# Markus Reiher: Catalogue data in Spring Semester 2016

Name | Prof. Dr. Markus Reiher |

Field | Theoretische Chemie |

Address | Lab. für Physikalische Chemie ETH Zürich, HCI F 235 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |

Telephone | +41 44 633 43 08 |

markus.reiher@phys.chem.ethz.ch | |

Department | Chemistry and Applied Biosciences |

Relationship | Full Professor |

Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|

401-3667-16L | Case Studies Seminar (Spring Semester 2016) | 3 credits | 2S | V. C. Gradinaru, R. Hiptmair, M. Reiher | |

Abstract | In the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list. | ||||

Objective | |||||

Content | In the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list (containing articles from, e.g., Nature, Science, Scientific American, etc.). | ||||

401-5940-00L | Seminar in Chemistry for CSE | 4 credits | 2S | P. H. Hünenberger, M. Reiher | |

Abstract | The student will carry out a literature study on a topic of his or her liking or suggested by the supervisor in the area of computer simulation in chemistry, the results of which are to be presented both orally and in written form. For more information: www.csms.ethz.ch/education/RW | ||||

Objective | |||||

529-0470-00L | Literature Seminar in Theoretical Chemistry | 0 credits | 2S | M. Reiher | |

Abstract | In depth study of selected recent papers on theoretical chemistry | ||||

Objective | Doktorats- und Mitarbeiterschulung | ||||

Content | Variiert nach aktuellem Stand der Forschung | ||||

Literature | Will be announced on www.reiher.ethz.ch/courses-and-seminars.html | ||||

529-0474-00L | Quantum Chemistry | 6 credits | 3G | M. Reiher | |

Abstract | Introduction into the basic concepts of electronic structure theory and into numerical methods of quantum chemistry. Exercise classes are designed to deepen the theory; practical case studies using quantum chemical software to provide a 'hands-on' expertise in applying these methods. | ||||

Objective | Nowadays, chemical research can be carried out in silico, an intellectual achievement for which Pople and Kohn have been awarded the Nobel prize of the year 1998. This lecture shows how that has been accomplished. It works out the many-particle theory of many-electron systems (atoms and molecules) and discusses its implementation into computer programs. A complete picture of quantum chemistry shall be provided that will allow students to carry out such calculations on molecules (for accompanying experimental work in the wet lab or as a basis for further study of the theory). | ||||

Content | Basic concepts of many-particle quantum mechanics. Derivation of the many-electron theory for atoms and molecules; starting with the harmonic approximation for the nuclear problem and with Hartree-Fock theory for the electronic problem to Moeller-Plesset perturbation theory and configuration interaction and to coupled cluster and multi-configurational approaches. Density functional theory. Case studies using quantum mechanical software. | ||||

Lecture notes | Hand outs will be provided for each lecture (this script has been completely revised in spring 2014 anf has been supplemented by (computer) examples that continuously illustrate how the theory works). | ||||

Literature | Textbooks on Quantum Chemistry: F.L. Pilar, Elementary Quantum Chemistry, Dover Publications I.N. Levine, Quantum Chemistry, Prentice Hall Hartree-Fock in basis set representation: A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill Textbooks on Computational Chemistry: F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons C.J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons | ||||

Prerequisites / Notice | basic knowledge in quantum mechanics (e.g. through course physical chemistry III - quantum mechanics) required | ||||

529-0479-00L | Theoretical Chemistry, Molecular Spectroscopy and Dynamics | 1 credit | 2S | F. Merkt, M. Quack, M. Reiher, R. Signorell, H. J. Wörner | |

Abstract | Seminar on theoretical chemistry, molecular spectroscopy and dynamics (research seminar) | ||||

Objective | |||||

529-0483-AAL | Statistical Physics and Computer SimulationEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 4 credits | 9R | M. Reiher | |

Abstract | Principles and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics. Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages. | ||||

Objective | Introduction to statistical mechanics with the aid of computer simulation, development of skills to carry out statistical mechanical calculations using computers and interpret the results. | ||||

Content | Principles and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics. Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages. | ||||

Literature | see "Course Schedule" | ||||

529-0483-00L | Statistical Physics and Computer Simulation | 4 credits | 2V + 1U | M. Reiher | |

Abstract | Principles and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics. Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages. | ||||

Objective | Introduction to statistical mechanics with the aid of computer simulation, development of skills to carry out statistical mechanical calculations using computers and interpret the results. | ||||

Content | Principles and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics. Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages. | ||||

Literature | will be announced in the lecture | ||||

Prerequisites / Notice | Since the exercises on the computer do convey and test essentially different skills as those being conveyed during the lectures and tested at the oral exam, the results of a small programming project will be presented in a 10-minutes talk by Pairs of students who had been working on the project. Additional information will be provided in the first lecture. | ||||

529-0490-00L | Special Topics in Theoretical Chemistry | 0 credits | 1S | M. Reiher | |

Abstract | Weekly seminar programme on special topics in theoretical and quantum chemistry. Talks delivered by PhD students and PostDocs as well as by external speakers. | ||||

Objective | advanced course for PhD students and other co-workers | ||||

Content | variiert je nach Forschungslage | ||||

Lecture notes | none | ||||

529-0491-00L | Seminar in Computational Chemistry C4Does not take place this semester. | 0 credits | 2S | H. P. Lüthi, P. H. Hünenberger, M. Reiher, S. Riniker | |

Abstract | Research seminar with invited lecturers | ||||

Objective | |||||

529-0499-00L | Physical Chemistry | 1 credit | 1K | B. H. Meier, M. Ernst, P. H. Hünenberger, G. Jeschke, F. Merkt, M. Reiher, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner | |

Abstract | Seminar series covering current developments in Physical Chemistry | ||||

Objective |