.

Specialization in an Environmental System

Atmosphere and Climate

The following courses are highly recommended as preparation for the Specialization in Atmosphere and Climate:

- [Specialization in an Environmental System](#)
- [Atmosphere and Climate](#)
Numerical Methods in Environmental Sciences

701-0459-00L

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0459-00L</td>
<td>Seminar for Bachelor Students: Atmosphere and Climate</td>
<td>W</td>
<td>3</td>
<td>2S</td>
<td>R. Knutti, H. Joos, O. Stebler</td>
</tr>
</tbody>
</table>

Abstract
In this seminar all students in the realm of atmospheric and climate science from D-ERDW and D-USYS convene to train presentation techniques (talks, posters) by means of classic and modern scientific articles.

Objective
In this seminar, students learn how to read scientific publications and how to transfer the scientific knowledge to a broader audience by means of oral and poster presentations. Students also get insight into the different research areas at the Institute for Atmospheric and Climate Science.

Content
1st week: course organisation and presentation of the institute
2nd and 3rd week: introduction to oral presentation technique
week 4 to 10: students talks
11th week: introduction to poster presentation technique
12th and 13th week: poster design
14th week: concluding poster presentation

Lecture notes
Documents are offered via the course's web page.

Literature
Documents are offered via the course's web page.

Prerequisites / notice
This course can only be offered to a limited number of students, however, in any case for everybody having to attend it compulsory. We beg you to sign in to this course early.

Numerical Methods in Environmental Sciences

701-0461-00L

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0461-00L</td>
<td>Numerical Methods in Environmental Sciences</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>C. Schär, C. Zeman</td>
</tr>
</tbody>
</table>

Abstract
This lecture imparts the mathematical basis necessary for the development and application of numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.

Objective
This lecture imparts the mathematical basis necessary for the development and application of numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.

Content
Classification of numerical problems, introduction to finite-difference methods, time integration schemes, non-linearity, conservative numerical techniques, an overview of spectral and finite-element methods. Examples and exercises from a diverse cross-section of Environmental Science.

Lecture notes
Documents are offered via the course's web page.

Literature
Documents are offered via the course's web page.

Prerequisites / notice
This course can only be offered to a limited number of students, however, in any case for everybody having to attend it compulsory. We beg you to sign in to this course early.

Atmospheric Chemistry

701-0471-01L

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0471-01L</td>
<td>Atmospheric Chemistry</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Ammann, T. Peter</td>
</tr>
</tbody>
</table>

Abstract
The lecture provides an introduction to atmospheric chemistry at bachelor level. It introduces the fundamentals of gas phase reactions, the concept of solubility and reactions in aerosols and in clouds. It explains the chemical and physical processes responsible for global (e.g. stratospheric ozone depletion) as well as regional (e.g. urban air pollution) environmental problems.

Objective
The students will understand the basics of gas phase reactions and of reactions and processes in aerosols and clouds. The students will understand the most important chemical processes in the troposphere and the stratosphere.

Content
- Origin and properties of the atmosphere: composition (gases and aerosols), structure, large scale dynamics, UV radiation
- Thermodynamics and kinetics of gas phase reactions: enthalpy and free energy of reactions, rate laws, mechanisms of bimolecular and termolecular reactions.
- Tropospheric photochemistry: Photolysis reactions, photochemical O3 formation, role and budget of HOx, dry and wet deposition
- Aerosols and clouds: chemical properties, primary and secondary aerosol sources, solubility of gases, hygroscopicity, kinetics of gas to particle transfer, N2O5 chemistry, SO2 oxidation, secondary organic aerosol formation
- Air quality: role of planetary boundary layer, summer- versus winter-smog, environmental problems, legislation, long-term trends
- Stratospheric chemistry: Chapman cycle, Brewer-Dobson circulation, catalytic ozone destruction cycles, polar ozone hole, Montreal protocol
- Global aspects: global budgets of ozone, methane, CO and NOx, air quality - climate interactions

Lecture notes
Lecture materials (slides) are provided continuously during the semester, at least 2 days before each lecture.

Prerequisites / notice
Attendance of the lecture "Atmosphäre" LV 701-0023-00L or equivalent knowledge is a pre-requisite, and basic courses in physics and chemistry are expected.

Weather Systems

701-0473-00L

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0473-00L</td>
<td>Weather Systems</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. A. Sprenger, F. Scholder-Aemisegger</td>
</tr>
</tbody>
</table>

Abstract
Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer

Objective
The students are able to
- explain basic measurement and analysis techniques that are relevant in atmospheric dynamics
- to discuss the mathematical basics of atmospheric dynamics, based on selected atmospheric flow phenomena
- to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
- to explain how mountains influence the atmospheric flow on different scales
- basic understanding of the role of moist adiabatic processes for weather systems and why stable water isotopes are useful in this context

Content
Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer

Lecture notes
Lecture notes and slides

Literature
Atmospheric Science, An Introductory Survey
John M. Wallace and Peter V. Hobbs, Academic Press

Atmospheric Physics

701-0475-00L

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0475-00L</td>
<td>Atmospheric Physics</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>U. Lohmann</td>
</tr>
</tbody>
</table>

Objective
The students will understand the basics of gas phase reactions, the concept of solubility and reactions in aerosols and in clouds. It explains the chemical and physical processes responsible for global (e.g. stratospheric ozone depletion) as well as regional (e.g. urban air pollution) environmental problems.

Content
Classification of numerical problems, introduction to finite-difference methods, time integration schemes, non-linearity, conservative numerical techniques, an overview of spectral and finite-element methods. Examples and exercises from a diverse cross-section of Environmental Science.

Lecture notes
Documents are offered via the course's web page.

Literature
Documents are offered via the course's web page.

Prerequisites / notice
This course can only be offered to a limited number of students, however, in any case for everybody having to attend it compulsory. We beg you to sign in to this course early.

These courses should be successfully completed during the second year.
This course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation especially prediction of thunderstorm development, aerosol physics as well as artificial weather modification.

Objectives
- Students are able to explain the mechanisms of thunderstorm formation using knowledge of thermodynamics and cloud microphysics.
- Students are able to evaluate the significance of clouds and aerosol particles for artificial weather modification.

Content
This course starts introducing selected concepts of thermodynamics for atmospheric processes. The students learn the concept of the thermodynamic equilibrium and derive the Clausius-Clayperon equation from the first law of thermodynamics. This equation is central for the phase transitions in clouds.

Aerosol particles are introduced in terms of their physical properties and their role in cloud formation based on Köhler theory. Thereafter cloud microphysical processes including ice nucleation are discussed.

With these basics, the different forms of precipitation formation (convective vs. stratiform) is discussed as well as the formation and different stages of severe convective storms.

The concepts are applied to understand and judge the validity of different proposed artificial weather modification ideas.

Lecture notes
Powerpoint slides and chapters from the textbook will be made available on moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=15387

Literature

Prerequisites / notice
50% of the time we use the concept of "flipped classroom" (en.wikipedia.org/wiki/Flipped_classroom), which we introduce at the beginning.

We offer a lab tour, in which we demonstrate how some of the processes discussed in the lectures are measured with instruments.

There is an additional tutorial right after each lecture to give you the chance to ask further questions and discuss the exercises. The participation is recommended but voluntary.

We provide a lab tour, in which we demonstrate how some of the processes discussed in the lectures are measured with instruments.

The concepts are applied to understand and judge the validity of different proposed artificial weather modification ideas.

Biogeochemistry
The following courses are highly recommended as preparation for the Specialization in Biogeochemistry:

701-0225-00L Organic Chemistry (Autumn semester)
752-0100-00L Biochemie (Autumn semester)
752-1300-00L Introduction to Toxicology (Spring semester)

These courses should be successfully completed during the second year.

Number Title Type ECTS Hours Lecturers
701-0201-00L Introduction to Environmental Organic Chemistry W 3 credits 2G M. Sander, K. McNeill

Abstract
This course is an introduction to the environmental chemistry of organic molecules, focusing on equilibrium partitioning processes and non-redox reactions.

Objective
- The students are able to name and recognize the most important classes of environmentally relevant anthropogenic chemicals and identify chemical moieties governing their fate processes.
- They are able to explain, on the basis of physical-chemical foundations, the most important processes (i.e., partitioning and substitution and elimination reactions) which determine the environmental behavior of organic pollutants.
- They are able to identify, on the basis of chemical structure, the processes relevant for the environmental behavior of a compound.
- They are able to critically evaluate published work and data.

Content
- Overview of the most important classes of environmental organic pollutants
- Molecular interactions that determine the partitioning behavior (adsorption and absorption processes) of organic compounds between different environmental compartments (gas, liquid, solid)
- Physical-chemical properties (vapor pressure, aqueous solubility, air-water partition constant, organic solvent-water partition constants, etc) and partitioning behavior of organic compounds between environmentally relevant phases (air, aerosols, soil, water, biota)
- Chemical transformation reactions of organic pollutants in aquatic and in terrestrial environments (hydrolysis, elimination, addition)

Lecture notes
Script will be distributed

Literature

Prerequisites / notice
Die Lehrveranstaltung richtet sich nicht nur an jene Studierenden, welche sich später chemisch vertiefen wollen, sondern ausdrücklich auch an alle jene, welche sich mit der Problematik von organischen Schadstoffen in der Umwelt vertraut machen wollen, um dieses Wissen in anderen Vertiefungen anzuwenden

701-0419-01L Seminar for Bachelor Students: Biogeochemistry W 3 credits 2S D. I. Christl, A. N'Guiyen van Chinh

Current research topics are presented and discussed based on scientific literature. The students prepare a presentation with the support of an expert. Subsequently, the topics are discussed jointly by students and experts in student-moderated discussion rounds. Presentation and moderation techniques are introduced and trained in the seminar, supported by instructions for constructive feedback.
Selected handouts will be distributed in class.

Week 1: Introduction, soil and vadose zone, units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil water content; soil texture; particle size distributions; capillarity – capillary rise, surface tension, Young-Laplace equation; Washburn equation; numerical lab.

Week 2: Pore scale consideration, pore sizes, shapes and connectivity, coordination number, continuity and percolation, surface area, soil structure.

Week 3: Capillarity – capillary rise, surface tension, Young-Laplace equation; Washburn equation; numerical lab.

Week 4: Soil Water Potential - the energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); units and calculations and measurement of equilibrium soil water potential components.

Week 5: Soil water characteristics - definitions and measurements; parametric models, fitting and interpretation, hysteresis; demo lab.

Week 6: Saturated water flow in soils - laminar flow in tubes (Poiseuille’s Law); Darcy’s Law, conditions and states of flow; permeability and hydraulic conductivity, measurement and theoretical concepts (Kozeny-Carman).

Week 7: Unsaturated water flow in soils - unsaturated hydraulic conductivity models and applications; Richards equation, approximations of Richards equation for steady state; approximate solutions to infiltration (Green-Ampt, Philip); outlook on unstable and preferential flow.

Week 8: Numerical solution of Richards equation – using Hydrus1D for simulation of unsaturated flow; choosing class project.

Week 9: Energy balance and land atmosphere interactions - radiation and energy balance; evapotranspiration, definitions and estimation; evaporation stages and characteristic length; soil thermal properties; steady state heat flow; non-steady heat flow.

Week 10: Root water uptake and transpiration.

Week 11: Solute and gas transport in soils; transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion equation; solutions for pulse and step solute application; parameter estimation; salt balance.

Week 12: Summary of lectures; solution of old exam.

Week 13: Written seminar-end exam.

Week 14: Short presentations of Hydrus class projects; discussion of written exam.

There are no highly recommended courses for the Specialization in Human-Environment Systems.

Supplemental textbook (not mandatory) - Introduction to Environmental Soil Physics, by: D. Hillel

There are no highly recommended courses for the Specialization in Human-Environment Systems.
The course will address:

Will be provided in the seminar.

A. Giger Dray, P. Waeber

The course will focus on integrated landscape approaches for the management of tropical forest landscapes, by addressing the complex interactions between ecological processes, stakeholders' strategies and public policies. Dedicated tools such as games and simulation models to improve knowledge and foster collective decision-making processes will be explored.

The course will address:

1- Definitions of forests and agroforests, deconstructing the rigid historical divisions between these two, and showing the complexities and implications legal definitions will have on the management systems. We will also address the definitions of Social and Ecological System (SES) and Resilience, useful for the entire course. We will provide insights on how to describe the SES using the ARDI methodology (Actors, Resources, Dynamics and Interactions)

2- Methodological frameworks to understand drivers and coping strategies of stakeholders (Sustainable livelihood framework & Vulnerability; Ecosystem Services & trade-offs; Companion Modelling and Adaptive Management; Surveys and Participatory Appraisals)

The course will tackle new and emerging topics such as the role of forests and trees in adaptation to climate change, the links between forest, poverty and food security, and the need to mainstream conservation of biodiversity outside protected areas. The course will draw from diverse disciplines, from ecology, economy, sociology, political sciences and legal studies as the most preeminent ones.

The course will enlarge the scope of the students from the ecological process to the social and political components of tropical social and ecological systems. It will address topics and case studies that the students will have little opportunity to address elsewhere, linking them to issues of global relevance in environmental sciences.

Environmental decision-making is at the core of sustainability policies and management of human-environment systems. This lecture provides an introduction to the conceptual background for environmental decision-making and teaches the practicalities of environmental decision-making by means of exemplary real world cases.

Objective

- study the relevant aspects (drivers, actors, etc.) in concrete situations of environmental decision-making;
- evaluate policy instruments and other institutional solutions for improved environmental decision-making;
- modify and apply the approaches to deal with environmental decision-making as discussed in the case-studies to other cases.

Content

The lecture starts with the introduction of basic topics related to environmental decision-making. It then switches to a flipped-classroom format with individual project work. In this project work, the students work with existing governmental, academic, NGO, etc. reports on specific situations that involve environmental decision-making. The second half of the lecture closes with a synthesis of the project work in the plenary. The second half of the semester focuses on a short individual project on a case of environmental decision-making chosen by each student, again organised in flipped-classroom format. The lecture closes with plenary lessons where the group work and individual project work is located in a broader context of central aspects of environmental decision-making and where a synthesis is drawn on the topics addressed in this lecture.

Lecture notes

Will be made available in the lecture.

Literature

Will be indicated in the lecture.

363-0537-00L

Abstract

Resource and Environmental Economics

W 3 credits 2G L. Bretschger

Objective

A successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and environmental economics and the ability to solve typical problems using appropriate tools consisting of concise verbal explanations, diagrams or mathematical expressions. Concrete goals are first of all the acquisition of knowledge about the main questions of resource and environmental economics and about the foundation of the theory with different normative concepts in terms of efficiency and fairness. Secondly, students should be able to deal with environmental externalities and internalisation through appropriate policies or private negotiations, including knowledge of the available policy instruments and their relative strengths and weaknesses. Thirdly, the course will allow for in-depth economic analysis of renewable and non-renewable resources, including the role of the role of stock constraints, regeneration functions, market power, property rights and the impact of technology. A fourth objective is to successfully use the well-known tool of cost-benefit analysis for environmental policy problems, which requires knowledge of the benefits of an improved natural environment. The last two objectives of the course are the acquisition of sufficient knowledge about the economics of sustainability and the application of environmental economic theory and policy at international level, e.g. to the problem of climate change.

Content

The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy.

Literature

851-0577-00L

Abstract

Principles of Political Science

W 4 credits 2+1U T. Bernauer

Objective

This course covers basic questions, concepts, theories, methods, and empirical findings of political science.

Content

This course covers basic questions, concepts, theories, methods, and empirical findings of political science.

This course covers basic questions, concepts, theories, methods, and empirical findings of political science.

Dieser Kurs wird aufgrund der immer noch prekären Covid-19-Lage voraussichtlich online durchgeführt. Alle Studierenden, die den Kurs via mystudies belegt haben, werden rund eine Woche vor Kursbeginn über die aktuelle Situation informiert.

Der Kurs basiert auf dem Lehrbuch «Einführung in die Politikwissenschaft» von Bernauer et al. Jede Kurseinheit konzentriert sich auf ein bis zwei Kapitel dieses Buches, die die Studierenden vor der betreffenden Kurseinheit lesen müssen. Die 5. Auflage dieses Lehrbuchs ist momentan in Bearbeitung. Deshalb erhalten die Studierenden die Entwurfsversion elektronisch und müssen das Buch nicht kaufen.

Tipp: Lesen Sie zuerst genau die Übungsfragen für das zu studierende Buchkapitel (https://ib.etzh.ch/teaching/pwgrundlagen.html) und erst danach das betreffende Kapitel. Sie wissen dann beim Lesen schon vorweg, auf was Sie besonders genau schauen sollten.

Leistungskontrollen

a) Erster Test (12.11.2021, 14:15–15:00)
b) Zweiter Test (17.12.2021, 14:15–15:00)

Ergebnisse der Leistungskontrollen

Ja nach Covid-19 Situation werden die beiden Tests entweder im Kursraum oder online durchgeführt (ausschliesslich eine der beiden Varianten, keine Wahlmöglichkeit).

Kreditpunkte

4 ECTS-Punkte (Zeitauftand insgesamt ca. 120 Arbeitsstunden)
Lecture notes

Pro Kurseinheit (Woche) sind ca. 30–40 Seiten zu lesen. Für einzelne Kurseinheiten müssen Sie etwas mehr lesen (zwei Buchkapitel, ca. 60–80 Seiten insgesamt). Es lohnt sich also, bereits von Anfang des Kurses an ein wenig «auf Vorrat» zu lesen.

Weitere Lehrmaterialien finden Sie auf: http://www.ib.etz.ch/teaching/pwgrundlagen

Prerequisites / notice

Sie müssen die zugewiesenen Buchkapitel vor der jeweiligen Kurseinheit gründlich lesen und Fragen notieren, damit wir effizient vorankommen. Pro Kurseinheit (Woche) sind ca. 30–40 Seiten zu lesen. Für einzelne Kurseinheiten müssen Sie etwas mehr lesen (zwei Buchkapitel, ca. 60–80 Seiten insgesamt). Es lohnt sich also, bereits von Anfang des Kurses an ein wenig «auf Vorrat» zu lesen.

Tutorat: Im Tutorat wird das aus der Lektüre der Buchkapitel sowie der Vorlesung mitgebrachte Wissen weiter vertieft, u.a. anhand von möglichen Testfragen. Eine regelmässige und engagierte Teilnahme am Tutorat, die gründliche Lektüre der Buchkapitel und die Teilnahme an der Vorlesung stellen sicher, dass Sie bei den Tests keine «Überraschungen» erleben werden.

Bei einer Gesamtnote (auf 0.25 gerundeter Mittelwert der beiden Tests) ≥ 4.0 gilt der Kurs als bestanden und es werden vier ECTS Punkte zugeteilt. Ausnahme: Im BA Staatswissenschaften werden die vier ECTS Punkte erst nach erfolgreichem Absolvieren der Basisprüfung zugeteilt.

Für die Studierenden des BA Staatswissenschaften ist der Inhalt dieses Kurses Prüfungstoff für die Hälfte der Basisprüfung im Fach Politikwissenschaft, die von Prof. Bernauer durchgeführt wird (die zweite Hälfte der Basisprüfung führt Prof. Schimmelfennig durch). Das Absolvieren der beiden Tests während des Semesters ist für Studierende des BA Staatswissenschaften freiwillig, aber stark empfohlen. Für jeden der beiden Tests erhalten Sie bei einer Note von 4 oder mehr einen Bonus für die Basisprüfung im Fach Politikwissenschaft. Sie können sich also durch das Absolvieren der beiden Tests in der Basisprüfung verbessern bzw. ein Polster erwerben.

Prüfungstoff ist der gesamte Inhalt der Vorlesung und des Tutorats. Für diesen Kurs ist keine zusätzliche (separate) Prüfungsanmeldung nötig, die Anmeldung für den Kurs in mystudies deckt alles ab.

Für die beiden Tests dürfen Sie vier Seiten Notizen benutzen (zwei Blätter beidseitig beschrieben). Bitte beachten Sie, dass die Notizblätter handschriftlich beschrieben sein müssen. Elektronisch bedruckte Notizblätter werden ausnahmslos nicht zur Prüfung zugelassen.

Wenn Sie gerne mehr über sozialwissenschaftliche Konzepte und Forschungsmethoden lernen möchten, sind diese beiden Bücher ausserordentlich gut:

Environmental Biology

The following courses are highly recommended as preparation for the Specialization in Environmental Biology:

227-0399-10L Physiology and Anatomy for Biomedical Engineers I (Autumn semester)
551-0435-00L Systematische Biologie: Pflanzen (Spring semester)
701-0360-00L Systematische Biologie: Zoologie (Spring semester)
227-0398-10L Physiology and Anatomy for Biomedical Engineers II (Spring semester)

These courses should be successfully completed during the second year.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0301-00L</td>
<td>Applied Systems Ecology</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>A. Gessler, C. Grossiord</td>
</tr>
</tbody>
</table>

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2062 of 2152
This course provides ecological systems' knowledge needed to question applied sustainability solutions. We will critically assess the complexity of current environmental issues, illustrating basic ecological concepts and principles. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as green infrastructure to manage water.

The course is structured around four larger topical areas: (1) Integrated Water Management -- Green infrastructure (land management options) as an alternative to engineered solutions (e.g., large reservoirs) in flood and drought management; (2) Fire dynamics, the water cycle and biodiversity -- The surprising dynamics of species life cycles and populations in arid landscapes; (3) Rewilding, e.g., re-introducing apex predators (e.g., wolves), or large ungulates (e.g., bisons) in protected areas -- A nature conservation trend with counterintuitive effects; (4) Coupling of aquatic and terrestrial systems: carbon, nitrogen and phosphorus transfers of global importance on landscape scale.

Lecture notes
Case descriptions, commented glossary and a list of literature and further resources per case.

Literature
Schulze et al. (2005) Plant Ecology; Springer.

Prerequisites / notice
The course combines elements of a classic lecture, group discussions and problem based learning. It is helpful, but not essential to be familiar with the "seven stages" method (see e.g. course 701-0352-00L "Analysis and Assessment of Environmental Sustainability" by Christian Pohl et al.).

701-0320-00L Seminar for Bachelor Students: Environmental Biology
Week 1: Choice of topics and tutors
Week 2: Literature search
Week 4: course for presentation techniques
Weeks 1 - 5: Meetings with tutors, preparation of presentations
Weeks 5 - 14: Presentations and discussions

701-1413-00L Population and Quantitative Genetics
Population Genetics:
Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of inbreeding; natural selection; random genetic drift and effective population size; gene flow and hierarchical population structure; molecular population genetics: neutral theory of molecular evolution and basics of coalescent theory.
Quantitative Genetics:
Continuous variation; measurement of quant. characters; genes, environments and their interactions; measuring their influence; response to selection; inbreeding and crossbreeding; effects on fitness; Fisher's fundamental theorem.

701-1413-01L Ecological Genetics
This course focuses on fundamental concepts and methods in ecological genetics. Topics covered include genetic diversity, natural selection, adaptation, reproductive isolation, hybridization, and speciation.

701-0535-00L Environmental Soil Physics/Vadose Zone Hydrology
This course is an introduction to the rapidly developing fields of population and quantitative genetics, emphasizing the major concepts and ideas over mathematical formalism. An overview is given of how mutation, genetic drift, gene flow, mating systems, and selection affect the genetic structure of populations. Evolutionary processes affecting quantitative and Mendelian characters are discussed.

Students will acquire skills in:
- finding literature in scientific databases
- structuring a scientific topic through research questions
- giving a clear scientific presentation
- contributing constructively to a scientific discussion

Weeks 4 - 5: Meetings with tutors, preparation of presentations
Weeks 5 - 14: Presentations and discussions

We recommend that you also follow the course 701-1413-00L - Population and Quantitative Genetics either in advance or in parallel.

Forest and Landscape
The following courses are highly recommended as preparation for the Specialization in Forest and Landscape:

701-0266-00L Einführung in die Dendrologie (Spring semester)
551-0435-00L Systematische Biologie: Zoologie (Spring semester)
701-0360-00L Systematische Biologie: Pflanzen (Spring semester)

These courses should be successfully completed during the second year.

Number Title Type ECTS Hours Lecturers
701-0535-00L Environmental Soil Physics/Vadose Zone Hydrology W 3 credits 2V+1U A. Carminati, P. U. Lehmann Grunder
Week 1: Introduction, soil and vadose zone, units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil water content; soil texture; particle size distributions;

Week 2: Pore scale consideration, pore sizes, shapes and connectivity, coordination number, continuity and percolation, surface area, soil structure

Week 3: Capillarity – capillary rise, surface tension, Young-Laplace equation; Washburn equation; numerical lab

Week 4: Soil Water Potential - the energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); units and calculations and measurement of equilibrium soil water potential components

Week 5: Soil water characteristics - definitions and measurements; parametric models, fitting and interpretation, hysteresis; demo lab

Week 6: Saturated water flow in soils - laminar flow in tubes (Poiseuille’s Law); Darcy’s Law, conditions and states of flow; permeability and hydraulic conductivity, measurement and theoretical concepts (Kozeny-Carman)

Week 7: Unsatuated water flow in soils - unsaturated hydraulic conductivity models and applications; Richards equation, approximations of Richards equation for steady state; approximate solutions to infiltration (Green-Amp, Philip); outlook on unstable and preferential flow

Week 8: Numerical solution of Richards equation – using Hydrus1D for simulation of unsaturated flow; choosing class project

Week 9: Energy balance and land atmosphere interactions – radiation and energy balance; evapotranspiration, definitions and estimation; evaporation stages and characteristic length; soil thermal properties; steady state heat flow; non-steady heat flow

Week 10: Root water uptake and transpiration

Week 11: Solute and gas transport in soils; transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion equation; solutions for pulse and step solute application; parameter estimation; salt balance.

Week 12: Summary of lectures; solution of old exam

Week 13: Written semester-end exam

Week 14: Short presentations of Hydrus class projects; discussion of written exam

Supplemental textbook (not mandatory) - Introduction to Environmental Soil Physics, by: D. Hillel
This course conveys the basics of forest ecology with an emphasis on trees as those organisms that dominate the physiognomy and the dynamics of forest ecosystems. Based on this course, students have a good grasp of the qualitative and quantitative importance of forest ecosystems at the global and regional scales, with a focus on central Europe.

Objective

Students are able to:

- summarize the fundamentals of forest ecology at the autecological, demecological and synecological level
- explain how trees dominate the physiognomy and dynamics of forest ecosystems
- describe the qualitative and quantitative importance of forest ecosystems at the global and regional scales, with an emphasis on central Europe and Alpine regions.

Content

Introduction and overview of the forests of the world
Forest ecosystem ecology: Production ecology of forests
Autecology: light, temperature, wind, water, and nutrients
Demecology: regeneration ecology, forest growth, mortality
Synecology: fundamentals of trophic interactions (forest-ungulate interactions), succession

Lecture notes

Handouts (mixture of overhead slides and full text chapters) are sold at cost
Relevant chapters from textbooks will be indicated.

Literature

Prerequisites / notice

The contents of the following courses of the 2nd year of the USYS BSc are required:

- Pedosphere, Hydrosphere, Fundamentals of biology and ecology, Introduction to dendrology (knowledge of European tree species).
- Relevant courses from the 1st year of the USYS BSc are required to understand the concepts presented in this course.

Domain A - Subject-specific Competencies

Concepts and Theories

- Forest Health: Entomology and Pathology
 - Taught competencies
- Taught competencies

Techniques and Technologies

- Forest Health: Entomology and Pathology

Domain B - Method-specific Competencies

Analytical Competencies

- Forest Health: Entomology and Pathology

Domain C - Social Competencies

Communication

- Forest Health: Entomology and Pathology

Domain D - Personal Competencies

Creative Thinking

- Forest Health: Entomology and Pathology
- Forest Health: Entomology and Pathology

701-0561-00L Forest Ecology

Abstract

This course conveys the basics of forest ecology with an emphasis on trees as those organisms that dominate the physiognomy and the dynamics of forest ecosystems. Based on this course, students have a good grasp of the qualitative and quantitative importance of forest ecosystems at the global and regional scales, with a focus on central Europe.

Objective

Students are able to:

- summarize the fundamentals of forest ecology at the autecological, demecological and synecological level
- explain how trees dominate the physiognomy and dynamics of forest ecosystems
- describe the qualitative and quantitative importance of forest ecosystems at the global and regional scales, with an emphasis on central Europe and Alpine regions.

Content

Introduction and overview of the forests of the world
Forest ecosystem ecology: Production ecology of forests
Autecology: light, temperature, wind, water, and nutrients
Demecology: regeneration ecology, forest growth, mortality
Synecology: fundamentals of trophic interactions (forest-ungulate interactions), succession

Lecture notes

Handouts (mixture of overhead slides and full text chapters) are sold at cost
Relevant chapters from textbooks will be indicated.

Literature

Prerequisites / notice

The contents of the following courses of the 2nd year of the USYS BSc are required:

- Pedosphere, Hydrosphere, Fundamentals of biology and ecology, Introduction to dendrology (knowledge of European tree species).
- Relevant courses from the 1st year of the USYS BSc are required to understand the concepts presented in this course.

Domain A - Subject-specific Competencies

Concepts and Theories

- Forest Health: Entomology and Pathology
 - Taught competencies
- Taught competencies

Techniques and Technologies

- Forest Health: Entomology and Pathology

Domain B - Method-specific Competencies

Analytical Competencies

- Forest Health: Entomology and Pathology

Domain C - Social Competencies

Communication

- Forest Health: Entomology and Pathology

Domain D - Personal Competencies

Creative Thinking

- Forest Health: Entomology and Pathology
- Forest Health: Entomology and Pathology

701-0564-00L Fundamentals of Natural Hazards Management

Abstract

Risks to life and human assets result when settlement areas and infrastructure overlap regions where natural hazard processes occur. This course utilizes case studies to teach how a future natural hazards-specialist should analyze, assess and manage risks.

Objective

Concepts will be explained step-by-step through a set of case studies, and applied in lab by the students. The following principal steps are used when coping with natural hazard-risks. At each step, students will learn and apply the following skills:

- Risk analysis - What can happen?
 - Characterize the processes and environmental measures that lead to a natural hazard and integrate modeling results of these processes.
 - Identify threats to human life and assets exposed to natural hazards and estimate possible drawbacks or damages.
- Risk assessment - What are the acceptable levels of risk?
 - Apply principles to determine acceptable risks to human life and assets in order to identify locations which should receive added protection.
 - Explain causes for conflicts between risk perception and risk analysis.
 - Risk management - What steps should be taken to manage risks?
 - Explain how various hazard mitigation approaches reduce risk.
 - Describe hazard scenarios as a base for adequate dimensioning of control measures.
 - Identify the best alternative from a set of thinkable measures based on an evaluation scheme.
 - Explain the principles of risk-governance.

Content

Die Vorlesung besteht aus folgenden Blöcken:

1) Einführung ins Vorgehenskonzept (1W)
2) Risikoanalyse (6W + Exkursion) mit:
 - Systemabgrenzung
 - Gefahrenbeurteilung
 - Exposition- und Folgenanalyse
3) Risikobewertung (2W)
4) Risikomanagement (2W + Exkursion)
5) Abschlussbesprechung (1W)

Domain A - Subject-specific Competencies

Concepts and Theories

- Forest Health: Entomology and Pathology
 - Taught competencies
- Taught competencies

Techniques and Technologies

- Forest Health: Entomology and Pathology

Domain B - Method-specific Competencies

Analytical Competencies

- Forest Health: Entomology and Pathology

Domain C - Social Competencies

Communication

- Forest Health: Entomology and Pathology

Domain D - Personal Competencies

Creative Thinking

- Forest Health: Entomology and Pathology
- Forest Health: Entomology and Pathology

701-0565-00L Forest Health: Entomology and Pathology

Abstract

Insects and microorganisms are important components of the biodiversity and ecology of forests. This course covers the diversity, biology and ecology of insects and pathogens, both native and non-native species and especially those that are tree pests or cause diseases. The course also covers entomological and pathological forest protection and other relevant topics.

Objective

Basic knowledge of:

- biology, ecology and biodiversity of insects and the main insect orders with examples of beneficial and pest species of trees and forests of central Europe.
- the various groups of tree pathogens (fungi, oomycetes, bacteria, viruses) as well as abiotic causes of tree diseases.
- the most important concepts such as forest health, disposition, resistance, interactions, vectors, epidemiology, outbreaks, invasive species and climatic factors.
- methods for monitoring and sustainable prevention and limitation of damage from insects and pathogens.

Domain A - Subject-specific Competencies

Concepts and Theories

- Forest Health: Entomology and Pathology
 - Taught competencies
- Taught competencies

Techniques and Technologies

- Forest Health: Entomology and Pathology

Domain B - Method-specific Competencies

Analytical Competencies

- Forest Health: Entomology and Pathology

Domain C - Social Competencies

Communication

- Forest Health: Entomology and Pathology

Domain D - Personal Competencies

Creative Thinking

- Forest Health: Entomology and Pathology
- Forest Health: Entomology and Pathology

701-0567-00L Forest Health: Entomology and Pathology

Abstract

Insects and microorganisms are important components of the biodiversity and ecology of forests. This course covers the diversity, biology and ecology of insects and pathogens, both native and non-native species and especially those that are tree pests or cause diseases. The course also covers entomological and pathological forest protection and other relevant topics.

Objective

Basic knowledge of:

- biology, ecology and biodiversity of insects and the main insect orders with examples of beneficial and pest species of trees and forests of central Europe.
- the various groups of tree pathogens (fungi, oomycetes, bacteria, viruses) as well as abiotic causes of tree diseases.
- the most important concepts such as forest health, disposition, resistance, interactions, vectors, epidemiology, outbreaks, invasive species and climatic factors.
- methods for monitoring and sustainable prevention and limitation of damage from insects and pathogens.

Domain A - Subject-specific Competencies

Concepts and Theories

- Forest Health: Entomology and Pathology
 - Taught competencies
- Taught competencies

Techniques and Technologies

- Forest Health: Entomology and Pathology

Domain B - Method-specific Competencies

Analytical Competencies

- Forest Health: Entomology and Pathology

Domain C - Social Competencies

Communication

- Forest Health: Entomology and Pathology

Domain D - Personal Competencies

Creative Thinking

- Forest Health: Entomology and Pathology
- Forest Health: Entomology and Pathology

By developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature. Depending on the chosen orientation of the thesis, the students learn these skills through an empirical analysis, a literature review, via design tasks or through an applied project. Depending on the chosen orientation of the thesis, the students learn these skills through an empirical analysis, a literature review, via design tasks or through an applied project.

A bachelor's thesis in the domain "Social sciences and humanities" usually deals with an issue at the interface of those sciences, the environment and sustainability. Methods of data collection, analysis and interpretation stemming from the social sciences are applied. A bachelor's thesis should consist of a text, with graphs and figures, of 30-40 pages.

A bachelor's thesis in the domain "Technology" deals with the environmental effects of use and application. The thesis may take the form of an analysis or review of a current technology, or the design of a future technological application. In an inter- or transdisciplinary thesis, knowledge from various fields and disciplines would be merged on the basis of an overarching question, or developed via the input of key societal actors. A bachelor's thesis should consist of a text, with graphs and figures, of 15-20 pages.

A bachelor's thesis in the domain "Natural sciences and technology" usually deals with an issue at the interface of those sciences, the environment and sustainability. Methods of data collection, analysis and interpretation appropriate to the natural sciences are used. A thesis in "Engineering" deals with the environmental effects of use and application. The thesis may take the form of an analysis or review of a current technology, or the design of a future technological application. In an inter- or transdisciplinary thesis, knowledge from various fields and disciplines would be merged on the basis of an overarching question, or developed via the input of key societal actors. A bachelor's thesis should consist of a text, with graphs and figures, of 15-20 pages.

Environmental Sciences Bachelor - Key for Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Compulsory</th>
<th>Eligible for credits and recommended</th>
<th>Eligible for credits</th>
<th>Recommended, not eligible for credits</th>
<th>Courses outside the curriculum</th>
<th>Suitable for doctorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>E-</td>
<td>Z</td>
<td>Dr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>W+</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bachelor's Thesis

Students can choose between one Bachelor thesis of 10 KP or two Bachelor theses of 5 KP each.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0010-02L</td>
<td>Short Bachelor's Thesis in Social Sciences and Humanities</td>
<td>W</td>
<td>5 credits</td>
<td>11D</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>By developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature. Depending on the chosen orientation of the thesis, the students learn these skills through an empirical analysis, a literature review, via design tasks or through an applied project.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>By developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>A bachelor's thesis in the domain "Social sciences and humanities" usually deals with an issue at the interface of those sciences, the environment and sustainability. Methods of data collection, analysis and interpretation stemming from the social sciences are applied. A short bachelor's thesis should consist of a text, with graphs and figures, of 15-20 pages.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0010-03L</td>
<td>Short Bachelor's Thesis in Natural Sciences and Engineering</td>
<td>W</td>
<td>5 credits</td>
<td>11D</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>By developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature. Depending on the chosen orientation of the thesis, the students learn these skills through an empirical analysis, a literature review, via design tasks or through an applied project.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>By developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>A bachelor's thesis in "Natural sciences" deals with a topic at the interface of natural sciences, the environment and sustainability. The methods of data collection, analysis and interpretation appropriate to the natural sciences are used. A thesis in "Engineering" deals with the environmental effects of use and application. The thesis may take the form of an analysis or review of a current technology, or the design of a future technological application. In an inter- or transdisciplinary thesis, knowledge from various fields and disciplines would be merged on the basis of an overarching question, or developed via the input of key societal actors. A short bachelor's thesis should consist of a text, with graphs and figures, of 15-20 pages.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0010-10L</td>
<td>Bachelor's Thesis</td>
<td>W</td>
<td>10 credits</td>
<td>21D</td>
<td>Lecturers</td>
</tr>
<tr>
<td>Abstract</td>
<td>By developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature. Depending on the chosen orientation of the thesis, the students learn these skills through an empirical analysis, a literature review, via design tasks or through an applied project.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>By developing the bachelor's thesis, students learn to (a) analyse a problem using scientific methods and concepts, (b) write a report according to scientific standards and (c) correctly cite scientific literature.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The BA is written either under the "Social sciences and humanities" or the "Natural sciences and technology" modules. The thesis may also be inter- and transdisciplinary. A bachelor's thesis in the domain "Social sciences and humanities" usually deals with an issue at the interface of those sciences, the environment and sustainability. Methods of data collection, analysis and interpretation stemming from the social sciences are applied. A bachelor's thesis in "Natural sciences" deals with a topic at the interface of natural sciences, the environment and sustainability. The methods of data collection, analysis and interpretation appropriate to the natural sciences are used. A thesis in "Engineering" deals with the environmental effects of use and application. The thesis may take the form of an analysis or review of a current technology, or the design of a future technological application. In an inter- or transdisciplinary thesis, knowledge from various fields and disciplines would be merged on the basis of an overarching question, or developed via the input of key societal actors. A bachelor's thesis should consist of a text, with graphs and figures, of 30-40 pages.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key for Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
<tr>
<td>P</td>
<td>practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>independent project</td>
</tr>
<tr>
<td>D</td>
<td>diploma thesis</td>
</tr>
<tr>
<td>R</td>
<td>revision course / private study</td>
</tr>
</tbody>
</table>

ECTS
European Credit Transfer and Accumulation System

- Special students and auditors need special permission from the lecturers.
Environmental Sciences Master

Major in Atmosphere and Climate

Prerequisites

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0471-01L</td>
<td>Atmospheric Chemistry</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. Ammann, T. Peter</td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture provides an introduction to atmospheric chemistry at bachelor level. It introduces the fundamentals of gas phase reactions, the concept of solubility and reactions in aerosols and in clouds. It explains the chemical and physical processes responsible for global (e.g. stratospheric ozone depletion) as well as regional (e.g. urban air pollution) environmental problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students will understand the basics of gas phase reactions and of reactions and processes in aerosols and clouds. The students will understand the most important chemical processes in the troposphere and the stratosphere. The students will also acquire a good understanding of atmospheric environmental problems including air pollution, tropospheric ozone formation, stratospheric ozone destruction and the relationship between air pollution and climate change.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture materials (slides) are provided continuously during the semester, at least 2 days before each lecture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Attendance of the lecture "Atmosphäre" LV 701-0023-00L or equivalent knowledge is a pre-requisite, and basic courses in physics and chemistry are expected.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Mondays (or upon agreement) a tutorial is offered. This allows the students to discuss unresolved issues from the lecture or to discuss the problems of the exercise series and their solution. Participation is recommended.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>701-0473-00L</td>
<td>Weather Systems</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>M. A. Sprenger, F. Scholder-Aemisegger</td>
</tr>
<tr>
<td>Abstract</td>
<td>Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to - explain basic measurement and analysis techniques that are relevant in atmospheric dynamics - to discuss the mathematical basics of atmospheric dynamics, based on selected atmospheric flow phenomena - to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features - to explain how mountains influence the atmospheric flow on different scales - basic understanding of the role of moist adiabatic processes for weather systems and why stable water isotopes are useful in this context</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes and slides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>701-0475-00L</td>
<td>Atmospheric Physics</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>U. Lohmann</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation especially prediction of thunderstorm development, aerosol physics as well as artificial weather modification.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students are able to - to explain the mechanisms of thunderstorm formation using knowledge of thermodynamics and cloud microphysics. - to evaluate the significance of clouds and aerosol particles for artificial weather modification.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The course starts with introducing selected concepts of thermodynamics for atmospheric processes: The students learn the concept of the thermodynamic equilibrium and derive the Clausius-Clapeyron equation from the first law of thermodynamics. This equation is central for the phase transitions in clouds. Students also learn to classify radiosondes with the help the thermodynamic charts (tephigrams) and to identify cloud base, cloud top, available convective energy in them. Atmospheric mixing processes are introduced for fog formation. The concept of the air parcel is used to understand convection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Powerpoint slides and chapters from the textbook will be made available on moodle: https://moodle-app2(let.ethz.ch/course/view.php?id=15967</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>From the Microscale to Climate. Cambridge Univ. Press, 391 pp., 2016.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>50% of the time we use the concept of "flipped classroom" (en.wikipedia.org/wiki/Flipped_classroom), which we introduce at the beginning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>We offer a lab tour, in which we demonstrate how some of the processes discussed in the lectures are measured with instruments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is an additional tutorial right after each lecture to give you the chance to ask further questions and discuss the exercises. The participation is recommended but voluntary.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In this seminar, the process of writing a scientific proposal will be introduced. The essential elements of a proposal, including the peer review process, will be outlined and class exercises will train scientific writing skills. Knowledge exchange between class participants is promoted through the preparation of a master thesis proposal and evaluation of each other's work.

Objective
Training scientific writing skills.
This lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostrophic dynamics). The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.

Abstract

In this seminar, scientific project management is introduced and applied to the master projects. The course concludes with a presentation of all projects including an overview of the scientific content and a discussion of project management techniques related to the master thesis.

Objective

Apply scientific project management techniques to your master project, practice the presentation of scientific results and how to chair other students presentations and lead the discussion.

Content

In this seminar, scientific project management is introduced and applied to the master projects. The course concludes with a presentation of all projects including an overview of the scientific content and a discussion of project management techniques related to the master thesis.

Prerequisites

Attendance is mandatory.

Weather Systems and Atmospheric Dynamics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1221-00L</td>
<td>Dynamics of Large-Scale Atmospheric Flow</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>H. Wernli, L. Papritz</td>
</tr>
<tr>
<td>651-4053-00L</td>
<td>Boundary Layer Meteorology</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>M. Rotach, P. Calanca</td>
</tr>
</tbody>
</table>

Climate Processes and Feedbacks

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1235-00L</td>
<td>Cloud Microphysics</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>U. Lohmann, N. Shardt</td>
</tr>
</tbody>
</table>

Prerequisites

Attendance is mandatory.
Abstract

Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth’s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes.

Objective

The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation.

Content

see: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html

and: https://moodle-app2.let.ethz.ch/course/view.php?id=15424

Lecture notes

This course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth.

Literature

Lamb and Verlinde: PHYSICS AND CHEMISTRY OF CLOUDS, Cambridge University Press, 2011

Prerequisites / notice

Target group: Doctoral and Master students in Atmosphere and Climate

Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Problem-solving assessed

Domain C - Social Competencies
Communication assessed

Domain D - Personal Competencies
Critical Thinking assessed
Self-direction and Self-management assessed

701-1251-00L Land-Climate Dynamics

W 3 credits 2G

S. I. Seneviratne, R. Padrón Flasher

Abstract

The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.

Objective

The students can understand the role of land processes and associated feedbacks in the climate system.

Lecture notes

Powerpoint slides will be made available

Prerequisites / notice

Prerequisites: Introductory lectures in atmospheric and climate science.

and/or

Atmospheric Composition and Cycles

Number

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1233-00L</td>
<td>Stratospheric Chemistry</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>T. Peter, G. Chiodo</td>
</tr>
<tr>
<td>Abstract</td>
<td>The lecture gives an overview on the manifold reactions which occur in the gas phase, in stratospheric aerosol droplets and in polar cloud particles. The focus is on the chemistry of stratospheric ozone and its influence through natural and anthropogenic effects, especially the ozone depletion caused by FCKW in mid-latitude and polar regions as well as the coupling with the greenhouse effect. The students will understand the gas phase reactions in the stratosphere as well as reactions and processes in aerosol droplets and polar stratospheric clouds. The students will understand the most important aspects of stratospheric dynamics and the greenhouse gas effect in troposphere and stratosphere. The students will also acquire a good understanding of the coupling between stratospheric ozone and climate change. Furthermore, they will practice to explain fundamental concepts in stratospheric chemistry by means of scientific paper presentations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Short presentation of thermodynamical and kinetic basics of chemical reactions: bi- and termolecular reactions, photo-dissociation. Introduction to the chemical family concept: active species, their source gases and reservoir gases. Detailed treatment of the pure oxygen family (odd oxygen) according to the Chapman chemistry. Radical reactions of the oxygen species with nitric oxide, active halogens (chlorine and bromine) and odd hydrogen. Ozone depletion cycles. Methane depletion and ozone production in the lower stratosphere (photo-smog reactions). Heterogeneous chemistry on the background aerosol and its significance for heavy air traffic. Chemistry and dynamics of the ozone hole: Formation of polar stratospheric clouds and chlorine activation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Documents are provided in the contact hours.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Prerequisites: Basics in physical chemistry are required and an overview equivalent to the bachelor course in atmospheric chemistry (lecture 701-0471-01) is expected.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

701-1233-00L starts in the first week of the semester. The exercises 701-1233-00 U will start only in the 2nd week of the semester.

701-1239-00L Aerosols I: Physical and Chemical Principles

W 4 credits 2V+1U

M. Gysel Beer, D. Bell, E. Weingartner

Abstract

Aerosols I deals with basic physical and chemical properties of aerosol particles. The importance of aerosols in the atmosphere and in other fields is discussed.
Objective

Physical and chemical principles:
- know the processes and physical laws of aerosol dynamics.
- understand the thermodynamics of phase equilibria and chemical equilibria.
- know the photo-chemical formation of particulate matter from inorganic and organic precursor gases.

Experimental methods:
- know the most important chemical and physical measurement instruments.
- understand the underlying chemistry and physics.

Environmental impacts:
- know the major sources of atmospheric aerosols, their chemical composition and key physical properties.
- know the most important climate impacts of atmospheric aerosols.
- are aware of the health impacts of atmospheric aerosols.

Lecture notes

Material is distributed during the lecture.

Literature

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Conceptual and Theoretical Knowledge</th>
<th>Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Techniques and Technologies</td>
<td>Assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Analytical Competencies</td>
<td>Assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>Assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Communication</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Adaptability and Flexibility</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>Assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Climate History and Paleoclimatology

Number: 651-4057-00L

Climate History and Palaeoclimatology

Type: W
ECTS: 3 credits
Hours: 2G
Lecturers: H. Stoll, I. Hernández Almeida, H. Zhang

Abstract

Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport.

Objective

The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate change over the next century to millennia.

Content

1. Overview of elements of the climate system and earth energy balance
2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene?
3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future?
4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?

Hydrology and Water Cycle

Number: 701-1251-00L

Land-Climate Dynamics

Type: W
ECTS: 3 credits
Hours: 2G
Lecturers: S. I. Seneviratne, R. Padrón Flasher

Number of participants limited to 36. Priority is given to the target groups: Master Environmental Science.
The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.

The course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the theoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interpret results critically.

Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis.

The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results.

Participants understand the theoretical foundations and probabilistic concepts of advanced analysis tools in meteorology and climatology. They can conduct such analyses independently, and they develop an attitude of scrutiny and an awareness of uncertainty when interpreting results. Participants improve skills in understanding technical literature that uses modern statistical data analyses.

For complementary reading:
- R-packages with software and example datasets for workshop sessions

Participants understand the theoretical concepts and purpose of methods, can apply them independently and know how to interpret results professionally.

R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course.

The course covers GIS use in watershed analysis, models from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises).

The main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on thematic lectures (2 hrs a week) and practical exercises (2 hrs a week). Theory and concepts in the lectures are underpinned by many examples from scientific studies. A comprehensive exercise block build on the lectures with a series of 5 practical tasks to be conducted during the semester in group work. Exercise hours during the week focus on explanation of the tasks. The course is evaluated 60% by performance in the graded exercises and 40% by a semester-end oral examination (30 mins) on watershed modelling concepts.

The first part (A) of the course is focussed on physically-based model components. Here students learn about components for soil water fluxes and extracting river networks, and defining hydrological response units. In the second part (B) of the course on conceptual watershed models students build their own simple bucket model (Matlab, Python), they learn about performance measures in modelling, how to calibrate the parameters and how to validate models, about methods to simulate stochastic climate to drive models, uncertainty analysis. The third part (C) of the course is focussed on physically-based model components. Here students learn about components for soil water fluxes and evapotranspiration, they practice with a fully-distributed physically-based model Topkapi-ETH, and learn about other similar models. They apply Topkapi-ETH to an Alpine catchment and study simulated discharge, snow, soil moisture and evapotranspiration spatial patterns. The final part (D) of the course provides open classroom discussion and simulation of a round-table discussion between modellers and clients about using watershed models in a case study.

There is no textbook. Learning materials consist of (a) video-recording of lectures; (b) lecture presentations; and (c) exercise task documents that allow independent work.

The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results.
The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences available (i.e. in English) Literature (including book chapters, scientific publications) will be provided by the responsible supervisor in coordination with the student.

Prerequisites / notice

Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science

Electives

Weather Systems and Atmospheric Dynamics

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1281-00L</td>
<td>Self-Learning Course on Advanced Topics in Atmospheric and Climate Science (HS)</td>
<td>W</td>
<td>3 credits</td>
<td>6A</td>
<td>Supervisors</td>
</tr>
</tbody>
</table>

Students are allowed to enroll in both courses 701-1280-00L & 701-1281-00L Self-learning Course on Advanced Topics in Atmospheric and Climate Science but have to choose different supervisors.

Abstract

This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields:
- atmospheric chemistry
- atmospheric dynamics
- atmospheric physics
- climate modeling
- climate physics
- land-climate dynamics
- atmospheric circulation
- paleoclimate
- ocean biogeochemical dynamics

Objective

The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a concise summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD).

Content

The course has the following elements:

- Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers)
- Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University:
 https://www.coursera.org/learn/sciwrite?action=enroll
- Week 12: Hand-in of written summary (4 pages maximum)
- Week 14: Supervisor provides feedback to the summary document
- Week 16: Oral exam about the scientific topic

Literature

Prerequisites depend on the chosen field and include successful completion of the listed lecture courses:
- atmospheric dynamics: “Dynamics of large-scale atmospheric flow” (701-1221-00L)
- atmospheric chemistry: “Stratospheric Chemistry” (701-1233-00L) or “Tropospheric Chemistry” (701-1234-00L) or “Aerosols I” (402-0572-00L).
- atmospheric physics: “Atmospheric Physics” (701-0475-00L)
- climate physics: “Klimasysteme” (701-0412-00L) or equivalent
- land-climate dynamics: “Land-climate dynamics” (701-1251-00L)
- climate modeling: “Numerical modeling of weather and climate” (701-1216-00L) (parallel attendance possible)
- atmospheric circulation: “Dynamics of large-scale atmospheric flow” (701-1221-00L)
- paleoclimate: “Climate History and Paleoclimate” (651-4057-00L)
- ocean biogeochemical dynamics: “Global Biogeochemical Cycles and Climate” (701-1317-00L)

If you plan to take this course, please contact one of the professors according to your interest.
- atmospheric chemistry (Prof. T. Peter)
- atmospheric dynamics (Prof. H. Wernli)
- atmospheric physics (Prof. U. Lohmann)
- climate modeling (Prof. C. Schär)
- climate physics (Prof. R. Knutti)
- land-climate dynamics (Prof. S. Seneviratne)
- atmospheric circulation (Prof. S. Schemm)
- paleoclimate (Prof. H. Stoll)
- ocean biogeochemical dynamics (Prof. N. Gruber)

Climate Processes and Feedbacks

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1221-00L</td>
<td>Dynamics of Large-Scale Atmospheric Flow</td>
<td>W</td>
<td>4 credits</td>
<td>2V+1U</td>
</tr>
</tbody>
</table>

Abstract

This lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostrophic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course.
Objective Understanding the dynamics of large-scale atmospheric flow

Content Dynamical Meteorology is concerned with the dynamical processes of the earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.

Lecture notes Dynamics of large-scale atmospheric flow

- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997

Prerequisites / notice Physics I, II, Environmental Fluid Dynamics

701-1257-00L European Climate Change W 3 credits 2G C. Schär, J. Rajczak, S. C. Scherrer

Abstract The lecture provides an overview of climate change in Europe, from a physical and atmospheric science perspective. It covers the following topics:
- observational datasets, observation and detection of climate change;
- underlying physical processes and feedbacks;
- numerical and statistical approaches;
- currently available projections.

Objective At the end of this course, participants should:
- understand the key physical processes shaping climate change in Europe;
- know about the methodologies used in climate change studies, encompassing observational, numerical, as well as statistical approaches;
- be familiar with relevant observational and modeling data sets;
- be able to tackle simple climate change questions using available data sets.

Content Contents:
- global context
- observational data sets, analysis of climate trends and climate variability in Europe
- global and regional climate modeling
- statistical downscaling
- key aspects of European climate change: intensification of the water cycle, Polar and Mediterranean amplification, changes in extreme events, changes in hydrology and snow cover, topographic effects
- projections of European and Alpine climate change

Lecture notes Slides and lecture notes will be made available at http://www.iac.ethz.ch/edu/courses/master/electives/european-climate-change.html

Prerequisites / notice Participants should have a background in natural sciences, and have attended introductory lectures in atmospheric sciences or meteorology.

701-1281-00L Self-Learning Course on Advanced Topics in Atmospheric and Climate Science (HS) W 3 credits 6A Supervisors

Abstract This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields:
- atmospheric chemistry
- atmospheric dynamics
- atmospheric physics
- climate modeling
- climate physics
- land-climate dynamics
- atmospheric circulation
- paleoclimate
- ocean biogeochemical dynamics

Objective The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a concise summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD).

Content The course has the following elements:
Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers)
Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online course offered by Stanford University: https://www.coursera.org/learn/sciwrite?action=enroll
Weeks 6 and 9: Meetings with supervisor to clarify scientific questions
Week 12: Hand-in of written summary (4 pages maximum)
Week 14: Supervisor provides written feedback to the summary document
Week 16: Oral exam about the scientific topic

Literature Literature (including book chapters, scientific publications) will be provided by the responsible supervisor in coordination with the student.
The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles.

The student will be able to describe the natural factors leading to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes.

Abstract
Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for changes in the past. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport.

Content
1. Overview of elements of the system and earth energy balance
2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the last Paleocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene?
3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future?
4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?

Atmospheric Composition and Cycles

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1235-00L</td>
<td>Cloud Microphysics</td>
<td>W</td>
<td>4</td>
<td>2V+1U</td>
<td>U. Lohmann, N. Shardt</td>
</tr>
</tbody>
</table>

Priority is given to PhD students majoring in Atmospheric and Climate Sciences, and remaining open spaces will be offered to the following groups:
- PhD student Environmental sciences
- MSc in Atmospheric and climate science
- MSc in Environmental sciences

All participants will be on the waiting list at first. Enrollment is possible until September 22nd, 2021. The waiting list is active until October 1st, 2021. All students will be informed on September 16th, if they can participate in the lecture.

The lecture takes place if a minimum of 5 students register for it.

Abstract
Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth’s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes.

Objective
The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation.

Content
For more information, please visit the course website:
http://www.let.ethz.ch/education/modules/clouds/CloudsMicrophysics.html

Lecture notes
This course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth.

Literature
Lamb and Verlinde: PHYSICS AND CHEMISTRY OF CLOUDS, Cambridge University Press, 2011
701-1281-00L Self-Learning Course on Advanced Topics in Atmospheric and Climate Science (HS) W 3 credits 6A

Abstract
This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields:
- atmospheric chemistry
- atmospheric dynamics
- atmospheric physics
- climate modeling
- climate physics
- land-climate dynamics
- atmospheric circulation
- paleoclimate
- ocean biogeochemical dynamics

Objective
The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a concise summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD).

Content
The course has the following elements:
Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers)
Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University: https://www.coursera.org/learn/sciwrite?action=enroll
Weeks 6 and 9: Meetings with supervisor to clarify scientific questions
Week 12: Hand-in of written summary (4 pages maximum)
Week 14: Supervisor provides written feedback to the summary document
Week 16: Oral exam about the scientific topic

Literature
Literature (including book chapters, scientific publications) will be provided by the responsible supervisor in coordination with the student.
Content
Part 1 Emission, Immission, Transmission
Fluxes of pollutants and their environmental impact:
- physical and chemical processes leading to emission of pollutants
- mass and energy of processes
- Emission measurement techniques and concepts
- quantification of emissions from individual and aggregated sources
- extent and development of the emissions (Switzerland and global)
- propagation and transport of pollutants (transmission)
- meteorological parameters influencing air pollution dispersion
- deterministic and stochastic models, describing air pollution dispersion
- dispersion models (Gaussian model, box model, receptor model)
- measurement concepts for ambient air (immission level)
- extent and development of ambient air mixing ratios
- goal and instrument of air pollution control

Part 2 Air Pollution Control Technologies
The reduction of the formation of pollutants is done by modifying the processes (pro-cessintegrated measures) and by different engineering operations for the cleaning of waste gas (downstream pollution control). It will be demonstrated, that the variety of these procedures can be traced back to the application of a few basic physical and chemical principles.

Procedures for the removal of particles (inertial separator, filtration, electrostatic precipitators, scrubbers) with their different mechanisms (field forces, impaction and diffusion processes) and the modelling of these mechanisms.

Procedures for the removal of gaseous pollutants and the description of the driving forces involved, as well as the equilibriunm and the kinetics of the relevant processes (absorption, adsorption as well as thermal, catalytic and biological conversions).

Discussion of the technical possibilities to solve the actual air pollution problems.

Lecture notes
Brigitte Buchmann, Air pollution control, Part I
Jing Wang, Air pollution control, Part II
Lecture slides and exercises

Prerequisites / notice
College lectures on basic physics, chemistry and mathematics.
Language of instruction: In German or in English.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>651-4053-05L</td>
<td>Boundary Layer Meteorology</td>
<td>W</td>
<td>4</td>
<td></td>
<td>M. Rotach, P. Calanca</td>
</tr>
<tr>
<td></td>
<td>The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. The course starts by providing the theoretical background and reviewing idealized concepts. These are contrasted to real world applications and discussed in the context of current research issues. Overall goals of this course are given below. Focus is on the theoretical background and idealized concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>available (i.e. in English)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Climate History and Palaeoclimatology

Number | Title | Type | ECTS | Hours | Lecturers |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1281-00L</td>
<td>Self-Learning Course on Advanced Topics in Atmospheric and Climate Science (HS)</td>
<td>W</td>
<td>3</td>
<td>6A</td>
<td>Supervisors</td>
</tr>
<tr>
<td></td>
<td>Please contact one of the professors listed under prerequisites/notice if you plan to take this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students are allowed to enroll in both courses 701-1280-00L & 701-1281-00L Self-learning Course on Advanced Topics in Atmospheric and Climate Science but have to choose different supervisors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Abstract | This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields:
| | - atmospheric chemistry
| | - atmospheric dynamics
| | - atmospheric physics
| | - climate modeling
| | - climate physics
| | - land-climate dynamics
| | - atmospheric circulation
| | - paleoclimate
| | - ocean biogeochemical dynamics |
| Objective | The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a compact summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD). |
The course has the following elements:

Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers)

Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings).

For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University:
https://www.coursera.org/learn/sciwrite?action=enroll

Weeks 6 and 9: Meetings with supervisor to clarify scientific questions

Week 12: Hand-in of written summary (4 pages maximum)

Week 14: Supervisor provides written feedback to the summary document

Week 16: Oral exam about the scientific topic

Literature

Literature (including book chapters, scientific publications) will be provided by the responsible supervisor in coordination with the student.

Prerequisites / notice

Prerequisites depend on the chosen field and include successful completion of the listed lecture courses:

- atmospheric dynamics: "Dynamics of large-scale atmospheric flow" (701-1221-00L)
- atmospheric chemistry: "Stratospheric Chemistry" (701-1239-00L) or "Tropospheric Chemistry" (701-1234-00L) or "Aerosols I" (402-0572-00L),
- atmospheric physics: "Atmospheric Physics" (701-0475-00L),
- climate physics: "Klimasysteme" (701-0412-00L) or equivalent
- land-climate dynamics: "Land-climate dynamics" (701-1251-00L)
- climate modeling: "Numerical modeling of weather and climate" (701-1216-00L) (parallel attendance possible)
- atmospheric circulation: "Dynamics of large-scale atmospheric flow" (701-1221-00L),
- paleoclimate: "Climate History and Paleoclimates" (651-4057-00L),
- ocean biogeochemical dynamics: "Global Biogeochemical Cycles and Climate" (701-1317-00L)

If you plan to take this course, please contact one of the professors according to your interest.

- atmospheric chemistry (Prof. T. Peter)
- atmospheric dynamics (Prof. H. Wernli)
- atmospheric physics (Prof. U. Lohmann)
- climate modeling (Prof. C. Schär)
- climate physics (Prof. R. Knutti)
- land-climate dynamics (Prof. S. Seneviratne)
- atmospheric circulation (Prof. S. Schemm)
- paleoclimate (Prof. H. Stoll)
- ocean biogeochemical dynamics (Prof. N. Gruber)

651-4041-00L Sedimentology I: Physical Processes and Sedimentary Systems W 3 credits 2G V. Picotti

Abstract

Sediments preserved a record of past landscapes. This courses focuses on understanding the processes that modify sedimentary landscapes with time and how we can read this changes in the sedimentary record.

Objective

The students learn basic concepts of modern sedimentology and stratigraphy in the context of sequence stratigraphy and sea level change.

They discuss the advantages and pitfalls of the method and look beyond. In particular we pay attention to introducing the importance of considering entire sediment routing systems and understanding their functioning.

Content

Details on the program will be handed out during the first lecture.

We will attribute the papers for presentation on the 26th, so please be here on that day!

Literature

The sedimentary record of sea-level change

Angela Coe, the Open University.

Cambridge University Press.

Prerequisites / notice

The grading of students is based on in-class exercises and end-semester examination.

651-4043-00L Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems W 3 credits 2G V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll

Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).

Abstract

The course will focus on biological and chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography.

Objective

- You will understand chemistry and biology of the marine carbonate system
- You will be able to relate carbonate mineralogy with facies and environmental conditions
- You will be familiar with cool-water and warm-water carbonates
- You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle
- You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth)
- You will be able to use geological archives as source of information on global change
- You will have an overview of marine sedimentation through time

Content

- carbonates, chemistry, mineralogy, biology
- carbonate sedimentation from the shelf to the deep sea
- carbonate facies
- cool-water and warm-water carbonates
- organic-carbon and black shales
- C-cycle, carbonates, Corg : CO2 sources and sink
- Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr
- marine sediments through geological time
- carbonates and evaporites
- lacustrine carbonates
- economic aspects of limestone

Lecture notes

no script. scientific articles will be distributed during the course

Literature

We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems"

Prerequisites / notice

The grading of students is based on in-class exercises and end-semester examination.

651-4901-00L Quaternary Dating Methods W 3 credits 2G I. Hajdas, M. Christl, S. Ivy Ochs

Abstract

Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2079 of 2152
Objective
Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories.

At the end of the course students will:
1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies.
2. be able to calculate an age based on data of the six methods studied.
3. choose which dating method (or combination of methods) is suitable for a certain field problem.
4. critically read and evaluate the application of dating methods in scientific publications.

Content
1. Introduction: Time scales for the Quaternary, Isotopes and decay
2. Radiocarbon dating: principles and applications
3. Cosmogenic nuclides: 3He, 10Be, 14C, 21Ne, 26Cl, 36Cl
4. U-series disequilibrium dating
5. Luminescence dating
6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies
7. Cs-137 and Pb-210 (soil, sediments, ice core)
8. Summary and comparison of results from several dating methods at specific sites

Prerequisites / notice
Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility.

Visit to Limno Lab and sampling a sediment core

Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggerberg

Required: attending the lecture, visiting laboratories, handing back solutions for problem sets (Exercises)

Hydrology and Water Cycle

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0535-00L</td>
<td>Environmental Soil Physics/Vadose Zone Hydrology</td>
<td>W</td>
<td>3 credits</td>
<td>2V+1U</td>
<td>A. Carminati, P. U. Lehmann Grunder</td>
</tr>
</tbody>
</table>

Abstract
The course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales.

Objective
Students are able to:
- characterize porous media at different scales
- parameterize structural, flow and transport properties of partially-saturated porous media
- quantify driving forces and resulting fluxes of water, solute, and heat in soils

Content
Week 1: Introduction, soil and vadose zone, units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil water content; soil texture; particle size distributions;
Week 2: Pore scale consideration, pore sizes, shapes and connectivity, coordination number and percolation, surface area, soil structure
Week 3: Capillarity – capillary rise, surface tension, Young-Laplace equation; Washburn equation; numerical lab
Week 4: Soil Water Potential - the energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); units and calculations and measurement of equilibrium soil water potential components
Week 5: Soil water characteristics - definitions and measurements; parametric models, fitting and interpretation, hysteresis; demo lab
Week 6: Saturated water flow in soils - laminar flow in tubes (Poiseuille’s Law); Darcy’s Law, conditions and states of flow; permeability and hydraulic conductivity, measurement and theoretical concepts (Kozeny-Carman)
Week 7: Unsaturated water flow in soils - unsaturated hydraulic conductivity models and applications; Richards equation, approximations of Richards equation for steady state; approximate solutions to infiltration (Green-Ampt, Philip); outlook on unstable and preferential flow
Week 8: Numerical solution of Richards equation – using Hydrus1D for simulation of unsaturated flow; choosing class project
Week 9: Energy balance and land atmosphere interactions - radiation and energy balance; evapotranspiration, definitions and estimation; evaporation stages and characteristic length; soil thermal properties; steady state heat flow; non-steady heat flow
Week 10: Root water uptake and transpiration
Week 11: Solute and gas transport in soils; transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion equation; solutions for pulse and step solute application; parameter estimation; salt balance.
Week 12: Summary of lectures; solution of old exam
Week 13: Written semester-end exam
Week 14: Short presentations of Hydrus class projects; discussion of written exam

Supplemental textbook (not mandatory) - Introduction to Environmental Soil Physics, by: D. Hillel
Abstract

This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields:
- atmospheric chemistry
- atmospheric dynamics
- atmospheric physics
- climate modeling
- climate physics
- land-climate dynamics
- atmospheric circulation
- paleoclimate
- ocean biogeochemical dynamics

Objective

The course has the following elements:

Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers)
Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University: https://www.coursera.org/learn/sciwrite?action=enroll
Weeks 6 and 9: Meetings with supervisor to clarify scientific questions
Week 12: Hand-in of written summary (4 pages maximum)
Week 14: Supervisor provides written feedback to the summary document
Week 16: Oral exam about the scientific topic

Content

Prerequisites / notice

Literature

Prerequisites depend on the chosen field and include successful completion of the listed lecture courses:

• atmospheric dynamics: “Dynamics of large-scale atmospheric flow” (701-1221-00L)
• atmospheric chemistry: “Stratospheric Chemistry” (701-1233-00L) or “Tropospheric Chemistry” (701-1234-00L) or “Aerosols I” (402-0572-00L)
• atmospheric physics: “Atmospheric Physics” (701-0475-00L) or equivalent
• climate physics: “Klimasysteme” (701-0412-00L) or equivalent
• land-climate dynamics: “Land-climate dynamics” (701-1251-00L)
• climate modeling: “Numerical modeling of weather and climate” (701-1216-00L) (parallel attendance possible)
• atmospheric circulation: “Dynamics of large-scale atmospheric flow” (701-1221-00L)
• paleoclimate: “Climate History and Paleoclimate” (651-4057-00L)
• ocean biogeochemical dynamics: “Global Biogeochemical Cycles and Climate” (701-1317-00L)

If you plan to take this course, please contact one of the professors according to your interest.

• atmospheric chemistry (Prof. T. Peter)
• atmospheric dynamics (Prof. H. Wernli)
• atmospheric physics (Prof. U. Lohmann)
• climate modeling (Prof. C. Schär)
• climate physics (Prof. R. Knutti)
• land-climate dynamics (Prof. S. Seneviratne)
• atmospheric circulation (Prof. S. Schemm)
• paleoclimate (Prof. H. Stoll)
• ocean biogeochemical dynamics (Prof. N. Gruber)

River Basin Erosion

102-0287-00L

Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers)
Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University: https://www.coursera.org/learn/sciwrite?action=enroll
Weeks 6 and 9: Meetings with supervisor to clarify scientific questions
Week 12: Hand-in of written summary (4 pages maximum)
Week 14: Supervisor provides written feedback to the summary document
Week 16: Oral exam about the scientific topic

Abstract

This course presents a view of the catchment processes of sediment production and transport that shape the landscape. Focus is on sediment fluxes from sources on hillslopes to the river network. Students learn about how a fluvial system functions, how to identify sediment sources and sinks, how to make predictions with numerical models, develop sediment budgets, and quantify geomorphic change.

Objective

The course has two fundamental aims: (1) The first aim is to provide environmental engineers with the physical process basis needed to understand fluvial system change, using the right language and terminology to describe landforms. We will cover the main geomorphic concepts of landscape change, e.g. thresholds, equilibrium, criticality, to describe change. Students will learn about the importance of the concepts of connectivity and timescales of change. (2) The second aim is to provide quantitative skills in making simple and more complex predictions of change and the data and models required. We will learn about typical landscape evolution models, and about hillslope erosion model concepts like RUSLE. We will learn how to identify sediment sources and sinks, and develop simple sediment budgets with the right data needed for this purpose. Finally we will learn about methods to describe the topology of river networks as conduits of sediment through the fluvial system.

Content

The course consists of four sections: (1) Introduction to fluvial forms and processes and geomorphic concepts of landscape change, including climatic and human activities acting on the system. Concepts like thresholds, equilibrium, self-organised criticality, etc. are presented. (2) Landscape evolution modelling as a tool for describing the shape of the land surface. Soil formation and sediment production at long timescales. (3) The processes of sediment production, upland sheet-riparian erosion, basin sediment yield, rainfall-triggered landsliding, sediment budgets, and the modelling of the individual processes involved. Here we combine model concepts with field observations and look at many examples. (4) Processes in the river, floodplain and riparian zone, including river network topology, channel geometry, aquatic habitat, role of riparian vegetation, including basics of fluvial system management. The main focus of the course is on the hydrology-sediment connections at the field and catchment scale.

Lecture notes

There is no script.

Literature

The course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from textbooks, professional papers, and ongoing research activities of the instructor. All material is on the course webpage.

Prerequisites / notice

Prerequisites: Basic Hydrology and Watershed Modelling (or contact instructor).

Seminar in Hydrology

651-2915-00L

Abstract

This course provides an introduction into quantitative analysis of groundwater flow and solute transport. It is focussed on understanding, formulating, and solving groundwater flow and solute transport problems.

651-4023-00L

Abstract

The course provides an introduction into quantitative analysis of groundwater flow and solute transport. It is focussed on understanding, formulating, and solving groundwater flow and solute transport problems.
Objective
a) Students understand the basic concepts of groundwater flow and solute transport processes, and boundary conditions.
b) Students are able to formulate simple, practical groundwater flow and solute transport problems.
c) Students are able to understand and apply simple analytical and/or numerical solutions to fluid flow and solute transport problems.

Content
1. Introduction to groundwater problems. Concepts to quantify properties of aquifers.
2. Flow equation. The generalised Darcy law.
3. The water balance equation and basic concepts of poroelasticity.
5. Analytical solutions to flow problems
6. Finite difference scheme solution for simple flow problems.
10. Analytical solutions to transport problems.
11. Fractured and karst aquifers.
12. The unsaturated zone and capillary pressure.
13. Examples of applied hydrogeology from Switzerland and around the world. (Given by Dr. Beatrice Marti from Hydrosolutions Ltd.)

Lecture notes
Handouts of slides.

Literature
de Marsily G., Quantitative Hydrogeology, Academic Press, 1986

Cooperation and Conflict Over International Water Resources

Abstract
This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.

Objective
Ability to (1) understand the causes and consequences of water scarcity and water pollution problems in large international river systems; (2) understand ways and means of addressing such water challenges; and (3) analyse when and why international efforts in this respect succeed or fail.

Content
Based on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in small teams coached by the instructors, carry out research on a case of their choice (i.e. an international river basin where riparian countries are trying to find solutions to water allocation and/or water quality problems associated with a large dam project). They will write a brief paper and present their findings towards the end of the semester.

Lecture notes
Slides and reading materials will be distributed electronically.

Literature
The UN World Water Development Reports provide a broad overview of the topic: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/

Prerequisites / notice
The course is open to Master and PhD students from any area of ETH. ISTP students who take this course should also register for the course 860-0012-01L - Cooperation and conflict over international water resources; In-depth case study.

Additional Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1237-00L</td>
<td>Solar Ultraviolet Radiation</td>
<td>W</td>
<td>1</td>
<td>1V</td>
<td>J. Gröbner, S. Kazantzis</td>
</tr>
</tbody>
</table>

Abstract
The lecture will introduce the student to the thematic of solar ultraviolet radiation and its effects on the atmosphere and the biosphere, as well as the retrieval of atmospheric trace gases. The lecture will also cover the modeling and the measurement of solar ultraviolet radiation.

Objective
- Effects of solar UV radiation on the Atmosphere, Humans, and the biosphere in general.
- Measurements of solar UV radiation (ground-based, satellite-based).
- Introduction to radiative transfer modelling, specifically for UV radiation.
- Methods to retrieve atmospheric constituents such as atmospheric ozone and aerosols from solar radiation measurements.
- Modelling of Solar UV radiation using satellite-based datasets.
Content

The course will consist of overview lectures, hands-on practical exercises on:

1) Introduction and Motivation on the impact of solar UV radiation on the atmosphere, humans, and the biosphere in general.
2) Historical review of the scientific research.
3) Variability of solar UV radiation from a solar perspective (solar cycle, solar UV variability, impact on the higher atmosphere).
4) Understanding the variability of ground-based solar UV radiation with respect to the parameters influencing the transfer of solar UV radiation through the atmosphere.
5) Introduction to radiative transfer modeling, with emphasis on solar UV radiation.
6) Instruments to measure solar UV radiation.

7) Retrieval of atmospheric trace gases from solar radiation measurements. Specific examples for retrieving atmospheric ozone, aerosols, and surface albedo.

8) Solar UV modelling over Europe at high spatial resolution using satellite-based datasets.

Lecture notes

Lecture notes are based on the slides presented during the individual lectures. They will be handed out prior to the course via Moddle.

Literature

- Radiative transfer by S. Chandrasekhar, ISBN 3-540-62711-1

Prerequisites / notice

- Familiar with a mathematical package such as R, Matlab, Python is advantageous for the calculation of the exercises.
- Basic experience in a programming language
- Overview on the climate system
- Knowledge of introductory statistics
- Un-supervised learning (dimension reduction, clustering)
- Non-linear regression (tree based methods, neural networks)
- Advanced linear regression (multiple linear regression, regularization)
- Concepts of supervised learning (bias variance trade-off, overfitting, cross-validation)
- Exploring properties of atmospheric and climate data (data in space and time, multivariate data)
- Data in atmospheric and climate research (data types, observations, models)
- Data types, observations, models
- Exploration of properties of meteorological observations (data in space and time, multivariate data)
- Computing models of simulated atmospheric and climate data
- Understanding the variability of ground-based solar UV radiation with respect to the parameters influencing the transfer of solar UV radiation through the atmosphere.

Domain A - Subject-specific Competencies

- Concepts and Theories
- Techniques and Technologies
- Analytical Competencies
- Decision-making
- Media and Digital Technologies
- Problem-solving
- Project Management

Domain B - Method-specific Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Adaptability and Flexibility
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Domain C - Social Competencies

- Self-direction and Self-management
- Self-awareness and Self-reflection
- Self-management
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

Domain D - Personal Competencies

- Familiar with a mathematical package such as R, Matlab, Python is advantageous for the calculation of the exercises.
- Basic experience in a programming language
- Overview on the climate system
- Knowledge of introductory statistics
- Un-supervised learning (dimension reduction, clustering)
- Non-linear regression (tree based methods, neural networks)
- Advanced linear regression (multiple linear regression, regularization)
- Concepts of supervised learning (bias variance trade-off, overfitting, cross-validation)
- Exploring properties of atmospheric and climate data (data in space and time, multivariate data)
- Data in atmospheric and climate research (data types, observations, models)
- Exploration of properties of meteorological observations (data in space and time, multivariate data)
- Computing models of simulated atmospheric and climate data
- Understanding the variability of ground-based solar UV radiation with respect to the parameters influencing the transfer of solar UV radiation through the atmosphere.

Domain B - Method-specific Competencies

- Communication
- Cooperation and Teamwork
- Customer Orientation
- Leadership and Responsibility
- Self-presentation and Social Influence
- Sensitivity to Diversity
- Negotiation
- Adaptability and Flexibility
- Critical Thinking
- Integrity and Work Ethics
- Self-awareness and Self-reflection
- Self-direction and Self-management

701-1271-00L Statistical Learning for Atmospheric and Climate Science

Abstract

The course will consist of overview lectures, hands-on practical exercises on (1) the basics of statistical learning and (2) with a focus on applications for atmospheric and climate science. Lectures will cover theoretical basics of statistical learning (advanced regression, nonlinear methods) and an overview of applications of statistical learning in the atmospheric and climate sciences.

Objective

- Understanding elements and principals of statistical learning
- Ability to select the appropriate statistical learning tools to tackle atmospheric and climate research problems
- Ability to apply methods of statistical learning to atmospheric and climate research
- Data in atmospheric and climate research (data types, observations, models)
- Exploration of properties of atmospheric and climate data (data in space and time, multivariate data)
- Concepts of supervised learning (bias variance trade-off, overfitting, cross-validation)
- Advanced linear regression (multiple linear regression, regularization)
- Non-linear regression (tree based methods, neural networks)
- Un-supervised learning (dimension reduction, clustering)
- High-level applications of statistical learning for atmospheric and climate research (keynote speakers)

Literature

Prerequisites / notice

- Knowledge of introductory statistics
- Overview on the climate system
- Basic experience in a programming language

Course should be limited to 30 participants.

Exercises will be conducted in the R environment (https://www.r-project.org/), which is a specialized tool for statistical computing.

701-3001-00L Environmental Systems Data Science

Statistical Learning for Atmospheric and Climate Science

Number of participants limited to 30.

Enrollment starts on September 20th, 2021.

Priority is given to the target groups: Master Environmental Science and Master Atmospheric and Climate Science until September 27th, 2021.

Waiting list will be deleted October 4th, 2021.

Abstract

The course will consist of overview lectures, hands-on practical exercises on (1) the basics of statistical learning and (2) with a focus on applications for atmospheric and climate science. Lectures will cover theoretical basics of statistical learning (advanced regression, nonlinear methods) and an overview of applications of statistical learning in the atmospheric and climate sciences.

Objective

- Understanding elements and principals of statistical learning
- Ability to select the appropriate statistical learning tools to tackle atmospheric and climate research problems
- Ability to apply methods of statistical learning to atmospheric and climate research
- Data in atmospheric and climate research (data types, observations, models)
- Exploration of properties of atmospheric and climate data (data in space and time, multivariate data)
- Concepts of supervised learning (bias variance trade-off, overfitting, cross-validation)
- Advanced linear regression (multiple linear regression, regularization)
- Non-linear regression (tree based methods, neural networks)
- Un-supervised learning (dimension reduction, clustering)
- High-level applications of statistical learning for atmospheric and climate research (keynote speakers)

Literature

Prerequisites / notice

- Knowledge of introductory statistics
- Overview on the climate system
- Basic experience in a programming language

Course should be limited to 30 participants.

Exercises will be conducted in the R environment (https://www.r-project.org/), which is a specialized tool for statistical computing.
Students are introduced to a typical data science workflow using various examples from environmental systems. They learn common methods and key aspects for each step through practical application. The course enables students to plan their own data science project in their specialization and to acquire more domain-specific methods independently or in further courses.

The students are able to:
1. frame a data science problem and build a hypothesis
2. describe the steps of a typical data science project workflow
3. conduct selected steps of a workflow on specifically prepared datasets, with a focus on choosing, fitting and evaluating appropriate algorithms and models
4. critically think about the limits and implications of a method
5. visualise data and results throughout the workflow
6. access online resources to keep up with the latest data science methodology and deepen their understanding

- The data science workflow
- Access and handle (large) datasets
- Prepare and clean data
- Analysis: data exploratory steps
- Analysis: machine learning and computational methods
- Evaluate results and analyse uncertainty
- Visualisation and communication

Prerequisites / notice
- 252-0840-02L Anwendungsnahe Programmieren mit Python
- 401-0624-00L Mathematik IV: Statistik
- 401-6215-00L Using R for Data Analysis and Graphics (Part I)
- 401-6217-00L Using R for Data Analysis and Graphics (Part II)

701-005-00L Mathematik VI: Angewandte Statistik für Umwelt- und Lebenswissenschaften

651-4273-00L Numerical Modelling in Fortran

Abstract
This course gives an introduction to programming in Fortran, and is suitable for students who have only minimal programming experience. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts.

Objective
Fortran is a modern programming language that is updated every few years (most recently in 2018) and is specifically designed for scientific and engineering applications. This course gives an introduction to programming in this language, and is suitable for students who have only minimal programming experience, for example with MATLAB scripts. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts, using example scientific problems relevant to Earth science.

Lecture notes
See http://jupiter.ethz.ch/~pj/FORTRAN/FortranClass.html

Taught competencies
- Domain A - Subject-specific Competencies
- Domain B - Method-specific Competencies

- Techniques and Technologies
- Media and Digital Technologies
- Problem-solving

- assessed
- assessed

651-4273-01L Numerical Modelling in Fortran (Project)

Abstract
This course gives an introduction to programming in Fortran, and is suitable for students who have only minimal programming experience. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts.

Objective
Fortran is a modern programming language that is updated every few years (most recently in 2018) and is specifically designed for scientific and engineering applications. This course gives an introduction to programming in this language, and is suitable for students who have only minimal programming experience, for example with MATLAB scripts. The focus will be on Fortran 95-2018, but differences to Fortran 77 will be mentioned for those working with already-existing codes. A hands-on approach will be emphasized rather than abstract concepts, using example scientific problems relevant to Earth science.

Content
The project consists of writing a Fortran program to solve a problem agreed upon between the instructor and student; the topic is often related to (and helps to) the student's Masters or PhD research. The project is typically started towards the end of the semester, and is due by the end of Semesterprüfung week.

Lecture notes
See http://jupiter.ethz.ch/~pj/FORTRAN/FortranProject.html

1 credit

W 3 credits

W 1 credit

U 1 credit

P. Tackley

Isotopes and Biomarkers in Biogeochemistry

The course addresses the biogeochemical classification and behavior of trace elements, including key processes driving the cycling of important trace elements in aquatic and terrestrial environments and the coupling of abiotic and biotic transformation processes of trace elements. Examples of the role of trace elements in natural or engineered systems will be presented and discussed in the course.

Objective
The course aims at understanding the fractionation of stable isotopes in biogeochemical processes. Students learn to know the origin and decay modes of relevant radiogenic isotopes. They discover the spectrum of possible geochemical tracers and biomarkers, their potential and limitations and get familiar with important applications

Content
Geogenic and cosmogenic radionuclides (sources, decay chains); stable isotopes in biogeochemistry (natural abundance, fractionation); geochemical tracers for processes such as erosion, productivity, redox fronts; biomarkers for specific microbial processes.

Lecture notes
handouts will be provided for each chapter

Literature
A list of relevant books and papers will be provided

Prerequisites / notice
Students should have a basic knowledge of biogeochemical processes (BSc course on Biogeochemical processes in aquatic systems or equivalent)

Biogeochemistry of Trace Elements

The course addresses the biogeochemical classification and behavior of trace elements, including key processes driving the cycling of important trace elements in aquatic and terrestrial environments and the coupling of abiotic and biotic transformation processes of trace elements. Examples of the role of trace elements in natural or engineered systems will be presented and discussed in the course.

Objective
The students are familiar with the chemical characteristics, the environmental behavior and fate, and the biogeochemical reactivity of different groups of trace elements. They are able to apply their knowledge on the interaction of trace elements with geosphere components and on abiotic and biotic transformation processes of trace elements to discuss and evaluate the behavior and impact of trace elements in aquatic and terrestrial systems.

Content
(i) Definition, importance and biogeochemical classification of trace elements. (ii) Key biogeochemical processes controlling the cycling of different trace elements (base metals, redox-sensitive and chalcophile elements, volatile trace elements) in natural and engineered environments. (iii) Abiotic and biotic processes that determine the environmental fate and impact of selected trace elements.

W 3 credits

W 1 credit

U 1 credit

P. Tackley
The course provides an overview on the behavior and effects of engineered nanomaterials in the environment. The course will cover quantitative (chemistry and microbiology) and qualitative aspects of drinking water from the resource to the tap. The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.

Applications

Number	Title	Type	ECTS	Hours	Lecturers
701-1341-00L | Water Resources and Drinking Water | W | 3 credits | 2G | S. Hug, M. Berg, F. Hammes, U. von Gunten
701-1346-00L | Carbon Mitigation | W | 3 credits | 2G | N. Gruber
701-1351-00L | Nanomaterials in the Environment | W | 3 credits | 2G | B. Nowack, T. Bucheli, D. Mitrano
860-0012-00L | Cooperation and Conflict Over International Water Resources | W | 3 credits | 2S | B. Wehrli, T. Bernauer, E. Calamita, T. U. Siegfried
This is a research seminar at the Master level. PhD students are also welcome.

Abstract
This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.

Objective
Ability to (1) understand the causes and consequences of water scarcity and water pollution problems in large international river systems; (2) understand ways and means of addressing such water challenges; and (3) analyse when and why international efforts in this respect succeed or fail.

Content
Based on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in small teams coached by the instructors, carry out research on a case of their choice (i.e. an international river basin where riparian countries are trying to finnKeyValueError resource allocation and/or water quality problems associated with a large dam project). They will write a brief paper and present their findings towards the end of the semester.

Lecture notes
Slides and reading materials will be distributed electronically.

Literature
The UN World Water Development Reports provide a broad overview of the topic: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/

Prerequisites / notice
The course is open to Master and PhD students from any area of ETH.

ISTP students who take this course should also register for the course 860-0012-01L - Cooperation and conflict over international water resources; In-depth case study.

Methods and Tools: Lab Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1331-00L</td>
<td>Biogeochemistry of Trace Elements Laboratory</td>
<td>W</td>
<td>3</td>
<td>4P</td>
<td>L. K. Thomas Arrigo, K. Barnettler</td>
</tr>
</tbody>
</table>

Abstract
The course offers a practical introduction into the investigation of the biogeochemistry of trace elements. Laboratory experiments are performed to study a selected environmental process. Advanced techniques for the analysis of total element contents and element speciation are used. The experimental findings are interpreted and discussed in their environmental context.

Objective
The objective of this course, is to offer students a practical introduction into the investigation of the biogeochemistry of trace elements. During the course, students will become familiar with some of the key experimental approaches typically used in the investigation of the biogeochemistry of trace elements in the laboratory. In addition, students will learn to use different advanced analytical techniques to measure the total content and the speciation of trace elements in both liquid and solid samples. The students will interpret and discuss their experimental findings in the context of the studied environmental system.

Content
Laboratory experiments are designed and performed to study the interplay of various biogeochemical processes in a specific environmental system. Moreover, the effect of these processes on the biogeochemical cycling of trace elements in the environment will be considered. Advanced techniques for the analysis of total element contents and element speciation are used. The experimental findings are interpreted and discussed in the context of the the environmental system under investigation.

Lecture notes
Selected handouts will be distributed during the course.

Literature
All necessary literature will be uploaded to the ILIAS repository during the course.

Prerequisites / notice
Pre- or corequisite: Lecture Biogeochemistry of Trace Elements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1333-00L</td>
<td>Isotopes and Biomarkers in Biogeochemistry Laboratory</td>
<td>W</td>
<td>3</td>
<td>4P</td>
<td>C. Schubert, R. Kipfer</td>
</tr>
</tbody>
</table>

Abstract
This course will illustrate how different tracers and isotopes are used in natural systems. Here especially the processes (transformation, timescales) that take place and can be revealed by tracers/isotopes will be demonstrated but also flux rates will be calculated using different tracers.

Objective
Students know how to use tracers/isotopes to investigate/understand ecosystems and satisfy natural processes occur

Content
Basics:
O,H isotopes as tracers for mixing in aquatic systems
Carbon isotopes as tracer for methane oxidation
210Pb, 137Cs as a tracer for sedimentation rate/mixing
SF6, Neon, He as tracers for exchange processes at the air/water interface

Case assessment:
Sampling of a Swiss lake (Rotsee)
Sampling techniques for different elements
Sample preparation for different techniques
Measurements at isotopes mass spectrometer/gamma counter

Interpretation of results from the special sampling campaign and in a broader context.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1337-00L</td>
<td>Forest Soils in a Changing Environment</td>
<td>W</td>
<td>3</td>
<td>6P</td>
<td>F. Hagedorn, P. F. Schleppi</td>
</tr>
</tbody>
</table>

Abstract
The students are measuring carbon and nutrient fluxes in forest soils under a changing climate and land-use. In laboratory and field experiments, they are manipulating climatic conditions (temperature, drought) and quantify the response of C and N fluxes in soils, and plant-soil interactions. The results will be interpreted and discussed in the context of changes in climate and land-use.

Objective
The students get first-hand experience with field and laboratory methods to measure carbon and nutrient fluxes and the application of stable isotope techniques. They shall learn about physico-chemical properties of Swiss forest soils, how these properties determine the ecological functions of soils and how soils respond to changes in climate and land-use. Finally the students shall interpret, discuss and present their experimental data.
Upon successful completion of this course students are able to:

1. Introduce to the ecological functions of Swiss forest soils
2. Measurement of soil CO2 efflux, carbon and nutrient leaching in forest and grassland soils
3. Sampling and preparation of litter and soil samples from selected soil profiles under different land-uses
4. Setting-up laboratory experiments in microcosms. Measurement of soil respiration and leaching of carbon, nutrients and/or contaminants in climate chambers under different environmental conditions.
5. Analyses of litter, soil, and soil water for selected physical and chemical properties.
7. Interpretation and final presentation of data

Lecture notes and literature:
Selected publications will be distributed during the course.

A manual will be distributed during the course.

Selected publications:

Measurements are the sole judge of scientific truth and provide access to unpredictable information, enabling the characterization and monitoring of complex terrestrial systems. Based on lectures and field- and laboratory training, the students learn to apply modern methods to determine forest inventory parameters and to measure subsurface properties and processes.

Waiting list will be deleted September 24th, 2021.

Number of participants limited to 12.
Priority is given to the target groups: Master Environmental Science until October 15th, 2021.
Waiting list will be deleted September 23rd, 2021.

Abstract
The main part of the course is the investigation of real samples of soils/sediments in the lab working in groups. A brief theoretical introduction into the overall principle and the meaning of physical, mineralogical and chemical parameters of soils and sediments and into each analytical method for their investigation will be given in advance.

Objective
Upon successful completion of this course students are able to:
- describe structural, mineralogical and chemical properties of the inorganic solid part of soils and sediments,
- propose and apply different advanced methods and techniques to measure these properties,
- critically assess the data and explain the relationships between them,
- communicate the results in a scientific report.

Content
Basic introduction to mineralogy and texture of soils
Analytical techniques
Practical exercises in sample preparation
Measurement and evaluation of the data:
- physical parameters (grain size distribution, surface, densities, porosity, (micro)structure)
- mineralogical/geochemical parameters (quantitative mineralogical composition, thermal analysis, cation exchange etc.)

Lecture notes and literature:

Prerequisites / notice
Selected handouts will be distributed during the course.

In order to allow for effective lab work not more than 12 students can join the course.

Useful preparatory courses are: "Soil Chemistry", "Clays in Geotechnics", and "X-ray powder diffraction".

701-1339-00L Soil Solids Laboratory W 3 credits 4G M. Plötze
Number of participants limited to 12.

Priority is given to the target groups: Master Environmental Science until October 15th, 2021.
Waiting list will be deleted September 24th, 2021.

Abstract
The main part of the course is the investigation of real samples of soils/sediments in the lab working in groups. A brief theoretical introduction into the overall principle and the meaning of physical, mineralogical and chemical parameters of soils and sediments and into each analytical method for their investigation will be given in advance.

Objective
Upon successful completion of this course students are able to:
- describe structural, mineralogical and chemical properties of the inorganic solid part of soils and sediments,
- propose and apply different advanced methods and techniques to measure these properties,
- critically assess the data and explain the relationships between them,
- communicate the results in a scientific report.

Content
Basic introduction to mineralogy and texture of soils
Analytical techniques
Practical exercises in sample preparation
Measurement and evaluation of the data:
- physical parameters (grain size distribution, surface, densities, porosity, (micro)structure)
- mineralogical/geochemical parameters (quantitative mineralogical composition, thermal analysis, cation exchange etc.)

Lecture notes and literature:

Prerequisites / notice
Selected handouts will be distributed during the course.

In order to allow for effective lab work not more than 12 students can join the course.

Useful preparatory courses are: "Soil Chemistry", "Clays in Geotechnics", and "X-ray powder diffraction".

701-1673-00L Environmental Measurement Laboratory W 5 credits 4G P. U. Lehmann Grunder, A. Carminati
Number of participants limited to 24.

Abstract
Measurements are the sole judge of scientific truth and provide access to unpredictable information, enabling the characterization and monitoring of complex terrestrial systems. Based on lectures and field- and laboratory training, the students learn to apply modern methods to determine forest inventory parameters and to measure subsurface properties and processes.

Objective
The students will be able to:
- explain measurement principles that are used for characterization of landscapes and terrestrial systems
- select appropriate measurement methods and sampling design to quantify key variables and processes above ground and in the subsurface
- deploy sensors in the field
- interpret collected laboratory and field data and report main conclusions deduced from measurements

Content
Week 1: Plant-Soil interactions – short introduction before sensor demonstration and installation in forest lab; Scholander pressure bomb (suction in leaves); LiCOR soil chamber

Week 2: Lecture on Measurement Science, overview of water content and water potential sensors; data logging and data logger programming; tests in the lab

Week 3: Introduction on soil physics; Field installation of sensors and field experiment; data collection for a few days; solar panel

Week 4: Soil sampling in field lab including geoprobe measurements

Week 5: Introduction on forest lab - Soil sampling in forest lab; root length density

Week 6: Lecture on geophysical methods on Subsurface Characterization: Basic principles of ERT, GPR, and EM; simple lab tests on effective resistivity

Week 7: Demonstration and application of geophysical methods in the field

Week 8: Lecture on plant soil relationship: connecting information below and above ground – data analysis

Weeks 9 and 10: Forest characterization/ inventory: Principles of LiDAR; structures and features of the tree crowns, size/volume of the leaf area tree positions and diameters at breast height

Weeks 11 and 12: Eddy covariance methods -Principles for field measurement of water vapor, carbon dioxide, and energy exchange between terrestrial surfaces and the atmosphere; Analysis of measured time series to determine evaporation rate and CO2-fluxes

Week 13: Swiss Soil Monitoring networks – Monitoring of soil water content and potential; climate change and droughts

Week 14: Global data – Global modeling and data interpretation; SoilGrids and OpenLandMap; exercises on Budyko analysis

Literature
Lecture material will be online for registered students using moodle

Prerequisites / notice
The details of the schedule will be optimized based on the number of students; some blocks of the course will be offered as well to students of Environmental Engineering
Semester Paper and Seminar

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
This class is the 2nd part of a series and participation is conditional on the successful completion of "Term Paper 1: Writing". The results from the term paper written during the previous term are presented to the other students and advisors and discussed with the audience.

Objective
The goal of the term paper seminars is to train the student's ability to communicate (scientific) results to a wider audience and the ability to respond to questions and comments.

Content
Each student presents the results of their term paper to fellow students and advisors and responds to questions and comments from the audience.

Lecture notes
Guidelines and supplementary material are distributed on the Moodle platform.

Prerequisites / notice
There is no final exam. Grade is assigned based on the quality of the presentation and ensuing discussion.

To obtain the credits, it is mandatory to attend at least 60% of all seminar dates offered in the fall and spring semester. Active participation in discussion and feedback rounds is expected.

Term Paper 1: Writing ■

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract
The ability to critically evaluate original (scientific) literature and to summarise the information in a succinct manner is an important skill for any student. This course aims to practice this ability, requiring each student to write a term paper of scientific quality on a topic of relevance for research in the areas of biogeochemistry and pollutant dynamics.

Objective
The goal of the term paper is to train the student's ability to critically evaluate scientific literature and to summarise the findings concisely in a paper addressing a research question.

At the end of the course, students will be able to:
- narrow down a research question,
- identify relevant literature to address the research question,
- concisely summarise and critically evaluate their findings,
- formulate key outstanding questions.

Content
Each student is expected to write a paper with a length of approximately 15-20 pages. The students can choose from a list of topics prepared by the tutors, but the final topic will be determined based on a balance of choice and availability. The students will be guided and advised by their tutors throughout the term.

The paper itself should contain the following elements:
- Motivation and context of the given topic (25%)
- Concise presentation and critical evaluation of the state of the science (50%)
- Identification of open questions and perhaps opportunities for further research (25%)

In addition, the accurate use of citations, attribution of ideas, and the judicious use of figures, tables, equations and references are critical components of a successful paper. Specialised knowledge is not expected, nor required; neither is new research.

Lecture notes
Guidelines and supplementary material are distributed on the Moodle platform.

Prerequisites / notice
Original scientific literature will be identified based on the chosen topic.

Please enrol latest until the first week of the semester. Contact termpaper(at)env.ethz.ch if you don't yet have access to MyStudies.

The term paper course is primarily aimed at master students majoring in biogeochemistry & pollutant dynamics and ISTP students with a solid background in natural sciences and a strong interest in biogeochemistry & pollutant dynamics.

Each student submits a term paper that will be reviewed by one fellow student and one faculty. The submission of the term paper and a written review of another student’s term paper are a condition for obtaining the credit points.

There is no final exam. Grade is assigned based on the quality of the term paper and the submitted review as well as on the presentation in the following term.

Results from the term paper will be presented to fellow students and involved faculty in the following semester ("Term Paper 2: Seminar").

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-3001-00L</td>
<td>Environmental Systems Data Science</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>L. Pellissier, J. Payne, B. Stocker</td>
</tr>
</tbody>
</table>

Abstract
Students are introduced to a typical data science workflow using various examples from environmental systems. They learn common methods and key aspects for each step through practical application. The course enables students to plan their own data science project in their specialization and to acquire more domain-specific methods independently or in further courses.

Objective
The students are able to:
- frame a data science problem and build a hypothesis
- describe the steps of a typical data science project workflow
- conduct selected steps of a workflow on specifically prepared datasets, with a focus on choosing, fitting and evaluating appropriate algorithms and models
- critically think about the limits and implications of a method
- visualise data and results throughout the workflow
- access online resources to keep up with the latest data science methodology and deepen their understanding
Content

- The data science workflow
- Access and handle (large) datasets
- Prepare and clean data
- Analysis: data exploratory steps
- Analysis: machine learning and computational methods
- Evaluate results and analyse uncertainty
- Visualisation and communication

Prerequisites / notice
252-0840-02L Anwendungsnahes Programmieren mit Python
401-0624-00L Mathematik IV: Statistik
401-6215-00L Using R for Data Analysis and Graphics (Part I)
401-6217-00L Using R for Data Analysis and Graphics (Part II)
701-0105-00L Mathematik VI: Angewandte Statistik für Umwelt naturwissenschaften

Major in Ecology and Evolution

A. Fundamentals

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0328-00L</td>
<td>Advanced Ecological Processes</td>
<td>W</td>
<td>4</td>
<td>2V</td>
<td>J. Hille Ris Lambers</td>
</tr>
</tbody>
</table>

For students of the following study programmes only:
- Biology Master
- Teaching certificate Biology
- Environmental Sciences Master
- UZH MNF Biology
- UZH MNF Geography /Earth Sciences

Abstract
This course presents the theoretical and empirical approaches used to understand the ecological processes structuring communities. Central problems in community ecology including the dynamics of species interactions, the influence of spatial structure, the controls over species invasions, and community responses to environmental change will be explored from basic and applied perspectives.

Objective
Students will understand how ecological processes operate in natural communities. They will appreciate how mathematical theory, field experimentation, and observational studies combine to generate a predictive science of ecological processes, and how this predictive science informs conservation and management decisions.

Upon completing the course, students will be able to:

Understand the factors determining the outcome of species interactions in communities, and how this information informs management.

Apply theoretical knowledge on species interactions to predict the potential outcomes of novel species introductions.

Understanding the role of spatial structure in mediating population dynamics and persistence, species interactions, and patterns of species diversity.

Use population and community models to predict the stability of interactions between predators and prey and between different competitors.

Understand the conceptual basis of predictions concerning how ecological communities will respond to climate change.

Discuss the types of conceptual advances ecology as a science can realistically achieve, and how these relate to the applications of the discipline.

Content
Lectures supplemented with readings from the primary literature and occasional computer exercises will focus on understanding central processes in community ecology. Topics will include demographic and spatial structure, consumer resource interactions, food webs, competition, mutualism, invasion, the maintenance of species diversity, and species effects on ecosystem processes. Each of these more conceptual topics will be discussed in concert with their applications to the conservation and management of species and communities in a changing world.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techniques and Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Decision-making</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Customer Orientation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Leadership and Responsibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Sensitivity to Diversity</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Adaptability and Flexibility</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Integrity and Work Ethics</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-awareness and Self-reflection</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td>Self-direction and Self-management</td>
<td>not assessed</td>
</tr>
</tbody>
</table>

701-1427-00L Experimental Evolution

W 4 credits 2S G. Velicer, A. Hall

Does not take place this semester. Semester change. This lecture will be offered in Spring Semester 2022 for the next time.

Abstract
Students will analyze experimental evolution literature covering a wide range of questions, species and types of analysis and will lead discussions of this literature. Students will develop a written project proposal for a novel evolution experiment (or a novel analysis of a published experiment) to address an unanswered question and will also deliver an oral presentation of the project proposal.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2089 of 2152
Objective
Course objectives:
1. Become familiar with a diverse sample of experimental evolution literature.
2. Gain understanding of the strengths and limitations of experimental evolution for addressing evolutionary questions relative to other forms of evolutionary analysis.
3. Gain the ability to effectively design and analyze evolution experiments that address fundamental or applied questions in evolutionary biology.

Content
Experimental evolution is a powerful and increasingly prominent approach to investigating evolutionary processes. Students will analyze experimental evolution literature covering a diverse range of topics, species, and types of analysis and will lead discussions of this literature. Students will develop a written project proposal for a novel evolution experiment (or a novel analysis of a published experiment) to address an unanswered question and will also deliver an oral presentation of the project proposal. Evaluation will be based on a combination of participation in and leadership of literature discussions, in-class exams, and oral and written presentations of the project proposal.

Literature
Primary research papers and review articles.

Prerequisites / notice
701-0245-00 Evolutionary Analysis (or equivalent).

B. Concept Courses and Applications

Advanced Concept Classes

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0263-01L</td>
<td>Seminar in Evolutionary Ecology of Infectious Diseases</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>R. R. Regös, S. Bonhoeffer</td>
</tr>
</tbody>
</table>

Objective
This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific literature and trace the development of ideas related to understanding the ecology and evolutionary biology of infectious diseases.

Abstract
Students of this course will discuss current topics from the field of infectious disease biology. From a list of publications, each student chooses some themes that he/she is going to explain and discuss with all other participants and under supervision. The actual topics will change from year to year corresponding to the progress and new results occurring in the field.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1409-00L</td>
<td>Research Seminar: Ecological Genetics</td>
<td>W</td>
<td>2</td>
<td>1S</td>
<td>S. Fior</td>
</tr>
</tbody>
</table>

Objective
It is our aim that participants gain insight into current research topics and approaches in Ecological Genetics and learn to critically assess and appreciate scientific publications in this field.

Abstract
In this research seminar we will critically discuss recent publications on current topics in Ecological Genetics.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1471-00L</td>
<td>Ecological Parasitology</td>
<td>W</td>
<td>3</td>
<td>1V+1P</td>
<td>J. Jokela, C. Vorburger</td>
</tr>
</tbody>
</table>

Objective
Course focuses on the ecology and evolution of macroparasites and their hosts. Through lectures and practical work, students learn about diversity and natural history of parasites, adaptations of parasites, ecology of host-parasite interactions, applied parasitology, and human macroparasites in the modern world.

Abstract
Course is a core set of ~10 classic publications encompassing unifying themes in infectious disease ecology and evolution, such as virulence, resistance, metapopulations, networks, and competition will be presented and discussed. Pathogens will include bacteria, viruses and fungi. Hosts will include animals, plants and humans.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1676-01L</td>
<td>Genomics of Environmental Adaptation</td>
<td>W</td>
<td>2</td>
<td>3G</td>
<td>R. Holderereger, F. Gugerli, C. Rellstab</td>
</tr>
</tbody>
</table>

Objective
Students will develop a written project proposal for a novel evolution experiment (or a novel analysis of a published experiment) to address an unanswered question and will also deliver an oral presentation of the project proposal. Evaluation will be based on a combination of participation in and leadership of literature discussions, in-class exams, and oral and written presentations of the project proposal.

Abstract
This five-day winter school aims at teaching advanced Master students, PhD students and post-doctoral researchers on aspects of the genomics of environmental adaptation. It provides both theoretical background and hands-on exercises on major topics of contemporary environmental genomics such as signatures of selection, outlier analysis or environmental association analysis.

Prerequisites / notice
Waiting list will be deleted January 20th, 2022.

Waiting list will be deleted on October 1st, 2021.

Waiting list will be deleted at 08:15 - 12:00. Note that each practical takes 2 hours longer than the weekly lecture.
The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. The course is not based on any of the textbooks below, but they are excellent choices as accompanying material:

Evolutionary Medicine for Infectious Diseases

Topics:
(1) How selection, drift, gene flow and isolation interact, affect neutral and adaptive genetic variation and influence the genetic structure of populations; genomic markers and next generation sequencing techniques.

(2) Outlier analysis: concept and methodology of outlier analysis; diverse types of outlier analyses

(3) Environmental data: which environmental data are available and used to identify signatures of adaptation; what are their limitations; collinearity.

(4) Environmental association analysis (landscape genomics): concept and types of environmental association analysis; genomic offset.

(5) Genotypes and phenotypes: GWAS; follow-up analyses

Lecture notes
Hand-outs will be distributed.

Literature
The course requires 4 hours of preparatory reading of selected papers on the genomics of environmental adaptation. The papers will be distributed by e-mail.

Prerequisites / notice
Grading will be according to a written report (6-8 pages), in which students will have to design a complete study in environmental genomics, and according to student contributions during the course.

Prerequisites: students must have good knowledge in population genetics and evolutionary biology and basic skills in R; experience with GIS is advantageous.

<table>
<thead>
<tr>
<th>701-1703-00L</th>
<th>Evolutionary Medicine for Infectious Diseases</th>
<th>W</th>
<th>3 credits</th>
<th>2G</th>
<th>A. Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will learn to (i) identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>We will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes: (i) determinants of pathogen host range and virulence, (ii) dynamics of host-parasite coevolution, (iii) pathogen adaptation to evade or suppress immune responses, (iv) antimicrobial resistance, (v) evolution-proof medicine. For each topic there will be a short (< 20 minutes) introductory lecture, before students independently research the primary literature and develop discussion points and questions, followed by interactive discussion in class.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The focus is on primary literature, but for some parts the following text books provide good background information:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schmid Hempel 2011 Evolutionary Parasitology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stearns & Medzhitov 2016 Evolutionary Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>636-0017-00L</th>
<th>Computational Biology</th>
<th>W</th>
<th>6 credits</th>
<th>3G+2A</th>
<th>T. Vaughan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are: * stochastic models in molecular evolution * phylogenetic & phylodynamic inference * maximum likelihood and Bayesian statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Attendees will apply these concepts to a number of applications yielding biological insight into: * epidemiology * pathogen evolution * macroevolution of species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture slides will be available on moodle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
751-5101-00L Biogeochemistry and Sustainable Management

W 2 credits 2G W. Eugster, V. Klaus

Abstract
This course focuses on the interactions between ecology, biogeochemistry and management of agro- and forest ecosystems, thus, coupled human-environmental systems. Students learn how human impacts on ecosystems via management or global change are mainly driven by effects on biogeochemical cycles and thus ecosystem functioning, but also about feedback mechanisms of terrestrial ecosystems.

Objective
Students will analyse and understand the complex and interacting processes of ecology, biogeochemistry and management of agroecosystems, be able to analyze large meteorological and flux data sets, and evaluate the impacts of weather events and management practices, based on real-life data. Moreover, students will be able to coordinate and work successfully in small (interdisciplinary) teams.

Content
Agroecosystems play a major role in all landscapes, either for production purposes, ecological areas or for recreation. The human impact of any management on the environment is mainly driven by effects on biogeochemical cycles. Effects of global change impacts will also act via biogeochemistry at the soil-biosphere-atmosphere-interface. Thus, ecosystem functioning, i.e., the interactions between ecology, biogeochemistry and management of terrestrial systems, is the science topic for this course.

Students will gain profound knowledge about biogeochemical cycles and greenhouse gas fluxes in managed grassland and/or cropland ecosystems. Responses of agroecosystems to the environment, i.e., to climate and weather events, but also to management will be studied. Different meteorological and greenhouse gas flux data will be analysed (using R) and assessed in terms of production, greenhouse gas budgets and carbon sequestration. Thus, students will learn about the complex interactions of a coupled human-environmental system.

Students will work with real-life data from the long-term measurement network Swiss FluxNet. Data from the intensively managed grassland site Chammul will be used to investigate the biosphere-atmosphere exchange of CO2, H2O, N2O and CH4. Functional relationships will be identified, greenhouse gas budgets will be calculated for different time periods and in relation to management over the course of a year.

Lecture notes
Handouts will be available on the webpage of the course.

Literature
Will be discussed in class.

Prerequisites / notice
Prerequisites: Attendance of introductory courses in plant ecophysiology, ecology, and grassland or forest sciences. Knowledge of data analyses in R and statistics. Course will be taught in English.

Applications

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1453-00L</td>
<td>Ecological Assessment and Evaluation</td>
<td>W</td>
<td>3</td>
<td>3G</td>
<td>F. Knaus</td>
</tr>
</tbody>
</table>

Abstract
The course provides methods and tools for ecological evaluations dealing with nature conservation or landscape planning. It covers census methods, ecological criteria, indicators, indices and critically appraises objectivity and accuracy of the available methods, tools and procedures. Birds and plants are used as main example guiding through different case studies.

Objective
Students will be able to:
1) critically consider biological data books and local, regional, and national inventories;
2) evaluate the validity of ecological criteria used in decision making processes;
3) critically appraise the handling of ecological data and criteria used in the process of evaluation
4) perform an ecological evaluation project from the field survey up to the decision making and planning.

Lecture notes
Powerpoint slides are available on the webpage. Additional documents are handed out as copies.

Literature
Basic literature and references are listed on the webpage.

Prerequisites / notice
Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses:
- Pflanzen- und Vegetationsökologie
- Systematische Botanik
- Raum- und Regionalentwicklung
- Naturschutz und Naturschutzbiole

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1613-01L</td>
<td>Advanced Landscape Research</td>
<td>W</td>
<td>5</td>
<td>3G</td>
<td>J. Bolliger, M. Bürgi, U. Gimmi, M. Hunziker</td>
</tr>
</tbody>
</table>

Abstract
This course introduces landscapes as socially perceived, spatially and temporally dynamic entities that are shaped by natural and societal factors. Concepts and qualitative and quantitative methods to study landscapes from an ecological, societal and historical perspective are presented. In a term paper students work on a landscape-related topic of their choice.

Objective
Students will:
- learn about concepts and methods to quantify structural and functional connectivity in landscapes, particularly
- be introduced to the topic of landscape genetics and its benefits and (current) limitations for applied conservation
- learn about concepts and methods in scenario-based land-use change modelling
- approach an understanding of landscape as perceived environment
- learn about concepts of landscape preference and related measurement methods
- understand the role of landscape for human well-being
- be introduced into approaches of actively influencing attitudes and behavior as well as related scientific evaluation
- make use of various historical sources to study landscapes and their dynamics
- interpret landscapes as a result of ecological constraints and anthropogenic activities.
Content
1. Encompassing concepts and approaches
 - European Landscape Convention (ELC)
 - Ecosystem Services (ES); introduction and critical evaluation

Thematic topics
2. Ecological approach:
 - green infrastructure (e.g., ecological conservation areas)
 - landscape connectivity
 - landscape genetics and management applications
 - concepts of specific quantitative methods: least cost paths, resistance surfaces, Circuitscape, networks (Conefor), land-use change models, various statistical methods

3. Social-science approach:
 - principle of landscape as perceived and connoted environment
 - theories on landscape preference and place identity
 - role of landscapes for recreation, health and well-being
 - intervention approaches for influencing attitudes and related behavior
 - methods of investigating the human-landscape relationship and evaluating interventions

4. Historical approach:
 - land use history of Switzerland (agricultural history, forest and woodland history)
 - historical legacies of land use in landscapes and ecosystems
 - historic-ecological approaches and applications

5. Land change science:
 - modelling future land-use (CLUE, other scenario-based models)
 - landscape functions and services

Lecture notes
Handouts will be available in the course and for download

Prerequisites / notice
Basic Landscape Ecology courses at Bachelor level

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1631-00L</td>
<td>Foundations of Ecosystem Management</td>
<td>W</td>
<td>3</td>
<td>3G</td>
<td>J. Ghazoul, C. Garcia, J. Garcia Ulloa, A. Giger Dray</td>
</tr>
</tbody>
</table>

Abstract
This course introduces the broad variety of conflicts that arise in projects focusing on sustainable management of natural resources. It explores case studies of ecosystem management approaches and considers their practicability, their achievements and possible barriers to their uptake.

Objective
Students should be able to
a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales.
b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management.

Content
Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

Lecture notes
No Script

Literature

C. Scientific Skills

Quantitative and Computational Expertise

Number | Title | Type | ECTS | Hours | Lecturers |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1677-00L</td>
<td>Quantitative Vegetation Dynamics: Models from Tree to Globe</td>
<td>W</td>
<td>3</td>
<td>3G</td>
<td>H. Lischke, U. Hiltner, B. Rohner</td>
</tr>
</tbody>
</table>

Abstract
This course provides hands-on experience with models of vegetation dynamics across temporal and spatial scales. The underlying principles, assets and trade-offs of the different approaches are introduced, and students work in a number of small projects with these models to gain first-hand experience.

Objective
Students will
- be able to understand, assess and evaluate the fundamental properties of dynamic systems using vegetation models as case studies
- obtain an overview of dynamic modelling techniques from the individual plant to the global level
- understand the basic assumptions of the various model types, which dictate the skill and limitations of the respective model
- be able to work with such model types on their own
- appreciate the methodological basis for impact assessments of future climate change and other environmental changes on ecosystems.
Aquatic Ecology I

F. Altermatt, A. Narwani

To learn and improve on standard and modern methods of genetic data collection. Examples are: use of pyrosequencing, expression
This course provides training for advanced students (master, doctoral or post-doctoral level) in how to measure and collect genetic diversity

1. The basics:
- Introduction to the concept of the ecological niche, and biodiversity theories. Overview of the knowledge on expected biodiversity response to global changes and conservation planning methods.
- Introduction to the statistical methods of Generalized Linear (GLM) and Generalized Additive models (GAM), and Classification and Regression Trees (CART). Introduction to basic GIS and programming elements in the statistical environment R.
- The students form groups of two, and each group solves a series of applied questions independently in R using the techniques taught in the introductory classes. The students then prepare a presentation and report of the obtained results that will be discussed during a mini-symposium. Each team choses one of the following topics for the class project:
 a) Linking climate change velocities to species' migration capacities
 b) Explaining and modelling land use change in Switzerland
 c) Explaining and modelling biodiversity changes in Switzerland
 d) Designing biodiversity conservation strategies under global changes.

Prerequisites / notice
Basic knowledge in statistics (OLS regression, test statistics), and basic knowledge in geographic information science.

Laboratory and Field Expertise

- Good knowledge of general ecology, vegetation dynamics, and forest systems
- Basic knowledge in statistics (OLS regression, test statistics), and basic knowledge in geographic information science.
- Basic knowledge in programming, ideally in R
- Good knowledge of general ecology, vegetation dynamics, and forest systems

Content
- Models of individuals
 - Deriving single-plant models from inventory measurements
 - Plant models based on 'first principles'
- Models at the landscape scale
 - Simple approaches: matrix models
 - Dynamic Global Vegetation Models (DGVMs)
 - DGVMs as components of Earth System Models
- Global models
 - Sacrificing local detail to attain global coverage: processes and entities
 - Basic concepts of spatial (global-) ecology
 - Environmental impact assessment and planning
 - Advanced statistical methods (GLM, GAM, CART) and basic programming (loops, functions, advanced scripting) in the statistical environment R.
 - The use of GIS functionality in R

No enrollment possible after October 18th, 2021.

Waiting list will be deleted November 1st, 2021.

This course provides training for advanced students (master, doctoral or post-doctoral level) in how to measure and collect genetic diversity data from populations, experiments, field and laboratory. Different DNA/RNA extraction protocols, quality control measurements, SNP genotyping and gene expression techniques will be addressed.

To learn and improve on standard and modern methods of genetic data collection. Examples are: use of pyrosequencing, expression analysis, SNP-typing, next-generation sequencing etc.

A course for practicioners.

After an introduction (one afternoon), students will have 3 weeks to work independently in groups of two through different protocols. At the end the whole class meets for another afternoon to present the techniques/results and to discuss the advantages and disadvantages of the different techniques.

Techniques addressed are: RNA/DNA extractions and quality control, SNP genotyping, pyrosequencing, real-time qPCR.

Material will be handed out in the course.

Two afternoons are hold in the class. The lab work will be done from the students according to their timetable, but has to be finished after 3 weeks. Effort is roughly 1-2 days per week, depending on the skills of the student.

This course combines Limnology (the study of inland waters in its broad sense) with ecological and evolutionary concepts. It deals with rivers, groundwater and lakes.

During this course you will get an overview of the world's typical freshwater ecosystems. After this course you will be able to understand how aquatic organisms have adapted to their habitat and how the interactions (e.g. food web) between organisms work.

In short: apply the theoretical / lecture knowledge to field situations in a lake and river.
During this course you will get an overview of the typical aquatic microinvertebrates and algae in Switzerland. After this course you will be able to identify the most important aquatic species groups at the level of order/family and know the most important identification traits. Practical experience in benthic sampling techniques is collected during an excursion.

The maximal participating number of students is 8 from D-USYS and 14 from D-BIOL. In case of too many students, those that simultaneously participate in the courses "701-1437-00 Aquatic Ecology I" and "701-1437-02 Bestimmungskurs Süsswasseralgen und aquatische Mikroinvertebraten" are given priority. Sign in until 26.08.2021 free places will be distributed after that. Students registering later can not be guaranteed a place in the course.

Registration for the course until September 5th, 2021, free places will be distributed later. Students registrating later cannot be guaranteed a place in the course. Waiting list will be deleted September 17th, 2021.

Students have to enroll together with the lecture Aquatic Ecology I (701-1437-00V) and the Identification Courses Macroinvertebrates (701-1437-01L) and Freshwater Algae and aquatic Microinvertebrates (701-1437-02L).

The maximal participating number of students is 8 from D-USYS and 14 from D-BIOL (ETH & UNI). Registration for the course until 26.08.2021, free places will be distributed after that. Students registrating later cannot be guaranteed a place in the course.

The course includes a mandatory field trip to Greifensee (23.09.2021) and a three-day excursion to the river Glatt (29.09. bis 01.10. 2021).

Expertise in Biological Diversity

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1437-01L</td>
<td>Practical Course Macroinvertebrates</td>
<td>W</td>
<td>2 credits</td>
<td>2P</td>
<td>J. Jokela</td>
</tr>
<tr>
<td>701-1437-02L</td>
<td>Identification Course Freshwater Algae and Aquatic Microinvertebrates</td>
<td>W</td>
<td>2 credits</td>
<td>2P</td>
<td>J. Jokela</td>
</tr>
</tbody>
</table>

The course is mandatory for the Master of Environmental Sciences and UZH MNF Biology.

Target groups only: Bachelor Biology, Master Environmental Sciences and UZH MNF Biology.

The lectures are given by Piet Spaak (Eawag), Florian Altermatt (UNI, Eawag), Chris Robinson (Eawag), Francesco Pomati (Eawag), Anita Narwani (Eawag) and specialists from the Aquatic Ecology department of Eawag and University of Zurich.

Prerequisites / notice

The course is mandatory for the Master of Environmental Sciences and UZH MNF Biology.

Target groups only: Bachelor Biology, Master Environmental Sciences and UZH MNF Biology.

The lectures are given by Piet Spaak (Eawag), Florian Altermatt (UNI, Eawag), Chris Robinson (Eawag), Francesco Pomati (Eawag), Anita Narwani (Eawag) and specialists from the Aquatic Ecology department of Eawag and University of Zurich.
Term Paper and Seminar

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Abstract

Individual writing of an essay-type review paper about a specialized topic in the field of ecology and evolution, based on substantial reading of original literature and discussions with a senior scientist.

Objective

- Students acquire a thorough knowledge on a topic in which they are particularly interested
- They learn to assess the relevance of original literature and synthesize information
- They make the experience of becoming "experts" on a topic and develop their own perspective
- They practise academic writing according to professional standards in English

Content

Topics for the essays are proposed by the professors and lecturers of the major in Ecology and Evolution at a joint meeting at the beginning of the semester (the date will be communicated by e-mail to registered students).

Students will:
- choose a topic
- search and read appropriate literature
- develop a personal view on the topic and structure their arguments
- prepare figures and tables to represent ideas or illustrate them with examples
- write a clear, logical and well-structured text
- refine the text and present the paper according to professional standards

In all steps, they will benefit from the advice and detailed feedback given by a senior scientist acting as personal tutor of the student.

Lecture notes

Reading of articles in scientific journals

Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0290-00L</td>
<td>Seminar in Microbial Evolution and Ecology (HS)</td>
<td>Z</td>
<td>0</td>
<td>2S</td>
<td>S. Bonhoeffer</td>
</tr>
</tbody>
</table>

Abstract

Seminar of the groups Molecular Microbial Ecology, Theoretical Biology, Experimental Ecology, Evolutionary Biology. Talks given by members of these groups and external visitors.

Objective

In-depth introduction into microbial evolution and ecology, especially the aspects that are the focus of on-going research in this area at Department of Environmental Systems Science.

Content

- The data science workflow
- Access and handle (large) datasets
- Prepare and clean data
- Analysis: data exploratory steps
- Analysis: machine learning and computational methods
- Evaluate results and analyse uncertainty
- Visualisation and communication

Prerequisites / notice

252-0840-02L Anwendungsnahe Programmieren mit Python
401-0624-00L Mathematik IV: Statistik
401-6215-00L Using R for Data Analysis and Graphics (Part I)
401-6217-00L Using R for Data Analysis and Graphics (Part II)
701-0105-00L Mathematik VI: Angewandte Statistik für Umwelt naturwissenschaften

551-0205-00L Challenges in Plant Sciences

Number of participants limited to 40.

Abstract

The colloquium “Challenges in Plant Sciences” is a core class of the Zurich-Basel Plant Science Center’s PhD program and the MSc module. The colloquium introduces participants to the broad spectrum of plant sciences within the network. The course offers the opportunity to approach interdisciplinary topics in the field of plant sciences.

Objective

Objectives of the colloquium are:

Introduction to recent research in all fields of plant sciences
Working in interdisciplinary teams on the topics
Developing presentation and discussion skills

Content

The topics encompass integrated knowledge on current plant research, ranging from the molecular level to the ecosystem level, and from basic to applied science while making use of the synergies between the different research groups within the PSC.

Taught competencies

- Domain A - Subject-specific Competencies
- Domain B - Method-specific Competencies
- Domain C - Social Competencies
- Domain D - Personal Competencies

571-4504-00L Plant Pathology I

Abstract

Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems.
Objective

Students will understand: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems as a basis for implementing disease management strategies in agroecosystems.

Content

Course description: Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. Topics under the first theme will include pathogen life cycles, disease cycles, and an overview of plant pathogenic nematodes, viruses, bacteria, and fungi. Topics under the second theme will include plant defense strategies, host range, passive and active defenses, and chemical and structural defenses. Topics under the third theme will include the disease triangle and cultural control strategies.

Lecture Topics and Tentative Schedule

Week 1 The nature of plant diseases, symbiosis, parasites, mutualism, biotrophs and necrotrophs, disease cycles and pathogen life cycles.

Week 2 Nematode attack strategies and types of damage. Viral pathogens, classification, reproduction and transmission, attack strategies and types of damage. Examples TMV, BYDV. Bacterial pathogens and phytoplasmas, classification, reproduction and transmission.

Week 3 Bacterial attack strategies and symptoms. Example bacterial diseases: fire blight, Agrobacterium crown gall, soft rots. Fungal and oomycete pathogens, classification, growth and reproduction, sexual and asexual spores, transmission.

Week 4 Fungal and oomycete life cycles, disease cycles, infection processes, colonization, phytoxins and mycotoxins. Attack strategies of fungal necrotrophs and biotrophs. Symptoms and signs of fungal infection. Example fungal diseases: potato late blight.

Week 5 Example fungal diseases: wheat stem rust, grape powdery mildew, wheat septoria tritici blotch. Plant defense mechanisms, host range and non-host resistance. Passive structural and chemical defenses, preformed chemical defenses. Active structural defense, histological and cellular (papillae).

Week 6 Active chemical defense, hypersensitive response, pathogenesis-related (PR) proteins, phytoalexins and disease resistance. Pisatin and pisatin demethylase. Local and systemic acquired resistance (LAR, SAR), induced systemic resistance (ISR), signal molecules, defense activators (Bion). Pathogen effects on food quality. Positive and negative transformations.

Week 8 Epidemiology: Disease pyramid, environmental effects on epidemic development, plant effects on development of epidemics, including resistance, physiology, density, uniformity.

Week 9 Disease assessment: incidence and severity measures, keys, diagrams, scales, measurement errors. Correlations between incidence and severity. Molecular detection and diagnosis of pathogens. Host indexing, serology, monoclonal and polyclonal antibodies, ELISA.

Week 10 Molecular detection and diagnosis of pathogens: PCR, rDNA and loop-mediated isothermal amplification. Strategies for minimizing disease risks: calculating disease thresholds, disease forecasting systems.

Week 12 Physical control methods. Cultural control methods: avoidance, tillage practices, crop sanitation.

Week 13 Cultural control methods: fertilizers, crop rotations.

Week 14 Open lecture.

Lecture notes

Detailed lecture notes (~160 pages) will be available for purchase at the cost of reproduction at the start of the semester.

► Major in Environmental Systems Policy

►► Theoretical Foundations for Environmental Policy

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1563-00L</td>
<td>Climate Policy</td>
<td>W</td>
<td>6 credits</td>
<td>3G</td>
<td>A. Patt, S. Hanger-Kopp</td>
</tr>
</tbody>
</table>

This course provides an in-depth analysis both of the theoretical underpinnings to different approaches to climate policy at the international and national levels, and how these different approaches have played out in practice. Students will learn how legislative frameworks have developed over the last 25 years, and also be able to appraise those frameworks critically.
Objective

Climate change is one of the defining challenges of our time, touching all aspects of the environment and of society. There is broad recognition (although with some dissent) that governments ought to do something about it: making sure that emissions of greenhouse gases (GHGs) stop within the next 30 to 40 years; helping people to adapt to the consequences of the climate change to which we have already committed ourselves; and, most controversially, perhaps taking measures to actively remove GHG’s from the atmosphere, or to alter the radiation balance of the Earth through solar engineering.

It’s a complicated set of problems, especially the first of these, known as mitigation. Fundamentally this is because it means doing something that humanity has never really tried before at a planetary scale: deliberately altering the ways the we produce, convert, and consume energy, which is at the heart of modern society. Modern society – the entire anthropocene – grew up on fossil fuels, and the huge benefits they offered in terms of energy that was inexpensive, easy to transport and store, and very dense in terms of its energy content per unit mass or volume. How to manage a society of over 7 billion people, at anything like today’s living standards, without the benefits of that energy, is a question for which there is no easy answer. There are also other challenges outside of energy. How do we build houses, office buildings, and infrastructure networks without cement, a substance that releases large amounts of CO2 as it hardens? How do we reverse the pace of deforestation, particularly in developing countries? How do we eliminate the GHG emissions from agriculture: the methane from cows’ bellies and rice paddies, together with the chemicals that enter the atmosphere from the application of fertilizer?

These are all tough questions at a technical level, but even tougher when you consider that governments typically need to employ indirect methods to get these things to happen. Arguably a government could simply pass a law that forbids people from using fossil fuels. But politically this is simply unrealistic, at least while so many people depend on fossil fuels in their daily lives. What is to be done? For this, one needs to turn to various ideas about how government can and should influence society. On the one hand are ideas suggesting that government ought to play a very limited role, relative to private actors, and should step in only to correct “market failures,” with interventions designed specifically around that failure. On the other hand are ideas suggesting that government (meaning all of us, working together through a democratic process) is the appropriate decision-making body for core decisions on where society can and should go. These issues come to the fore in climate policy discussions and debates.

This course is about all that. The goal is to give students a glimpse into the enormous complexity of this policy area, an understanding of some of the many debates that are currently raging (of which the debate about whether climate change is actually real is probably the least complicated or interesting). We want to give students the ability to evaluate policy arguments made by politicians, experts, and academics with a critical eye, informed by a knowledge of history, an understanding of the theoretical underpinnings, and the results of empirical testing of different strategies. A student taking this course ought to be able to step into an NGO or government agency involved in climate policy analysis or political advocacy, and immediately be able to make an informed and creative contribution. Moreover, by experiencing the depth of this policy area, students should be able to appreciate the complexity inherent in all policy areas.

There will be daily reading assignments, which will then discuss critically during the class sessions. All of these will be posted in PDF format on a course Moodle. In addition, there will be two books to be read over the course of the semester. Both of these can be accessed from the ETH library or in PDF form free of charge. They are:

The Climate Casino, by William Nordhaus. Yale University Press.

Environmental Governance

<table>
<thead>
<tr>
<th>Taught competencies</th>
<th>Domain A - Subject-specific Competencies</th>
<th>Concepts and Theories</th>
<th>assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain B - Method-specific Competencies</td>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td>Problem-solving</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negotiation</td>
<td>not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Thinking</td>
<td>assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
</tbody>
</table>

The course addresses environmental policies, focusing on new steering approaches, which are generally summarized as environmental improvements in environmental quality and sustainable management of natural resources cannot be achieved through technical solutions alone. The quality of the environment and the achievement of sustainable development strongly depend on human behavior and specifically the human uses of nature. To influence human behavior, we rely on public policies and other societal rules, which aim to steer the way humans use natural resources and their effects on the environment. Such steering can take place through government intervention alone. However, this often also involves governance, which includes the interplay between governmental and non-governmental actors, the use of diverse tools such as emission standards or financial incentives to steer actors’ behavior and can occur at the local, regional, national or international level.

In this course, we will address both the practical aspects of as well as the scientific debate on environmental governance. The course gives future environmental experts a strong basis to position themselves in the governance debate, which does not preclude government but rather involves a spectrum from government to governance.

Key questions that this course seeks to answer: What are the core characteristics of environmental challenges from a policy perspective? What are key elements of ‘environmental governance’ and how legitimate and effective are these approaches in addressing persistent environmental challenges?

To be able to identify the main challenges and opportunities for environmental governance and to critically discuss them with reference to various practical policy examples.

Improvements in environmental quality and sustainable management of natural resources cannot be achieved through technical solutions alone. The quality of the environment and the achievement of sustainable development strongly depend on human behavior and specifically the human uses of nature. To influence human behavior, we rely on public policies and other societal rules, which aim to steer the way humans use natural resources and their effects on the environment. Such steering can take place through government intervention alone. However, this often also involves governance, which includes the interplay between governmental and non-governmental actors, the use of diverse tools such as emission standards or financial incentives to steer actors’ behavior and can occur at the local, regional, national or international level.

In this course, we will address both the practical aspects of as well as the scientific debate on environmental governance. The course gives future environmental experts a strong basis to position themselves in the governance debate, which does not preclude government but rather involves a spectrum from government to governance.

Key questions that this course seeks to answer: What are the core characteristics of environmental challenges from a policy perspective? What are key elements of ‘environmental governance’ and how legitimate and effective are these approaches in addressing persistent environmental challenges?

Lecture notes

We will mostly work with readings from the following books:

Prerequisites / notice

A detailed course schedule will be made available at the beginning of the semester.

During the lecture we will work with Moodle. We ask that all students register themselves on this platform before the lecture.

We recommend that students have (a) three-years BSc education of a (technical) university; (b) successfully completed Bachelor introductory course to environmental policy (Entwicklungen nationaler Umweltpolitik (or equivalent)) and (c) familiarity with key issues in environmental policy and some fundamental knowledge of one social science or humanities discipline (political science, economics, sociology, history, psychology, philosophy)

Data: 11.11.2021 12:40
Autumn Semester 2021 Page 2098 of 2152
This course addresses the role of policy and its underlying politics in the transformation of the energy sector. It covers historical, socio-economic, and political perspectives and applies various theoretical concepts to understand specific aspects of the governance of the energy transition.

Objective
- To gain an overview of the history of the transition of large technical systems
- To recognize current challenges in the energy system to understand the theoretical frameworks and concepts for studying transitions
- To gain knowledge on the role of policy and politics in energy transitions

Content
Climate change, access to energy and other societal challenges are directly linked to the way we use and create energy. Both the 2015 United Nations Paris climate change agreement and the UN Sustainable Development Goals make a fast and extensive transition of the energy system necessary.

This lecture introduces the social and environmental challenges involved in the energy sector and discusses the implications of these challenges for the rate and direction of technical change in the energy sector. It compares the current situation with historical socio-technical transitions and derives the consequences for policy-making. It introduces theoretical frameworks and concepts for studying innovation and transitions. It then focuses on the role of policy and policy change in governing the energy transition, considering the role of political actors, institutions and policy feedback.

The grade will be determined by a final exam.

Literature
A reading list will be provided via moodle.ethz.ch at the beginning of the semester.

Prerequisites / notice
This course is particularly suited for students of the following programmes: MA Comparative International Studies; MSc Energy Science & Technology; MSc Environmental Sciences; MSc Management, Technology & Economics; MSc Science, Technology & Policy; ETH & UZH PhD programmes.

This course is open to all ETH students. Participation does not require previous coursework in the social sciences. After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.

This course will take place fully online. Course units have three components:

1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

Lecture notes
Assigned reading materials and slides will be available via Moodle.

Literature
Assigned reading materials and slides will be available via Moodle.
This course will take place fully online. Course units have three components:
1. A pre-recorded lecture by Prof. Bernauer, available via Moodle, for all course units
2. Reading assignments, available via Moodle, for a few selected course units
3. Online meetings (via Zoom) for all course units on Mondays at 16:30 – 18:00, where we discuss your questions concerning the lecture and reading assignments and focus in greater depth on a particular facet of the respective course unit, on occasion with a guest (to be announced a few weeks ahead of the respective course unit).

You must watch the lecture and complete the reading assignment for the respective unit ahead of the online meeting. The online meeting will be recorded and made available via Moodle.

To facilitate your planning, the course is organized in terms of weekly units.

Modeling and Statistical Analysis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1453-00L</td>
<td>Ecological Assessment and Evaluation</td>
<td>W</td>
<td>3</td>
<td>4G</td>
<td>F. Knaus</td>
</tr>
<tr>
<td>Abstract</td>
<td>The course provides methods and tools for ecological evaluations dealing with nature conservation or landscape planning. It covers census methods, ecological criteria, indicators, indices and critically appraises objectivity and accuracy of the available methods, tools and procedures. Birds and plants are used as main example guiding through different case studies. Students will be able to: 1) critically consider biological data books and local, regional, and national inventories; 2) evaluate the validity of ecological criteria used in decision making processes; 3) critically appraise the handling of ecological data and criteria used in the process of evaluation; 4) perform an ecological evaluation project from the field survey up to the decision making and planning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Powerpoint slides are available on the webpage. Additional documents are handed out as copies. Basic literature and references are listed on the webpage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>The course structure changes between lecture parts, seminars and discussions. The didactic atmosphere is intended as working group.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses: - Pflanzen- und Vegetationsökologie - Systematische Botanik - Raum- und Regionalentwicklung - Naturschutz und Naturschutzbiologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The lectures will introduce students to the principles of quantitative policy analysis, namely the methods to predict and evaluate the social, economic, and environmental effects of alternative strategies to achieve public objectives. A series of individual assignments, and one group project, will give students an opportunity for students to apply those methods to a set of case studies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The objectives of this course are to develop the following key skills necessary for policy analysts: - Identifying the critical quantitative factors that are of importance to policy makers in a range of decision-making situations. - Developing conceptual models of the types of processes and relationships governing these quantitative factors, including stock-flow dynamics, feedback loops, optimization, sources and effects of uncertainty, and agent coordination problems. - Develop and program numerical models to simulate the processes and relationships, in order to identify policy problems and the effects of policy interventions. - Communicate the findings from these simulations and associated analysis in a manner that makes transparent their theoretical foundation, the level and sources of uncertainty, and ultimately their applicability to the policy problem. The course will proceed through a series of policy analysis and modeling exercises, involving real-world or hypothetical problems. The specific examples around which work will be done will concern the environment, energy, health, and natural hazards management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taught</td>
<td>Domain A - Subject-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td>Concepts and Theories assessed</td>
</tr>
<tr>
<td>competencies</td>
<td>Domain B - Method-specific Competencies</td>
<td></td>
<td></td>
<td></td>
<td>Analytical Competencies assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Decision-making assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Media and Digital Technologies assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Problem-solving assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Project Management not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain C - Social Competencies</td>
<td></td>
<td></td>
<td></td>
<td>Communication assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cooperation and Teamwork not assessed</td>
</tr>
<tr>
<td></td>
<td>Domain D - Personal Competencies</td>
<td></td>
<td></td>
<td></td>
<td>Creative Thinking assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Critical Thinking assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Self-awareness and Self-reflection not assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Self-direction and Self-management not assessed</td>
</tr>
</tbody>
</table>

Agent Based Modeling in Transportation

<table>
<thead>
<tr>
<th>Number</th>
<th>Agent Based Modeling in Transportation</th>
<th>W</th>
<th>6</th>
<th>4G</th>
<th>M. Balac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This course provides an introduction to agent-based modeling in transportation. The lectures and exercises offer an opportunity to learn about agent-based models’ current methodology, focusing on MATSim, how agent-based models are set up, and perform a practical case study by working in teams.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>At the end of the course, the students should: - have an understanding of agent-based modeling - have an understanding of MATSim - have an understanding of the process needed to set up an agent-based study - have practical experience of using MATSim to perform practical transportation studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>This course provides an introduction to agent-based models for transportation policy analysis. Four essential topics are covered: 1) Introduction of agent-based modeling and its comparison to the traditional state of practice modeling. 2) Introduction of MATSim, an open-source agent-based model, developed at ETH Zurich and TU Berlin, and its various parts. 3) Setting up an agent-based model simulation, where different statistical methods used in the process will be introduced and explained. Here the open-source eqasim framework used at ETH Zurich to set up agent-based models will be introduced. 4) Conducting a transport policy study. The case study will be performed in groups and will include a paper-like report. During the course, outside lecturers will give several lectures on using MATSim in practice (i.e., SBB).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why are problems not simple? Why do some systems behave in an unintended way? How can we model and control their dynamics? The

The course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to

Objective

A successful participant of the course is able to:

1. Finding solutions
2. Implementing solutions
3. Controlling solutions

PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in

PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of

PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology

CONTROLLING SOLUTIONS - Vensim software, feedback cycles, control parameters, instabilities, chaos, oscillations and cycles, supply and

development, production functions, investment and consumption

In this part, the course provides answers to these questions by using a broad range of methods encompassing systems oriented management, classical

Sustainability Assessment

Number of participants limited to 35.

Waiting list will be deleted October 1st, 2021.

No enrollment possible after October 1st, 2021.

The course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to

At the end of the course, students:

- know core concepts of sustainable development, main features of social justice in the context of sustainability, a selection of

The course is structured as follows:

- overview of characteristics of social justice as guiding principle of the social dimension of sustainability (approx. 20%)
- analysis of a selection of concepts and methodologies to assess sustainable development in a variety of contexts (approx. 65%)

Students of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L)

Prerequisites / notice

There are no strict preconditions in terms of which lectures the students should have previously attended. However, knowledge of basic

Lecture notes

The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found

These are provided as home work and two of these will be graded (see "Prerequisites").

Another objective of the self-study tasks is to practice efficient communication of such concepts.

Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM.

Another objective of the self-study tasks is to practice efficient communication of such concepts.

These are provided as home work and two of these will be graded (see "Prerequisites").
Climate change is one of the defining challenges of our time, touching all aspects of the environment and of society. There is broad recognition (although with some dissent) that governments ought to do something about it: making sure that emissions of greenhouse gases (GHGs) stop within the next 30 to 40 years; helping people to adapt to the consequences of the climate change to which we have already committed ourselves; and, most controversially, perhaps taking measures to actively remove GHG’s from the atmosphere, or to alter the radiation balance of the Earth through solar engineering.

It’s a complicated set of problems, especially the first, known as mitigation. Fundamentally this is because it means doing something that humanity has never really tried before at a planetary scale: deliberately altering the ways we produce, convert, and consume energy, which is at the heart of modern society. Modern society – the entire anthropocene – grew up on fossil fuels, and the huge benefits they offered in terms of energy that was inexpensive, easy to transport and store, and very dense in terms of its energy content per unit mass or volume. How to manage a society of over 7 billion people, at anything like today’s living standards, without the benefits of that energy, is a question for which there is no easy answer. There are also other challenges outside of energy. How do we build houses, office buildings, and infrastructure networks without cement, a substance that releases large amounts of CO2 as it hardens? How do we reverse the pace of deforestation, particularly in developing countries? How do we eliminate the GHG emissions from agriculture: the methane from cows’ bellies and rice paddies, together with the chemicals that enter the atmosphere from the application of fertilizer?

These are all tough questions at a technical level, but even tougher when you consider that governments typically need to employ indirect methods to get these things to happen. Arguably a government could simply pass a law that forbids people from using fossil fuels. But politically this is simply unrealistic, at least while so many people depend on fossil fuels in their daily lives. What is to be done? For this, one needs to turn to various ideas about how government can and should influence society. On the one hand are ideas suggesting that government ought to play a very limited role, relative to private actors, and should step in only to correct “market failures,” with interventions designed specifically around that failure. On the other hand are ideas suggesting that government (meaning all of us, working together through a democratic process) is the appropriate decision-making body for core decisions on where society can and should go. These issues come to the fore in climate policy discussions and debates.

This course is about all that. The goal is to give students a glimpse into the enormous complexity of this policy area, an understanding of some of the many debates that are currently raging (of which the debate about whether climate change is actually real is probably the least complicated or interesting). We want to give students the ability to evaluate policy arguments made by politicians, experts, and academics with a critical eye, informed by a knowledge of history, an understanding of the theoretical underpinnings, and the results of empirical testing of different strategies. A student taking this course ought to be able to step into an NGO or government agency involved in climate policy analysis or political advocacy, and immediately be able to make an informed and creative contribution. Moreover, by experiencing the depth of this policy area, students should be able to appreciate the complexity inherent in all policy areas.

This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international agreements designed specifically around that failure. On the other hand are ideas suggesting that government (meaning all of us, working together through a democratic process) is the appropriate decision-making body for core decisions on where society can and should go. These issues come to the fore in climate policy discussions and debates.

This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international agreements designed specifically around that failure. On the other hand are ideas suggesting that government (meaning all of us, working together through a democratic process) is the appropriate decision-making body for core decisions on where society can and should go. These issues come to the fore in climate policy discussions and debates.

This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international agreements designed specifically around that failure. On the other hand are ideas suggesting that government (meaning all of us, working together through a democratic process) is the appropriate decision-making body for core decisions on where society can and should go. These issues come to the fore in climate policy discussions and debates.
Electives

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-3001-00L</td>
<td>Environmental Systems Data Science</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>L. Pellissier, J. Payne, B. Stocker</td>
</tr>
</tbody>
</table>

Abstract

Students are introduced to a typical data science workflow using various examples from environmental systems. They learn common methods and key aspects for each step through practical application. The course enables students to plan their own data science project in their specialization and to acquire more domain-specific methods independently or in further courses.

Objective

- frame a data science problem and build a hypothesis
- describe the steps of a typical data science project workflow
- conduct selected steps of a workflow on specifically prepared datasets, with a focus on choosing, fitting and evaluating appropriate algorithms and models
- critically think about the limits and implications of a method
- visualise data and results throughout the workflow
- access online resources to keep up with the latest data science methodology and deepen their understanding

Content

- The data science workflow
- Access and handle (large) datasets
- Prepare and clean data
- Analysis: data exploratory steps
- Analysis: machine learning and computational methods
- Evaluate results and analyse uncertainty
- Visualisation and communication

Prerequisites / notice

- 252-0840-02L Anwendungsnahes Programmieren mit Python
- 401-0624-00L Mathematik IV: Statistik
- 401-6215-00L Using R for Data Analysis and Graphics (Part I)
- 401-6217-00L Using R for Data Analysis and Graphics (Part II)
- 701-0105-00L Mathematik VI: Angewandte Statistik für Umweltnaturwissenschaften

Major in Forest and Landscape Management

Natural Science Foundations

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1613-01L</td>
<td>Advanced Landscape Research</td>
<td>W</td>
<td>5</td>
<td>3G</td>
<td>J. Bolliger, M. Bürgi, U. Gimmi, M. Hunziker</td>
</tr>
</tbody>
</table>

Abstract

This course introduces landscapes as socially perceived, spatially and temporally dynamic entities that are shaped by natural and societal factors. Concepts and qualitative and quantitative methods to study landscapes from an ecological, societal and historical perspective are presented. In a term paper students work on a landscape-related topic of their choice.

Objective

- learn about concepts and methods to quantify structural and functional connectivity in landscapes, particularly
- be introduced to the topic of landscape genetics and its benefits and (current) limitations for applied conservation
- learn about concepts and methods in scenario-based land-use change modelling
- approach an understanding of landscape as perceived environment
- learn about concepts of landscape preference and related measurement methods
- understand the role of landscape for human well-being
- be introduced into approaches of actively influencing attitudes and behavior as well as related scientific evaluation
- make use of various historical sources to study landscapes and their dynamics
- interpret landscapes as a result of ecological constraints and anthropogenic activities.

Content

1. Encompassing concepts and approaches
 - European Landscape Convention (ELC)
 - Ecosystem Services (ES): introduction and critical evaluation

Thematic topics

2. Ecological approach:
 - green infrastructure (e.g., ecological conservation areas)
 - landscape connectivity
 - landscape genetics and management applications
 - concepts of specific quantitative methods: least cost paths, resistance surfaces, Circuitscape, networks (Conefor), land-use change models, various statistical methods

3. Social-science approach:
 - principle of landscape as perceived and connoted environment
 - theories on landscape preference and place identity
 - role of landscapes for recreation, health and well-being
 - intervention approaches for influencing attitudes and related behavior
 - methods of investigating the human-landscape relationship and evaluating interventions

4. Historical approach:
 - land use history of Switzerland (agricultural history, forest and woodland history)
 - historical legacies of land use in landscapes and ecosystems
 - historic-ecological approaches and applications

5. Land change science:
 - modelling future land-use (CLUE, other scenario-based models)
 - landscape functions and services

Lecture notes

Handouts will be available in the course and for download

Prerequisites / notice

Basic Landscape Ecology courses at Bachelor level

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1615-00L</td>
<td>Advanced Forest Pathology</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>S. Prosper</td>
</tr>
</tbody>
</table>

Abstract

In-depth understanding of concepts, insight into current research and experience with methods of Forest Pathology based on selected pathosystems.
Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasize the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

Ecosystem Management

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1631-00L</td>
<td>Foundations of Ecosystem Management</td>
<td>W</td>
<td>5</td>
<td>3G</td>
<td>J. Ghazoul, C. Garcia</td>
</tr>
<tr>
<td></td>
<td>This course introduces the broad variety of conflicts that arise in projects focusing on sustainable management of natural resources. It explores case studies of ecosystem management approaches and considers their practicability, their achievements and possible barriers to their uptake.</td>
<td></td>
<td></td>
<td></td>
<td>J. García Ulloa, A. Giger Dray</td>
</tr>
</tbody>
</table>

Abstract

Students should be able to

a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales.

b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management.

Content

Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ecosystem management approaches that emphasize the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.

Literature

Objectives

- To know current biological and ecological research on selected diseases, to be able to comment on it and understand the methods.
- To understand the dynamics of selected pathosystems and disturbance processes.
- To be able to diagnose tree diseases and injuries.
- To know forest protection strategies and to be able to comment on them.

Literature

The course is composed of introductory lectures, practical work, discussions and reading. The participants should have basic knowledge in forest pathology (corresponding to the course 701-0563-00 *Wald- und Baumkrankheiten, see teaching book of H. Butin: Tree diseases and disorders, Oxford University Press 1995. 252 pp.).

Abstract

This course presents a process-based view of the hydrology, biogeochemistry, and geomorphology of mountain streams. Students learn how to integrate process knowledge, data, and models to understand how landscapes regulate the fluxes of water, sediment, nutrients, and pollutants in streams, and to anticipate how streams will respond to changes in land use, atmospheric deposition, and climate.

Objective

Students will have a broad understanding of the hydrological, biogeochemical, and geomorphological functioning of mountain catchments. They will apply this understanding to predict how data and models frame and test hypotheses about connections between streams and landscapes.

Content

Streams are integrated monitors of the health and functioning of their surrounding landscapes. Streams integrate the fluxes of water, solutes, and sediment from their contributing catchment area; thus they reflect the spatially integrated hydrological, ecophysiological, biogeochemical, and geomorphological processes in the surrounding landscapes. At a practical level, there is a significant public interest in managing forested upland landscapes to provide a reliable supply of high-quality surface water and to minimize the risk of catastrophic flooding and debris flows, but the scientific background for such management advice is still evolving.

Using a combination of lectures, field exercises, and data analysis, we explore the processes controlling the delivery of water, solutes, and sediment to streams, and how those processes are affected by changes in land cover, land use, and climate. We review the connections between process understanding and predictive modeling in these complex environmental systems. How well can we understand the processes controlling watershed-scale phenomena, and what uncertainties are unavoidable? What are the relative advantages of top-down versus bottom-up approaches? How much can "black box" analyses reveal about what is happening inside the black box? Conversely, can small-scale, micro-mechanistic approaches be successfully "scaled up" to predict whole-watershed behavior? Practical problems to be considered include the effects of land use, atmospheric deposition, and climate on streamflow, water quality, and sediment dynamics, illustrated with data from experimental watersheds in North America, Scandinavia, and Europe.

Lecture notes

Handouts will be available as they are developed.

Literature

Recommended and required reading will be specified at the first class session (with possible modifications as the semester proceeds).
Improvements in environmental quality and sustainable management of natural resources cannot be achieved through technical solutions alone. The quality of the environment and the achievement of sustainable development strongly depend on human behavior and specifically the human uses of nature. To influence human behavior, we rely on public policies and other societal rules, which aim to steer the way humans use natural resources and their effects on the environment. Such steering can take place through government intervention alone. However, this often also involves governance, which includes the interplay between governmental and non-governmental actors, the use of diverse tools such as emission standards or financial incentives to steer actors' behavior and can occur at the local, regional, national or international level.

In this course, we will address both the practical aspects of as well as the scientific debate on environmental governance. The course gives future environmental experts a strong basis to position themselves in the governance debate, which does not preclude government but rather involves a spectrum from government to governance.

Key questions that this course seeks to answer: What are the core characteristics of environmental challenges from a policy perspective? What are key elements of 'environmental governance' and how legitimate and effective are these approaches in addressing persistent environmental challenges?

The course will cover important topics for the sustainable management of multifunctional forests and present silvicultural strategies to fulfil a variety of forest ecosystem goods and services. Current and future challenges of forest management will be presented. The course is structured into the following sub-topics:

1) Global change and adaptive forest management
2) Invasive species: implications and mitigation measures
3) Introduced tree species: risks and opportunities
4) Silvicultural and forest management options the provisioning of multi-dimensional ecosystem goods and services.
5) Challenges and silvicultural strategies for wood production.
6) Integrative and segregative forest management approaches for biodiversity conservation.

Objective

- To analyze the evolution as well as the key elements of environmental governance.
- To be able to identify the main challenges and opportunities for environmental governance and to critically discuss them with reference to various practical policy examples.

Content

Improvements in environmental quality and sustainable management of natural resources cannot be achieved through technical solutions alone. The quality of the environment and the achievement of sustainable development strongly depend on human behavior and specifically the human uses of nature. To influence human behavior, we rely on public policies and other societal rules, which aim to steer the way humans use natural resources and their effects on the environment. Such steering can take place through government intervention alone. However, this often also involves governance, which includes the interplay between governmental and non-governmental actors, the use of diverse tools such as emission standards or financial incentives to steer actors' behavior and can occur at the local, regional, national or international level.

In this course, we will address both the practical aspects of as well as the scientific debate on environmental governance. The course gives future environmental experts a strong basis to position themselves in the governance debate, which does not preclude government but rather involves a spectrum from government to governance.

Key questions that this course seeks to answer: What are the core characteristics of environmental challenges from a policy perspective? What are key elements of 'environmental governance' and how legitimate and effective are these approaches in addressing persistent environmental challenges?

Lecture notes

Lecture slides and additional course material will be provided on Moodle.
We will mostly work with readings from the following books:

A detailed course schedule will be made available at the beginning of the semester. During the lecture we will work with Moodle. We ask that all students register themselves on this platform before the lecture. We recommend that students have (a) three-years BSc education of a (technical) university; (b) successfully completed Bachelor introductory course to environmental policy (Entwicklungen nationaler Umweltpolitik (or equivalent)) and (c) familiarity with key issues in environmental policy and some fundamental knowledge of one social science or humanities discipline (political science, economics, sociology, history, psychology, philosophy) or (c) familiarity with key issues in environmental policy and some fundamental knowledge of one social science or humanities discipline (political science, economics, sociology, history, psychology, philosophy).

We encourage students to:
- explain measurement principles that are used for characterization of landscapes and terrestrial systems
- select appropriate measurement methods and sampling design to quantify key variables and processes above ground and in the subsurface
- deploy sensors in the field
- interpret collected laboratory and field data and report main conclusions deduced from measurements

Waiting list will be deleted September 24th, 2021.

Measurements are the sole judge of scientific truth and provide access to unpredictable information, enabling the characterization and monitoring of complex terrestrial systems. Based on lectures and field- and laboratory training, the students learn to apply modern methods to determine forest inventory parameters and to measure subsurface properties and processes.

The students will be able to:
- explain measurement principles that are used for characterization of landscapes and terrestrial systems
- select appropriate measurement methods and sampling design to quantify key variables and processes above ground and in the subsurface
- deploy sensors in the field
- interpret collected laboratory and field data and report main conclusions deduced from measurements

We recommend that students have (a) three-years BSc education of a (technical) university; (b) successfully completed Bachelor introductory course to environmental policy (Entwicklungen nationaler Umweltpolitik (or equivalent)) and (c) familiarity with key issues in environmental policy and some fundamental knowledge of one social science or humanities discipline (political science, economics, sociology, history, psychology, philosophy) or (c) familiarity with key issues in environmental policy and some fundamental knowledge of one social science or humanities discipline (political science, economics, sociology, history, psychology, philosophy).

The course provides the student with the spatial tools to address societal challenges toward ensuring the sustainable use of terrestrial ecosystems and the conservation of biodiversity. Students learn theory, tools and models during a few introductory sessions and apply this knowledge to solve a practical problem in groups related to climate change, land use change and biodiversity conservation.

The students will be able to:
- deploy sensors in the field
- interpret collected laboratory and field data and report main conclusions deduced from measurements

Waiting list will be deleted September 24th, 2021.
Students learn:
- Theoretical foundations of the species ecological niche
- Biodiversity concepts and global change impacts
- Basic concepts of spatial (and macro-)ecology
- Environmental impact assessment and planning
- Advanced statistical methods (GLM, GAM, CART) and basic programming (loops, functions, advanced scripting) in the statistical environment R.
- The use of GIS functionality in R

The analyses of stable isotopes often provide insights into ecophysiological and ecological processes that otherwise would not be available.

Students will be familiar with basic and advanced applications of stable isotopes in studies on plants, soils, water and trace gases, know literature as well as to give an oral presentation.

Trees are important elements and drivers of ecosystem processes in forests and landscapes. Tree species diversity and intraspecific genetic diversity are relevant factors for continuous adaptation, required for a sustainable maintenance of forest products and services. Sustainable forest and landscape management under climate change has to take forest genetic resources into consideration.

The educational goals of the course are:
To know basic concepts of evolution and molecular and quantitative methods of genetics.
To understand the most relevant processes of gene flow, adaptation and species interactions, on the basis of ecological theories and case studies on forest tree species.
To know management principles and instruments for the promotion and conservation of forest resources, with a view on application in practice.

The course provides a comprehensive overview on concepts and applications of tree genetics and complements basic knowledge of biology, dendrology, forest ecology and forest management in the frame of forest and landscape management topics. It introduces concepts of evolution and genetic methods as foundations, explains the most important processes and drivers of gene flow and adaptation, including coevolutionary aspects of associated organisms, and shows relevant topics of the management of genetic resources from reproduction to conservation and monitoring. Theories and their application into practice are illustrated on behalf of case studies on forest tree species. Two full-day excursions illustrate the contents with exemplary objects, actors and applications in Switzerland.

Trees are important elements and drivers of ecosystem processes in forests and landscapes. Tree species diversity and intraspecific genetic diversity are relevant factors for continuous adaptation, required for a sustainable maintenance of forest products and services. Sustainable forest and landscape management under climate change has to take forest genetic resources into consideration.

The educational goals of the course are:
To know basic concepts of evolution and molecular and quantitative methods of genetics.
To understand the most relevant processes of gene flow, adaptation and species interactions, on the basis of ecological theories and case studies on forest tree species.
To know management principles and instruments for the promotion and conservation of forest resources, with a view on application in practice.

The course provides a comprehensive overview on concepts and applications of tree genetics and complements basic knowledge of biology, dendrology, forest ecology and forest management in the frame of forest and landscape management topics. It introduces concepts of evolution and genetic methods as foundations, explains the most important processes and drivers of gene flow and adaptation, including coevolutionary aspects of associated organisms, and shows relevant topics of the management of genetic resources from reproduction to conservation and monitoring. Theories and their application into practice are illustrated on behalf of case studies on forest tree species. Two full-day excursions illustrate the contents with exemplary objects, actors and applications in Switzerland.

The educational goals of the course are:
To know basic concepts of evolution and molecular and quantitative methods of genetics.
To understand the most relevant processes of gene flow, adaptation and species interactions, on the basis of ecological theories and case studies on forest tree species.
To know management principles and instruments for the promotion and conservation of forest resources, with a view on application in practice.

The course provides a comprehensive overview on concepts and applications of tree genetics and complements basic knowledge of biology, dendrology, forest ecology and forest management in the frame of forest and landscape management topics. It introduces concepts of evolution and genetic methods as foundations, explains the most important processes and drivers of gene flow and adaptation, including coevolutionary aspects of associated organisms, and shows relevant topics of the management of genetic resources from reproduction to conservation and monitoring. Theories and their application into practice are illustrated on behalf of case studies on forest tree species. Two full-day excursions illustrate the contents with exemplary objects, actors and applications in Switzerland.

The educational goals of the course are:
To know basic concepts of evolution and molecular and quantitative methods of genetics.
To understand the most relevant processes of gene flow, adaptation and species interactions, on the basis of ecological theories and case studies on forest tree species.
To know management principles and instruments for the promotion and conservation of forest resources, with a view on application in practice.

The course provides a comprehensive overview on concepts and applications of tree genetics and complements basic knowledge of biology, dendrology, forest ecology and forest management in the frame of forest and landscape management topics. It introduces concepts of evolution and genetic methods as foundations, explains the most important processes and drivers of gene flow and adaptation, including coevolutionary aspects of associated organisms, and shows relevant topics of the management of genetic resources from reproduction to conservation and monitoring. Theories and their application into practice are illustrated on behalf of case studies on forest tree species. Two full-day excursions illustrate the contents with exemplary objects, actors and applications in Switzerland.

The educational goals of the course are:
To know basic concepts of evolution and molecular and quantitative methods of genetics.
To understand the most relevant processes of gene flow, adaptation and species interactions, on the basis of ecological theories and case studies on forest tree species.
To know management principles and instruments for the promotion and conservation of forest resources, with a view on application in practice.

The course provides a comprehensive overview on concepts and applications of tree genetics and complements basic knowledge of biology, dendrology, forest ecology and forest management in the frame of forest and landscape management topics. It introduces concepts of evolution and genetic methods as foundations, explains the most important processes and drivers of gene flow and adaptation, including coevolutionary aspects of associated organisms, and shows relevant topics of the management of genetic resources from reproduction to conservation and monitoring. Theories and their application into practice are illustrated on behalf of case studies on forest tree species. Two full-day excursions illustrate the contents with exemplary objects, actors and applications in Switzerland.

The educational goals of the course are:
To know basic concepts of evolution and molecular and quantitative methods of genetics.
To understand the most relevant processes of gene flow, adaptation and species interactions, on the basis of ecological theories and case studies on forest tree species.
To know management principles and instruments for the promotion and conservation of forest resources, with a view on application in practice.
Objective
Students will be able to:
1) critically consider biological data books and local, regional, and national inventories;
2) evaluate the validity of ecological criteria used in decision making processes;
3) critically appraise the handling of ecological data and criteria used in the process of evaluation;
4) perform an ecological evaluation project from the field survey up to the decision making and planning.

Lecture notes
Basic literature and references are listed on the webpage.

Literature
Basic literature and references are listed on the webpage.

Prerequisites / notice
The course structure changes between lecture parts, seminars and discussions. The didactic atmosphere is intended as working group.

Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses:
- Pflanzen- und Vegetationsökologie
- Systematische Botanik
- Raum- und Regionalentwicklung
- Naturschutz und Naturschutzbiologie

701-1645-00L Forest Operations
W 3 credits 2G H. Griess, J. Schweier

Abstract
The discipline of Forest operations is constantly challenged to find solutions for unique problems. Each forest site requires specific technological approaches and machinery based on given management goals and ecological and environmental circumstances. Various terrain types and soil conditions, harvesting costs and taking care of the workforce by creating safe working conditions are some of the aspects that need to be considered in the planning process. In this course, students will learn to use a wide variety of approaches grounded in the natural sciences, engineering and technology to develop solutions tailored to unique challenges from the field of forest operations. The course is aimed at students who either plan an academic or professional career in the field of forest operations, or who will work at the interface between forest operations and the various related disciplines, such as forest ecosystem management and forestry in the wider sense.

Objective
In this course, students will have acquired foundational knowledge of a wide variety of core elements in the field of forest operations:
• The course will provide students with the ability to describe and differentiate site and stand conditions from an engineering perspective.
• Students will gain an overview and good working knowledge of current technology used in forest operations in Switzerland and around the world.
• Students will acquire the ability to assess the strength and weaknesses of the most commonly used equipment and analyze their suitability for a given set of environmental, economic and social factors.
• Students will be able to combine different types of technology to create an optimal harvesting system for a given task, and assess a given system for its task specific suitability.
• Participants will be able to assess the sustainability and potential short- and long-term impacts of harvesting systems under ecological, economic and social constraints.
Content

Introduction
- Historic overview
- Scope of operation
- Site and stand characteristics

Timber harvesting
- Logging methods
- Felling methods
- Motor-Manual felling methods
 - Falling and processing
- Forest machine structure and function
- Harvester Technology
 - Felling heads
 - Carriers for felling heads
- Bunching
- Mechanical processing
- Loading equipment
- Operating techniques

Primary Transport Systems
- Ground based
 - Common features
 - Skidder
 - Forwarder
 - Loader Forwarder
- Cable yarding
 - Common features
 - Wire rope
 - Cable yarding systems
 - Operating techniques
- Aerial
 - Common features
 - Operating techniques

Winch-Assisted Harvesting Operations
- Harvesting
- Primary transport

Loading Equipment

Secondary transport
- Truck configurations
- Soil compaction and contamination
- Riparian areas

Forest Operations management
- Ergonomics
- Work Safety
- Economic Aspects
- Environmental impact assessment
- Equipment selection

Forest operations across the globe
- New Zealand
- North America
 - British Columbia, Canada
 - South-eastern U.S.A

Specialized equipment for small scale forest operations

Outlook into the future of forest operations

Literature
Published on Moodle

Prerequisites / notice
701-1544-00 Forest Access and Transportation

Decision Making, Policy and Planning

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-0468-00L</td>
<td>Participatory Modeling in Integrated Landscape Development</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>E. Celio, N. Salliou</td>
</tr>
</tbody>
</table>

Abstract
The lecture accompanies students into a participatory modelling process. We explore topics such as urban agriculture or climate-resilient city. Students will know participatory modelling tools as well as concepts and approaches related to it. Students elaborate the processes from questions to interactive operational models.

Objective
With this course, students...
... know the phases of a participatory modelling process
... are able to estimate in which case the involvement of stakeholders is necessary, hence are able to discuss advantages and disadvantages of stakeholder involvement at different levels of participation.
... get to know diverse modelling tools and are able to select the proper tool according to the context.
... are able to set-up and apply a functional model in a participatory manner on a real case study.
... get to know techniques to analyse simulations and are able to inform stakeholders in an adequate way
... are able to discuss results together with stakeholders in a structured way.
Methods and Tools

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1316-00L</td>
<td>Physical Transport Processes in the Natural Environment</td>
<td>W</td>
<td>3</td>
<td>2G</td>
<td>J. W. Kirchner</td>
</tr>
<tr>
<td>Abstract</td>
<td>Fluid flows transport all manner of biologically important gases, nutrients, toxins, contaminants, spores and seeds, as well as a wide range of organisms themselves. This course explores the physics of fluids in the natural environment, with emphasis on the transport, dispersion, and mixing of solutes and entrained particles, and their implications for biological and biogeochemical processes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Students will learn key concepts of fluid mechanics and how to apply them to environmental problems. Weekly exercises based on real-world data will develop core skills in analysis, interpretation, and problem-solving.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>dimensional analysis, similarity, and scaling solute transport in laminar and turbulent flows transport and dispersion in porous media transport of sediment (and adsorbed contaminants) by air and water anomalous dispersion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>The course is under development. Lecture materials will be distributed as they become available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

701-1677-00L	Quantitative Vegetation Dynamics: Models from Tree to Globe	W	3	3G	H. Lischke, U. Hiltner, B. Rohner
Abstract	This course provides hands-on experience with models of vegetation dynamics across temporal and spatial scales. The underlying principles, assets and trade-offs of the different approaches are introduced, and students work in a number of small projects with these models to gain first-hand experience.				
Objective	Students will - be able to understand, assess and evaluate the fundamental properties of dynamic systems using vegetation models as case studies - obtain an overview of dynamic modelling techniques from the individual plant to the global level - understand the basic assumptions of the various model types, which dictate the skill and limitations of the respective model - be able to work with such model types on their own - appreciate the methodological basis for impact assessments of future climate change and other environmental changes on ecosystems.				
Content	Models of individuals - Deriving single-plant models from inventory measurements - Plant models based on 'first principles' Models at the stand scale - Simple approaches: matrix models - Competition for light and other resources as central mechanisms - Individual-based stand models: distance-dependent and distance-independent - Theoretical models Models at the landscape scale - Simple approaches: cellular automata - Dispersal and disturbances (windthrow, fire, bark beetles) as key mechanisms - Landscape models Global models - Sacrificing local detail to attain global coverage: processes and entities - Dynamic Global Vegetation Models (DGVMs) - DGVMs as components of Earth System Models				
Lecture notes	Handouts will be available in the course and for download				
Literature	Will be indicated at the beginning of the course				
Prerequisites / notice	- Basic training in modelling and systems analysis - Good knowledge of general ecology, vegetation dynamics, and forest systems				

| 701-1682-00L | Dendroecology | W | 3 | 3G | C. Bigler, K. Treydte, G. von Arx |
| Abstract | The course dendroecology offers theoretical and practical aspects of dendrochronology. The impact of different environmental influences on tree-ring characteristics will be shown. The students learn various methods to date tree rings and they understand how ecological and environmental processes and patterns can be reconstructed using tree rings. |
Objective
The students...
- understand, how wood is configured and how tree-ring structures are formed.
- are able to identify and describe different tree-ring structures.
- understand the theoretical and practical aspects of the dating of tree rings.
- know the effects of different abiotic and biotic environmental influences (climate, site, competition, insects, fire, physical-mechanical influences) on trees and tree rings.
- discover a tool for understanding and reconstructing global change processes.
- learn software to date, standardize and analyze tree rings.
- get hands-on experience based on the demonstration of wood (increment cores, stem discs, wedges), sampling in the field, and measuring and dating of tree rings in the tree-ring lab.
- solve R-based exercises (R tutorial will be provided) and answer questions in Moodle.
- work out an independent research question related to a dendroecological topic and write a short literature review based on scientific papers.

Content
- Overview and history of dendrochronology
- Principles of dendrochronology
- Formation and structure of wood and tree rings
- Wood anatomy and intra-seasonal tree-ring growth
- Continuous and discontinuous tree-ring characteristics
- Sampling and measuring of tree rings
- Crossdating methods (visual, skeleton plots, quantitative)
- Detrending and standardization of tree-ring series
- Development of tree-ring chronologies
- Water transport in trees
- Stable isotopes in tree rings
- Climate influences, climate-growth relationships, climate reconstructions
- Reconstruction of forest dynamics (regeneration, growth, competition, mortality)
- Disturbance ecology (fire, insects, blowdown)
- Application of tree-ring research in practice and in interdisciplinary research projects
- Field and lab day (date for one entire day or two half days will be search together with the students in the beginning of the semester): discussion of different dendroecological questions in the forest: sampling of trees, insight into different tree-ring projects in the lab (Swiss Federal Institute for Forest, Snow and Landscape Research WSL)

Lecture notes
Lecture notes (in English) will be handed out in the class.

Literature
Literature lists will be handed out in the class.

Prerequisites / notice
Time schedule (total of 90 hours): There will be 12 lectures with each two hours (total of 24 hours presence) as well as a field and lab day (8 hours presence). In addition, the students are expected to put 18 hours into the preparation of the lectures as well as 18 hours for the exercises. 4 hours are reserved for the lab work and 18 hours for the project.

The class language is German and English, on request English only.

Requirements:
Basics of biology, ecology and forest ecology

<table>
<thead>
<tr>
<th>701-1776-00L</th>
<th>Geographic Data Processing with Python and ArcGIS</th>
<th>W</th>
<th>1 credit</th>
<th>2U</th>
<th>A. Baltensweiler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of participants limited to 30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract
The course communicates the basics of the programming language Python and gives a general introduction into the geoprocessing framework of ArcGIS. In addition various Python libraries (numpy, Scipy, GDAL, statsmodels, pandas, Jupyter Notebook) will be introduced which increase the functional range of the geoprocessing framework substantially.

Objective
The students learn the basics of geographic data processing based on the programming language Python and ArcGIS (arcpy). They get the ability to implement their own processing sequences and models for geoprocessing. The students are able to integrate open source libraries in their Python scripts and know how the libraries are applied to spatial datasets.

Content
The course communicates a deepened understanding of the geoprocessing frameworks arcpy and covers basic language concepts of Python such as datatypes, control structures and functions. In addition the application of popular Python libraries in combination with spatial datasets will be shown.

Lecture notes
Lecture notes, exercises and worked out solutions to them will be provided.

Literature
Lutz M. (2013); Learning Python, 5th Edition, O'Reilly Media

Prerequisites / notice
Basic knowledge of ArcGIS is assumed.

<table>
<thead>
<tr>
<th>701-3001-00L</th>
<th>Environmental Systems Data Science</th>
<th>W</th>
<th>3 credits</th>
<th>2G</th>
<th>L. Pellissier, J. Payne, B. Stocker</th>
</tr>
</thead>
</table>

Abstract
Students are introduced to a typical data science workflow using various examples from environmental systems. They learn common methods and key aspects for each step through practical application. The course enables students to plan their own data science project in their specialization and to acquire more domain-specific methods independently or in further courses.

Objective
The students are able to
- frame a data science problem and build a hypothesis
- describe the steps of a typical data science project workflow
- conduct selected steps of a workflow on specifically prepared datasets, with a focus on choosing, fitting and evaluating appropriate algorithms and models
- critically think about the limits and implications of a method
- visualise data and results throughout the workflow
- access online resources to keep up with the latest data science methodology and deepen their understanding

Content
- The data science workflow
- Access and handle (large) datasets
- Prepare and clean data
- Analysis: data exploratory steps
- Analysis: machine learning and computational methods
- Evaluate results and analyse uncertainty
- Visualisation and communication
ECTS
Lecturers
W

The module Epidemiology and prevention describes the process of scientific discovery from the detection of a disease and its causes, to
Colloquium Forest and Landscape Management
Epidemiology and Prevention
2G
Type
3G
1.5K
H. Bugmann

References:
Smoothing and Nonparametric Regression with Examples

Starting with an overview of selected results from parametric inference, kernel smoothing will be introduced along with some asymptotic
theory, optimal bandwidth selection, data driven algorithms and some special topics. Examples from environmental research will be used
for motivation, but the methods will also be applicable elsewhere.

Objective
The students will learn about methods of kernel smoothing and application of concepts to data. The aim will be to build sufficient interest in
the topic and intuition as well as the ability to implement the methods to different datasets.

Content
Rough Outline:
- Parametric estimation methods: selection of important results
 o Method of Least squares: regression & diagnostics
- Nonparametric curve estimation
 o Density estimation, Kernel regression, Local polynomials, Bandwidth selection, various theoretical results related to consistency
 o Selection of special topics (as time permits, we will discuss some of the following): rapid change points, mode estimation, partial linear
 models, probability and quantile curve estimation, etc.
- Applications: potential areas of applications will be discussed such as, change assessment, trend and surface estimation and others.

Lecture notes
Brief summaries or outlines of some of the lecture material will be posted at https://www.wsl.ch/en/employees/ghosh.html.

NOTE: The posted notes will tend to be just sketches whereas only the in-class lessons will contain complete information.

LOG IN: In order to have access to the posted notes, you will need the course user id & the password. These will be given out on the first
day of the lectures.

Literature
- Statistical Inference, by S.D. Silvey, Chapman & Hall.
- Density Estimation, by B.W. Silverman, Chapman and Hall.
- Nonparametric Simple Regression, by J. Fox, Sage Publications.
- Applied Smoothing Techniques for Data Analysis: the Kernel Approach With S-Plus Illustrations, by A.W. Bowman, A. Azzalini, Oxford
 University Press.

Additional references will be given out in the lectures.

Prerequisites / notice
Prerequisites: A background in Linear Algebra, Calculus, Probability & Statistical Inference including Estimation and Testing.

Colloquium

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1691-00L</td>
<td>Colloquium Forest and Landscape Management</td>
<td>Z</td>
<td>0</td>
<td>1.5K</td>
<td>H. Bugmann</td>
</tr>
</tbody>
</table>

Abstract
This course is geared towards outreach and dissemination of research results to Swiss forest practitioners.

Objective
Exchange platform between forest science and forest practitioners, geared towards Swiss stakeholders

Literature
wird angegeben, so weit sinnvoll

Major in Human Health, Nutrition and Environment

Public Health

The module Public Health is compulsory for all students in the major Human Health, Nutrition and Environment.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-0629-00L</td>
<td>Applied Biostatistics</td>
<td>W</td>
<td>4</td>
<td>3G</td>
<td>M. Tanadini</td>
</tr>
</tbody>
</table>

Abstract
This course covers the main methods used in Biostatistics. It starts by revising Linear Models (Regression, Anova), then moves to
Generalised Linear Models (logistic regression and methods for count data) and finally introduces more advanced topics (Linear Mixed-
Effects Models and Generalised Additive Models). The course strongly focuses on applied aspects of data analysis.

Objective
After this course students:
- revised Linear Models
- revised or got introduced to Generalised Linear Models
- got introduced to Linear Mixed-Effects Models
- got introduced to Generalised Additive Models
- are able to select among these methods to solve an applied problem in Biostatistics
- can perform the data analysis using the statistical software R
- can interpret the results of such an analysis and draw valid "biological" conclusions

Content
This course is structured into three parts. The first part focuses on Linear and Generalised Linear Models. The second part introduces more
advanced methodologies such as Linear Mixed-Effects Models and Generalised Additive Models. Both, part one and two will include the
following topics: exploratory data analysis, model fitting, model "selection", residual diagnostics, model validation and results interpretation.
Analyses will be carried out using the statistical software R. Finally, in the third part of the course students will be analysing real-world
datasets to put into practice the knowledge and skills acquired during the first two parts.

Prerequisites / notice
Prerequisites: [required courses]

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-6105-00L</td>
<td>Epidemiology and Prevention</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>M. Puhan, R. Heusser</td>
</tr>
</tbody>
</table>

Abstract
The module Epidemiology and Prevention describes the process of scientific discovery from the detection of a disease and its causes, to
the development and evaluation of preventive and treatment interventions and to improved population health.

Objective
The overall goal of the course is to introduce students to epidemiological thinking and methods, which are critical pillars for medical and
public health research. Students will also become aware on how epidemiological facts are used in prevention, practice and politics.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2112 of 2152
Content

The module Epidemiology and prevention follows an overall framework that describes the course of scientific discovery from the detection of a disease to the development of prevention and treatment interventions and their evaluation in clinical trials and real world settings. We will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples from nutrition, chronic and infectious diseases will be used in order to show the underlying concepts and methods.

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>assessed</td>
</tr>
<tr>
<td>Domain B - Method-specific Competencies</td>
<td>Taught competencies</td>
</tr>
<tr>
<td>Analytical Competencies</td>
<td>assessed</td>
</tr>
<tr>
<td>Decision-making</td>
<td>assessed</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>assessed</td>
</tr>
<tr>
<td>Project Management</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain C - Social Competencies</td>
<td>Taught competencies</td>
</tr>
<tr>
<td>Communication</td>
<td>not assessed</td>
</tr>
<tr>
<td>Cooperation and Teamwork</td>
<td>not assessed</td>
</tr>
<tr>
<td>Domain D - Personal Competencies</td>
<td>Taught competencies</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>not assessed</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>assessed</td>
</tr>
</tbody>
</table>

752-6151-00L Public Health Concepts

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-2122-00L</td>
<td>Food and Consumer Behaviour</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>M. Siegrist, C. Hartmann</td>
</tr>
<tr>
<td>752-5103-00L</td>
<td>Functional Microorganisms in Foods</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>C. Lacroix, A. Geirnaert, A. Greppi</td>
</tr>
<tr>
<td>752-6101-00L</td>
<td>Dietary Etiologies of Chronic Disease</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>M. B. Zimmermann</td>
</tr>
</tbody>
</table>

Objective

At the end of this module students are able:
- to interpret the results of epidemiological studies
- to critically assess scientific literature
- to know the definition, dimensions and determinants of health
- to plan public health interventions and health promotion projects
- to draw a bridge from evidence to policies and politics

Content

Concepts of descriptive and analytical epidemiology, study designs, measures of effect, confounding and bias, screening, surveillance, definition of health and health promotion, health dimensions and health determinants, prevention strategies, public health interventions, public health action cycle, epidemiology and prevention of infectious and chronic diseases (HIV, COVID-19, Obesity, Iodine/PH nutrition).

Lecture notes

Handouts are provided to students in the classroom.

Prerequisites / notice

This course requires strong basics in microbiology.

Objective

To understand the principles, roles and mechanisms of microorganisms with metabolic activities of high potential for application in functional foods and food technologies, labeling and food policy issues.

Content

This integration course will discuss new applications of functional microbes in food processing and products and in the human gut.

Lecture notes

Copy of the power point slides from lectures will be provided.

Prerequisites / notice

A list of topics for group projects will be supplied, with key references for each topic.

Domain B - Method-specific Competencies

<table>
<thead>
<tr>
<th>Taught competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Competencies</td>
</tr>
<tr>
<td>Decision-making</td>
</tr>
</tbody>
</table>

752-6101-00L Dietary Etiologies of Chronic Disease

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>752-6101-00L</td>
<td>Dietary Etiologies of Chronic Disease</td>
<td>W</td>
<td>3 credits</td>
<td>2V</td>
<td>M. B. Zimmermann</td>
</tr>
</tbody>
</table>

Objective

To have the student gain understanding of the links between the diet and the etiology and progression of chronic diseases, including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Content

The course evaluates food and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.

Lecture notes

There is no script. Powerpoint presentations will be made available on-line to students.

Prerequisites / notice

No compulsory prerequisites, but prior completion of the courses "Introduction to Nutritional Science" and "Advanced Topics in Nutritional Science" is strongly advised.
Infectious Diseases

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1341-00L</td>
<td>Water Resources and Drinking Water</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>S. Hug, M. Berg, F. Hammes, U. von Gunten</td>
</tr>
</tbody>
</table>

Abstract
The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.

Objective
The goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.

Content
The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.

Lecture notes
Handouts will be distributed

Literature
Will be mentioned in handouts

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>376-1353-00L</td>
<td>Nanostructured Materials Safety</td>
<td>W</td>
<td>2 credits</td>
<td>1V</td>
<td>P. Wick</td>
</tr>
</tbody>
</table>

Abstract
Fundamentals in nanostructured material - living system interactions focusing on the main exposure routes, lung, gastrointestinal tract, skin and intravenous injection

Objective
Understanding the potential side effects of nanomaterials in a context-specific way, enabling to evaluate nanomaterial safety and provide knowledge to design safer materials

Lecture notes
Handouts provided during the classes and references therein as well as primary literature as case studies will be posted to the course website

Prerequisites / notice
course “Introduction to Toxicology”

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1028-01L</td>
<td>Seminar in Evolutionary Ecology of Infectious Diseases</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>R. R. Regös, S. Bonhoeffer</td>
</tr>
</tbody>
</table>

Abstract
Students of this course will discuss current topics from the field of infectious disease biology. From a list of publications, each student chooses some themes that he/she is going to explain and discuss with all other participants and under supervision. The actual topics will change from year to year corresponding to the progress and new results occurring in the field.

Objective
This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific literature and trace the development of ideas related to understanding the ecology and evolutionary biology of infectious diseases.

Content
A core set of ~10 classic publications encompassing unifying themes in infectious disease ecology and evolution, such as virulence, resistance, metapopulations, networks, and competition will be presented and discussed. Pathogens will include bacteria, viruses and fungi. Hosts will include animals, plants and humans.

Lecture notes
Handouts and class notes can be downloaded from a web page announced during the lecture.

Literature
Papers will be assigned and downloaded from a web page announced during the lecture.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1471-00L</td>
<td>Ecological Parasitology ■</td>
<td>W</td>
<td>3 credits</td>
<td>1V+1P</td>
<td>J. Jokela, C. Vorburger</td>
</tr>
</tbody>
</table>

Number of participants limited to 20.
A minimum of 6 students is required that the course will take place.

Waiting list will be deleted on October 1st, 2021.

Abstract
Course focuses on the ecology and evolution of macroparasites and their hosts. Through lectures and practical work, students learn about current approaches to the natural history of parasites, adaptations of parasites, ecology of host-parasite interactions, applied parasitology, and human macroparasites in the modern world.

Objective
1. Identify common macroparasites in invertebrates.
2. Understand ecological and evolutionary processes in host-parasite interactions.
3. Conduct parasitological research

Content
Lectures:
1. Diversity and natural history of parasites (i.e. systematic groups and life-cycles).
2. Adaptations of parasites (e.g. evolution of life-cycles, host manipulation).
3. Ecology of host-parasite interactions (e.g. parasite communities, effects of environmental changes).
4. Ecology and evolution of parasitoids and their applications in biocontrol
5. Human macroparasites (schistosomiasis, malaria).

Practical exercises:
1. Examination of parasites in molluscs (identification and examination of host exploitation strategies).
2. Examination of parasites in amphibids (identification and examination of effects on hosts).
3. Examination of parasitoids of aphids.

Prerequisites / notice
The three practicals will take place at the 05.10.2021, the 19.10.2021 and the 09.11.2021 at Eawag Dübendorf from 08:15 - 12:00. Note that each practical takes 2 hours longer than the weekly lecture.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1703-00L</td>
<td>Evolutionary Medicine for Infectious Diseases</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>A. Hall</td>
</tr>
</tbody>
</table>

Number of participants limited to 35.

Waiting list will be deleted October 3rd, 2021.

Abstract
This course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively.

Objective
Students will learn to (i) identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses.
We will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes: (i) determinants of pathogen host range and virulence, (ii) dynamics of host-parasite coevolution, (iii) pathogen adaptation to evade or suppress immune responses, (iv) antimicrobial resistance, (v) evolution-proof medicine. For each topic there will be a short (< 20 minutes) introductory lecture, before students independently research the primary literature and develop discussion points and questions, followed by interactive discussion in class.

The focus is on primary literature, but for some parts the following text books provide good background information:

- Schmid Hempel 2011 Evolutionary Parasitology
- Stearns & Medzhitov 2016 Evolutionary Biology

A basic understanding of evolutionary biology, microbiology or parasitology will be advantageous but is not essential.

Prerequisites / notice

551-0223-00L Immunology III W 4 credits 2V M. Kopf, S. B. Freigang, J. Kisielow, S. R. Leibundgut, A. Oxenius, C. Schneider, R. Spörri, L. Tortola, E. Wetter Slack

Abstract
This course provides a detailed understanding of
- development of T and B cells
- the dynamics of a immune response during acute and chronic infection
- mechanisms of immunopathology
- modern vaccination strategies

Key experimental results will be shown to help understanding how immunological text book knowledge has evolved.

Objective
Obtain a detailed understanding of
- the development, activation, and differentiation of different types of T cells and their effectormechanisms during immune responses,
- Recognition of pathogenic microorganisms by the host cells and molecular events thereafter.
- events and signals for maturation of naive B cells to antibody producing plasma cells and memory B cells.
- Optimization of B cell responses by intelligent design of new vaccines

Content
o Development and selection of CD4 and CD8 T cells, natural killer T cells (NKT), and regulatory T cells (Treg)
o NK T cells and responses to lipid antigens
o Differentiation, characterization, and function of CD4 T cell subsets such as Th1, Th2, and Th17
o Overview of cytokines and their effector function
o Co-stimulation (signals 1-3)
o Dendritic cells
o Evolution of the "Danger" concept
o Cells expressing Pattern Recognition Receptors and their downstream signals
o T cell function and dysfunction in acute and chronic viral infections

Literature
Documents of the lectures are available for download at:
https://moodle-app2.let.ethz.ch/course/view.php?id=2581¬fyeditingon=1

Prerequisites / notice
Immunology I and II recommended but not compulsory.

752-4009-00L Molecular Biology of Foodborne Pathogens W 3 credits 2V M. Loesner, M. Schmelcher, M. Schuppler, E. Wetter Slack

Abstract
The course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.

Objective
Detailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.

Content
Molecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnostics and antimicrobial intervention.

Lecture notes
Electronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.

Prerequisites / notice
Lectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), without break!

Term Paper and Seminar

The compulsory course 701-1701-00L Human Health, Nutrition and Environment: Term Paper is offered in the autumn semester only.

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**

Abstract
Writing of a review paper of scientific quality on a topic in the domain of Human Health, Nutrition and Environment based on critical evaluation of scientific literature.

Objective
- Acquisition of knowledge in the field of the review paper
- Assessment of original literature as well as synthesis and analysis of the findings
- Practising of academic writing in English
- Giving an oral presentation with discussion on the topic of the review paper

Content
Topics are offered in the domains of the major 'Human Health, Nutrition and Environment' covering 'Public Health', 'Infectious Diseases', 'Nutrition and Health' and 'Environment and Health'.

Lecture notes
Guidelines will be handed out in the beginning.

Electives

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
701-3001-00L | Environmental Systems Data Science | W | 3 credits | 2G | L. Pellissier, J. Payne, B. Stocker
Abstract
Students are introduced to a typical data science workflow using various examples from environmental systems. They learn common methods and key aspects for each step through practical application. The course enables students to plan their own data science project in their specialization and to acquire more domain-specific methods independently or in further courses.

Objective
The students are able to
- frame a data science problem and build a hypothesis
- describe the steps of a typical data science project workflow
- conduct selected steps of a workflow on specifically prepared datasets, with a focus on choosing, fitting and evaluating appropriate algorithms and models
- critically think about the limits and implications of a method
- visualise data and results throughout the workflow
- access online resources to keep up with the latest data science methodology and deepen their understanding

Content
- The data science workflow
- Access and handle (large) datasets
- Prepare and clean data
- Analysis: data exploratory steps
- Analysis: machine learning and computational methods
- Evaluate results and analyse uncertainty
- Visualisation and communication

Prerequisites / notice
252-0940-02L Anwendungshafes Programmieren mit Python
401-0624-00L Mathematik IV: Statistik
401-6215-00L Using R for Data Analysis and Graphics (Part I)
401-6217-00L Using R for Data Analysis and Graphics (Part II)
701-0105-00L Mathematik VI: Angewandte Statistik für Umweltwissenschaften

Minors

Minor in Sustainable Energy Use

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0967-00L</td>
<td>Project Development in Renewable Energies</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>R. Rechsteiner, A. Appenzeller</td>
</tr>
</tbody>
</table>

Abstract
Realization of projects in the field of renewable energies, analysis of legal frame conditions and risks. The students learn basics of renewable energy project realization from acknowledged experts active in the field. They identify different tasks of various investor types. They develop sample projects in practice within special frames:

Lecture notes
PPT presentation will be distributed (in German) special frames:

http://www.rechsteiner-basel.ch/index.php?id=27

http://www.rechsteiner-basel.ch/Lehrmittel.27.0.html

Literature
REN21 Renewables GLOBAL STATUS REPORT
http://www.ren21.net/status-of-renewables/
Mit einer grünen Anlage schwarze Zahlen schreiben http://www.rechsteiner-basel.ch/uploads/media/Mit_einer_gruenen_Anlage_schwarze_Zahlen_schreiben.pdf
UNEP: Global Trends in Renewable Energy Investments
Energiestrategie 2050 Faktenblätter des Bundes (PDF): https://www.uev.de/home/energie/energiestrategie-2050.html
IEA PVPS: TRENDS 2014 IN PHOTOVOLTAIC APPLICATIONS
http://www.iea-pvps.org/
Bundesamt für Energie: Perspektiven für die Grosswasserkraft in der Schweiz
Windenergie-Report Deutschland http://windmonitor.iwes.fraunhofer.de/windmonitor_de/5_Veroeffentlichungen/1_windenergiereport/

Prerequisites / notice
For group exercise and presentation reasons the number of participants is limited at 30 students. For exercices students build learning and presentational groups.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1346-00L</td>
<td>Carbon Mitigation</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>N. Gruber</td>
</tr>
</tbody>
</table>

Abstract
Future climate change can only kept within reasonable bounds when CO2 emissions are drastically reduced. In this course, we will discuss a portfolio of options involving the alteration of natural carbon sinks and carbon sequestration. The course includes introductory lectures, presentations from guest speakers from industry and the public sector, and final presentations by the students.

Objective
The goal of this course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences.

Content
From the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group.

Lecture notes
None

Literature
Will be identified based on the chosen topic.
Prerequisites / notice

Exam: No final exam. Pass/No-Pass is assigned based on the quality of the presentation and ensuing discussion.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>052-0609-00L</td>
<td>Energy and Climate Systems II</td>
<td>W</td>
<td>2 credits</td>
<td>2G</td>
<td>A. Schlüter</td>
</tr>
<tr>
<td>227-0731-00L</td>
<td>Power Market I - Portfolio and Risk Management</td>
<td>W</td>
<td>6 credits</td>
<td>4G</td>
<td>D. Reichelt, G. A. Koeppel</td>
</tr>
</tbody>
</table>

Abstract

The second semester of the annual course focuses on physical principles, component and systems for the efficient and sustainable supply with electricity, daylight and artificial light. This includes concepts of on-site generation of energy, building systems controls and human-building interaction. Additionally, larger scale building energy systems for districts are discussed.

Objective

The lecture series focuses on the physical principles and technical components of relevant systems for an efficient and sustainable climatisation and energy supply of buildings. A special focus is on the interrelation of supply systems and architectural design and construction. Learning and practicing methods of quantifying demand and supply allows identifying parameters relevant for design.

Content

1. Introduction and overview
2. Electricity
3. Integrated design

Lecture notes

The slides of the lecture serve as lecture notes and are available as download.

Literature

A list of relevant literature is available at the chair.

Lecture notes

Handouts of the lecture

Prerequisites / notice

1 excursion per semester, 2 case studies, guest speakers for specific topics.

Course Moodle: https://moodle-app2.let.ethz.ch/enrol/index.php?id=11636

Minor in Global Change and Sustainability

This minor will only be offered in the academic year 21/22. As of the academic year 22/23, the minor can no longer be chosen. The course units offered in the minor can still be taken as electives.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0019-00L</td>
<td>Readings in Environmental Thinking</td>
<td>W</td>
<td>3 credits</td>
<td>2S</td>
<td>J. Ghazoul</td>
</tr>
</tbody>
</table>

Abstract

This course introduces students to foundational texts that led to the emergence of the environment as a subject of scientific importance, and shaped its relevance to society. Above all, the course seeks to give confidence and raise enthusiasm among students to read more widely around the broad subject of environmental sciences and management both during the course and beyond.

Objective

The course will provide students with opportunities to read, discuss, evaluate and interpret key texts that have shaped the environmental movement and, more specifically, the environmental sciences. Students will gain familiarity with the foundational texts, but also understand the historical context within which their academic and future professional work is based. More directly, the course will encourage debate and discussion of each text that is studied, from both the original context as well as the modern context. In so doing students will be forced to consider and justify the current societal relevance of their work.
The course will be run as a book reading club. The first session will provide a short introduction as to how to explore a particular text (that is not a scientific paper) to identify the key points for discussion.

Thereafter, in each week a text (typically a chapter from a book or a paper) considered to be seminal or foundational will be assigned by a course lecturer. The lecturer will introduce the selected text with a brief background of the historical and cultural context in which it was written, with some additional biographical information about the author. He/she will also briefly explain the justification for selecting the particular text.

The students will read the text, with two to four students (depending on class size) being assigned to present it at the next session. Presentation of the text requires the students to prepare by, for example:
- identifying the key points made within the text
- identifying issues of particular personal interest and resonance
- considering the impact of the text at the time of publication, and its importance now
- evaluating the text from the perspective of our current societal and environmental position

Such preparation would be supported by a mid-week tutorial discussion (about 1 hour) with the assigning lecturer.

These students will then present the text (for about 15 minutes) to the rest of the class during the scheduled class session, with the lecturer facilitating the subsequent class discussion (about 45 minutes). Towards the end of the session the presenting students will summarise the emerging points (5 minutes) and the lecturer will finish with a brief discussion of how valuable and interesting the text was (10 minutes). In the remaining 15 minutes the next text will be presented by the assigning lecturer for the following week.

The specific texts selected for discussion will vary, but examples include:
- Leopold (1949) A Sand County Almanach
- Carson (1962) Silent Spring
- Jared Diamond (2005) Collapse

Discussions might also encompass films or other forms of media and communication about nature.

<table>
<thead>
<tr>
<th>701-1551-00L</th>
<th>Sustainability Assessment</th>
<th>W</th>
<th>3 credits</th>
<th>2G</th>
<th>P. Krütli, D. Nef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>The course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability. The format of the course is seminar-like, interactive.</td>
<td></td>
<td></td>
<td></td>
<td>Waiting list will be deleted October 1st, 2021.</td>
</tr>
<tr>
<td>Objective</td>
<td>At the end of the course, students: - know core concepts of sustainable development, main features of social justice in the context of sustainability, a selection of methodologies for the assessment of sustainable development - have a deepened understanding of the challenges of trade-offs between the different dimensions of sustainable development and their respective impacts on individual and societal decision-making</td>
<td></td>
<td></td>
<td></td>
<td>No enrollment possible after October 1st, 2021.</td>
</tr>
<tr>
<td>Content</td>
<td>The course is structured as follows: - overview of rationale, objectives, concepts and origins of sustainable development (approx. 15%) - overview of the concept of social justice as guiding principle of the social dimension of sustainability (approx. 20%) - analysis of a selection of concepts and methodologies to assess sustainable development in a variety of contexts (approx. 65%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Handouts are provided</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Selected scientific articles and book-chapters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Students of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>551-0209-00L</th>
<th>Sustainable Plant Systems (Seminar)</th>
<th>W</th>
<th>2 credits</th>
<th>2S</th>
<th>M. Paschke, S. F. Bender, G. S. Bhullar, F. Liebisch, further lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Participants will be able to discuss and understand sustainability in the context of plant science research. A special focus will be on research on agro-ecological systems and farming system research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Participants will be able to: (1) Review issues of sustainability in the context of plant science research and literature on sustainable agriculture and the food system. (2) Analyze and interact on several case studies in agro-ecology and the food system. (3) Use SDGs in your case study as a target and assessment system for sustainability in agriculture and in the food system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future society has to feed nine billion people, therefore agriculture but also food, waste and resource management has to go hand in hand in the use of less resources. We will discuss current plant science research in the context of sustainability.

Focus of the seminar will be on:

(1) Research on agro-ecological systems and farming system research. Can we transform our agricultural practices and move behind existing paradigms to develop innovative and sustainable agriculture production systems? Where does current research indicate on directions for transformation of current practice and how can we assess and analyse them?

(2) The Sustainable Development Goals that should guide the current contributions of plant sciences: What research and innovation are necessary to contribute to the SDGs? How can we assess their possible contribution in the near future?

(3) Sustainable food systems: How could local food systems be build and scaled? In this topic, our focus is on giving insight in policy strategies and local sustainability efforts to give the group of participants an opportunity to understand sustainability in a real societal context.

The course will be organized with two workshops (half days, 14:00 - 18:00) and an intensive, well-structured self-study/group work phase in between the workshops. Online learning material in provided for on example:

1 | Biotic interactions
2 | Nutrient management
3 | Plant breeding
4 | Global change

Access to the learning platform: https://lms.uzh.ch/auth/RepositoryEntry/3604873218/CourseNode/83441794245107 (use your AAI login)

The course will be organized with two workshops (half days, 14:00 - 18:00) and an intensive, well-structured self-study/group work phase in between the workshops. Online learning material in provided on example:

1 | Biotic interactions
2 | Nutrient management
3 | Plant breeding
4 | Global change

Access to the learning platform: https://lms.uzh.ch/auth/RepositoryEntry/3604873218/CourseNode/83441794245107 (use your AAI login)

This is a research seminar at the Master level. PhD students are also welcome.

This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.

Based on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in small teams coached by the instructors, carry out research on a case of their choice (i.e. an international river basin where riparian countries are trying to find solutions to water allocation and/or water quality problems associated with a large dam project). They will write a brief paper and present their findings towards the end of the semester.

Slides and reading materials will be distributed electronically.

The UN World Water Development Reports provide a broad overview of the topic: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/

The course is open to Master and PhD students from any area of ETH.

ISTP students who take this course should also register for the course 860-0012-01L - Cooperation and conflict over international water resources; In-depth case study.

This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.

Based on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in small teams coached by the instructors, carry out research on a case of their choice (i.e. an international river basin where riparian countries are trying to find solutions to water allocation and/or water quality problems associated with a large dam project). They will write a brief paper and present their findings towards the end of the semester.

Slides and reading materials will be distributed electronically.

The UN World Water Development Reports provide a broad overview of the topic: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/

The course is open to Master and PhD students from any area of ETH.

ISTP students who take this course should also register for the course 860-0012-01L - Cooperation and conflict over international water resources; In-depth case study.
Minor in Transdisciplinarity for Sustainable Development

This minor will only be offered in the academic year 21/22. As of the academic year 22/23, the minor can no longer be chosen. The course units offered in the minor can still be taken as electives.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1551-00L</td>
<td>Sustainability Assessment</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>P. Krüüli, D. Nef</td>
</tr>
</tbody>
</table>

Abstract
The course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability. The format of the course is seminar-like, interactive.

Objective
At the end of the course, students:
- know core concepts of sustainable development, main features of social justice in the context of sustainability, a selection of methodologies for the assessment of sustainable development
- have a deepened understanding of the challenges of trade-offs between the different dimensions of sustainable development and their respective impacts on individual and societal decision-making

Content
The course is structured as follows:
- overview of rationale, objectives, concepts and origins of sustainable development (approx. 15%)
- overview of the concept of social justice as guiding principle of the social dimension of sustainability (approx. 20%)
- analysis of a selection of concepts and methodologies to assess sustainable development in a variety of contexts (approx. 65%)

Lecture notes
Handouts are provided

Literature
Selected scientific articles and book-chapters

Prerequisites / notice
Students of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L)

Minor in Life Cycle Assessment

This minor will only be offered in the academic year 21/22. As of the academic year 22/23, the minor can no longer be chosen. The course units offered in the minor can still be taken as electives.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-0577-00L</td>
<td>An Introduction to Sustainable Development in the</td>
<td>W</td>
<td>3 credits</td>
<td>2G</td>
<td>G. Habert, D. Kaushal</td>
</tr>
</tbody>
</table>
Built Environment

Abstract
In 2015, the UN Conference in Paris shaped future world objectives to tackle climate change.
In 2016, other political bodies made these changes more difficult to predict.
What does it mean for the built environment?
This course provides an introduction to the notion of sustainable development when applied to our built environment.

Objective
At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environment aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.

Content
The following topics give an overview of the themes that are to be worked on during the lecture.

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world
- Synthesis: Transition to sustainable development

Lecture notes
All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.

Literature
A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.

<table>
<thead>
<tr>
<th>101-0608-00L</th>
<th>Design-Integrated Life Cycle Assessment W 3 credits 2G G. Habert</th>
</tr>
</thead>
</table>

Abstract
Currently, Life Cycle Assessment (LCA) is applied as an ex-post design evaluation of buildings, but rarely used to improve the building during the design process.
The aim of this course is to apply LCA during the design of buildings by means of a digital, parametric tool. The necessary fundamentals of the LCA method will be taught following a lecture on demands approach.

Objective
The course will follow two main objectives and a third optional objective, depending on the design projects the students' choose. At the end of the course, the students will:
1. Know the methodology of LCA
2. Be able to apply LCA in the design process to assess and improve the environmental performance of their projects
3. Be able to use the parametric LCA tool and link it to additional performance assessment tools for a holistic optimisation

Content
The course will be structured into two parts, each making up about half of the semester.

Part I: Exercises with lectures on demand
The first six individual courses will follow the "lectures on demand" approach. Small "hands-on" exercises focusing on one specific aspect will be given out and the necessary background knowledge will be provided in the form of short input lectures when questions arise. The following topics will be discussed during the first part:
1) LCA basic introduction
2) System boundaries, functional unit, end of life
3) Carbon budget and LCA benchmarks
4) BIM-LCA, available calculation tools and databases
5) Integrated analysis of environmental and cost assessment
6) Bio-based carbon storage

Part II: Project-based learning
In the second part, the students will work on their individual project in groups of three. For the design task, the students will bring their own project and work on improving it. The projects can be chosen depending on the students background and range from buildings to infrastructure projects. Intermediate presentations will ensure the continuous work and make sure all groups are on the same level and learn from each other. During this part, the following hands-on tutorials will be given:
1) Introduction to Rhinoceros 6 and 7
2) Introduction to grasshopper
3) Integrated assessment tools (ladybug tools)
4) Introduction to in-house grasshopper plugin for LCA analysis

Lecture notes
As the course follows a lecture on demand approach, the lecture slides will be provided after each course.

Literature
A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.
Advanced Environmental Assessments

Master students in Environmental Engineering choosing module Ecological Systems Design are not allowed to enrol 102-0317-00 Advanced Environmental Assessments (3KP) as already included in 102-0307-01 Advanced Environmental, Social and Economic Assessments (5KP).

Abstract
This course deepens students' knowledge of the environmental assessment methodologies and their various applications.

Objective
This course has the aim of deepening students' knowledge of the environmental assessment methodologies and their various applications. In particular, students completing the course should have the
- Ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- Knowledge about the current state of the scientific discussion and new research developments
- Ability to properly plan, conduct and interpret environmental assessment studies
- Knowledge of how to use LCA as a decision support tool for companies, public authorities, and consumers

Content
- Inventory developments, transparency, data quality, data completeness, and data exchange formats
- Allocation (multifunction processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Recent development in impact assessment
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Uncertainty analysis
- Subjectivity in environmental assessments
- Multicriteria analysis
- Case Studies

Lecture notes
No script. Lecture slides and literature will be made available on Moodle.

Literature
No script. Lecture slides and literature will be made available on Moodle.

Prerequisites / notice
Basic knowledge of environmental assessment tools is a prerequisite for this class. Students that have not done classwork in this topic before are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. 2016: Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5,2)).

102-0317-03L Advanced Environmental Assessment (Computer Lab I)

Abstract
Different tools and software used for environmental assessments, such as LCA are introduced. The students will have hands-on exercises in the computer rooms and will gain basic knowledge on how to apply the software and other resources in practice

Objective
Become acquainted with various software programs for environmental assessment including Life Cycle Assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.

102-0317-04L Advanced Environmental Assessment (Computer Lab II)

Abstract
Technical systems are investigated in projects, based on the software and tools introduced in the course 102-0317-03L Advanced Environ Assessment (Computer Lab I). The projects are created around a complete but simplified LCA study, where the students will learn how to answer a given question with target oriented methodologies using various software programs and data sources for env. assessment

Objective
Become acquainted with utilizing various software programs for environmental assessment to perform a Life Cycle Assessment and learn how to address the challenges when analyzing a complex system with available data and software limitations.

Prerequisites / notice
Prerequisite is enrolment of 102-0317-00 Advanced Environmental Assessments and of 102-0317-03 Advanced Environmental Assessments (Computer Lab I) in parallel or in advance (both courses in HS).

Minor in Biogeochemistry
This minor will only be offered in the academic year 21/22. As of the academic year 22/23, the minor can no longer be chosen. The course units offered in the minor can still be taken as electives.

Number Title Type ECTS Hours Lecturers
701-1313-00L Isotopes and Biomarkers in Biogeochemistry W 3 credits 2G C. Schubert, R. Kipfer

Abstract
The course introduces the scientific concepts and typical applications of tracers in biogeochemistry. The course covers stable and radioactive isotopes, geochemical tracers and biomarkers and their application in biogeochemical processes as well as regional and global cycles. The course provides essential theoretical background for the lab course "Isotopic and Organic Tracers Laboratory".

Objective
The course aims at understanding the fractionation of stable isotopes in biogeochemical processes. Students learn to know the origin and decay modes of relevant radiogenic isotopes. They discover the spectrum of possible geochemical tracers and biomarkers, their potential and limitations and get familiar with important applications

Content
Geogenic and cosmogenic radionuclides (sources, decay chains); stable isotopes in biogeochemistry (natural abundance, fractionation); geochemical tracers for processes such as erosion, productivity, redox fronts; biomarkers for specific microbial processes.

Lecture notes
Handouts will be provided for every chapter

Literature
A list of relevant books and papers will be provided

Prerequisites / notice
Students should have a basic knowledge of biogeochemical processes (BSc course on Biogeochemical processes in aquatic systems or equivalent)

701-1315-00L Biogeochemistry of Trace Elements W 3 credits 2G A. Voegelin, S. Bouchet, L. Winkel

Abstract
The course addresses the biogeochemical classification and behavior of trace elements, including key processes driving the cycling of important trace elements in aquatic and terrestrial environments and the coupling of abiotic and biotic transformation processes of trace elements. Examples of the role of trace elements in natural or engineered systems will be presented and discussed in the course.
2G From the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. They are familiar with the chemical characteristics, the environmental behavior and fate, and the biogeochemical reactivity of different groups of trace elements. They are able to apply their knowledge on the interaction of trace elements with geosphere components and on abiotic and biotic transformation processes of trace elements to discuss and evaluate the behavior and impact of trace elements in aquatic and terrestrial systems.

Lecture notes
Selected handouts (lecture notes, literature, exercises) will be distributed during the course.

Prerequisites / notice
Students are expected to be familiar with the basic concepts of aquatic and soil chemistry covered in the respective classes at the bachelor level (soil mineralogy, soil organic matter, acid-base and redox reactions, complexation and sorption reactions, precipitation/dissolution reactions, thermodynamics, kinetics, carbonate buffer system).

The course will develop along the following outline:

ECTS
The goal of this course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group.

Future climate change can only be kept within reasonable bounds when CO₂ emissions are drastically reduced. In this course, we will discuss physical, chemical and biological processes which determine the drinking water quality.

The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.

Objective
The goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.

Content
The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore, legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally, unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.

Handouts will be distributed
Links to relevant literature will be provided during the classes.

Will be identified based on the chosen topic.

Exam: No final exam. Pass/No-Pass is assigned based on the quality of the presentation and ensuing discussion.

Minor in Physical Glaciology

Number Title Type ECTS Hours Lecturers
101-0289-00L Applied Glaciology W 4 credits 2G D. Farinotti, A. Bauder, M. Werder

Abstract
The course transmits fundamental knowledge for treating applied glaciological problems. Topics include climate-glacier interactions, glacier ice flow, glacier hydrology, ice avalanches, and lake ice.

Objective
The objectives of the courses are to:
- Learn about fundamental glaciological processes, including glacier mass balance, ice dynamics, and glacier-related hazards;
- Apply the above knowledge to some case studies inspired by contract-works performed at ETH's Glaciology section;
- Generate the own computer code to solve the above case studies, and interpret the results;
- Understand, both in class and in the field, the practical relevance of glaciology, with a focus on the Swiss applications.

Content
The course will develop along the following outline:
- How glaciology became a scientific discipline
- Glaciology and hydropower
- Glacier mechanics and ice flow
- Gravitational glacier instabilities
- Glacier hydrology and glacier lake outbursts
- Lake ice and ice bearing capacity
- Field excursion to Jungfraujoch
- Discussion of the exercises performed during the semester

Digital lecture handouts will be distributed prior to each class.

Completed BSc studies. Basic knowledge in computer scripting in any language (e.g., Python, R, Julia, Matlab, IDL, ...) will be advantageous for solving the exercises. The exercises will be performed in groups. A minimal level of fitness is required for the field excursion.
After the course the students are able to understand and interpret measurements of ice flow, subglacial water pressure and ice temperature.

Adaptability and Flexibility
A. Bauder
M. Lüthi
University lecturers

Overview of the most important earth surface processes and landforms in cold regions (regions with glaciers and intense frost) with an emphasis on high-mountain aspects. Discussion of present research challenges.

Erosion and sedimentation by glaciers as a function of topography, englacial temperature, sediment balance, sliding and melt water runoff.

Risks to life and human assets result when settlement areas and infrastructure overlap regions where natural hazard processes occur. This course utilizes case studies to teach how a future natural hazards-specialist should analyze, assess and manage risks.

Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 pages.

Understanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of the ice sheets of Greenland and Antarctica.

The dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydraulics. The specific dynamics of tide water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate).

Understanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of the ice sheets of Greenland and Antarctica.

After the course the students are able to understand and interpret measurements of ice flow, subglacial water pressure and ice temperature. They will have an understanding of glaciology-related physical concepts sufficient to understand most of the contemporary literature on the topic. The students will be well equipped to work on glacier-related problems by numerical modeling, remote sensing, and field work.

The specific dynamics of tide water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate).

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadline-s.html

Active participation is expected with presence at the sessions. Only a limited number of participants can be accepted. One of the following courses should be taken as preparation:
- 651-3561-00L Kryosphäre
- 101-0289-00L Applied Glaciology
- 651-4101-00L Physics of Glaciers

Introduction to classic and modern literature of research in Glaciology. Active participation is expected and participants are mentored by PhD students of Glaciology.

In-depth knowledge of selected topics of research in Glaciology. Introduction to different types of scientific presentation. Improve ability of the discussion of scientific topics.

Copies/pdf of scientific papers will be distributed during the course

Active participation is expected with presence at the sessions. Only a limited number of participants can be accepted. One of the following courses should be taken as preparation:
- 651-3561-00L Kryosphäre
- 101-0289-00L Applied Glaciology
- 651-4101-00L Physics of Glaciers

Overview of the most important earth surface processes and landforms in cold regions (regions with glaciers and intense frost) with an emphasis on high-mountain aspects. Discussion of present research challenges.

Knowledge of the most prominent climate-related geomorphological processes and phenomena in high-mountain regions, understanding of primary research challenges.

Erosion and sedimentation by glaciers as a function of topography, englacial temperature, sediment balance, sliding and melt water runoff. Processes and landforms in regions of seasonal and perennial frost (frost weathering, rock falls, debris cones/talus, solifluxion, permafrost creep/rock glaciers, debris flows).

Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 pages.

Basic knowledge about geomorphology and glaciers/permafrost from corresponding courses at ETH/UZH or from the related lecture notes.

High school mathematics and physics knowledge required.
Objective

Concepts will be explained step-by-step through a set of case studies, and applied in lab by the students. The following principal steps are used when coping with natural hazard-risks. At each step, students will learn and apply the following skills:

- **Risk analysis - What can happen?**
- Characterize the processes and environmental measures that lead to a natural hazard and integrate modeling results of these processes.
- Identify threats to human life and assets exposed to natural hazards and estimate possible drawbacks or damages.

- **Risk assessment - What are the acceptable levels of risk?**
- Apply principles to determine acceptable risks to human life and assets in order to identify locations which should receive added protection.
- Explain causes for conflicts between risk perception and risk analysis.

- **Risk management - What steps should be taken to manage risks?**
- Explain how various hazard mitigation approaches reduce risk.
- Describe hazard scenarios as a base for adequate dimensioning of control measures.
- Identify the best alternative from a set of thinkable measures based on an evaluation scheme.

- **Explain the principles of risk-governance.**

Content

Die Vorlesung besteht aus folgenden Blöcken:

1. Einführung ins Vorgehenskonzept (1W)
2. Systemabgrenzung (1W)
3. Gefahrenbeurteilung (1W)
4. Exposition- und Folgenanalyse (1W)
5. Risikomanagement (2W + Exkursion)

Literature

Prerequisites / notice

Besonderes

Requirements:
- Essentials of Construction Analysis
- Hydraulics
- Geology and Petrography
- Soil Physics
- Soil Mechanics and Geotechnics

Taught competencies

Domain A - Subject-specific Competencies

Concepts and Theories assessed

Domain B - Method-specific Competencies

- Techniques and Technologies assessed
- Analytical Competencies assessed
- Decision-making assessed
- Media and Digital Technologies not assessed
- Problem-solving assessed
- Project Management not assessed

Domain C - Social Competencies

- Communication not assessed
- Cooperation and Teamwork not assessed
- Customer Orientation not assessed
- Leadership and Responsibility not assessed
- Self-presentation and Social Influence not assessed
- Sensitivity to Diversity not assessed
- Negotiation not assessed

Domain D - Personal Competencies

- Adaptability and Flexibility not assessed
- Creative Thinking not assessed
- Critical Thinking not assessed
- Integrity and Work Ethics not assessed
- Self-awareness and Self-reflection not assessed
- Self-direction and Self-management not assessed

101-1250-00L Management of Hillslope and Channel Processes

W 3 credits 2V D. Rickenmann

Abstract

Objective

Ziel

To recognise and understand channel and hillslope processes and their interactions. To learn about methods of hazard analysis and of technical and bioengineering protection measures and their assessment. Determination of critical loads and design of protective structures. Assessment of spatial and future developments with and without protective measures.

Content

Inhalt

Lecture notes

see “Literatur”

Literature

102-0293-00L Hydrology

W 3 credits 2G P. Burlando

Abstract

The course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, and snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis.

Objective

Know the main features of engineering hydrology. Apply methods to estimate hydrological variables for dimensioning hydraulic structures and managing water resources.
The hydrological cycle: global water resources, water balance, space and time scales of hydrological processes.

Precipitation: mechanisms of precipitation formation, precipitation measurements, variability of precipitation in space and time, precipitation regimes, point/basin precipitation, isohyetal method, Thiessen polygons, storm rainfall, design hyetograph.

Interception: measurement and estimation.

Evaporation and evapotranspiration: processes, measurement and estimation, potential and actual evapotranspiration, energy balance method, empirical methods.

Infiltration: measurement, Horton’s equation, empirical and conceptual models, phi-index and percentage method, SCS-CN method.

Surface runoff and subsurface flow: Hortonian and Dunnian surface runoff, streamflow measurement, streamflow regimes, annual hydrograph, flood hydrograph analysis – baseflow separation, flow duration curve.

Basin characteristics: morphology, topographic and phreatic divide, hypsometric curve, slope, drainage density.

Rainfall-runoff models (R-R): rationale, linear model of rainfall-runoff transformation, concept of the instantaneous unit hydrograph (IUH), linear reservoir, Nash model.

Flood estimation methods: flood frequency analysis, deterministic methods, probabilistic methods (e.g. statistical regionalisation, indirect R-R methods for flood estimation, rational method).

Erosion and sediment transport: watershed scale erosion, soil erosion by water, estimation of surface erosion, sediment transport.

Snow (and ice) hydrology: snow characteristic variables and measurements, estimation of snowmelt processes by the energy budget equation and conceptual melt models (temperature index method and degree-day method), snowmelt runoff.

Lecture notes

The lecture notes as well as the lecture presentations and handouts may be downloaded from the website of the Chair of Hydrology and Water Resources Management.

Literature

Prerequisites / notice

Knowledge of statistics is a prerequisite. The required theoretical background, which is needed for understanding part of the lectures and performing part of the assignments, may be summarised as follows:
- Elementary data processing: hydrological data as random variables, return period, frequency factor, probability paper, probability distribution fitting, parametric and non-parametric tests, parameter estimation.

| 651-3525-00L | Introduction to Engineering Geology | W | 4 credits | 2V+1U | S. Löw, L. de Palézieux dit Falconnet, M. Ziegler |

Abstract

This introductory course starts from a description of the behavior and phenomena of soils and rocks under near surface loading conditions and their key geotechnical properties. Lab and field methods for the characterization of soils, rocks and rock masses are introduced. Finally practical aspects of ground engineering, including tunneling and landslide hazards are presented.

Objective

Understanding the basic geotechnical and geomechanical properties and processes of rocks and soils. Understanding the interaction of rock and soil masses with technical systems. Understanding the fundamentals of geological hazards.

Content

Lecture notes

Written course documentation available under "Kursunterlagen".

Literature

| 651-4088-03L | Physical Geography III (Geomorphology and Glaciology) (University of Zürich) | W | 5 credits | 1V+1U | University lecturers |

Abstract

Das Modul bietet eine kurze Einführung in einige Komponenten und Prozesse des hydrologischen Kreislaufes. Dabei werden einzelne Wasserspeicher (Schnee-, Boden und Grundwasser) und Flüsse zwischen den Speichern (Verdunstung, Niederschlag und Abfluss) betrachtet. Übungen ergänzen die Vorlesung.

Minor in Forest Engineering and Wood Products

To successfully complete this minor, KPs must be earned for the two required courses:
- 701-1645-00 Forest Operations (autumn semester) and
- 701-1544-00 Forest Access and Transportation (spring semester)
Number | Title | Type | ECTS | Hours | Lecturers
--- | --- | --- | --- | --- | ---
701-1645-00L | Forest Operations | O | 3 credits | 2G | H. Griess, J. Schweier

Abstract
The discipline of Forest operations is constantly challenged to find solutions for unique problems. Each forest site requires specific technological approaches and machinery based on given management goals and ecological and environmental circumstances. Various terrain types and soil conditions, harvesting costs and taking care of the workforce by creating safe working conditions are some of the aspects to be considered. In this course, students will learn to use a wide variety of approaches grounded in the natural sciences, engineering and technology to develop solutions tailored to unique challenges from the field of forest operations. The course is aimed at students who either plan an academic or professional career in the field of forest operations, or who will work at the interface between forest operations and the various related disciplines, such as forest ecosystem management and forestry in the wider sense.

Objective
After participating in this course students will have acquired foundational knowledge of a wide variety of core elements in the field of forest operations:
• The course will provide students with the ability to describe and differentiate site and stand conditions from an engineering perspective.
• Students will gain an overview and good working knowledge of current technology used in forest operations in Switzerland and around the world.
• Students will acquire the ability to assess the strength and weaknesses of the most commonly used equipment and analyze their suitability for a given set of environmental, economic and social factors.
• Students will be able to combine different types of technology to create an optimal harvesting system for a given task, and assess a given system for its task specific suitability.
• Participants will be able to assess the sustainability and potential short- and long-term impacts of harvesting systems under ecological, economic and social constraints.

Content
Introduction
• Historic overview
• Scope of operation
• Site and stand characteristics

Timber harvesting
• Logging methods
• Felling methods
• Motor-Manual felling methods
 • Falling and processing
• Forest machine structure and function
• Harvester Technology
 • Felling heads
 • Carriers for felling heads
• Bunching
• Mechanical processing
• Loading equipment
• Operating techniques

Primary Transport Systems
• Ground based
 • Common features
 • Skidder
 • Forwarder
 • Loader Forwarder
• Cable yarding
 • Common features
 • Wire rope
 • Cable yarding systems
 • Operating techniques
• Aerial
 • Common features
 • Operating techniques

Winch-Assisted Harvesting Operations
• Harvesting
• Primary transport

Loading Equipment

Secondary transport
• Truck configurations
• Soil compaction and contamination
• Riparian areas

Forest Operations management
• Ergonomics
• Work Safety
• Economic Aspects
• Environmental impact assessment
• Equipment selection

Forest operations across the globe
• New Zealand
• North America
 • British Columbia, Canada
 • South-eastern U.S.A

Specialized equipment for small scale forest operations

Outlook into the future of forest operations

Literature
Published on Moodle

Prerequisites / notice
701-1544-00 Forest Access and Transportation

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2127 of 2152
Abstract
The general introduction shows the economic relevance of the resource wood in a global, European and Swiss context and reflects aspects assessed.
Learning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. The assessed, M. Schubert assessed.
Fundamentals of Wood Elaboration and Introduction to Spatial Development and Chemical Nature of Nutrients and their Availability to Cooperation and Teamwork

Objective
Learning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. Further, the students will gain insight into the relationships between tree growth and wood properties with a specific focus on the wood function in the living tree.

Content
In an introduction to wood anatomy, the general structural features of softwoods and hardwoods will be explained and factors of diversity and variability will be discussed. A specific focus is laid on common central European tree species with relevance in the wood sector, which will be studied in macro- and microstructural investigations. In the following, relationships between wood structure, properties and function in the living tree will be the focus of the lectures. Topics covered are water transport, trends in wood anatomy within trees, environmental impact on wood anatomy, wood defects and their causes, tools to study wood properties over time, secondary changes in wood, and tree biomechanics.

101-0637-20L Fundamentals of Wood Elaboration and Woodmachining
W 3 credits 2G I. Burgert, M. Schubert

Abstract
The course Wood processing conveys knowledge on technological properties of wood and wood-based materials as well as on industrial processes for the fabrication of a vast variety of wood products and covers new developments in the field of digital technologies.

Objective
Learning target is a fundamental understanding of the dominating wood machining processes, which are applied to fabricate common wood products. Students will be introduced to the economic relevance of the renewable resource wood and are trained in its technological properties. The students will learn to identify the relationships between wood species and their properties as well as the suitable wood machining processes to fabricate targeted wood products. Finally, the digital transformation process, which will affect all sectors of the wood industry with impact on the entire value chain and business models will be covered. It will be illustrated how production processes will become more flexible, efficient and less resource demanding.

Content
The general introduction shows the economic relevance of the resource wood in a global, European and Swiss context and reflects aspects of sustainability in wood production and certification. In terms of bulk wood products a specific focus is laid on sawn timber production and drying processes. With regard to wood veneer production, steaming, veneer cutting and assembly to veneer lumber products are presented. Further the common technologies for the production of particle boards and fibre boards as well as paper will be discussed. In the following, the topics are related to wood gluing and wood protection as well as potentials and limitations in the application of wood and wood-based products. In a further part, the lecture deals with the most important digital technologies, e.g. Internet of Things, artificial intelligence and their impact on the wood industry on the basis of illustrative examples. At the end of the lecture an excursion to a Swiss wood manufacturer is planned, in order to facilitate practical experience.

废水 Minor in Soil-Plant Relations and Land Use
This minor will only be offered in the academic year 21/22. As of the academic year 22/23, the minor can no longer be chosen. The course units offered in the minor can still be taken as electives.

Number Title
103-0317-00L Introduction to Spatial Development and Transformation
W 3 credits 2G M. Nollert, D. Kaufmann

Abstract
Only for master students, otherwise a special permission by the lecturer is required.

Objective
Spatial development deals with the development, formation and arrangement of our environment. In order to be able to mediate between the different demands, interests and projects of multiple actors, a forward-looking, action-oriented and robust planning is necessary. It is committed - in the sense of a sustainable spatial development - to the economical handling of resources, in particular of the non-replicable resource soil.

Content
The lecture introduces necessary basic knowledge and is based on the following main topics:
- Planning approaches and The (political) steering of spatial development
- Interplay of formal and informal processes and processes across different scales of spatial development
- Methods of action-oriented planning in situations of insecurity
- Integrated space and infrastructure development
- Different types of participation in spatial development

By taking up the lecture, the students are able to recognize cross-scale, complex tasks of spatial development and transformation and to use their theoretical, methodical and professional knowledge to clarify them.

Lecture notes
Further information and the documents for the lecture can be found on the homepage of IRL/STL.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies
assessed
assessed

Domain B - Method-specific Competencies
Analytical Competencies
Decision-making
Problem-solving
assessed
assessed

Domain C - Social Competencies
Cooperation and Teamwork
assessed

Domain D - Personal Competencies
Creative Thinking
Critical Thinking
Self-direction and Self-management
assessed
assessed
not assessed

751-3405-00L Chemical Nature of Nutrients and their Availability to Plants: The Case of Phosphorus
W 4 credits 4G E. Frossard, L. P. Schönholzer, M. Wiggerhauser
Soil Science Seminar
Will be discussed in class.
J. Six

24.09: Introduction.
Soil-Plant Water Relations
This course focuses on the interactions between ecology, biogeochemistry and management of agro- and forest ecosystems, thus, coupled human-environmental systems. Students learn how human impacts on ecosystems via management or global change are mainly driven by effects on biogeochemical cycles and thus ecosystem functioning, but also about feedback mechanisms of terrestrial ecosystems.

Objective
At the end of this course, participants will obtain a mechanistic understanding of why and how the speciation of phosphorus in fertilizer can affect its release to the soil solution and subsequent uptake by plants. Students will be able to use this information for the development of fertilization schemes that maximize the nutrient uptake and fertilizer efficiency of crops or pastures. During the course, participants will become familiar with the use of radioisotopes and nuclear magnetic resonance as approaches to measure nutrient availability and forms, respectively and they will know the limits of these techniques. Students will also have the opportunity to improve their laboratory and communication skills.

Lecture notes
Documents will be distributed during the lecture.

Literature
Documents will be distributed during the lecture.

Prerequisites / notice
The lecture will take place at the ETH experimental station in Eschikon Lindau. See the location of the station at: http://www.plantnutrition.ethz.ch/the-group/how-to-find-us.html

W. Eugster, V. Klaus

Tropical Cropping Systems, Soils and Livelihoods
This course has been restructured due to Covid-19 restrictions, part I (2 CP) takes place in Autumn 2021, part II (3 CP) in Spring 2022, with an excursion/fieldwork. For more information, please contact the lecturer: kenza@benabderrazik@usys.ethz.ch

Abstract
This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, Resilience to Soil physics.
Objective
Part 1
(1) Overview of the major land use systems in Tropical agroecosystems in several contexts in Africa
(2) Interdisciplinary analysis of agricultural production systems
(3) Knowledge on methods to assess Food and energy security in tropical agroecosystems

Part 2
(4) Hands-on training on the use of field methods, diagnostic tools and survey methods.
(5) Gain practical knowledge on how to assess Food and Energy Security
(6) Collaboration in international students and stakeholders

Content
Part 1 (Fall semester 2021)
This course guides students in analyzing and comprehending tropical agroecosystems. Students gain theoretical knowledge of field methods, diagnostic tools for tropical soils and agroecosystems. Various experts will present their projects and perspectives on various subjects from Food security, resilience to soil physics or agricultural economics. Students will engage in readings, discussions and exercises on the specificities of tropical agriculture.

Part 2 (Spring 2022)
On the second module, students gain practical knowledge on field - An integral part of the course is the two-week field project in a Tropical region, meeting several stakeholders of the agricultural and food systems and conducting various assessments related to Food and Energy Security.

Prerequisites / notice
Students can only join Part 2 if Part 1 was taken and validated first.
A selection of 20 students for the Part 2 will be done on the basis of several elements. We would require the students enrolled to the class to send a short cover letter (1-page max.) by September 28th 2021, justifying your motivation to enroll to this class.

Taught competencies
Domain A - Subject-specific Competencies
Concepts and Theories
Techniques and Technologies

Domain C - Social Competencies
Communication
Cooperation and Teamwork
Self-presentation and Social Influence

Domain D - Personal Competencies
Adaptability and Flexibility
Critical Thinking
Self-awareness and Self-reflection
Self-direction and Self-management

Minor in Agricultural Plant Production and Environment

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1343-00L</td>
<td>Soil-Plant Water Relations</td>
<td>W</td>
<td>3</td>
<td>2V</td>
<td>A. Carminati</td>
</tr>
</tbody>
</table>

Abstract
Water limitation is a primary constraint on plant growth and terrestrial fluxes worldwide. In this course, the principles of water flow in soil and plants are discussed, with particular attention on the effect of drought on root uptake, transpiration and plant growth. Strategies of plants to tolerate drought are discussed.

Objective
The students are able to: explain and compare systematically the drivers of water stress to plants; to solve the equations of flow in soil and plants and to calculate plant water status for varying pedoclimatic conditions and plant traits; to critically review and present one research question in soil-plant water relations; to openly debate on the current trends in soil and plant water research.

Content
24.09: Introduction.
01.10: Soil water relations; Principles of soil water retention and soil water flow; Soil hydraulic properties.
08.10: Root water uptake; soil hydraulic constraints on transpiration
15.10: Rhizosphere processes and properties; root-soil contact; root hairs; mycorrhiza; rhizodeposition.
22.10: Water flow in roots and xylem; root anatomy, architecture and plasticity; cavitation.
29.10: Transpiration; Vapor Pressure Deficit; Photosynthesis; Stomatal regulation.
05.11: Soil-plant-atmospheric continuum; Below- and above-ground feedbacks; Soil and atmospheric drivers of transpiration losses.
12.11: Modelling Soil-Plant Water Relations (Concept)
19.11: Modelling Soil-Plant Water Relations (Implementation)
26.11: Plant response to drought and consequences for agriculture and forests. Open questions and introduction to seminar topics.
03.12: Group work in the class
10.12: Seminar (presentation of papers)
17.12: Seminar (presentation of papers)
24.12: Seminar (presentation of papers)

Literature
Lecture notes; selection of articles

Prerequisites / notice
Vadose Zone Hydrology/Environmental Soil Physics (recommended but not required)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-3700-00L</td>
<td>Plant Ecophysiology</td>
<td>W</td>
<td>2</td>
<td>2V</td>
<td>M. Gharun, M. Lehmann, A. Walter</td>
</tr>
</tbody>
</table>

Abstract
The general theme of this course is the effect of environmental factors (such as light, temperature, relative humidity, CO2 concentrations, etc.) on plant physiology: water uptake and transport, transpiration, CO2 gas exchange of plants (photosynthesis, respiration), growth and C allocation, yield and production, stress physiology. Lab and field measurements are included.

Objective
The students will understand the impact of environmental factors on plant physiology and will learn the theoretical basis and terminology of plant ecophysiology that is necessary to analyze yield potentials in agriculture. The students will learn about classical and latest studies in plant ecophysiology and will have hands-on experiences with equipment used in plant ecophysiology.

Content
This Kurs basiert auf Grundlagen der Pflanzenbestimmung und der Pflanzenphysiologie. Er ist Basis für die Veranstaltungen Pflanzenbau, Teil Futterbau und Graslandsysteme.

Literature

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>751-4003-01L</td>
<td>Current Topics in Grassland Sciences (HS)</td>
<td>W</td>
<td>2</td>
<td>2S</td>
<td>A. K. Gilgen</td>
</tr>
</tbody>
</table>

Abstract
Research results in agro- and forest ecosystem sciences will be presented by experienced researchers as well as Ph.D. and graduate students. Citation classics as well as recent research results will be discussed. Topics will range from plant ecophysiology, biodiversity and biogeochemistry to management aspects in agro- and forest ecosystems.
Analytical Competencies

Critical Thinking

Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.

Weed Science

Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.

Weed Science

Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.

Weed Science

Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.

Weed Science

Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.

Weed Science

Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.

Weed Science

Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies.
Content The course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importance and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.

751-0423-00L Risk Analysis and Risk Management in Agriculture W 3 credits 2G R. Finger

Abstract Agricultural production is exposed to various risks and risk management is indispensable. This course introduces modern concepts on farmers' decision making under risk and risk management. We present innovative insights, empirical example from European agriculture.

Objective - to develop a better understanding of decision making under uncertainty and risk;
- gain hands-on experience in risk analysis and management using R
- to gain experience in different approaches to analyze risky decisions;
- to develop an understanding for different sources of risk in agricultural production;
- to understand the crucial role of subjective perceptions and preferences for risk management decisions;
- to get an overview on risk management in the agricultural sector, with a particular focus on insurance solutions

Content - Quantification and measurement of risk
- Risk preferences, Expected Utility Theory, Cumulative Prospect Theory
- Production and input use decisions under risk
- Portfolio Theory and Farm Diversification
- Forwards, Futures, Crop Insurance
- Weather Index Insurance and Satellite Imagery
- Empirical Applications using R

Lecture notes Handsouts will be distributed in the lecture and available on the moodle.

Prerequisites / notice knowledge of basic concepts of probability theory and microeconomics

751-0903-00L Microeconomics of the Agriculture and Food Sector W 3 credits 2V S. Wimmer

Abstract In this Vorlesung sollen Mikroökonomische Zusammenhänge am Fallbeispiel des Agrar- und Ernährungssektors vermittelt werden. Ziel ist das Verständnis theoretischer mikroökonomischer Methoden und deren Anwendbarkeit auf den Ernährungssektor

Objective Zunächst sollen ökonomische Charakteristika des Lebensmittelsektors herausgearbeitet und gegenüber anderen Industriesektoren differenziert werden. Daraufhin sollen theoretische mikroökonomische Modelle und Indikatoren erlernet werden. Insbesondere soll deren Anwendung auf reale Fälle der Schweizer und EU Lebensmittelindustrie vermittelt werden.

Content - DER EU Lebensmittelsektor
- Preiselastizitäten von Angebot und Nachfrage im Ernährungssektor (Marktmacht, Lancaster Modell)
- Gewinnmaximierung
- Wettbewerbsangebot
- Monopol/ Monopolistischer Wettbewerb/ Monopson
- Oligopol (Stackelberg, Cournot, Bertrand)
- Preisbildung/ Preisdiskriminierung
- Kartelle
- Dominante Firma
- Pindyck und Rubinfeld, Mikroökonomie, 7. Aufl., Pearson Studyum.

Prerequisites / notice Empfohlene Vorkenntnisse:
- Grundkenntnisse der Ökonomie/Agrarökonomie
- Vorlesung Einführung in die Mikroökonomie

751-1311-00L Introduction to Agricultural Management W 2 credits 2V R. Finger

Abstract Vermittlung von betriebswirtschaftlichen Grundlagenwissen und Analyse- und Planungsinstrumenten mit Anwendung auf Unternehmenswirtschaft

Objective Teilnehmer des Kurses sollen am Ende der Vorlesung i) grundlegende Unternehmensentscheide strukturieren und analysieren können, ii) verschiedene Analyse- und Planungsinstrumente auf Fragestellungen der Produktionsplanung, Investition und Finanzierung an Beispielen anwenden zu können, iii) verschiedene Werkzeuge zur unternehmerischen Entscheidungsunterstützung anwenden können und iv) die Spezifika von Unternehmen in der Agrar- und Ernährungswirtschaft kennen.

Content Die Vorlesung geht auf folgende Inhalte, mit spezifischen Anwendungen im Agrar- und Ernährungssektor ein:
- Grundlagen und Ziele unternehmerischen Entscheidens
- Kosten und Leistungsrechnung
- Produktionstheorie
- Produktionsprogrammplanung
- Investitionsplanung und Finanzierung
- Entscheidungen unter Unsicherheit und Risikomanagement

Lecture notes Vorlesungsunterlagen werden im Laufe des Semesters zur Verfügung gestellt

751-1573-00L Dynamic Simulation in Agricultural and Regional Economics W 2 credits 2V B. Kopainsky

Abstract In this class, students learn the basics of system dynamics and its application to agricultural and regional economic questions. In the second half of the class, students develop their own simulation model, with which they evaluate potential interventions for improving the economic as well as the ecological sustainability of food systems.
The course has four major learning objectives: 1) Students know the conceptual background of evaluations and can relate concepts in a policy relevance. They learn to apply the principles of scientific based evaluations of agricultural policies. 2) They know the basics of how to design and implement a policy evaluation study. 3) Students can transfer their methodological knowledge from other agricultural economics courses to the context of agricultural policy evaluations. 4) They can critically assess the science-policy interface of policy evaluations.

Objective: Students should be able to describe the dynamics of hierarchies, markets and cooperation in an agricultural context.

Content:
- Introduction to Sociology
- Introduction to Socioeconomics
- Agricultural Administration: Path dependencies and efficiency issues
- Power in the Chain
- The farming family
- Occupational Choices
- Consumption Choices
- locational Choices
- Common Resource Management in Alpine Farming
- Agricultural Cooperatives
- Societal perceptions of agriculture
- Perceptions of farming from within
- Varieties of agricultural systems and policies

Literature: see script

Prerequisites / notice: Basic economic knowledge is expected.

751-2903-00L

Evaluation of Agricultural Policies

Abstract: In this course, students get an overview of agricultural policy evaluations and their societal and political relevance. They learn to understand and apply the principles of scientific based evaluations of agricultural policies.

Objective: The course has four major learning objectives: 1) Students know the conceptual background of evaluations and can relate concepts in agricultural economics to the evaluation of policies. 2) They know the basics of how to design and implement a policy evaluation study. 3) Students can transfer their methodological knowledge from other agricultural economics courses to the context of agricultural policy evaluations (econometrics, modelling etc.). They make hands-on experiences of methodological challenges. 4) They can critically assess the science-policy interface of policy evaluations.

Content: The course consists of two blocks: First, students will learn the basics of how to design, implement and interpret agricultural policy evaluations. In this block, the conceptual embedding, the design and methodological tools as well as case studies are presented. Secondly, the students make hands-on experience using econometric and modelling tools in the context of agricultural policy evaluations. They apply their theoretical and empirical knowledge to Swiss case studies.

Lecture notes: Handouts and reading assignments

Taught competencies:
- Domain A - Subject-specific Competencies: Concepts and Theories assessed, Techniques and Technologies assessed
- Domain B - Method-specific Competencies: Analytical Competencies assessed
- Domain C - Social Competencies: Cooperation and Teamwork assessed
- Domain D - Personal Competencies: Critical Thinking assessed

Electives

Number	**Title**	**Type**	**ECTS**	**Hours**	**Lecturers**
701-0019-00L | **Readings in Environmental Thinking** | W | 3 credits | 2S | J. Ghazoul

Abstract: This course introduces students to foundational texts that led to the emergence of the environment as a subject of scientific importance, and shaped its relevance to society. Above all, the course seeks to give confidence and raise enthusiasm among students to read more widely around the broad subject of environmental sciences and management both during the course and beyond.

Objective: The course will provide students with opportunities to read, discuss, evaluate and interpret key texts that have shaped the environmental movement and, more specifically, the environmental sciences. Students will gain familiarity with the foundational texts, but also understand the historical context within which their academic and future professional work is based. More directly, the course will encourage debate and discussion of each text that is studied, from both the original context as well as the modern context. In so doing students will be forced to consider and justify the current societal relevance of their work.

Content: The course will be run as a book reading club. The first session will provide a short introduction as to how to explore a particular text (that is not a scientific paper) to identify the key points for discussion. Thereafter, in each week a text (typically a chapter from a book or a paper) considered to be seminal or foundational will be assigned by a course lecturer. The lecturer will introduce the selected text with a brief background of the historical and cultural context in which it was written, with some additional biographical information about the author. He/she will also briefly explain the justification for selecting the particular text. The students will read the text, with two to four students (depending on class size) being assigned to present it at the next session. Presentation of the text requires the students to prepare by, for example: identifying the key points made within the text, identifying issues of particular personal interest and resonance considering the impact of the text at the time of publication, and its importance now evaluating the text from the perspective of our current societal and environmental position

Such preparation would be supported by a mid-week tutorial discussion (about 1 hour) with the assigning lecturer. These students will then present the text (for about 15 minutes) to the rest of the class during the scheduled class session, with the lecturer facilitating the subsequent class discussion (about 45 minutes). Towards the end of the session the presenting students will summarise the emerging points (5 minutes) and the lecturer will finish with a brief discussion of how valuable and interesting the text was (10 minutes). In the remaining 15 minutes the next text will be presented by the assigning lecturer for the following week.

Data: 11.11.2021 12:40
Autumn Semester 2021
Page 2133 of 2152
The specific texts selected for discussion will vary, but examples include:

Leopold (1949) A Sand County Almanach
Carson (1962) Silent Spring
Jared Diamond (2005) Collapse

Discussions might also encompass films or other forms of media and communication about nature.

Course Catalogue of ETH Zurich

Professional Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1001-00L</td>
<td>Professional Internship</td>
<td>O</td>
<td>30</td>
<td></td>
<td>A. Funk</td>
</tr>
</tbody>
</table>

Only for Environmental Sciences MSc.
Completion and enrollment for the course «Professional Internship» is only possible after admission requirements and all additional requirements are fulfilled.

Registration and recognition of professional internship via https://www.lehrbetrieb.ethz.ch/praxis
No registration in myStudies required. For more
Master's Thesis

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-1002-00L</td>
<td>Master's Thesis</td>
<td>O</td>
<td>30 credits</td>
<td>64D</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

Only students who fulfill the following criteria are allowed to begin with their Master's thesis:

a) The signed request for the Bachelor's Degree Certificate has been submitted or processed.

b) At least 32 CP of coursework related to the major have been acquired.

c) All additional requirements (as stated in the admissions decision), including any assessment repetitions, are fulfilled.

Additional information is posted on the following webpage: https://www.usys.ethz.ch/en/studies/environmental-sciences/master/internship.html

Course Units for Additional Admission Requirements

The courses below are only available for Master students with additional admission requirements.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
</table>

Enrollment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Students understand basic microeconomics and macroeconomics problems and theories. They are able to argue along economic principles and to judge policy measures.

Students will be asked to apply these concepts to issues in their own field of study and to current issues in society.

Further information and support at www.usys.ethz.ch/en/studies/environmental-sciences/master/internship.html

Further information: www.usys.ethz.ch/internship-envsc
Taught competencies

Domain A - Subject-specific Competencies
Concepts and Theories assessed

Domain B - Method-specific Competencies
Analytical Competencies assessed
Decision-making assessed
Problem-solving assessed

Domain D - Personal Competencies
Critical Thinking assessed
Self-direction and Self-management assessed

406-0062-AAL Physics I
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction to the concepts and tools in physics: mechanics of point-like and rigid bodies, elasticity theory, elements of hydrostatics and hydrodynamics, periodic motion and mechanical waves.

Objective
Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve the latter.
The student should acquire an overview over the basic concepts in mechanics.

Content
Book:

Chapters:
1, 2, 3, 4, 5, 6 (without: 6-5, 6-6, 6-8), 7, 8 (without 8-9), 9, 10 (without 10-10), 11 (without 11-7), 13 (without 13-13, 13-14), 14 (without 14-6), 15 (without 15-3, 15-5)

Literature
see "Content"

Friedhelm Kuypers
Physik für Ingenieure und Naturwissenschaftler
Band 1: Mechanik und Thermodynamik
Wiley-VCH Verlag, 2002, 544 S, ca.: Fr. 68.-

406-0063-AAL Physics II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Introduction to the "way of thinking" and the methodology in Physics. The Chapters treated are Magnetism, Refraction and Diffraction of Waves, Elements of Quantum Mechanics with applications to Spectroscopy, Thermodynamics, Phase Transitions, Transport Phenomena.

Objective
Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve the latter.
The student should acquire an overview over the basic concepts used in the theory of heat and electricity.

Content
Book:

Chapters:

Literature
see "Content"

Friedhelm Kuypers
Physik für Ingenieure und Naturwissenschaftler
Band 2 Elektrizität, Optik, Wellen
Verlag Wiley-VCH, 2003, Fr. 77.-

406-0064-AAL Physics I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Concepts and tools in physics: mechanics of point-like and rigid bodies, elasticity theory, elements of hydrostatics and hydrodynamics, periodic motion and mechanical waves.
The "way of thinking" and the methodology in Physics. Magnetism, Refraction and Diffraction of Waves, Elements of Quantum Mechanics with applications to Spectroscopy, Thermodynamics, Phase Transitions, Transport Phenomena.

Objective
Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve the latter.
The student should acquire an overview over the basic concepts used in mechanics, in the theory of heat and electricity.

Content
Book:

Chapters:
1, 2, 3, 4, 5, 6 (without: 6-5, 6-6, 6-8), 7, 8 (without 8-9), 9, 10 (without 10-10), 11 (without 11-7), 13 (without 13-13, 13-14), 14 (without 14-6), 15 (without 15-3, 15-5), 17 (without 17-5, 17-10), 18 (without 18-5, 18-6, 18-7), 19, 20 (without 20-7, 20-8, 20-9, 20-10, 20-11), 21 (without 21-12), 23, 25 (without 25-9, 25-10), 26 (without 26-4, 26-5, 26-7), 27, 28 (without 28-4, 28-5, 28-8, 28-9, 28-10), 29 (without 29-5, 29-8), 32 (without 32-8), 33 (without 33-4, 33-5, 33-9, 33-10), 34 (without 34-4, 34-6, 34-7), 35 (without 35-2, 35-3, 35-9, 35-11, 35-12, 35-13),
Continuation of the topics of Mathematics I. Main focus: multivariable calculus and partial differential equations.

Mathematics I

- Linear Algebra and Complex Numbers:
 - systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

- 2. Single-Variable Calculus:
 - review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

- 3. Ordinary Differential Equations:
 - separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.

Literature

- Thomas, G. B.: Thomas’ Calculus, Parts 2 (Pearson Addison-Wesley).

Prerequisites / notice

Prerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

Content

- Multivariable Differential Calculus:
 - functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence.

- Multivariable Integral Calculus:
 - multiple integrals, line and surface integrals, work and flux, Green, Gauss and Stokes theorems, applications.

- Partial Differential Equations:
 - separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform.

Mathematics II

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Continuation of the topics of Mathematics I. Main focus: multivariable calculus and partial differential equations.

Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.

Prerequisites / notice

None.

Content

- Multivariable Differential Calculus:
 - functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence.

- Multivariable Integral Calculus:
 - multiple integrals, line and surface integrals, work and flux, Green, Gauss and Stokes theorems, applications.

- Partial Differential Equations:
 - separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform.

Mathematics I & II

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Content

1. Linear Algebra and Complex Numbers:
systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

2. Single-Variable Calculus:
review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

3. Ordinary Differential Equations:
separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.

4. Multivariable Differential Calculus:
functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence.

5. Multivariable Integral Calculus:
multiple integrals, line and surface integrals, work and flow, Green, Gauss and Stokes theorems, applications.

6. Partial Differential Equations:
separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform.

Literature
- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).
- Thomas, G. B.: Thomas' Calculus, Parts 2 (Pearson Addison-Wesley).

Prerequisites / notice
Prerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

Assistance:
Tuesdays and Wednesdays 17-19h, in Room HG E 41.

406-0603-AAL

Stochastics (Probability and Statistics)
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enroll for this course unit.

Abstract
Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.

Objective
The objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".

Content
From "Statistics for research" (online)
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's t Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
Ch 1: Basics
Ch 2: The R Environment
Ch 3: Probability and distributions
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation

Literature
- "Statistics for research" by S. Dowdy et. al. (3rd edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI: 10.1002/0471477435
From within the ETH, this book is freely available online under: http://onlinelibrary.wiley.com/book/10.1002/0471477435

From within the ETH, this book is freely available online under: http://www.springerlink.com/content/m17578/

529-2001-AAL

Chemistry I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enroll for this course unit.

Abstract
General Chemistry I and II: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium, kinetics, acids and bases, electrochemistry

Objective
Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.
Content

1. Stoichiometry
2. Atoms and Elements (Quantenmechanical Model of the Atom)
3. Chemical Bonding
4. Thermodynamics
5. Chemical Kinetics
6. Chemical Equilibrium (Acids and Bases, Solubility Equilibria)
7. Electrochemistry

Lecture notes
Nivaldo J. Tro
Chemistry - A molecular Approach (Pearson), Chapter 1-18

Literature
Housecroft and Constable, CHEMISTRY
Oxtoby, Gillis, Nachtrieb, MODERN CHEMISTRY

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.
Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Chemistry II: Redox reactions, chemistry of the elements, introduction to organic chemistry

Objective
Erweitern der allgemeinen Grundlagen und Erarbeiten einer Basis, um Prozesse in komplexeren Umweltsystemen (Wasser / Luft / Boden) in ihrem zeitlichen und quantitativen Ablauf verstehen und beurteilen zu können.

Content

1. Redoxreactions

2. Inorganic Chemistry
Rules for nomenclature of inorganic compounds. Systematic description of the groups of elements in the periodical system and the most important compounds of these elements. Formation of compounds as a consequence of the electronic structure of the elements.

3. Introduction to organic chemistry
Description of the most important classes of compounds and of the functional groups. Principal reactivity of these functional groups.

Stereochemistry.
Rection mechanisms: SN1- and SN2-reactions, electrophilic aromatic substitutions, eliminations (E1 and E2), addition reactions (C=C and C=O double bonds). Chemistry of carbony and carboxyl groups.

Rules for nomenclature of inorganic compounds. Systematic description of the groups of elements in the periodical system and the most important compounds of these elements. Formation of compounds as a consequence of the electronic structure of the elements.

3. Introduction to organic chemistry
Description of the most important classes of compounds and of the functional groups. Principal reactivity of these functional groups.

Stereochemistry.
Rection mechanisms: SN1- and SN2-reactions, electrophilic aromatic substitutions, eliminations (E1 and E2), addition reactions (C=C and C=O double bonds). Chemistry of carbony and carboxyl groups.

Lecture notes

Taught competencies

<table>
<thead>
<tr>
<th>Domain A - Subject-specific Competencies</th>
<th>Domain B - Method-specific Competencies</th>
<th>Domain C - Social Competencies</th>
<th>Domain D - Personal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Theories</td>
<td>Analytical Competencies</td>
<td>Communication</td>
<td>Adaptability and Flexibility</td>
</tr>
<tr>
<td>Techniques and Technologies</td>
<td>Decision-making</td>
<td>Cooperation and Teamwork</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td></td>
<td>Media and Digital Technologies</td>
<td>Customer Orientation</td>
<td>Critical Thinking</td>
</tr>
<tr>
<td></td>
<td>Problem-solving</td>
<td>Leadership and Responsibility</td>
<td>Integrity and Work Ethics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-presentation and Social Influence</td>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
<td>Sensitivity to Diversity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Management</td>
<td>Self-awareness and Self-reflection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sensitivity to Diversity</td>
</tr>
</tbody>
</table>

551-0001-AAL General Biology I

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny.

Objective

The understanding of basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.

Content

- Week 1-7 by Alex Widmer, Chapters 12-25
 - 12 Cell biology Mitosis
 - 13 Genetics Sexual life cycles and meiosis
 - 14 Genetics Mendelian genetics
 - 15 Genetics Linkage and chromosomes
 - 20 Genetics Evolution of genomes
 - 21 Evolution How evolution works
 - 22 Evolution Phylogenetic reconstructions
 - 23 Evolution Microevolution
 - 24 Evolution Species and speciation
 - 25 Evolution Macroevolution
- Week 8-14 by Oliver Martin, Chapters 26-34
 - 26 Diversity of Life Introduction to viruses
 - 27 Diversity of Life Prokaryotes
 - 28 Diversity of Life Genus & evolution of eukaryotes
 - 29 Diversity of Life Nonvascular&seedless vascular plants
 - 30 Diversity of Life Seed plants
 - 31 Diversity of Life Introduction to fungi
 - 32 Diversity of Life Overview of animal diversity
 - 33 Diversity of Life Introduction to invertebrates
 - 34 Diversity of Life Origin & evolution of vertebrates

Lecture notes

No script

Literature

Prerequisites / notice

This is a virtual self-study lecture for non-german speakers of the “Allgemeine Biology I (551-0001-00L) lecture. The exam will be written jointly with the participants of this lecture.

Example exam questions will be discussed during the lectures, and old exam questions are kept by the various student organisations. If necessary, please contact Prof. Uwe Sauer (sauer@ethz.ch) for details regarding the exam.

551-0003-AAL General Biology I+II

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract

General Biology I: Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny.

General Biology II: Molecular biology approach to teach the basic principles of biochemistry, cell biology, genetics, evolutionary biology and form and function of vascular plants.

Objective

General Biology I: The understanding of basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.

General Biology II: The understanding basic concepts of biology: the hierarchy of the structural levels of biological organisation, with particular emphasis on the cell and its molecular functions, the fundamentals of metabolism and molecular genetics, as well as form and function of vascular plants.
General Biology I: General Biology I focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34.

Week 1-7 by Alex Widmer, Chapters 12-25
12 Cell biology Mitosis
13 Genetics Sexual life cycles and meiosis
14 Genetics Mendelian genetics
15 Genetics Linkage and chromosomes
20 Genetics Evolution of genomes
21 Evolution How evolution works
22 Evolution Phylogenetic reconstructions
23 Evolution Microevolution
24 Evolution Species and speciation
25 Evolution Macroevolution

Week 8-14 by Oliver Martin, Chapters 26-34
26 Diversity of Life Introduction to viruses
27 Diversity of Life Prokaryotes
28 Diversity of Life Origin & evolution of eukaryotes
29 Diversity of Life Nonvascular&seedless vascular plants
30 Diversity of Life Seed plants
31 Diversity of Life Introduction to fungi
32 Diversity of Life Overview of animal diversity
33 Diversity of Life Introduction to invertebrates
34 Diversity of Life Origin & evolution of vertebrates

General Biology II: The structure and function of biomacromolecules; basics of metabolism; tour of the cell; membrane structure and function; basic energetics of cellular processes; respiration, photosynthesis; cell cycle, from gene to protein; structure and growth of vascular plants, resource acquisition and transport, soil and plant nutrition.

Specifically the following Campbell chapters will be covered:
3 Biochemistry Chemistry of water
4 Biochemistry Carbon: the basis of molecular diversity
5 Biochemistry Biological macromolecules and lipids
7 Cell biology Cell structure and function
8 Cell biology Cell membranes
10 Cell biology Respiration: introduction to metabolism
10 Cell biology Cell respiration
11 Cell biology Photosynthetic processes
16 Genetics Nucleic acids and inheritance
17 Genetics Expression of genes
18 Genetics Control of gene expression
19 Genetics DNA Technology
35 Plant structure & function Plant Structure and Growth
36 Plant structure & function Transport in vascular plants
37 Plant structure & function Plant nutrition
38 Plant structure & function Reproduction of flowering plants
39 Plant structure & function Plants signal and behavior

Lecture notes No script
Prerequisites / notice Basic general and organic chemistry

This is a virtual self-study lecture for non-German speakers of the "Allgemeine Biology I (551-0001-00L) and "Allgemeine Biology II (551-0002-00L) lectures. The exam will be written jointly with the participants of this lecture.

701-0023-AAL

<table>
<thead>
<tr>
<th>Atmosphere</th>
<th>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</th>
<th>3 credits</th>
<th>E. M. Fischer, T. Peter</th>
</tr>
</thead>
</table>

Abstract Basic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.

Objective Understanding of basic physical and chemical processes in the atmosphere. Understanding of mechanisms of and interactions between weather - climate, atmosphere - ocean - continents, troposphere - stratosphere. Understanding of environmentally relevant structures and processes on vastly differing scales. Basis for the modelling of complex interrelations in the atmosphere.

Content Basic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.

Lecture notes Written information will be supplied.

701-0071-AAL

<table>
<thead>
<tr>
<th>Mathematics III: Systems Analysis</th>
<th>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.</th>
<th>4 credits</th>
<th>R. Knutti, H. Wernli</th>
</tr>
</thead>
</table>

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.

Objective Learning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.
Course Description

Course Aim

The course aims to describe the relevant processes that control the terrestrial water cycle. Energy and mass exchange, mixing and transport processes are described and the coupling of the hydrosphere with the atmosphere and the solid Earth are discussed.

Objectives

Upon completing the course, students will be able to:

1. Understand the factors determining the outcome of species interactions in communities, and how this information informs management.
2. Apply theoretical knowledge on species interactions to predict the potential outcomes of novel species introductions.
3. Understand the role of spatial structure in mediating population dynamics and persistence, species interactions, and patterns of species diversity.
4. Use population and community models to predict the stability of interactions between predators and prey and between different competitors.
5. Understand the conceptual basis of predictions concerning how ecological communities will respond to climate change.
6. Readings from a text book will focus on understanding central processes in community ecology. Topics will include demographic and spatial structure, consumer resource interactions, food webs, competition, invasion, and the maintenance of species diversity. Each of these more conceptual topics will be discussed in concert with their applications to the conservation and management of species and communities in a changing world.

Content

- **Topics of the course:**
 - Physical properties of water (i.e. density and equation of state)
 - Global water resources
 - Exchange at boundaries
 - Energy (thermal & kinetic), gas exchange
 - Mixing and transport processes in open waters
 - Vertical stratification, large scale transport
 - Turbulence and mixing
 - Mixing and exchange processes in rivers
 - Groundwater and its dynamics
 - Ground water as part of the terrestrial water cycle
 - Ground water hydraulics, Darcy’s law
 - Aquifers and their properties
 - Hydrochemistry and tracer
 - Ground water use
 - Case studies

- **Lecture notes:**

In addition to the self-learning literature handouts are distributed.

Literature

Textbooks for self-studying.
Surface water.

Chapter 4: Imboden, D.M., and Wüst, A. 'Mixing Mechanisms in Lakes'

'Environmental Organic Chemistry', ed: Schwarzenbach, R., Imboden, D. M. and Gschwend, Ph., Willey, 2002:
Chapter 6.4: Air-Water Partitioning
Chapter 19.2: Bottleneck Boundaries

Ground water:
Chapters 1 - 6, 8, 10, 11.

Optional additional readers.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Semester</th>
<th>Prerequisites / notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>701-0473-AAL</td>
<td>Weather Systems</td>
<td>3</td>
<td>E</td>
<td>M. A. Sprenger, F. Scholder-Aemisegger</td>
</tr>
<tr>
<td></td>
<td>Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>The students learn about the dynamical features of the Earth's atmosphere. They interpret satellite imagery and learn about basic concepts in dynamical meteorology. The global circulation is briefly discussed, before introducing the Eulerian and the Lagrangian perspective, which are used to study air streams in extratropical cyclones and to investigate basic aspects in mountain meteorology.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>The students are able to:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- explain basic measurement and analysis techniques that are relevant in atmospheric dynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- to discuss the mathematical basics of atmospheric dynamics, based on selected atmospheric flow phenomena</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- to explain how mountains influence the atmospheric flow on different scales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- basic understanding of the role of moist adiabatic processes for weather systems and why stable water isotopes are useful in this context</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Lecture notes and slides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Atmospheric Science, An Introductory Survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>John M. Wallace and Peter V. Hobbs, Academic Press</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

701-0475-AAL	Atmospheric Physics	3	E	U. Lohmann
	Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.			
Abstract	This course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation, thermodynamics, aerosol physics, radiation as well as the impact of aerosols and clouds on climate and artificial weather modification.			
Objective	Students are able to:			
	- to explain the mechanisms of cloud and precipitation formation using knowledge of humidity processes and thermodynamics			
	- to explain how clouds and aerosol particles for climate and artificial weather modification.			
Content	Moist processes/thermodynamics; aerosol physics; cloud formation; precipitation processes, storms; importance of aerosols and clouds for climate and weather modification, clouds and precipitation formation.			
Lecture notes	Powerpoint slides and script will be made available			

701-0501-AAL	Pedosphere	3	E	R. Kretzschmar
	Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.			
Abstract	Introduction to the formation and properties of soils as a function of parent rock, landscape position, climate, and soil organisms. Complex relationships between soil forming processes, physical and chemical soil properties, soil biota, and ecological soil properties.			
Objective	Understanding of soils as integral parts of ecosystems, development and distribution of soils as a function of environmental factors, and processes leading to soil degradation.			
Content	Definition of the pedosphere, soil functions, rocks as parent materials, minerals and weathering, soil organisms, soil organic matter, physical soil properties and functions, chemical soil properties and functions, soil formation, principles of soil classification, global soil regions, soil fertility, land use and soil degradation.			
Prerequisites / notice	Prerequisites: Basic knowledge in chemistry, biology and geology.			

701-0721-AAL	Psychology	3	E	M. Siegrist
	Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.			
Abstract	This is an introductory course in psychology. This course will emphasize cognitive psychology and the psychological experiment.			
Objective: Knowledge of key concepts and exemplary theories of psychology and their relation to "daily" psychology. Comprehension of relation between theory and experiment in psychology.

Goals: Learning how psychologists are thinking, a side change from the ETH natural science perspective to psychological thinking.

Domains of psychology:
- Psychology fields
- Concept definitions of psychology
- Theories of psychology
- Methods of psychology
- Results of psychology

Capability:
Be able to define a psychological research question
Basics understanding of role of psychology

Comprehension:
Psychology as a science of experience and behavior of the human

Content
Einführung in die psychologische Forschung und Modellbildung unter besonderer Berücksichtigung der kognitiven Psychologie und des psychologischen Experiments. Themen sind u.a.: Wahrnehmung; Lernen und Entwicklung; Denken und Problemlösen; Kognitive Sozialpsychologie; Risiko und Entscheidung.

Literature
English book of Zimbardo (http://www.amazon.de/Psychology-Life-Discovering-Psych-Lab/dp/0205654770/ref=sr_1_2?s=books-intl-de&ie=UTF8&qid=1317208260&sr=1-2)

Prerequisites / notice
Determine with Prof. Dr. Michael Siegrist the chapters in "Zimbardo" which are compulsory reading
Read the two Psychology chapters (6 + 7) from the book of Prof. Roland W. Scholz

752-4001-AAL Microbiology

Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Abstract
Self-study course in microbiology.

Objective
Teaching of basic knowledge in microbiology.

Content
This is a self-study course for students with microbiology as an admission requirement. The goal of the course is that students acquire basics in microbiology, including bacterial cell biology, genetics, growth and physiology, metabolism, phylogeny and microbial diversity, and applications of microbiology.

Literature
This self-study course is based on the book 'Brock, Biology of Microorganisms'.

Environmental Sciences Master - Key for Type

<table>
<thead>
<tr>
<th>W+</th>
<th>W</th>
<th>E-</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
<td>Z</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
<td>Dr</td>
</tr>
<tr>
<td>E-</td>
<td>Recommended, not eligible for credits</td>
<td>O</td>
</tr>
</tbody>
</table>

Key for Hours

<table>
<thead>
<tr>
<th>V</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>lecture with exercise</td>
</tr>
<tr>
<td>U</td>
<td>exercise</td>
</tr>
<tr>
<td>S</td>
<td>seminar</td>
</tr>
<tr>
<td>K</td>
<td>colloquium</td>
</tr>
</tbody>
</table>

P	practical/laboratory course
A	independent project
D	diploma thesis
R	revision course / private study

ECTS
European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.
Process Engineering Master

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-0107-20L</td>
<td>High Performance Computing for Science and Engineering (HPCE) I</td>
<td>W</td>
<td>4</td>
<td>4G</td>
<td>P. Koumoutsakos, S. M. Martin</td>
</tr>
<tr>
<td>Abstract</td>
<td>This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>With manufacturing processes reaching its limits in terms of transistor density on today's computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the "think parallel" mind-set of developers is still lagging behind.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>1. Hardware and Architecture: Moore's Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn's taxonomy, Vector instructions (for Intel x86)</td>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl's Law, Strong and weak scaling analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture notes</td>
<td>Class notes, handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>• An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lecture notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites / notice</td>
<td>Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

151-0125-00L	Hydrodynamics and Cavitation	W	4	3G	C. Bourquard, L. Biasiori-Poulanges
Abstract	This course builds on the foundations of fluid dynamics to describe hydrodynamic flows and provides an introduction to cavitation.				
Objective	The main learning objectives of this course are:	1.			
	1. Identify and describe dominant effects in liquid fluid flows through physical modelling.				
	2. Identify hydrodynamic instabilities and discuss the stability region	2.			
	3. Describe fragmentation of liquids	3.			
	4. Explain tension, nucleation and phase-change in liquids.	4.			
	5. Describe hydrodynamic cavitation and its consequences in physical terms.	5.			
	6. Recognise experimental techniques and industrial and medical applications for cavitation.	6.			
Content	The course gives an overview on the following topics: hydrostatics, capillarity, hydrodynamic instabilities, fragmentation, Tension in liquids, phase change. Cavitation: single bubbles (nucleation, dynamics, collapse), cavitating flows (attached, cloud, vortex cavitation). Industrial applications and measurement techniques.				
Lecture notes	Class notes and handouts				
Literature	Literature				
Prerequisites / notice	Fluid dynamics I & II or equivalent				

151-0185-00L	Radiation Heat Transfer	W	4	2V+1U	A. Steinfeld, P. Pozivil
Abstract	Advanced course in radiation heat transfer				
Objective	Fundamentals of radiative heat transfer and its applications. Examples are combustion and solar thermal/thermochemical processes, and other applications in the field of energy conversion and material processing.	1.			
Literature	Literature				
Prerequisites / notice					

151-0209-00L	Renewable Energy Technologies	W	4	3G	A. Steinfeld, E. I. M. Casati
Abstract	Renewable energy technologies: solar PV, solar thermal, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects.				
Objective	Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization.	1.			
Lecture notes	Lecture Notes containing copies of the presented slides.				
Prerequisites / notice	Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT.				
Understanding acoustophoresis, the design of devices and potential applications

In this lecture the basics as well as practical aspects (from modelling to design and fabrication) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.

The course builds upon three parts:

I. Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II. Theoretical basis of statistical mechanics and kinetic equations.
III. Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
 - Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
 - Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
 - Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
 - Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
 - Lattice Boltzmann simulations of turbulent flows; numerical stability and accuracy.

5. Microflow:
 - Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
 - Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
 - Relativistic fluid dynamics; flows with phase transitions.

Lecture notes

Lecture notes on the theoretical parts of the course will be made available.

Selected original and review papers are provided for some of the lectures on advanced topics.

Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.

The course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.

151-0293-00L

Combustion and Reactive Processes in Energy and Materials Technology

The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials.

The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus "Energy, Flows & Processes" on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering.

No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed:

Teaching language, assignments and lecture slides in English

151-0509-00L

Microscale Acoustofluidics

In this lecture the basics as well as practical aspects (from modelling to design and fabrication) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices.

Understanding acoustophoresis, the design of devices and potential applications.

Data: 11.11.2021 12:40 Autumn Semester 2021 Page 2146 of 2152
The course objectives are best met primarily through the individual student projects which may involve experiments, simulations or critical not assessed.

S. E. Pratsinis
"Medical Technology Innovation - From Concept to..."

Particles are everywhere and nano is the new scale in science & engineering as micro was ~200 years ago. For highly motivated students, this exceptionally demanding class gives a flavor of nanotechnology with hands-on student projects on gas-phase particle synthesis & applications capitalizing on particle dynamics (diffusion, coagulation etc.), shape, size distribution and characterization.

This course aims to familiarize motivated M/BSc students with some of the basic phenomena of particles at the nanoscale, thereby illustrating the links between physics, chemistry, materials science through hands-on experience. Furthermore it aims to give an overview of the field with motivating lectures from industry and academia, including the development of technologies and processes based on particle technology with introduction to design methods of mechanical processes, scale-up laws and optimal use of materials and energy. Most importantly, this course aims to develop the creativity and sharpen the communication skills of motivated students through their individual projects, a PERFECT preparation for the M/BSc thesis (e.g. efficient & critical literature search, effective oral/written project presentations), the future profession itself and even life, in general, are always there!

The course objectives are best met primarily through the individual student projects which may involve experiments, simulations or critical & quantitative reviews of the literature. Projects are conducted individually under the close supervision of MSc, PhD or post-doctoral students. Therein, a 2-page proposal is submitted within the first two semester weeks addressing explicitly, at least, 10 well-selected research articles and thoughtful meetings with the project supervisor. The proposal address 3 basic questions: a) how important is the project; b) what has been done already in that field and c) what will be done by the student. Detailed feedback on each proposal is given by the supervisor, assistant and professor two weeks later. Towards the end of the semester, a 10-minute oral presentation is given by the student followed by 10 minutes Q&A. A 10-page final report is submitted by noon of the last day of the semester. The project supervisor will provide guidance throughout the course. Lectures include some of the following:

- Overview & Project Presentation
- Particle Size Distribution
- Particle Diffusion
- Coagulation
- Agglomeration & Coalescence
- Particle Growth by Condensation
- Control of particle size & structure during gas-phase synthesis
- Multi-scale design of aerosol synthesis of particles
- Particle Characterization
- Aerosol manufacture of nanoparticles
- Forces acting on Single Particles in a Flow Field
- Fixed and Fluidized Beds
- Separations of Solid-Liquid & Solid-Gas systems
- Emulsions/droplet formation/microfluidics
- Gas Sensors
- Coaching for proposal & report writing as well as oral presentations

FluidMechanik I, Thermodynamik I&II & "clean" 5th semester BSc student standing in D-MAVT (no block 1 or 2 obligations). Students attending this course are expected to allocate sufficient additional time within their weekly schedule to successfully conduct their project. As exceptional effort will be required! Having seen "Chasing Mavericks" (2012) by Apted & Henson, "Unbroken" (2014) by Angelina Jolie and, in particular, "The Salt of the Earth" (2014) by Wim Wenders might be helpful and even motivating. These movies show how methodic effort can bring superior and truly unexpected results (e.g. stay under water for 5 minutes to overcome the fear of riding huge waves or merciless Olympic athlete training that help survive 45 days on a raft in Pacific Ocean followed by 2 years in a Japanese POW camp during WWII).
Literature and Taught Competencies of the course 151-0911-00L: Introduction to Plasmonics

- **Concepts and Theories**
- **Techniques and Technologies**

Domain A - Subject-specific Competencies
- **Analytical Competencies**
- **Decision-making**
- **Problem-solving**
- **Project Management**

Domain B - Method-specific Competencies
- **Communication**
- **Cooperation and Teamwork**
- **Leadership and Responsibility**
- **Self-presentation and Social Influence**
- **Sensitivity to Diversity**
- **Negotiation**

Domain C - Social Competencies
- **Adaptability and Flexibility**
- **Creative Thinking**
- **Critical Thinking**
- **Integrity and Work Ethics**
- **Self-awareness and Self-reflection**
- **Self-direction and Self-management**

Domain D - Personal Competencies
- **Adaptability and Flexibility**
- **Creative Thinking**
- **Critical Thinking**
- **Integrity and Work Ethics**
- **Self-awareness and Self-reflection**
- **Self-direction and Self-management**

Literature

Prerequisites / Notice

Physics I, Physics II

151-0911-00L: Introduction to Plasmonics

Does not take place this semester.

Abstract

This course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.

Objective

Electromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.

Content

Fundamentals of Plasmonics
- Basic electromagnetic theory
- Optical properties of metals
- Surface plasmon polaritons on surfaces
- Surface plasmon polariton propagation
- Localized surface plasmons

Applications of Plasmonics
- Waveguides
- Extraordinary optical transmission
- Enhanced spectroscopy
- Sensing
- Metamaterials

Lecture notes

Class notes and handouts

Literature

Prerequisites / notice

Physics I, Physics II

151-0913-00L: Introduction to Photonics

Abstract

This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light.

Objective

Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds.
Content

I- BASICS OF WAVE THEORY
1) General concepts
2) Differential wave equation
3) Wavefront
4) Plane waves and Fourier decomposition of optical fields
5) Spherical waves and Huygens-Fresnel principle

II- ELECTROMAGNETIC WAVES
1) Maxwell equations
2) Wave equation for EM waves
3) Dielectric permittivity
4) Refractive index
5) Nonlinear optics
6) Polarisation and polarisation control

III- PROPAGATION OF LIGHT
1) Waves at an interface
2) The Fresnel equations
3) Total internal reflection
4) Evanescent waves
5) Dispersion diagram

IV- INTERFERENCES
1) General considerations
2) Temporal and spatial coherence
3) The Young double slit experiment
4) Diffraction gratings
5) The Michelson interferometer
6) Multi-wave interference
7) Antireflecting coating and interference filters
8) Optical holography

V- LIGHT MANIPULATION
1) Optical waveguides
2) Photonic crystals
3) Metamaterials and metasurfaces
4) Optical cavities

VI- INTRODUCTION TO OPTICAL MICROSCOPY
1) Basic concepts
2) Direct and Fourier imaging
3) Image formation
4) Fluorescence microscopy
5) Scattering-based microscopy
6) Digital holography
7) Computational imaging

VII- OPTICAL FORCES AND OPTICAL TWEETERS
1) History of optical forces
2) Theory of optical trapping
3) Atom cooling
4) Optomechanics
5) Plasmonic trapping
6) Applications of optical tweezers

Lecture notes
Class notes and handouts

Literature
Optics (Hecht) - Pearson

Prerequisites / notice
Physics I, Physics II

<table>
<thead>
<tr>
<th>151-0917-00L</th>
<th>Mass Transfer</th>
<th>W</th>
<th>4 credits</th>
<th>2V+2U</th>
<th>S. E. Pratsinis, V. Mavrantzas, C.-J. Shih</th>
</tr>
</thead>
</table>

Abstract
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Objective
This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.

Content
Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.

Literature

Prerequisites / notice
Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.

<table>
<thead>
<tr>
<th>151-0927-00L</th>
<th>Rate-Controlled Separations in Fine Chemistry</th>
<th>W</th>
<th>6 credits</th>
<th>3V+1U</th>
<th>M. Mazzotti, V. Becattini</th>
</tr>
</thead>
</table>

Abstract
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications.

Objective
The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology.

Content
The class covers separation techniques that are central in the purification and downstream processing of chemicals and biopharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation.

Lecture notes
Handouts during the class
Literature

Recommendations for text books will be covered in the class.

Prerequisites / notice

Requirements (recommended, not mandatory): Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00).

Taught competencies

Domain A - Subject-specific Competencies

- Concepts and Theories: assessed
- Techniques and Technologies: assessed

Domain B - Method-specific Competencies

- Analytical Competencies: assessed
- Decision-making: not assessed
- Media and Digital Technologies: not assessed
- Problem-solving: assessed
- Project Management: not assessed

Domain C - Social Competencies

- Communication: assessed
- Cooperation and Teamwork: not assessed
- Customer Orientation: not assessed
- Leadership and Responsibility: not assessed
- Self-presentation and Social Influence: not assessed
- Sensitivity to Diversity: not assessed
- Negotiation: not assessed

Domain D - Personal Competencies

- Adaptability and Flexibility: not assessed
- Creative Thinking: not assessed
- Critical Thinking: assessed
- Integrity and Work Ethics: not assessed
- Self-awareness and Self-reflection: not assessed
- Self-direction and Self-management: not assessed

151-0951-00L Process Design and Safety W 4 credits 2V+1U F. Trachsel, C. Hutter

Abstract

The lecture Process Design and Safety deals with the fundamentals of project management, scale-up, dimensioning and safety of chemical process equipment and plants.

Objective

The objective of the lecture is to expound the engineering design approach of important elements in chemical plant design.

Content

Fundamentals in Chemical engineering Design;
Project Management,
Cost estimate,
Materials and Corrosion,
Piping and Armatures,
Pumps,
Reactors and Scale-up,
Safety of chemical processes,
Patents.

Lecture notes

The lecture slides will be distributed.

Literature

Prerequisites / notice

A 1-day excursion including a visit of a chemical plant will be part of the lecture.

151-0957-00L Practica in Process Engineering I W 2 credits 2P S. A. Meyer, M. Tibbitt

Prerequisites: "Einführung in Verfahrenstechnik" (151-0973-00L) and further process engineering courses.

Abstract

Practical training at pilot facilities for fundamental processing steps, typical laboratory and pilot facility experiments.

Objective

Getting acquainted with unit operations, measuring tools and data processing

Content

4 modules in total (3 from Prof. Norris, 1 from Prof. Mark Tibbitt)
Details will be communicated at the beginning of the semester.

Lecture notes

The lecture slides will be distributed.

Literature

Perovskite Nanocrystals: Synthesis and Characterization
Tibbitt
Norris
Thin Film Deposition - Sputtering
Tibbitt
Scanning Electron Microscope Imaging
Norris

529-0613-01L Process Simulation and Flowsheeting W 6 credits 3G G. Guillén Gosálbez

Abstract

This course encompasses the theoretical principles of chemical process simulation and optimization, as well as its practical application in process analysis. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies.

Objective

This course aims to develop the competency of chemical engineers in process flowsheeting, process simulation and process optimization. Specifically, students will develop the following skills:
- Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes.
- Modeling of general chemical processes and systems: students should be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior.
- Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able to develop criteria to correctly use commercial software packages and critically evaluate their results.
- Process optimization: the students will learn how to formulate optimization problems in mathematical terms, the main type of optimization problems that exist (i.e., LP, NLP, MILP and MINLP) and the fundamentals of the optimization algorithms implemented in commercial solvers.
Overview of process simulation and flowsheeting:
- Definition and fundamentals
- Fields of application
- Case studies

Process simulation:
- Modeling strategies of process systems
- Mass and energy balances and degrees of freedom of process units and process systems

Process flowsheeting:
- Flowsheet partitioning and tearing
- Solution methods for process flowsheeting
- Simultaneous methods
- Sequential methods

Process optimization and analysis:
- Classification of optimization problems
- Linear programming, LP
- Non-linear programming, NLP
- Mixed-integer linear programming, MILP
- Mixed-integer nonlinear programming, MINLP

Commercial software for simulation (Aspen Plus):
- Thermodynamic property methods
- Reaction and reactors
- Separation / columns
- Convergence, optimisation & debugging

An exemplary literature list is provided below:
- Smith, R. Chemical process design and integration, Wiley (2005).

A basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.

The students are free to choose individually from the Course Catalogue of ETH Zurich, ETH Lausanne and the Universities of Zurich (https://www.uzh.ch/cmsssl/en/studies/application/chmobilityin.html) and St. Gallen.

Semester Project

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1008-00L</td>
<td>Semester Project Process Engineering Only for Process Engineering MSc.</td>
<td>O</td>
<td>8 credits</td>
<td>17A</td>
<td>Professors</td>
</tr>
</tbody>
</table>

The subject of the Master Thesis and the choice of the supervisor (ETH-professor) are to be approved in advance by the tutor.

The semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.

The aim of the Industrial Internship is to apply engineering knowledge to practical situations.

Industrial Internship

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>ECTS</th>
<th>Hours</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-1090-00L</td>
<td>Industrial Internship Access to the company list and request for recognition under www.mavt.ethz.ch/praxis.</td>
<td>O</td>
<td>8 credits</td>
<td></td>
<td>external organisers</td>
</tr>
</tbody>
</table>

No registration required via myStudies.

The main objective of the minimum twelve-week internship is to expose Master's students to the industrial work environment. The aim of the Industrial Internship is to apply engineering knowledge to practical situations.

GESS Science in Perspective

- see GESS Science in Perspective: Language Courses ETH/UZH
- see GESS Science in Perspective: Type A: Enhancement of Reflection Capability

Recommended GESS Science in Perspective (Type B) for D-MAVT.

Master's Thesis
Students who fulfill the following criteria are allowed to begin with their Master's Thesis:

- a. successful completion of the bachelor program;
- b. fulfilling of any additional requirements necessary to gain admission to the master programme;
- c. successful completion of the semester project and industrial internship;
- d. achievement of 28 ECTS in the category "Core Courses".

The Master's Thesis must be approved in advance by the tutor and is supervised by a professor of ETH Zurich.

Objective

The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem.

Abstract

Master's programs are concluded by the master's thesis. The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem. The subject of the master's thesis, as well as the project plan and roadmap, are proposed by the tutor and further elaborated with the student.

Seminars, Colloquia, and Additional Courses

Seminar on Particle Technology

The goal of the lecture is to convey a basic knowledge in the area of FV materials as well as their construction and production processes and to empower the students to apply the knowledge gained to address current problems in research and practice.

Students attend and give research presentations for the research they plan to do and at the end of the semester they defend their results and answer questions from research scientists. Familiarize the students with the latest in this field.

Research Topics in Biomedical Engineering

Does not take place this semester.

Current topics in Biomedical Engineering presented by speakers from academia and industry.

Getting insight into actual areas and problems of Biomedical Engineering an Health Care.

Process Engineering Master - Key for Type

<table>
<thead>
<tr>
<th>Key for Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compulsory</td>
</tr>
<tr>
<td>W+</td>
<td>Eligible for credits and recommended</td>
</tr>
<tr>
<td>W</td>
<td>Eligible for credits</td>
</tr>
<tr>
<td>Z</td>
<td>Courses outside the curriculum</td>
</tr>
<tr>
<td>P</td>
<td>Practical/laboratory course</td>
</tr>
<tr>
<td>A</td>
<td>Independent project</td>
</tr>
<tr>
<td>D</td>
<td>Diploma thesis</td>
</tr>
<tr>
<td>K</td>
<td>Colloquium</td>
</tr>
<tr>
<td>R</td>
<td>Revision course / private study</td>
</tr>
</tbody>
</table>

ECTS

European Credit Transfer and Accumulation System

Special students and auditors need special permission from the lecturers.