The spring semester 2021 will certainly take place online until Easter. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers.

Markus Reiher: Catalogue data in Spring Semester 2016

Name Prof. Dr. Markus Reiher
FieldTheoretische Chemie
Address
Lab. für Physikalische Chemie
ETH Zürich, HCI F 235
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Award: The Golden Owl
Telephone+41 44 633 43 08
E-mailmarkus.reiher@phys.chem.ethz.ch
DepartmentChemistry and Applied Biosciences
RelationshipFull Professor

NumberTitleECTSHoursLecturers
401-3667-16LCase Studies Seminar (Spring Semester 2016)3 credits2SV. C. Gradinaru, R. Hiptmair, M. Reiher
AbstractIn the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list.
Objective
ContentIn the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list (containing articles from, e.g., Nature, Science, Scientific American, etc.).
401-5940-00LSeminar in Chemistry for CSE4 credits2SP. H. Hünenberger, M. Reiher
AbstractThe student will carry out a literature study on a topic of his or her liking or suggested by the supervisor in the area of computer simulation in chemistry, the results of which are to be presented both orally and in written form.

For more information: www.csms.ethz.ch/education/RW
Objective
529-0470-00LLiterature Seminar in Theoretical Chemistry Information 0 credits2SM. Reiher
AbstractIn depth study of selected recent papers on theoretical chemistry
ObjectiveDoktorats- und Mitarbeiterschulung
ContentVariiert nach aktuellem Stand der Forschung
LiteratureWill be announced on www.reiher.ethz.ch/courses-and-seminars.html
529-0474-00LQuantum Chemistry6 credits3GM. Reiher
AbstractIntroduction into the basic concepts of electronic structure theory and into numerical methods of quantum chemistry. Exercise classes are designed to deepen the theory; practical case studies using quantum chemical software to provide a 'hands-on' expertise in applying these methods.
ObjectiveNowadays, chemical research can be carried out in silico, an intellectual achievement for which Pople and Kohn have been awarded the Nobel prize of the year 1998. This lecture shows how that has been accomplished. It works out the many-particle theory of many-electron systems (atoms and molecules) and discusses its implementation into computer programs. A complete picture of quantum chemistry shall be provided that will allow students to carry out such calculations on molecules (for accompanying experimental work in the wet lab or as a basis for further study of the theory).
ContentBasic concepts of many-particle quantum mechanics. Derivation of the many-electron theory for atoms and molecules; starting with the harmonic approximation for the nuclear problem and with Hartree-Fock theory for the electronic problem to Moeller-Plesset perturbation theory and configuration interaction and to coupled cluster and multi-configurational approaches. Density functional theory. Case studies using quantum mechanical software.
Lecture notesHand outs will be provided for each lecture (this script has been completely revised in spring 2014 anf has been supplemented by (computer) examples that continuously illustrate how the theory works).
LiteratureTextbooks on Quantum Chemistry:
F.L. Pilar, Elementary Quantum Chemistry, Dover Publications
I.N. Levine, Quantum Chemistry, Prentice Hall

Hartree-Fock in basis set representation:
A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill

Textbooks on Computational Chemistry:
F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons
C.J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons
Prerequisites / Noticebasic knowledge in quantum mechanics (e.g. through course physical chemistry III - quantum mechanics) required
529-0479-00LTheoretical Chemistry, Molecular Spectroscopy and Dynamics1 credit2SF. Merkt, M. Quack, M. Reiher, R. Signorell, H. J. Wörner
AbstractSeminar on theoretical chemistry, molecular spectroscopy and dynamics (research seminar)
Objective
529-0483-AALStatistical Physics and Computer Simulation
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
4 credits9RM. Reiher
AbstractPrinciples and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics.
Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages.
ObjectiveIntroduction to statistical mechanics with the aid of computer simulation, development of skills to carry out statistical mechanical calculations using computers and interpret the results.
ContentPrinciples and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics.
Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages.
Literaturesee "Course Schedule"
529-0483-00LStatistical Physics and Computer Simulation4 credits2V + 1UM. Reiher
AbstractPrinciples and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics.
Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages.
ObjectiveIntroduction to statistical mechanics with the aid of computer simulation, development of skills to carry out statistical mechanical calculations using computers and interpret the results.
ContentPrinciples and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics.
Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages.
Literaturewill be announced in the lecture
Prerequisites / NoticeSince the exercises on the computer do convey and test essentially different skills as those being conveyed during the lectures and tested at the oral exam, the results of a small programming project will be presented in a 10-minutes talk by Pairs of students who had been working on the project.

Additional information will be provided in the first lecture.
529-0490-00LSpecial Topics in Theoretical Chemistry0 credits1SM. Reiher
AbstractWeekly seminar programme on special topics in theoretical and quantum chemistry. Talks delivered by PhD students and PostDocs as well as by external speakers.
Objectiveadvanced course for PhD students and other co-workers
Contentvariiert je nach Forschungslage
Lecture notesnone
529-0491-00LSeminar in Computational Chemistry C4
Does not take place this semester.
0 credits2SH. P. Lüthi, P. H. Hünenberger, M. Reiher, S. Riniker
AbstractResearch seminar with invited lecturers
Objective
529-0499-00LPhysical Chemistry1 credit1KB. H. Meier, M. Ernst, P. H. Hünenberger, G. Jeschke, F. Merkt, M. Reiher, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner
AbstractSeminar series covering current developments in Physical Chemistry
Objective