Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

406-0253-AAL  Mathematics I & II

SemesterFrühjahrssemester 2016
DozierendeA. Cannas da Silva
Periodizitätjedes Semester wiederkehrende Veranstaltung
KommentarBelegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.

KurzbeschreibungMathematics I covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.
Main focus of Mathematics II: multivariable calculus and partial differential equations.
LernzielMathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Inhalt1. Linear Algebra and Complex Numbers:
systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

2. Single-Variable Calculus:
review of differentiation, linearisation, Taylor polynomials, maxima and minima, fundamental theorem of calculus, antiderivative, integration methods, improper integrals.

3. Ordinary Differential Equations:
variation of parameters, separable equations, integration by substitution, systems of linear equations with constant coefficients, 1st and higher order equations, introduction to dynamical systems.

4. Multivariable Differential Calculus:
functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence.

5. Multivariable Integral Calculus:
multiple integrals, line and surface integrals, work and flow, Gauss and Stokes theorems, applications.

6. Partial Differential Equations:
separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform.
Literatur- Bretscher, O.: Linear Algebra with Applications, Pearson Prentice Hall.
- Thomas, G. B.: Thomas' Calculus, Part 1, Pearson Addison-Wesley.
- Thomas, G. B.: Thomas' Calculus, Part 2, Pearson Addison-Wesley.
- Kreyszig, E.: Advanced Engineering Mathematics, John Wiley & Sons.