From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers via e-mail.

Reza S. Abhari: Catalogue data in Spring Semester 2020

Name Prof. Dr. Reza S. Abhari
FieldAerothermodynamik
Address
Institut für Energietechnik (eh.)
ETH Zürich, ML J 35
Sonneggstrasse 3
8092 Zürich
SWITZERLAND
Telephone+41 44 632 26 91
E-mailrabhari@lec.mavt.ethz.ch
DepartmentMechanical and Process Engineering
RelationshipFull Professor

NumberTitleECTSHoursLecturers
151-0206-00LEnergy Systems and Power Engineering4 credits2V + 2UR. S. Abhari, A. Steinfeld
AbstractIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
ObjectiveIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
ContentWorld primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the -art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal power generation and solar photovoltaics. Hydrogen as energy carrier. Fuel cells: characteristics, fuel reforming and combined cycles. Nuclear power plant technology.
Lecture notesVorlesungsunterlagen werden verteilt
151-0230-00LPlasma Science in Engineering4 credits2V + 1UR. S. Abhari, A. Giovannini
AbstractIn this course students will learn about the physical fundamentals and the main applications of plasma, the fourth state of matter. The course will give first an overview of what a plasma is, and where it can be found in nature. Then, the course will cover the fundamentals of plasma physics that will be used and extended during the main part of the course.
ObjectiveStudents should be able to describe the fundamental behaviors that characterize a plasma and physical processes that involve this state of matter. In addition, the students should be able to apply this knowledge to explain existing and develop new engineering applications that exploit plasma.
ContentThe course will give first an overview about plasma, including its definition and where plasma is found in nature. Then, the course will cover the fundamentals of plasma physics that will be used and extended during the main part of the course, which is devoted at the main applications of plasma in today's technology and research.

In detail, the topics follow below:
1- Fundamental definitions and occurrences of plasma in nature (from interstellar to pulling a wool sweater on)
2- Characterization of the plasma state, equilibrium and non-equilibrium state; steady versus pulsed
3- From Vlasov equations to magnetohydrodynamic model, derivation and underlying assumptions
4- Main methods used for plasma generation: gas discharge, laser produced and microwave generated plasmas, including hybrids
5- Plasma - matter interaction and ways for protecting surfaces: confinement challenge
6- Impact of pressure (including charge transfer) on plasma dynamics
7- Low temperature plasmas generation and application
8- Mid temperature plasmas generation and application
9- High temperature plasmas generation and application
Lecture notesDownload during semester.
LiteratureLiterature and internet links are given in downloadable slides.
Prerequisites / NoticeRecommended knowledge of Physics and Thermodynamics equivalent to Bachelor's degree (engineering or physics path).
151-1053-00LThermo- and Fluid Dynamics0 credits2KP. Jenny, R. S. Abhari, K. Boulouchos, G. Haller, C. Müller, N. Noiray, D. Poulikakos, H.‑M. Prasser, T. Rösgen, A. Steinfeld
AbstractCurrent advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers.

The talks are public and open also for interested students.
ObjectiveKnowledge of advanced research in the areas of thermo- and fluid dynamics
ContentCurrent advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers.