From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers via e-mail.

Wendelin Werner: Catalogue data in Spring Semester 2016

Name Prof. Dr. Wendelin Werner
FieldMathematics
Address
Professur für Mathematik
ETH Zürich, HG G 66.3
Rämistrasse 101
8092 Zürich
SWITZERLAND
Award: The Golden Owl
E-mailwendelin.werner@math.ethz.ch
URLhttp://www.math.ethz.ch/~wewerner
DepartmentMathematics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
401-2554-00LTopology6 credits3V + 2UP. D. Nelson, W. Werner
AbstractTopics covered include: Topological and metric spaces, continuity, connectedness, compactness, product spaces, separation axioms, quotient spaces, homotopy, fundamental group, covering spaces.
ObjectiveAn introduction to topology i.e. the domain of mathematics that studies how to define the notion of continuity on a mathematical structure, and how to use it to study and classify these structures.
Lecture notesSee:
https://www2.math.ethz.ch/education/bachelor/lectures/fs2016/math/topo
LiteratureKlaus Jänich: Topologie (Springer)
http://link.springer.com/book/10.1007/978-3-662-10575-7

Boto von Querenburg: Mengentheoretische Topologie (Springer)
http://link.springer.com/book/10.1007/978-3-642-56860-2
401-5000-00LZurich Colloquium in Mathematics Information 0 creditsW. Werner, P. L. Bühlmann, M. Burger, S. Mishra, R. Pandharipande, University lecturers
Abstract
Objective
401-5600-00LSeminar on Stochastic Processes Information 0 credits1KJ. Bertoin, A. Knowles, A. Nikeghbali, P. Nolin, B. D. Schlein, A.‑S. Sznitman, W. Werner
AbstractResearch colloquium
Objective
406-2554-AALTopology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
6 credits13RW. Werner
AbstractTopological and metric spaces, continuity, connectedness, compactness, product and quotient spaces, separation axioms, quotient spaces, Baire category, homotopy, fundamental group, covering spaces.
ObjectiveCover the basic notions of set-theoretic topology.
LiteratureKlaus Jänich: Topologie (Springer)
http://link.springer.com/book/10.1007/978-3-662-10575-7
Boto von Querenburg: Mengentheoretische Topologie (Springer)
http://link.springer.com/book/10.1007/978-3-642-56860-2
Lynn Arthur Steen, J. Arthur Seebach Jr.: Counterexamples in Topology (Springer)
http://link.springer.com/book/10.1007/978-1-4612-6290-9
Nicolas Bourbaki: Topologie Générale, chapitres 1 à 10 (Hermann, Paris) oder General Topology (Chapters 1-10) (Springer)
Ryszard Engelking: General topology. Heldermann Verlag, Berlin, 1989.
Prerequisites / NoticeThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.