Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Lorenz Gubler: Catalogue data in Spring Semester 2020

Name PD Dr. Lorenz Gubler
FieldPhysical Chemistry
Address
Paul Scherrer Institut
OLGA/119
5232 Villigen PSI
SWITZERLAND
E-mailgublerl@ethz.ch
URLhttp://www.psi.ch/lec/mec
DepartmentChemistry and Applied Biosciences
RelationshipPrivatdozent

NumberTitleECTSHoursLecturers
529-0191-01LElectrochemical Energy Conversion and Storage Technologies4 credits3GL. Gubler, E. Fabbri, J. Herranz Salañer
AbstractThe course provides an introduction to the principles and applications of electrochemical energy conversion (e.g. fuel cells) and storage (e.g. batteries) technologies in the broader context of a renewable energy system.
ObjectiveStudents will discover the importance of electrochemical energy conversion and storage in energy systems of today and the future, specifically in the framework of renewable energy scenarios. Basics and key features of electrochemical devices will be discussed, and applications in the context of the overall energy system will be highlighted with focus on future mobility technologies and grid-scale energy storage. Finally, the role of (electro)chemical processes in power-to-X and deep decarbonization concepts will be elaborated.
ContentOverview of energy utilization: past, present and future, globally and locally; today’s and future challenges for the energy system; climate changes; renewable energy scenarios; introduction to electrochemistry; electrochemical devices, basics and their applications: batteries, fuel cells, electrolyzers, flow batteries, supercapacitors, chemical energy carriers: hydrogen & synthetic natural gas; electromobility; grid-scale energy storage, power-to-gas, power-to-X and deep decarbonization, techno-economics and life cycle analysis.
Lecture notesall lecture materials will be available for download on the course website.
Literature- M. Sterner, I. Stadler (Eds.): Handbook of Energy Storage (Springer, 2019).
- C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry, Wiley-VCH (2007).
- T.F. Fuller, J.N. Harb: Electrochemical Engineering, Wiley (2018)
Prerequisites / NoticeBasic physical chemistry background required, prior knowledge of electrochemistry basics desired.
529-0507-00LHands-on Electrochemistry for Energy Storage and Conversion Applications Restricted registration - show details
Additional Information: Previous attendance to one of the two electrochemistry-related courses available at ETHZ (Electrochemistry by Prof. P. Novak, or Physical Electrochemistry and Electrocatalysis by Prof. T.J. Schmidt) is mandatory.
6 credits6PL. Gubler, E. Fabbri, J. Herranz Salañer, S. Trabesinger
AbstractThe course will provide the students with hands-on laboratory experience in the field of electrochemistry, specifically within the context of energy related applications (i.e., Li-ion and redox flow batteries, fuel cells and electrolyzers).
ObjectiveSolidify the students’ theoretical knowledge of electrochemistry; apply these concepts in the context of energy-related applications; get the students acquainted with different electrochemical techniques, as well as with application-relevant materials and preparation methods.
ContentDays 1 & 2: Introduction to basic electrochemical processes
Days 3 - 8: 3 x 2-day blocks of laboratory work (rotating assignments):
- Lithium-ion batteries
- Redox flow batteries
- Polymer electrolyte fuel cells
Days 9 & 10: preparation and completion of the course’s report and oral presentation (for evaluation)
Lecture notesThe course material will be prepared and provided by the lecturers.
LiteratureReferences to academic publications of specific relevance to the experiments to be performed will be included within the courses’ script
Prerequisites / Notice- Course language is english.
- The course will take place at the Paul Scherrer Institut, 5232 Villigen PSI (www.psi.ch).
- The number of participants is limited to 18 (first-come first-served basis, Master level students have priority over PhD students).
- Students are encouraged to bring their own protective gear for the work in the lab (lab coat, safety goggles). If needed, this can also be provided, please contact the organizers in advance.
- Participants need to be insured (health / accident insurance).
- On-site accommodation at the PSI guesthouse (www.psi.ch/gaestehaus) is possible and will be arranged.