Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind. Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

Marc Burger: Katalogdaten im Frühjahrssemester 2016

NameHerr Prof. Dr. Marc Burger
LehrgebietMathematik
Adresse
Dep. Mathematik
ETH Zürich, HG G 37.1
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 49 73
Fax+41 44 632 10 85
E-Mailmarc.burger@math.ethz.ch
URLhttp://www.math.ethz.ch/~burger
DepartementMathematik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
401-3532-08LDifferential Geometry II10 KP4V + 1UM. Burger
KurzbeschreibungThe aim of this course is to give an introduction to Riemannian Geometry and modern metric geometry.
LernzielRiemannian Geometry, metric geometry.
InhaltThe aim of this course is to give an introduction to Riemannian Geometry and modern metric geometry. We will present the basics on affine and riemannian connections, discuss existence and properties of geodesics; then we proceed to the central concept of riemannian curvature tensor and its various avatars, like sectional curvature and scalar curvature. We will then move to Topogonov's comparison theorems. This constitutes the bridge with metric geometry and the modern notion of negative curvature, which applies to singular spaces, and constitutes the topic of the second part of this course.
SkriptWill be made available.
LiteraturM.P. do Carmo, "Riemannian Geometry", Birkhauser, 1992

M. Bridson, A. Haefliger, "Metric Spaces of Non-Positive Curvature",
Springer 1999.
Voraussetzungen / BesonderesPrerequisite are the sections concerning manifolds and tangent bundles of the Differential Geometry I course, Fall Semester 2015.
401-5000-00LZurich Colloquium in Mathematics Information 0 KPW. Werner, P. L. Bühlmann, M. Burger, S. Mishra, R. Pandharipande, Uni-Dozierende
Kurzbeschreibung
Lernziel
401-5530-00LGeometry Seminar Information 0 KP1KM. Burger, M. Einsiedler, A. Iozzi, U. Lang, V. Schroeder, A. Sisto
KurzbeschreibungForschungskolloquium
Lernziel