From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers via e-mail.

Reto Knutti: Catalogue data in Spring Semester 2020

Name Prof. Dr. Reto Knutti
FieldClimate Physics
Address
Institut für Atmosphäre und Klima
ETH Zürich, CHN N 12.1
Universitätstrasse 16
8092 Zürich
SWITZERLAND
Telephone+41 44 632 35 40
E-mailreto.knutti@env.ethz.ch
URLhttp://www.iac.ethz.ch/people/knuttir
DepartmentEnvironmental Systems Science
RelationshipFull Professor

NumberTitleECTSHoursLecturers
651-4095-01LColloquium Atmosphere and Climate 1 Information Restricted registration - show details 1 credit1KC. Schär, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, H. Joos, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, K. Steffen, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Objective-get insight into ongoing research in different fields related to atmospheric and climate science
ContentThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Prerequisites / NoticeTo acquire credit points for this colloquium, please confirm your attendance of 8 colloquia per semester by using the form which is provided at the course webpage.
651-4095-02LColloquium Atmosphere and Climate 2 Information Restricted registration - show details 1 credit1KC. Schär, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, H. Joos, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, K. Steffen, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Objective-get insight into ongoing research in different fields related to atmospheric and climate sciences
Prerequisites / NoticeTo acquire credit points for this colloquium, please confirm your attendance of 8 colloquia per semester by using the form which is provided at the course webpage.
651-4095-03LColloquium Atmosphere and Climate 3 Information Restricted registration - show details 1 credit1KC. Schär, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, H. Joos, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, K. Steffen, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Objective-get insight into ongoing research in different fields related to atmospheric and climate sciences
Prerequisites / NoticeTo acquire credit points for this colloquium, please confirm your attendance of 8 colloquia per semester by using the form which is provided at the course webpage.
701-0071-AALMathematics III: Systems Analysis
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
4 credits9RR. Knutti, H. Wernli
AbstractThe objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space.
ObjectiveLearning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction.
Contenthttp://www.up.ethz.ch/education/systems-analysis.html
Lecture notesOverhead slides will be made available through Ilias.
LiteratureImboden, D.S. and S. Pfenninger (2013) Introduction to Systems Analysis: Mathematically Modeling Natural Systems. Berlin Heidelberg: Springer Verlag.

http://link.springer.com/book/10.1007%2F978-3-642-30639-6
701-1211-01LMaster's Seminar: Atmosphere and Climate 1 Restricted registration - show details 3 credits2SH. Joos, R. Knutti, I. Medhaug, M. A. Wüest
AbstractIn this seminar, the process of writing a scientific proposal will be
introduced. The essential elements of a proposal, including the peer
review process, will be outlined and class exercises will train
scientific writing skills. Knowledge exchange between class
participants is promoted through the preparation of a master thesis
proposal and evaluation of each other's work.
ObjectiveScientific writing skills
How to effectively write a scientific proposal.
ContentIn this seminar, the process of writing a scientific proposal will be
introduced. The essential elements of a proposal, including the peer
review process, will be outlined and class exercises will train
scientific writing skills. Knowledge exchange between class
participants is promoted through the preparation of a master thesis
proposal and evaluation of each other's work.
Prerequisites / NoticePlease register for the seminar 1 in the semester BEFORE writing your MSc thesis.
Attendance is mandatory.
701-1211-02LMaster's Seminar: Atmosphere and Climate 2 Restricted registration - show details 3 credits2SH. Joos, R. Knutti, I. Medhaug, M. A. Wüest
AbstractThis seminar brings the students working on their Master thesis together. Students present their Master thesis project including an overview of the outline and the first scientific results. In this seminar presentation skills and visualisation techniques are trained and methods of scientific project management are introduced and applied to the Master project.
Objective- training of presentation and visualisation skills
- gain basic knowledge in project management
- train how to lead a discussion, chair a presentation
ContentThis seminar brings the students working on their MSc thesis together. Students present their MSc thesis project including an overview of the outline and the first scientific results. In this seminar presentation skills and visualisation techniques are trained and methods of scientific project management are introduced and applied to the MSc project.
Prerequisites / NoticePlease register for this seminar 2 in the semester in which you work on your MSc thesis.
Attendance is mandatory
701-1252-00LClimate Change Uncertainty and Risk: From Probabilistic Forecasts to Economics of Climate Adaptation Restricted registration - show details 3 credits2V + 1UD. N. Bresch, R. Knutti
AbstractThe course introduces the concepts of predictability, probability, uncertainty and probabilistic risk modelling and their application to climate modeling and the economics of climate adaptation.
ObjectiveStudents will acquire knowledge in uncertainty and risk quantification (probabilistic modelling) and an understanding of the economics of climate adaptation. They will become able to construct their own uncertainty and risk assessment models (in Python), hence basic understanding of scientific programming forms a prerequisite of the course.
ContentThe first part of the course covers methods to quantify uncertainty in detecting and attributing human influence on climate change and to generate probabilistic climate change projections on global to regional scales. Model evaluation, calibration and structural error are discussed. In the second part, quantification of risks associated with local climate impacts and the economics of different baskets of climate adaptation options are assessed – leading to informed decisions to optimally allocate resources. Such pre-emptive risk management allows evaluating a mix of prevention, preparation, response, recovery, and (financial) risk transfer actions, resulting in an optimal balance of public and private contributions to risk management, aiming at a more resilient society.
The course provides an introduction to the following themes:
1) basics of probabilistic modelling and quantification of uncertainty from global climate change to local impacts of extreme events
2) methods to optimize and constrain model parameters using observations
3) risk management from identification (perception) and understanding (assessment, modelling) to actions (prevention, preparation, response, recovery, risk transfer)
4) basics of economic evaluation, economic decision making in the presence of climate risks and pre-emptive risk management to optimally allocate resources
Lecture notesPowerpoint slides will be made available.
LiteratureMany papers for in-depth study will be referred to during the lecture.
Prerequisites / NoticeHands-on experience with probabilistic climate models and risk models will be acquired in the tutorials; hence good understanding of scientific programming forms a prerequisite of the course, in Python (teaching language, object oriented) or similar. Basic understanding of the climate system, e.g. as covered in the course 'Klimasysteme' is required.

Examination: graded tutorials during the semester (benotete Semesterleistung)